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Abstract

We present a three dimensional, homogenized PDE/ODE model for bone fracture healing in the presence of
a porous, bio-resorbable scaffold and an associated PDE constrained optimization problem concerning the
optimal scaffold density distribution for an ideal healing environment. The model is analyzed mathemat-
ically and a well-posedness result is provided. For the optimization problem, we show the existence of an
optimal scaffold design and rigorously derive the adjoint equations. Further, we prove a novel Lp(I,Cα(Ω))
regularity result for reaction-diffusion equations with mixed boundary conditions which is crucial for the
analysis of the optimal control problem. Numerical simulations for the PDE/ODE system and the PDE con-
strained optimization problem are presented, illustrating the effect of stress-shielding on optimal scaffold
design and providing insight in the sensitivity of the optimal scaffold design with respect to inhibited bone
growth and vascularization.
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I Hölder Regularity of Elliptic Equations with Mixed Boundary Conditions . . . . . . . . . . . 71

1.1 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.2 Known Regularity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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Chapter 1

Introduction

In this work, we are concerned with the development and well-posedness of a simple and efficient model
for bone regeneration in the presence of a bioresorbable porous scaffold and the design of an optimal
scaffold using PDE constrained optimization techniques. The essential processes are an interplay between
the mechanical and biological environment which we model by a coupled system of PDEs and ODEs.
The mechanical environment is represented by a linear elastic equation and the biological environment
through reaction-diffusion equations as well as logistic ODEs, modeling signaling molecules and cells/bone
respectively. Material properties are incorporated using homogenized quantities not resolving any scaffold
microstructure. This makes the model efficient in computations, thus suitable as a forward equation in
optimization algorithms and opening up the possibility of patient specific scaffold design in the sense of
precision medicine. The main focus of the thesis lies on the mathematical analysis of the PDE-ODE model
and the associated PDE constrained optimization system. Additionally, numerical simulations are provided
and compared to experimental data. Our numerical findings show that our model resolves clinically relevant
stress shielding effects that appear in vivo due to external fixation of the scaffold at the defect site.

The thesis is organized as follows. In Chapter 1, we begin by giving an introduction into tissue engineering
for the treatment of severe bone defects and present our computational model. We then proceed by
discussing the one-dimensional case in a mathematical rigorous way, proving well-posedness and the
existence of an optimal control. This serves as a gentle introduction to the mathematical techniques. In
Chapter 2, we prove the existence and uniqueness result for the full model in three dimensions and present
numerical simulations. In Chapter 3 we establish the optimal control result in three dimensions, rigorously
derive the adjoint system and present numerical simulations of optimized scaffolds. In the Appendix, we
discuss technical results required for the proofs of the main results, more precisely, we consider regularity of
reaction-diffusion equations, Banach space valued ordinary differential equations and the regularity theory
of the Banach space adjoints of time-dependent differential operators.

The main result of this thesis consists of the extension of the PDE-ODE model proposed in Poh et al. (2019)
to the three dimensional case and to a more comprehensive biological environment. For this system, a
well-posedness result is provided, taking into account realistic boundary conditions. Furthermore, for the
corresponding PDE constrained optimization problem, an optimal control result is proven. This requires
the extension of known regularity results from the literature for linear reaction-diffusion equations. A
rigorous derivation of the adjoint system is carried out. Due to regularity issues this is not completely
straight-forward. Finally, numerical simulations for both the forward system and the PDE constrained
optimization are presented.

I Modeling ScaffoldMediated Bone Growth

We start by explaining the processes behind bone growth in the presence of a porous scaffold and then
introduce our computational model.
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1.1 Scaffold Mediated Bone Growth

The regeneration and restoration of skeletal functions of critical-sized bone defects (>25 mm) are very
challenging despite a multitude of treatment options, see Nauth et al. (2018). The main problem is the
phenomenon of non-union where the bone defect fails to become bridged after >9 months and does not
show healing progression for 3 months, cf. Calori et al. (2017). Mills et al. (2017) showed that with 1.9%,
the prevalence of non-union per fracture is relatively low, yet the financial burden is high, for example,
in the UK, the healthcare cost is estimated to be £320 million annually, see Stewart (2019). Moreover, the
risk of non-union increases drastically with comorbidities such as diabetes as in this case the regenerative
capability of bone tissue is compromised, we refer to Marin et al. (2018).

Critical-sized defects may not heal and require in-depth planning of their treatment. Currently used
therapeutic approaches include bone grafting, distraction osteogenesis, and the so-called “Masquelet”
technique, in which a periosteal membrane is formed to induce bone defect healing, cf. Nauth et al. (2018).
Despite having a general guideline for treatment of critical-sized bone defects, healing outcomes vary highly,
dependent on the site and size of the defect and patient-related aspects, e.g., age, lifestyle and comorbid
metabolic/systemic disorders, see Roddy et al. (2018).

Over the years, research demonstrated the potential of using porous, possibly bio-resorbable support
structures, so-called scaffolds, as supporting devices to promote bone defect regeneration. Initially, a
scaffold is placed in the defect site, acting as a temporary support structure allowing for vascularization
while guiding new bone formation. This has recently shown promising results in vivo and in clinical cases,
for example Petersen et al. (2018) showed that the architecture of the scaffold can guide the endochondral
healing of bone defects in rats. In this study, collagen-based scaffolds with cylindrical pores aligned along
the principle stress axis were used. In Cipitria et al. (2012); Paris et al. (2017), 3D-printed scaffolds made
from a composite of polycaprolactone (PCL, a slowly degrading, bio-resorbable synthetic thermoplastic)
and β-tricalcium phosphate (β-TCP) were used in an ovine experiment. In the studies Petersen et al. (2018);
Cipitria et al. (2012); Paris et al. (2017) no relevant bridging of the bone defect was achieved without the
addition of exogenous growth factors or cells. However, Pobloth et al. (2018) illustrated that clinically
relevant bone formation for scaffold mediated bone regeneration is possible without exogenous growth
factors. In this experiment a 3D-printed titanium scaffold with optimized mechanobiological properties
was used and displayed clinically relevant functional bridging of a major bone defect in a large animal
model. Concluding, the studies Petersen et al. (2018); Cipitria et al. (2012); Paris et al. (2017); Pobloth et al.
(2018) indicate the possibility of using a scaffold-mediated bone growth approach for critical-size bone
defect healing. Furthermore they indicate that the design and choice of materials are critical questions not
yet fully understood.

There are several objectives to be considered when designing a scaffold, such as (a) the porosity, pore
size and shape, influencing cell proliferation and differentiation as well as the vascularization process; (b)
the overall stability and elastic properties guaranteeing a proper transfer of loads, as mechanical stimulus
is indispensable for bone growth; (c) patient specific information such as reduced bone healing capacities,
caused for example by diabetes Marin et al. (2018). Therefore, the patient dependent optimal scaffold design
is of fundamental importance and with the advent of additive manufacturing technologies the production
of personalized scaffolds is – in theory – fully feasible.

However, the design of scaffolds has been dominated by trial-and-error approaches – modifying an existing
scaffold architecture based on experimental outcomes, a very costly workflow unsuitable for patient specific
design. Over the years, with the help of evolving computer aided design tools, topology optimization
techniques have shown potential to address the optimal design question computationally.

This strategy has already been applied to design scaffolds meeting elastic optimality conditions with a given
porosity or fluid permeability, we refer for example to Dias et al. (2014); Coelho et al. (2015); Lin et al. (2004);
Guest and Prévost (2006); Challis et al. (2012); Kang et al. (2010); Wang et al. (2016); Dondl et al. (2019). Yet, a
common limitation to these models is that they do not resolve the time dependence of the bone regeneration
process, as scaffold mediated bone regeneration crucially depends on the varying elastic moduli over time.

Highly accurate, fine scale models for bone formation exist (see, e.g., Klika et al. (2014); Sanz-Herrera et al.
(2008); Alierta et al. (2014); Checa and Prendergast (2010)). A central issue in most such micro-scale models is
that their use in optimization routines for scaffold design is impeded by too high computational cost. Ideally,
a bone regeneration scaffold design should be patient specific, i.e., depend on the individual patient’s defect
site and its biomechanical loading conditions, geometry, and regenerative ability as influenced by, e.g.,
comorbitities such as type 2 diabetes mellitus. Such an optimization of course relies on the availability of
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highly efficient models for bone regeneration that nevertheless take into account mechanics and biological
signaling.

Based on a previous, one-dimensional study by Poh et al. (2019), we thus propose a model based on
homogenized quantities suitable for scaffold optimization in the sense of the first step in the “Shape
Optimization by the Homogenization Method” Allaire (2012). This means that our model does not resolve
the micro-structure of the scaffold design, but uses coarse-grained values instead. In a scaffold based on a
unit cell design, the scaffold volume fraction (or equivalently, the porosity) changes on a larger length-scale
than the unit cell design. We use this fact to simplify our model, working with meso-scale averages of the
volume fraction instead of the precise micro-structure. Likewise, the other quantities of the model can be
viewed as locally averaged values. However, it should be made clear that using such an approach implies
that only the averaged quantities can be tracked over the regeneration process and no prediction on how the
micro-structure changes over time can be made. Rather, this is required as an input to provide the correct
homogenized material properties. Our central assumption is that one can describe the time-evolution of the
homogenized quantities in terms of their averages at the initial time-point. Compared to the aforementioned
one-dimensional approach, our model can resolve important issues such as bone mass loss due to stress
shielding in orthopaedic implants, see Section III for an explicit example.

Another objective of our model is that it allows for a mathematical optimization of the scaffolds volume
fraction distribution, similar to the optimization in Poh et al. (2019). This requires the model to be posed in
a fully continuous manner, making, e.g., the adjoint method of PDE constrained optimization applicable for
which we refer to Hinze et al. (2008). As mentioned before, computational efficiency of the model is necessary
for a successful application of PDE constrained optimization methods – these optimization algorithms
typically require to evaluate the model for many different scaffold volume fractions. Mathematically, we
allow for a wide class of objectives to optimize for. Applications are the amount of regenerated bone
after a given healing period or one could maximize the temporal minimum of the elastic modulus of the
scaffold-bone composite. We elaborate on these examples in Section 1.4.

As our model is designed for computational efficiency we include only key events in the course of the bone
healing process. We keep track of the mechanical environment at every point in time and space, depending
on the current state of bone formation and scaffold degradation in terms of its molecular weight. Here we
focus on additively manufactured scaffolds made out of PCL, a very promising material for this specific
application. Of course, extensions to other materials (e.g., non-degrading titanium) are possible. The
biological environment is represented via a concentration of endogenous angiogenic and osteoinductive
factors (e.g., intrinsic growth factors/cytokines) which we call bio-active or signaling molecules and a
concentration of osteoblasts, a type of bone forming cell. The coupling of the mechanical and biological
properties is assumed to be driven through the local strain caused by mechanical loading of the scaffold-
bone composite, i.e., mechanical loading leads to stimulus for the biological environment which in turn
leads to bone growth and hence changes the mechanical properties.

This results in a coupled system of evolution equations composed of a linear elastic equilibrium equation
for every point in time, diffusion equations for the bio-active molecules and ordinary differential equations
for the concentration of osteoblasts and the volume fraction of bone. As our main focus lies on the
existence and uniqueness results, we do not use concrete homogenized tensors in the equations, but abstract
functional relationships. This has the advantage of proving the result for a wide class of imaginable scaffold
architectures at once. Explicit micro-structures can then be taken into account when one performs numerical
simulations. In the same spirit we keep the rest of the equations abstract, preferring functional relationships
over concrete formulas. This constitutes also a perspective for future research: derive concrete homogenized
quantities for certain scaffold details, compare the outcome to experimental results, and employ the model
in an optimization routine analogous to the one presented in Poh et al. (2019). The 3-dimensionality of
the model makes an optimization of the scaffold porosity considerably more challenging from a numerical
viewpoint – but due to the efficient, homogenized, model it is within reach to provide patient specific optimal
scaffold designs that depend on the individual’s defect site and geometry, as well as their regeneration
capacity.

1.2 The System of Equations

Let Ω ⊂ R3 be the domain of computation, i.e., the bone defect site, and let I = [0,T] be a finite time interval.
On the defect site we keep track of the local scaffold volume fraction called ρ(x), with x ∈ Ω. Equivalently,
the relation to the local scaffold porosity θ is given by θ(x) = 1− ρ(x), but we work with ρ exclusively. Note
that we do not assume a time dependency for ρ as experimental findings of Pitt et al. (1981) have shown
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that, in the time-window relevant for us, PCL degrades via bulk erosion. However, the molecular mass
decreases and we keep track of this by introducing the exponential decay σ(t) = e−k1t, making the product
ρ(x) · σ(t) the quantity encoding the mechanical properties of PCL over time and space. Furthermore, we
denote the local bone density by b(t, x) and the three quantities b, σ and ρ together determine the mechanical
material properties of the bone-scaffold composite. We model this composite in the linear elastic regime
using an elastic tensor C(ρ, σ, b) to capture the material properties.

In the spirit of the homogenization approach we assume little on the concrete properties of this tensor,
in particular we do not assume isotropy. For a particular choice of micro-structure C(ρ, σ, b) can be made
explicit. In order to quantify the elastic stimulus throughout the bone-scaffold composite we introduce a
displacement field u(t, x) satisfying the equation of mechanical equilibrium (1.1). The corresponding strain
is denoted by ε(u), with ε(u) = 1

2 (Du + DTu) the symmetrized derivative.

For the biological environment we introduce N bio-active molecules denoted by a1(t, x), . . . , aN(t, x), these are
endogenous angiogenic and osteoinductive factors which we assume to diffuse depending on the scaffold
density ρ. This is captured by Di(ρ) in the equation (1.2) and is left as an abstract functional relationship
for the same reasoning as the elastic tensor. Furthermore, we assume the bio-active molecules to decay at a
certain rate and to be produced in the presence of strain and a local density of specific cells (e.g., osteoblasts)
which we denote by c(t, x). The essential quantity for the production of bio-active molecules is |ε(u)|δ, where
| · |δ is a functional relationship which we propose to view as a usual Euclidean norm or a truncated version
thereof, see also (2.20). The concentrations of bio-active molecules are normalized to unity in healthy tissue
and the choice of decay and production rate should reflect this in a concrete simulation.

Equation (1.3) governing the production of bone forming cells (here: osteoblasts) is modeled by logistic
growth and a functional relationship H(a1, . . . , aN, c, b) allowing driving factors for osteoblast production
to be the concentrations of bio-active molecules (causing differentiation of stem cells to osteoblasts), the
proliferation of osteoblasts and the maturity of the bone present. Note that we do not model diffusion
in this equation as we assume that osteoblasts diffuse on a significantly lower level than the bio-active
molecules. Of course, more than one cell type is present and responsible for bone growth. For simplicity
we only include osteoblasts in this model, but an extension is easily feasible here. Finally, the equation
modeling bone growth (1.4) follows the same pattern as the one for osteoblast concentration. In summary,
our system of equations reads

0 = div
(
C(ρ, σ, b)ε(u)

)
(mechanical equilibrium) (1.1)

dtai = div
(
Di(ρ)∇ai

)
+ k2,i|ε(u)|δc − k3,iai

(diffusion, generation, and
decay of i = 1 . . .N bio-
molecules)

(1.2)

dtc = H(a1, . . . , aN, c, b)
(
1 −

c
1 − ρ

)
(osteoblast generation) (1.3)

dtb = K(a1, . . . , aN, c, b)
(
1 −

b
1 − ρ

)
(bone regeneration driven
by a, b and c). (1.4)

In the above system k1, k2,i, k3,i ≥ 0, i = 1, . . . ,N are constants that need to be determined from experiments,
compare to the Section III where we discuss certain choices. The functional relationshipsC,Di(ρ), | · |δ,H and
K are all required to satisfy certain technical assumptions that guarantee the well-posedness of the above
system. We discuss this in detail in Section I.

Finally, we need to specify boundary conditions. For the elastic equilibrium equation we allow mixed
boundary conditions including the limiting cases of a pure displacement boundary condition and a pure
stress boundary condition. As for the bio-active molecules we assume that these are in saturation, i.e.,
a(t, x) = 1 adjacent to bone and on the rest of the boundary of Ω we assume no-flux boundary conditions.
For the initial time-point we propose ai(0, x) = ai,0 = 0 inside of Ω. This choice reflects the scenario of
a scaffold that is not preseeded with exogenous growth factors. However, different choices of ai,0 are
admissible and allow the model to cover, e.g., pre-seeding with osteoinductive factors. Finally, at the initial
time we assume that no osteoblasts and no regenerated bone are present inside the domain of computation.
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Figure 1.1: Schematic setup of the model’s dependencies. 1) & 2) indicate the stimulus’ dependence on bone
and the scaffold. 3) & 4) represent that the production of growth factors depends on cells and stimulus.
5) encodes the dependence of cell production on growth factors. The cell production is limited through
the available space via 9). 6) & 7) indicate that that growth factors and cells drive bone production. The
available space in 10) bounds bone production. The dashed arrow in 8) represents a possible dependence
of cells on bone, however, we do not include this in our numerical experiments.

In formulas, it holds for all i = 1, . . . ,N

ai(0, x) = 0 for all x ∈ Ω (1.5)
ai(t, x) = 1 for all t ∈ I, x adjacent to bone (1.6)

Dρ
i ∇ai(t, x) · η = 0 for all t ∈ I, x not adjacent to bone (1.7)(

C(ρ, σ, b)ε(u(t, x))
)
· η = gN(x) on the Neumann boundary of Ω (1.8)

u(t, x) = gD(x) on the Dirichlet boundary of Ω (1.9)
c(0, x) = b(0, x) = 0 for all x ∈ Ω. (1.10)

The model allows for a time dependent choice of the mechanical loading gD and gN. Due to the long
regeneration time horizon of approximately 12 months, however, it is not expedient to resolve very short
time-scales of, e.g., the mechanics of physical therapy. Instead, we consider suitably time-averaged loading
conditions here.

1.3 The Associated Optimization Problem

In the system (1.1) - (1.4) above, the function ρ, i.e., the scaffold’s volume fraction, is a design parameter
that we can control in applications. For example, a given scaffold volume fraction distribution could be
additively manufactured. Therefore, we call ρ the control variable. Given a certain control variable ρ, we
denote the solution of the system (1.1) - (1.4) by

yρ B (uρ, a1
ρ, . . . , a

N
ρ , cρ, bρ)

to stress the dependency on the control variable. Note however, that we don’t always use the subscript
ρ throughout the thesis. Depending on the so-called state yρ, we can measure the control variable’s
performance by the value of an objective function J evaluated at ρ and yρ. We are interested in minimizing
or maximizing the objective function over the set of admissible control variables. In other words, we are
interested in the optimization problem of finding

argmin
ρ

J(ρ, yρ) subjected to ρ ∈ P,
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where the set P encodes for example that ρ takes values in the unit interval (necessary for a reasonable
volume fraction). The fact that corresponding to ρ, we consider the solution yρ makes this a PDE-constrained
optimization problem and ρ ∈ P introduces box constraints on the control variable. The concrete form of J
is an engineering choice. For instance, the amount of regenerated bone at a certain time-point in the healing
process should be maximized. Another alternative we pursue is to maximize the temporal minimum of the
elastic modulus. See Section 1.4 for a mathematical formulation of these choices for J.

1.4 Concrete Examples.

We provide a number of possibilities for choosing the functional relationships C,D,H and K and boundary
conditions for the mechanical equilibrium equation 1.1. For an easy example of the elastic tensor that does
not need to be derived by a complicated homogenization procedure we simply use the Voigt bound. If we
denote by Cb and Cρ the elastic tensors of matured bone and intact PCL respectively (in their simplest form
modeled as isotropic materials) we thus choose

C(ρ, σ, b) = bCb + ρσCρ.

This is in accordance with Poh et al. (2019) where the same idea was used in a model with only one spatial
variable. Note that this C naturally is time-dependent as the quantities b and σ vary in time. While this
example may serve as a first choice, one could also fix a concrete scaffold micro-structure, such as a gyroid
design, and derive the explicit homogenized material properties (see, e.g., Allaire (2012)).

For the diffusivities Di(ρ) we propose a dependence on the scaffold density ρ, for example

Di(ρ) = ki(1 − ρ) Id

where ki are constants that measure the diffusivity of the bio-active molecule ai without the presence of the
scaffold ρ. The term (1−ρ) accounts for reduced diffusivity for high PCL volume fractions. It is heuristically
clear, yet interesting to note, that a too dense scaffold impairs bone regeneration. This is reflected in our
model through the diffusivity above, since the amount of bioactive molecules is linked to bone regeneration
via the ODE (1.4). One could also imagine to derive the tensor Di(ρ) through a homogenization process
which would then again reflect the choice of a specific micro-structure. For mathematical well-posedness
reasons we are unable to allow the diffusivity Di(ρ) to depend on the bone density b. Furthermore, we also
assume that Di(ρ) does not depend on time.

Finally, we consider the functional relationships H and K inducing the production and proliferation of
osteoblasts and bone. We impose a structural condition on K and H that allows us to treat all examples we
have in mind. For the explicit assumption see 2.22. Especially, products of any finite number of signaling
molecules are allowed. This presents an improvement over our previous results in Dondl et al. (2021).
However, note that this is certainly not the most general assumption on H and K that can be made. For
simplicity, we provide an example involving two bio-active molecules a1 and a2. These can be assumed to
have different production rates and half-lives. Then we set

H(a1, a2, c, b) = H(a1, a2, c) = k6a1a2(1 + k7c) (1.11)

hence bone growth only takes place when the full bio-environment, i.e., both molecules a1 and a2 are present.
Furthermore the proliferation of osteoblasts is represented by the term (1 + k7c). Again k6 and k7 are some
constants that need to be chosen in accordance with experiments.

For K we propose a similar equation, modeling that bone growth takes place given the presence of osteoblasts
and a suitable biological environment, represented in the choice of K through the factor a1. More precisely
we set

K(a1, a2, c, b) = K(a1, c) = k4a1c. (1.12)

Another choice for K reflecting that different bio-active molecules are responsible for different stages of bone
formation and maturation is possible. This makes the functional relationship dependent of b. We set

K(a, b) = f1(b)a1c + f2(b)a2c. (1.13)

Now, f1 can be chosen with support on small values of b, such that in this stage molecule a1 is driving the
growth, and f2 with support on larger b, thus requiring a2 in later stages of regeneration. We remark that
empirically many different bio-molecules are observed and it is assumed that these are linked to different
biological processes, see Kempen et al. (2010).
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Examples for the objective function include the maximization of the bone-scaffold’s stiffness, i.e., the effective
elastic modulus of the structure. In the case of a hard load for the elastic equation, the elastic modulus at a
time-point t is proportional to the elastic energy E(t), i.e.,

Eρ(t) =
1
2

∫
Ω

C(ρ, σ(t), b(t))ε(u(t)) : ε(u(t))dx,

where u and b solve the system (1.1) - (1.4) corresponding to ρ. The minimum of E over the whole
regeneration process describes the weakest state of the bone-scaffold structure during healing. This gives
rise to the objective function

Ĵ(ρ) = min
t∈I
Eρ(t)

and the maximization problem of finding
ρ∗ ∈ argmax

ρ∈P
Ĵ(ρ).

The set P encodes pointwise constraints on ρ, i.e., the necessity of enforcing ρ(x) ∈ [0, 1] in order to be
a meaningful volume fraction. The notation Ĵ instead of J is chosen to indicate that the variables u & b
appearing in the definition of Eρ are solving the system (1.1) - (1.4). Usually, Ĵ is called the reduced objective
function to distinguish it from the objective function J that does not require u and b to solve the PDE system.
If we use a soft load instead of a hard load, the elastic modulus is proportional to the inverse of the elastic
energy, hence the objective function becomes

Ĵ(ρ) = max
t∈I
Eρ(t)

and the optimization consists of finding
ρ∗ ∈ argmin

ρ∈P
Ĵ(ρ),

i.e., is a minimization problem.
Remark 1. The proposed objective functions are not smooth as they involve minimizing or maximizing
over t ∈ I. For a numerical implementation, one might therefore approximate the minimum or maximum
functional by an Lp(I) norm with large value for −p or p respectively.

Another choice of objective function is to consider the amount of regenerated bone after a given time T.
This results in the definition

Ĵ(ρ) =

∫
Ω

b(T)dx

Remark 2. Care needs to be taken with respect to the functional relationships in the system (1.1) - (1.4)
when choosing the amount of regenerated bone as an objective. This requires an adequate choice of | · |δ. If
| · |δ is chosen to be the Frobenius norm, the above objective function promotes very weak scaffolds as these
lead to high strains and high bone growth. A more sensible choice for | · |δ in this case is to use a filter, i.e.,
only strains with a certain range of magnitude lead to non-vanishing values of | · |δ.

II Warm-Up Analysis in One Dimension

We begin by providing an existence and uniqueness result together with the existence of an optimal control
for a simplified, one-dimensional system similar to (1.1) - (1.4) in the spirit of the system considered in
Poh et al. (2019). Here, we keep our proofs short as the Section shall mainly serve to illustrate the plan of
attack for the general, i.e., the three-dimensional case. The main difficulties arise from mixed boundary
conditions, non-smooth domains and of course worse Sobolev embeddings in the higher spatial dimensions.
Therefore, the one-dimensional case is a gentle introduction to the notation and strategy of the analysis. For
the existence and uniqueness result, we base our approach on a fixed point argument. We also prove the
existence of an optimal control ρ for the associated PDE constrained optimization problem.

2.1 Well-Posedness in One Dimension

Theorem 3. Let Ω = (0,L) and I = [0,T] for some T,L > 0 be a spatial domain and a time interval, respectively. Fix
parameters γ, k1, . . . , k6 > 0. Set σ : I→ R to σ(t) = e−k1t and let ρ be a member of H1(Ω) that satisfies c ≤ ρ(x) ≤ C
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for fixed constants c,C ∈ (0, 1). Then there exists a unique weak solution u∗ ∈ L2(I,H1(Ω)), a∗ ∈ H1(I,H1(Ω),H1
0(Ω)∗)

and b∗ ∈ H1(I,H1(Ω)) to the system ((
ρσ + k6b

)
ux

)
x = 0 (1.14)

at =
(
k5(1 − ρ)ax

)
x − k3a + k2bux (1.15)

bt = k4a
(
1 −

b
1 − ρ

)
(1.16)

with initial and boundary conditions u(t, 0) = 0, u(t,L) = γL for all t ∈ I, a(0, x) = 0 and a(t, 0) = a(t,L) = 1 for all
(t, x) ∈ I ×Ω and b(0, x) = 0 for all x ∈ Ω.
Remark 4. As stated above, we prove the existence of a weak solution to the system (1.14)-(1.16). We justify
the concept of weak solutions – in particular the fact that we treat the ODEs as Banach space valued and the
the solution to the elastic equation as a member of L2(I,H1(Ω)) – in Section I. More precisely, it is explained
there that in fact, the solution u solves the elastic equation at every time-point and that using Banach space
valued ODEs is nothing but a mathematically convenient way of solving parametrized ODEs.

Proof. Associated to the fixed scaffold density ρ ∈ H1(Ω), we consider the convex and closed subset of the
space C0(I ×Ω)

Wρ =
{
b ∈ C0(I ×Ω) | 0 ≤ b(t, x) ≤ 1 − ρ(x)

}
.

Now we define and analyze the following iteration operator

I : Wρ →Wρ, b 7→ I(b),

whereI(b) is produced by solving equation (1.14) - (1.16) with the start data b, hence decoupling them. More
precisely, fix b ∈ Wρ and solve (1.14) to obtain u(b) = u. With b and u(b) solve (1.15) to obtain a(b,u(b)) = a
and finally I(b) is given as the solution of (1.16) using a(b,u(b)). The set of fixed points of I coincides with
the set of solutions of the system (1.14) - (1.16). For the existence and uniqueness we combine Schauder’s
and Banach celebrated fixed point theorems. We begin by showing that I is well defined, continuous and
compact.

To begin with, note that our assumptions on b and ρ imply that the material tensor

ρσ + k6b = C(ρ, σ, b) (1.17)

is uniformly elliptic for every fixed t ∈ I, hence a solution u = u(b) ∈ L2(I,H1(Ω)) exists as an application of
the Lax-Milgram Theorem in the Hilbert Space L2(I,H1

0(Ω)), satisfying the correct boundary values. Let us
denote by (T , tr) the following linear homeomorphism

(Tb, tr) : L2(I,H1(Ω))→ L2(I,H1
0(Ω))∗ × L2(I,H1/2(∂Ω)) (1.18)

given by

u 7→
(∫

I

∫
Ω

(ρσ + k6b)u′ ·′ dxdt, tr(u)
)
. (1.19)

Then, to see that b 7→ u(b) is continuous and bounded, we factorize using the above homeomorphism

b 7→
(
(t, x) 7→ ρ(x)σ(t) + k6b(t, x)

)
7→ (Tb, tr) 7→ (Tb, tr)−1

7→ (Tb, tr)−1(0, (0, γL))

as a map

Wρ → C0(I ×Ω)→ L
(
L2(I,H1(Ω)),L2(I,H1

0(Ω))∗ × L2(I,H1/2(∂Ω))
)

→ L

(
L2(I,H1

0(Ω))∗ × L2(I,H1/2(∂Ω)),L2(I,H1(Ω))
)

→ L2(I,H1(Ω)).

Now we look at the diffusion equation. We note first that our assumption on ρ implies that the diffusivity

D(ρ) = k5(1 − ρ) (1.20)

is uniformly elliptic. Hence the inducing operator

D(ρ)a′ ·′ +k3a· ∈ L(H1(Ω),H1
0(Ω)∗ ×H1/2(∂Ω)) (1.21)
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is coercive and with the right hand side k2bux in L2(I,L2(Ω)) we get a solution a = a(u, b) in
H1(I,H1(Ω),H1

0(Ω)∗). As u depends continuously in L2(I,H1(Ω)) on b in C0(I ×Ω), clearly

b 7→ k2bu(b)x (1.22)
is continuous and bounded which is thus inherited by b 7→ a(u(b), b). This can easily be verified using the
estimates in Lemma 27 and the linearity of the equation. Finally, to solve the ODE we employ Theorem 71
to produce a solution in H1(I,H1(Ω)). The essential requirement is that the map

F : I ×H1(Ω)→ H1(Ω) with F(t, b) = b
k4a

1 − ρ
− k4a

satisfies a Lipschitz condition of the form
‖F(t, b1) − F(t, b2)‖H1(Ω) ≤ L(t)‖b1 − b2‖H1(Ω)

with L ∈ L2(I). This holds true as in one dimension the space H1(Ω) is a Banach algebra. Hence, there is
b = I(b) = b(a) in H1(I,H1(Ω)) solving (1.16) and the abstract Sobolev space embedds compactly into the
space of continuous functions on the space-time cylinder

H1(I,H1(Ω)) ↪→ Cα(I,Cα(Ω)) ↪→↪→ C0(I ×Ω)
for a suitable Hölder exponent α ∈ (0, 1). The pointwise property of the set Wρ is respected by solutions of
the ODE (1.16) as the function a = a(u, b) is non-negative, see 60, and the term

1 −
b

1 − ρ

prevents the solution from exceeding 1 − ρ. The boundedness and continuity of the map a 7→ b(a) follow
from the formula

b(t) =

∫ t

0
k4a(s) − b(s)

k4a(s)
1 − ρ

ds in H1(Ω) (1.23)

and an application of Grönwall’s Lemma, 73. This brings us in the position to apply Schauder’s theorem to
produce a fixed point b∗ to the map

Wρ →Wρ, b 7→ I(b).
Solving the remaining equations with b∗ as in the definition of I then leads to functions u∗, a∗, b∗ solving
(1.14) - (1.16).

The uniqueness of this system can be obtained by proving that for a short enough time interval, the map
b 7→ I(b) is in fact a contraction. Finally an extension argument yields the uniqueness for an arbitrary, finite
time interval. �

As mentioned at the end of the proof above, we might prove the existence and uniqueness Theorem using
the contraction mapping principle alone and will do so in the three dimensional case. Above, we decided
to use Schauder’s theorem and only comment briefly on the uniqueness aspect to keep things simple.

2.2 Existence of an Optimal Control in One Dimension

In a next step we prove the existence of an optimal ρ with respect to the objective function J based on the
elastic energy as described in Section 1.4. However, the result is also applicable to different choices of J. Note
that provided the preceding existence and uniqueness result, we know there is a solution operator φ taking
ρ to the solution (u, a, b) and consequently we may talk about the reduced objective function Ĵ(ρ) = J(ρ, φ(ρ)).
Also note that in the following Theorem, we artificially enforce a bound in the H1(Ω) norm on the admissible
functions ρ. It is presently unclear if this bound can be reduced.
Theorem 5 (Optimal Control in 1D). Let us fix R > 0 and c,C ∈ (0, 1) with c < C. Consider the set of admissible
scaffold densities

PR B
{
c ≤ ρ(x) ≤ C | ‖ρ‖H1(Ω) ≤ R

}
⊂ H1(Ω).

Then there is ρ∗ ∈ PR maximizing the objective function

Ĵ(ρ) = min
t∈I

∫
Ω

C(b, σ, ρ)u2
xdx

among all functions in PR. Here, Ĵ is the reduced objective, meaning that b and u solve the system (1.14) - (1.16)
corresponding to the datum ρ.
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Proof. The result is proven by the direct method of the calculus of variations. Using the H1(Ω) bound that
is built in the definition we get for a minimizing sequence (ρk) that there is a (not relabeled) subsequence
and a function ρ∗ ∈ PR such that

ρk ⇀ ρ∗ in H1(Ω).
One crucial aspect that makes the one-dimensional analysis simpler is the fact that H1(Ω) embedds compactly
into C0(Ω) and therefore we can deduce that ρk → ρ∗ converges strongly with respect to the space C0(Ω).
By the previous proof we know that the associated solutions (bk) ⊂ C0(I ×Ω) are relatively compact, hence
passing to another unlabeled subsequence we get that

bk → b∗ in C0(I ×Ω)
for some b∗ ∈Wρ. Also from the previous proof we know that bk(t) ∈ H1(Ω) for all timepoints t ∈ I. Together
with ρ ∈ H1(Ω) and σ ∈ C∞(I) we get, invoking elliptic regularity theory (Dobrowolski, 2010, Chapter 7,
Satz 7.6), that uk(t) ∈ H2(Ω) with a bound on its norm

‖uk(t)‖H2(Ω) ≤ C · γL for all t ∈ I.

We proceed by showing that the sequence (uk) is equi-continuous as a subset of C0(I,H1(Ω)). To this end we
split uk into uk(t, x) = ûk(t, x) + γx, where ûk ∈ L2(I,H1

0(Ω)) solves∫
Ω

C(ρk, bk, σ)(t)ûk(t)′ ·′ dx︸                            ︷︷                            ︸
CTbk (t)ûk(t)

= −

∫
Ω

C(ρk, bk, σ)γ ·′ dx︸                      ︷︷                      ︸
C fbk (t)

for all t ∈ I.

For two timepoints t, s ∈ I we compute
fbk(t) − fbk(s) = Tbk(t)ûk(t) − Tbk(s)ûk(s)

= Tbk(t) (ûk(t) − ûk(s)) + Tbk(t)−bk(s) (ûk(s)) .
Hence,

Tbk(t) (ûk(t) − ûk(s)) = fbk(t) − fbk(s) − Tbk(t)−bk(s) (ûk(s))
and by the standard Lax-Milgram energy estimates and straight-forward computations we get

‖uk(t) − uk(s)‖H1(Ω) = ‖ûk(t) − ûk(s)‖H1(Ω)

≤
1
c
‖ fbk(t) − fbk(s)‖H1

0(Ω)∗ + ‖Tbk(t)−bk(s) (ûk(s))‖H1
0(Ω)∗

≤ C‖b(t) − b(s)‖C0(Ω).

The last estimate shows that (uk) inherits its equi-continuity from the equi-continuity of (bk), which was
established via the relative compactness of the sequence (bk) in C0(I,C0(Ω)). Using the Banach space valued
version of the Arzelà-Ascoli Theorem 26 yields, inferring the regularity uk(t) ∈ H2(Ω), that also the sequence
(uk) ⊂ C0(I,H1(Ω)) is relatively compact, hence there is a function u∗ ∈ C0(I,H1(Ω)) such that

uk → u∗ in C0(I,H1(Ω)).
Finally, for the solutions ak of the diffusion equation, we have by the boundedness of the operator I of the
previous proof that, passing to one last subsequence,

ak ⇀ a∗ in H1(I,H1(Ω),H1
0(Ω)∗)

for a function a∗ in H1(I,H1(Ω),H1
0(Ω)∗). All these convergences are by far sufficient to pass to the limit in

the equations (1.14) and (1.15). For the ODE (1.16), one uses its fixed-point formulation via the fundamental
theorem of the space H1(I,H1(Ω)), i.e.,

bk(t) =

∫ t

0
k4ak(s) − bk(s)

k4ak(s)
1 − ρk

ds in H1(Ω)

and pass to the limit yielding a unique solution in b∗ ∈ W1,2(I,C0(Ω)) as b∗ ∈ C0(I × Ω). Inspecting the
resulting ODE, it is clear that also a unique solution b∗∗ in H1(I,H1(Ω)) must exist as a∗ ∈ L2(I,H1(Ω)) and
ρ ∈ H1(Ω), hence b∗∗ = b∗. Consequently (ρ∗,u∗, a∗, b∗) indeed solve (1.14) - (1.16). By the strong convergences
we have established it clearly holds

inf
ρ∈PR

Ĵ(ρ) = lim
k→∞

Ĵ(ρk) = Ĵ(ρ∗)

which implies that ρ∗ is an optimal control function. �
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Remark 6. Some remarks concerning the above result are in order.

(i) The question of removing the requirement

‖ρ‖H1(Ω) ≤ R

remains open. In the one-dimensional case with Dirichlet boundary conditions as assumed in
Theorem 5 one might try to exploit the symmetry that one expects from an optimal control ρ∗.
However, we do not pursue this idea further as it seems of limited interested in view of the three-
dimensional setting. To conclude, we note that adding a Tikhonov penalization to Ĵ, i.e., considering

Ĵ(ρ) + η‖ρ‖2H1(Ω)

provides H1(Ω) bounds for any minimizing sequence (ρk) and thus makes Theorem 5 applicable.

(ii) It is not clear whether there exists only one optimal control. The objective function is not convex – it
involves a minimum over all timepoints t ∈ I and a complex solution operator – and thus standard
arguments are not applicable.

(iii) We have freedom in the choice of of the objective function. The minimum over all time points that
is used in its definition can be replaced by any functional

F : C0
+(I)→ [0,∞), v 7→ F (v)

that is well defined on the cone of continuous and positive functions from I to R, which we denote
by C0

+(I). For instance an Lp(I)-type functional with a negative exponent p can be used to smoothly
approximate the minimum in the definition of Ĵ. Furthermore, we might incorporate the pointwise
constraint c ≤ ρ(x) ≤ C in form of a suitable penalization

K : C0(Ω)→ [0,∞), v 7→ K (v)

as long as K is continuous. One might think of K as penalizing the deviation of ρ from leaving
the interval [c,C]. This then allows to define the energy Ĵ on all of C0(Ω) and one still obtains the
existence of an optimal control. This is precisely the approach taken in the numerical Section of this
work.

(iv) We briefly comment on the core difficulties encountered when transferring the above proof to
three dimensions. As we are forced to consider mixed boundary conditions (Dirichlet-Neumann)
for the diffusion equation to allow realistic application scenarios, the regularity properties of the
solution to the diffusion equation are limited. In order to get compactness for (bk) we need that
(ak) is bounded in the space L2(I,Cα(Ω)). It turns out that this holds true in three dimensions but
it requires substantial effort. Details can be found in the Appendix II on regularity theory and in
Chapter 3 for the main part of the proof in three dimensions. Furthermore, the strong convergence
of (uk) in the space C0(I,H1(Ω)) is crucial to allow reasonable choices of the functional relationship
| · |δ in three dimensions and still being able to pass to the limit in the optimal control result. Only
recently, the main result in Haller-Dintelmann et al. (2019) made the desired regularity available.
We discuss this in detail in Chapter 3.
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Chapter 2

Analyzing Scaffold Mediated Bone
Growth

This Chapter is devoted to the mathematical analysis of the system (2.1) – (2.4). We explain the in detail the
weak formulation and its appropriateness. Furthermore, exemplary numerical results are provided.

I Mathematical Formulation

In this Section we describe the mathematical setting in which we prove the well-posedness of a solution to
the system of equations (2.1) – (2.4). We also state the assumptions the functional relationships C, Di, | · |δ H
and K are required to satisfy. For convenience, we recall the system

0 = div
(
C(ρ, σ, b)ε(u)

)
(mechanical equilibrium) (2.1)

dtai = div
(
Di(ρ)∇ai

)
+ k2,i|ε(u)|δc − k3,iai

(diffusion, generation, and
decay of i = 1 . . .N bio-
molecules)

(2.2)

dtc = H(a1, . . . , aN, c, b)
(
1 −

c
1 − ρ

)
(osteoblast generation) (2.3)

dtb = K(a1, . . . , aN, c, b)
(
1 −

b
1 − ρ

)
(bone regeneration driven
by a, b and c). (2.4)

with boundary conditions

ai(0, x) = 0 for all x ∈ Ω (2.5)
ai(t, x) = 1 for all t ∈ I, x adjacent to bone (2.6)

Dρ
i ∇ai(t, x) · η = 0 for all t ∈ I, x not adjacent to bone (2.7)(

C(ρ, σ, b)ε(u(t, x))
)
· η = gN(x) on the Neumann boundary of Ω (2.8)

u(t, x) = gD(x) on the Dirichlet boundary of Ω (2.9)
c(0, x) = b(0, x) = 0 for all x ∈ Ω. (2.10)

1.1 The Domain

Fix a time interval I = [0,T] with T > 0. The spatial domain Ω ⊂ Rn, with n = 1, 2, 3 is assumed to
be open, bounded and connected and for every equation we split the boundary ∂Ω into a Dirichlet part
and a Neumann part. For the elastic equation we write Γe

D and Γe
N for Dirichlet and Neumann boundary

respectively, here Γe
D = ∅ is allowed. For the diffusion equations we write Γd

D and Γd
N. To simplify notation

we do not treat the case of different Dirichlet-Neumann partitions for different diffusion equations, though
this does not lead to further mathematical complications. Finally we need to assume some regularity on Ω
and the partition ∂Ω = Γd

D∪Γd
N for the diffusion equations, namely the set Ω∪Γd

N needs to be Gröger regular
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which is a concept introduced in Gröger (1989), see also Haller-Dintelmann et al. (2009). These regularity
assumptions are tailored to provide a certain regularity of the solutions of the diffusion equations, which
we discuss in detail in Section II in the Appendix. Our assumptions are very general and cover most cases
relevant in practice. Problems may only arise for self-touching domains or domains with cusps.

