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ABSTRACT

Decentralized transaction systems enable a network of participants to jointly Motivation.
keep track of balances for tokens which may represent a physical good such
as gold. Once the network grows beyond a few peers, agreeing on a single
understanding of value becomes challenging. A natural solution to this prob-
lem for most systems is to support different currencies. While providing this
functionality, the system has to protect the anonymity and confidentiality of
transactions to maintain the privacy of the participants. Detailed insight into
financial data allows accurate profiling.
Our goal is to propose a transaction system which has the functionality of sep- Problem statement.
arate currencies, known as types. Transactions must not reveal the types of
tokens involved and provide sender as well as recipient anonymity. Having
isolated types soon requires exchanges which efficiently and securely trade
tokens of different types. Still, the confidentiality and anonymity has to be
maintained. To build a privacy-preserving multi-type transaction system we Approach.
formalize the exact security and privacy requirements as a rigorous defini-
tion. Based on the requirements we construct the system partially from exist-
ing components. To achieve specific properties, we design our own building
blocks which are of general use. Finally we prove that our constructions satisfy
all requirements and implement a proof of concept to show practicability.
As a result, we present a framework of components which can be differently as- Result.
sembled to achieve a privacy-preserving multi-type transaction system. The
components fulfill the two critical invariants of a transaction: every spend-
ing operation must be authorized and the total supply must remain constant.
For both, we propose efficient non-interactive zero-knowledge (NIZK) proofs.
Additionally, we describe a new aggregatable signature scheme for decentral-
ized exchanges. Complementary to proving our constructions formally, we
build a possible application for digital license management on the basis of our
system.
Our work enables secure and confidential bookkeeping in scenarios without Conclusion &

contributions.a trusted third party. It serves as a foundation platform for multiple applica-
tions to come. Our main contributions are 1. an anonymously aggregatable
signature scheme 2. an asset conservation NIZK when using succinct com-
mitments 3. the formalization of a privacy-preserving multi-type transaction
system 4. the formalization and security definitions of a privacy-preserving
multi-type transaction system which supports exchange operations with 5. ef-
ficient constructions for the components of our systems which are used in 6. a
confidential license management system.





ZUSAMMENFASSUNG

Dezentrale Transaktionssysteme ermöglichen es einemNetzwerk von Teilneh- Motivation.
mern, gemeinsam die Verteilung von Tokens zu verwalten, die ein physisches
Gut wie Gold darstellen können. Sobald das Netzwerk über einige wenige Teil-
nehmer hinauswächst, wird es schwierig, sich auf ein einheitlichesVerständnis
vonWert zu einigen. Eine naheliegende Lösung für dieses Problem besteht für
die meisten Systeme darin, verschiedene Währungen zu unterstützen. Dabei
muss das SystemdieAnonymität undVertraulichkeit der Transaktionen schüt-
zen, umdie Privatsphäre der Teilnehmenden zuwahren. Detaillierte Einblicke
in die Finanzdaten ermöglichen umfangreiches Profiling.
Unser Ziel ist es ein Transaktionssystem zu erstellen, das die Funktionalität Problemstellung.
von separaten Währungen, so genannten Typen, unterstützt. Transaktionen
dürfen den Typ der beteiligten Tokens nicht preisgeben und müssen sowohl
dem Sender als auch dem Empfänger Anonymität bieten. Separate Typen füh-
ren bald zur Notwendigkeit eines Handels, der es ermöglicht, effizient und
sicher Tokens verschiedener Typen umzutauschen. Die Vertraulichkeit und
Anonymität muss jedoch gewahrt bleiben.
Zum Aufbau eines datenschutz-freundlichen Mehrtyp-Transaktionssystems
formalisieren wir die genauen Sicherheits- und Datenschutzanforderungen in Eigener Ansatz.
Form einer strikten Definition. Basierend auf den Anforderungen konstruie-
ren wir unser System aus teilweise bestehenden Komponenten. Um bestimm-
te, notwendige Eigenschaften zu erreichen, entwerfen wir darüber hinaus un-
sere eigenen Komponenten, die auch außerhalb unserer Anwendung nützlich
sind. Schließlich beweisen wir, dass unsere Konstruktionen alle Anforderun-
gen erfüllen und implementieren einen Proof of Concept, um die Praktikabi-
lität zu zeigen.
Als Ergebnis präsentieren wir einen Framework an Komponenten, die un- Ergebnis.
terschiedlich zusammengesetzt werden können, um datenschutzkonforme
Multi-Typ-Transaktionssysteme zu erhalten. Die Komponenten erfüllen die
beiden kritischen Teile einer Transaktion: jeder Zahlvorgang muss autorisiert
sein und die Gesamtbilanz muss konstant bleiben. Für beides schlagen wir
effiziente nicht-interaktive zero-knowledge-Beweise (NIZK) vor. Zusätzlich
beschreiben wir ein neues aggregierbares Signaturverfahren für dezentrale
Börsen. Ergänzend zum formalen Beweis unserer Konstruktionen entwickeln
wir auf der Grundlage unseres Systems eine mögliche Anwendung für digita-
les Lizenzmanagement.
Unsere Arbeit ermöglicht eine sichere und vertrauliche Buchführung in Sze- Zusammenfassung

der Beiträge.narien ohne vertrauenswürdige Drittparteien. Sie dient als Basisplattform für
zahlreiche künftige Anwendungen. Unsere wichtigsten Beiträge sind 1. ein
anonymes aggregierbares Signaturverfahren 2. einen NIZK zum Beweis der
Gesamtbilanzerhaltung bei Verwendung kompakter Commitments 3. die For-
malisierung eines Privatsphäre bewahrenden Mehrtyp-Transaktionssystems
4. die Formalisierung und Sicherheitsdefinitionen eines datenschutzfreundli-



viii

chenMultityp-Transaktionssystems, dasHandel ermöglicht zusammenmit ei-
ner 5. effiziente Konstruktionen für die Komponenten unserer Systeme, die in
6. einem vertraulichen Lizenzmanagementsystem verwendet werden..
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INTRODUCT ION

