Contents

Preface ix

1 An Introduction to Density Functional Theory (DFT) and Derivatives 1
 1.1 The Problem of a N-electron System 1
 1.2 The Thomas–Fermi Theory for Electron Density 3
 1.3 The First Hohenberg–Kohn Theorem 3
 1.4 The Second Hohenberg–Kohn Theorem 5
 1.5 The Kohn–Sham Equations 5
 1.6 The Local Density Approximation (LDA) 7
 1.7 The Generalized Gradient Approximation (GGA) 8
 1.8 The LDA+U Method 8
 1.9 The Heyd–Scuseria–Ernzerhof Density Functional 9
 1.9.1 Introduction to Tight-Binding Approximation 9
 1.9.2 Matrix Elements of Tight-Binding Hamiltonian 10
 1.9.3 Matrix Elements with the Help of Wannier Function 10
 1.9.4 Example for a Graphene Model 10
 1.10 Introduction to $k \cdot p$ Perturbation Theory 11
 1.10.1 Solution for Non-degenerate Bands 11
 1.10.2 Solution for Degenerate Bands 12
 1.10.3 Explicit Hamiltonian of $k \cdot p$ Perturbation Theory 12
 References 13

2 New Physical Effects Based on Band Structure 17
 2.1 Valley Physics 17
 2.1.1 Spontaneous Valley Polarization 22
 2.1.2 Valley Polarization by Foreign Atom Doping 31
 2.1.3 Valley Polarization in van der Waals Heterostructures 37
 2.2 Rashba Effects 43
 References 55
3 Ferromagnetic Order in Two- and One-Dimensional Materials 65

3.1 Intrinsic Ferromagnetic Order in 2D Materials 66
3.2 Intrinsic Ferromagnetic Order in 1D Molecular Nanowires 73
References 75

4 Two-Dimensional Topological States 81

4.1 Topological Insulators 82
4.1.1 Graphene 82
4.1.2 HgTe/CdTe Quantum Wells 83
4.1.3 \(Z_2\) Invariant and Spin Chern Number 84
4.1.4 Large Gap Quantum Spin Hall Insulators 86
4.2 Topological Crystalline Insulators 91
4.2.1 SnTe Thin Films 91
4.2.2 IV–VI Monolayers 93
4.2.3 Topological Phase Transition Between 2D TCI and TI 94
4.2.4 Dual Topological Insulator 96
4.2.5 TCI in 2D Ferromagnets 100
4.3 Quantum Anomalous Hall Effect 103
4.4 Antiferromagnetic Topological Insulators 107
4.5 Mixed Topological Semimetals 113
References 118

5 Calculation of Excited-State Properties 123

5.1 Green’s Function Many-Body Perturbation Theory 123
5.2 Excitonic Effects and Band Gap Renormalization in Two-Dimensional Materials 130
5.3 Electron–Phonon Effects on the Excited-state Properties 133
5.4 Nonlinear Optical Response 136
5.5 Optical Properties of van der Waals Heterostructures of Two-Dimensional Materials 137
References 139

6 Charge Carrier Dynamics from Simulations 145

6.1 Time-Dependent Density Functional Theory and Nonadiabatic Molecular Dynamics 145
6.2 Applications of TDDFT and NAMD in Two-Dimensional Materials 148
References 155

7 Simulations for Photocatalytic Materials 159

7.1 Photocatalysis and Photocatalytic Reactions 159
7.2 Photoresponsivity and Photocurrent from Simulations 164
7.3 Simulation for Localized Surface Plasmon Resonance 174
References 182
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Simulations for Electrochemical Reactions</td>
<td>195</td>
</tr>
<tr>
<td>8.1</td>
<td>Single-atom Catalysts</td>
<td>195</td>
</tr>
<tr>
<td>8.2</td>
<td>Stability of Catalyst</td>
<td>197</td>
</tr>
<tr>
<td>8.3</td>
<td>Electrochemical Reactions</td>
<td>199</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Hydrogen Evolution Reaction (HER)</td>
<td>199</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Oxygen Evolution Reaction (OER)</td>
<td>203</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Oxygen Reduction Reaction (ORR)</td>
<td>204</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Nitrogen Reduction Reaction (NRR)</td>
<td>204</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Electrocatalytic Activity Evaluated from the First-principles Calculations</td>
<td>209</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Simulations for Nitrogen Reduction Reaction</td>
<td>220</td>
</tr>
</tbody>
</table>

References 232

Index 239