1.2 Admissible Data

The admissible scaffold volume fractions ρ are given as

P B
{
ρ ∈ C0(Ω) | cP ≤ ρ(x) ≤ CP

}
(2.11)

with some fixed constants 0 < cP < CP < 1, excluding unreasonable scaffold designs. To a scaffold volume
fraction ρ ∈ P we assign the set Wρ of admissible cell and bone volume fractions, consisting of tuples of
continuous functions in time and space

Wρ B
{
(c, b) ∈ C0(I ×Ω)2

| 0 ≤ c(t, x), b(t, x) ≤ 1 − ρ(x)
}
. (2.12)

1.3 The Elastic Equation

We begin with the Hookean law C. It depends on the scaffold and bone, i.e., on ρ, σ and b and varies
therefore in space and time. We assume that the map

Wρ → L∞(I ×Ω,L(Ms)) with (c, b) 7→ ((t, x) 7→ C(ρ, σ, b)(t, x)) (2.13)
is Lipschitz continuous with Lipschitz constant LC independent of ρ ∈ P. Remember that σ is a fixed
exponential decay. HereMs denotes the symmetric n × n matrices and L(Ms) is the space of linear maps
fromMs into itself, usually called the space of fourth order tensors. In the following we will often omit the
cumbersome notation of dependencies on x and t for C. Spelling out the definitions of the norms in (2.13)
this Lipschitz continuity means that for all M ∈ Ms it holds

|C(ρ(x), σ(t), b1(t, x))M − C(ρ(x), σ(t), b2(t, x))M| ≤ LC ‖b1 − b2‖C0 |M| (2.14)
for all (c1, b1), (c2, b2) ∈ Wρ and uniformly in ρ ∈ P and uniformly on the complement of a set of measure
zero in I ×Ω. Furthermore we assume that there are constants 0 < cC < ∞ and 0 < CC < ∞ such that

sup
ρ,c,b

∥∥∥C(ρ, σ, b)
∥∥∥

L∞(I,L∞(Ω,L(Ms)))
≤ CC and inf

ρ,c,b
C(ρ, σ, b)M : M ≥ cC|M|2 (2.15)

where the supremum and infimum run over ρ ∈ P and b ∈Wρ and A : B = tr ABT denotes the full contraction
of matrices. We now discuss the weak formulation of equation (1.1). Let ρ ∈ P and (c, b) ∈ Wρ be some
admissible functions. We first address the case where Γe

D has non-vanishing measure and comment on the
pure Neumann problem later. The strong form

−div
(
C(ρ, σ, b)ε(u)

)
= 0 in Ω, u|Γe

D
= ge

D,
(
C(ρ, σ, b)ε(u)

)
η|Γe

N
= ge

N

encodes that at every point in time mechanical equilibrium is achieved, making the equation time dependent.
The function space for the weak formulation is given by: L2(I,H1,2(Ω,Rn)) with H1,2(Ω,Rn) being the Sobolev
space of Rn-valued, square integrable functions with square integrable derivatives, see for example Brezis
(2010); Grisvard (2011); Adams and Fournier (2003) for a detailed account of such spaces. If the context
is clear, we will usually write H1(Ω) instead of H1,2(Ω,Rn). Furthermore, the space L2(I,H1(Ω)) denotes a
Bochner space, i.e., a Banach-space valued Lebesgue space, see, e.g., Diestel and Uhl (1977) or Boyer and
Fabrie (2012). The space of test functions is L2(I,H1

De
(Ω)), where H1

De
(Ω) is the subspace of H1(Ω) whose

members vanish on Γe
D. For the Dirichlet boundary values we require there exists a lift uD with

uD ∈ C0(I,H1(Ω)) such that (uD)|Γe
D

= ge
D,

in particular ge
D(t) lies in H1/2(Γe

D,R
n), with H1/2(Γ), for some Γ ⊂ ∂Ω, being the trace space of H1(Ω), see for

example Adams and Fournier (2003); Grisvard (2011). The Neumann boundary values can be given as an
element of C0(I,H1/2(Γe

N,R
n)∗). Denoting by 〈·, ·〉H1/2 the dual pairing of H1/2(Γe

N,R
n) the weak formulation

of (1.1) is ∫
I

∫
Ω

C(ρ, σ, b)ε(u) : ε(·) dxdt =

∫
I
〈ge

N, ·〉H1/2 dt in L2(I,H1
De

(Ω))∗ (2.16)

u = ge
D in L2(I,H1/2(Γe

D)).
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The left hand side of (2.16) equation defines an operator

T : L2(I,H1(Ω))→ L2(I,H1(Ω))∗ with Tu =

∫
I

∫
Ω

C(ρ, σ, b)ε(u) : ε(·) dxdt.

Note that the isometry L2(I,H1(Ω))∗ =̃ L2(I,H1(Ω)∗) implies that the equation (2.16) can be understood to hold
almost everywhere in time, which is precisely what we want for our model. A moments’ reflection reveals
that C(ρ, σ, b) ∈ L∞(I ×Ω,L(Ms)) implies that C(ρ, σ, b)ε(u) ∈ L2(I,L2(Ω)), hence the operator is well defined.
Furthermore, Korn’s inequality can be used to show that T is coercive, see Ciarlet (2010). The advantage
of the abstract formulation is that it makes the Lax-Milgram Lemma applicable. Now we comment on the
pure Neumann boundary value problem, i.e., the case Γe

N = ∂Ω. We define the spaces W B ker(ε) ⊂ H1(Ω)
and the quotient H1(Ω)/W. Note that W consists of the functions of the form w(x) = Ax + b, where A is an
anti-symmetric matrix and b ∈ Rn, see for example Ciarlet (1988). For the pure Neumann problem consider
the operator

T : L2(I,H1(Ω)/W)→ L2(I,H1(Ω)/W)∗

using the induced map ε̂ : H1(Ω)/W → L2(Ω,Ms) in its definition

T (u) =

∫
I

∫
Ω

C(ρ, σ, b)ε̂(u) : ε̂(·) dxdt.

The codomain of this operator is L2(I,H1(Ω)/W)∗ =̃ L2(I, (H1(Ω)/W)∗), which encodes a compatibility condi-
tion. We assume that our Neumann boundary condition is given as a function ge

N ∈ C0(I,H1/2(∂Ω)∗) that
satisfies almost everywhere in I

〈ge
N(t), ·〉H1/2 = 0 for all w ∈W. (2.17)

This guarantees that ∫
I
〈ge

N, · 〉H1/2 dt ∈ L2(I,H1(Ω)/W)∗

is an admissible right hand side. The pure Neumann problem consists then of finding u ∈ L2(I,H1(Ω)/W)
such that ∫

I

∫
Ω

C(ρ, σ, b)ε̂(u) : ε̂(·) dxdt =

∫
I
〈ge

N, · 〉H1/2 dt ∈ L2(I,H1(Ω)/W)∗,

Finally, let us remark that one can treat the Dirichlet, the Neumann and the mixed boundary value problem
at once by always passing to the quotient H1

De
(Ω)/W. In the case of a proper Dirichlet boundary condition

we then have W ∩H1
De

(Ω) = {0}, which implies H1
De

(Ω)/W = H1
De

(Ω), hence recovers the Dirichlet or mixed
case, and if Γe

N = ∂Ω we retrieve the pure Neumann case.

1.4 Diffusion Equations

Before we state the weak formulation of the diffusion equations, for the reader’s convenience, we recall the
concept of the time derivative we are using – namely a regular Banach space valued distribution with a
dense embedding j ∈ L(X,X∗) just as in Boyer and Fabrie (2012). Let (i,X,H) be a Gelfand triple, i.e., X is a
Banach space, H is a Hilbert space and i ∈ L(X,H) has dense range. Then we set j to be j = i∗ ◦ R ◦ i where
R : H→ H∗ is the Riesz isometry and i∗ denotes the Banach space adjoint of i. We say a function a ∈ L2(I,X)
possesses a time derivative dta ∈ L2(I,X∗) if it holds∫

I
( j ◦ a)(t)∂tϕ(t) dt = −

∫
I
dta(t)ϕ(t) dt ∀ϕ ∈ D(I).

The integrals are X∗ valued Bochner integrals and we set D(I) B C∞c (I) as usual. This is used to define a
generalized Sobolev space built on the triple (i,X,H) as

H1,2,2(I,X,X∗) = {a ∈ L2(I,X) | dta ∈ L2(I,X∗)}.

See in (Boyer and Fabrie, 2012, Chapter II, section 5) for more information. We only remark that functions
in this Sobolev space have representatives in C0(I,H), hence initial value problems can be formulated.
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To get to our concrete diffusion equations we let ρ ∈ P, (c, b) ∈ Wρ and, depending on the boundary
conditions for the elastic equation, u ∈ L2(I,H1(Ω)) or u ∈ L2(I,H1(Ω)/W) be some fixed functions. In order
to work with homogeneous Dirichlet boundary conditions in space we write

ai(t) = ãi(t) + 1 with ãi(t) ∈ H1
Dd

(Ω) for i = 1, . . . ,N.

Here H1
Dd

(Ω) denotes the subspace of H1(Ω) with vanishing trace on Γd
D. We can thus seek ãi in the space

H1,2,2(I,H1
Dd

(Ω),H1
Dd

(Ω)∗) built around (id|H1
Dd
,H1

Dd
,L2) satisfying the equation∫

〈dtãi, ·〉H1
Dd

+

"
Dρ

i ∇ãi∇ · +k3
i ãi · dxdt =

"
(k2

i |ε(u)|δc − k3
i ) · dxdt

ãi(0) = −1.

The first equation is an equality in the space L2(I,H1
Dd

(Ω))∗, i.e., it is required to hold when tested with all
members of L2(I,H1

Dd
(Ω)). In the second equation, the initial conditions is an equality in the space L2(Ω).

For every i = 1, . . . ,N we have different constants k2
i and k3

i and also different diffusivities Dρ
i . Note that the

quantity |ε(u)|δ is well defined, even though the solution of the elastic equation is only unique up to rigid
body motions. We assume furthermore that the Dρ

i are time-independent, measurable, essentially bounded
and coercive, precisely

Dρ
i ∈ L∞(Ω,Ms) (2.18)

〈Dρ
i ξ, ξ〉 ≥ cD|ξ|

2
∀ξ ∈ Rn (2.19)

where Ms again denotes the symmetric n × n matrices and the inequality in (2.19) is to be understood
uniformly in x ∈ Ω, ρ ∈ P and i = 1, . . . ,N. Finally the function | · |δ : Rn×n

→ [0,∞) is required to to be
globally Lipschitz and to satisfy an estimate of the form

|A|δ ≤ C1|A| + C2 for all A ∈ Rn×n (2.20)

where C1,C2 > 0 and |A| denotes the Euclidean norm of a matrix.

1.5 Ordinary Differential Equations

We treat the ODEs in the vector valued sense and focus here on the cell equation (1.3), the bone equation
(1.4) being treated analogously. For each x ∈ Ω, we thus seek a function cx satisfying the ODE

c′x(t) = H(a1(t, x), . . . , aN(t, x), cx(t), b(t, x))
(
1 +

cx(t)
1 − ρ(x)

)
with cx(0) = 0. If there is a solution for all x ∈ Ω we obtain a function c in time and space, i.e., c : I ×Ω→ R
with c(t, x) B cx(t). As H(a1, . . . , aN, c, b) can not generally assumed to be continuous, a reasonable space to
work in is

W1,p(I,X) = {c ∈ Lp(I,X) | dtc ∈ Lp(I,X)},
similar to the space for the diffusion equation, but without the identification j : X ↪→ X∗. An existence and
uniqueness result in this setting can be found in the supplement, see Theorem 74.

In our concrete case we choose X = C0(Ω), p = 2, so for fixed ρ ∈ P and a = (a1, . . . , aN) ∈
H1,2,2(I,H1(Ω),H1

Dd
(Ω)∗)N we seek c ∈W1,2(I,C0(Ω)) satisfying

dtc = H(a1, . . . , aN, c, b)
(
1 −

c
1 − ρ

)
with c(0) = 0. (2.21)

We assume that H is a Nemytskii operator induced by a function which we again denote by H,

H : RN+2
→ R with (a1, . . . , aN, b, c) = (a, b, c) 7→ H(a, b, c) (2.22)

such that H(a, c, b) ≥ 0 whenever a1, . . . , aN, b, c ≥ 0. For the concrete form of H we require that H factorizes
into H = H2

◦ H1, where H1 : RN+2
→ RM for some M ∈ N is globally Lipschitz. The function H2 is the

product of its components, i.e.,

H2(h1, . . . , hM) =

M∏
i=1

hi
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Note that by some abuse of notation we denote by a, b and c both a function in a Sobolev space and a vector
in Euclidean space.

For the bone ODE we work in the same space and seek b ∈W1,2(I,C0(Ω)) satisfying

dtb = K(a1, . . . , aN, c, b)
(
1 −

b
1 − ρ

)
with b(0) = 0. (2.23)

We assume the functional relationship K is induced by

K : RN+2
→ R with (a, b, c) = (a1, . . . , aN, b, c) 7→ K(a, b, c)

that satisfies K(a1, . . . , aN, b, c) ≥ 0 for a1, . . . , aN, b, c ≥ 0 and that K = K2
◦ K1 where again K1 : RN+2

→ RM is
globally Lipschitz continuous and K2 is the product of its components, just as we assumed above for H.

We continue by explaining the connection between Banach space valued ODEs and the formulation as a
family of real valued ODEs in our examples (2.21), (2.23).

Lemma 7 (Compatibility of ODEs). Let b ∈ W1,2(I,C0(Ω)), then for every x ∈ Ω the function b(·, x) is a member
of H1(I) and it holds

t 7→ dtb(t, x) =
d
dt

(t 7→ b(t, x)) ,

where dt denotes the time derivative operator of the space W1,2(I,C0(Ω)) and d
dt the one corresponding to H1(I).

Proof. As b ∈ W1,2(I,C0(Ω)) ⊂ C0(I × Ω), clearly b(·, x) ∈ L2(I). Furthermore, dtb ∈ L2(I,C0(Ω)) implies that
dtb(·, x) ∈ L2(I). This is due to the fact that point evaluation at x ∈ Ω is a member of C0(Ω)∗. In fact, point
evaluation can be viewed as a member of W1,2(I,C0(Ω))∗, compare to Lemma 78. Now to the compatibility
of the derivatives. For dtb it holds by definition∫

I
dtb(t)ϕ(t) dt = −

∫
I
b(t)∂tϕ(t) dt ∀ϕ ∈ D(I).

The integral used above is the C0(Ω) valued Bochner integral, thus using that point evaluation is a linear
and continuous map on the space of continuous functions we find that for every x ∈ Ω it holds∫

I
dtb(t)(x)ϕ(t) dt = −

∫
I
b(t)(x)∂tϕ(t) dt ∀ϕ ∈ D(I),

meaning that for every fixed x ∈ Ω the function t 7→ b(t)(x) satisfies the defining equation of the weak
derivative of H1(I). �

The implication of the above Lemma is that, given a solution b in W1,2(I,C0(Ω)) to an ODE of the form

dtb(t) = F(t, b(t)), b(0) = b0

for a suitable F : I × C0(Ω)→ C0(Ω) and b0 ∈ C0(Ω) we always get that b(·, x) for fixed x ∈ Ω solves

d
dt

(t 7→ b(t, x)) = F(t, b(t, x)), b(0, x) = b0(x)

in the space H1(I). From a modeling perspective, this is precisely the viewpoint we took initially. Hence,
using Banach space valued ODEs is justified.

We summarize our setting.

Assumption 8. We assume domain regularity as discussed in Subsection 1.1, define the admissible scaffold
densities P in (2.11) and the set Wρ in (2.12). The material tensor C satisfies (2.13) and (2.15) and admissible
boundary conditions for the elastic equation are given in (2.16) and (2.17). For the diffusion we assume
(2.18) and (2.19) and | · |δ must satisfy (2.20). The functional relationships H and K need to factorize as
described in (2.22).
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II Existence and Uniqueness

In this Section we will prove that there exists a unique solution to the system (1.1)–(1.4) in the weak
sense, i.e., there are functions u∗ = ũ∗ + uge

D
with ũ∗ ∈ L2(I,H1

De
(Ω)/W) and uge

D |Γ
e
D

= ge
D, a∗ = ã∗ + 1 with

ã∗ ∈ H1(I,H1
Dd

(Ω),H1
Dd

(Ω)∗), c∗ ∈W1,p(I,C0(Ω)) and b∗ ∈W1,q(I,C0(Ω)) satisfying∫
I

∫
Ω

C(ρ, σ, b∗)ε̂(ũ∗ + uge
D
) : ε̂(·) dxdt =

∫
I
〈ge

N, · 〉H1/2(Γe
N)dt (2.24)∫

〈dtã∗i , ·〉 +
"

Dρ
i ∇ã∗i∇ · +k3

i ã∗i · dxdt =

"
(k2

i |ε(u∗)|δc∗ − k3
i ) · dxdt (2.25)

ã∗i (0) = −1, with i = 1, . . . ,N, (2.26)

dtc∗ = H(a∗1, . . . , a
∗

N, c
∗, b∗)

(
1 −

c∗

1 − ρ

)
with c∗(0) = 0, (2.27)

dtb∗ = K(a∗1, . . . , a
∗

N, c
∗, b∗)

(
1 −

b∗

1 − ρ

)
with b∗(0) = 0. (2.28)

The proof of this result relies essentially on the elementary fixed point theorem of Banach which we will
employ for the complete metric space Wρ. The strategy is to fix ρ ∈ P, then start with some arbitrary
admissible functions (c, b) ∈Wρ and to solve the equations successively. More precisely, the elastic equation
will yield u = u(c, b), the diffusion equations ai = ai(c,u), the cell equation will be solved with data ai and b
yielding an updated cell function c = c(ai, b) and finally the bone equation will be solved with data ai and c
to get an updated bone function b = b(ai, c). This procedure gives rise to an operator I which we will refer
to as the iteration operator, formally

I : Wρ →Wρ with (c, b) 7→ (c, b).
It is easy to see that all possible solutions to (2.24)–(2.28) correspond to all possible fixed-points of I. The
crucial part of the proof consists of establishing regularity for the solutions of the diffusion equations, see
also Section II in the Appendix for a discussion of relevant results from the literature.

Finally, the whole strategy discussed above does only work on a short time interval I = [0,T], i.e., T small
enough. However, by a continuation argument we can afterwards extend this solution to span any finite
time interval.
Theorem 9 (Existence & Uniqueness). Let ρ ∈ P be fixed and let the Assumptions 8 be fulfilled. Then
there exist unique functions u∗ = ũ∗ + uge

D
with ũ∗ ∈ L2(I,H1

De
(Ω)/W) and uge

D |Γ
e
D

= ge
D, a∗ = ã∗ + 1 with

ã∗ ∈ H1(I,H1
Dd

(Ω),H1
Dd

(Ω)∗), c∗ ∈W1,p(I,C0(Ω)) and b∗ ∈W1,q(I,C0(Ω)) solving the system (2.24) – (2.28).

Proof. We need to establish the contraction and self-mapping property ofI. Let us thus fix two tuples (c1, b1)
and (c2, b2) ∈Wρ. We aim to show an estimate of the form

‖I(c1, b1) − I(c2, b2)‖C0(I×Ω)2 =
∥∥∥c1 − c2

∥∥∥
C0(I×Ω)

+
∥∥∥∥b1 − b2

∥∥∥∥
C0(I×Ω)

≤ C(I)
(
‖c1 − c2‖C0(I×Ω) + ‖b1 − b2‖C0(I×Ω)

)
,

where C(I)→ 0 with |I| → 0, making I the desired self-mapping for T small enough.

The Elastic Equation. We will treat a pure Neumann and a mixed boundary value problem simultaneously. We
endow the space H1

De
(Ω)/W with the norm ‖ε(·)‖L2(Ω), which by Korn’s inequality is equivalent to the natural

one on H1
De

(Ω)/W, see for example Ciarlet (2010). By definition of ge
D, there is a function uge

D
∈ L2(I,H1(Ω)/W)

such that uge
D |Γ

e
D

= ge
D. In the weak formulation of the elastic equation we seek ũi ∈ L2(I,H1

De
(Ω)/W) satisfying∫

I

∫
Ω

C(ρ, σ, bi)ε̂(ũi + uge
D
) : ε̂(·) dxdt =

∫
I
〈ge

N, · 〉H1/2(Γe
N)dt (2.29)

in the space L2(I,H1
De

(Ω)/W)∗. Then ui B ũi + uge
D

is the solution we are interested in. Note that if Γe
D has

vanishing measure, we can choose uge
D

= 0 and H1
De

(Ω)/W = H1(Ω)/W. On the other hand, if Γe
D has positive

measure, then W ∩H1
De

(Ω) = 0 and H1
De

(Ω)/W = H1
De

(Ω). The equation (2.29) leads to the operators

Tbi : L2(I,H1
De

(Ω)/W)→ L2(I,H1
De

(Ω)/W)∗
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with

Tbi v =

∫
I

∫
Ω

C(ρ, σ, bi)ε̂(v) : ε̂(·) dxdt

and right hand sides

fbi =

∫
I
〈ge

N, · 〉H1/2(Γe
N)dt︸                ︷︷                ︸

=: f N

−

∫
I

∫
Ω

C(ρ, σ, bi)ε̂(uge
D
) : ε̂(·) dxdt︸                                   ︷︷                                   ︸

=: f D
bi

.

By our assumption (2.15) and Korn’s inequality the operators Tbi are coercive with coercivity constant cC.
Applying the Lax-Milgram Lemma we find that there are unique solutions ũ1 and ũ2 ∈ L2(I,H1

De
(Ω)/W) to

Tbi ũi = fbi . By the duality
L2(I,H1(Ω)/W)∗ = L2(I, (H1(Ω)/W)∗)

we know that almost everywhere in I the function ui(t) = ũi(t) + uge
D
(t) satisfies∫

Ω

C(ρ, σ, bi)(t)ε̂(ũi)(t) : ε̂(·) dx = 〈ge
N(t)〉H1/2(Γe

N)

−

∫
Ω

C(ρ, σ, bi)ε̂(uge
D
(t)) : ε̂(·) dx

in the space H1(Ω)/W. Using Lax-Milgram again we get using the boundedness and coercivity constants
from (2.15)

‖ui(t)‖H1(Ω)/W ≤ c−1
C

[ ∥∥∥ge
N(t)

∥∥∥
H1/2(Γe

N)∗
+ CC

∥∥∥uge
D
(t)

∥∥∥
H1(Ω)/W

]
.

As the above estimate is independent of ρ, ci and bi it holds, inferring the continuity in time of ge
N and uge

D

that

sup
ρ,c,b

∥∥∥u(ρ, b)
∥∥∥

L∞(I,H1(Ω)/W)
≤ C(I), (2.30)

where u(ρ, c, b) denotes the solution of the elastic problem to the data ρ ∈ P and (c, b) ∈ Wρ. To show that
C(I) tends to zero with |I| → 0 we employ the dominated convergence theorem of Lebesgue. Finally we
come back to estimate the difference u1 − u2. We claim that

‖u1 − u2‖L2(I,H1(Ω)/W) ≤ C(I) ‖b1 − b2‖C0(I×Ω) (2.31)

where again C(I)→ 0 with |I| → 0. To establish this, note that ũ1 − ũ2 = u1 − u2 and compute

fb1 − fb2 = f D
b1
− f D

b2
= Tb1 ũ2 − Tb2 ũ2 = Tb1 (ũ1 − ũ2) + Tb1 ũ2 − Tb1 ũ2 − Tb2 ũ2.

Hence Tb1 (u1 − u2) = (Tb2 ũ2 − Tb1 ũ2) + ( f D
b1
− f D

b2
) and using

∥∥∥∥T −1
b1

∥∥∥∥ ≤ c−1
C

we find

‖u1 − u2‖L2(I,H1(Ω)/W) ≤ c−1
C

∥∥∥Tb2 ũ2 − Tb1 ũ2

∥∥∥
L2(I,H1(Ω)/W)∗

+ c−1
C

∥∥∥ f D
b1
− f D

b2

∥∥∥
L2(I,H1(Ω)/W)∗

.

We estimate the terms of the right hand side using the Lipschitz continuity ofCwhich we assumed in (2.14),
combining it with (2.30) to find∥∥∥Tb2 ũ2 − Tb1 ũ2

∥∥∥
L2(I,H1(Ω)/W)∗

≤ LC ‖b1 − b2‖C0(I×Ω) ‖ũ2‖L2(I,H1(Ω)/W)

≤ LCC(I) ‖b1 − b2‖C0(I×Ω)

= C(I) ‖b1 − b2‖C0(I×Ω)

and ∥∥∥ f D
b1
− f D

b2

∥∥∥
L2(I,H1(Ω)/W)∗

≤ LC
∥∥∥uge

D

∥∥∥
L2(I,H1(Ω)/W)

‖b1 − b2‖C0(I×Ω)

= C(I) ‖b1 − b2‖C0(I×Ω) .

The Diffusion Equations. Given the functions ci,ui with i = 1, 2 and ρ, we turn to the diffusion equations. We
seek functions ai = ãi + 1 where the ãi are members of H1(I,H1

Dd
(Ω),H1

Dd
(Ω)∗)N, that means ai = (ai

1, . . . , a
i
N) =
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(ãi
1 + 1, . . . , ãi

N + 1), i = 1, 2, denoting the components of ai with lower indices. For j = 1, . . . ,N the ãi
j are

sought to satisfy the following equation in L2(I,H1
Dd

(Ω))∗∫
I
〈dtãi

j, · 〉H1
D

dt︸            ︷︷            ︸
=:dt ãi

j

+

"
Dρ

j∇ãi
j∇ · +k3

j ã
i
j · dxdt︸                            ︷︷                            ︸

=:M j(ρ)ãi
j

=

"
(k2

j |ε(ui)|ci − k3
j ) · dxdt︸                            ︷︷                            ︸

=: f j
ui ,ci

and initial value ã j(0) = −1 in L2(Ω). The operators

(dt +M j(ρ), ev0) : H1(I,H1
Dd

(Ω),H1
Dd

(Ω)∗)→ L2(I,H1
Dd

(Ω))∗ × L2(Ω)

are linear homeomorphisms, see for example Ern and Guermond (2013) for a proof, which essentially relies
on the coercivity ofM j(ρ). This explains why we assumed (2.19) and hence we can guarantee the existence
of the ãi

j.We now state three important properties of the solutions ai
j and their differences a1

j − a2
j . References

or proofs can be found in II in the Appendix. The first is a lower pointwise bound, it holds for j = 1, . . . ,N
and i = 1, 2

0 ≤ 1 + ãi
j(t, x) = ai

j(t, x) almost everywhere in I ×Ω. (2.32)

This is due to the positivity of the right hand sides f j
ui,ci

. Secondly, we look at the equations satisfied by the
differences a1

j−a2
j . These equations possess right hand sides f j

u1,c1
− f j

u2,c2
in L2(I,L2(Ω)) and with (a1

j−a2
j )(0) = 0

smooth initial conditions. Then, using regularity for mixed boundary value problems, see Theorem 61, there
is α > 0 such that ∥∥∥∥a1

j − a2
j

∥∥∥∥
L2(I,Cα(Ω))

≤ C
∥∥∥∥ f j

u1,c1
− f j

u2,c2

∥∥∥∥
L2(I,L2(Ω))

. (2.33)

The constant C is uniform in the data ρ ∈ P, (c, b) ∈ Wρ and u(ρ) and does not blow up when |I| → 0, see
Appendix II. The third and last property we need is a maximal Lp regularity result. By the estimate (2.30)
the right-hand sides satisfy

fui,ci = k2
j |ε(ui)|ci − k3

j ∈ L∞(I,L2(Ω))

with a bound on their L∞(I,L2(Ω)) norm which is independent of ui and ci. The ellipticity and boundedness
of the diffusivity Di(ρ) assumed in (2.18) and (2.19) allows to apply Lemma 28 to produce a bound for ai of
the form ∥∥∥ai

∥∥∥
Lp(I,Cα(Ω)N)

≤ C
(
p, bD(ρ)c,

∥∥∥D(ρ)
∥∥∥

L∞(Ω,Ms)

)
·

∥∥∥ fui,ci

∥∥∥
Lp(I,L2(Ω))

≤ C̃(p)
∥∥∥ fui,ci

∥∥∥
Lp(I,L2(Ω))

, (2.34)

where p can be chosen arbitrarily in (1,∞). We claim now that we get the following estimate for the difference
a1
− a2 ∥∥∥a1

− a2
∥∥∥

L2(I,Cα(Ω))N ≤ C
(
‖c1 − c2‖C0(I×Ω) + ‖u1 − u2‖L2(I,H1/W)

)
(2.35)

with C not blowing up as |I| → 0. This estimate is obtained, using (2.33) and estimating the difference
f j
u1,c1
− f j

u2,c2
. It holds

f j
c1,u1
− f j

c2,u2
= k j

2|ε(u1)|δ(c1 − c2) + k j
2(|ε(u1)|δ − |ε(u2)|δ)c2.

Using the fact that c1 takes values in the unit interval and the assumptions on | · |δ, see 2.20, it follows∥∥∥∥ f j
c1,u1
− f j

c2,u2

∥∥∥∥
L2(I,L2(Ω))

≤ C
(
‖ε(u1)‖L2(I,L2(Ω)) + 1

)
‖c1 − c2‖C0(I×Ω)

+ C ‖ε(u1 − u2)‖L2(I,L2(Ω)) .

Invoking (2.30) we know that ‖ε(u1)‖L2(I,L2(Ω)) is bounded uniformly in the data ρ ∈ P and (c, b) ∈ Wρ.
Combining this with the identity

‖ε(u1 − u2)‖L2(I,L2(Ω)) = ‖u1 − u2‖L2(I,H1/W)

we conclude.
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The Cell ODE. We turn now to the Cell ODE and solve this equation twice, once with data ρ, a1
1, . . . , a

1
N and b1,

producing a function c1, and once with ρ, a2
1, . . . , a

2
N and b2 yielding c2. The solutions c1 and c2 are members

of the space W1,2(I,C0(Ω)) and consequently of C0(I ×Ω) satisfying 0 ≤ ci(t, x) ≤ 1 − ρ(x) solving the ODE

dtci = H(ai
1, . . . , a

i
N, bi, ci)

(
1 −

ci

1 − ρ

)
with ci(0) = 0.

These facts are proven as Lemma 80 in the Appendix. Our goal is to estimate the difference c1 − c2 and we
claim that it holds ∥∥∥c1 − c2

∥∥∥
C0(I×Ω)

≤ C(I)
( ∥∥∥a1

− a2
∥∥∥

L2(I,Cα(Ω)N)
+ ‖b1 − b2‖C0(I×Ω)

)
(2.36)

where C(I) tends to zero with |I| → 0. To prove the estimate (2.36) we use the fundamental theorem of the
space W1,2(I,C0(Ω)) and write

ci(t) =

∫ t

0
H(ai(s), bi(s), ci(s))

(
1 −

ci(s)
1 − ρ

)
︸                               ︷︷                               ︸

=:γi(s)

ds.

We claim that the following estimate holds∥∥∥γ1(s) − γ2(s)
∥∥∥

C0(Ω)
≤

∥∥∥H(a1, b1, c1)(s) −H(a2, b2, c2)(s)
∥∥∥

C0(Ω)

∥∥∥∥∥1 −
c1(s)
1 − ρ

∥∥∥∥∥
C0(Ω)

+
∥∥∥H(a2, b2, c2)(s)

∥∥∥
C0(Ω)

∥∥∥(1 − ρ)−1
∥∥∥

C0(Ω)

∥∥∥c1(s) − c2(s)
∥∥∥

C0(Ω)

≤ f1(s)
∥∥∥a1(s) − a2(s)

∥∥∥
C0(Ω)N + f2(s) ‖b1(s) − b2(s)‖C0(Ω)︸                                                           ︷︷                                                           ︸

Cα(s)

+β(s)
∥∥∥c1(s) − c2(s)

∥∥∥
C0(Ω)

, (2.37)

where f1 ∈ L2(I) and f1 ∈ L1(I) and β ∈ L1(I) can be chosen independent of ai, bi and ci. We then apply
Grönwall’s Lemma 73 and Hölders inequality to obtain∥∥∥c1(t) − c2(t)

∥∥∥
C0(Ω)

≤

(
1 +

∥∥∥β∥∥∥L1(I) exp
(∥∥∥β∥∥∥L1(I)

))
·

∫
I

f1(s)
∥∥∥a1(s) − a2(s)

∥∥∥
C0(Ω)N + f2(s) ‖b1(s) − b2(s)‖C0(Ω) ds

≤ C
(∥∥∥β∥∥∥L1(I)

) [∥∥∥ f1
∥∥∥

L2(I)

∥∥∥a1
− a2

∥∥∥
L2(I,C0(Ω))

+
∥∥∥ f2

∥∥∥
L1(I) ‖b1 − b2‖C0(I×Ω)

]
≤ C

(∥∥∥β∥∥∥L1(I)

)
· C

(∥∥∥ f1
∥∥∥

L2(I) ,
∥∥∥ f2

∥∥∥
L1(I)

) [∥∥∥a1
− a2

∥∥∥
L2(I,Cα(Ω)N)

+ ‖b1 − b2‖C0(I×Ω)

]
Then, employing Lebesgue’s dominated convergence theorem, we get that

∥∥∥ f1
∥∥∥

L2(I) → 0 and
∥∥∥ f2

∥∥∥
L1(I) → 0

with |I| → 0 and consequently

C(I) = C
(∥∥∥β∥∥∥L1(I)

)
· C

(∥∥∥ f1
∥∥∥

L2(I) ,
∥∥∥ f2

∥∥∥
L1(I)

)
→ 0, with |I| → 0.

As the right side of the estimate is independent of t ∈ I, this shows that (2.36) holds. However, we still need
to prove the claim (2.37). To this end, remember the structural assumption made on H, i.e., H = H2

◦H1, see
(2.22) and use Lemma 79 to estimate∥∥∥H(a1, b1, c)(t) −H(a2, b2, c1)(t)

∥∥∥
C0(Ω)

=

∥∥∥∥∥∥∥
M∏

i=1

H1
i (a1, b1, c1)(s) −

M∏
i=1

H1
i (a2, b2, c2)(s)

∥∥∥∥∥∥∥
C0(Ω)

=

∥∥∥∥∥∥ M∑
k=1

M−k∏
i=1

H1
i (a1, b1, c1)(s)


 M∏

i=M−k+2

H1
i (a2, b2, c2)(s)

︸                                                     ︷︷                                                     ︸
(∗)

(
H1

M−k+1(a1, b1, c1)(s) −H1
M−k+1(a2, b2, c2)(s)

) ∥∥∥∥∥∥
C0(Ω)
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We treat (∗) first. Estimating for any k = 1, . . . ,M yields

M−k∏
i=1

H1
i (a1, b1, c1)(s) ≤

M∏
i=1

(
H1

i (a1, b1, c1)(s) + 1
)
.

The global Lipschitz continuity of H1 implies then for any i = 1, . . . ,M the estimate∥∥∥H1
i (a1, b1, c1)(s)

∥∥∥
C0(Ω)

≤ LH1

(∥∥∥a1(s)
∥∥∥

C0(Ω)N + ‖b1(s)‖C0(Ω) +
∥∥∥c1

∥∥∥
C0(Ω)

)
+

∥∥∥H1
i (0, 0, 0)

∥∥∥
C0(Ω)

.

Combining the two preceding estimates yields

M−k∏
i=1

∥∥∥H1
i (a1, b1, c1)(s)

∥∥∥
C0(Ω)

≤

M∏
i=1

[
LH1

(∥∥∥a1(s)
∥∥∥

C0(Ω)N + ‖b1(s)‖C0(Ω) +
∥∥∥c1(s)

∥∥∥
C0(Ω)

)
+

∥∥∥H1
i (0, 0, 0)

∥∥∥
C0(Ω)

+ 1
]

≤

M∏
i=1

[
LH1

(∥∥∥a1(s)
∥∥∥

C0(Ω)N + 2
)

+
∥∥∥H1

i (0, 0, 0)
∥∥∥

C0(Ω)
+ 1

]
≤ f̃1(s),

where f̃1(s) ∈ L4(I) with a bound on
∥∥∥ f̃1

∥∥∥
L4(I) only depending on a bound on the

∥∥∥a1
∥∥∥

Lp(I,C0(Ω)N)
norm of a1 for

a suitable, large value of p. By the maximal Lp regularity result, such a bound is available, see (2.34). The
second factor in (∗) can also be estimated by f̃1(s). This yields∥∥∥H(a1, b1, c1)(s) −H(a2, b2, c2)(s)

∥∥∥
C0(Ω)

≤ f̃1(s)2
M∑

i=1

∥∥∥H1
i (a1, b1, c1)(s) −H1

i (a2, b2, c2)(s)
∥∥∥

C0(Ω)

≤ f̃ 2
1 (s)LH1

[∥∥∥a1(s) − a2(s)
∥∥∥

C0(Ω)N + ‖b1(s) − b2(s)‖C0(Ω) +
∥∥∥c1(s) − c2(s)

∥∥∥
C0(Ω)

]
Thus, f1, f2 and β in (2.37) can be chosen to f 2

1 (s)LH1 .

The Bone ODE. Finally we treat the Bone ODE. Again we solve it twice, with data ai
1, . . . , a

i
N, ci andρproducing

bi with i = 1, 2. The functions b1 & b2 are members of W1,2(I,C0(Ω)) and consequently of C0(I ×Ω) satisfying
0 ≤ bi(t, x) ≤ 1 − ρ(x) and

dtbi = K(ai
1, . . . a

i
N, bi, ci)

(
1 −

bi

1 − ρ

)
This means that bi ∈ Wρ, hence making the iteration map I a self mapping. All these properties are
established as in the case of the Cell ODE. Repeating our computations for c1 − c2 we find∥∥∥∥b1 − b2

∥∥∥∥
C0(I×Ω)

≤ C(I)
( ∥∥∥a1

− a2
∥∥∥

L2(I,Cα(Ω)N)
+ ‖c1 − c2‖C0(I×Ω)

)
. (2.38)

and the constant C(I) tends to zero as |I| → 0.

Contraction Property of I. We collect all estimates to see that I is a contractive self-mapping for |I| small
enough. Use (2.38), (2.36), (2.35), and (2.31) to conclude∥∥∥∥b1 − b2

∥∥∥∥
C0(I×Ω)

≤ C(I)
( ∥∥∥a1

− a2
∥∥∥

L2(I,Cα(Ω)N)
+ ‖c1 − c2‖C0(I×Ω)

)
≤ C(I)

( ∥∥∥u1
− u2

∥∥∥
L2(I,H1(Ω)/W)

+ ‖c1 − c2‖C0(I×Ω)

)
≤ C(I)

(
‖b1 − b2‖C0(I×Ω) + ‖c1 − c2‖C0(I×Ω)

)
.

and the estimate for
∥∥∥c1 − c2

∥∥∥
C0(I×Ω)

works identically. Consequently, it holds

‖I(c1, b1) − I(c2, b2)‖C0(I×Ω)2 ≤ C(I)
[
‖c1 − c2‖C0(I×Ω) + ‖b1 − b2‖C0(I×Ω)

]
As C(I)→ 0 with |I| → 0, the contraction map principle implies that I : (c, b) 7→ (c, b) possesses a unique fix
point for |I| small enough.
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Long-Time Existence. We established the existence of a solution (u∗, a∗, c∗, b∗) on an interval [0,T] where T > 0
is chosen to make I a contraction. Now we use the well defined functions c∗(T, · ) and b∗(T, · ) ∈ C0(Ω) as
initial data for the ODEs and as a∗ ∈ C0([0,T],L2(Ω)N) the function a∗(T) ∈ L2(Ω)N serves as start value for the
diffusion equations. Repeating the computations we find that there exists a unique solution (u∗∗, a∗∗, c∗∗, b∗∗)
to the system on the interval [T − ε, 2T − ε] for some small ε > 0. On the overlap [T − ε,T] the solutions
(u∗∗, a∗∗, c∗∗, b∗∗) and (u∗, a∗, c∗, b∗) agree and thus we found the unique solution on the interval [0, 2T− ε]. As T
does not depend on the initial values of neither a∗, c∗ nor b∗ this iterates to span every finite time interval. �

Lemma 10. Let Assumption 8 hold and assume that for any choice of ρ and b ∈ Wρ the function a ∈
H1(I,H1

Dd
(Ω),H1

Dd
(Ω)∗)N produced by the iteration operator I is a member of L∞(I × Ω)N with a bound on the

L∞(I × Ω) norm that is uniform in ρ ∈ P and b ∈ Wρ. Then local Lipschitz continuity of H and K is sufficient to
ensure the existence and uniqueness asserted in Theorem 9.