1
1.1 multi-type transaction systems

Transacting money between participants of a society enabled trade beyond
one-to-one exchange of value. This possibility accelerated progress in many
areas, as people were able to focus on a single task and payed other people for
services and goods.
One basic property of this system was that not everyone agreed on a com-
mon understanding of value. This led to multiple groups, each with their own
currency. Our current global society still uses this concept of national curren-
cies where sovereign states have control over the money used in their territory.
This allows adjustments on policies best matched to the local circumstances.
In the described setting, each currency can use a transaction system which is
suitable for their policies. Traditionally, there exist e.g. precious metals which
are naturally limited or objects representing value like fiat money regulated by
an authority. A drawback of such isolated systems is the incompatibility with
neighbors. While the trade of goods is preferable, e.g. by geographic proxim-
ity, the two separate monetary systems have to interact. A common solution is
to create an overarching systemwhich respects the individual policies, but pro-
vides a standardized exchange of currencies. For fiat currencies, an example
is the SWIFT1 system.
Currently, most of the society trusts the policy makers and banks to follow
their rules. An alternative, which requires less trust, is a publicly verifiable
ledger of transactions. Publishing the log of all transfers allows the general
public to verify that the bank did not corrupt the intended transactions. The
only trust left in banks is the ordering of transactions and publishing an
append-only log. Due to privacy concerns and compliance, there is no such
system operating. If the participants of the system cannot agree on an entity
for these tasks, consensus based protocols are a viable alternative. The combi-
nation of a transaction system and an ordering mechanism results in what is
commonly known as a Blockchain [Nak08].
Ledger based transaction systems encounter the same issue as classical mone-
tary systems. Separate groups like to have different policies, such as inflation
rate, and control over their currency. Allowing separate, interoperable cur-
rencies in a ledger based transaction system requires support for a currency
identifier for each amount. To abstract from the concrete currencies, we sep-
arate different policy regions by a type. Instead of representing a currency,
type amount pairs are usable in non monetary transaction systems. As a con-
sequence, each transaction in a multi-type ledger transaction system must not
only specify an amount to be transferred, but also requires the type to make
sure that an amount is always interpreted in the correct type.

1 https://www.swift.com

https://www.swift.com
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An already existing multi-type transaction system is the Ethereum ecosystem
which enables the co-existence of tokens in newly defined types. Any partici-
pant in the system can create tokens of a new type and use them independently
of the differently typed tokens. Interaction between tokens of different types
works through decentralized exchanges which atomically swap the tokens of
the respective types between owners.

1.2 confidentiality & anonymity

The advantage of reduced trust in a central entity with public ledger based
transaction systems comes at the cost of full transparency. All transactions are
publicly visible for analysis by everyone. Full insight into everyone’s financial
details by everyone is not desirable and lowers the acceptance of such a system
compared, to e.g., cash with its preferential anonymity.
Cryptographic tools enable transaction systems which allow public verifica-
tion of transactions without compromising the anonymity of the parties in-
volved andmaintaining the confidentiality of the transaction content. Senders
of a transaction should remain anonymous, such that a verifier is unable to ef-
ficiently differentiate if two transactions were created by the same or different
parties. The same applies for recipients. Only the intended recipient can detect
that they are the beneficiary of a transaction.
Given perfect sender and receiver anonymity, publishing a transaction with
the amount and type visiblemight still be enough to recover information about
senders and receivers. Every transaction output is linkable to all inputs with
the same amount and type, which in the worst case for a unique amount is
a one-to-one relation. The initial releases of Monero [Noe15] and Zerocoin
[MGGR13] solved this by allowing only a single denomination. If all input
and outputs have the same amount and no type, all output-input relations are
possible and the public amounts (all constant) do not deanonymize users. To
maintain the functionality of sending large sums without thousands of inputs
to a transaction, Monero below version 0.10.0 used denominations in powers
of two, each with their own disjoint anonymity set. Given around 20 denom-
inations, most amounts are representable and the anonymity is only reduced
by a factor of 20 as an observer learns which denomination was used. In later
versions of Monero and Zerocash [SCG+14], amounts are hidden such that all
inputs again share the full anonymity set.
A similar anonymity reduction exists with publicly visible types. If types of in-
puts and outputs are public, each type has it’s own anonymity set. This is espe-
cially problematic for types with few transactions resulting in a tiny anonymity
set. To prevent such attacks, it is important to have confidential amounts and
types.
Therefore, transactions contain all important information only in a hidden
form, e.g. as cryptographic commitments. This creates the issue that transac-
tions are no longer publicly verifiable to check that they follow all rules. In-
stead of verifying the rules directly, another option is to require the sender to
prove that the hidden information is correct without revealing it. This is pos-
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sible with non-interactive zero-knowledge proofs (NIZK) [RS92]. A verifier
only learns if a statement, e.g. the transaction, is valid or not. The NIZK as-
sures that the transaction is valid according to public rules, such as no amount
is created out of thin air and the sender has sufficient inputs to spend.
In summary, a multi-type privacy-preserving transaction system provides the
following properties:

− The anonymity of the sender in a transaction is preserved. Especially
the recipients in a transaction should not learnwho initiated the transfer.
We differentiate perfect sender anonymity where a transaction is equally
likely to be created by any participant and statistical sender anonymity,
which hides the sender in a smaller anonymity set.

− The recipients of a transaction must remain hidden from anyone except
the sender. Senders specify recipients in their own transaction but are
unable to detect the same recipients in a foreign transaction.

− All amounts are confidential and only the required parties (sender &
receiver) get access to the plaintext values.

− Equivalent to amounts, types are confidential.

Two existing transaction systems, Monero [Noe15] and Zcash [SCG+14], each
have a transaction NIZK optimized for slightly different parameters. While
Zcash achieves perfect sender anonymity at the cost of a trusted setup,Monero
only achieves statistical sender anonymity but has a transparent setup. Trans-
parent setups are preferable as all system parameters are publicly generated
while a trusted setup requires some randomness to be destroyed after gen-
erating the parameters. The statistical sender anonymity hides true senders
within a subset of all possible ones. This is anonymous as long as the majority
of senders do not collude. Both existing systems only support the first three
properties and lack the notion of type confidentiality.