Proof. We discuss this briefly. The essential ingredient in the proofs is that (for bounded sets B ⊂ C0(Ω)), we
have that for a ∈ L∞(I ×Ω) and b ∈ C0(I ×Ω) the following subset of RN+2

{(a(t, x), c(x), b(t, x)) | c ∈ B, (t, x) ∈ I ×Ω}

is relatively compact. This implies that H and K are Lipschitz continuous on sets of this form (and not
merely locally Lipschitz). Exploiting this fact, one easily parallels Lemma 80 and the crucial estimates in
the proof of Theorem 9. �

Remark 11. We discuss when one can expect L∞(I × Ω) regularity of the diffusion equations in order to
apply Lemma 10.

(i) Assume that | · |δ : Rn×n
→ R is a bounded function. Then the solution to the diffusion equations

lie in L∞(I ×Ω) with a bound on the uniform norm not depending on ρ ∈ P and b ∈ Wρ. This is a
standard result and can be seen by Stampacchia’s truncation method, see Section II in the Appendix.

(ii) Assume that we consider a pure Dirichlet problem for the diffusion equations and that the Dirichlet
data on the parabolic boundary lies in the space L∞(I,L∞(∂Ω)). Theorem 7.1 and Corollary 7.1
in Ladyzhenskaia et al. (1968) show that the solutions of the diffusion equations are members of
L∞(I×Ω) with a uniform bound on their norms. Here one crucially needs the Dirichlet information
on the parabolic boundary, thus the assumptions. We currently do not know whether a similar
result is available in the case of mixed boundary conditions.

(iii) If we do not assume anything besides the setting of Section I and consequently only have access to
Lp(I,C0(Ω)) regularity for p < ∞, some further assumptions on H and K need to be made. In our
approach we chose the factorization assumption, see (2.22).

Remark 12 (Diffusivity Depending on Bone). In principle, one can desire to allow the diffusivity tensor D
to depend on bone and not just the scaffold. This leads to diffusion equations of the form

dta = div
(
D(ρ, b

)
∇a) − a + f , a(0) = a0 (2.39)

leaving out constants and using a generic right-hand side f . However, this poses challenges to our existence
analysis which relies crucially on higher regularity properties of solutions to such equations. More precisely,
let b1, b2 and f1, f2 be admissible data for (2.39) and denote by a1 and a2 the corresponding solution, that a
priori lie only in the space H1(I,H1

D(Ω),H1
D(Ω)∗). Then setting b = b1 − b2, f = f1 − f2 and a = a1 − a2 we get

that a solves
dta − div

(
D(ρ, b2)∇a

)
+ a = f + div(D(ρ, b)∇a1), a(0) = 0.

The strategy of our proof requires an estimate of the L2(I,C0(Ω)) norm of a. However, the term div(D(b)∇a1)
is a priori of low regularity, namely only in L2(I,H1

D(Ω))∗. It is presently unclear to us if there are suitable
regularity results available to show that indeed the L2(I,C0(Ω)) norm of a can be controlled in a suitable way.
In view of the results for elliptic operators such as Haller-Dintelmann et al. (2009), one might investigate
higher integrability of ∇a1 and seek to transfer this to the parabolic, non-autonomous case.
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III Numerical Experiments

In Cipitria et al. (2015) porous PCL scaffolds with a periodic honeycomb structure and 87% porosity were
used as a treatment strategy for 30mm tibial defects in an ovine model. This experiment was conducted
in two groups, one preseeding the scaffold with a special bio-active molecule (BMP) and the second group
without such preseeding. Here, we aim to numerically recreate the experiment without preseeding, using
a concrete instance of our computational model.

As usual, the experimental setup in Cipitria et al. (2015) includes the use of a so-called fixateur – a titanium
or steel plate that is fixed to the bone surrounding the defect site using screws. This fixateur is used to
provide additional mechanical stability. We include this device in a simplistic manner in our simulations,
neglecting the effect of screws. From a modeling perspective, the fixateur acts as a stress shield on one side
of the defect and thus influences bone growth significantly.

As a concrete instance of our model we use two bioactive molecules and consider the following system of
equations

0 = div
(
C(ρ, σ, b)ε(u)

)
dta1 = div

(
D(ρ)∇a1

)
+ k2,1|ε(u)|c − k3,1a1

dta2 = div
(
D(ρ)∇a2

)
+ k2,2|ε(u)|c − k3,2a2

dtc = k6a1a2(1 + k7c)
(
1 −

c
1 − ρ

)
dtb = k4a1c

(
1 −

b
1 − ρ

)
.

We use mixed boundary values for the elastic equilibrium equation, with a surface traction stemming from
a force of 0.3kN on the top of the cylinder in the model with fixateur. The bottom of the computational
domain is assumed to be fixed, i.e., subjected to zero Dirichlet boundary conditions and the remaining part
of the boundary is subject to zero stress boundary conditions. These boundary conditions are chosen to
represent the maximal stress that repeatedly occurs, having an ovine model in mind, where a specimen
can weigh between 45–160kg. For a healthy individual without bone defect, we assume a force of 2.25kN.
This difference is important as it will influence the choice of the generation and decay rate of the bio-active
molecules that are normalized for healthy bone. For the bio-active molecules we assume that they are present
in saturation, i.e. a1(t, x) = a2(t, x) = 1, adjacent to bone and otherwise we assume a non-flux boundary
condition. Osteoblast and bone density is set to zero at the initial time-point. Note that the concrete choice
of boundary conditions here should be considered a proof of concept. Further, more detailed numerical
studies are forthcoming.

3.1 Model Parameters

We report the choices for the constants and functional relationships in table 2.1. Some comments are in
order.

(a) In a healthy individual, given appropriate clinical interventions, bone defects should be com-
pletely bridged with low to medium weight-bearing capacity after 6 months, see Zimmermann
and Moghaddam (2010). The bone remodeling process to follow can take 3 to 5 years until the full
function of the bone is restored. We therefore consider a time span of 12 months for our model,
which we identified as the critical phase for scaffold mediated bone healing.

(b) The PCL decay parameter, k1, is based on the experimental studies in Pitt et al. (1981), which shows
that after one year 30% of the molecular mass remains.

(c) The surface traction is set to 0.001gPa corresponding to a force of 0.3kN over a surface of 300 mm2. We
propose to view this time-constant surface traction as an averaged maximal stress. Furthermore we
assume that due to the injury this averaged maximal stress is considerably lower than what is to be
expected in a healthy individual, where we set it to 0.0075gPa corresponding to the aforementioned
2.25kN.

(d) The constants k2,i, k3,i, i = 1, 2 governing the generation and decay of bioactive molecules are difficult
to obtain from the literature compare for example to the discussion in Poh et al. (2019). The values
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for k3,1 and k3,2 correspond to a half-life of 31 and 62 hours respectively and are chosen to achieve a
realistic model outcome. Consequently generation rate constants k2,1 and k2,2 are chosen such that
a surface traction of 0.0075gPa – corresponding to a force of 2.25 kN over a surface of 300mm2 –
results in an equilibrium state for a1 = a2 = 1 when c = 1, that is when the concentration of osteoblast
equals that of healthy bone.

(e) The diffusivity D(ρ) = k5(1 − ρ) is controlled by the porosity 1 − ρ and the constant k5. With
k5 = 260mm2/month we set it to a standard value for the diffusion of bioactive molecules that is
measured for soluble proteins, see Badugu et al. (2012) and Yu et al. (2009).

(f) We use Voigt’s bound as an approximation of the material properties of the bone-scaffold composite.
More precisely, we model bone and PCL as linear isotropic materials with material constants chosen
as collected in Table 2.1. The effective properties of the compositum are then obtained by adding
the weighted tensors.

(g) The constant k4 drives the rate of bone regeneration, k6 is related to the overall osteoblast production
and k7 influences the effect of osteoblast proliferation. These values are fitted to achieve realistic
outcome in the simulations.

Table 2.1: Parameters for the bone regeneration model
Param. Value Description

T 12 months Period of bone regeneration
Ω L = 30mm, r = 10mm Cylinder with length L, radius r
ρ ρ ≡ 0.13 Scaffold volume fraction

C(ρ, σ, b) bCb + ρσCρ Voigt bound for composites
D(ρ) k5(1 − ρ) Diffusivity of bioactive molecules

(λb, µb) (2.88GPa, 1.92GPa) Derived from (Eb, νb) = (5 GPa, 0.3)
(λρ, µρ) (1.97GPa, 0.17GPa) Derived from (Eρ, νρ) = (0.5 GPa, 0.46)
Cb CbA = λb tr(A) Id +2µbA Material tensor of healthy bone
Cρ CρA = λρ tr(A) Id +2µρA Material tensor of PCL
k1 0.1 per month PCL absorbation rate constant

k2,1 10500 Generation rate first molecule
k2,2 5250 Generation rate second molecule
k3,1 16 Decay rate first molecule
k3,2 8 Decay rate second molecule
k4 0.2 Bone regeneration constant
k5 260 mm2 /month Diffusivity of the ai w/o scaffold
k6 0.5 Osteoblast generation constant
k7 0.07 Proliferation constant for osteoblasts

3.2 Numerical Implementations

We use a simple first-order implicit in time Euler scheme to solve the equations displayed in the order
displayed above. The fact that an implicit approach is feasible is due to the simple structure of the ODEs
and the linearity of the diffusion equation. It is worth mentioning that this reduces the computational cost
of solving the system drastically as only very few time steps are needed to achieve acceptable accuracy in
the simulations. The elastic and the diffusion equation are discretized using P1 elements and the meshes
were generated using the Computational Geometry Algorithms Library CGAL Boissonnat et al. (2000).

3.3 Discussion of Numerical Simulations

In Figure 2.1 the domain of computation with an added fixateur is shown. Here we assume the material
of the fixateur to be titanium with Young’s modulus chosen to 100GPa and a Poisson’s ratio of 0.31. Bone
growth and osteoblast production is disabled in the space occupied by the fixateur. In Figure 2.3 we present
the relative bone density averaged over horizontal slices in the fixateur experiment at 3 and 12 months. We
observe that both the regenerated bone after 3 and after 12 months agree well with the experimental results
shown in (Cipitria et al., 2015, Figure 2, ‘Scaffold only’). There, the same shape of regenerated bone, with a
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Figure 2.1: Experiment including fixateur. Shown is a vertical section through the cylindrical defect site.
Fixateur domain is colored in gold. From left to right: regenerated bone at 3 months, 12 months and a view
on top of the defect site. The grey colored areas illustrate the top and bottom cylinder/fixateur caps.

Figure 2.2: Experiment excludig fixateur. Shown is a vertical section through the cylindrical defect site.
From left to right: regenerated bone at 3 months, 12 months and a view on top of the defect site. The grey
colored areas illustrate the top and bottom cylinder caps.
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Figure 2.3: Relative bone density averaged over horizontal slices after 3 and 12 months in the experiment
including the fixateur.
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flat area in the middle of the defect site and a significant gradient towards the proximal and distal interface,
is observed.

In Figure 2.1, the result of the stress shielding effect of the fixateur is clearly visible, with little regenerated
bone in the central part of the defect site close to the fixateur. Comparing to (Viateau et al., 2007, Figs 4C,
5C) or (Reichert et al., 2011, Figures 3a, 3b) we see that this is also observed in experiments. Bone mass
loss due to stress shielding is indeed a long recognized, major issue in orthopaedic surgery Schwyzer et al.
(1985); Terjesen et al. (2009).

The computation excluding the fixateur is performed using a reduced surface traction that is set to 70% of the
surface traction in the fixateur model to account for the stress shielding of the fixateur. This experiment is the
direct analogon of the 1D model in Poh et al. (2019). Naturally, we see that bone regenerates symmetrically
and that the result is essentially a one dimensional distribution of bone comparable to the results in Poh
et al. (2019). Note that the asymmetries encountered in the more realistic model including the fixateur
can not be resolved by a one-dimensional simplification. This has important implications for the porosity
optimization of scaffolds where a three dimensional simulation can thus help to achieve a more appropriate
optimal design.
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Chapter 3

Optimal Scaffold Design

In this Chapter we consider theoretical and numerical aspects of the scaffold density optimization problem.
We already discussed the heuristic and modeling aspects of the optimization problem in Chapter 1, Section
1.3 and 1.4. Remember, for a given scaffold design ρ, we find a unique solution yρ = (uρ, a1

ρ, . . . , aN
ρ , cρ, bρ)

solving the equations (1.1) – (1.4) and measure the “quality” of ρ through an objective function J. This leads
to a PDE constrained optimization problem.

The structure of this Chapter is as follows: We start with a brief introduction to PDE constrained optimization
theory and the adjoint method in Section I. We then prove the existence of an optimal control using the direct
method of the calculus of variations in Section II. We continue with deriving the structure of the adjoint
system and consequently the derivative of the reduced objective function in Section III and conclude with
a presentation of numerical results in Section IV.

I Introduction to the AdjointMethod in PDE Constraint Optimization

We will briefly review the abstract framework of PDE constraint optimization and especially the adjoint
approach, for more details we refer the reader to the introductions Hinze et al. (2008) or De los Reyes (2015).
Let Y and W be Banach spaces and P either a Banach space or a subset of a Banach space. The space Y is
called state space and an element y ∈ Y a state variable, P is called control space and ρ ∈ P a control variable.
We consider two maps, the objective function J : Y × P→ R and the constraint e : Y × P→W. These names
are chosen as we are interested in minimizing J over the set e−1({0}), i.e., to find

argmin
(y,ρ)∈Y×P

J(y, ρ) subject to e(y, ρ) = 0. (3.1)

Without further assumptions this problem is ill-posed and difficult to treat in practice. In our application
the set e−1({0}) can be parametrized by a map φ : P→W, i.e.,

e−1({0}) = {(φ(ρ), ρ) | ρ ∈ P}.

In this context φ is called the control to state operator. Using φ, we can define the reduced objective function
Ĵ(ρ) B J(φ(ρ), ρ). Then the task 3.1 becomes the unconstrained problem of finding

argmin
ρ∈P

Ĵ(ρ). (3.2)

In case J, e : Y × P → W and φ : P → W are C1 and ey(φ(ρ), ρ) is invertible for all ρ ∈ P we can derive a
formula for Dφ and consequently for DĴ. Differentiating the equation e(φ(ρ), ρ) we obtain for fixed ρ0 ∈ P

0 = D
(
ρ 7→ e(φ(ρ), ρ)

)
(ρ0) = ey(φ(ρ0), ρ0) ◦Dφ(ρ0) + eρ(φ(ρ0), ρ0).

Combining this with DĴ(ρ0) = Jy(φ(ρ0), ρ0) ◦ Dφ(ρ0) + Jρ(φ(ρ0), ρ0) yields for the derivative of the reduced
objective function

DĴ(ρ0) = −Jy(φ(ρ0), ρ0) ◦ e−1
y (φ(ρ0), ρ0) ◦ eρ(φ(ρ0), ρ0) + Jρ(φ(ρ0), ρ0).
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This formula is not optimal from a numerical viewpoint. On a discretized level, to compute the components
of DĴ(ρ0) we would be required to solve for ξi in ey(φ(ρ0), ρ0)ξi = eρ(φ(ρ0), ρ0)ci, where ci iterates through
a basis of a finite dimensional subspace of P. This is problematic since solving for ξi is usually costly and
should be done as seldom as possible, yet the dimension of the finite dimensional subspace is typically
large. To address this we can rewrite the equation using the Banach space adjoint maps of eρ(φ(ρ0), ρ0) and
ey(φ(ρ0), ρ0), this is known as the adjoint approach:

DĴ(ρ0) = −e∗ρ(φ(ρ0), ρ0)
[
e−∗y (φ(ρ0), ρ0)

(
Jy(φ(ρ0), ρ0)

)]
+ Jρ(φ(ρ0), ρ0). (3.3)

The advantage is that solving the so-called adjoint equation, which consists in finding Λ ∈W∗

e∗y(φ(ρ0), ρ0)Λ = Jy(φ(ρ0), ρ0) (3.4)

needs only to be done once and the discretized components of DĴ(ρ0) can be found evaluating
[−e∗ρ(φ(ρ0), ρ0)Λ](ci) with ci iterating through the basis of the finite dimensional subspace of P. On a
discrete level this is less costly as it corresponds to an inner product of two vectors.

II Existence of an Optimal Control

In the first Chapter, we considered quite general functional relationships and allowed for multiple diffusion
equations and included and ODE for the behavior of generic type of cells. However, to be able to derive an
optimal control result, we need to narrow down these assumptions. The following Section gives the precise
framework we use for the optimal control result.

2.1 Setting

We begin by specifying the assumptions on the domain.

The Domain. We consider a finite time interval I = [0,T]. The spatial domain Ω ⊂ Rd with d = 1, 2, 3 is
assumed to be an open, bounded and connected Lipschitz domain. We consider partitions of the boundary
∂Ω, namely

∂Ω = Γe
N ∪ ∂

e
D, and ∂Ω = Γd

N ∪ Γd
D

that will be used for the elastic and the diffusion equation respectively. For the partition of the elastic
equation we assume |Γe

D| , 0. We require both Ω ∪ Γe
N and Ω ∪ Γd

N to be Gröger regular. For the concept of
Gröger regularity we refer to Appendix II or the articles Gröger (1989) and Haller-Dintelmann et al. (2009).
Remark 13. Note the following things.

(i) For the elastic equation we exclude a pure Neumann problem, however, we can include this case
by passing to a suitable quotient space. We excluded this for convenience and brevity only.

(ii) The assumption of Gröger regularity is very mild and all desirable application settings we have
in mind easily satisfy this requirement. Compare to Haller-Dintelmann et al. (2009) for more
information.

The Control Space. The set of control variables is defined to be

P =
{
ρ ∈ H2(Ω) | 0 < cP ≤ ρ(x) ≤ CP < 1

}
, (3.5)

where cP and CP are two fixed constants. Note that in the spatial dimensions d = 1, 2, 3 the space H2(Ω)
embeds into C0(Ω), hence the pointwise condition imposed in the above definition is well-defined.

The State Space and the Equations. Consider the state space

Y = C0(I,H1
De

(Ω)) ×H1(I,H1
D(Ω),H1

D(Ω)∗) ∩ L4(I,C0(Ω)) ×W1,2
0 (I,C0(Ω))2

and the space
W = L2(I,H1

De
(Ω))∗ × L2(I,H1

Dd
(Ω))∗ × L2(Ω) × L2(I,C0(Ω))2.

Then the state equations can be written in the form e(y, ρ) = 0 with the constraint operator

e : Y × P→W, (y, ρ) = (ũ, ã1, ã2, b, c, ρ) 7→ e(y, ρ)
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given by

e(y, ρ) =



!
C(ρ, σ, b)ε(ũ + uD) : ε(·)dxdt −

∫
I

∫
∂Ω

gN · dsdt∫
I〈dtã1, ·〉H1

Dd
(Ω)dt +

!
D(ρ)∇ã1∇ · +k3,1(ã1 + 1) · dxdt −

!
k2,1|ε(u0 + uD)|δc · dxdt∫

I〈dtã2, ·〉H1
Dd

(Ω)dt +
!

D(ρ)∇ã2∇ · +k3,2(ã2 + 1) · dxdt −
!

k2,2|ε(u0 + uD)|δc · dxdt

ã1(0) + 1

ã2(0) + 1

dtc − k6(ã1 + 1)(ã2 + 1)(1 + k7c)
(
1 − c

1−ρ

)
dtb − k4(ã1 + 1)c

(
1 − b

1−ρ

)



(3.6)

We frequently use the notation
ai = ãi + 1, and u = ũ + uD.

Functional Relationships. To make fully sense of the above definition of e we still need to clarify the
assumptions made on the data and functional relationships. We begin with the function σ. We assume that
it is smooth, depends only on time and is bounded away from zero, i.e.,

σ ∈ C∞(I), with σ(t) > 0 for all t ∈ I. (3.7)

Usually, we set σ to be an exponential decay. For the material properties C of the elastic equation we require
that it is a map

C : dom(C) ⊂ C0(I ×Ω) × C0(Ω)→ C0(I,L∞(Ω,L(Ms))), with (b, ρ) 7→ C(b, σ, ρ).

The concrete definition of dom(C) is not so important, however, as a minimal requirement it should hold⋃
ρ∈P

{b ∈ C0(I ×Ω) | 0 ≤ b(t, x) ≤ 1 − ρ(x)} × {ρ} ⊂ dom(C).

Furthermore, we need C(·, σ, ρ) to be Lipschitz continuous with Lipschitz constant independent of ρ. Fur-
thermore, C is assumed to be continuous on all of dom(C). Finally, we require

sup
(b,ρ)∈dom(C)

‖C(b, σ, ρ)‖L∞(Ω,L(Ms)) < ∞ (3.8)

and

inf
(b,ρ)∈dom(C)

[
inf

M∈Ms\{0}
C(b, σ, ρ)M : M

]
≥ cC|M|2, (3.9)

for a constant cC > 0. We need a further regularity property of C. We assume that b(t) ∈ Cα(Ω), ρ ∈ Cα(Ω)
for an α ∈ (0, 1) implies that the coefficient functions

Ci jkl(t) B
[
C(b, σ, ρ)(t)

]
i jkl

are members of Cα(Ω) and that there exists a constant C > 0 not depending on b and ρ such that

‖Ci jkl(t)‖Cα(Ω) ≤ C‖b(t)‖Cα(Ω)‖ρ‖Cα(Ω). (3.10)

For the boundary data uD and gN of the elliptic equation we assume that

gN ∈ C0(I,L2(∂Ω)) (3.11)

and that the Dirichlet boundary data is given through a function

uD ∈ C0(I,H1+θ(Ω)), (3.12)

meaning that the boundary information can be lifted to all of Ω such that the lift has the above regularity
in time and space, where θ > 0 can be arbitrarily small. In practice, this is easy to verify as we mainly
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work with Dirichlet boundary conditions that do not vary in time. The material properties D(ρ) used in the
diffusion equation are a map

D : dom(D) ⊂ C0(Ω)→ L∞(Ω,Ms), with ρ 7→ D(ρ)

that we require to be continuous with respect to the uniform norm on dom(D). The domain of D will usually
satisfy

{ρ ∈ C0(Ω) | 0 < cP ≤ ρ(x) ≤ CP < 1} ⊂ dom(D),

where cP and CP are the positive constants appearing in the definition of P. We also require D to be uniformly
elliptic independently of ρ ∈ dom(D), i.e.,

inf
ρ∈dom(D)

[
inf

ξ∈Rd\{0}
D(ρ)ξ · ξ

]
≥ cD|ξ|

2, (3.13)

for a constant cD > 0. Finally, for the function | · |δ we assume that it is given through a map on matrices

| · |δ : Rd×d
→ [0,∞)

that we require to be Lipschitz and to obey an estimate of the form

|A|δ ≤ C1|A| + C2 for all A ∈ Rd×d, (3.14)

where C1,C2 > 0 and |A| denotes the Euclidean (or any) norm of a matrix. Furthermore, we need | · |δ to be
continuous, more precisely, we assume that if (vk) ⊂ L2(Ω,Rd×d) is a sequence, then it holds

vk → v in L2(Ω,Rd×d) ⇒ |vk|δ → |v|δ in L2(Ω). (3.15)

We recall the main result of the first Chapter concerning the well-posedness of the PDE-ODE system.
Theorem 14. Assume that the setting described in this Section holds. Then, for every ρ ∈ P there exists a unique
solution y = (ũ, ã1, ã2, b, c) ∈ Y satisfying e(y, ρ) = 0, i.e., solving the state equations (3.6).

Proof. Inspecting the assumptions required for the well-posedness in (8), we see that the requirements on
the domain, the control space, the elastic & diffusion equations are (partly) stronger than in (8), hence
trivially satisfied. The admissibility of the functional relationships H and K that are implicitly given in (3.6)
were already discussed in Section III. �

2.2 Objective Function

Here we formulate the class of objective functions we are able to treat in the setting of the optimal control
result. For every time-point t ∈ I and state control pair (y, ρ) ∈ Y × P we consider the elastic energy

E : Y × P→ C0(I), E(y, ρ)(t) = t 7→
1
2

∫
Ω

C(b(t), σ(t), ρ)ε(u(t)) : ε(u(t))dx. (3.16)

For most of our objective functions we desire E to take values in C0(I), as we want to have access to point
evaluations. This is the reason to require the continuity of the solutions to the elastic equation in the
definition of Y. Primarily, we are interested in the reduced elastic energy Ê, that is, we are interested in
E(y, ρ) only when (y, ρ) solves the system of equations, i.e., when it holds e(y, ρ) = 0. We define

Ê : P→ C0(I), Ê(ρ) = E(yρ, ρ) (3.17)

and here it holds e(yρ, ρ) = 0. We provide now the proof that E takes values in C0(I).

Lemma 15. For all (y, ρ) ∈ Y × P we have E(y, ρ) ∈ C0(I). If it holds e(y, ρ) = 0 and ũ(t) + uD(t) , 0, then
E(y, ρ)(t) > 0.

Proof. As ũ + uD ∈ C0(I,H1(Ω)) by the definition of the state space Y and the material tensor C is a member
of the space C0(I,L∞(Ω,L(Ms))) it follows that

C(σ, ρ, b)ε(ũ + uD) : ε(ũ + uD) ∈ C0(I,L1(Ω)).
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Using the L1(I) continuity of integration, we get E(y, ρ) ∈ C0(I). Now, let e(y, ρ) = 0. We can estimate

E(y, ρ)(t) ≥ c‖ũ(t) + uD‖
2
H1(D),

with the constant c > 0 depending on the constant appearing in Korn’s inequality and the ellipticity constant
cC. As it holds e(y, ρ) = 0, for every t ∈ I the function ũ(t) + uD(t) solves an elastic equation, hence can only
vanish if the boundary conditions are homogeneous for this time-point which leads to ũ(t) + uD(t) = 0. This
is excluded in the statement of the Lemma and the proof is complete. �

We state now the structural assumption we impose for our admissible objective functions.

Assumption 16. Let F : dom(F ) ⊂ C0(I) → R be a continuous map and assume that the domain of F
satisfies {

v ∈ C0(I) | v(t) > 0 for all t ∈ I
}
⊂ dom(F ). (3.18)

Furthermore, let G : C0(I ×Ω)→ R be a continuous function. Using the elastic energy E and functionals F ,
G as above, we define the prototypical objective function as

J : Y × P→ R, J(y, ρ) = F
(
E(y, ρ)

)
+G(b)

in case the domain of F allows E(y, ρ) as an argument. The function b denotes the bone component of the
state variable y. More important, we define the reduced objective

Ĵ : P→ R, Ĵ(ρ) = F
(
E(φ(ρ), ρ)

)
+G(b).

Note that the assumption (3.18) together with Lemma 15 guarantees thatE(φ(ρ), ρ) is an admissible argument
of F . Finally, we assume that Ĵ is bounded from below if we are interested in a minimization problem and
we assume Ĵ to be bounded from above if we are interested in maximization.
Remark 17. We comment on some admissible choices for F and G.

(i) As main examples for F we mention the minimum or maximum functional, i.e.,

min : C0(I)→ R, v 7→ min
t∈I

v(t)

and likewise with the maximum functional.

(ii) Smooth approximations of the minimum and the maximum are given by Lp(I) norms with large
values of |p|. A positive value for p serves as an approximation of the maximum and a negative
value is suitable for the approximation of the minimum. In the latter case, i.e., p < 0, one chooses

dom
(
‖·‖Lp(I)

)
B

{
v ∈ C0(I) | v(t) > 0 for all t ∈ I

}
.

It is straight forward to show that ‖·‖Lp(I) is continuous with respect to the uniform norm, also for
negative exponents. In fact, it is even Fréchet differentiable.

(iii) The function G encodes objectives concerning regenerated bone. One might set

G(b) =

∫
Ω

b(T)dx,

i.e., considering the amount of regenerated bone at the final time T ∈ I. Clearly this choice is
admissible.

2.3 Main Results

Our main result of this Section establishes the existence of an optimal control in the set P ⊂ H2(Ω) given the
objective function Ĵ is regularized by an H2(Ω) norm.
Theorem 18 (Optimal Control). Assume we are in Setting 2.1 and let η > 0 be fixed. Then there exists a minimizer
ρ∗ = ρ∗(η) ∈ P to the regularized objective

Ĵ(ρ∗) + η‖ρ∗‖H2(Ω) = inf
ρ∈P

[
Ĵ(ρ) + η‖ρ‖2H2(Ω)

]
.
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Proof. The proof is established in the course of the text. �

In order to incorporate the pointwise constraint encoded in the definition of the control space P, see (3.5), in
a numerical simulation one can use a soft penalization. This usually corresponds to a continuous functional
K : C0(Ω)→ [0,∞). Also in this setting we can establish the existence of an optimal control.

Corollary 19. Assume we are in Setting 2.1 and let K : C0(Ω)→ [0,∞) be a continuous, non-negative functional.
Then there exists an optimal control ρ† = ρ†(η,K ) ∈ H2(Ω) to the regularized and penalized objective, i.e.,

Ĵ(ρ†) + η‖ρ†‖2H2(Ω) +K (ρ†) = inf
ρ∈H2(Ω)

[
Ĵ(ρ) + η‖ρ‖2H2(Ω) +K (ρ)

]
.

Proof. The proof is established in the course of the text. �

Remark 20. A few comments regarding the above results are in order.

(i) For some objectives we might be interested in a maximizer rather than a minimizer. In this case, one
subtracts the regularizer η‖·‖H2(Ω) and the soft penalty K and the results are still valid. For brevity,
we discuss only minimization problems in the remainder.

(ii) As discussed in Section 2.2, we have some freedom in the choice of Ĵ. From a modeling perspective
a maximum or minimum over all time-points of the elastic energy seems reasonable. On the other
hand, for the numerical treatment a smooth approximation thereof is preferable, e.g., an Lp(I) norm.
Note that all these choices are covered by our main result.

(iii) The Tikhonov penalization term η‖·‖2H2(Ω) is artificial. It serves to generate compactness of minimiz-
ing sequences and an optimal control result without this term seems out of reach.

(iv) The optimal controls ρ∗(η) and ρ†(η,K ) depend on η and K and for these hyperparameters there
are no canonical choices. We investigate their influence numerically in Section IV.

(v) It is presently unclear to us if the optimal control problem possesses a unique solution.

2.4 Proofs of the Main Results

In this Section we prove Theorem 18 and Corollary 19. It turns out that our approach crucially relies on
rather specific regularity properties of the diffusion equations and the elastic equation that imply convenient
compact embeddings. To prevent an overly technical section, we begin by assuming the implications of
the compact embeddings. We provide full proofs or give appropriate references of the regularity properties
at the end of the Section and in the Appendix II. Note that again the mixed boundary conditions, rough
coefficients and jump initial conditions are responsible for the technical difficulties.

Proposition 21. Assume we are in Setting 2.1. Let (ρk) ⊂ P be a minimizing sequence for Ĵ + η‖·‖2H2(Ω) and denote
by (uk) ⊂ C0(I,H1(Ω)), (a1

k), (a2
k) ⊂ H1(I,H1(Ω),H1

D(Ω)∗) and (bk), (ck) ⊂W1,2(I,C0(Ω)) the corresponding solutions
to the system 3.6. Assume that there is a common subsequence (not relabeled) of (ρk), (uk), (a1

k), (a2
k), (bk), (ck) and

elements ρ∗ ∈ P, u∗ ∈ C0(I,H1(Ω)), a∗1, a∗2 ∈ H1(I,H1(Ω),H1
D(Ω)∗) and b∗, c∗ ∈W1,2(I,C0(Ω)) such that

(A1) ρk → ρ∗ in C0(Ω) and ρk ⇀ ρ∗ in H2(Ω) ,

(A2) uk → u∗ in C0(I,H1(Ω)),

(A3) ai
k ⇀ a∗i in H1(I,H1(Ω),H1

D(Ω)∗), i = 1, 2

(A4) bk → b∗ in C0(I ×Ω)

(A5) ck → c∗ in C0(I ×Ω)

then (ρ∗,u∗, a∗1, a
∗

2, b
∗) solves the system 3.6 and ρ∗ is minimizer of Ĵ + η‖·‖2H2(Ω) over the set P, i.e., satisfies

Ĵ(ρ∗) + η‖ρ∗‖H2(Ω) = inf
ρ∈P

[
Ĵ(ρ) + η‖ρ‖2H2(Ω)

]
.
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Proof. There are two things to show. First, we need to guarantee that the tuple (ρ∗,u∗, a∗1, a
∗

2, b
∗) still solves

the system of equations 3.6. And secondly, we need to prove that ρ∗ is in fact a minimizer. We start with
the second point, assuming for the moment that (ρ∗,u∗, a∗1, a

∗

2, b
∗) solves the correct equations. We show that

it holds
Ĵ(ρ∗) + η‖ρ∗‖2H2(Ω) ≤ lim inf

k→∞

[
Ĵ(ρk) + η‖ρk‖

2
H2(Ω)

]
= min

ρ∈P

[
Ĵ(ρ) + η‖ρ‖2H2(Ω)

]
,

that is, the classical lower semi-continuity property required in the application of the direct method of the
calculus of variations. Clearly, the map

H2(Ω)→ R, ρ 7→ η‖ρ‖2H2(Ω)

is convex and norm continuous, hence weakly lower semi-continuous, that is, it holds

η‖ρ∗‖2H2(Ω) ≤ lim inf
k→∞

η‖ρk‖
2
H2(Ω)

by the assumption ρk ⇀ ρ∗ in H2(Ω) on the minimizing sequence. To proceed, remember our structural
assumption on the objective function, i.e.,

Ĵ = F
(
Ê(ρ)

)
+G(b),

where F : C0(I) → R and G : C0(I × Ω) → R are assumed to be continuous. Thus it suffices to show that
E(ρk) → E(ρ∗) in C0(I). For convenience, let us now set C∗ = C(ρ∗, σ, b∗) and Ck = C(ρk, σ, bk). We then
compute

‖Ê(ρk) − Ê(ρ∗)‖C0(I) =
1
2

∥∥∥∥∥∫
Ω

[Ck − C
∗] ε(uk) : ε(uk) + C∗ε(uk − u∗) : ε(uk) + C∗ε(u∗)ε(uk − u∗)dx

∥∥∥∥∥
C0(I)

≤ ‖Ck − C
∗
‖C0(I,L∞(Ω,L(Ms)))‖ε(uk)‖2C0(I,L2(Ω))

+ ‖C∗‖C0(I,L∞(Ω,L(Ms)))‖ε(uk − u∗)‖2C0(I,L2(Ω))‖ε(uk)‖2C0(I,L2(Ω))

+ ‖C∗‖C0(I,L∞(Ω,L(Ms)))‖ε(u∗)‖2C0(I,L2(Ω))‖ε(uk − u∗)‖2C0(I,L2(Ω)).

Using the continuity assumption for C and the convergence bk → b∗ in C0(I ×Ω) and ρk → ρ∗ in C0(Ω) we
get that

‖Ck − C
∗
‖C0(I,L∞(Ω,L(Ms))) → 0.

Furthermore, the convergence uk → u∗ in C0(I,H1(Ω)) implies both a bound on ‖ε(uk)‖ and the convergence

‖ε(uk − u∗)‖C0(I,L2(Ω)).

Hence, we established Ê(ρk)→ Ê(ρ∗) and conclude

Ĵ(ρ∗) + η‖ρ∗‖2H2(Ω) ≤ lim
k→∞

Ĵ(ρk) + lim inf
k→∞

η‖ρk‖
2
H2(Ω) ≤ lim inf

k→∞

[
Ĵ(ρk) + η‖ρk‖

2
H2(Ω)

]
which settles the claim.

We still need to show that (ρ∗,u∗, a∗1, a
∗

2, b
∗) is in fact a solution to the system 3.6. For the elastic equation we

consider for an arbitrary test function ϕ ∈ L2(I,H1
De

(Ω))"
C(ρk, σ, bk)ε(uk) : ε(ϕ)dxdt =

∫
I

∫
∂Ω

gNϕdsdt

and the continuity assumption on C and the convergence assumed for ρk, bk and uk are by far sufficient to
pass to the limit.

In the same spirit, we consider the diffusion equations with a test function ϕ ∈ L2(I,HDd (Ω))∫
I
〈dtai

k, ϕ〉H1
Dd

(Ω)dt +

"
D(ρk)∇ai

k∇ϕ + k3(ai
k)ϕdxdt =

"
k2|ε(uk)|δckϕdxdt, i = 1, 2.

For the left-hand side of the diffusion equations we can easily pass to the limit by the weak convergence of
ai

k and the strong convergence of D(ρk) that we have available through the continuity assumption on D and
ρk → ρ∗ in C0(Ω). For the right-hand sides we use the implication

uk → u∗ in C0(I,H1(Ω)) ⇒ |ε(uk)|δ → |ε(u∗)|δ in L2(Ω).
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Hence, the limit for the diffusion equations can also be correctly identified. To establish the initial condition
of the limit, consider the continuous linear map

H1(I,H1
Dd

(Ω),H1
Dd

(Ω)∗)→ C0(I,L2(Ω))→ L2(Ω), a 7→ a(0).

Using the weak sequential continuity of continuous linear maps shows that a∗(0) vanishes, as desired.

To pass to the limit in the cell ODE, we look at its fixed-point equation

ck(t) =

∫ t

0
k6ak

1(s)ak
2(s)(1 + k7ck(s))

(
1 −

ck(s)
1 − ρk

)
ds,

which holds in the space C0(Ω), for all t ∈ I. Multiplying the above equation by a smooth test function
ϕ ∈ C∞c (Ω) and integrating over Ω yields for the left-hand side of the above equation∫

Ω

ck(t)ϕdx→
∫

Ω

c∗(t)ϕdx with k→∞.

The convergence ck → c∗ in the space C0(I ×Ω) suffices by far for the above limit passage. Before we treat
the limit of the right-hand side we note that the compactness result of Aubin-Lions, see for instance Simon
(1986), provides the compact embedding

H1(I,H1
D(Ω),H1

D(Ω)∗) ↪→↪→ L2(I,L2(Ω))

which is essentially due to the fact that the space triple (H1
D(Ω),L2(Ω),H1

D(Ω)∗) satisfies the requirements of
the Ehrling Lemma, being in turn guaranteed by the Rellich-Kochandrov compactness result that provides
the compact embedding of H1

D(Ω) into L2(Ω). Note that the boundary regularity in for Ω is chosen to support
the Rellich-Kochandrov theorem. Hence we get the convergence

ak
1ak

2 → a∗1a∗2 in L1(I,L1(Ω))=̃L1(I ×Ω).

Using the above convergence and the convergence of ck → c∗ in C0(I×Ω) and ρk → ρ∗ in C0(Ω) we compute,
employing Fubini’s theorem and pass to the limit∫

Ω

∫ t

0
k6ak

1ak
2(1 + k7ck)

(
1 −

ck

1 − ρk

)
dsϕdx =

∫ t

0

∫
Ω

k6ak
1ak

2(1 + k7ck)
(
1 −

ck

1 − ρk

)
ϕdsdx

→

∫ t

0

∫
Ω

k6a∗1a∗2(1 + k7c∗)
(
1 −

c∗

1 − ρ∗

)
ϕdxds

=

∫
Ω

∫ t

0
k6a∗1a∗2(1 + k7c∗)

(
1 −

c∗

1 − ρ∗

)
dsϕdx

Inferring the fundamental lemma of the calculus of variations we obtain

c∗(t) =

∫ t

0
k6a∗1a∗2(1 + k7c∗)

(
1 −

c∗

1 − ρ∗

)
ds

for every t ∈ I. This implies that c∗ satisfies the correct limit equation. Obviously we can repeat the same
argument to guarantee that b∗ satisfies an appropriate limit equation. �

Remark 22. Via discussing the requirements (A1) − (A5) above, we give a rough idea of their proof.

(i) The fact that J is bounded from below implies that the regularization term η‖·‖2H2(Ω) automatically
leads to an H2(Ω) bound on any minimizing sequence (ρk) ⊂ P. Thus there exists ρ∗ ∈ P and a (not
re-labeled) subsequence (ρk) with ρk ⇀ ρ∗ in H2(Ω). Employing the compactness

H2(Ω) ↪→↪→ C0(Ω)

that holds for three spatial dimensions, this implies the desired convergence ρk → ρ∗ in C0(Ω).
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(ii) A uniform bound in C0(I,H1(Ω)) norm of the sequence (uk) is easily established as Lemma 23
shows. However, this does not provide assumption (A2) which can only be achieved through a
compactness argument. In fact – given Hölder continuous coefficients functions of C(ρk, σ, bk) – one
is able to show that for every t ∈ I the solution uk(t) is a member of H1+θ(Ω) for a sufficiently small
θ > 0 as an application of the main theorem of Haller-Dintelmann et al. (2019). Compare also to
Lemma 25 for a discussion of the applicability of this result. Then, given the relative compactness
of the sequences (bk) in C0(I × Ω) and (ρk) ⊂ C0(Ω) one can apply a vector-valued version of the
Arzelà-Ascoli theorem to derive the relative compactness of (uk) in C0(I,H1(Ω)). As discussed in
(iv), the compactness of (bk) relies on a Hölder regularity result for diffusion equations.

(iii) Similarly, a uniform bound for the sequences (ai
k) in H1(I,H1(Ω),H1

D(Ω)∗) norm can be established by
standard computations, thus implying the desired existence of a∗i and corresponding subsequence.
We provide the details in Lemma 27.

(iv) The existence of a subsequence (bk) and b∗ ∈ C0(I ×Ω) with bk → b∗ in C0(I ×Ω) requires the biggest
effort. We achieve this by deriving a W1,2(I,Cα(Ω)) bound on (bk) for an α ∈ (0, 1). Investigating the
structure of the cell and bone ODEs, we see that such a regularity and bound can only be established
if we are able to show that the sequences (ai

k) are bounded in L2(I,Cα(Ω)). It is this regularity and
boundedness result for the diffusion equation on which the whole proof rests, we discuss it in
Appendix II.

Coming back to the boundedness of (bk) in W1,2(I,Cα(Ω)), note that this implies the desired existence
of b∗ ∈ C0(I ×Ω) together with a subsequence bk → b∗ in C0(I ×Ω) via the embeddings

W1,2(I,Cα(Ω)) ↪→ Cβ(I,Cα(Ω)) ↪→ Cmin(α,β)(I ×Ω) ↪→↪→ C0(I ×Ω).

(vi) To summarize: (A1) is clear, (A3) is established in Lemma 27, (A2), (A4) and (A5) rely on the regularity
result for diffusion equations stated in Lemma 28 and the main result of Haller-Dintelmann et al.
(2019). The derivation of the W1,2(I,Cα(Ω)) bound for (bk) is carried out in Lemma 32, the bound for
(ck) in Lemma 31.

Lemma 23 (C0(I,H1(Ω)) bound for u). Let C ∈ C0(I,L∞(Ω,L(Ms))) be uniformly elliptic with ellipticity constant
bCc independent of t ∈ I and x ∈ Ω, i.e., it holds

C(t, x)M : M ≥ bCc|M|2, for all M ∈ L(Ms) and (t, x) ∈ I ×Ω.

Furthermore, let f ∈ C0(I,H1
D(Ω)∗) be a fixed right-hand side. Then the unique solution u ∈ L2(I,H1

D(Ω)) to"
Cε(u) : ε(·)dxdt =

∫
I
〈 f , ·〉H1

D(Ω)dt in L2(I,H1
D(Ω))∗ (3.19)

is a member of the space C0(I,H1
D(Ω)) and satisfies

‖u‖C0(I,H1(Ω)) ≤ C (bCc,CKorn) · ‖ f ‖C0(I,H1
D(Ω)∗).

Proof. The equation (3.19) implies that u satisfies almost everywhere in I∫
Ω

C(t)ε(u(t)) : ε(·)dx︸                     ︷︷                     ︸
CTtu(t)

= f (t) in H1
D(Ω)∗

upon applying the isometry L2(I,H1
D(Ω))∗ → L2(I,H1

D(Ω)∗) to both sides of the equation. Clearly, testing with
u(t) yields, inferring Korn’s inequality,

bCcCKorn · ‖u‖2H1
D(Ω) ≤ bCc · ‖ε(u)‖2L2(Ω) ≤ ‖ f (t)‖H1

D(Ω)∗‖u(t)‖H1
D(Ω).

Hence,
‖u(t)‖H1

D(Ω) ≤ (bCcCKorn)−1
‖ f (t)‖H1

D(Ω)∗ ≤ (bCcCKorn)−1
‖ f ‖C0(I,H1

D(Ω)∗),

meaning that the H1(Ω) bound on u(t) is independent of t ∈ I. To show that u is continuous in time, we
compute for t, s ∈ I

f (t) − f (s) = Ttu(t) − Tsu(s) = Tt(u(t) − u(s)) + Tt(u(s)) − Tsu(s).
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Using the coercivity of Tt we find

‖u(t) − u(s)‖H1(Ω) ≤
1

bCcCKorn

[
‖ f (t) − f (s)‖H1(Ω)∗ + ‖Ttu(s) − Tsu(s)‖H1

D(Ω)∗
]

By the assumption f ∈ C0(I,H1
D(Ω)∗) it is clear that the first term above tends to zero when |t − s| → 0. It

remains to estimate

‖Ttu(s) − Tsu(s)‖H1
D(Ω)∗ ≤ sup

‖ϕ‖H1
D (Ω)≤1

∫
Ω

[C(t) − C(s)] ε(u(s)) : ε(ϕ)dx

≤ ‖C(t) − C(s)‖L∞(Ω,Ms)‖u(s)‖H1
D(Ω).

The time-independent bound on ‖u(s)‖H1
D(Ω) and the continuity assumption on C imply the assertion. �

Lemma 24 (Equi-Continuity). Assume (ρk) ⊂ P is any sequence, (bk) ⊂ Wρk is an equi-continuous sequence in
C0(I,C0(Ω)) and ( fk) is a equi-continuous and bounded sequence in C0(I,H1

D(Ω)∗). Assume that C(ρk, σ, bk) satisfies
the assumption 2.1, i.e., in particular, it holds

‖C(ρk, σ, bk)(t) − C(ρk, σ, bk)(s)‖L∞(Ω,L(Ms)) ≤ C‖bk(t) − bk(s)‖C0(Ω) (3.20)

for a constant C that does not depend on the data ρk ∈ P and bk ∈Wρk and t ∈ I. Denote by uk the unique solution of"
C(ρk, σ, bk)ε(uk) : ε(·)dxdt =

∫
I
〈 fk, ·〉H1

D(Ω)dt in L2(I,H1
D(Ω))∗.

Then, (uk) lies in C0(I,H1
D(Ω)) and is equi-continuous in this space.

Proof. We are in situation of Lemma 23, hence we know that uk is a member of the space C0(I,H1
D(Ω)) and we

need only to establish the equi-continuity. To this end, repeating the equations in Lemma 23 for uk instead
of u we arrive at

‖uk(t) − uk(s)‖H1(Ω) ≤
1

bCkcCKorn

[
‖ fk(t) − fk(s)‖H1(Ω)∗ + ‖Ck(t) − Ck(s)‖L∞(Ω,L(Ms))‖uk(s)‖H1(Ω)

]
≤

1
bCkcCKorn

[
‖ fk(t) − fk(s)‖H1(Ω)∗ + C‖bk(t) − bk(s)‖C0(Ω)

]
as ‖uk(t)‖H1(Ω) is bounded uniformly in k ∈N and s ∈ I by Lemma 23 through the boundedness we assumed
for ( fk). Then, we infer the equi-continuity of ( fk) and (bk) to derive it for (uk). �

The following Lemma summarizes the main result of Haller-Dintelmann et al. (2019). We restrict ourselves
to the generality necessary needed for our application, which however, is not the most general situation. We
refer the reader to Haller-Dintelmann et al. (2019) for a relaxation concerning boundary regularity, regularity
of coefficients and the differential operator.
Lemma 25 (Higher Regularity for Elliptic Systems). LetC ∈ L∞(Ω,L(Ms)) be uniformly elliptic, i.e., there exists
bCc > 0 such that

CM : M ≥ bCc|M|2, for all M ∈ Ms.

Assume that Ci jkl ∈ Cα(Ω) for a fixed but arbitrary small α > 0. Then, there exists θ = θ(α) > 0 such that for every
f ∈ H1−θ(Ω)∗ the solution u ∈ H1

D(Ω) to∫
Ω

Cε(u) : ε(·)dx = f in H1
D(Ω)∗

is in fact a member of H1+θ(Ω) and we can estimate

‖u‖H1+θ(Ω) ≤ C‖C‖Cα(Ω)‖ f ‖H1−θ
D (Ω)∗ ,

where C does not depend on the concrete form of C.

Proof. This follows from Theorem 1 and Lemma 1 in Haller-Dintelmann et al. (2019). �
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The last result we need to establish the relative compactness of (uk) in C0(I,H1
D(Ω)) is – little surprisingly –

a vector valued version of the Arzelà-Ascoli Theorem which we recall here for convenience.
Theorem 26 (Characterization of Relative Compactness in C0(K,X) Spaces). Let X be a Banach space and K a
compact metric space. Then a set F ⊂ C0(K,X) is relatively compact if and only if the following two conditions hold:

(i) The set F is equi-continuous, that is, for all t ∈ K and all ε > 0 there exists a neighborhood U(t) ⊂ K such
that

sup
u∈F
‖u(t) − u(s)‖X ≤ ε for all s ∈ U(t).

(ii) For all t ∈ K the set
{u(t) | u ∈ F } ⊂ X

is relatively compact.

The focus of the next Lemma lies on the a priori estimates for linear parabolic equations.
Lemma 27 (A Priori Estimate for Parabolic Evolution Equations). Let (i,X,H) be a Gelfand triple, M : X→ X∗
a linear coercive operator with coercivity constant bMc, i.e., it holds

〈Ma, a〉X ≥ bMc‖a‖2X, for all a ∈ X.

Let I = [0,T] denote a time interval and f ∈ L2(I,X∗) a fixed right-hand side. Then there exists a unique solution
a ∈ H1(I,X,X∗) to ∫

I
〈dta, ·〉dt +

∫
I
〈Ma, ·〉Xdt =

∫
I
〈 f , ·〉Xdt, in L2(I,X)∗

Furthermore, the norm of the solution a can be estimated by

‖a‖H1(I,X,X∗) ≤ C
(
‖M‖L(X,X∗), bMc−1

)
·

(
‖a(0)‖H + ‖ f ‖L2(I,X∗)

)
, (3.21)

with C being monotonously increasing in ‖M‖L(X,X∗) and bMc−1.

Proof. We establish only the estimate (3.21), the existence of a solution is the well known maximal regularity
result of J. L. Lions, see for instance (Ern and Guermond, 2013, Part II, Section 6). To derive the estimate, we
note that by the natural isometry L2(I,X∗) = L2(I,X)∗ the function a satisfies a pointwise almost-everywhere
equation in X∗, namely

dta(s) + M(a(s)) = f (a(s))
which, at time s ∈ I, we can test with a(s) ∈ X and integrate from 0 to t. Then, we apply the partial integration
formula for Gelfand triples and estimate using the coercivity of M and Young’s inequality

1
2
‖a(t)‖2H + bMc

∫ t

0
‖a(s)‖2Xds ≤

1
2
‖a(0)‖2H + ‖ f ‖L2(I,X∗)‖a‖L2(I,X)

≤
1
2
‖a(0)‖2H +

1
2bMc

‖ f ‖2L2([0,t],X∗) +
bMc

2
‖a‖2L2([0,t],X),

which leads to
1
2
‖a(t)‖2H +

bMc
2

∫ t

0
‖a(s)‖2Xds ≤

1
2
‖a(0)‖2H +

1
2bMc

‖ f ‖2L2([0,t],X∗).

We get by estimating the terms of the left-hand side separately and taking the supremum over t ∈ I both

‖a‖2C0(I,L2(Ω)) ≤ ‖a(0)‖2H +
1
bMc
‖ f ‖2L2(I,X∗) and ‖a‖L2(I,X) ≤ ‖a(0)‖2H +

1
bMc2

‖ f ‖2L2(I,X∗).

To estimate the L2(I,X)∗ norm of dta, we use that a is the solution of the parabolic equation to estimate

‖dta‖L2(I,X)∗ = sup
‖ϕ‖L2(I,X)≤1

∫
I
〈dta, ϕ〉Xdt

≤ sup
‖ϕ‖L2(I,X)≤1

[∫
I
|〈Ma, ϕ〉X|dt +

∫
I
|〈 f , ϕ〉X|dt

]
≤ ‖M‖L(X,X∗)‖a‖L2(I,X) + ‖ f ‖L2(I,X∗).

If we infer the previous estimates for a in L2(I,X) norm, we can bound dta in L2(I,X)∗ norm. Combining the
considerations for a and dta lets us bound the H1(I,X,X∗) as desired. �
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Lemma 28 (Lp(I,Cα(Ω)) Bound for (ak)). Assume Ω ⊂ Rd with d = 1, 2, 3 and ∂Ω = ΓN ∪ ΓD where Ω ∪ ΓN is
Gröger regular. Let D ∈ L∞(Ω,Ms) be uniformly elliptic with ellipticity constant bDc > 0, k > 0, f ∈ Lp(I,L2(Ω))
for a fixed p > 2 and a0 ∈ L∞(Ω) some essentially bounded initial condition. Then there exists α = α(p) ∈ (0, 1)
independent of D and f such that the solution a ∈ H1(I,H1

D(Ω),H1
D(Ω)∗) to∫

I
〈dta, ·〉H1

D(Ω)dt +

"
D∇a∇ · +ka · dxdt =

"
f · dxdt

a(0) = a0

is a member of Lp(I,Cα(Ω)) and satisfies the estimate

‖a‖Lp(I,Cα(Ω)) ≤ C
(
p, bDc, ‖D‖L∞(Ω,Ms)

)
‖ f ‖Lp(I,L2(Ω)).

Proof. The proof requires some work, we refer to Section II. �

Remark 29. We comment on some of the aspects leading to the complexity of the proof of Lemma 28.

(i) The mixed boundary conditions, rough coefficients and the jump initial condition prevents the
standard theory from being applicable. If it wasn’t for this roughness, an L2(I,H2(Ω)) result could
be derived by standard theory, see for instance Evans (1998).

(ii) Even invoking the theory of abstract parabolic equations as described in Amann (1995) does only
almost suffice. In fact, combining the results in Amann (1995) with Haller-Dintelmann et al. (2009)
yields L2(I,Cα(Ω)) regularity only if a0 lies in a suitable trace space for initial conditions. The trace
space in this case is H1

D(Ω) and not L∞(Ω).

(iii) The strategy to prove Lemma 28 is therefore to treat the cases f = 0, a(0) = a0 and f = f , a(0) = 0
separately and then to use the superposition principle available for linear equations.

We treat now the cell ODE. We need to establish that a solution in W1,2(I,Cα(Ω)) exists and is suitably
bounded in the data. We have already access to the fact that a long-time solution in W1,2(I,C0(Ω)) exists,
hence the crucial part is to control the Hölder norm of this solution. This can be done by accessing the
solution c through its formulation as a fixed-point and then estimating its Hölder norm if suitable regularity
for the data is given.
Lemma 30. Let a1 and a2 be functions in L4(I,Cα(Ω)) with a1, a2 ≥ 0. Assume that ρ ∈ Cα(Ω) satisfies 0 < ρ < 1
and k6 and k7 are positive constants. Then there exists a solution c ∈W1,2(I,C0(Ω)) to the equation

dtc = k6a1a2(1 + k7c)
(
1 −

c
1 − ρ

)
, c(0) = 0

with 0 ≤ c ≤ 1. Furthermore, we can control the α-Hölder seminorm of c in the following way

bc(t)cα ≤ C
(
‖a1‖L2(I,Cα(Ω)), ‖a2‖L2(I,Cα(Ω)), ‖ρ‖Cα(Ω)

)
,

with the constant C being monotone in its arguments.

Proof. The existence of a solution in the space W1,2(I,C0(Ω)) was already established in Theorem 9. We are
only concerned with the control over the Hölder seminorm. To simplify notation, we prove the statement
for an ODE of the form

dtc = m(1 + c)(1 − θc), c(0) = 0 (3.22)
with m ∈ L2(I,Cα(Ω)) and θ ∈ Cα(Ω) with 0 < θ−1(x) < 1, which implies that the solution c to (3.22) takes
values in the unit interval, i.e., c(t, x) ∈ [0, 1], see Lemma 77. The existence of c in W1,2(I,C0(Ω)) solving (3.22)
implies upon applying integrating that c(t) is given by

c(t) =

∫ t

0
m(s)(1 + c(s))(1 − θc(s))ds,

with the integral being a C0(Ω) valued Bochner integral. As point evaluation at x ∈ Ω is continuous and
linear from C0(Ω) to R, it also holds

c(t, x) =

∫ t

0
m(s, x)(1 + c(s, x))(1 − θ(x)c(s, x))ds.
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We use the above formula and the triangle inequality to estimate

|c(t, x) − c(t, y)| ≤
∫ t

0
|m(s, x) −m(s, y)|ds︸                       ︷︷                       ︸

CA

+

∫ t

0
|m(s, x)c(s, x) −m(s, y)c(s, y)|ds︸                                      ︷︷                                      ︸

CB

+

∫ t

0
|m(s, y)θ(y)c(s, y) −m(s, x)θ(x)c(s, x)|ds︸                                                  ︷︷                                                  ︸

CC

+

∫ t

0
|m(s, y)θ(y)c(s, y)2

−m(s, x)θ(x)c(s, x)2
|ds︸                                                     ︷︷                                                     ︸

CD

.

For brevity, we set m̃(t, x) = m(t, x)θ(x). Inferring that c takes values in [0, 1], we claim that the above estimate
leads to

|c(t, x) − c(t, y)| ≤
∫ t

0

(
2bm(s)cα + ‖m(s)‖C0(Ω)bc(s)cα + 3‖m̃(s)‖C0(Ω)bc(s)cα + 2bm̃(s)cα

)
|x − y|αds. (3.23)

Dividing by |x − y|α and taking the supremum over pairs (x, y) ∈ Ω
2

with x , y we get

bc(t)cα ≤
∫ t

0
2 (bm(s)cα + bm̃(s)cα)︸                   ︷︷                   ︸

Cα(s)

+
(
‖m(s)‖C0(Ω) + 3‖m̃(s)‖C0(Ω)

)
︸                             ︷︷                             ︸

Cβ(s)

bc(s)cαds.

Hence, by Grönwall’s lemma we get

bc(t)cα ≤
(
1 + ‖β‖L1(I) exp

(
‖β‖L1(I)

))
‖α‖L1(I)

with

‖α‖L1(I) ≤ 2‖m‖L1(I,Cα(Ω)) + 2‖m̃‖L1(I,Cα(Ω))

‖β‖L1(I) ≤ ‖m‖L1(I,C0(Ω)) + 3‖m̃‖L1(I,C0(Ω)).

As for a bounded intervals the L2 norm dominates the L1 norm, we are done, given we still provide the
details of the computations that led to (3.23). To this end, note that we may estimate (A) by∫ t

0
|m(s, x) −m(s, y)|ds ≤

∫ t

0
bm(s)cα|x − y|αds.

Using the triangle inequality and the pointwise properties of c, we estimate (B) by∫ t

0
|m(s, x)c(s, x) −m(s, y)c(s, y)|ds ≤

∫ t

0
|m(s, x)|bc(s)cα|x − y|αds +

∫ t

0
|c(s, y)|bm(s)cα|x − y|αds

≤

∫ t

0
‖m(s)‖C0(Ω)bc(s)cα|x − y|αds +

∫ t

0
bm(s)cα|x − y|αds.

Using again the abbreviation m̃ = mθ and noting that m̃ has the same regularity as m, we can estimate the
term (C) in analogy to term (B) by∫ t

0
|m(s, y)θ(y)c(s, y) −m(s, x)θ(x)c(s, x)|ds ≤

∫ t

0
‖m̃(s)‖C0(Ω)bc(s)cα|x − y|α +

∫ t

0
bm̃(s)cα|x − y|αds.

To estimate (D) we need to split the term

(D) =

∫ t

0
|̃m(s, y)|

∣∣∣c(s, y)2
− c(s, x)2

∣∣∣ ds︸                                   ︷︷                                   ︸
CD1

+

∫ t

0
|c(s, x)|2

∣∣∣m̃(s, y) − m̃(s, x)
∣∣∣ ds︸                                  ︷︷                                  ︸

CD2

.
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Using c(s, y)2
− c(s, x)2 = c(s, y)(c(s, y) − c(s, x)) + c(s, x)(c(s, y) − c(s, x)) and c(s, x) ∈ [0, 1], we estimate (D1)

(D1) ≤
∫ t

0
|m̃(s, y)| |c(s, y)| bc(s)cα|x − y|α + |m̃(s, y)| |c(s, x)| bc(s)cα|x − y|αds

≤

∫ t

0
2|m̃(s, y)| bc(s)cα|x − y|αds

≤

∫ t

0
2‖m̃(s)‖C0(Ω) bc(s)cα|x − y|αds

and for (D2)

(D2) ≤
∫ t

0
|c(s, x)|2bm̃(s)cα|x − y|αds ≤

∫ t

0
bm̃(s)cα|x − y|αds.

Collecting all estimates yields the claim and the proof is complete. �

Lemma 31. Let a1 and a2 be functions in L4(I,Cα(Ω)) with a1, a2 ≥ 0. Assume that ρ ∈ Cα(Ω) satisfies 0 < ρ < 1
and k6 and k7 are positive constants. Then there exists a unique solution c ∈W1,2(I,Cα(Ω)) to the equation

dtc = k6a1a2(1 + k7c)
(
1 −

c
1 − ρ

)
, c(0) = 0

with 0 ≤ c ≤ 1. Furthermore, we can control the full α-Hölder norm of c in the following way

‖c‖W1,2(I,Cα(Ω)) ≤ C
(
‖a1‖L2(I,Cα(Ω)), ‖a2‖L2(I,Cα(Ω)), ‖ρ‖Cα(Ω)

)
,

with the constant C being monotone in its arguments.

Proof. We use again the notation
dtc = m(1 + c)(1 − θc), c(0) = 0,

where m ∈ L2(I,Cα(Ω)) and m(t, x) ≥ 0 and θ ∈ Cα(Ω). Thus, the inducing function F in the sense of Theorem
74 is given by

F : I × Cα(Ω)→ Cα(Ω), F(t, c) = m(t)(1 + c)(1 − θc).
To prove the existence of a unique short-time solution in the space W1,2(Iδ,Cα(Ω)), we need F to be of
Carathéodory regularity. Clearly, F(·, c) : I → Cα(Ω) is Bochner measurable as m is. Furthermore, F(t, ·) :
Cα(Ω)→ Cα(Ω) is continuous. This is due to the fact that Cα(Ω) is a Banach algebra.

To proceed, we need a boundedness and a Lipschitz condition on bounded subsets of Cα(Ω), compare to
Theorem 74. To this end, let B ⊂ Cα(Ω) be a bounded set. For c ∈ B we estimate

‖F(t, c)‖Cα(Ω) ≤ C‖m(t)‖Cα(Ω)‖1 + c‖Cα(Ω)‖1 − θc‖Cα(Ω)

The term ‖1 + c‖Cα(Ω)‖1 − θc‖Cα(Ω) can be bounded in terms of the measure of Ω, the assumed boundedness
of B and the Cα(Ω) norm of θ. Hence, there exists a constant C = C(Ω, ‖θ‖Cα(Ω),B) such that

‖F(t, c)‖Cα(Ω) ≤ C
(
Ω, ‖θ‖Cα(Ω),B

)
‖m(t)‖Cα(Ω)

and by assumption, the map t 7→ ‖m(t)‖Cα(Ω) is a member of L2(I). Now, let c and c̄ ∈ B and look at the
differences

‖F(t, c) − F(t, c̄)‖Cα(Ω) ≤ C‖m(t)‖Cα(Ω)‖(1 + c)(1 − θc) − (1 + c̄)(1 − θc̄)‖Cα(Ω)

≤ C‖m(t)‖Cα(Ω)

[
‖1 + θ‖Cα(Ω)‖c − c̄‖Cα(Ω) + ‖θ‖Cα(Ω)

∥∥∥c2
− c̄2

∥∥∥
Cα(Ω)

]
.

We look at the quadratic term separately∥∥∥c2
− c̄2

∥∥∥
Cα(Ω)

≤ C‖c − c̄‖Cα(Ω)‖c + c̄‖Cα(Ω) ≤ C (B) ‖c − c̄‖Cα(Ω).

Hence, there exists a function LB ∈ L2(I) such that

‖F(t, c) − F(t, c̄)‖Cα(Ω) ≤ LB(t)‖c − c̄‖Cα(Ω).
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Consulting Theorem 74, the estimates above provide the existence of an interval [0, δ] = Iδ and a unique
function c ∈W1,2(Iδ,Cα(Ω)) solving the ODE.

To show that the solution can be extended to all of I = [0,T], we extend the solution c to the maximal interval
[0, t∗) of existence. For any t0 ∈ [0, t∗) we set c0 = c(t0) and consider the initial value problem

dtc = k6a1a2(1 + k7c)
(
1 −

c
1 − ρ

)
, c(t0) = c0.

Then this has a unique solution in W1,2([t0− δ̃, t0 + δ̃]∩ I,Cα(Ω)) for some suitable δ̃. In fact, δ̃ depends on the
L2(I,Cα(Ω)) norm of a1a2, the Cα(Ω) norm of (1 − ρ)−1 and the L2(I,Cα(Ω)) norm of c on [0, t∗). This implies
that δ̃ does not depend on the position of t0 ∈ [0, t∗) and thus t∗ = T and the interval [0, t∗) can be closed.

Finally, the promised bound on the W1,2(I,Cα(Ω)) norm of c is easily established using c(t, x) ∈ [0, 1] and the
estimate on the Hölder seminorm of Lemma 30. �

We show now how to establish the existence of solutions to the bone ODE in the space W1,2(I,Cα(Ω)).
Furthermore, we show that the W1,2(I,Cα(Ω)) norm of such solutions can be bounded, given bounded data
in the right spaces. This can in principle be done by the same arguments as for the cell equation, however,
the bone ODE is linear and thus we can use more elegant approaches.
Lemma 32. Let X be a Banach algebra and denote by CX > 0 the norm of its multiplication and assume that p > 1.
By W1,p

0 (I,X) we denote the vector-valued Sobolev space with vanishing initial conditions. For a function m ∈ Lp(I,X)
we define the multiplication operator

M : C0(I,X)→ Lp(I,X), Mv = t 7→ m(t)v(t).

Then the map
dt + M : W1,p

0 (I,X)→ Lp(I,X), v 7→ dtv + Mv

is a linear homeomorphism. Furthermore, given a right-hand side f ∈ Lp(I,X) we may bound the solution v to
dtv + Mv = f in the following way

‖v‖W1,p
0 (I,X) ≤ C

(
|I|, ‖m‖Lp(I,X),CX

)
‖ f ‖Lp(I,X),

i.e., the norm of v does only depend on f and m measured in Lp(I,X) norm and the constant C is monotone in these
quantities.

Proof. The continuity and linearity of the map dt + M is clear. Its bijectivity follows as an application of
Theorem 71. To this end, note that the inducing function F : I × X→ X of Theorem 71 is given by

F : I × X→ X, F(t, x) = m(t)x.

This is clearly a Carathéodory function and it holds for x, y ∈ X

‖F(t, x) − F(t, y)‖X ≤ C‖m(t)‖X‖x − y‖X.

The function C‖m(·)‖X is a member of Lp(I) with p > 1 and therefore the existence of a unique solution
v ∈ W1,p

0 (I,X) is established. To provide the bound, we employ Grönwall’s inequality. Note that, by the
fundamental theorem, the solution v satisfies the integral identity

v(t) =

∫ t

0
f (s) −m(s)v(s)ds

and consequently the estimate

‖v(t)‖X ≤
∫ t

0
‖ f (s)‖X + CX‖m(s)‖X‖v(s)‖Xds.

Using Grönwall’s inequality yields

‖v(t)‖X ≤
[
1 + CX‖m‖L1(I,X) exp

(
CX‖m‖L1(I,X)

)]
· ‖ f ‖L1(I,X).
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Clearly, this implies a bound in C0(I,X) norm for v of the form

‖v‖C0(I,X) ≤ C
(
‖m‖L1(I,X),CX

)
‖ f ‖L1(I,X)

and consequently also in Lp(I,X). To bound dtv, we use the equation satisfied by v and estimate

‖dtv‖Lp(I,X) = ‖ f −Mv‖Lp(I,X)

≤ ‖ f ‖Lp(I,X) + ‖v‖C0(I,X)‖m‖Lp(I,X)

≤ C
(
|I|, ‖m‖Lp(I,X),CX

)
‖ f ‖Lp(I,X).

�

Lemma 33. Assume (ρk) is a minimizing sequence for Ĵ + η‖·‖2H2(Ω). Then properties (A1)-(A5) hold.

Proof. We begin with (A1). The regularizing term η‖·‖2H2(Ω) leads to a H2(Ω) bound for any minimizing

sequence (ρk) of Ĵ + η‖·‖2H2(Ω), as Ĵ is bounded from below. Then there exists a subsequence (not relabeled)
with

ρk ⇀ ρ∗ in H2(Ω).

Using the compactness of the embedding H2(Ω) ↪→↪→ C0(Ω), we get

ρk → ρ∗ in C0(Ω)

and inferring the closedness of P in C0(Ω) yields ρ∗ ∈ P as desired.

We provide first a weaker statement than (A2). Namely, we prove that (uk) is bounded uniformly in
C0(I,H1(Ω)). At the end of the proof, we can show the full validity of (A2). In Setting 2.1 we assumed that
the boundary conditions satisfied by uk are

C(ρk, σ, bk)ε(uk) · η = gN, uk = uD

on ΓN and ΓD respectively, where gN ∈ C0(I,L2(∂Ω)) ⊂ C0(I,H1/2(∂Ω)∗) and uD ∈ C0(I,H1+θ(Ω)) implying that
(uD)|ΓD ∈ H1/2(∂Ω). The unique solutions ũk ∈ L2(I,H1

D(Ω)) to"
C(ρk, σ, bk)ε(ũk) : ε(·)dxdt =

∫
I
〈gN, ·〉H1/2(∂Ω)dt −

"
C(ρk, σ, bk)ε(uD) : ε(·)dxdt︸                                                             ︷︷                                                             ︸

C fk∈L2(I,H1
D(Ω))∗

in L2(I,H1
D(Ω))∗ (3.24)

have therefore right-hand sides fk that can be interpreted as members of C0(I,H1
D(Ω)∗). This is due to the

assumption gN ∈ C0(I,H1/2(∂Ω)∗) and a standard computation that shows that the map

t 7→
∫

Ω

C(ρk, σ, bk)(t)ε(uD(t)) : ε(·)dx

is a member of C0(I,H1
D(Ω)∗). Hence Lemma 23 is applicable and shows that

‖ũk‖C0(I,H1(Ω)) ≤ C
(
bC(ρk, σ, bk)c,CKorn

)
‖ fk‖C0(I,H1

D(Ω)∗).

AsC is coercive and essentially bounded, this estimate can be made independent of k ∈N. Clearly, we have
not yet proven (A2) but will first continue with the other assumptions.

We are concerned with (A3) now which is an application of Lemma 27. The corresponding Gelfand triple is
(Id,H1

D(Ω),L2(Ω)) and the operators Mk are

Mk : H1
D(Ω)→ H1

D(Ω)∗, Mka =

∫
Ω

D(ρk)∇a∇ · +k3a · dx.

The coercivity constant of Mk can be estimated from below independently of (ρk) by

bMkc ≥ min(bD(ρk)c, k3).
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On the other hand, the operator norm of Mk can be estimated to

‖Mk‖ = sup
‖a‖≤1,‖ϕ‖≤1

∫
Ω

D(ρk)∇a∇ϕ + k3aϕdx ≤ ‖D(ρk)‖L∞(Ω,Ms) + k3.

The right-hand sides of the equation are given by

fk =

"
(k2|ε(uk)|δck − k3) · dxdt,

consequently their norm can be estimated

‖ fk‖L2(I,H1
D(Ω)∗) ≤ ‖ fk‖L2(I,L2(Ω)∗)

≤

["
(k2|ε(uk)|δck − k3)

]1/2

≤ k2‖ck‖C0(I×Ω)‖uk‖L2(I,H1
D(Ω)) + |I ×Ω|1/2k3.

This is uniformly bound in k ∈ N by the bound on (uk) and the pointwise properties of ck, i.e., 0 ≤ ck ≤ 1.
Thus we apply Lemma 27 to obtain

‖ak‖H1(I,H1
D(Ω),H1

D(Ω)∗) ≤ C
(
‖Mk‖, bMkc

−1
)
·

(
‖ak(0)‖L2(Ω) + ‖ fk‖L2(I,H1

D(Ω))

)
≤ C

(
‖D(ρk)‖L∞(Ω,Ms), bD(ρk)c−1, k3

)
·

(
‖ak(0)‖L2(Ω) + ‖ fk‖L2(I,H1

D(Ω))

)
By the ellipticity and boundedness of D, the constant initial conditions ãi

k(0) ≡ 1 and the estimate for uk, we
see that (ai

k) are bounded uniformly in k ∈N. Using the reflexivity of the Hilbert space H1(I,H1
D(Ω),H1

D(Ω)∗)
to produce a weakly convergent subsequence with limit ã∗i we proved (A3).

We proceed with (A4) and aim to apply Lemma 32 to the ODE

dtbk = k4a1
k

(
1 +

bk

1 − ρk

)
, bk(0) = 0, (3.25)

with X = Cα(Ω) and p = 2. To this end we rearrange (3.25) to

dtbk −
k4a1

k

1 − ρk
bk = k4a1

k ,

thus

mk =
k4a1

k

1 − ρk
and fk = k4a1

k

in the notation of Lemma 32. Due to the embedding H2(Ω) ↪→↪→ Cα(Ω) in three spatial dimensions, we get
ρk ∈ Cα(Ω) and also (1 − ρk)−1

∈ Cα(Ω) with a uniform bound in Hölder norm. Then, Lemma 32 guarantees
that (a1

k) is bounded uniformly in L2(I,Cα(Ω)) which implies such a bound for (mk) and ( fk). We may therefore
use Lemma 32 to obtain

‖bk‖W1,2(I,Cα(Ω)) ≤ C
(
I,CCα(Ω), ‖mk‖L2(I,Cα(Ω))

)
‖ fk‖L2(I,Cα(Ω))

and guarantee that the bound is independent of k ∈N. Furthermore, we have the compact embedding

W1,2(I,Cα(Ω)) ↪→↪→ C0(I ×Ω).

This yields the relative compactness of (bk) in C0(I ×Ω) and thus the existence of b∗ ∈ C0(I ×Ω) and a (not
relabeled) subsequence with

bk → b∗.
To provide the existence of c∗ and a subsequence ck → c∗ in C0(I × Ω), we note that Lemma 31 provides a
bound of the W1,2(I,Cα(Ω)) norm of ck of the form

‖ck‖W1,2(I,Cα(Ω)) ≤ C
(
‖ak

1‖L2(I,Cα(Ω)), ‖ak
2‖L2(I,Cα(Ω)), ‖ρ‖Cα(Ω)

)
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with C being increasing in its arguments. As we proved suitable bounds for (ak
1), (ak

2) and (ρk) this yields
a W1,2(I,Cα(Ω)) bound for (ck) that does not depend on k ∈ N. Therefore, the sequence (ck) is relatively
compact in C0(I ×Ω) and (A5) follows.

We are still left with showing the existence of a subsequence of (uk) and a function u∗ ∈ C0(I,H1(Ω)) such
that

uk → u∗ in C0(I,H1(Ω)).
To this end, note that we have established that (bk) is relatively compact in C0(I,C0(Ω)). Hence, applying the
Arzelà-Ascoli Theorem, (bk) is equi-continuous as well. Now, going back to (3.24) we can easily compute
that the sequence ( fk) is indeed equi-continuous in C0(I,H1

D(Ω)∗). Again, this is essentially due to the equi-
continuity of (bk) in the space C0(I,C0(Ω)). Hence, applying Lemma 24 yields the equi-continuity of (uk) in
C0(I,H1(Ω)). In view of the Arzelà-Ascoli Theorem we still need to show that the sets

{uk(t) ∈ H1(Ω) | k ∈N}

are relatively compact in H1(Ω). This can be established by looking at the equation satisfied by uk(t) for
every fixed t ∈ I and applying Lemma 25. Indeed, uk(t) = ũk(t) + uD(t) satisfies∫

Ω

C(ρk, σ, bk)(t)ε(uk
0(t)) : ε(·)dx =

∫
∂Ω

gN(t) · ds −
∫

Ω

C(ρk, σ, bk)(t)ε(uD(t)) : ε(·)dx.

The assumptions on gN and uD guarantee that the right-hand side lies in H1−θ(Ω)∗ and the Hölder regularity
established for (bk), i.e., (bk(t)) ⊂ Cα(Ω) allows to deduce the H1+θ(Ω) regularity for uk(t). Additionally, the
uniform W1,2(I,Cα(Ω)) bound for the sequence (bk) established before yields a bound for the Cα(Ω) norm of
(bk(t)) and also the coefficients of C(ρk, σ, bk) via assumption (3.10). Collecting these bounds in fact implies
that

sup
k∈N
‖uk(t)‖H1+θ(Ω) ≤ C

and invoking the compactness result of Rellich which states that

H1+θ(Ω) ↪→↪→ H1(Ω)

we can conclude the missing piece in order to apply the Arzelà-Ascoli Theorem to (uk) in the space
C0(I,H1

D(Ω)). This eventually guarantees the validity of assumption (A2). �

We can now conclude the Section by providing the proofs of Theorem 18 and Corollary 19.

Proof of Theorem 18. Let (ρk) ⊂ P be a minimizing sequence for Ĵ + η‖·‖2H2(Ω). Lemma 33 shows that the
assumptions (A1) − (A5) hold and Proposition 21 shows that this leads to the existence of an accumulation
point ρ∗ ∈ P of the sequence (ρk) which is a minimizer of Ĵ + η‖·‖2H2(Ω). �

Proof of Corollary 19. Let (ρk) ⊂ H2(Ω) be a minimizing sequence for Ĵ +η‖·‖2H2(Ω) +K . Revisiting the proof of
Proposition 21 shows that the additional termK does not lead to complications in the lower semicontinuity
as it is assumed to be continuous on C0(I ×Ω), i.e., a compact perturbation. Furthermore, as we assumed
that K takes non-negative values only, also the coercivity of the objective function is not violated through
the addition ofK . �

III Rigorous Derivation of Reduced Derivative

In this Section, we want to apply the adjoint approach for the computation of the derivative of the reduced
objective function

DĴ(ρ0) = −e∗ρ(φ(ρ0), ρ0)
[
e−∗y (φ(ρ0), ρ0)

(
Jy(φ(ρ0), ρ0)

)]
+ Jρ(φ(ρ0), ρ0),

compare also to Section I for a derivation of this formula. We still essentially work with the system (3.6),
for which we already established the existence of an optimal control in the previous Section. However, we
need to make some minor adaptions ensuring the differentiabilty of the solution operator φ. The precise
requirements are collected in Section 3.1.
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Our goal with respect to the above formula is to rigorously derive a formulation of the adjoint equations that
is useful from an implementations viewpoint. The main difficulty we are facing are the spaces associated
to the time dependent equations, compare to the definition of the choice of state space Y in (3.27). For these
spaces convenient characterizations of their dual spaces are not known. This forces us to derive regularity
properties of the associated adjoint equation by hand.

We illustrate this problem with an example. Let m ∈ L2(I,C0(Ω)) be a fixed function, where Ω ⊂ Rd is some
bounded domain. We consider the Banach space valued, linear ODE

dt + m : W1,2
0 (I,C0(Ω))→ L2(I,C0(Ω)), v 7→ dtv + mv.

Here, the zero subscript in the space W1,2
0 (I,C0(Ω)) indicates vanishing initial conditions. Note that by

Theorem 71 dt + m is well posed and a linear homeomorphism. In the adjoint approach, we are – among
other types – forced to consider the adjoint of a map of the above form, i.e.,

(dt + m)∗ : L2(I,C0(Ω))∗ →W1,2
0 (I,C0(Ω))∗, h∗ 7→ h∗ [dt · +m·] .

The problem now is that the space L2(I,C0(Ω))∗ lacks a convenient description of its dual. However, given
a member of W1,2

0 (I,C0(Ω))∗ of the form "
f · dxdt

for a function, say in L2(I,L1(Ω)), we are able to show that instead of solving

h∗ [dt · +m·] =

"
f · dxdt, in W1,2

0 (I,C0(Ω))∗

we may solve for h ∈W1,2(I,L1(Ω)) satisfying
−dth + mh = f , with h(T) = 0

for the final time T. For us, the advantage lies in the fact that the latter is easy to solve numerically. Similar
problems arise when considering the adjoint diffusion equations, as these are – due to regularity issues –
posed on inconvenient function spaces as well. The details can be found in the Appendix IV.

3.1 Setting

We essentially keep the Setting 2.1. However, we work with more concrete assumptions on C, D, | · |δ and
J. We also need to take into account that we compute derivatives, hence some additional differentiability
assumptions are required. The remaining assumptions of Section 2.1 are still valid. In detail we need the
following.

(i) For the material tensor we use the Voigt bound
C(σ, ρ, b) = σρCp + bCb

where Cp and Cb are two linear isotropic material, coercive tensors, e.g., corresponding to PCL and
bone.

(ii) We also choose a concrete ansatz for the diffusivity, namely the one used earlier in the numerical
simulations in Chapter 2

D(ρ) = k5(1 − ρ),
where k5 was some positive parameter.

(iii) In addition to the Lipschitz continuity and grwoth condition for | · |δ, we require | · |δ : Rd×d
→ R to

induce a Fréchet differentiable Nemyckii operator. More precisely, we assume that

N|·|δ : L2(Ω,Rd×d)→ L2(Ω),
(
x 7→ f (x)

)
7→

(
x 7→ | f (x)|δ

)
is Fréchet differentiable. This entails differentiability of | · |δ and the derivative of N|·|δ is given by

DN|·|δ ( f0) f = x 7→ D| · |δ( f0(x)) f (x)
where f , f0 ∈ L2(Ω,Rd×d).

(iv) Finally, the objective function is chosen to be

J(y, ρ) =
∥∥∥E(y, ρ)

∥∥∥
Lp(I) =

1
2

∥∥∥∥∥∫
Ω

C(σ, ρ, b)ε(u + uD) : ε(u + uD)dx
∥∥∥∥∥

Lp(I)
. (3.26)

The Lp(I) norm is used as a smooth approximation of a minimum or maximum over all time-points,
depending on the signum of the exponent p.
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3.2 The Derivative of the Energy

As we are interested in the differentiability and the derivatives of the map ρ 7→ J(φ(ρ), ρ) we clearly need to
compute

Jy(φ(ρ), ρ), and Jρ(φ(ρ), ρ).

A glimse in formula (3.3) reveals that the former enters in the computation of DĴ(ρ) as the right-hand side
of the adjoint equation and the latter is an additive term.

The structural assumption on J is
J = ‖·‖Lp(I) ◦ E,

where p can be negative and positive and E is the elastic energy, see (3.26). Fréchet differentiability of Lp(I)
norms with respect to the natural norm and p ∈ (1,∞) are is well established, see for instance Werner (2006).
However, for negative values of p the choice of a “natural” domain is not so clear. In the Lp(I) topology, the
subset of positive functions bounded away from zero is not an open set. A convenient way to get around
these question is to consider ‖·‖Lp(I) only on the set{

f ∈ C0(I) | f (t) > 0 for all t ∈ I
}
⊂ C0(I).