1.3 research questions

From both the classical financial systems and fully public ledger based trans-
action systems, we recognize the need for interoperable multi-type transac-
tions. Concerns about fully transparent finances require a confidential and
anonymous transaction system. Our goal is to provide a multi-type confiden-
tial transaction system which provides anonymity and confidentiality in the
presence of types.
This leads to the first research question. Given the existing privacy-preserving
systems which have no notion of types,

How to integrate confidential types into private transaction systems?

The main challenge of this research question is maintaining sender and re-
ceiver anonymity. The information about types must not increase an adver-
sary’s probability of deanonymizing senders or receivers. On a technical level,
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the NIZK has to support a more complex conservation compared to summing
up inputs and subtracting outputs of a single type. This requires a new and ef-
ficient protocol.
Once we have amulti-type transaction system, different types can co-exist and
share the anonymity set. For interoperability, the participants still have to rely
trusted external parties to exchange value between different types. To provide
a self contained transaction system, we require a mechanism for participants
to exchange tokens of different types without an external trusted party. This
raises the second research questions:

How to enable fair (both parties get what they agreed upon) and anonymous
trading in a multi-type system?

Especially, is a built-in exchange system able to provide fair trades without re-
vealing the trading parties? Any change of token ownership is only fixed once
a transactions is persisted on the ledger. This motivates performing trades
with the least number of transactions. Is it possible to have single transaction
exchanges of token ownership atomically executed? Using a database termi-
nology, we call atomically executed exchanges of tokens atomic swaps. While
multiple parties could jointly create a transaction in a multi round protocol,
the challenge is to require only a single transmission from each participant.

1.4 contributions

In this work we present a solution in the form of a framework to createmulti-
type transaction systems with fair, efficient exchanges. We focus on sys-
tems with transparent setups, like Monero, which provide statistical sender
anonymity. With the current proving systems for transparent setups, perfect
sender anonymity is not efficiently achievable as the membership proofs for
each input within the whole set of possible inputs have either linear run-time
in the size of the set [Dia21] or a large coefficient for random oracle based trees
like Merkle trees [GKR+21].
The NIZK of privacy-preserving transactions fulfills two main properties.
First it assures that the sender of a transaction authorizes the spending of
their funds and second, conservation requires that receivers get exactly the
amount the sender spends. With both properties combined, the transactions
are considered correct. Both parts have to be adjusted to support confidential
types in a transaction.
For a rigorous security and privacy analysis of the resulting schemes, we
present a formalization of multi-type transaction systems with and without
swaps [EMP+21]. Swaps exchange tokens between parties where no one can
abort the protocol with an unfair advantage.
There already exist commitment schemes for types which have favorable
homomorphic properties, allowing type-separated computation on commit-
ments. Unfortunately they are not space efficient, which is important as all
transactions need to be persisted. Therefore we propose to use a succinct com-
mitment scheme to store amounts, types and other attributes. For an existing



1.5 overview 5

type homomorphic commitment (THC) scheme [PBF+17] and the succinct
commitment scheme, we present matching anonymous authorization and
conservation NIZK schemes.
TheseNIZK schemes enable transactions with confidential types, but exchang-
ing tokens of different types requires an external trusted entity. To support
integrated, fair, anonymous exchanges, we present an anonymously aggregat-
able signature scheme [EMP+21] where the authorization signatures of differ-
ent signers are merged by an untrusted party which then applies a signature
to assure conservation to get a final transaction.
Depending on the requirements of the deployment (with or without swap sup-
port, homomorphic commitments required), the presented versions of the
components (conservation and authorization NIZKs and aggregatable signa-
ture) may be combined to achieve the best performance. Table 1.1 provides
an overview of the resulting transaction sizes for the possible combinations.
To summarize, the succinct commitments achieve smaller transaction sizes
as THC based commitments. The reduction of the linear cost by a factor of
two significantly reduces the transaction size which is composed of the NIZK
proof (approximately 1 kB) and the outputs. While the proof size is similar for
THC and succinct commitments due to its logarithmic dependency, the out-
puts of the transaction require only half the space. For a transaction with 10
outputs, this reduces the transaction size from about 1.5 kB to 1.25 kB. Support
for anonymous swaps requires a linear cost for each additional input compared
to a logarithmic one for systems without swaps. The transaction only system
is asymptotically as efficient as a type unaware system.

Table 1.1: Sizes of our multi-type transactions and the state-of-the-art transac-
tion system without type support. We use 𝑚 inputs, 𝑛 outputs and
an anonymity set of size 𝑟.

transactions only with swap support
THC 𝒪(log(𝑟𝑚 + 𝑛)) + 2𝑛 𝒪(𝑚 log(𝑟 + 𝑛)) + 2𝑚 + 2𝑛
succinct com𝒪(log(𝑟𝑚𝑛 + 𝑛)) + 𝑛𝒪(𝑚 log(𝑟 + 𝑛) + 𝑚𝑛) + 𝑚 + 𝑛
no-type 𝒪(log(𝑟𝑚 + 𝑛)) + 𝑛 —

While the applications in the financial domain are evident, we additionally
sketch how our multi-type system provides a foundation for a confidential
licensing system [ESG+21]. Thereby we demonstrate the flexible use-cases
enabled by confidential types.

1.5 overview

Most contributions of this thesis are published in peer reviewed conferences.
To have a precise and detailed presentation of our contributions, we use verba-
tim sections from our papers. An overview of our papers and ongoing work
is summarized in Figure 1.1.
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Transaction Systems

Applications

Vehicle2X
[HEM+17]

IP protection
[EHNS18][ESG+21]

Chapter 7

Rewards
PrePaMS

Payment
Channels
[EKK+17]

Multi-type
[EKB18]

Conservation
Chapters 4,5

Succinct Commitments

Exchanges
[EMP+21]
Chapter 6

Updatable accounts
Multi-type QuisQuis

Mergeable Signatures
Chapter 3
Use-cases

Partial Transactions
Swaps in Zcash

Figure 1.1: Overview of our research areas and our published papers. Contri-
butions to this thesis are highlighted in gray along with chapter ref-
erences. Ongoing projects are noted in small print.