This integrates well withE, since in Lemma 15 we established thatE(y, ρ) is a member of C0(I) and if y = φ(ρ)
then it holds E(φ(ρ), ρ)(t) > 0 for all t ∈ I. Hence we analyze J defined on

Y × P = C0(I,H1
De

(Ω)) ×H1(I,H1
Dd

(Ω),H1
Dd

(Ω)∗)2
∩ L2(I,C0(Ω))2

×W1,2
0 (I,C0(Ω)) ×W1,2

0 (I,C0(Ω)) × P.

Theorem 34. Let (φ(ρ0), ρ0) = (y0, ρ0) ∈ Y × P be a state-control pair, i.e., e(y0, ρ0) = 0. Then the derivatives of J
at (y0, ρ0) are given by

Ju(y0, ρ0) = J(y0, ρ0)1−p
"
E(y0, ρ0)p−1C(ρ0, σ, b0)ε(u0 + uD) : ε(·)dxdt ∈ C0(I,H1

De
(Ω))∗

Jb(y0, ρ0) =
1
2

J(y0, ρ0)1−p
"
E(y0, ρ0)p−1

Cbε(u0 + uD) : ε(u0 + uD) · dxdt ∈ C0(I ×Ω)∗

Jρ(y0, ρ0) =
1
2

J(y0, ρ0)1−p
"
E(y0, ρ0)p−1σCρε(u0 + uD) : ε(u0 + uD) · dxdt ∈ C0(Ω)∗

Ja1 (y0, ρ0) = Ja2 (y0, ρ0) = Jcy0, ρ0 = 0.

Furthermore, it will be useful for the computations in the adjoint system to concretize the abstract functionals above.
We set

fJu(y0,ρ0) = J(y0, ρ0)1−p
∫

Ω

E(y0, ρ0)p−1C(ρ0, σ, b0)ε(u0 + uD) : ε(·)dx ∈ C0(I,H1
De

(Ω)∗)

fJb(y0,ρ0) =
1
2

J(y0, ρ0)1−p
E(y0, ρ0)p−1

Cbε(u0 + uD) : ε(u0 + uD) ∈ C0(I,L1(Ω))

fJρ(y0,ρ0) =
1
2

J(y0, ρ0)1−p
∫

I
E(y0, ρ0)p−1σCρε(u0 + uD) : ε(u0 + uD)dt ∈ L1(Ω).

Using the above notation it holds

Ju(y0, ρ0) =

∫
I
〈 fJu(y0,ρ0), ·〉H1

De
(Ω)dt ∈ C0(I,H1

De
(Ω))∗,

Jb(y0, ρ0) =

∫
I

∫
Ω

fJb(y0,ρ0) · dxdt ∈ C0(I ×Ω)∗,

Jρ(y0, ρ0) =

∫
Ω

fJρ(y0,ρ0) · dx ∈ C0(Ω)∗.

Remark 35. The structure of the derivatives of J is crucial in deriving regularity properties of the adjoint
equation in Theorem 44.
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Proof. We compute, using the chain rule

DJ(y0, ρ0) = D
(
‖·‖Lp(I) ◦ E

)
(y0, ρ0)

= D‖·‖Lp(I)
(
E(y0, ρ0)

)
◦DE(y0, ρ0)

=

[∥∥∥E(y0, ρ0)
∥∥∥1−p

Lp(I)

∫
I

[
E(y0, ρ0)

]p−1
· dt

]
◦DE(y0, ρ0).

In the last step above we exploited that E(y0, ρ0) takes values in the set { f ∈ C0(I) | f (t) > 0 for all t ∈ I}
and that ‖·‖Lp(I) is Fréchet differentiable on this set for all p ∈ R \ {0} with the respective formula. This is
proven in detail in Lemma 37. To get the partial derivatives, we need to replace DE by the respective partial
derivative. These partial derivatives are given by

Eu(y0, ρ0) =

∫
Ω

C(ρ, σ, b)ε(u0 + uD) : ε(·)dx ∈ L(C0(I,H1
De

(Ω)),C0(I)),

where we used that u 7→ E(y, ρ) is the composition of a translation u 7→ u + uD and a continuous, bilinear
map. The partial derivative in direction of b is given by

Eb(y0, ρ0) =
1
2

∫
Ω

Cbε(u0 + uD) : ε(u0 + uD) · dx ∈ L(C0(I ×Ω),C0(I))

and

Eρ(y0, ρ0) =
1
2

∫
Ω

σCpε(u0 + uD)

�

Lemma 36. Let Ω ⊂ Rd be bounded, f ∈ C1(Ω) and U ⊂ C0(Ω) an open set. Define the operator

N : C0(Ω)→ C0(Ω), N(u) = f ◦ u.

Then, N is continuously Fréchet differentiable with derivative

DN : C0(Ω)→ L(C0(Ω)), DN(u0)v = ( f ′ ◦ u0) · v.

Proof. We need to show that for u0 ∈ U it holds

lim
t→0

sup
‖v‖C0≤1

sup
x∈Ω

∣∣∣∣∣ f (u0(x) + tv(x)) − f (u0(x))
t

− f ′(u0(x))v(x)
∣∣∣∣∣ = 0.

The uniformity of v in the unit ball of C0(Ω) is the crucial fact that is necessary for the existence of the Fréchet
differential. To this end, we define the auxiliary function

φ : [0, ε] × [−1, 1] × u0(Ω)→ R, (t, v,u) 7→

 0, if t = 0∣∣∣∣ f (u+tv)− f (u)
t − f ′(u)v

∣∣∣∣ , if t , 0.

As f ′ is continuous, the function φ is and as a continuous function defined on a compact set, φ is uniformly
continuous. �

Lemma 37 (Derivative of Lp(I) Norms). Let p ∈ R \ {0} and I = [0,T] for some T > 0. Then the function ‖·‖Lp(I) is
Fréchet differentiable as a map

‖·‖Lp(I) :
{
u ∈ C0(I) | u(t) > 0 ∀t ∈ I

}
⊂ C0(I)→ R, u 7→

[∫
I
updt

] 1
p

with derivative

D‖·‖Lp(I)(u)v = ‖u‖1−p
Lp(I)

∫
I
up−1vdt.
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Proof. We factorize ‖·‖Lp(I)

‖·‖Lp(I) =
p√
· ◦

∫
I
(·)dt ◦N,

where N denotes the Nemyckii operator

N :
{
u ∈ C0(I) | u(t) > 0 ∀t ∈ I

}
→ C0(I), N(u) = x 7→ u(x)p.

Clearly, the domain of N is open in C0(I) and the inducing function x 7→ xp is smooth, hence N is Fréchet
differentiable with derivative

DN(u)v = x 7→ pu(x)p−1v(x),
as established in the previous Lemma. Using the chain rule we compute the derivative of ‖·‖Lp(I)

D‖·‖Lp(I)(u)v = D
(

p√
· ◦

∫
I
(·)dt ◦N

)
(u)v

= D
(

p√
·

) (∫
I
N(u)dt

)
·

∫
I
DN(u)vdt

=
1
p

[∫
I
updt

] 1
p−1

·

∫
I
pup−1dt

= ‖u‖1−p
∫

I
up−1vdt,

where we used 1
p − 1 = 1

p (1 − p) in the last step. This establishes the asserted formula. �

3.3 Adjoint Maps between Product Spaces

Before we start, we repeat a simple characterization of the adjoint map between Cartesian product spaces,
this will facilitate the later treatment. Our statement treats the case of a linear operator that maps from a
product space of two factors into another product space with two factors. The generalization to more factors
is straight forward.
Lemma 38 (Adjoint of Product Maps). Let X1,X2,Y1 and Y2 be Banach spaces and let F : X1 × X2 → Y1 × Y2
be linear and denote by F(x1, x2) = (T(x1, x2),S(x1, x2)) where T = F1 : X1 × X2 → Y1 and S = F2 : X1 × X2 → Y2.
Then F can be computed by the formal matrix-vector product

F(x1, x2) =
(
T(·, 0) T(0, ·)
S(·, 0) S(0, ·)

) (
x1
x2

)
where T(·, 0) : X1 → Y1, T(0, ·) : X2 → Y1, S(·, 0) : X1 → Y2 and S(0, ·) : X2 → Y2. We are interested to bring the
adjoint map of F into a similar form. To that end consider the linear homeomorphisms

φ : Y∗1 × Y∗2 → (Y1 × Y2)∗ , (y∗1, y
∗

2) 7→
(
(y1, y2) 7→ y∗1(y1) + y∗2(y2)

)
and

ψ : (X1 × X2)∗ → X∗1 × X∗2, ξ∗ 7→ (x1 7→ ξ∗(x1, 0), x2 7→ ξ∗(0, x2)) .
Using φ and ψ we define

F† : Y∗1 × Y∗2 → X∗1 × X∗2, F† B ψ ◦ F∗ ◦ φ.
Then F† is given by

F†(y∗1, y
∗

2) =
(
T(·, 0)∗ S(·, 0)∗
T(0, ·)∗ S(0, ·)∗

) (y∗1
y∗2

)
.

Proof. To see that φ and ψ are in fact homeomorphisms note that, if Y1 = X1 and Y2 = X2 it holds
Id = φ ◦ ψ = ψ ◦ φ and the continuity of ψ and φ is plain. If the spaces Xi and Yi are different for i = 1, 2
then one can still construct inverses to φ and ψ in an analogue fashion. Hence the maps are invertible and
continuous thus linear homeomorphisms. Now to the proposed structure of F†; for (y∗1, y

∗

2) ∈ Y∗1 × Y∗2 and
(x1, x2) ∈ X1 × X2 we compute〈

(F∗ ◦ φ)(y∗1, y
∗

2), (x1, x2)
〉

=
〈
φ(y∗1, y

∗

2) ◦ F, (x1, x2)
〉

= y∗1 (T(x1, x2)) + y∗2 (S(x1, x2)) .
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In order to apply the map ψ we need to insert (x1, 0) and (0, x2) in the above composition and find〈(
F∗ ◦ φ

)
(y∗1, y

∗

2), (x1, 0)
〉

= y∗1 (T(x1, 0)) + y∗2 (S(x1, 0))

=
〈
T(·, 0)∗(y∗1) + S(·, 0)∗(y∗2), x1

〉
and 〈(

F∗ ◦ φ
)

(y∗1, y
∗

2), (0, x2)
〉

=
〈
T(0, ·)∗(y∗1) + S(0, ·)∗(y∗2), x2

〉
respectively. This proves the claim. �

3.4 The Linearized State Equations

In order to carry out the adjoint approach as outlined in Section I we need access to the linearized state
equations. This means we need to formulate the system that we want to solve as a constraint of the form
{e(y, ρ) = 0 in W | (y, ρ) ∈ Y × P} for suitable Banach spaces Y,W and P, as we have seen earlier in equation
(3.6). The choice of these spaces stems from the well posedness result in Theorem 9. Here we briefly repeat
the choices that work for our concrete system. As state space Y we may choose

Y = L2(I,H1
De

(Ω)) ×H1(I,H1
Dd

(Ω),H1
Dd

(Ω)∗)2
∩ L2(I,C0(Ω))2

×W1,2
0 (I,C0(Ω)) ×W1,2

0 (I,C0(Ω)) (3.27)

where W1,2
0 (I,C0(Ω)) means that the functions in this space have vanishing initial values. A member y ∈ Y

will be denoted by

y = (u, a1, a2, c, b).

We stress the fact that u, a1 and a2 are zero on the corresponding Dirichlet parts of the boundary of Ω. We
take care of this in the definition of the constraint operator e and the objective function J. As a codomain for
e we set

W = L2(I,H1
De

(Ω))∗ ×
[
L2(I,H1

Dd
(Ω))∗

]2
× L2(Ω)2

× L2(I,C0(Ω)) × L2(I,C0(Ω)).

The admissible scaffold densities are collected in

P =
{
ρ ∈ C0(Ω) | 0 < cP ≤ ρ(x) ≤ CP < 1

}
for two fixed constants cP and cP. Then, as defined previously, we set e : Y × P→W with

e(y, ρ) =



∫
I

∫
Ω
C(ρ, σ, b)ε(u + uD) : ε(·)dxdt −

∫
I

∫
∂Ω
〈gela

N , ·〉H1/2(∂Ω)dsdt∫
〈dta1, ·〉dt +

∫
I

∫
Ω

D(ρ)∇a1∇ · +k3,1(a1 + 1) · dxdt −
∫

I

∫
Ω

k2,1|ε(u + uD)|δc · dxdt∫
〈dta2, ·〉dt +

∫
I

∫
Ω

D(ρ)∇a2∇ · +k3,2(a2 + 1) · dxdt −
∫

I

∫
Ω

k2,2|ε(u + uD)|δc · dxdt

a1(0) + 1

a2(0) + 1

dtc − k6(a1 + 1)(a2 + 1)(1 + k7c)
(
1 − c

1−ρ

)
dtb − k4(a1 + 1)c

(
1 − b

1−ρ

)


For the following computations we use the Voigt bound for C(ρ, σ, b) = bCb + ρσCρ and for the diffusivity
we assume D(ρ) = k5(1 − ρ).

Having repeated the constraint operator e and clarified its domain we can proceed to compute the linearized
state equations. These are obtained by taking the Fréchet derivative of e in direction y.
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Theorem 39 (Linearized State Equations). Let us fix a pair (y0, ρ0) ∈ Y×P, the linearized state equation at (y0, ρ0)
is given by ey(y0, ρ0) : Y→W through

ey(y0, ρ0)y =



!
C(ρ0, σ, b0)ε(u) : ε(·)dxdt +

!
bCbε(u0 + uD) : ε(·)dxdt∫

〈dta1, ·〉dt +
!

D(ρ)∇a1∇ · +k3,1a1 · dxdt − k2,1

!
D| · |δ(ε(u0 + uD))ε(u)c0 · dxdt

− k2,1

!
|ε(u0 + uD)|δc · dxdt∫

〈dta2, ·〉dt +
!

D(ρ)∇a2∇ · +k3,2a2 · dxdt − k2,2

!
D| · |δ(ε(u0 + uD))ε(u)c0 · dxdt

− k2,2

!
|ε(u0 + uD)|δc · dxdt

a1(0)

a2(0)

dtc − k6(a0,1 + 1)(a0,2 + 1)
(
k7 −

1
1−ρ0
−

2k7c0
1−ρ0

)
c − k6(1 + k7c0)

(
1 − c0

1−ρ0

) (
a1(a0,2 + 1) + a2(a0,1 + 1)

)
dtb +

k4(a0,1+1)c0

1−ρ0
b − k4c0

(
1 − b0

1−ρ0

)
a1 − k4(a0,1 + 1)

(
1 − b0

1−ρ0

)
c


Proof. The proof consists of the computations. For the first component of e we compute

e1
u(y0, ρ0)u =

"
C(ρ0, σ, b0)ε(u) : ε(·)dxdt.

Here, we used that the map u 7→ e1(u, a0,1, a0,2, c0, b0) is linear and continuous, hence Fréchet differentiable
with derivative e1

u(y0, ρ0) = u 7→ e1(u, a0,1, a0,2, c0, b0) independently of the choice of (y0, ρ0). The other
derivatives are given by

e1
a1

(y0, ρ0)a1 = e2
a2

(y0, ρ0)a2 = e1
c (y0, ρ0)c = 0

and

e1
b(y0, ρ0)b =

"
bCbε(u0 + uD) : ε(·)dxdt

which follows again by exploiting linearity. In the second component e2 the derivative of | · |δ enters. We
assumed in Section 3.1 that | · |δ induces a Fréchet differentiable Nemyckii operator, i.e.,

N|·|δ : L2(Ω,Rn×n)→ L2(Ω),
(
x 7→ f (x)

)
7→

(
x 7→ | f (x)|δ

)
,

Consequently

e2
u(y0, ρ0)u = −k2,1

"
D| · |δ(ε(u0 + uD))ε(u)c0 · dxdt.

Inferring linearity we find

e2
a1

(y0, ρ0)a1 =

∫
I
〈dta1, ·〉dt +

"
D(ρ0)∇a1∇ · +k3,1a1 · dxdt

and

e2
c (y0, ρ0)c = −k2,1

"
|ε(u0 + uD)|δc · dxdt.

The remaining partial derivatives vanish

e2
a2

(y0, ρ0)a2 = e2
b(y0, ρ0)b = 0.

The third component works identical to the second one

e3
u(y0, ρ0)u = −k2,2

"
D| · |δ(ε(u0 + uD))ε(u)c0 · dxdt, e3

a1
(y0, ρ0)a1 = 0

e3
a2

(y0, ρ0)a2 =

∫
〈dta2, ·〉dt +

"
D(ρ0)∇a2∇ · +k3,2a2 · dxdt

e3
c (y0, ρ0)c = −k2,2

"
|ε(u0 + uD)|δc · dxdt, e3

b(y0, ρ0)b = 0.
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As evaluation at a time-point t ∈ I is a continuous and linear map on H1(I,H1
Dd

(Ω),H1
Dd

(Ω)∗) since the space
embeds into C0(I,L2(Ω)) we get for the fourth and fifth component of e

e4
u(y0, ρ0)u = 0, e4

a1
(y0, ρ0)a1 = a1(0), e4

a2
(y0, ρ0)a2 = e4

c (y0, ρ0)c = e4
b(y0, ρ0)b = 0,

e5
u(y0, ρ0)u = e5

a1
(y0, ρ0)a1 = 0, e5

a2
(y0, ρ0)a2 = a2(0), e5

c (y0, ρ0)c = e5
b(y0, ρ0)b = 0.

For the sixth component we note that the ODE is quadratic and continuous in c as W1,2(I,C0(Ω)) embeds into
C0(I ×Ω), hence it is Fréchet differentiable. All other dependencies are again (affine) linear and continuous.
This yields

e6
u(y0, ρ0)u = 0, e6

a1
(y0, ρ0)a1 = −k6(a0,2 + 1)(1 + k7c0)

(
1 −

c0

1 − ρ0

)
a1

e6
a2

(y0, ρ0)a2 = −k6(a0,1 + 1)(1 + k7c0)
(
1 −

c0

1 − ρ0

)
a2

e6
c (y0, ρ0)c = dtc − k6(a0,1 + 1)(a0,2 + 1)

(
k7 −

1
1 − ρ0

−
2k7c0

1 − ρ0

)
c

e6
b(y0, ρ0)b = 0.

The last component again consists of affine linear maps and is thus easy to differentiate

e7
u(y0, ρ0)u = 0, e7

a1
(y0, ρ0)a1 = −k4a1c0

(
1 −

b0

1 − ρ0

)
,

e7
a2

(y0, ρ0)a2 = 0, e7
c (y0, ρ0)c = −k4(a0,1 + 1)

(
1 −

b0

1 − ρ0

)
c,

e7
b(y0, ρ0)b = dtb +

k4(a0,1 + 1)c0

1 − ρ0
b.

The derivative can be written in matrix form

ey(y0, ρ0)y =


e1

u(y0, ρ0) . . . e1
b(y0, ρ0)

...
. . .

...
e7

u(y0, ρ0) . . . e7
b(y0, ρ0)




u
a1
a2
c
b

 .
This leads to the asserted form in the statement of the Theorem. �

Remark 40. The matrix form for ey(y0, ρ0) in the above proof will be useful to derive the adjoint operator
ey(y0, ρ0)∗. Lemma 38 states that we find it by taking the adjoint of every component and transposing the
matrix.

3.5 The Adjoint Operator

Remember that ey(y0, ρ0) maps Y into W, hence its adjoint acts between the dual spaces in the reversed
direction

ey(y0, ρ0)∗ : W∗
→ Y∗, w∗ 7→ w∗ ◦ ey(y0, ρ0).

However, we make the spaces more concrete (that is transforming them by linear homeomorphisms) by
using reflexivity, the Riesz isomorphism of L2(Ω) and lemma 38. We set

Ŵ = L2(I,H1
De

(Ω)) × L2(I,H1
Dd

(Ω))2
× L2(Ω)2

× L2(I,C0(Ω))∗ × L2(I,C0(Ω))∗

and denote a member ŵ ∈ Ŵ by
ŵ = (ξ, q1, q2, µ1, µ2, g∗, h∗). (3.28)

Furthermore, we consider̂̂W = L2(I,H1
De

(Ω))∗∗ ×
[
L2(I,H1

Dd
(Ω))∗∗

]2
×

[
L2(Ω)∗

]2
× L2(I,C0(Ω)) × L2(I,C0(Ω))∗.

53



Then the spaces ̂̂W and W∗ are isomorphic with a convenient correspondence given by

I1 : ̂̂W →W∗

with

(ξ∗∗, q∗∗1 , q
∗∗

2 , µ
∗

1, µ
∗

2, g
∗, h∗) 7→

(
(ξ, q1, q2, µ1, µ2, g, h) 7→ ξ∗∗(ξ) + q∗∗1 (q1) + q∗∗2 (q2) + µ∗1(µ1) + µ∗2(µ2) + g∗(g) + h∗(h)

)
.

This precisely the linear homeomorphism φ of lemma 38. The linear homeomorphism between the spaces

Ŵ and ̂̂W works via

I2 : Ŵ → ̂̂W, (ξ, q1, q2, µ1, µ2, g∗, h∗) 7→
(
Je(ξ), Jd(q1), Jd(q2),

∫
Ω

µ1 · dx,
∫

Ω

µ2 · dx, g∗, h∗
)
,

where
Je : L2(I,H1

De
(Ω))→ L2(I,H1

De
(Ω))∗∗, ξ 7→ (ξ∗ 7→ ξ∗(ξ))

is the canonical surjective isometry between a reflexive Banach space and its bi-dual space. The map Jd
denotes the analogon for the space L2(I,H1

Dd
(Ω)). The L2(Ω) functions are sent into L2(Ω)∗ via the Riesz

isometry. For L2(I,C0(Ω))∗ we do not know any helpful characterization, thus we leave this space as it is.

For the space Y∗ we merely concretize it by considering it as a product of dual spaces instead of a dual of a
product space, i.e., we define Ŷ to be

Ŷ = L2(I,H1
De

(Ω))∗ ×
[(

H1(I,H1
Dd

(Ω),H1
Dd

(Ω)∗) ∩ L2(I,C0(Ω))
)∗]2
×W1,2

0 (I,C0(Ω))∗ ×W1,2
0 (I,C0(Ω))∗

and the map

I3 : Y∗ → Ŷ

is the linear homeomorphismψ adapted to these spaces. We are now in a position to present the concretized
adjoint operator between the spaces Ŵ and Ŷ.

Lemma 41 (Matrix Form Adjoint Operator). We use the notation and definitions given above for the spaces Ŵ,̂̂W, Ŷ and the maps I1, I2 and I3. Then for fixed (y0, ρ0) ∈ Y × P the map

I3 ◦ ey(y0, ρ0)∗ ◦ I1 ◦ I2 = ey(y0, ρ0)† ◦ I2 : Ŵ → ̂̂W →W∗
→ Y∗ → Ŷ

is given by the formal matrix-vector product

e1
u(y0, ρ0)∗ ◦ Je e2

u(y0, ρ0)∗ ◦ Jd . . . e7
u(y0, ρ0)∗

e1
a1

(y0, ρ0)∗ ◦ Je e2
a1

(y0, ρ0)∗ ◦ Jd . . . e7
a1

(y0, ρ0)∗

...
. . .

e1
b(y0, ρ0)∗ ◦ Je e2

b(y0, ρ0)∗ ◦ Jd . . . e7
b(y0, ρ0)∗





ξ
q1
q2
µ1
µ2
g∗
h∗


. (3.29)

Here, as in Lemma 38 the map ey(y0, ρ0)† is defined as I3 ◦ ey(y0, ρ0)∗ ◦ I1.

Proof. Writing out the formal matrix-vector product one sees that Lemma 38 is immediately applicable. �

Remark 42. Inspecting the form of the adjoint operator given in Lemma 41 we see that it again takes the
form of a system of equations, much like the state equations. However, the evolution equations still need a
considerable amount of attention. This is due to the complicated state spaces and the time dependency.

Computing the adjoint maps appearing in the above matrix, we arrive at the following Proposition.
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Proposition 43 (The Adjoint Operator). We use the preceding notation. Let us fix (y0, ρ0) ∈ Y × P. Then for
(ξ, q1, q2, µ1, µ2, g∗, h∗) ∈ Ŵ the expression(

ey(y0, ρ0)† ◦ I2

)
(ξ, q1, q2, µ1, µ2, g∗, h∗) ∈ Ŷ

is given by

!
C(ρ0, b0)ε(ξ) : ε(·)dxdt −

! (
k2,1q1 + k2,2q2

)
c0D| · |δ(ε(u0 + uD))ε(·)dxdt∫

〈dt·, q1〉dt +
!

D(ρ0)∇q1∇ · +k3,1q1 · dxdt +
∫
µ1 ev0(·)dx + g∗

[
−k6(a0,2 + 1)(1 + k7c0)

(
1 − c0

1−ρ0

)
·

]
+ h∗

[
−k4c0

(
1 − b0

1−ρ0

)
·

]
∫
〈dt·, q2〉dt +

!
D(ρ0)∇q2∇ · +k3,2q2 · dxdt +

∫
µ2 ev0(·)dx + g∗

[
−k6(a0,1 + 1)(1 + k7c0)

(
1 − c0

1−ρ0

)
·

]
g∗

[
dt · −k6(a0,1 + 1)(a0,2 + 1)

(
k7 −

1−2k7c0
1−ρ0

)
·

]
−

! (
k2,1q1 + k2,2q2

)
|ε(u0 + uD)|δ · dxdt

+ h∗
[
−k4(a0,1 + 1)

(
1 − b0

1−ρ0

)
·

]
h∗

[
dt · +

k4(a0,1+1)c0

1−ρ0
·

]
+

!
· (Cb(ε(u0 + uD) : ε(ξ))) dxdt



Proof. The proof collects the computations. In the first row of the matrix in (3.29) we have members of
Y∗1 = L2(I,H1

De
(Ω)), namely

e1
u(y0, ρ0)∗ (Je(ξ)) = Je(ξ) ◦ e1

u(y0, ρ0)

=

"
C(ρ0, σ, b0)ε(·) : ε(ξ)dxdt

=

"
C(ρ0, σ, b0)ε(ξ) : ε(·)dxdt,

and

e2
u(y0, ρ0)∗

(
Jd(q1)

)
= Jd(q1) ◦ e2

u(y0, ρ0)

= −k2,1

"
D| · |δ(ε(u0 + uD))ε(·)c0q1dxdt

and

e3
u(y0, ρ0)∗

(
Jd(q2)

)
= Jd(q2) ◦ e3

u(y0, ρ0)

= −k2,2

"
D| · |δ(ε(u0 + uD))ε(·)c0q2dxdt.

The remaining terms vanish, i.e,

e4
u(y0, ρ0)∗

(
R(µ1)

)
= e5

u(y0, ρ0)∗
(
R(µ2)

)
= e6

u(y0, ρ0)∗ = e7
u(y0, ρ0)∗ = 0.

This yields the first component of the adjoint map. For the second component we compute, the elements
being members of the space Y∗2 =

[
H1(I,H1

Dd
(Ω),H1

Dd
(Ω)∗) ∩ L2(I,C0(Ω))

]∗
e1

a1
(y0, ρ0)∗ (Je(ξ)) = e3

a1
(y0, ρ0)∗

(
Jd(q2)

)
= e5

a1
(y0, ρ0)∗

(
R(µ2)

)
= 0
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and

e2
a1

(y0, ρ0)∗
(
Jd(q1)

)
= Jd(q1) ◦ e2

a1
(y0, ρ0)

=

∫
〈dt·, q1〉dt +

"
D(ρ0)∇ · ∇q1 + k3,1 · q1dxdt

=

∫
〈dt·, q1〉dt +

"
D(ρ0)∇q1∇ · +k3,1q1 · dxdt

e4
a1

(y0, ρ0)∗
(
R(µ1)

)
= R(µ1) ◦ e4

a1
(y0, ρ0) =

∫
Ω

µ1 ev0(·)dx

e6
a1

(y0, ρ0)∗(g∗) = −g∗
[
k6(a0,2 + 1)(1 + k7c0)

(
1 −

c0

1 − ρ0

)
·

]
e7

a1
(y0, ρ0)∗(h∗) = −h∗

[
k4c0

(
1 −

b0

1 − ρ0

)
·

]
The third component of the adjoint map takes again values in Y∗3 =

[
H1(I,H1

Dd
(Ω),H1

Dd
(Ω)∗) ∩ L2(I,C0(Ω))

]∗
.

We compute

e1
a2

(y0, ρ0)∗ (Je(ξ)) = e2
a2

(y0, ρ0)∗
(
Jd(q1)

)
= e4

a2
(y0, ρ0)∗

(
R(µ1)

)
= e7

a2
(y0, ρ0)∗(h∗) = 0

and

e3
a2

(y0, ρ0)∗
(
Jd(q2)

)
= Jd(q2) ◦ e3

a2
(y0, ρ0)

=

∫
〈dt·, q2〉dt +

"
D(ρ0)∇ · ∇q2 + k3,2 · q2dxdt

=

∫
〈dt·, q2〉dt +

"
D(ρ0)∇q2∇ · +k3,2q2 · dxdt

e5
a2

(y0, ρ0)∗
(
R(µ2)

)
= R(µ2) ◦ e5

a2
(y0, ρ0) =

∫
Ω

µ2 ev0(·)dx

e6
a2

(y0, ρ0)∗(g∗) = −g∗
[
k6(a0,1 + 1)(1 + k7c0)

(
1 −

c0

1 − ρ0

)
·

]
The fourth component takes values in Y∗4 = W1,1

0 (I,C0(Ω))∗ given by

e1
c (y0, ρ0) (Je(ξ)) = e4

c (y0, ρ0)
(
R(µ1)

)
= e5

c (y0, ρ0)
(
R(µ2)

)
= 0

and

e2
c (y0, ρ0)∗

(
Jd(q1)

)
= Jd(q1) ◦ e2

c (y0, ρ0)

= −k2,1

"
|ε(u0 + uD)|δq1 · dxdt

e3
c (y0, ρ0)∗

(
Jd(q2)

)
= −k2,2

"
|ε(u0 + uD)|δq2 · dxdt

e6
c (y0, ρ0)∗

(
g∗

)
= g∗ ◦ e6

c (y0, ρ0)

= g∗
[
dt · −k6(a0,1 + 1)(a0,2 + 1)

(
k7 −

1 + 2k7c0

1 − ρ0

)
·

]
e7

c (y0, ρ0)∗(h∗) = h∗ ◦ e7
c (y0, ρ0)

= −h∗
[
k4(a0,1 + 1)

(
1 −

b0

1 − ρ0

)
·

]
.

The last component of the adjoint takes values in W1,2
0 (I,C0(Ω))∗ and we compute

e2
b(y0, ρ0)∗ = e3

b(y0, ρ0)∗ = e4
b(y0, ρ0)∗ = e5

b(y0, ρ0)∗ = e6
b(y0, ρ0)∗ = 0
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and
e1

b(y0, ρ0)∗ (Je(ξ)) = Je(ξ) ◦ e1
b(y0, ρ0)

=

"
Cbε(u0 + uD) : ε(ξ) · dxdt

e7
b(y0, ρ0)∗(h∗) = h∗ ◦ e7

b(y0, ρ0)

= h∗
[
dt · +

k4(a0,1 + 1)c0

1 − ρ0
·

]
�

We are now in a position to invoke the theory developed in Section IV. This yields a formulation that is well
suited for numerical treatment.
Theorem 44 (Adjoint Equation). Let (y0, ρ0) = (φ(ρ0), ρ0) ∈ Y×P be a control-state pair. Assume there is Λ ∈W∗

solving
ey(φ(ρ0), ρ0)∗Λ = Ey(φ(ρ0), ρ0) in Y.

Assume furthermore, that the assumption of Lemma 91, that serves as an identification of the initial/final values of the
diffusion equations, hold. Then this Λ can be computed in terms of (ξ, q1, q2, g, h) ∈ Ŵ, that is

Λ = (I1 ◦ I2)
(
(ξ, q1, q2, q1(0), q2(0),

"
g · dxdt,

"
h · dxdt

)
,

where (ξ, q1, q2, g, h) results from solving the following system and I1 and I2 are the linear homeomorphisms defined
in Section 3.5."

C(ρ0, σ, b0)ε(ξ) : ε(·)dxdt =

" (
k2,1q1 + k2,2q2

)
c0D| · |δ (ε(u0 + uD)) ε(·)dxdt + fEu(y0,ρ0)

−

∫
I
〈dtq1, ·〉H1

D(Ω)∩C0(Ω)dt +

"
D(ρ0)∇q1∇ · +k3,1q1 · dxdt =

"
gk6(a0,2 + 1)(1 + k7c0)

(
1 −

c0

1 − ρ0

)
· dxdt

+

"
hk4c0

(
1 −

b0

1 − ρ0

)
· dxdt

−

∫
I
〈dtq2, ·〉H1

D(Ω)∩C0(Ω)dt +

"
D(ρ0)∇q2∇ · +k3,2q2 · dxdt =

"
gk6(a0,1 + 1)(1 + k7c0)

(
1 −

c0

1 − ρ0

)
· dxdt

−dtg − k6(a0,1 + 1)(a0,2 + 1)
(
k7 −

1 + 2k7c0

1 − ρ0

)
g =

(
k2,1q1 + k2,2q2

)
|ε(u0 + uD)|δ

+k4h(a0,1 + 1)
(
1 −

b0

1 − ρ0

)
−dth +

k4(a0,1 + 1)c0

1 − ρ0
h = fEb(y0,ρ0) − Cbε(u0 + uD) : ε(ξ).

with the final time conditions
q1(T) = q2(T) = 0 in

[
H1

Dd
(Ω) ∩ C0(Ω)

]∗
and

g(T) = h(T) = 0 in L1(Ω).

Proof. We prove this using the results from 4.IV and begin with the last equation in the system of Proposition
43. Remember that Jb(y0, ρ) is induced by the C0(I,L1(Ω)) function fJb(y0,ρ), i.e., it holds

Jb(y0, ρ) =

"
fJb(y0,ρ0) · dxdt in W1,2

0 (I,C0(Ω))∗.

Now, look at the last equation in Proposition 43

h∗
[
dt · +

k4(a0,1 + 1)c0

1 − ρ0︸          ︷︷          ︸
Cmbone

·

]
=

" (
fEb(y0,ρ0) − Cbε(u0 + uD) : ε(ξ)︸                               ︷︷                               ︸

C fbone∈C0(I,L1(Ω))

)
· dxdt in W1,2

0 (I,C0(Ω))∗.
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Hence, the equation is of the form

h∗ [dt · +mbone·] =

"
fbone · dxdt in W1,2

0 (I,C0(Ω))∗

with mbone ∈ L2(I,C0(Ω)) and fbone ∈ C0(I,L1(Ω)). Then Theorem 93 yields that

h∗ =

"
h · dxdt

with h ∈W1,2(I,L1(Ω)) and that this h satisfies the final value problem

−dth + mboneh = fbone with h(T) = 0.

In a similar way, we can treat the adjoint cell ODE, i.e., the second last equation in Proposition 43. It is

g∗
[
dt · −k6(a0,1 + 1)(a0,2 + 1)

(
k7 −

1 + 2k7c0

1 − ρ0

)
︸                                          ︷︷                                          ︸

Cmcell

·

]
=

" (
k2,1q1 + k2,2q2

)
|ε(u0 + uD)|δ · dxdt

+

"
h
[
k4(a0,1 + 1)

(
1 −

b0

1 − ρ0

)]
︸                           ︷︷                           ︸

C fcell

·dxdt

and mcell ∈ L2(I,C0(Ω)) and fcell ∈ C0(I,L1(Ω)). As before, this yields that g∗ is given as integration against a
function g ∈W1,2(I,L1(Ω)) which solves

−dtg + mcellg = fcell with g(T) = 0.

For the second adjoint diffusion equation, i.e., the third equation in Proposition 43, we note that its right-hand
side is given by"

gk6(a0,1 + 1)(1 + k7c0)
(
1 −

c0

1 − ρ0

)
· dxdt ∈

[
L2(I,C0(Ω)) ∩H1(I,H1

Dd
(Ω),H1

Dd
(Ω)∗)

]∗
and the integrand is a member of L2(I,L1(Ω)). Then, by Lemma 89 we get

q2 ∈ H1(I,H1
Dd

(Ω), [H1
Dd

(Ω) ∩ C0(Ω)]∗)

and know that q2 satisfies the equation

−

∫
I
〈dtq2, ·〉H1

D(Ω)∩C0(Ω)dt +

"
D(ρ0)∇q2∇ · +k3,2q2 · dxdt =

"
gk6(a0,1 + 1)(1 + k7c0)

(
1 −

c0

1 − ρ0
·

)
dxdt.

With the assumption of Lemma 91 we can now identify the final value and get

q2(T) = 0 in
[
H1

Dd
(Ω) ∩ C0(Ω)

]∗
.

We can argue in the same way for q1. The right-hand side of this equation is also a member of L2(I,L1(Ω)).
Finally, the first equation is already in a convenient form. This concludes the proof. �

Remark 45. Some comments are in order.

(i) The variables µ1 and µ2 seem to have disappeared in the equations of the preceding Theorem. In
fact, they are still implicitly present as q1(0) = µ1 and q2(0) = µ2.

(ii) Note that the above result does not say anything about the existence of a solution to the adjoint
system. The only thing we do is derive regularity, given such a solution exists.
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3.6 The Remaining Term of the Derivative

Remember that it holds
DĴ(ρ) = −e∗ρ(φ(ρ), ρ) ◦ e−∗y (φ(ρ), ρ)(Jy(φ(ρ), ρ)) + Jρ(φ(ρ), ρ)

and so far, we computed Jy(φ(ρ0), ρ0) and Jρ(φ(ρ0), ρ0) and we derived a useful characterization of

e−∗y (φ(ρ), ρ)(Jy(φ(ρ), ρ)).

We now treat the operator
e∗ρ(φ(ρ), ρ) : W∗ → P∗.

When comparing to the above formula for DĴ(ρ0), we see that the input to e∗ρ(φ(ρ0), ρ0) is the solution Λ ∈W∗

of the adjoint equation. However, due to the necessary concretization of the adjoint system, Λ is computed
in terms of ŵ = (ξ, q1, q2, µ1, µ2, g∗, h∗) ∈ Ŵ. Before inserting ŵ into e∗ρ(φ(ρ0), ρ0), we need therefore to apply
the isomorphism Ŵ →W∗ given by

(ξ, q1, q2, µ1, µ2, g∗, h∗) 7→ Je(ξ) ◦ π1 + Jd(q1) ◦ π2 + Jd(q2) ◦ π3 +

∫
Ω

µ1π4(·) + µ2π5(·)dx + g∗ ◦ π6 + h∗ ◦ π7

Here, πi denotes the projection on the i-th coordinate of the product space W and Je and Jd are the natural
isometries identifying L2(I,H1

De
(Ω)) and L2(I,H1

De
(Ω)) with their bi-duals, see also Section 3.5 where these

maps have been used before.
Lemma 46. Let Λ ∈W∗, then there is a unique tuple

(ξ, q1, q2, µ1, µ2, g∗, h∗) ∈ Ŵ
such that

Λ = Je(ξ) ◦ π1 + Jd(q1) ◦ π2 + Jd(q2) ◦ π3 +

∫
Ω

µ1π4(·) + µ2π5(·)dx + g∗ ◦ π6 + h∗ ◦ π7, (3.30)

where we used the notation explained above. Assume that

g∗ =

"
g · dxdt and h∗ =

"
h · dxdt

for functions g ∈W1,2(I,L1(Ω)) and h ∈W1,2(I,L1(Ω)). Then for arbitrary
(y0, ρ0) = (u0, a0,1, a0,2, c, b) ∈ Y × P

it holds

eρ(y0, ρ0)∗Λ =

"
·σCpε(u0 + uD) : ε(ξ)dxdt − k5

" (
∇a0,1∇q1 + ∇a0,2∇q2

)
· dxdt

+ k6

"
g(a0,1 + 1)(a0,2 + 1)(1 + k7c0)c0

1
(1 − ρ0)2 · dxdt

+ k4

"
h(a0,1 + 1)c0b0

1
(1 − ρ0)2 · dxdt ∈ C0(Ω)∗

Proof. First we need to compute the partial derivatives of e with respect to ρ ∈ P.

e1
ρ(y0, ρ0)ρ =

"
ρσCpε(u0 + uD) : ε(·)dxdt

e2
ρ(y0, ρ0)ρ = −k5

"
ρ∇a0,1∇ · dxdt

e3
ρ(y0, ρ0)ρ = −k5

"
ρ∇a0,2∇ · dxdt

e4
ρ(y0, ρ0)ρ = e5

ρ(y0, ρ0)ρ = 0

e6
ρ(y0, ρ0)ρ = k6(a0,1 + 1)(a0,2 + 1)(1 + k7c0)c0

ρ

(1 − ρ0)2

e7
ρ(y0, ρ0)ρ = k4(a0,1 + 1)c0b0

ρ

(1 − ρ0)2 .
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The representation of Λ via the equation (3.30) is precisely the linear homeomorphism Ŵ = W∗ discussed
above and in 3.5. Unwinding the definitions for e∗ρ(y0, ρ0) and Λ yields the assertion

Λ ◦ eρ(y0, ρ0) = Je(ξ) ◦ e1
ρ(y0, ρ0) + Jd(q1) ◦ e2

ρ(y0, ρ0) + Jd(q2) ◦ e3
ρ(y0, ρ0)

+

∫
Ω

µ1e4(y0, ρ0)(·) + µ2e4(y0, ρ0)(·)dx + g∗ ◦ e6
ρ(y0, ρ0)

+ h∗ ◦ e7
ρ(y0, ρ0).

Inserting the derivatives computed above, we arrive at the assertion. �

IV The Influence of Stress Shielding on Optimal Scaffold Design

In this Section we present the simulations using the adjoint approach for the optimization problem discussed
earlier. We use the same domains as we did in Section III of Chapter 2, i.e., simplified models for the 30mm
tibial defect as considered in Cipitria et al. (2015). More precisely, we again employ the cylindrical domain
and the simplified fixateur model. Our goal is to identify optimal scaffold density distributions for both
domains, where optimality refers to maximizing the weakest time-point’s stability of the scaffold-bone
system, i.e., we use the objective defined in 3.1. Our results illustrate the influence of the stress-shielding
effect that results from the fixateur’s implantation.