In Chapter 2 we introduce the technical notation and present existing schemes.
We continue with the building blocks, namely the anonymously aggregatable
signature scheme in Chapter 3 which is described in its general form for ap-
plicability outside of transaction systems. The second building block is the
asset conservation NIZK in Chapter 4 for our succinct commitment scheme
for confidential types.
Given both building blocks, we present an efficient multi-type privacy-
preserving transaction scheme in Chapter 5 and a transaction scheme which
supports fair swaps in Chapter 6.
In Chapter 7 we discuss the license management application based on our
multi-type transaction system.
We conclude our findings in Chapter 8 and point to future research topics
which are prompted by this work.
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2
2.1 related work on privacy-preserving decentralized

transaction systems

The first generation of ledger based decentralized transaction systems like Bit-
coin [Nak08] and Ethereum [Woo+14] only provides pseudonymity. Once a
pseudonym is linked to a real world identity, all actions of this pseudonym
are linkable [RH13; MPJ+13; RS13; FKP15; OKH13]. The possibility for any
real identity to control nearly unlimited different pseudonyms allows for mix-
ing based anonymity. Mixing systems like Mixcoin [BNM+14] or CoinShuffle
[RMK14] create a transaction where a set of pseudonyms redistribute their to-
kens among each other, hiding the ownership in the set of participants. So,
instead of an explicit history of a token, each mixing transaction introduces
uncertainty about which history is the true one. Conveniently such mixing
solutions can be deployed as smart contracts on top of existing systems like
Möbius [MM18] on Ethereum. All mixers have the drawback that they require
active participation and finding enough peers to mix with.
To avoid this limitation, Monero [Noe15] and Zcash [SCG+14] have transac-
tions where senders hide themselves in an anonymity set of other participants
without requiring their interaction. Together with themethods of confidential
transactions [Max15] to hide the transferred amounts, both systems achieve
high levels of anonymity. Without revealing who actually performed a trans-
action, past transactions cannot be discarded as they are still relevant.
Pruning information and maintaining a state size independent of the number
of transactions is achieved by Zether [BAZB20] and QuisQuis [FMMO19].
They maintain the anonymity guarantees of Monero or Zcash but provide
means to update the global state such that old transactions are no longer
needed.

2.2 glossary

To clarify several key terms we use throughout the thesis, we present a descrip-
tion along with synonyms for each of them.

token A token is the smallest amount transferrable in a transaction system.
It represents some base value.

type (syn. Currency) A type specifies a domain in which tokens have a com-
mon meaning and value.

asset (syn. Typed-Token) An asset or typed-token is the tuple of a scalar,
specifying the amount of tokens, and their type, e.g. 5€.
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transaction A transaction consumes multiple assets as inputs and out-
puts a new set of assets. Importantly no assets are created or destroyed
in a transaction.

inputs A transaction consumes inputs. Each input specifies at least an
amount of tokens consumed and has an owner. If not implicitly given,
an input additionally specifies the type of the tokens.

output (syn. One-Time-Account) An output describes one beneficiary of a
transaction. It specifies a new owner of the included tokens, if required
with a type specification.

2.3 preliminaries

In this chapter, we provide an overview of existingwork related to our research.
This presents an opportunity to establish a common notation which is then
used throughout the thesis.
There are multiple methods of keeping track of balances for a set of partici-
pants. One option is for everyone to have a single scalar representing their
balance. A transaction then reduces the balance of one party and increases
the other party’s balance by the same amount. Importantly neither change of
balance must be executed alone as otherwise the system gets imbalanced. A
more robust system is to keep track of all past transactions and the current bal-
ance is calculated by adding up all incoming transactions and subtracting all
outgoing ones. A common way to show the recipient of a transaction that the
sender has a high enough balance is to reference a previous incoming transac-
tion destined to the sender. If this incoming transaction was not yet spent, the
recipient now owns the amount of this transaction.
We introduce a generic transaction system based on unspent transaction
outputs (UTXO) and then show how such systems are built in a privacy-
preserving way. An UTXO transaction system consists of transactions with
inputs and outputs which each hold some assets. A transaction must con-
serve all value, i.e. the assets consumed by the inputs must be equal to the
assets distributed in the outputs. It therefore only changes the owners of the
assets. To relate all transactions to each other, the inputs of a transaction are
references to outputs of previous transactions as seen in Figure 2.1. This is
often represented as a directed acyclic graph (DAG) of transactions. If the
transaction system assures that each output is referenced exactly once as in-
put, no asset is spent twice, also known as a double spend. This property leads
to the U in UTXO, such that only unspent (without a reference) outputs are
usable as inputs. The total supply is updated by changing the set of unspent
outputs from an outside mechanism. A common method in cryptocurrencies
is to reward participants who to help maintain the network, known as miners.
According to public rules, miners are allowed to create new UTXO which
are usable in subsequent transactions just like any other transaction output.
This increases the total supply of tokens in the system. To prevent theft, the
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outputsold tx

acc
acc
acc

inputs
new tx

ref | sign
ref | sign
ref | sign

Figure 2.1: UTXO transactions referencing previous outputs as inputs. Each
output is a one-time account and inputs are references togetherwith
a authorizing signature.

transaction creator has to include a valid signature to authorize the spending
of the inputs.
A common architecture of privacy-preserving UTXO systems is to use one-
time accounts to achieve recipient anonymity. Transaction outputs to the same
recipient are unlinkable to each other and only the long term secret key of the
recipient is able to detect them. This works by each participant having a long
term public key. To specify a participant as new owner of an output, the sender
uses a public algorithm to derive a one-time public key from the long term
public key. Only the owner of the long term secret key is able to detect if a
one-time key is derived from their key and then have an algorithm to recover
the matching one-time secret key. We present existing constructions for two
such schemes in Section 2.11.1.
Given unique output accounts, sender anonymity works by referencing not
only the real input, but include a number of additional inputs, called mixins,
which are not spent but provide an anonymity set for the sender. The two
largest deployed privacy-preserving transaction systems (Monero [Noe15] and
Zcash [SCG+14]) both use one-time accounts for recipient anonymity but dif-
fer in the selection of the sender anonymity set. Zcash stores all previous trans-
action outputs in aMerkle tree and provides a zero-knowledge inclusion proof
for each input. This means that Zcash transactions achieve perfect sender
anonymity, as all previous transaction outputs are possible candidates. The
inclusion zero knowledge proof requires at least log2(𝑛) hash operations for 𝑛
possible inputs. Thenon-arithmetic structure of hash functions leads to expen-
sive proofs which are only efficiently instantiated by a succinct non-interactive
arguments of knowledge (SNARK). SNARKs require linear proving time in the
size of the arithmetic circuit describing the hash functions but they have the
benefit of achieving constant verification time and proof transcript size. The
trade off to these preferable properties is that to use SNARKs, the systemhas to
generate a structured common reference string (CRS) with an unknown trap-
door. Whoever has knowledge of the trapdoor can fabricate arbitrary proofs.
In the distributed setting of a transaction system, where participants have no
common trusted party, generating thisCRS is difficult as the input randomness
must remain secret. Zcash’s approach was running a multi-party protocol to
spread the setup in a ceremony around the world under supervision of the
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press and the public. Convincing the public that the multi party peers did not
collude is difficult which dampens the trust in the whole system 1.
Another option is to use zero knowledge proof systems which work without
a trusted setup, i.e. the CRS has no trapdoor and is created in public. One of
the most efficient system, Bulletproofs [BBB+18], achieves linear runtime for
generation and verification with a logarithmic proof size. While the storage
requirements are low, the runtime prevents their usage for zero knowledge
hashing in Merkle tree inclusion proofs.
To keep the computational requirement within reasonable bounds, transac-
tion systems like Monero use a statistical model where the anonymity set of a
transaction is a randomly sampled subset of all previous outputs.
Given the sender anonymity, inputs and outputs of a transaction are still link-
able through their asset. Therefore all assets are stored in the outputs as com-
mitments. A zero knowledge proof attached to each transaction assures that
the assets in the output commitments are equal to the assets in the referenced
input commitments. This convinces a verifier that no assets are created out of
thin air.
Currently, Zcash and Monero use commitments to scalar values, representing
the amount of a common asset, e.g. XMR or ZEC tokens. The conservation
rule of a transaction ensures that the sum of amounts in the inputs is equal to
the sumof amounts in the outputs. As our goal is to supportmultiple confiden-
tial types of tokens, we require commitments to a scalar and a type. The scalar
represents the amount and the type the currency. In a setting with multiple
types involved in a transaction, the amounts have to be balanced for each type
individually. We discuss two existing approaches for commitments to a typed
amount, namely Confidential Assets [PBF+17] and Cloaked Assets [And], and
show the need for an improved multi-type system.
In the remainder of this chapterwe first provide the cryptographic foundations
for our protocols, which consists of zero-knowledge arguments of knowledge
and efficient instantiations such as Bulletproofs and their extensions. Given
these tools we present a formalization of a generic privacy-preserving UTXO
chain and detail a concrete construction for Ring Confidential Transactions
(RingCT) used by Monero and alike. Independent of RingCT systems we
present related work about confidentiality of types. In combination with types,
we investigate related work on privacy-friendly trading of assets.
Table 2.1 introduces the notation common to all protocols.

2.4 assumptions

Through the remainder of the thesis, we base our constructions on a compu-
tationally difficult problem which has a trapdoor. We rely on a cyclic group
𝔾 with order 𝑞 and a generator 𝐺. In the multiplicative notation, the group
operation is the multiplication of elements, e.g. 𝐺 ⋅ 𝐺′. Thereby it holds that
for any 𝛾 ∈ ℤ𝑞, 𝐺𝛾 ∈ 𝔾.

1 https://electriccoin.co/blog/the-design-of-the-ceremony/

https://electriccoin.co/blog/the-design-of-the-ceremony/
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Table 2.1: Notation
⊙, ⨀ homomorphic operation for commitments
{𝑎𝑖}𝑛

𝑖=1 sets of size 𝑛 are ordered if not specified otherwise
[𝑎] natural numbers up to [𝑎] ∶= (1, … , 𝑎)
⃗𝑐[𝑖] 𝑖-th element of vector ⃗𝑐

E[𝑖] 𝑖-th column vector of matrix E
⃗𝑥𝑛 ∶= (𝑥0, 𝑥1, … , 𝑥𝑛−1) length 𝑛 vector with 𝑥 a scalar
⃗𝑥⊤ transposed vector

𝑥 $←−𝑋 𝑥 is uniformly randomly sampled from 𝑋
∑ 𝐴 ∶= ∑𝑎∈𝐴 𝑎 sum of all elements in the set
∏ 𝐴 ∶= ∏𝑎∈𝐴 𝑎 product of all elements in the set
{𝑎𝑖}𝑘

𝑖=1 ⇔ ⃗𝑎 = (𝑎1, … , 𝑎𝑘) we interchangeably write ordered sets as vectors
E[𝑗, 𝑖] ∶= E[𝑖][𝑗] row-column indexing of a 2D matrix
⃗𝑎 ⊗ ⃗𝑏 ∶= (𝑎1 ⋅ ⃗𝑏, 𝑎2 ⋅ ⃗𝑏, … ) Kronecker product of two vectors

vec(E) ∶= (𝐸[1]‖𝐸[2]‖ … )concatenation of each column vector
bin(𝑎) ∶= (𝑎0, … , 𝑎𝛽) binary decomposition such that 𝑎 = ∑𝛽

𝑖=0 𝑎𝑖2𝑖

⃗𝑎 ∘ ⃗𝑏 = (𝑎1 ⋅ 𝑏1, 𝑎2 ⋅ 𝑏2, … )element wise multiplication
⃗𝑎∘𝑏⃗ ∶= (𝑎𝑏1

1 , 𝑎𝑏2
2 , … ) element wise exponentiation

The discrete logarithm assumption states that given 𝐺 and 𝐺𝛾 , it is infeasible
to calculate 𝛾. To limit any party of the system from calculating 𝛾 by brute
forcing all 𝑞 values, adversaries are usually limited to perform only a polyno-
mial number of computations in 𝜆, where 𝜆 is the security parameter. These
algorithms are abbreviated as probabilistic polynomial time (ppt), as they may
use randomness and are not necessarily deterministic. As a concrete example,
where this assumption holds, we use elliptic curve systems (ECC) but the con-
structions are not limited to ECC. To achieve a practical security level of 128
bit equivalent symmetrical security, we use the Curve 25519 2.
We denote a negligible function in the security parameter 𝜆 as negl(𝜆) if for
every positive polynomial poly(𝜆), there exists a 𝑁 such that for all 𝜆 > 𝑁it
holds that |negl(𝜆)| < 1

poly(𝜆) .