4.1 Stress Shielding

Bone adapts according to the mechanical environment it is subjected to. This important property of bone
is well known and commonly referred to as Wolff’s law, see Wolff (1892). It has far ranging consequences
for bone tissue engineering. More precisely, prosthetic implants are often made of less elastic materials
than bone and thus change the mechanical environment in their vicinity. This often leads to bone regions
that are subjected to less stress and consequently bone resorption when compared to a healthy bone, a
phenomenon known as stress shielding which has been extensively studied, e.g., in the context of total hip
arthroplasty, see Sumner and Galante (1992); Huiskes et al. (1992); Behrens et al. (2008); Arabnejad et al.
(2017). The bone resorption in the vicinity of the prosthetic implant can lead to serious complications such
as periprosthetic fracture and aseptic loosening and revision surgeries – if so needed – can be complicated,
we refer to Arabnejad et al. (2017).

It is to be expected that stress shielding effects do also play an important role in scaffold mediated bone
growth, for example caused through the external fixation of the scaffold by a metal plate. This leads to
under-loading in the vicinity of the fixating element. To be able to quantify these effects it is crucial to use
a three dimensional computational model, a simplification as for instance discussed by Poh et al. (2019)
cannot resolve the asymmetries that induce the effect.

4.2 Concrete System under Consideration

Our concrete model setup is almost identical to the one presented in Chapter 2 as far as the state equations
are concerned. For the readers convenience we repeat the state equations

0 = div
(
C(ρ, σ, b)ε(u)

)
(3.31)

dta1 = div
(
D(ρ)∇a1

)
+ k2,1|ε(u)|c − k3,1a1 (3.32)

dta2 = div
(
D(ρ)∇a2

)
+ k2,2|ε(u)|c − k3,2a2 (3.33)

dtc = k6a1a2(1 + k7c)
(
1 −

c
1 − ρ

)
(3.34)

dtb = k4a1c
(
1 −

b
1 − ρ

)
. (3.35)

We use the same boundary conditions as in Section III of Chapter 2 with the exception of the elastic equation
that is subjected to pure Neumann boundary conditions with a constant surface traction stemming from a
force of 0.3 kN which is applied to the top and bottom of the cylindrical domain. We propose to view this as
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a maximal force that repeatedly occurs, compare to the discussion in Dondl et al. (2021) for a more detailed
reasoning. The bioactive molecules a1, a2 are assumed to be in saturation adjacent to the initial, healthy
bone matrix at the top and bottom of the domain and a scenario without preseeding throughout the domain
(i.e., a zero initial condition) is considered. For the model constants and functional relationships we refer to
Dondl et al. (2021).

As an objective function to measure a scaffold performance, we use the maximum over the temporal
evolution of the scaffold-bone composite’s elastic energy. Due to the softload in the numerical experiments,
the reciprocal of the elastic energy is proportional to the elastic modulus of the scaffold-bone system; a
reasonable measure of stability. The optimization’s goal is to minimize this temporal maximum while
respecting the state equations and an additional constraint on ρ to not take values outside the unit interval1

In formulas, we denote by E the elastic energy

E(y, ρ)(t) =
1
2

∫
Ω

C(ρ(x), σ(t), b(t, x))ε(u(t, x)) : ε(u(t, x))dx

where y = (u, a1, a2, c, b) is the state variable. The minimization problem is the task to find

ρ ∈ argmin
[
max

t∈I
E(y, ρ)(t)

]
, subjected to e(y, ρ) = 0 and ρ ∈ P, (3.36)

where P encodes thatρ is bounded away from zero and one. Numerically, we replace the temporal maximum
by an Lp(I) norm (with, e.g., p = 5) to smoothly approximate it. The pointwise constraint is incorporated
using a soft penalty. In our simulations we choose

Ksoft(ρ) =

∫
Ω

(ρ(x) + 0.2)40 + (ρ(x) − 0.8)40dx. (3.37)

This penalty function lowers the objective functions value when ρ(x) deviates from its minimum value at the
constant function ρ0 ≡ 0.3 and is fine-tuned to be compatible with the magnitude of the objectives gradient.

4.3 Reduced Derivative Computation & Implementation

The optimization problem (3.36) is a PDE constrained optimization problems with an additional pointwise
constraint on the control variable. Numerical methods to solve problems of that form are either gradient
based or trying to solve optimality conditions directly, see Hinze et al. (2008), where the latter are more
efficient but considerably more labor intensive to implement.

For our application gradient descent was deemed sufficient. More precisely, we use an L2(Ω) gradient flow,
that is, we identify the derivative DĴ(ρ) with an element in L2(Ω) which is – by abuse of notation – denoted
with the same symbol. Furthermore, the pointwise control-constraint is replaced by a soft penalty as
described above. This leaves us with the task of computing the derivative of the reduced objective function.
To this end we employ the adjoint method as described in detail earlier in Section I. More precisely, let ρi
be given. For ρ0 we choose a suitable initial condition, in our simulations we usually use ρ0 ≡ 0.13. The
update rule is

ρi+1 = ρi − η
(
DĴ(ρi) + DK (ρi)

)
,

where η > 0 is the step-size. The derivative DĴ(ρi) is computed in the following four steps.

1A scaffold volume fraction should always take values between zero and one in order to be reasonably interpreted
as a volume fraction. More restrictive, ρ should even be bounded away from zero and one.
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Step I: Forward Equation

Given the current ρi, we solve the weak form of the equations (3.31)–(3.35), i.e.,

∫
I

∫
Ω

C(ρi, σ, b)ε(u + uD) : ε(·)dxdt =

∫
I

∫
∂Ω
〈gela

N , ·〉H1/2(∂Ω)dsdt∫
〈dta1, ·〉dt +

∫
I

∫
Ω

D(ρi)∇a1∇ · +k3,1(a1 + 1) · dxdt =

∫
I

∫
Ω

k2,1|ε(u + uD)|δc · dxdt∫
〈dta2, ·〉dt +

∫
I

∫
Ω

D(ρi)∇a2∇ · +k3,2(a2 + 1) · dxdt =

∫
I

∫
Ω

k2,2|ε(u + uD)|δc · dxdt

dtc = k6(a1 + 1)(a2 + 1)(1 + k7c)
(
1 −

c
1 − ρi

)
dtb = k4(a1 + 1)c

(
1 −

b
1 − ρi

)

with

a1(0) = a2(0) = −1, c(0) = b(0) = 0, u ∈ L2(I,H1
De

(Ω))

and uD denotes a lift of the Dirichlet boundary conditions and gN are Neumann boundary conditions. This
yields the solutions u = u(ρi), a1 = a1(ρi), . . . , b = b(ρi). For brevity we suppress the dependency on ρi in the
notation further on. Furthermore, we choose C(ρ, σ, b)A = bCbA + σρCp, where Cb and Cp should use the
Lamé formulas for linear isotropic materials. This means we use the Voigt bound for the composite of bone
and PCL. We set D(ρ) = k5(1 − ρ) and

|v|δ =

√∑
i, j

v2
i, j + δ2

with δ > 0 as a smooth approximation of the Euclidean norm.

Step II: Derivatives of Objective

Using the solutions u, a1, a2, c and b of the forward system, we can compute the derivatives of the objective
function. This should not be confused with the derivative of the reduced objective function. The following
quantities are needed in the subsequent steps. For brevity, we set y = (u, a1, a2, c, b).

fJu(y,ρi) = J(y, ρi)1−p
∫

Ω

E(y, ρi)p−1C(ρi, σ, b)ε(u + uD) : ε(·)dx,

fJb(y,ρi) =
1
2

J(y, ρi)1−p
E(y, ρi)p−1

Cbε(u + uD) : ε(u + uD),

fJρ(y,ρi) =
1
2

J(y, ρi)1−p
∫

I
E(y, ρi)p−1σCρε(u + uD) : ε(u + uD)dt.

Again, E denotes the elastic energy at a time-point t ∈ I, i.e.,

E(y, ρi)(t) =
1
2

∫
Ω

C(ρi, σ(t), b(t))ε(u(t) + uD(t)) : ε(u(t) + uD(t))dx.
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Step III: Adjoint Equation

Given the functions u, a1, . . . , b from the first step, the adjoint equation requires us to find ξ, q1 and q2, g and
h solving the following system"

C(ρi, σ, b)ε(ξ) : ε(·)dxdt =

" (
k2,1q1 + k2,2q2

)
D| · |δ (ε(u + uD)) ε(·)dxdt + fJu(y,ρi)

−

∫
I
〈dtq1, ·〉H1

D(Ω)∩C0(Ω)dt +

"
D(ρi)∇q1∇ · +k3,1q1 · dxdt =

"
gk6(a2 + 1)(1 + k7c)

(
1 −

c
1 − ρi

)
· dxdt

+

"
hk4c

(
1 −

b
1 − ρi

)
· dxdt

−

∫
I
〈dtq2, ·〉H1

D(Ω)∩C0(Ω)dt +

"
D(ρi)∇q2∇ · +k3,2q2 · dxdt =

"
gk6(a1 + 1)(1 + k7c)

(
1 −

c
1 − ρi

)
· dxdt

−dtg − k6(a1 + 1)(a2 + 1)
(
k7 −

1 + 2k7c
1 − ρi

)
g =

(
k2,1q1 + k2,2q2

)
|ε(u + uD)|δ

+k4h(a1 + 1)
(
1 −

b
1 − ρi

)
−dth +

k4(a1 + 1)c
1 − ρi

h = fJb(y,ρi) − Cbε(u + uD) : ε(ξ).

with the final time conditions

q1(T) = q2(T) = 0 and g(T) = h(T) = 0.

In the right hand sides of the adjoint equation the derivatives of the objective enter. These are given by

Step IV: Computing the Reduced Objective

Finally, using all the computations in the preceding steps, we can compute the representative of DĴ(ρi) in
L2(Ω) which we again denote by DĴ(ρi). It is given by

DĴ(ρi) =

∫
I
k5∇a0,1∇q1 + ∇a0,2∇q2 − σCpε(u + uD) : ε(ξ)dt

−

∫
I
k6g(a1 + 1)(a2 + 1)

(1 + k7c)c
(1 − ρi)2 +

k4h(a1 + 1)cb
(1 − ρi)2 dt

+ fJρ(y,ρi).

The L2(Ω) Riesz representative of the soft penalty is given by

DK (ρi) =
[
40(ρ(x) + 0.2)39 + 40(ρ(x) − 0.8)39

]
.

4.4 Implementation Details

For the spatial discretization we use tetrahedral meshes with roughly 40k vertices which were generated
using the Computational Geometry Algorithms Library CGAL Boissonnat et al. (2000). The forward and
adjoint equation are discretized in space using P1 finite elements for the variables u, a1, a2, ξ, q1, q2 and the
functions c, b, g and h are approximated by functions that are constant on the finite elements.

For the time stepping an implicit ansatz was chosen where possible, decoupling the equations by using
previous function values for the unknown quantities. For instance, in the computation of a1 at time ti+1 the
value of c(ti+1) is not yet available, hence c(ti) is used instead. As we do not need a fully explicit scheme,
relatively few time-steps suffice to achieve acceptable accuracy. We usually use around 60.

We let the gradient descent/ascent run for 1000 steps, using a rather large step-size of 30 as the energy
landscape is extremely flat. After 1000 gradient steps, the derivatives magnitude is at around 10% of its
value for the initial guess of ρ. Visually, little happens when letting the gradient descent/ascent running for
longer and we content ourselves with this as the computational cost of a single run lies at around a week
on a (rather slow) desktop PC.
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Figure 3.1: Optimal scaffold architecture for the experiment without external fixation. The left picture shows
the full specimen, the right picture displays a cut through a vertical plane.

4.5 Discussion of the Simulation’s Results

In Figure 3.1 and Figure 3.2 we display two optimized scaffold densities for different mechanical environ-
ments. For both experiments we use a cylindric defect site. In the experiment corresponding to Figure 3.2
we additionally include a simplistic external fixation of the scaffold in the model. This is marked in gold in
the picture and realized by using the material properties of titanium in the simulations. This corresponds
to the practice of fixating a scaffold by a metal plate and this metal plate is commonly called a fixateur. As
we apply a compressive softload in both experiments, the mechanical environment is changed drastically
by the fixateur. Using external fixation, the mechanical stimulus is almost absent in the vicinity of the
fixateur, whereas excluding external fixation it does hardly vary orthogonal to the main axis of the cylinder.
Vanishing mechanical stimulus close to external fixation is also observed in vivo and is referred to as stress
shielding, compare to the discussion in Section 4.1. Naturally, this influences the scaffold optimization and
an important merit of a three dimensional model is the ability to resolve these stress shielding effects and
adapt the architecture of an optimal scaffold accordingly.

The optimization in Figure 3.1 depicts a scaffold with a higher density in the middle region. A reasonable
outcome, as regenerated bone grows back at the scaffold ends where it is attached to the intact bone tissue.
Therefore, the central scaffold region needs to maintain structural integrity for a longer time by itself. The
overall shape is very similar to the results obtained by Poh et al. (2019) with a one dimensional model which
is not surprising as our experiment is essentially one dimensional.

The optimized scaffold density corresponding to the experiment including the fixateur depicted in Figure 3.2
shows a considerably different distribution. A higher density in the central part is favorable for the same
reason as in the experiment excluding the fixateur, however, in vicintiy of the stiff metal plate a comparatively
low scaffold density is predicted. High porosity in this region of the scaffold is beneficial as it increases
the mechanical stimulus due to reduced stability and enhances vascularization2. Both effects lead to a
faster bone in-growth in the region close to the fixateur. The small regions of high scaffold density at the
top and bottom close to the fixateur are due to stress concentration effects in the simulations. There the
material properties change from a bone-scaffold composite to titanium and hence large stress values are
to be expected. As the optimization procedure aims to minimize the temporal maximum of the elastic
energy and since this maximum tends to be attained close to the initial time-point a high scaffold density is

2In our model vascularization is resolved through the diffusion of bio-active molecules.
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Figure 3.2: Optimal scaffold architecture for the experiment with external fixation, the titanium fixateur is
marked in gold. The left picture shows the full specimen, the right picture displays a cut through a vertical
plane.

Figure 3.3: The strain magnitude distributions for the scaffold architectures displayed in Figure 3.1 and
Figure 3.2 are compared before the healing process, i.e., when no bone has regenerated yet. Note that
the cylindric architecture from Figure 3.2 is used in an experiment with external fixation to measure its
performance in a more realistic setting.
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Figure 3.4: The strain magnitude distributions for the scaffold architectures displayed in Figure 3.1 and
Figure 3.2 are compared two months in the healing process. Note that the cylindric architecture from
Figure 3.2 is used in an experiment with external fixation to measure its performance in a more realistic
setting.

favorable in view of this objective function. It is however debatable to what extend this represents a realistic
effect or to which extend this should be regarded as a numerical artefact due to the simplistic geometrical
set-up.

To illustrate the benefit of the three dimensional model, we compare the magnitude of the strains of the
scaffolds from Figure 3.2 and Figure 3.1. Note that we use the scaffold architecture in Figure 3.1 in an
experiment including external fixation to be able to compare the strain distributions in the same mechanical
environment. In Figure 3.3 we compare the strain distributions at the initial time-point, when no bone has
regenerated yet and the strain distribution after two months is shown in Figure 3.4. Note that for both
time-points a significant stress-shielding effect is visible with a clear low-strain region in the central part
of the specimen close to the fixateur. This shows that the scaffold architecture from Figure 3.2 leads to a
mitigation of the undesired stress-shielding effects and thus promotes more homogeneous bone growth.
We remark that the reduction of stress-shielding is not directly part of the objective function with respect to
which the optimization is carried out. Rather, this effect is an implicit favorable consequence of the objective
function (3.36) that advocates for its usage in scaffold design optimization.

V Numerical Experiments for Patient Specific Scaffold Optimization

In this Section we present a parameter study focusing on the effect of reduced bone regeneration and/or
vascularization on the optimal scaffold architecture. This is of special importance for patients with a co-
morbidity such as type 2 diabetes mellitus (T2DM), see Alcaraz et al. (2017; 2014); List et al. (2016). We use
a version of the homogenized model (1.1) – (1.4) that does not directly fall into the framework of Chapter 2.
We remark that the analysis of Chapter 2 and Chapter 3 can be extended to this model, however, this is not
the focus here. This Section is based on Dondl and Zeinhofer (2021).

5.1 An Adapted Model

In this model the relevant quantities are again the scaffold’s local volume fraction ρ(x), the molecular weight
of the scaffold material σ(t) = exp(−k1t) (which diminishes exponentially over time due to bulk erosion) and
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the local volume fraction of regenerated osteoblast cells cost that contribute with the mechanical properties
of calcified bone, see Perier-Metz et al. (2020). Here we differ slightly in terms of interpretation from the
model in Chapter 2, resolving bone via a density of osteoblasts instead of calcified bone. Bone regeneration,
i.e., the growth of osteoblasts, depends on the local biological environment modeled through growth
factors/cytokines. Clinically, numerous such factors can be observed as discussed in Devescovi et al. (2008),
however, having vascularization in focus, we include only vascular endothelial growth factor (VEGF) –
responsible for new vessel formation – and bone growth factor (BGF) which drives bone growth. These
quantities are represented as aVEGF(t, x) and aBGF(t, x). Finally, cvasc(t, x) is the local fraction of endothelial
cells responsible for vascularization.

The spatial domain of computation is the space occupied by the scaffold, which is simplified to a one-
dimensional object via considering only the main stress axis in a segmental defect in a long bone. More
precisely, the defect is assumed to be 30mm in size, which is resolved by the domain Ω = (0, 30). The time
horizon is set to 12 months using the time interval I = [0, 12]. Concretely, we solve the following system of
differential equations

0 = div
(
(k8cost + ρσ)u′

)
(3.38)

ȧ1 = div
(
k5(1 − ρ)a′1

)
+ k2,1 f (u′)cost − k3,1a1 (3.39)

ȧ2 = div
(
k5(1 − ρ)a′2

)
+ k2,2cost − k3,2a2 (3.40)

v̇ = k6a2(1 + k7v)
(
1 −

v
1 − ϕ(ρ)

)
(3.41)

ċost = k4a1v
(
1 −

cost

1 − ρ

)
(3.42)

In this system, ki, i = 1, . . . , 8 are parameters and f , ϕ are functional relationships. Equation (3.38) allows
to compute the displacement field u(t, x) depending on the scaffold-bone composite. In equation (3.39), the
term k2,1 f (u′)cost encodes that BGF gets only produced if osteoblasts sense a suitable mechanical stimulus.
Furthermore, the BGF molecules diffuse and decay at certain rates. A similar behavior is modeled for
VEGF, however, the production of VEGF does not require the presence of mechanical stimuli. The cell types
responsible for vascularization, cvasc and for bone growth cost are modeled as logistic ODEs pointwise in
space. We do not include diffusion as these cells diffuse little if at all, see for instance Perier-Metz et al.
(2020). The growth of cvasc is driven through the presence of aVEGF and proliferation and is saturated by
the “space-filling” factor 1 − (cvasc)/(1 − ϕ(ρ)). The functional relationship ϕ represents the special need of
blood vessels for space and should be chosen to lie above the identity function. It is now for example the
sensitivity of the optimal scaffold design with respect to the parameters k6 and k7 that we focus on in this
manuscript. Finally, equation (3.42) for osteoblast production is similar to the one previously described.
The necessary drivers are here BGF and cvasc.

The initial and boundary conditions are given by
u′(t, 0) = −u′(t, x) = 0.01 (3.43)

aVEGF(0, x) = aBGF(0, x) = 0 (3.44)
a′VEGF(t, 0) = a′VEGF(t,L) = 0 (3.45)

aBGF(t, 0) = aBGF(t,L) = 1 (3.46)
cvasc(0, x) = 0 (3.47)
cost(0, x) = 0, (3.48)

for all x ∈ (0,L), t ∈ [0,T), meaning that the elastic equation is subjected to a soft compressive load, BGF
diffuses from healthy bone and VEGF is subjected to non-flux boundary conditions. Both molecules are not
present at the initial time point. Similarly, neither cvasc nor cost is present in the beginning after implantation
of the scaffold.

The function f is simply a regularization of the usual absolute value, with f (u′) =
√

u′2 + δ2, where δ = 10−4.
The special cut-off function ϕ is chosen as ϕ(ρ) =

√
ρ. This ensures that vasculature only occurs to the

extent that there is space in the scaffold pores. The default model parameters follow to a large extent the
ones in used in Section III and are reported in Table 3.1. They are chosen such that the model with default
parameters reproduces the results from the ovine model in Cipitria et al. (2015), see Figure 3.5.

For optimization purposes our approach is identical to Section IV, i.e., we compute the time evolution of
the mechanical implant for a given ρ. In our case this is proportional to the inverse of the elastic energy in
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k1 0.1 k8 9.0 k5 260 k2,1 12 000 k3,1 16.0
k2,2 8.0 k3,2 8.0 k6 0.8 k7 1.2 k4 1.2

Table 3.1: Parameters in the default model.
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Figure 3.5: Outcome of the model for the default set of parameters given in Table 3.1 and a scaffold of
constant density ρ = 0.13. To be compared with (Cipitria et al., 2015, Figure 2B, Scaffold only).

the system at time t ∈ [0,T]

E
el
ρ (t)−1 =

[
1
2

∫ L

0
u′(ρσ + k8cost)u′dx

]−1

(3.49)

where ρ, σ, u and cost solve equations (3.38)–(3.42) with conditions (3.43)–(3.48). Then we use again the
(reduced) objective function

Ĵ(ρ) =

(∫ T

0
|E

el
ρ (t)|5 dt

) 1
5

, (3.50)

which is a good approximation for maxt∈[0,T] E
el
ρ (t), and the optimization problem becomes

min
ρ

Ĵ(ρ) subjected to 0 < c ≤ ρ(x) ≤ C < 1, (3.51)

The main question we address in this manuscript is dependence of the optimal scaffold architecture on
the parameters k4, k6, and k7 – that means, we solve the optimization problem for different values of these
parameters and observe the optimization outcome.

The numerical implementation of the model is based on a simple semi-implicit in time (in the sense that
equations (3.38)–(3.42), each of which is a linear equation, are solved individually implicitly one at a time
in order) one-dimensional finite element scheme with 100 one-dimensional P1 finite elements and a time
discretization using 500 time steps for the interval [0,T]. The optimization problem is solved using an L2(Ω)
gradient flow with the variation of the objective function computed using an adjoint approach.

5.2 Results and Discussion

The outcome of the model for the default set of parameters given in Table 3.1 can be seen in Figure 3.5.
One can clearly see that the distinct shape of regenerated bone bone density, with in-growth first from the
proximal and distal end of the scaffold, is recovered in this model. The optimal scaffold design for the
default set of parameters is displayed in Figure 3.6.

Experiment 1. Varying the rate of regeneration. Figure 3.7 shows the optimal scaffolds for three different
rates of bone regeneration k4. All parameters other than k4 are as given in Table 3.1.
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Figure 3.6: Optimal scaffold design for the default set of parameters given in Table 3.1.
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Figure 3.7: Optimal scaffold design for different values of k4.
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Figure 3.8: Optimal scaffold design for different values of k6 and k7.
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Figure 3.9: Optimal scaffold design for different values of k8.

Experiment 2. Varying the rate of vasculature formation. Figure 3.8 shows the optimal scaffolds for three
different rates for the formation of vasculature k6, k7. All parameters other than k6, k7 are as given in Table
3.1.

Experiment 3. Varying the relative stiffness of regenerated bone matrix/osteoblasts. Figure 3.9 shows the
optimal scaffolds for three different densities of regenerated bone matrix (here indicated by the relative
elastic modulus k8). All parameters other than k8 are as given in Table 3.1.

Summary. Overall, one can note that impeded regeneration (as in experiments 1 and 2), the optimal
scaffold is somewhat less dense at the proximal and distal ends of the defect (where the defect is adjacent
to remaining healthy bone. This makes it easier for BGF to diffuse into the defect domain, thus accelerating
bone regeneration. If the mechanical properties of regenerated bone are somehow compromised (due to,
e.g., osteoporosis), our analysis yields no significant change in optimal scaffold architecture. The cost
functional is still increased, however.
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Chapter 4

Appendix

I Hölder Regularity of Elliptic Equations withMixed Boundary Conditions

In this Section we prove a Hölder regularity result for linear elliptic equations with mixed boundary
conditions and measurable, bounded coefficients. The Theorem is in the spirit of Stampacchia’s result in
Stampacchia (1960). However, we extend the results from Stampacchia (1960) to Lipschitz domains with
a very weak compatibility condition on the Dirichlet-Neumann partition ∂Ω = ΓD ∪ ΓN of the boundary.
More precisely, we require Ω ∪ ΓN to be a regular set in the sense of Gröger, see definition 47. This is
exactly the setting in Haller-Dintelmann et al. (2009) and the Hölder regularity result is already proven
there. However, in Haller-Dintelmann et al. (2009) no explicit control of the Hölder norm of a solution
is provided. Our contribution is to show that the Hölder norm of a solution can be controlled through
the norm of the right-hand side multiplied by a constant only depending on the ellipticity constant of the
coefficients, the L∞ bound of the coefficients and the geometry of the domain Ω. To this end, we follow
closely the proof in Haller-Dintelmann et al. (2009) and pay attention to all appearing constants.

1.1 Main Result

We say a bounded, open set Ω ⊂ Rd is a Lipschitz domain if Ω is a Lipschitz manifold with boundary, see
(Grisvard, 2011, Definition 1.2.1.2). In the following we will denote the cube [−1, 1]n

⊂ Rd by Q, its half
{x ∈ Q | xd < 0} by Q−, the hyperplane {x ∈ Q | xd = 0} by Σ and {x ∈ Σ | xd−1 < 0} by Σ0. The following
definition is due to Gröger, see Gröger (1989).

Definition 47 (Gröger Regular Sets). Let Ω ⊂ Rd be bounded and open and Γ ⊂ ∂Ω a relatively open set.
We call Ω ∪ Γ Gröger regular, if for every x ∈ ∂Ω there are open sets U,V ⊂ Rd with x ∈ U, and a bijective,
bi-Lipschitz map φ : U→ V, such that φ(x) = 0 and φ(U ∩ (Ω ∪ Γ)) is either Q−, Q− ∪ Σ or Q− ∪ Σ0.

It can easily be seen that a Gröger regular set Ω (no matter the choice Γ ⊂ ∂Ω) is a Lipschitz domain, see
(Haller-Dintelmann et al., 2009, Theorem 5.1).
Theorem 48 (Quantitative Hölder Control for Mixed Boundary Value Problems). Let Ω ⊂ Rd be bounded and
open with d ∈ {2, 3, 4}, consider a partition ∂Ω = ΓN ∪ ΓD into Neumann and Dirichlet boundary and assume that
Ω ∪ ΓN is Gröger regular. Let M ⊂ L∞(Ω,Rd×d) be a set of matrix-valued, measurable functions with a common
lower bound ν > 0 on the ellipticity constants and a common upper bound M on the L∞(Ω,Rd×d) norm. For A ∈ M
define the operator

− div (A∇·) + 1 : H1
D(Ω)→ H1

D(Ω)∗, u 7→
∫

Ω

A∇u∇ · +u · dx. (4.1)

Then, for every q > d and A ∈ M there exists α > 0 such that

(−div (A∇·) + 1)−1 : W−1,q
D (Ω)→ Cα(Ω)

is continuous. Stronger, for all A ∈ M we may choose the same α > 0 and can estimate the operatornorms

sup
A∈M

∥∥∥(−div (A∇·) + 1)−1
∥∥∥
L(W−1,q

D (Ω),Cα(Ω))
< ∞. (4.2)
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Proof. The idea of the proof is to localize the equation by a partition of unity, additionally employing the
Lipschitz transformations from the definition of a Gröger regular set. Using a suitable reflection technique
at the Neumann boundary, this allows to apply Hölder regularity results for pure, homogeneous Dirichlet
problems either on a ball or a cuboid. In these cases quantitative regularity results exist. The details of the
proof are carried out throughout this Section. As only the quantitative aspects of the transformations are
missing, we pay special attention to these and keep the remaining aspects of the proof brief, referring to
Haller-Dintelmann et al. (2009) when necessary. �

1.2 Known Regularity Results

We review the known regularity results that we need in the proof of the main Theorem. We begin with a
classical Hölder regularity result for elliptic equations without mixed boundary conditions. The following
is Theorem C.2 in Kinderlehrer and Stampacchia (2000).

Theorem 49. Let Ω ⊂ Rd be a ball or a cuboid, f ∈ Lq(Ω,Rd) with q > d and q > 2. Assume that A ∈ L∞(Ω,Rd×d) is
uniformly elliptic with ellipticity constant ν > 0 and L∞(Ω,Rd×d bound M > 0. Then, there exist K = K(ν,M,Ω, d) >
0 and α = α(ν,M,Ω, d) ∈ (0, 1) such that for the solution u ∈ H1

0(Ω) of∫
Ω

A∇u∇(·)dx =

∫
Ω

f · ∇(·)dx in H1
0(Ω)∗

it holds u ∈ C0(Ω) and
max

Ω∩Br(x)
u(x) − min

Ω∩Br(x)
u(x) = osc

Ω∩Br(x)
u ≤ K‖ f ‖Lq(Ω,Rd) · r

α. (4.3)

Proof. This is Theorem C.2 in Kinderlehrer and Stampacchia (2000). The result is proven for domains of
class s in this book that however trivially include balls and cuboids. For us the result for balls and cuboids
suffices. �

The above result implies a control of the Hölder norm. We collect this fact in a Corollary.
Corollary 50. Assume we are in the situation of Theorem 49. Then

(−div A∇)−1 : W1,q′

0 (Ω)∗ → Cα(Ω)

is well defined and continuous with its operatornorm bounded by∥∥∥(−div A∇)−1
∥∥∥
L(W1,q′

0 (Ω)∗,Cα(Ω))
≤ K,

with K = K(ν,M,Ω, d), however, possibly different from the constant K in Theorem 49.

Proof. We begin by showing that (4.3) yields a bound on the Cα(Ω) norm of a solution u to −div(A∇u) = f .
To this end, take x, y ∈ Ω and consider the closed ball around x with radius r = |x − y|. Then, y ∈ Br(x) and
(4.3) yields

|u(x) − u(y)| ≤ osc
Ω∩Br(x)

u ≤ K‖ f ‖Lq(Ω,Rd)|x − y|α,

hence
|u|Cα(Ω) ≤ K‖ f ‖Lq(Ω,Rd).

To bound the C0(Ω) norm of u, note that u vanishes on the boundary of Ω. Let x ∈ Ω and x0 ∈ ∂Ω and use
again (4.3) to estimate

|u(x)| ≤ |u(x) − u(x0)| ≤ K‖ f ‖Lq(Ω,Rd)|x − x0|
α
≤ K‖ f ‖Lq(Ω,Rd) diam(Ω)α.

Hence,
‖u‖Cα(Ω) ≤ K max(1,diam(Ω)α)‖ f ‖Lq(Ω,Rd).

To conclude the proof, note that any abstract functional φ ∈W1,q′

0 (Ω)∗ can be written in the form

φ =

∫
Ω

f · ∇(·)dx
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for some f ∈ Lq(Ω,Rd) and clearly it holds for a constant c = c(Ω, d)∥∥∥φ∥∥∥W1,q′

0 (Ω)∗
≤ ‖ f ‖Lq(Ω,Rd) ≤ c ·

∥∥∥φ∥∥∥W1,q′

0 (Ω)∗
.

Thus, we can estimate the operatornorm∥∥∥(−div(A∇))−1
∥∥∥
L(W1,q′

0 (Ω)∗),Cα(Ω)
≤ c · K max(1,diam(Ω)α)

as asserted. �

The next result concerns higher integrability of the gradient of the solution of an elliptic equation subjected to
mixed boundary conditions. It is essentially to Gröger, see for example Gröger (1989); Gröger and Rehberg
(1989) for the original work and Haller-Dintelmann et al. (2016) for a more recent proof that weakens the
assumptions on the domain even further. However, we stay in the realm of Gröger regular sets as this seems
general enough for the applications we have in mind. The concrete statement of this fact is Theorem 5.6 in
Haller-Dintelmann et al. (2016).
Theorem 51 (Higher Gradient Integrability). LetM ⊂ L∞(Ω,Rd×d) be a set of matrix valued functions with a
common lower bound ν > 0 on the ellipticity constants and a common upper bound M > 0 on the L∞(Ω,Rd×d) norm.
Furthermore, assume that Ω ∪ ΓN is Gröger regular. Then, there is an open interval IM around 2 such that for all
A ∈ M and p ∈ IM

−div(A∇) + 1 : W1,p
D (Ω)→W1,p′

D (Ω)∗

is a linear homeomorphism and we have

sup
p∈IM

sup
A∈M

∥∥∥(−div(A∇) + 1)−1
∥∥∥
L(W1,p

D (Ω),W1,p′

D (Ω)∗)
< ∞.

Proof. This is Theorem 5.6 in Haller-Dintelmann et al. (2016). However, we need to guarantee that our
assumptions imply the Assumptions 2.3, 3.1 and 5.4 in the notation of that paper (which they a forteriori do).
In fact, Gröger regular sets are Lipschitz domains and this ensures Assumption 2.3 in Haller-Dintelmann
et al. (2016) and also Assumption 4.11 there. Then, Assumption 4.11 implies Assumption 3.1 as shown
in Theorem 4.15 in Haller-Dintelmann et al. (2016). Finally, Assumption 5.4 only requires ellipticity and
measurability of the functions A ∈ M, a fact that we also assumed. �

1.3 Useful Facts concerning Gröger Regular Sets

In the definition of Gröger regular sets, the local model {x ∈ Q | xd < 0} ∪ {x ∈ Q | xd = 0, xd−1 < 0} is
redundant. We cite Lemma 4.10 in Haller-Dintelmann et al. (2009).
Lemma 52. There exists a bi-Lipschitz mapping Ψ : Rd

→ Rd mapping Q− ∪ Σ0 onto Q− ∪ Σ.

We state useful characterizations of Gröger regular sets in two and three space definitions. These character-
izations allow to check for Gröger regularity almost by the appearance of a domain Ω. We cite the results
from Haller-Dintelmann et al. (2009).
Theorem 53 (Gröger Regular Sets in 2D). Let Ω ⊂ R2 be a Lipschitz domain and Γ ⊂ ∂Ω be relatively open. Then
Ω∪ Γ is Gröger regular if and only if Γ∩ (∂Ω \ Γ) is finite and no connected component of ∂Ω \ Γ consists of a single
point.

Theorem 54 (Gröger Regular Sets in 3D). Let Ω ⊂ R3 be a Lipschitz domain and Γ ⊂ ∂Ω be relatively open. Then
Ω ∪ Γ is Gröger regular if and only if the following two conditions hold

(i) ∂Ω \ Γ is the closure of its interior.

(ii) For any x ∈ Γ∩(∂Ω\Γ) there is an open neighborhood Ux of x and a bi-Lipschitz mapφ : Ux∩Γ∩(∂Ω\Γ)→
(−1, 1).

1.4 Technical Lemmas

As the strategy to prove Theorem 48 consists of localization techniques we investigate in the following
technical Lemmas how this effects the Hölder control we are interested in. The localization goes through
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three possible stages: i) a localization by a partition of unity. This involves analyzing how the equation is
changed when the solution is multiplied by a smooth cut-off function, ii) in the vicinity of ∂Ω, the Lipschitz
transformations to cuboids from the definition of Gröger regular sets need to be employed. This yields a
pure Dirichlet problem for the Dirichlet boundary, iii) at the Neumann boundary a reflection technique is
used to also produce a pure Dirichlet problem.

This is Lemma 4.6 in Haller-Dintelmann et al. (2009). Our contribution is to control the appearing norms
explicitly.
Lemma 55 (Localization by a Cut-Off Function I). Let Ω ⊂ Rd be open and bounded with a partition ∂Ω = ΓD∪ΓN

in Dirichlet and Neumann boundary parts. Furthermore, let Ω ∪ ΓN be regular and U ⊂ Rd open, such that
Ω• B Ω∩U is also a Lipschitz domain. Furthermore, set Γ• B ΓD ∩U and let η ∈ C∞0 (Rd) with support inU. For
arbitrary but fixed q ∈ [1,∞) define the maps

(i) The multiplication-restriction operator

Rη : W1,q
ΓD

(Ω)→W1,q
Γ•

(Ω•), v 7→ ηv|Ω• .

(ii) The multiplication-extension operator

Eη : W1,q
Γ•

(Ω•)→W1,q
ΓD

(Ω), v 7→ η̃v.

Here, the map v 7→ ṽ denotes the extension by zero outside of Ω•.

Then, both maps are well defined, linear and continuous and we may estimate
‖ηv|Ω•‖W1,q

Γ•
(Ω•)
≤ 2‖η‖C1(Ω•) ‖v‖W1,q

ΓD
(Ω) & ‖η̃v‖W1,q

ΓD
(Ω) ≤ 2‖η‖C1(Ω•) ‖v‖W1,q

Γ•
(Ω•)

.

Proof. The well definedness of Rη and Eη was established in Lemma 4.6 in Haller-Dintelmann et al. (2009).
The estimates can be computed in the following way

‖ηv|Ω•‖W1,q
Γ•

(Ω•)
= ‖ηv‖Lq(Ω•) + ‖∇(ηv)‖Lq(Ω•,Rd)

≤ ‖ηv‖Lq(Ω•) + ‖v∇η‖Lq(Ω•,Rd) + ‖η∇v‖Lq(Ω•,Rd)

≤ ‖η‖C0(Ω•)‖v‖Lq(Ω) + ‖∇η‖C0(Ω•)d‖v‖Lq(Ω) + ‖∇v‖Lq(Ω,Rd)‖η‖C0(Ω•)

≤ 2‖η‖C1(Ω•)‖v‖W1,q(Ω).

The expression ‖η̃v‖W1,q(Ω) can be estimated similarly. �

Lemma 56. Let Ω, ΓN, ΓD,U, η, Ω•, Γ•, Rη and Eη be as in Lemma 55 and denote by A• the restriction of a function
A ∈ L∞(Ω,Rd×d) to the set Ω•. For f ∈ H1

D(Ω)∗ denote by v f ∈ H1
D(Ω) the function that satisfies

−div
(
A∇v f

)
+ v f = f , in H1

ΓD
(Ω)∗.

Define the maps

(i) The adjoint map of Eη for q ∈ (1,∞)

E∗η : W1,q′

ΓD
(Ω)∗ →W1,q′

Γ•
(Ω•)∗, f 7→ f (η̃(·)) C f•

(ii) The functional Tv f

Tv f : H1
Γ•

(Ω•)→ R, w 7→
∫

Ω•

vA•∇η∇wdx.

Then, the localization of v f by η, i.e., u f B (ηv)|Ω• satisfies the equation

− div
(
A•∇u f

)
= −(ηv f )|Ω• − (A•∇v f )|Ω• (∇η)|Ω• + Tv f + f• C f • in H1

Γ•
(Ω•)∗. (4.4)

Furthermore, if 2 ≤ d ≤ 4 and f ∈ W1,q′

ΓD
(Ω)∗ with q > d, then there exists p > d such that f • ∈ W1,p′

Γ•
(Ω•)∗ and the

map
Loc : W1,q′

ΓD
(Ω)∗ →W1,p′

Γ•
(Ω•)∗, f 7→ f •

possesses an estimate on its operatornorm only depending on ν, M and Ω, i.e.,
‖ f •‖W1,p′

Γ•
(Ω•)∗
≤ C(Ω, ν,M)‖ f ‖W1,q′

ΓD
(Ω)∗ (4.5)
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Proof. This is Lemma 4.7 in Haller-Dintelmann et al. (2009), however, we provide the explicit norm control
in (4.5). To this end, we treat the terms in (4.4) separately. First, note that there is ε > 0 such that

W1,4/3−ε
Γ•

(Ω•) ↪→ L4/3(Ω•)

and we set p′1 = 4/3 − ε which implies p1 > 4. We then compute for w ∈W1,p′1
Γ•

(Ω•)∫
Ω•

ηv f wdx ≤ ‖η‖L∞(Ω•)‖v f ‖L4(Ω•)‖w‖L4/3(Ω•)

≤ C(Ω)‖η‖L∞(Ω•)‖v f ‖H1
ΓD

(Ω)‖w‖W1,p′1
Γ•

(Ω•)

≤ C(Ω, ν)‖η‖L∞(Ω•)‖ f ‖H1
ΓD

(Ω)∗‖w‖W1,p′1
Γ•

(Ω•)

≤ C(Ω, ν)‖η‖L∞(Ω•)‖ f ‖W1,q′

ΓD
(Ω)∗‖w‖W1,p′1

Γ•
(Ω•)

Taking suprema over unit balls in W1,p′1
Γ•

(Ω•) and W1,q′

ΓD
(Ω)∗ we get that the map

W1,q′

ΓD
(Ω)∗ →W1,p′1

Γ•
(Ω•)∗, f 7→ −

∫
Ω•

ηv f (·)dx

has its operatornorm bounded by C(Ω, ν)‖η‖L∞(Ω•).

For the second term, note that we may factorize for all small enough ε > 0 using Theorem 51

W1,q′

ΓD
(Ω)∗ ↪→W1,(2+ε)′

ΓD
(Ω)∗ →W1,(2+ε)

ΓD
(Ω)→ L2+ε(Ω•) ↪→W1,p′2

Γ•
(Ω•)∗

given by

f 7→ f 7→ v f 7→ A•∇v f∇η|Ω• 7→

∫
Ω•

A•∇v f∇η(·)dx,

where q′ ≤ (2 + ε)′ and 1/p2 ≥ (d− 2− ε)/(d(2 + ε)), meaning p2 > 4, the latter being possible due to 2 ≤ d ≤ 4.
The latter also implies the continuity of the embedding

L2+ε(Ω•) ↪→W1,p′2
Γ•

(Ω•)∗.