2.5 commitments

We use commitments to store values hidden from interested parties. A com-
mitment is often described as a letter which is sealed in an envelope. Once
sealed, the value inside cannot be changed and only the creator of the letter
knows what is inside. Formally a commitment is defined as follows.

2 https://doc.dalek.rs/curve25519_dalek/

https://doc.dalek.rs/curve25519_dalek/
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Definition 2.1 (Commitment). A commitment scheme consists of the PPT al-
gorithms Setup(1𝜆) → pp which takes the security parameter 𝜆 and outputs
public parameters pp implicitly given to Commit(𝑎; 𝑟) → com which takes a
value 𝑎 ∈ 𝕄 from a message domain 𝕄 and randomness 𝑟 ∈ 𝕊 from a ran-
domness domain 𝕊 (often 𝕄 = 𝕊) and outputs a commitment com.

The commitment has to satisfy the binding and hiding properties. A hiding
commitment keeps the committed value secret from anyone seeing the com-
mitment.

Definition 2.2 (Hiding). A commitment scheme is hiding if for any ppt adver-
sary 𝒜 , it holds that

Pr
⎡⎢⎢⎢
⎣

𝑏′ ← 𝒜(com)
𝑏′ = 𝑏

∶
pp ← Setup(1𝜆), 𝑏 $←−{0, 1}, 𝑟 $←−𝕊

𝑎0, 𝑎1 ← 𝒜(pp)
com ← Commit(𝑎𝑏; 𝑟)

⎤⎥⎥⎥
⎦

≤ negl(𝜆)

A binding commitment prevents the creator of it to find two values which re-
sult in the same commitment. Thereby the creator is not able to change their
mind after creating the commitment.

Definition 2.3 (Binding). A commitment scheme is binding if for any ppt ad-
versary 𝒜 , it holds that

Pr

⎡⎢⎢⎢⎢⎢
⎣

com0 ← Commit(𝑎0; 𝑟0)
com1 ← Commit(𝑎1; 𝑟1)

com0 = com1

∧𝑎0 ≠ 𝑎1

∶
pp ← Setup(1𝜆)

𝑎0, 𝑟0

𝑎1, 𝑟1
← 𝒜(pp)

⎤⎥⎥⎥⎥⎥
⎦

≤ negl(𝜆)

Definition 2.4 (Homomorphism). A commitment scheme is homomorphic, if
it holds that

Commit(𝑎0; 𝑟0) ⊙ Commit(𝑎1; 𝑟1) = Commit(𝑎0 + 𝑎1; 𝑟0 + 𝑟1)

.

A common construction are Pedersen commitments [Ped91], which define
Commit(𝑎, 𝑟) ∶= 𝐺𝑎𝐻𝑟 for two generators 𝐺, 𝐻 ∈ 𝔾.

2.5.1 Vector Pedersen Commitments

A generalized form of the Pedersen commitment is the vector Pedersen Com-
mitment which commits to a vector of elements ⃗𝑎 instead of a single scalar 𝑎.
Instead of two generators 𝐺 and 𝐻, the commitment uses | ⃗𝑎| + 1 generators
𝐺1, … , 𝐺| ⃗𝑎|, 𝐻 and commitment is defined as Commit( ⃗𝑎, 𝑟) ∶= 𝐻𝑟 ∏| ⃗𝑎|

𝑖=1 𝐺𝑎𝑖
𝑖
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2.6 zero-knowledge arguments of knowledge

Many of our proposed transaction protocols rely on the fact that a transaction
creator is able to convince other participants in the system that the proposed
transaction is valid according to some agreed rules. One option is to reveal all
values required to verify the rules. This is in contradiction to the confidential-
ity we want to achieve. We utilize zero-knowledge arguments of knowledge
to keep the values confidential and still be able to convince others that the
transaction satisfies the rules everyone agreed on.
A zero-knowledgeArgument onKnowledge is an interactive protocol between
a prover 𝑃 and a verifier 𝑉. The goal of the prover is to convince the verifier
that a given statement is true without revealing anything else about the state-
ment. A basic example of such a statement is the knowledge of a secret key for
a given public key. The prover convinces the verifier about the knowledge of
the matching secret key. More formally an argument of knowledge consists of
three interactive, ppt algorithms Setup, 𝑃, 𝑉. From the transcript of the inter-
action, written as ⟨𝑃, 𝑉⟩, the verifier decides if they are convinced about the
statement.
Let𝑅 be a relation such that a statement stmt and awitnesswit is in the relation
if the desired conditions hold. We write this in the form of a language ℒ =
{stmt∃wit s.t. (stmt, wit) ∈ 𝑅}}. For the example with the secret key, our
statement is the public key, the witness is the secret key, and 𝑅 is true for all
matching pairs of secret and public keys.
The interaction between prover and verifier is an argument of knowledge if
it is complete and has knowledge soundness. The completeness requires that
for each valid statement and witness pair, the prover is able to convince the
verifier.