The operatornorm of the composition then essentially relies on the operatornorm of

W1,(2+ε)′

ΓD
(Ω)∗ →W1,2+ε

ΓD
(Ω), f 7→ v f .

However, Theorem 51 shows that this is uniform with respect to the ellipticity constant ν of A, its L∞(Ω,Rd×d)
bound for A and all small ε > 0.

The third term works similar. Following Haller-Dintelmann et al. (2009) there is ε > 0 such that

W1,2+ε
ΓD

(Ω) ↪→ L4+δ(Ω)

for a δ = δ(d) > 0. We estimate for w ∈W1,(4+δ)′

Γ•
(Ω•)

〈Tv f ,w〉W1,(4+δ)′
Γ•

(Ω•)
≤ ‖v f ‖L4+δ(Ω•)‖A‖L∞(Ω,Rd×d)‖∇η‖L∞(Ω•)‖w‖W1,(4+δ)′

Γ•
(Ω•)

≤ C(ν,M,Ω)‖ f ‖W1,(2+ε)′
ΓD

(Ω)∗‖A‖L∞(Ω,Rd×d)‖∇η‖L∞(Ω•)‖w‖W1,(4+δ)′
Γ•

(Ω•)
.

The constant C(ν,M,Ω) is again determined through Theorem 51. We set p2 = 4 + δ.

Finally, the mapping f 7→ f• is nothing but E∗η and thus ‖E∗η‖ = ‖Eη‖, the latter already being computed in
Lemma 55. To conclude the proof we take p = min(p1, p2, p3). �

The following is Proposition 4.9 in Haller-Dintelmann et al. (2009). We merely cite it as we do not need to
explicitly estimate any additional constants in this result.

Proposition 57. Let Ω ⊂ Rd be a bounded Lipschitz domain, let ΓN be an open subset of its boundary and denote
by ΓD its complement in ∂Ω. Let φ be bi-Lipschitz mapping defined on a neighborhood of Ω into Rd and denote
φ(Ω) = Ω̂ and φ(ΓD) = Γ̂D. Then the following holds:
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(i) For any p ∈ (1,∞), the mapping φ induces a linear homeomorphism

Φp : W1,p

D̂
(Ω̂)→W1,p

D (Ω), u 7→ u ◦ φ.

(ii) If A is a member of L∞(Ω,Rd×d), then

−Φ∗p′ ◦ div(A∇Φp(·)) = −div(Â∇(·))

with

Â(y) =
Dφ(φ−1(y))

det(Dφ)(φ−1(y))
A(φ−1(y))(Dφ)T(φ−1(y))

for almost all y ∈ Ω̂.

(iii) If A is uniformly elliptic and essentially bounded, then so is Â.

The last result we need is a reflection procedure that allows to transform a mixed Neumann-Dirichlet
problem on the model domain Q− ∪ Σ to a pure Dirichlet problem on Q and thus makes Corollary 50
applicable.

Lemma 58 (Reflection Principle). For x = (x1, . . . , xd) ∈ Rd we set x− = (x1, . . . , xd−1, xd) and for a matrix A ∈ Rd×d

we define

A−jk =


A jk if j, k < d,
−A jk if j = d, k , d or k = d and j , d,
A jk if j = k = d.

Now let A denote a member of L∞(Q−,Rd×d) and define a member of L∞(Q,Rd×d) via

Â(x) =

{
A(x) if x ∈ Q,

(A(x−))− if x− ∈ Q−.

Let us set ΓD = ∂Q− \ Σ. Then for any fixed p ∈ (1,∞) it holds:

(i) If v ∈W1,p
ΓD

(Q−) satisfies −div(A∇v) = f ∈W1,p′

ΓD
(Q−)∗, then −div(Â∇v̂) = f̂ ∈W1,p′

0 (Q)∗ holds for

v̂(x) =

{
v(x) if x ∈ Q,

v(x−) if x− ∈ Q−

and 〈 f̂ ,u〉W1,p
0 (Q) = 〈 f ,u|Q− + u−|Q−〉W1,p

ΓD (Q− )
, where u−(x) = u(x−).

(ii) The map

W1,p′

ΓD
(Q−)∗ →W1,p′

0 (Q)∗, f 7→ f̂

is continuous.

(iii) Furthermore, if A ∈ L∞(Q−,Rd×d) has ellipticity constant ν and L∞ bound M, then so does Â.

Proof. The only thing not included in Proposition 4.11 in Haller-Dintelmann et al. (2009) is (iii). However,
for all ξ ∈ Rd it holds (as we compute later on)

A−ξ · ξ = Aξ̂ · ξ̂,

where ξ̂ = (−ξ1, . . . ,−ξd−1, ξd). This implies

inf
ξ,0

A−ξ · ξ = inf
ξ,0

Aξ̂ · ξ̂ ≥ ν|ξ̂|2 = ν|ξ|2.
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Furthermore, it holds ‖A−‖ = ‖A‖ in the Frobenius norm, hence Â and A share its bound as members of
L∞(Q−,Rd×d). Finally, we provide the computations for the above equality

A−ξ · ξ =

d−1∑
i, j=1

Ai jξ jξi +

d−1∑
i=1

(−Aid)ξdξi +

d−1∑
j=1

(−Adj)ξ jξd + Addξ
2
d

=

d−1∑
i, j=1

Ai j(−ξ j)(−ξi) +

d−1∑
i=1

Aidξd(−ξi) +

d−1∑
j=1

Adj(−ξ j)ξd + Addξ
2
d

= Aξ̂ · ξ̂.

�

1.5 Proof of the Main Result

Proof of Theorem 48. We follow the steps in Haller-Dintelmann et al. (2009). For every x ∈ Ω choose a ball
Bx ⊂ Ω centered at x and contained in Ω. For every x ∈ ∂Ω, by the definition of Gröger regularity, there
exists an open neighborhood Ux of x and an open set Wx together with a bi-Lipschitz map Ψx : Ux → Wx
such that

Ψx((Ω ∪ ΓN) ∩Ux) = Q− or Ψx((Ω ∪ ΓN) ∩Ux) = Q− ∪ Σ

depending on x ∈ ∂Ω. The system {Ux}x∈∂Ω ∪ {Bx}x∈Ω forms an open covering of Ω. We choose a finite
subcovering Ux1 , . . . ,Uxk ,Bx1,...,Bxl

and a subordinated smooth partition of unity η1, . . . , ηk, ζ1, . . . ζl. Let A ∈ M,

q > d and f ∈W1,q′

ΓD
(Ω)∗ and denote by v the solution of

−div(A∇v) + v = f , in H1
ΓD

(Ω)∗.

Then we use the partition of unity to write

v =

k∑
i=1

ηiv +

l∑
j=1

ζ jv

and we need to estimate ‖ηiv‖Cα(Ω) and ‖ζ jv‖Cα(Ω). This leads to three cases that need to be treated differently:
First, the ζ jv on the balls Bx j , then ηiv when (Ω∪ΓN)∩Ux equals Q− and finally the case when (Ω∪ΓN)∩Ux =
Q− ∪ Σ.

First Case. We show that the Hölder norm of the ζ jv can be controlled in terms of C(Bx j , ν,M)‖ f ‖W1,q′

ΓD
(Ω)∗ . To

this end, we employ Lemma 56 withU = Bx j , hence Ω• = Bx j and Γ• = ∅. Then ζ jv|Bxj
satisfies an equation

of the form
−div(A•∇(ζ jv|Bxj

)) = g j in W
1,p′j
0 (Bx j )

with p j > d and it holds
‖g j‖

W
1,p′j
0 (Bxj )

≤ C(Bx j , ν,M) · ‖ f ‖W1,q′

ΓD
(Ω)∗ .

Hence, by Corollary 50, there is α j ∈ (0, 1) such that

‖ζ jv‖Cα j (Ω) = ‖ζ jv|Bxj
‖Cα j (Bxj )

≤ C(Bx j , ν,M) · ‖ f ‖
W

1,p′j
0 (Bxj )

∗

≤ C(Bx j , ν,M) · ‖ f ‖W1,q′

ΓD
(Ω)∗ .

Second Case. Here we assume that we use η j subordinated to U j with

Ψx j ((Ω ∪ ΓN) ∩Ux j ) = Q−. (4.6)

Setting Ω j = Ω ∩Ux j , Lemma 55 shows that η jv|Ω j is a member of H1
0(Ω j) and Lemma 56 implies that η jv|Ω j

solves
−div(A•∇(η jv|Ω j )) = f j, in H1

0(Ω j)∗

with f j ∈W
1,p′j
0 (Ω j)∗ and p j > d and again

‖ f j‖
W

1,p′j
0 (Ω j)∗

≤ C(Ω j, ν,M) · ‖ f ‖W1,q′

ΓD
(Ω)∗ .
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Now, transform the function to Q− using Proposition 57 with φ = Ψ−1
x j

setting

ψ j B Φp j (η jv|Ω j ) = (η jv|Ω j ) ◦Ψ−1
x j
.

As we assumed (4.6), η jv|Ω j is a member of H1
0(Ω j) and ψ j is a member of H1

0(Q−). Furthermore, ψ j satisfies
and equation of the form

−div(Ã∇ψ j) = h j B (Φ∗p j
)−1 f j in W

1,p′j
0 (Q−)∗

and by Corollary 50 there is α j ∈ (0, 1) such that ψ j ∈ Cα j (Q−) with
‖ψ j‖Cα j (Q−) ≤ C(ν,M,Q−) · ‖h j‖W

1,p′j (Q−)∗
,

where we used that Ã is still a bounded, measurable, elliptic matrix with possibly different boundedness
and ellipticity constants, however controlled through the geometry of Ω j. As Lipschitz maps preserve
Hölder continuity in a controlled way we also have

‖η jv|Ω j‖Cα j (Ω j) ≤ C(Ω j) · ‖ψ j‖Cα j (Q−).

Finally, we may estimate

‖η jv‖Cα j (Ω) = ‖η jv|Ω j‖Cα j (Ω j) ≤ C(Ω j) · ‖ψ j‖Cα j (Q−) ≤ C(ν,M,Ω j) · ‖(Φ∗p′j )
−1 f j‖

W
1,p′j
0 (Q−)∗

≤ C(ν,M,Ω j) · ‖ f j‖
W

1,p′j
0 (Ω j)∗

≤ C(ν,M,Ω j) · ‖ f ‖W1,q′

ΓD
(Ω)∗ .

Third Case. We use the same notation as in the second case but now it holds
Ψx j ((Ω ∪ ΓN) ∩Ux j ) = Q− ∪ Σ.

Setting Γ j = ∂Ω j \ ΓN, it holds again −div(A•∇(η jv|Ω j )) = f j in H1
Γ j

(Ω j)∗ with f j ∈W
1,p′j
Γ j

(Ω j)∗ and p j > d and an
estimate of the form

‖ f j‖
W

1,p′j
Γ j

(Ω j)∗
≤ C(Ω j, ν,M) · ‖ f ‖W1,q′

ΓD
(Ω)∗ .

Now we transform to Q− as in the second case and then use the reflection principle, see Lemma 58 to
transform to Q. This yields ψ j and ψ̂ j, the latter solving a homogeneous problem on Q, the former as above,
however with a Neumann condition on Σ. We may estimate for a suitable α j ∈ (0, 1)

‖η jv‖Cα j (Ω) = ‖η jv‖Cα j (Ω j) ≤ C(Ω j) · ‖ψ j‖Cα j (Q−) ≤ C(Ω j) · ‖ψ̂ j‖Cα j (Q)

≤ C(ν,M,Ω j) · ‖ĥ j‖
W

1,p′j
0 (Q)∗

≤ C(ν,MΩ j) · ‖(Φ∗p′j )
−1 f j‖

W
1,p′j
∂Ω\Σ

(Q−)∗

≤ C(ν,M,Ω j) · ‖ f j‖
W

1,p′j
Γ j

(Ω j)∗

≤ C(ν,M,Ω j) · ‖ f ‖W1,q′

ΓD
(Ω)∗ .

Taking the minimal α j concludes the proof. �

II Parabolic Regularity

In this Section all regularity results concerning the diffusion equations (1.2) are collected. This includes the
results necessary for the existence Theorem 9 and the optimal control Theorem 18. We state and prove some
known results such as the essential boundedness of diffusion equations given L∞ data and L∞ right-hand
side and a non-negativity result for non-negative data. These results are collected in Section 2.2.

The main contribution however is a Lp(I,Cα(Ω)), p ∈ [2,∞) regularity result in the low regularity regime
which is the parabolic counterpart to the results in Section I. That is, we allow mixed boundary conditions,
elliptic L∞ coefficients in the highest order term, f ∈ Lp(I,L2(Ω)) right-hand side and a L∞(Ω) initial condition.
To the best of our knowledge, the result for the L∞(Ω) initial condition is novel and requires a little more
work than a direct application of semi-group theory to the stationary result in Section I. We begin with a
short reminder on the terminology of Banach space valued Sobolev spaces.

78



2.1 Vector Valued Sobolev Spaces

In the following, for a Banach space X, a bounded interval I = [0,T] and p ∈ [1,∞] we denote by Lp(I,X)
the Bochner space of Bochner measurable, p-integrable functions defined on I and taking values in X, see
for example Diestel and Uhl (1977). We also consider Sobolev spaces modeled on Lp(I,X) and we briefly
recall some basic definitions and properties of these spaces. These are the natural function spaces that are
required for the treatment of time-dependent equations.

We begin with the definition of time derivatives. Due to the structure of parabolic equations, we need to
allow a function u : I → X to possess a derivative in a larger space. More precisely, let X and Y be Banach
spaces and

j : X→ Y, x 7→ j(x)

and embedding, i.e., a continuous, linear and injective map. Let us fix p, r ∈ [1,∞] and let u ∈ Lp(I,X). We
say u possesses a derivative in Lr(I,X) if there exists a function v ∈ Lr(I,X) such that∫

I
( j ◦ u)ϕ′dt = −

∫
I
vϕdt, for all ϕ ∈ C∞c (I)

and we set dtu B v. We then define

W1,p,r(I,X,Y) B {u ∈ Lp(I,X) | dtu ∈ Lr(I,Y)}

with the norm
‖u‖W1,p,r(I,X,Y) B ‖u‖Lp(I,X) + ‖dtu‖Lr(I,Y) .

Two cases for pairs X and Y with embeddings j are relevant for us. The first is the trivial case

X = Y, j = Id .

Then usually p = r is the only relevant case and we denote the Sobolev spaces by

W1,p(I,X) BW1,p,p(I,X,X).

These spaces appear naturally in the treatment of (weak) Banach space valued ODEs and parabolic regularity
theory and possess nice properties such as an analogue to the fundamental theorem in real analysis. We
refer to Boyer and Fabrie (2012) for a treatment.

The natural framework for weak solutions to parabolic equations requires a different setting, however.
Here, one is often given a Gelfand triple (i,X,H), that is, X is a reflexive Banach space, H a Hilbert space and

i : X→ H, x 7→ i(x)

is an embedding with dense image. Then, we define

j : X i
↪→ H→ H∗ i∗

↪→ X∗, x 7→ j(x) = (i(x), i(·))H.

The corresponding Sobolev space is modeled with the pair X and X∗ and the embedding j and consequently
denoted by

W1,p,r(I,X,X∗). (4.7)

Note that this notation suppresses the choice of the Gelfand triple and one should ensure that it is clear
from the context which Gelfand triple is used. In our application X is in fact a Hilbert space and p = r = 2
and we write

H1(I,X,X∗) = W1,2,2(I,X,X∗)

as H1(I,X,X∗) is a Hilbert space itself. Finally we want to stress that spaces of the form (4.7) possess certain
good properties, such as an embedding into C0(I,H) and a partial integration formula, we refer again to
Boyer and Fabrie (2012). These results allow to prove existence theorems for linear and certain non-linear
evolution equations, see for example Ern and Guermond (2013) for the linear case and Růžička (2006) for
the non-linear case. We content ourselves with this brief introduction and point the reader towards more
specialized results when necessary.
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2.2 Pointwise Properties

In this Section we prove an L∞(I ×Ω) regularity result and a non-negativity result for solutions of diffusion
equations with suitable data.

Theorem 59 (L∞(I ×Ω) bound). Let Ω ⊂ Rd be a Lipschitz domain, I = [0,T] and ∂Ω = ΓN ∪ ΓD a partition of
the boundary into Dirichlet and Neumann part. Both ΓD and ΓN are allowed to have vanishing measure. Further,
let D ∈ L∞(Ω,Rd×d) be uniformly elliptic, k > 0, f ∈ Lp(I,L2(Ω)) and a0 ∈ L∞(Ω). Then the solution a ∈
H1(I,H1

D(Ω),H1
D(Ω)∗) to∫

I
〈dta, ·〉H1

D(Ω)dt +

∫
I

∫
Ω

D∇a∇ · +ka(·)dxdt =

∫
I

∫
Ω

f (·)dxdt in L2(I,H1
D(Ω))∗

a(0) = a0

is a member of L∞(I ×Ω) and it holds

‖a‖L∞(I×Ω) ≤ max(‖ f ‖L∞(I×Ω), ‖a0‖L∞(Ω)).

Proof. We use Stampacchias truncation method Stampacchia (1958), that is for a real number ā we test the
PDE with

(ai − ā)+ B max(0, ai − ā) and (ai + ā)− B −min(0, ai + ā).
One can show that (ai − ā)+ and (ai + ā)− are members of H1(I,H1

D(Ω),H1
D(Ω)′) if ai is itself in that space and

that it holds ∫ t

0
〈dtai, (ai − ā)+

〉H1
D(Ω) dt =

1
2

∥∥∥(ai − ā)+(t)
∥∥∥2

L2(Ω)
−

1
2

∥∥∥(a0 − ā)+
∥∥∥2

L2(Ω)

and ∫
Ω

D∇ai(t)∇(ai − ā)+(t) dx =

∫
Ω

D∇(ai − ā)+(t)∇(ai − ā)+(t) dx

such as ∫
Ω

ai(t)(ai − ā)+(t) dx =
∥∥∥(ai − ā)+(t)

∥∥∥2

L2(Ω)
+

∫
Ω

ā(ai − ā)+(t) dx

Hence it follows for every t ∈ I and ā ≥ max(
∥∥∥ f

∥∥∥
L∞(I×Ω)

, ‖a0‖L∞(Ω))

1
2

∥∥∥(ai − ā)+(t)
∥∥∥2

L2(Ω)
≤

∫ t

0

∫
Ω

( f − ā)(ai − ā)+dxds +
1
2

∥∥∥(a0 − ā)+
∥∥∥2

L2(Ω)

≤ 0.

This implies that ai ≤ ā almost everywhere in I ×Ω. Similarly one establishes ā ≤ ai using the test function
(ai + ā)−. �

The following positivity result is formulated with the weak formulation of (1.2) in mind, where for conve-
nience homogeneous Dirichlet boundary conditions are satisfied through the addition of a unity constant.
This explains the somewhat specific formulation. The positivity result is general however, see for example
Ern and Guermond (2013).
Theorem 60 (Positivity). Let Ω ⊂ Rd be a Lipschitz domain, I = [0,T] and ∂Ω = ΓN ∪ ΓD a partition of the
boundary into Dirichlet and Neumann part. Both ΓD and ΓN are allowed to have vanishing measure. Further, let D ∈
L∞(Ω,Rd×d) be uniformly elliptic, k > 0, f ∈ L2(I,L2(Ω)), f ≥ 0 and assume a function a ∈ H1(I,H1

D(Ω),H1
D(Ω)∗)

satisfies the following equality in the space L2(I,H1
D(Ω))∗∫

I
〈dta, ·〉H1

D(Ω)dt +

∫
I

∫
Ω

D∇a∇ · + k(a + 1)(·)dxdt =

∫
I

∫
Ω

f (·)dxdt,

with a(0) + 1 = 0. Then a + 1 ≥ 0 holds.

Proof. One can check that (a + 1)− = −min(0, a + 1) is a member of H1(I,H1
D(Ω),H1

D(Ω)′) and that it holds for
all t ∈ I ∫ t

0
〈dta, (a + 1)−〉H1

D
ds =

1
2

( ∥∥∥(a + 1)−(0)
∥∥∥2

L2(Ω)
−

∥∥∥(a + 1)−(t)
∥∥∥2

L2(Ω)

)

80



and ∫ t

0

∫
Ω

〈D∇a,∇(a + 1)−〉 + k(a + 1)(a + 1)−dxds

= −

∫ t

0

∫
Ω

〈D∇
[
(a + 1)−

]
,∇

[
(a + 1)−

]
〉 + k

[
(a + 1)−

]2
dxds ≤ 0.

Testing the full equation with (a + 1)− and using these computations one finds

1
2

∥∥∥(a + 1)−(t)
∥∥∥2

L2(Ω)
≤ −

∫ t

0

∫
Ω

f · (a + 1)− dxds ≤ 0.

�

2.3 Parabolic Hölder Regularity

In this Section, we prove a Lp(I,Cα(Ω)) regularity result for certain linear parabolic equations with non-
smooth coefficients, mixed boundary conditions and L∞(Ω) initial conditions. We control the Lp(I,Cα(Ω))
norm with respect to the data, showing its dependency on the coefficients. The main result is the following:
Theorem 61. Let Ω ⊂ Rd with d = 2, 3 be a Lipschitz domain, I = [0,T] a time interval, ∂Ω = ΓN ∪ ΓD a partition
of the boundary into a Dirichlet and a Neumann part, where both ΓN and ΓD are allowed to have vanishing measure.
Assume that Ω ∪ ΓN is Gröger regular, let f ∈ Lp(I,L2(Ω)) for p ∈ [2,∞), D ∈ L∞(Ω,Ms) with ellipticity constant
ν > 0 and let k > 0 be a constant. For v0 ∈ L∞(Ω) denote by v ∈ H1(I,H1

D(Ω),H1
D(Ω)∗) the solution to∫

I
〈dtv, ·〉H1

D(Ω)dt︸             ︷︷             ︸
Cdtv

+

∫
I

∫
Ω

D∇v∇ · +kv(·)dxdt︸                          ︷︷                          ︸
CMv

=

∫
I

∫
Ω

f (·)dxdt in L2(I,H1
D(Ω))∗

v(0) = v0.

Then there is β = β(p) ∈ (0, 1) such that v ∈ Lp(I,Cβ(Ω)) for all p ∈ [2,∞), provided f ∈ Lp(I,L2(Ω), and we may
estimate

‖v‖Lp(I,Cβ(Ω)) ≤ C
(
Ω,T, ν, ‖D‖L∞(Ω,Rd×d), p

)
·

[
‖ f ‖Lp(I,L2(Ω)) + ‖v0‖L∞(Ω)

]
. (4.8)

In the above estimate, if we fix Ω and p, only a lower bound for ν and upper bounds for ‖D‖ and T determine the
value of the constant C. This provides uniformity for ν ∈ [cE,CE], D ∈ L∞(Ω,Ms) with ‖D‖ ≤ CB and time intervals
I∗ = [0,T∗] with T∗ ≤ T.

Proof. Here we discuss only the main ideas and provide the details in the course of the Section. The first
ingredient in the proof is the Cα(Ω) regularity result for the stationary operator, see Theorem 48. This opens
the door for maximal parabolic regularity results, however, the initial value as a member of L∞(Ω) does not
suffice for a direct application of the theory, which would require v0 to be a member of H1

D(Ω), the trace
space in this situation, compare to Arendt et al. (2017). Therefore, we propose to use the superposition
principle for linear operators to split the equation into

dtv1 +Mv1 = f ,
v1(0) = 0

and
dtv2 +Mv2 = 0,

v2(0) = v0.

The linearity of the equation implies that v = v1 + v2. This gives us the advantage to analyze v1 and v2
separately. Now, v1 can be treated by a combination of the maximal regularity results in Amann (1995) and
Theorem 48. For v2 we can quantify the norm blow-up at the initial time-point using standard results from
Brezis (2010). More precisely, it holds

‖v2(t)‖Cα(Ω) ≤ C ·
(1

t
‖v0‖L2(Ω) + 1

)
and using an interpolation result we are able to mitigate the singularity of t 7→ t−1 by reducing the Hölder
exponent. �

Remark 62. Knowing the dependencies of the constants on the data ν and ‖D‖L∞ etc. is crucial in applications
as we see in our case of PDE constrained optimization.
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Proof of the Main Result

We need some basic facts from semi-group theory for linear, unbounded operators in a Hilbert space H, that
is operators of the form M : dom(M) ⊂ H → H. However, we started with a linear, bounded and coercive
operator defined on a full space X taking values in its dual, i.e., M ∈ L(X,X∗). If we are given a Gelfand
triple structure (i,X,H), that is X and H are Hilbert spaces and i : X→ H is an embedding with dense image,
i.e., linear, continuous and bounded, we see that the two concepts are closely related.
Definition 63. Let (i,X,H) be a Gelfand triple andM ∈ L(X,X∗) a coercive bounded linear operator. We
define its part in H as follows

dom(M) B
{
v ∈ X | there is f ∈ H with ( f , ·)H =Mv

}
and

M : dom(M) ⊂ H→ H, Mv = R−1 (Mv)
where R denotes the Riesz isometry of H.
Remark 64. Note that the above definition suppresses the embedding i in various places, treating it like a
set-theoretic inclusion. Furthermore, we stress that M is well defined as a map since for everyMv there is
at most one f ∈ H satisfying ( f , ·)H =Mv as i(X) is dense in H by assumption.
Lemma 65. Let (i,X,H) be a Gelfand triple andM ∈ L(X,X∗) a coercive, bounded linear operator. Then, its part M
in H is maximal monotone, thus densely defined. IfM is self-adjoint1 as a member ofL(X,X∗), then M is self-adjoint
as a densely defined operator in H.

Proof. Let u, v ∈ dom(M) and note that by the definition ofM it holds

(Mu, v)H = (R−1(M(u)), v)H = 〈Mu, v〉X. (4.9)

This identity makes clear that the coercivity ofM implies the monotonicity of M. Additionally,

Id |H + M : dom(M)→ H

is bijective and hence M is maximal monotone. IfM is self-adjoint, then (4.9) shows that M is symmetric.
However, linear symmetric maximal monotone operators are self-adjoint, see Brezis (2010). �

The following Proposition is tailored to allow the application of Hille-Yosida’s celebrated theorem on
solutions to the Cauchy problem.

Proposition 66. Let Ω ⊂ Rd, d = 1, 2, 3 be a bounded domain with a partition of the boundary into Dirichlet and
Neumann part ∂Ω = ΓN ∪ ΓD. Both ΓD and ΓN are allowed to have vanishing measure. We assume that Ω ∪ ΓN is
Gröger regular. Further, let D ∈ L∞(Ω,Ms) be given and assume it is elliptic with ellipticity constant ν > 0. Let
k > 0, we define the operator

M : H1
D(Ω)→ H1

D(Ω)∗, Mv =

∫
Ω

D∇v∇ · +kv(·)dx.

Then its part in L2(Ω) is maximal monotone and self-adjoint. Further, there exists α > 0 such that we have the
embedding (

dom(M), ‖·‖L2(Ω) + ‖·‖L2(Ω)

)
↪→ Cα(Ω)

together with the estimate
‖u‖Cα(Ω) ≤ C(Ω, ν, ‖D‖L∞(Ω,Ms)) · ‖u‖dom(M) .

Here, the constant C is precisely ‖M−1
‖L(L2(Ω),Cα(Ω)) and depends only on a lower bound for the ellipticity constant

and an upper bound on ‖D‖L∞(Ω,Ms).

Proof. Using the Gelfand triple (Id|L2(Ω),H1
D(Ω),L2(Ω)), we can apply Lemma 65 and deduce the maximal

monotonicity of M. Further, the symmetry assumption on D implies that M is self-adjoint, again through
Lemma 65. It remains to show the embedding into Hölder spaces – essentially due to Theorem 48 – which
yields the existence of α > 0 such that

M−1 : L2(Ω)→ Cα(Ω)
1We call a map T ∈ L(X,X∗) self-adjoint if T∗ ◦ J = T, where J : X → X∗∗ is the natural isometric embedding of a

Banach space into its bi-dual and T∗ denotes the usual adjoint map.
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is well defined and continuous. This requires the assumption d = 1, 2, 3. To see that the graph norm on
dom(M) controls the α-Hölder norm, we let u ∈ dom(M) ⊂ Cα(Ω). Then there exists a unique f ∈ L2(Ω)
such that u = M−1 f and we compute

‖u‖Cα(Ω) = ‖M−1 f ‖Cα(Ω) ≤ C‖ f ‖L2(Ω) = C‖Mu‖L2(Ω) ≤ C‖u‖dom(M).

The only appearing constant is the operator norm of M−1 and Theorem 48 guarantees a suitable bound of
this norm. �

Theorem 67. Assume we are in the situation of Proposition 66. Then for every v0 ∈ L2(Ω) there exists α > 0 and

v ∈ C1((0,T],L2(Ω)) ∩ C0((0,T],Cα(Ω))

solving

v′(t) + Mv(t) = 0 on (0,T] (4.10)
v(0) = v0

Furthermore, it holds

‖v(t)‖Cα(Ω) ≤ C (Ω, ν, ‖D‖L∞ )
(
1 +

1
t

)
‖v0‖L2(Ω).

More precisely, the constant C (Ω, bDc, ‖D‖L∞ ) is the operatornorm of the embedding dom(M) ↪→ Cα(Ω).

Proof. From Theorem 7.7 in Brezis (2010) it follows that

‖Mv(t)‖L2(Ω) ≤
1
t
‖v0‖L2(Ω) and ‖v(t)‖L2(Ω) ≤ ‖v0‖L2(Ω).

Using this and the embedding dom(M) ↪→ Cα(Ω), we get

‖v(t)‖Cα(Ω) ≤ C‖v(t)‖dom(M) = C‖v(t)‖L2(Ω) + C‖Mv(t)‖L2(Ω)

≤ C‖v0‖L2(Ω) +
C
t
‖v0‖L2(Ω).

�

Theorem 68. Assume we are in the situation of Proposition 66 and assume that v0 ∈ L∞(Ω) and denote by
v ∈ C1((0,T],L2(Ω)) the solution to (4.10). Then for every q ∈ (1,∞) there exists β = β(q) such that v is a member of
Lq(I,Cβ(Ω))∩ L∞(I,C0(Ω)). Furthermore, we can bound the Lq(I,Cβ(Ω)) norm depending on the data of the problem
in the following way

‖v‖Lq(I,Cβ(Ω)) ≤ C
(
Ω, ν, ‖D‖L∞ , ‖v0‖L∞ , I, α, q

)
. (4.11)

Proof. Let p > q be fixed. Choose β > 0 such that α/p > β. Then we can estimate for every u ∈ Cα(Ω)

‖u‖Cβ(Ω) ≤ C · ‖u‖C0(Ω)‖u‖
1/p
Cα(Ω) + ‖u‖C0(Ω).

To see this compute

[u]β = sup
x,y

|u(x) − u(y)|1−1/p
|u(x) − u(y)|1/p

|x − y|α/p+(β−α/p)

= sup
x,y
|u(x) − u(y)|1−1/p

|x − y|α/p−β ·
[
|u(x) − u(y)|
|x − y|α

]1/p

≤

(
2‖u‖C0(Ω)

)1−1/p
diam(Ω)α/p−β[u]1/p

α .

Using the following estimate
‖v(t)‖C0(Ω) ≤ ‖v0‖L∞(Ω)
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and the above estimates of the Cβ norm and Theorem 67 we obtain

‖v(t)‖Cβ(Ω) ≤
(
2‖v(t)‖C0(Ω)

)1−1/p
diam(Ω)α/p−β[v(t)]1/p

α + ‖v(t)‖C0(Ω)

≤ max
(
1, 2‖v0‖L∞(Ω)

)
·max (1,diam(Ω)) · [v(t)]1/p

α + ‖v0‖L∞(Ω)

≤ C
(
‖v0‖L∞(Ω),Ω

)
· [v(t)]1/p

α + ‖v0‖L∞(Ω)

≤ C
(
‖v0‖L∞(Ω), ν, ‖D‖L∞ ,Ω

)
·

(
1 +

1
t

) 1
p

Inferring q/p < 1 then shows the integrability of ‖v(t)‖q
Cβ(Ω)

and the asserted bound. �

Remark 69. The constant in (4.11) only depends on the length of the interval I, a lower bound for ν and an
upper bound for ‖D‖L∞(Ω), hence is uniform for suitable families of operators and time intervals.

Finally we cite a known result from Amann (1995) to treat the case with the vanishing initial condition.

Theorem 70. Assume we are in the situation of Proposition 66. Let f ∈ Lp(I,L2(Ω)) with p ∈ [2,∞) and denote by
u the solution to

u′(t) + Mu(t) = f on (0,T]
u(0) = 0.

Then it holds u ∈W1,p(I,L2(Ω)) ∩ Lp(I,dom(M)) with the estimate

‖u‖W1,p(I,L2(Ω))∩Lp(I,dom(M)) ≤ C(ν, ‖D‖L∞(Ω), p, I) ·
∥∥∥ f

∥∥∥
Lp(I,L2(Ω))

where C(ν, ‖D‖L∞(Ω), p, I) does depend on a lower bound for ν, on an upper bound for ‖D‖L∞ and the upper bound T of
the time interval I = [0,T].

Proof. We apply Theorem 4.10.8 in Amann (1995), using E0 = L2(Ω), E1 = dom(M). The requirement of E0
being an UMD space holds as it is a Hilbertspace, the other requirements can be shown using the fact that
M is self-adjoint and coercive, i.e., a member of BIP(L2(Ω); 1, 0) in the terminology of Amann (1995). As
we consider a problem with homogeneous initial conditions we don’t need to concern ourselves with the
trace space for the initial conditions. �

III Banach Space Valued ODEs

3.1 Banach Space Valued Ordinary Differential Equations

In the main text the need for a Banach space valued ODE theorem arises. We formulate and prove a possible
existence theorem here. It is an extension of the one given in Brezis’ book Brezis (2010). The difference is
that we treat weak ordinary differential equations and that we allow the inducing vector field F to be time
dependent.
Theorem 71 (Global Existence). Let X be a Banach space, I = [0,T] a bounded interval and F : [0,T] × X → X a
Caratheodory function that satisfies a Lipschitz condition of the following form∥∥∥F(t, x) − F(t, y)

∥∥∥ ≤ L(t)
∥∥∥x − y

∥∥∥ (4.12)

for all x, y ∈ X and t ∈ I with a function L ∈ Lp(I) for some p > 1. Assume furthermore that for some q ∈ [1,∞] the
operator

F : W1,q(I,X)→ Lq(I,X) with F u(t) = F(t,u(t)) (4.13)

is well defined. Then the following differential operator

O : W1,q(I,X)→ Lq(I,X) × X with u 7→ (dtu + F u,u(0))

is bijective. Note that this is nothing but an abstract way to say that for every right hand side f ∈ Lq(I,X) and intial
value u0 ∈ X the equation dtu + F (u) = f with u(0) = u0 has a unique solution.

Addendum. If we can choose p ≥ q, i.e., the integrability of the Lipschitz function L is not worse than the q we had
for F then the map O is Bilipschitzian.
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Remark 72. Note that the Lipschitz assumption (4.12) implies that x 7→ F(t, x) is continuous up to a set of
vanishing measure in I. Also, to establish (4.13) it is enough to check that t 7→ ‖F(t,u(t))‖q is integrable as
the Bochner measurability follows from the Caratheodory regularity of F.

Proof. Given f ∈ Lq(I,X) and u0 ∈ X we need to find u ∈W1,q(I,X) with dtu +F (u) = f and u(0) = u0. By the
fundamental theorem for the space W1,q(I,X) this is equivalent to finding a function u ∈ C0(I,X) satisfying

u(t) = u0 +

∫ t

0
f (s) − F(s,u(s)) ds.

We renorm C0(I,X) equivalently by |||u||| := supt∈I e−kt
‖u(t)‖ where k > 0 is to be fixed later. Setting

Φ : (C0(I,X), ||| · |||)→ (C0(I,X), ||| · |||) with

Φ(u)(t) = u0 +

∫ t

0
f (s) − F(s,u(s)) ds,

we seek to apply Banach’s fixed point theorem to Φ for a k large enough. The self-mapping property is due
to the fundamental theorem (Boyer and Fabrie, 2012, Proposition II.5.11) and the contraction property is
established in the following computation

|||Φ(u) −Φ(v)||| = sup
t∈I

[
e−kt

∥∥∥∥∥∥
∫ t

0
F(s, v(s)) − F(s,u(s)) ds

∥∥∥∥∥∥
]

≤ sup
t∈I

[
e−kt

∫ t

0
ekse−ksL(s) ‖v(s) − u(s)‖ ds

]
≤ |||v − u||| ‖L‖Lp(I) sup

t∈I

[
e−kt

∥∥∥ek·
∥∥∥

Lp′ (0,t)

]
︸                   ︷︷                   ︸

=(∗)

We will now compute that (∗) tends to zero with k→∞ hence an appropriate choice of k yields the assertion.∥∥∥ek·
∥∥∥

Lp′ (0,t) =
( ∫ t

0
ekp′s ds

) 1
p′

=
( 1

kp′
ekp′t
−

1
kp′

) 1
p′

≤

( 1
kp′

ekp′t
) 1

p′

=
( 1

kp′

) 1
p′

ekt.

Addendum. Now we prove the bilipschitzian property. Let us first have a look at O. Given u, v ∈W1,q(I,X)
we know that point evaluation and taking the time derivative is a Lipschitz continuous map. We turn to F
and compute

‖F (u) − F (v)‖qLq(I,X) =

∫
I
‖F(t,u(t) − F(t, v(t))‖q dt

≤

∫
I
|L(t)|q ‖u(t) − v(t)‖q dt

≤ ‖L‖qLq(I) ‖u − v‖qC0(I,X)

≤ C ‖L‖qLp(I) ‖u − v‖q
W1,q(I,X)

,

where we needed p > q. The asserted Lipschitz continuity of O follows easily. Now to O−1. Given
( f ,u0), (g, v0) ∈ Lq(I,X) × X we know that the O preimages satisfy

u(t) = u0 +

∫ t

0
f (s) − F(s,u(s)) ds and v(t) = v0 +

∫ t

0
g(s) − F(s, v(s)) ds.

Let the variables γ1 and γ2 denote the integrands of the two preceeding integral curves. We estimate their
difference ∥∥∥γ1(s) − γ2(s)

∥∥∥ ≤ ∥∥∥ f (s) − g(s)
∥∥∥ + L(s) ‖v(s) − u(s)‖ .
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Using Grönwall’s inequality we find that

‖u − v‖C0(I,X) ≤ C
(
‖u0 − v0‖ +

∥∥∥ f − g
∥∥∥

L1(I,X)

)
.

It remains to have a look at the derivatives. We compute

‖dtu(t) − dtv(t)‖Lq(I,X) ≤
∥∥∥ f − g

∥∥∥
Lq(I,X)

+ ‖F (u) − F (v)‖Lq(I,X)

≤

∥∥∥ f − g
∥∥∥

Lq(I,X)
+ ‖L‖Lq(I) ‖u − v‖C0(I,X)

which yields the desired continuity. �

Lemma 73 (Grönwall Variant). Let X be a Banach space and I = [0,T] an interval. Let x0, y0 ∈ X and assume that
γ1, γ2 are members of L1(I,X). Define x and y to be the integral curves

x(t) = x0 +

∫ t

0
γ1(s) ds and y(t) = y0 +

∫ t

0
γ2(s) ds.

Now assume that we can estimate the integrants γ1, γ2 in the following form∥∥∥γ1(t) − γ2(t)
∥∥∥ ≤ α(t) + β(t)

∥∥∥x(t) − y(t)
∥∥∥ for all t ∈ I,

where α, β ∈ L1(I) are non-negative functions. Then it holds that∥∥∥x(t) − y(t)
∥∥∥ ≤ C

( ∥∥∥x0 − y0

∥∥∥ + ‖α‖L1(I)

)
for all t ∈ I

and the constant C can be chosen to be C = 1 +
∥∥∥β∥∥∥L1(I) exp(

∥∥∥β∥∥∥L1(I)).

Proof. Just write out the estimate that the difference
∥∥∥x(t) − y(t)

∥∥∥ satisfies due to the assumptions and then
use the usual integral formulation of Grönwall’s inequality, see for example (Qin, 2017, Theorem 1.2.8). �

Theorem 74 (Local Existence). Let X be a Banach space, I = [a, b] a bounded interval and F : I × X → X a
Carathéodory function, i.e., F(·, x) is Bochner measurable for all x ∈ X and F(t, ·) is continuous almost everywhere
in I. Assume that for every bounded set B ⊂ X there are functions mB ∈ Lp(I), p ∈ [1,∞] and LB ∈ L1(I), possibly
depending on B, such that

‖F(t, x)‖X ≤ mB(t) a.e. in I, ∀x ∈ B, (4.14)∥∥∥F(t, x) − F(t, y)
∥∥∥

X ≤ LB(t)
∥∥∥x − y

∥∥∥ a.e. in I, ∀x, y ∈ B. (4.15)

Let furthermore t0 ∈ I, x0 ∈ X and R > 0 be arbitrary, then there exists a time interval Iδ B [t0 − δ, t0 + δ] ∩ I such
that for any initial value y0 ∈ BR(x0) ⊂ X there is a unique short time solution x ∈W1,p(Iδ,X) of the ODE

dtx(t) = F(t, x(t)) and x(t0) = y0.

Moreover the map y0 7→ x(y0) taking the initial value to its solution seen as a map BR(x0) ⊂ X → C0(Iδ,X) is
continuous.
Remark 75. Note that the Lipschitz assumption (4.15) implies that x 7→ F(t, x) is continuous. Therefore, to
establish the Carathéodory regularity of F it is enough to provide the Bochner measurability of the maps
F(·, x) : I→ X for all x ∈ X.