Definition 2.5. An Argument of knowledge is perfectly complete if for any ad-
versary 𝒜 , it holds that

Pr ⎡⎢
⎣

(stmt, wit) ∉ 𝑅
∨⟨𝑃(stmt, wit), 𝑉(stmt)⟩ = 1

∶
pp ← Setup(1𝜆)
(stmt, wit) ← 𝒜

⎤⎥
⎦

= 1

Knowledge soundness in general is the property that the prover is only able
to convince the verifier, if the prover actually knows a correct witness. One
possibility to show that the prover has a valid witness is to construct an extrac-
tor. The extractor interacts with the prover and must reconstruct the witness
used by the prover. This contradicts the intuition that the verifier is only able
to know if a condition holds or not. Therefore the extractor gets an additional
power. It is allowed to rewind the prover to a specific point in the interaction
and supply a different message, creating another transcript, which is equal to
the first up to the point of rewinding. Given a polynomial number of tran-
scripts, the extractor must provide a valid witness whenever the prover is able
to convince the verifier.
A formalization of the extractor was defined by Groth and Ishai [GI08] and
Lindell [Lin03] as computational witness-extended emulation.
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Definition 2.6 (Witness-extended emulation). An Argument of knowledge has
witness-extended emulation if there exists an efficient (ppt) extractor ℰ such that
for any adversaries 𝒜1, 𝒜2 it holds that

∣
∣∣∣∣∣∣∣∣
∣

Pr ⎡⎢
⎣
𝒜1(𝑡𝑟) = 1 ∶

pp ← Setup(1𝜆), (stmt, wit) ← 𝒜2(pp)
𝑡𝑟 ← ⟨𝑃(stmt, wit), 𝑉(stmt)⟩

⎤⎥
⎦

−

Pr
⎡⎢⎢⎢
⎣

𝒜1(𝑡𝑟) = 1
∧𝑡𝑟 is accepted

∶
pp ← Setup(1𝜆)

(stmt, wit) ← 𝒜2(pp)
(𝑡𝑟, wit′) ← ℰ𝒪(stmt)

⎤⎥⎥⎥
⎦

∣
∣∣∣∣∣∣∣∣
∣

≤ negl(𝜆)

where the extractor has oracle access to the prover 𝑃 with rewinding.

The above definitions (2.5,2.6) so far do not assure that the verifier learns noth-
ing about the witness, except that it is in the relation or not. One approach to
show that the verifier learns nothing about the witness is to replace the prover
with a simulator. The simulator has no access to the witness and needs to
present an accepting proof for any statement. Similar to the extractor, this in-
tuition is contradicting with the property that a prover needs to know a valid
witness. Again, the simulator therefore gets additional power. The simulator
is provided with all the messages of the verifier at the beginning of the inter-
action. Knowing all future replies of the verifier, the simulator is able to craft
the messages in such a way that the transcript looks like it was performed be-
tween a prover and a verifier. In fact, if the transcript from real provers and
simulators are indistinguishable, the prover does not leak the witness.
This definition of zero-knowledge only works if all verifier messages are inde-
pendent of the prover messages and known in advance. Therefore the argu-
ment has to be public coin.

Definition 2.7 (Public Coin). An argument of knowledge is public coin, if all
messages of the verifier are uniformly random and independent of the provers
messages.

Given an public coin argument of knowledge, we can formally define the simu-
latability of the protocol. The adversary should be unable to have an advantage
in differentiating the transcript of the real interaction from the one generated
by the simulator.

Definition 2.8 (Special Honest-Verifier Zero-Knowledge). A public coin ar-
gument of knowledge is special honest-verifier zero-knowledge, if there exists an
efficient simulator Sim such that for all adversaries 𝒜1, 𝒜2 and the verifiers ran-
domness 𝜌, it holds that

Pr ⎡⎢
⎣

(stmt, wit) ∈ 𝑅
∧𝒜1(𝑡𝑟) = 1

∶
pp ← Setup(1𝜆), (stmt, wit) ← 𝒜2(pp)

𝑡𝑟 ← ⟨𝑃(stmt, wit), 𝑉(stmt, 𝜌)⟩
⎤⎥
⎦

= Pr ⎡⎢
⎣

(stmt, wit) ∈ 𝑅
∧𝒜1(𝑡𝑟) = 1

∶
pp ← Setup(1𝜆), (stmt, wit) ← 𝒜2(pp)

𝑡𝑟 ← Sim(stmt, 𝜌)
⎤⎥
⎦
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2.6.1 Example

To demonstrate the properties and notation of a zero-knowledge proof, we
present a small example. The goal is convince a verifier that the prover knows
the secret key to a given public key. Let 𝔾 be a cyclic group with order 𝑞 and
a generator 𝐺 in which the discrete logarithm assumption holds. A key pair is
represented as a secret key 𝑥 ∈ ℤ𝑞 and its public key 𝐺𝑥 ∈ 𝔾. The language
for this relation is defined as

ℒ = {stmt = 𝑃∃wit = 𝑥 s.t. 𝐺𝑥 = 𝑃}

The prover and the verifier have access to the statement (𝑃) and engage in a
sigma protocol as shown in Figure 2.2.
First the prover generates a random key pair 𝑥′, 𝑃′ = 𝐺𝑥′ and sends the public
key to the verifier. The verifier samples a random element 𝛾 in ℤ𝑞 to satisfy
the public coin property (Def 2.7). Given the challenge 𝛾, the prover calculates
𝑧 = 𝑥′ − 𝛾𝑥 such that the verifier can check the relation 𝑃𝛾𝐺𝑧 = 𝑃′. If that
equality holds, the verifier is convinced that the prover knows 𝑥.

Σ
Prover(𝑃 = 𝐺𝑥, 𝑥) Verifier(𝑃)

𝑥′ $←−ℤ𝑞

𝑃′ ← 𝐺𝑥′ 𝑃′
−→

𝛾←−𝛾 $←−ℤ𝑞

𝑧 ← 𝑥′ − 𝛾𝑥 𝑧−→

𝑃𝛾𝐺𝑧 = 𝐺𝛾𝑥𝐺𝑥′−𝛾𝑥 = 𝐺𝑥′ ?= 𝑃′

Figure 2.2: Example Sigma protocol

We proceed by proving that the protocol satisfies all properties of a zero knowl-
edge argument of knowledge. The completeness is given because there are no
undefined equations and 𝐺𝑥 is defined for any 𝑥 ∈ ℤ𝑞. To show knowledge
soundness, we construct an efficient extractor which is able to reconstruct the
witness from rewinding access to the prover. The extractor runs the prover
until the prover submits the random public key 𝑃′:

Σ
Prover(𝑃 = 𝐺𝑥, 𝑥) Verifier(𝑃)

𝑥′ $←−ℤ𝑞

𝑃′ ← 𝐺𝑥′ 𝑃′
−→

Note that now 𝑥 and 𝑥′ is fixed for the prover by 𝑃 and 𝑃′. The extractor
now proceeds in two ways to generate two transcripts. This is achieved by first
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supplying the proverwith𝛾1 towhich the prover replies 𝑧1 and then rewinding
the prover and supplying 𝛾2.