Proof. First we clarify the dependence of δ; we choose it to satisfy∫
Iδ

mB2R(x0)(s) ds ≤ R and
∫

Iδ
LB2R(x0)(s) ds < 1. (4.16)

Then we consider the complete metric space E ⊂ C0(Iδ,X) given by

E B {x ∈ C0(Iδ,X) | sup
t∈Iδ
‖x(t) − x0‖ ≤ 2R}

and define the map

Φ : E→ E with Φ(x)(t) = y0 +

∫ t

t0

F(s, x(s)) ds.

We now proceed by showing the following facts
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(i) For all x ∈ E the map t 7→ F(t, x(t)) is Bochner integrable as a map Iδ → X. In fact it is a member of
Lp(Iδ,X).

(ii) The function Φ is a self-mapping and a contraction.

(iii) The fix-point of Φ is a member of W1,p(Iδ,X) and corresponds to the solution of the ODE.

(iv) The solution depends continuously on the initial data.

To establish (i) note that the assumption of Carathéodory regularity of F implies that t 7→ F(t, x(t)) is Bochner
measurable as a map Iδ → X for all maps x : Iδ → X that are itself Bochner measurable, which clearly holds
for members of E. We are left to show the integrability, so we estimate for x ∈ E∫

Iδ
‖F(t, x(t))‖pX dt ≤

∫
Iδ
|mB2R(x0)(t)|p dt < ∞,

which shows the assertion. Now to (ii). Let again x ∈ E and estimate

sup
t∈Iδ
‖Φ(x)(t) − x0‖X ≤

∥∥∥x0 − y0

∥∥∥ +

∫
Iδ
‖F(t, x(t))‖X dt

≤ R +

∫
Iδ

mB2R(x0)(t) dt

≤ 2R.

To see that Φ is a contraction compute for x, y ∈ E

sup
t∈Iδ

∥∥∥Φ(x)(t) −Φ(y)(t)
∥∥∥

X ≤ sup
t∈Iδ

∫
Iδ

∥∥∥F(t, x(t)) − F(t, y(t))
∥∥∥

X dt

≤

∥∥∥LB2R(x0)

∥∥∥
L1(Iδ)︸         ︷︷         ︸

<1

∥∥∥x − y
∥∥∥

E

The claim (iii) follows as the unique fix-point x of Φ is, by the fundamental theorem, a solution to the ODE.
As dtx(t) = F(t, x(t)) the Lp integrability of the derivative of this fix-point follows from the one of F(·, x(·))
which was established in (i).
Finally to (iv), where we will employ Grönwall’s Lemma. Let y0 and y0 be in BR(x0), then the according
solutions are given by

y(t) = y0 +

∫ t

t0

F(s, y(s)) ds and y(t) = y0 +

∫ t

t0

F(s, y(s)) ds.

The difference in the integrands can be estimated by∥∥∥F(t, y(t)) − F(t, y(t))
∥∥∥

X ≤ CLB2R(x0)(t)
∥∥∥y(t) − y(t)

∥∥∥
X .

So applying Lemma 73 with α = 0 and β = LB2R(x0) yields∥∥∥y(t) − y(t)
∥∥∥

X ≤ C
∥∥∥y0 − y0

∥∥∥
X .

�

Remark 76. It is often of interest to show the existence of long-time solutions. A particularly simple case
in the setting of the above theorem is encountered if it holds that for any initial value y0 ∈ BR(x0) ⊂ X
the solution takes values only in BR(x0). Then one glues together multiple short-time solutions with the
guarantee of δ not deteriorating.
Lemma 77 (Pointwise Properties of Solutions). Let I = [a, b] be an interval and K : I × R → R a Carathéodory
function such that x ≥ 0 implies K(t, x) ≥ 0 for all t ∈ I. For fixed t0 ∈ I consider the ODE

x′(t) = K(t, x(t))
(
1 −

x(t)
θ

)
and x(t0) = x0,
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where θ > 0 and λ ≥ 0 are fixed numbers and x0 ∈ [0, θ]. Assume that there is an interval Iδ = [t0 − δ, t0 + δ] ∩ I
such that for any choice of x0 ∈ [0, θ] we have a solution x ∈ W1,1(Iδ) of the ODE which we assume to continuously
depend on the initial data x0, i.e., we assume that for every x0 ∈ [0, θ] there is a neighborhood Nx0 around x0 such that
x0 7→ x is continuous as a map Nx0 → C0(Iδ), where x is the solution to the ODE with initial value x0. Then it holds

0 ≤ x(t) ≤ θ for all t ∈ Iδ.

Proof. We know that x satisfies the identity

x(t) = x0 +

∫ t

t0

K(s, x(s))
(
1 −

x(s)
θ

)
ds for all t ∈ Iδ

Upper Barrier. We prove this by contradiction. Suppose there was s0 ∈ Iδ with x(s0) > θ, then on a
neighborhood of s0 solution must be non-increasing which can be seen as follows: Due to the continuity of
x there is ε > 0 such that

x(t) ≥ θ for all t ∈ (s0 − ε, s0 + ε).
If x was not non-increasing on (s0 − ε, s0 + ε) then there exist t1 < t2 in that interval such that x(t2) > x(t1) and
therefore

0 < x(t2) − x(t1) =

∫ t2

t1

K(s, x(s))︸    ︷︷    ︸
≥0

(
1 −

x(s)
θ

)
︸     ︷︷     ︸

≤0

ds ≤ 0,

which settles the claim. Now, by judicious Zornification we produce a maximal interval Z around s0 on
which x is non-increasing. Then t∗ B inf Z = t0 (if it was not t0, repeat the above reasoning and find that Z
was not maximal) and hence θ < x(t∗) = x(t0) ≤ θ clearly is a contradiction.

Lower Barrier. With an analogue reasoning as in the proof for the upper barrier we can establish
the following: If x(s0) ∈ (0, θ] for some s0 ∈ Iδ then x(t) ∈ [x(s0), θ] for all t ≥ s0. This yields the claim for all
initial values strictly larger than zero. We need x(s0) to exceed zero to guarantee the existence of a small
interval (s0 − δ, s0 + δ) where x ≥ 0 still holds, to be able to use K(s, x(s)) ≥ 0 on this interval. For x(t0) = 0 we
approximate the solution by considering initial values xn(t0) = 1/n, i.e., we find solutions xn to

x′n(t) = K(s, xn(s))
(
1 −

xn(s)
θ

)
with xn(t0) = n−1.

As shown before we then know that xn(t) ∈ [1/n, θ] for all t ∈ Iδ. By the continuity we assumed we can pass
to the limit in n and obtain 0 ≤ x(t) ≤ θ for all t ∈ Iδ. �

Lemma 78 (A snippet). On the compatibility of abstract and pointwise ODEs.

Proof. Note that for any function b ∈ W1,2(I,C0(Ω)) and arbitrary x ∈ Ω we have that b(·, x) is a member of
H1(I) and that it holds

∂t(b(·, x)) = (dtb)(·, x),
where on the left side of the above equation ∂t denotes the weak derivative of the space H1(I) and dt denotes
the abstract derivative of the space W1,2(I,C0(Ω)). Furthermore we can bound the H1(I) norm of b(, ·, x) in
terms of the W1,2(I,C0(Ω)) norm of b. To this end compute

‖b(·, x)‖L2(I) = ‖b‖2C0(I×Ω)|I|.

and

‖∂tb(·, x)‖L2(I) = L-
∫

I
dtb(t, x)2dt = evx

(
B-

∫
I
(dtb)2dt

)
≤ ‖evx‖C0(Ω)∗

∥∥∥∥∥B-
∫

I
(dtb)2dt

∥∥∥∥∥
C0(Ω)

≤

 sup
‖ϕ‖C0(Ω)≤1

ϕ(x)

 · L-
∫

I
‖dtb‖2C0(Ω)dt

≤ ‖dtb‖2L2(I,C0(Ω)),
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where we have indicated Bochner integrals by B-
∫

and Lebesgue integrals by L-
∫

for clarity. Consequently,
bk(·, x) is bounded uniformly in k ∈ N and x ∈ Ω. For every fixed x ∈ Ω we can extract a C0(I) convergent
subsequence (by the compact embedding H1(I) ↪→↪→ C0(I)) and identify its limit as b∗(·, x) ∈ H1(I), via the
convergence bk → b∗ in C0(I×Ω). Then b∗(·, x) satisfies the limit ODE and thus b∗ does so in W1,2(I,C0(Ω)). �

Before we apply the existence theorems to the ODEs in the main text, we need an elementary equality that
allows us to quantify the violation of the global Lipschitz continuity of the product of real numbers.
Lemma 79. Let N ∈N and a1, . . . , aN and a1, . . . , aN be real numbers. Then it holds

N∏
i=1

ai −

N∏
i=1

ai =

N∑
k=1

[( N−k∏
i=1

ai

)( N∏
i=N−k+2

ai

)
(aN−k+1 − aN−k+1)

]
where of course the empty product is set to the value 1.

Proof. By induction, the formula can easily be guessed by writing out values for small N. It clearly holds
for N = 1, now suppose we know it to hold for N. We compute

N+1∏
i=1

ai −

N+1∏
i=1

ai =
( N∏

i=1

ai

)
aN+1 −

( N∏
i=1

ai

)
aN+1

=
( N∏

i=1

ai

)
(aN+1 − aN+1) + aN+1

( N∏
i=1

ai −

N∏
i=1

ai

)
=

( N∏
i=1

ai

)
(aN+1 − aN+1)

+ aN+1

N∑
k=1

[( N−k∏
i=1

ai

)( N∏
i=N−k+2

ai

)
(aN−k+1 − aN−k+1)

=
( N∏

i=1

ai

)
(aN+1 − aN+1)

+

N+1∑
k=2

[( N+1−k∏
i=1

ai

)( N+1∏
i=N+1−k+2

ai

)
(aN+1−k+1 − aN+1−k+1)

]

=

N+1∑
k=1

[( N+1−k∏
i=1

ai

)( N+1∏
i=N+1−k+2

ai

)
(aN+1−k+1 − aN+1−k+1)

]
.

�

We discuss now the existence of a unique solution of the cell ODE.

Lemma 80 (Solveability of the Cell ODE). Assume H : RN+2
→ R is locally Lipschitz continuous and that H is

non-negative if all its arguments are non-negative. Further, assume that H = H2
◦ H1 with a Lipschitz continuous

map H1 : RN+2
→ RM and the product H2(h1, . . . , hM) =

∏M
i=1 hi. Let a = (a1, . . . , aN) be a function in Lp(I,C0(Ω)N)

for every p ∈ [1,∞) with ai(t, x) ≥ 0 for all (t, x) ∈ I ×Ω and let b ∈ C0(I ×Ω) with 0 ≤ b(t, x) ≤ 1. Furthermore,
ρ ∈ C0(Ω) is such that it holds 0 < cP ≤ ρ(x) ≤ CP for two positive constants cP,CP. Then there is a unique solution
c ∈W1,2(I,C0(Ω)) of the equation

dtc = H(a1, . . . , aN, b, c)
(
1 −

c
1 − ρ

)
with c(0) = 0.

Furthermore the solution satisfies 0 ≤ c(t, x) ≤ 1 − ρ(x) for all t ∈ I and x ∈ Ω.

Proof. To begin with, define the auxiliary function

H̃ : RN+2
× [cP,CP]→ R with H̃(a, b, c, ρ) = H(a, b, c)

(
1 −

c
1 − ρ

)
.
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By the Lipschitz continuity of H1 and the product form of H2, the function H̃ is locally Lipschitz continuous.
Now note that the ODE is induced by

F : I × C0(Ω)→ C0(Ω) with F(t, c) = x 7→ H̃(a(t, x), b(t, x), c(x), ρ(x)).

We aim to apply Theorem 74 to produce a short-time solution, hence we need to guarantee

(i) F(t, c) ∈ C0(Ω) for all t ∈ I and c ∈ C0(Ω),

(ii) F( · , c) : I→ C0(Ω) is Bochner measurable for all c ∈ C0(Ω),

(iii) F satisfies (4.14) and (4.15).

The statement (i) is clear as F(t, c) is a composition of continuous functions. To prove (ii) we write a
as a pointwise almost everywhere limit of finitely valued, measurable functions (sk) ⊂ S(I,C0(Ω)N) and
likewise with b, i.e., b is the pointwise almost everywhere limit of functions (qk) ⊂ S(I,C0(Ω)). Then
t 7→ H̃(sk(t), qk(t), c, ρ) is a member of S(I,C0(Ω)). As sk(t) → a(t) in C0(Ω)N almost everywhere in I and the
same holds true for qk(t)→ b(t), for fixed t ∈ I the set⋃

k∈N

{(sk(t, x), qk(x), c(x), ρ(x)), (a(t, x), b(x), c(x), ρ(x)) | x ∈ Ω} ⊂ RN+3

is relatively compact in RN+3. Hence, on this set, H is Lipschitz continuous and we may estimate∥∥∥H̃(sk(t), b, c, ρ) − H̃(a(t), b, c, ρ)
∥∥∥

C0(Ω)
≤ C

(
‖sk(t) − a(t)‖C0(Ω) + ‖qk(t) − b(t)‖C0(Ω)

)
.

This establishes the Bochner measurability in (ii). To show (iii), let B ⊂ C0(Ω) be a bounded set. By the
assumption on the boundedness of ρ, it suffices to consider the following estimate in order to establish
(4.14). We let c ∈ B and estimate

‖H(a(t), b(t), c)‖C0(Ω) ≤

M∏
i=1

∥∥∥H1
i (a(t), b(t), c)

∥∥∥
C0(Ω)

≤

M∏
i=1

[∥∥∥H1
i (a(t), b(t), c) −H1

i (0, 0, 0)
∥∥∥

C0(Ω)
+

∥∥∥H1
i (0, 0, 0)

∥∥∥
C0(Ω)

]
≤

M∏
i=1

[
LH1

(
‖a(t)‖C0(Ω)N + ‖b(t)‖C0(Ω) + ‖c‖C0(Ω)

)
+

∥∥∥H1(0, 0, 0)
∥∥∥

C0(Ω)M

]
≤ mB(t)

As a is a member of Lp(I,C0(Ω)N) for any p ∈ [1, p), b and ρ are bounded by assumption and c ∈ B, we may
choose mB ∈ Lp(I) for any p ∈ [1, p) and in particular for p = 2. For c, c ∈ B we use Lemma 79∥∥∥H(a(t), b(t), c) −H(a(t), b(t), c)

∥∥∥
C0(Ω)

=

∥∥∥∥∥∥∥
M∏

i=1

H1
i (a(t), b(t), c) −

M∏
i=1

H1
i (a(t), b(t), c)

∥∥∥∥∥∥∥
C0(Ω)

=

∥∥∥∥∥∥ M∑
k=1

M−k∏
i=1

H1
i (a(t), b(t), c)


 M∏

i=M−k+2

H1
i (a(t), b(t), c)

︸                                                    ︷︷                                                    ︸
(∗)

(
H1

M−k+1(a(t), b(t), c) −H1
M−k+1(a(t), b(t), c)

) ∥∥∥∥∥∥
C0(Ω)

We treat (∗) first. Estimating for any k = 1, . . . ,M yields

M−k∏
i=1

H1
i (a(t), b(t), c) ≤

M∏
i=1

(
H1

i (a(t), b(t), c) + 1
)
.
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The global Lipschitz continuity of H1 implies then for any i = 1, . . . ,M the estimate∥∥∥H1
i (a(t), b(t), c)

∥∥∥
C0(Ω)

≤ LH1

(
‖a(t)‖C0(Ω)N + ‖b(t)‖C0(Ω) + ‖c‖C0(Ω)

)
+

∥∥∥H1
i (0, 0, 0)

∥∥∥
C0(Ω)

.

Combining the two preceding estimates yields∥∥∥∥∥∥∥
M∏

i=1

H1
i (a(t), b(t), c)

∥∥∥∥∥∥∥
C0(Ω)

≤

M∏
i=1

[
LH1

(
‖a(t)‖C0(Ω)N + ‖b(t)‖C0(Ω) + ‖c‖C0(Ω)

)
+

∥∥∥H1
i (0, 0, 0)

∥∥∥
C0(Ω)

+ 1
]

≤ L̃B(t), for c ∈ B,

with L̃B ∈ Lp(I) for any p ∈ [1,∞), in particular for p = 4. Estimating the second factor of (∗) identical, we get

∥∥∥H(a(t), b(t), c) −H(a(t), b(t), c)
∥∥∥

C0(Ω)
≤

M∑
k=1

L̃B(t)2
∥∥∥H1

i (a(t), b(t), c) −H1
i (a(t), b(t), c)

∥∥∥
C0(Ω)

≤MLH1 L̃B(t)2
∥∥∥c − c

∥∥∥
C0(Ω)

≤ LB(t)
∥∥∥c − c

∥∥∥
C0(Ω)

,

with LB ∈ L2(I). To establish a long-time solution note that by our pointwise Lemma 77 we have

0 ≤ c(t, x) ≤ 1 − ρ(x) ≤ 1.

Using the remark following Theorem 74 we conclude. �

IV Time Adjoint Problems

In this Section of the Appendix we discuss how to treat the adjoint operator of a linear, time dependent
equation. A time derivative introduces asymmetry in the choice of the domain and codomain of the whole
operator, with the domain being a smaller space. This leads to a large and abstract dual space as the
codomain of the adjoint operator. Therefore, it is usually necessary to require regularity properties of
the right hand side of the adjoint equation in order to be able to derive a formulation that is suitable for
numerical treatment.

As an example, let I = [0,T] be a time interval, m ∈ L∞(I) and consider the linear ODE operator

dt + m : H1
0(I)→ L2(I), v 7→ dtv + m · v

where H1
0(I) now denotes the functions with vanishing initial value. By Theorem 71, dt + m is a linear

homeomorphism. Its Banach space adjoint is given by

(dt + m)∗ : L2(I)∗ → H1
0(I)∗, φ 7→ φ (dt · +m·)

and can be defined on L2(I) through the Riesz isometry of L2(I)

u 7→
∫

I
udt · +um · dt ∈ H1

0(I)∗.

Now, let ψ ∈ H1(I)∗. Only if ψ is given through ψ =
∫

I fψ · dt for fψ ∈ L2(I) the solution to∫
I
udt · +um · dt =

∫
I

fψ · dt in H1
0(I)∗

is actually a member of H1(I) and satisfies the final value problem

−dtu + um = fψ, u(T) = 0.

If ψ ∈ H1
0(I)∗ \ L2(I), no such regularity can be expected. For the rest of the Section we are concerned with

deriving equations of the above final value form in various settings, including parabolic PDEs and Banach
space valued ODEs. The reader being content with an equation of this final value form might skip these
abstract discussions.
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4.1 Time Adjoint Problems on Reflexive Spaces

We begin by deriving the adjoint maps to linear parabolic equations defined on Banach space valued Sobolev
spaces. We assume that the underlying space X is reflexive, which is reasonable in the weak formulation
for a wide class of parabolic equations. Later, for Banach space valued ODEs and certain regularity related
formulations, we drop this reflexivity assumption.
Lemma 81 (Existence of Time Derivatives). Given a reflexive Banach space X and assume there is a symmetric
embedding j : X→ X∗, i.e., 〈 j(x), y〉 = 〈 j(y), x〉. We consider the space W1,2,2(I,X,X∗). A function u ∈ L2(I,X) has a
time derivative in this space if

f : C∞c (I,X)→ R, ϕ 7→

∫
I
〈dtϕ(t),u(t)〉dt

is continuous when C∞c (I,X) is endowed with the L2(I,X) topology, i.e., if it holds for a constant C

| f (ϕ)| ≤ C‖ϕ‖L2(I,X) for all ϕ ∈ C∞c (I,X).

Proof. As the map f is linear and continuous it is uniformly continuous between the spaces

f :
(
C∞c (I,X), ‖·‖L2(I,X)

)
→ R

and can thus be (uniquely) extended to all of L2(I,X), i.e., is a member of L2(I,X)∗. The duality theory of the
space L2(I,X) implies – by the virtue of the Radon-Nikodým property of X – the existence of v ∈ L2(I,X∗)
representing f , that is ∫

I
〈dtϕ(t),u(t)〉dt =

∫
I
〈v(t), ϕ(t)〉dt, for all ϕ ∈ C∞c (I,X).

Now choose ϕ = xψ for x ∈ X and ψ ∈ D(I). This yields

〈dt(xψ)(t),u(t)〉X = 〈 j(x∂tψ(t)),u(t)〉X = 〈 j(u(t))∂tψ(t), x〉X

by the symmetry of j. Hence we have〈∫
I

j(u)∂tψdt, x
〉

X
=

∫
I
〈 j(u)∂tψ, x〉dt =

∫
I
〈v, ψx〉dt = −

〈∫
I
−vψdt, x

〉
for all t ∈ I, x ∈ X,

thus dtu = −v. �

Remark 82. The statement of the above Lemma holds true under the weaker assumption that X possesses
the Radon-Nikodým property instead of reflexivity. The Radon-Nikodým property implies the duality
L2(I,X)∗ = L2(I,X∗) and reflexive spaces possess this property. We refer to Diestel and Uhl (1977).
Remark 83. The Lemma above is applicable in the context of Gelfand triples, which is the typical setting
encountered in evolution equations. Remember that we call the triple (i,X,H) a Gelfand triple if X is a
reflexive Banach space, H is a Hilbert space with Riesz isometry R and i : X→ H is a dense embedding, i.e.,
linear, continuous and injective with dense range. In this context the map j : X→ X∗ is given by

j : X→ X∗ ,u 7→ (i∗ ◦ R ◦ i) (u) = (i(u), i(·))H .

Then by the symmetry of the inner product, the map j is symmetric.

Now we are in a position to discuss the adjoint equation corresponding to a linear, time-dependent problem
modeled on the Sobolev space corresponding to L2(I,X) where again X is reflexive. Given a Gelfand triple
(i,X,H) and an operator A ∈ L(L2(I,X),L2(I,X)∗), where A is assumed to be nothing more but linear and
continuous for the moment, we consider the time-dependent problem

T : (dt +A, ev0) : W1,2,2(I,X,X∗)→ L2(I,X)∗ ×H, u 7→
(∫

I
〈dtu, ·〉dt +Au,u(0)

)
.

Then we look at the adjoint map T∗ modulo some isomorphisms

L2(I,X) ×H
J×R
−→ L2(I,X)∗∗ ×H∗ I

−→

(
L2(I,X)∗ ×H

)∗ T∗
−→W1,2,2(I,X,X∗)∗.
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Here, J denotes the natural isometry of a reflexive Banach space and its bi-dual, R denotes the Riesz isometry
of the Hilbert space H and I is the isomorphism corresponding to Cartesian products and dualization,
compare to φ in Lemma 38. Unwinding the definitions of the above composition we get for (u,u0) ∈
L2(I,X) ×H and v ∈W1,2,2(I,X,X∗) that

〈(T∗ ◦ I ◦ J × R)(u,u0), v〉 = 〈I(Ju,Ru0),Tv〉
= 〈Ju,T1v〉 + 〈Ru0,T2v〉
= 〈T1v,u〉 + (u0,T2v)H

=

∫
I
〈dtv,u〉Xdt + 〈Av,u〉L2(I,X) + (u0, v(0))H

=

∫
I
〈dtv,u〉Xdt + 〈(A∗ ◦ J)u, v〉L2(I,X) + (u0, v(0))H

Hence setting T† = T∗ ◦ I ◦ J × R we computed that

T† : L2(I,X) ×H→W1,2,2(I,X,X∗)∗, is given by T†(u,u0) =

∫
I
〈dt·,u〉Xdt + 〈(A∗ ◦ J)u, ·〉L2(I,X) + (u0, ev0(·))H .

Proposition 84 (Well Posedness in Coercive Setting). Let X be a Hilbert space and (i,X,H) a Gelfand triple.
Assume thatA is induced by a bounded, possibly time-dependent, measurable form a : I×X×X→ R that is coercive
with coercivity constant independent of I, then T and consequently T† defined above are linear homeomorphisms.

Proof. The celebrated maximal X∗-regularity result of Lions implies that T is a linear homeomorphism in this
setting. See for instance Fackler (2017) or for the original work (Dautray and Lions, 2012, p. 513, Theorem
2). Consequently, its adjoint T∗ is and as T† consists of the composition of T∗ with linear homeomorphisms,
the assertion follows. �

Remark 85. In light of Proposition 84 we see that for every right-hand side f in H1(I,X,X∗)∗, the equation
T†(u,u0) = f possesses a unique solution (u,u0) ∈ L2(I,X)×H. However, it is not so clear how to numerically
approximate this solution. It turns out that assuming the regularity f ∈ L2(I,X)∗ leads to a more convenient
formulation that can be handled numerically.

Theorem 86 (Time Adjoint Problems). Assume (i,X,H) is a Gelfand triple and A is a member of
L(L2(I,X),L2(I,X)∗). We use the notation of the above paragraph and assume that f ∈ L2(I,X)∗ and (u,u0) ∈
L2(I,X) ×H. Then the following are equivalent

(i) T†(u,u0) = f

(ii) The function u is a member of H1(I,X,X∗) and it satisfies the final-value problem

−

∫
I
〈dtu, ·〉Xdt + 〈(A∗ ◦ J)u, ·〉L2(I,X) = f

u(T) = 0, u(0) = u0.

Proof. We start with the implication (ii)⇒ (i). We test the equation in (ii) by v ∈ H1(I,X,X∗)

−

∫
I
〈dtu, v〉Xdt + 〈(A∗ ◦ J)u, v〉L2(I,X) = f (v).

Now, we use the partial integration formula for Gelfand triples and unwindA∗ ◦ J∫
I
〈dtv,u〉Xdt − (u(T), v(T))H + (u(0), v(0))H + 〈Av,u〉L2(I,X) = f (v)

and with the assumptions u(T) = 0 and u(0) = u0 this is nothing but∫
I
〈dt·,u〉Xdt + 〈A·,u〉L2(I,X) + (u0, ev0(·))H = f in H1(I,X,X∗)∗.
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Now to (i)⇒ (ii). First we show that T†(u,u0) = f implies u ∈ H1(I,X,X∗). The map

ϕ 7→

∫
I
〈dtϕ,u〉Xdt = f (ϕ) − 〈Aϕ,u〉L2(I,X)

is linear and continuous with respect to the L2(I,X) topology on C∞c (I,X) by the assumption made on f . So
we use Lemma 81 to deduce u ∈ H1(I,X,X∗). Now we test with ϕ ∈ C∞c (I,X) and by the deduced regularity
of u are in the position to apply the partial integration formula for Gelfand triples. This yields

−

∫
I
〈dtu, ϕ〉Xdt + 〈Aϕ,u〉L2(I,X) = f (ϕ), (4.17)

which, by density, holds true not only for C∞c (I,X) but for all of L2(I,X). We now only need to identify the
final and initial values of u. To this end test T(u,u0) = f with an arbitrary function v ∈ H1(I,X,X∗) and use
partial integration

−

∫
I
〈dtu, v〉Xdt + (u(T), v(T))H − (u(0), v(0))H + 〈Av,u〉L2(I,X) + (u0, v(0)) = f (v).

Using the equation established in (4.17) this becomes

(u(T), v(T))H + (u0, v(0))H = (u(0), v(0))H , for all v ∈ H1(I,X,X∗).

Testing with functions v that vanish at the initial time-point yields - upon inferring the density of the
embedding X ↪→ H – that u(T) = 0. Analogously, testing with functions vanishing at the final time-point,
we obtain u(0) = u0. �

Remark 87. We want to draw the readers attention to two points.

(i) Note that in the above proof, no properties besides the linearity and boundedness of A played a
role. However, the duality theory of L2(I,X) is still important to be able to identifyA∗.

(ii) The above theorem applies to linear ODEs, both real valued and Hilbert space valued. This
corresponds to the choice of the trivial Gelfand triple, i.e., X = H = R for the real case and X = H
for the Hilbert space valued case. However, it does not apply to ODEs posed on general Banach
spaces.

4.2 Time Adjoint Problems on Non-Reflexive Spaces

From the previous discussion in the previous Section we know that a time adjoint problem takes the form∫
I
〈dt·,u〉Xdt + 〈A·,u〉L2(I,X) + (u0, ev0(·))H = f ,

where f is allowed to be a member of H1(I,X,X∗)∗. Under the assumption of f ∈ L2(I,X)∗ this equation
can be turned into a final value problem which is well-suited for numerical treatment. However, in our
application we need to consider a more regular space than merely H1(I,X,X∗) for the forward problem. We
need a space of the form

H1(I,X,X∗) ∩ L2(I,V),

where V is a non-reflexive Banach space (also lacking the Radon-Nikodým property) and X and V embed
into a joint larger space. If we then define our forward problem on this space

(dt +A, ev0) : H1(I,X,X∗) ∩ L2(I,V)→ L2(I,X)∗ ×H (4.18)

the adjoint operator stays the same in the way it maps, but allows for more general right-hand sides. It is
in general unknown to us how to determine the range space of (4.18) in a fruitful way. Therefore, we will
only work under the assumption that we are given an element of the range space of the adjoint of (4.18) of
a certain regularity and then deduce smoothness properties of its solution. Furthermore, we will not stay
in the abstract setting but rather work with the concrete spaces.
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Setting 88. Let Ω ⊂ Rd be open and bounded with a partition of the boundary ∂Ω = ΓN ∪ ΓD in a Dirichlet
and a Neumann part. The sets ΓD and ΓN may have vanishing measure (but must still split all of the
boundary between them). Let A : H1

D(Ω) → H1
D(Ω)∗ be a linear, continuous, coercive and self-adjoint2

and denote by A ∈ L(L2(I,H1
D(Ω)),L2(I,H1

D(Ω))∗) its induced operator between Bochner spaces. Then we
consider the map

(dt +A, ev0) : H1(I,H1
D(Ω),H1

D(Ω)∗) ∩ L2(I,C0(Ω))→ L2(I,H1
D(Ω))∗ × L2(Ω).

The space H1(I,H1
D(Ω),H1

D(Ω)∗) is built around the Gelfand triple (Id,H1
D(Ω),L2(Ω)). As we assume A to be

self-adjoint, this property is inherited byA and the time adjoint problem takes the form

(dt +A, ev0)† : L2(I,H1
D(Ω)) × L2(Ω)→

[
H1(I,H1

D(Ω),H1
D(Ω)∗) ∩ L2(I,C0(Ω))

]∗
C X∗

with

(q, µ) 7→
∫

I
〈dt·, q〉H1

D(Ω)dt + 〈Aq, ·〉L2(I,H1
D(Ω)) +

∫
Ω

µ ev0(·)dx.

This follows exactly as in the previous Section, since we did not change anything in the codomain of the
forward problem. We assume for our investigations from now on that we are given f ∈ L2(I,L1(Ω)) together
with a solution (q, µ) ∈ L2(I,H1

D(Ω)) × L2(Ω) of

(dt +A, ev0)† (q, µ) =

"
f · dxdt, in X∗. (4.19)

Lemma 89. Let f ∈ L2(I,L1(Ω)) be fixed and assume (q, µ) ∈ L2(I,H1
D(Ω)) × L2(Ω) solves∫

I
〈dt·, q〉H1

D(Ω) + 〈Aq, ·〉L2(I,H1
D(Ω)) +

∫
Ω

µ ev0(·)dx =

"
f · dxdt. (4.20)

Then q is of the regularity W1,2,2(I,H1
D(Ω), [H1

D(Ω) ∩ C0(Ω)]∗) and it satisfies

−

∫
I
〈dtq, ·〉H1(Ω)∩C0(Ω)dt + 〈Aq, ·〉 =

"
f · dxdt, in L2(I,H1

D(Ω) ∩ C0(Ω))∗.

Proof. In order to show that dtq ∈ L2(I, [H1
D(Ω) ∩ C0(Ω)]∗) we need to prove that there is g ∈ L2(I, [H1

D(Ω) ∩
C0(Ω)]∗) such that for all ϕ ∈ D(I) and ψ ∈ H1

D(Ω) ∩ C0(Ω) it holds"
qψ∂tϕdxdt = −

∫
I
〈g, ψ〉H1

D(Ω)∩C0(Ω)ϕdt.

This clarifies that the identification underlying the space W1,2,2(I,H1
D(Ω), [H1

D(Ω) ∩ C0(Ω)]∗) is meant to be

ι : H1
D(Ω) ↪→ (H1

D(Ω) ∩ C0(Ω))∗, ι(ψ) =

∫
Ω

ψ · dx, in [H1
D(Ω) ∩ C0(Ω)]∗.

Now we test (4.20) with ϕψ and use

dt(ϕψ) = ι(∂tϕψ) = ∂tϕ

∫
Ω

ψ · dx

to obtain "
qψ∂tϕdxdt =

∫
I
〈dt(ϕψ), q〉H1

D(Ω)dt

=

∫
I

[∫
Ω

fψ − 〈Aq, ψ〉H1
D(Ω)

]
ϕdt︸                                 ︷︷                                 ︸

=
∫

I〈g,ψ〉ϕdt

−

∫
Ω

µ ev0(ϕψ)dx.︸               ︷︷               ︸
=0

2We call an operator TL(X,X∗) from a reflexive Banach space to its dual self-adjoint, if it holds 〈Tx, y〉 = 〈Ty, x〉 for
all x, y ∈ X.
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Hence, it follows that dtq ∈ L2(I, [H1
D(Ω) ∩ C0(Ω)]∗) and by the definition of the time derivative∫

I
〈dtq, ·〉H1

D(Ω)∩C0(Ω)dt =

∫
I
〈Aq, ·〉H1

D(Ω)dt −
"

f · dxdt

= 〈Aq, ·〉L2(I,H1
D(Ω)) −

"
f · dxdt

which yields the assertion upon rearranging. �

Remark 90. It remains open how to treat the question of intial/final values in general. We will however
give a condition under which q(T) = 0 can be obtained.

Lemma 91. Let ( fk) ⊂ L2(I,L2(Ω)) approximate f ∈ L2(I,L1(Ω)) in the topology of L2(I,L1(Ω)) and assume there are
solutions (qk) ⊂W1,2,2(I,H1

D(Ω), [H1
D(Ω) ∩ C0(Ω)]∗) to the equation∫

I
〈dt·, qk〉dt + 〈Aqk, ·〉L2(I,H1

D(Ω)) +

∫
Ω

µ ev0(·)dx =

"
fk · dxdt, inX∗

that, up to a subsequence, converge to a limit q ∈ W1,2,2(I,H1
D(Ω), [H1

D(Ω) ∩ C0(Ω)]∗) in the topology of
W1,2,2(I,H1

D(Ω), [H1
D(Ω) ∩ C0(Ω)]∗). Then q solves the final value problem

−

∫
I
〈dtq, ·〉H1(Ω)∩C0(Ω)dt + 〈Aq, ·〉L2(I,H1

D(Ω)) =

"
f · dxdt, in L2(I,H1

D(Ω) ∩ C0(Ω))∗

q(T) = 0, in [H1
D(Ω) ∩ C0(Ω)]∗.

Proof. As fk is a member of L2(I,L2(Ω)), we can extend the equation for uk to hold in H1(I,H1
D(Ω),H1

D(Ω)∗)∗

instead of only X∗. Then Theorem 86 applies and we get qk(T) = 0 in L2(Ω). To pass to the limit, note that
we have the embedding

H1(I,H1
D(Ω),H1

D(Ω)∗) ↪→ C0(I, [H1
D(Ω) ∩ C0(Ω)]∗)

which implies that qk(T)→ q(T) in [H1
D(Ω) ∩ C0(Ω)]∗ and hence yields the assertion. �

4.3 ODE Adjoint Maps

We need a result similar to the adjoint characterization for parabolic equations in the case of Banach space
valued, linear ODEs. We restrict us to the case of a Banach algebra X (we use C0(Ω) or Cα(Ω)) and the
Sobolev space W1,p

0 (I,X), where the subscript zero means that initial values vanish. The power p lies in
(1,∞]. We consider the following ODEs.
Setting 92. Let m ∈ Lp(I,X) be a fixed function. Consider the multiplication operator M induced by m

M : C0(I,X)→ Lp(I,X), Mv = t 7→ m(t)v(t).

Remember that Theorem 71 showed that the map

dt + M : W1,p
0 (I,X)→ Lp(I,X), v 7→ dtv + Mv

is a linear homeomorphism. Furthermore, we consider the Banach space adjoint of the map (dt + M). This
is given by

(dt + M)∗ : Lp(I,X)∗ →W1,p
0 (I,X)∗, (dt + M)∗ (h∗) = h∗ [dt · +M·] .

The following Theorem is a regularity result for the dual operator of dt + M and is particularly useful for
numerical implementation.

Theorem 93 (Regularity for Adjoint ODEs). Let Ω be an open and bounded subset of Rd and m ∈ L2(I,C0(Ω)).
Denote by M the corresponding multiplication operator. Fix a function f ∈ L2(I,L1(Ω)). Then there exists a unique
h∗ ∈W1,2

0 (I,C0(Ω))∗ satisfying

h∗ [dt · +M·] =

"
f · dxdt, in W1,2

0 (I,C0(Ω))∗.
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Furthermore, there is a unique function h ∈W1,2(I,L1(Ω)) satisfying

h∗ =

"
h · dxdt

and h is the unique solution of the final value problem

− dth + Mh = f , h(T) = 0 (4.21)

in the space W1,2(I,L1(Ω)).

Proof. We show first that (4.21) can be solved uniquely in W1,2(I,L1(Ω)). To this end we set

h̃(t) = h(T − t), m̃(t) = m(T − t), f̃ (t) = f (T − t),

then the equation (4.21) becomes
dth̃ + M̃h̃ = f̃ , h̃(0) = 0,

where m̃ ∈ L2(I,C0(Ω)) ⊂ L2(I,L1(Ω)) and f̃ ∈ L2(I,L1(Ω)). Using Theorem 71 we find that there exists a
unique solution h̃ in W1,2

0 (I,L1(Ω)) and consequently h(t) = h̃(T − t) solves (4.21).

Let us now remark on the partial integration formula we need in the following argument. Consider the
continuous bilinear form

B : C0(Ω) × L1(Ω)→ R, B(u, v) =

∫
Ω

uvdx.

Then it holds for u ∈W1,p(I,C0(Ω)) and v ∈W1,q(I,L1(Ω)), p, q ∈ [1,∞) for time-points s ≤ t in I that∫ t

s

∫
Ω

dtu · vdxdt = B(u(t), v(t)) − B(u(s), v(s)) −
∫ t

s

∫
Ω

udtvdxdt

=

∫
Ω

u(t)v(t)dx −
∫

Ω

u(s)v(s)dx −
∫ t

s

∫
Ω

dtvdxdt.

This can be proven by an approximation argument using the density of C∞(I,C0(Ω)) in W1,p(I,C0(Ω)) and
C∞(I,L1(Ω)) in W1,q(I,L1(Ω)) respectively. Now we use this formula applied to the equation (4.21) which we
multiply by a function ϕ ∈W1,2

0 (I,C0(Ω)) and integrate over all of I ×Ω to obtain"
fϕdxdt = −

"
dthϕdxdt +

"
mhϕdxdt

=

"
dtϕhdxdt +

∫
Ω

h(T)ϕ(T)dx −
∫

Ω

h(0)ϕ(0)dx︸                                   ︷︷                                   ︸
=0

+

"
mhϕdxdt

=

"
dtϕhdxdt +

"
mhϕdxdt.

This is nothing but ["
h · dxdt

]
[dt · +M·] =

"
f · dxdt, in W1,2

0 (C0(Ω)),

which means that

h∗ =

"
h · dxdt

as h∗ is unique. The uniqueness of h∗ is due to the fact that (dt + M)∗ is a linear homeomorphism as dt + M
is. �
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Differentialgleichungen. Springer-Verlag.

Dondl, P., Poh, P. S., and Zeinhofer, M. (2021). An efficient model for scaffold-mediated bone regeneration.
arXiv preprint arXiv:2101.09128.

Dondl, P., Poh, P. S. P., Rumpf, M., and Simon, S. (2019). Simultaneous elastic shape optimization for a
domain splitting in bone tissue engineering. Proc. A., 475(2227):20180718, 17.

Dondl, P. and Zeinhofer, M. (2021). A parameter study on optimal scaffolds in a simple model for bone
regeneration. arXiv preprint arXiv:2110.07328.

Ern, A. and Guermond, J.-L. (2013). Theory and practice of finite elements, volume 159. Springer Science &
Business Media.

Evans, L. C. (1998). Partial Differential Equations, volume 19. Rhode Island, USA.

Fackler, S. (2017). J.-l. lions’ problem concerning maximal regularity of equations governed by non-
autonomous forms. In Annales de l’Institut Henri Poincaré C, Analyse non linéaire, volume 34, pages
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Annali di Matematica pura ed applicata, 51(1):1–37.

Stewart, S. (2019). Fracture non-union: A review of clinical challenges and future research needs. Malaysian
orthopaedic journal, 13(2):1.

Sumner, D. R. and Galante, J. O. (1992). Determinants of stress shielding. Clinical orthopaedics and related
research, 274:203–212.

Terjesen, T., Nordby, A., and Arnulf, V. (2009). Bone atrophy after plate fixation: Computed tomography of
femoral shaft fractures. Acta Orthopaedica Scandinavica, 56(5):416–418.

Viateau, V., Guillemin, G., Bousson, V., Oudina, K., Hannouche, D., Sedel, L., Logeart-Avramoglou, D., and
Petite, H. (2007). Long-bone critical-size defects treated with tissue-engineered grafts: A study on sheep.
Journal of Orthopaedic Research, 25(6):741–749.

Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., and Xie, Y. M. (2016).
Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic
implants: A review. Biomaterials, 83(c):127–141.

Werner, D. (2006). Funktionalanalysis. Springer.

Wolff, J. (1892). Das gesetz der transformation der knochen. A Hirshwald, 1:1–152.
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