𝛾1←−𝛾1
$←−ℤ𝑞

𝑧1 ← 𝑥′ − 𝛾1𝑥 𝑧1−→

𝛾2←−𝛾2
$←−ℤ𝑞

𝑧2 ← 𝑥′ − 𝛾2𝑥 𝑧2−→
Given both transcripts, the extractor gets two equations

𝑧1 = 𝑥′ − 𝛾1𝑥 and 𝑧2 = 𝑥′ − 𝛾2𝑥

which have the solution

𝑥 = 𝑧1 − 𝑧2
𝛾2 − 𝛾1

.

If the extractor selected the challenges such that 𝛾2 − 𝛾1 ≠ 0, which happens
with high probability, the resulting 𝑥 is the witness, satisfying 𝐺𝑥 = 𝑃.
We show the zero-knowledge property of the sigma protocol by constructing
a simulator, which presents accepting transcripts indistinguishable from real
prover interactions. The simulator has access to the statement (the public key
𝑃) and the randomness 𝛾 of the verifier. The simulator crafts the first message
𝑃′ such that it is still uniformly randombecause of the 𝑥′ but includes 𝑃𝛾 . 𝑃′ is
identically distributed as from a real prover. As second message, the simulator
reveals the 𝑥′ which is again identically distributed to the 𝑧 presented by a
prover. The verification equation always holds.

Σ
Sim(𝑃, 𝛾)

𝑥′ $←−ℤ𝑞

𝑃′ ← 𝑃𝛾 ⋅ 𝐺𝑥′ 𝑃′
−→

𝑧 ← 𝑥′ 𝑧−→

𝑃𝛾𝐺𝑧 ?= 𝑃′

As the real and simulated transcripts and indistinguishable, the sigma protocol
is zero-knowledge.

2.7 non-interactive arguments

In many scenarios, it is impractical for the prover to convince a single verifier.
Instead a prover prefers to generate a transcript, which may be verified by any
verifier. A recurring example is that a transaction requires a proof that the
committed amounts are correct. The transaction creator should not have to
run the interactive protocol with every participant in the system to convince
them that the transaction is valid.
One approach to this problem is to act as prover and verifier at the same time.
The resulting transcript then serves as non-interactive proof that the prover
has a valid witness. As we assume an honest verifier, the protocol is no longer
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knowledge sound. A malicious prover knows the verifier randomness in ad-
vance and just uses the simulator to generate a valid proof for any statement.
To force the prover to act honestly in the role of the verifier, the verifier mes-
sages must only become known at the time of communication. In our sigma
protocol, that means that 𝛾 must only be known, once 𝑃′ is transmitted to the
verifier.
The verifier messages are all distributed uniformly at random. This allows the
verifier to generate them deterministically from all previously received mes-
sages. Using a random oracle, the resulting verifier message cannot be calcu-
lated by the prover in advance. This transformation of an interactive honest
public coin verifier into a random oracle is known as Fiat Shamir transforma-
tion [FS].
In our example of the sigma protocol, we use a hash functionH ∶ {0, 1}∗ → ℤ𝑞
as random oracle and achieve a non-interactive argument of knowledge of the
form:

Σ
Prover(𝑃 = 𝐺𝑥, 𝑥) Verifier(𝑃)

𝑥′ $←−ℤ𝑞

𝑃′ ← 𝐺𝑥′ 𝑃′
−→

𝛾←−𝛾 ← H(𝑃‖𝑃′)
𝑧 ← 𝑥′ − 𝛾𝑥 𝑧−→

𝑃𝛾𝐺𝑧 = 𝐺𝛾𝑥𝐺𝑥′−𝛾𝑥 = 𝐺𝑥′ ?= 𝑃′

A non-interactive zero-knowledge (NIZK) argument of knowledge (AoK) is
defined by the following three algorithms:

pp ← AoK[ℒ]Setup(1𝜆) takes the security parameter 𝜆 and a language ℒ
and outputs the matching public parameters of the AoK as well as pos-
sible parameters required for the specific language.

𝜋 ← AoK[ℒ]Prove(stmt, wit) takes a statement stmt and a witness wit for
the language (stmt, wit) ∈ 𝑅ℒ where 𝑅ℒ is the relation of ℒ , and out-
puts a transcript 𝜋, serving as proof.

𝑏 ← AoK[ℒ]Verify(𝜋, stmt) takes a proof 𝜋 and a statement stmt for the
language ℒ and outputs a bit 𝑏 depending on the validity of the proof.

2.8 signatures of knowledge

Given a zero knowledge argument of knowledge as an interactive protocol,
a Signature of Knowledge (SoK) is constructed by including a message in
the random oracle compiler of the Fiat-Shamir transform described above.
Thereby, the argument of knowledge is bound to a specific message and serves
as a signature that is valid, if the signer has knowledge of a valid witness. The
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conditions are described by a NP language ℒ which parameterizes the SoK.
For a SoK to be secure, it must – similar to an Argument of Knowledge –
be complete, public coin, simulatable and extended-witness emulatable as de-
fined by Chase et al. [CL06]. A SoK consists of the following three algorithms:

pp ← SoK[ℒ]Setup(1𝜆) takes the security parameter 𝜆 and a language ℒ
and outputs the matching public parameters of the SoK as well as possi-
ble parameters required for the specific language.

𝜎 ← SoK[ℒ]Sign(stmt, wit, 𝑚) takes a statement stmt and a witness wit for
the language ℒ as well as a message 𝑚 and outputs a signature 𝜎 .

𝑏 ← SoK[ℒ]Verify(𝜎, stmt, 𝑚) takes a signature 𝜎 and a statement stmt for
the languageℒ together with amessage𝑚 and outputs a bit 𝑏 depending
on the validity of the signature.

2.9 bulletproofs

After describing the general framework of zero-knowledge proofs, we present
an overview of one concrete protocol to realize zero knowledge proofs. The
example of Section 2.6.1 and similar sigma protocols enable proving complex
conditions. However they have a linear transcript size. If we want to prove
knowledge of two secret keys, the transcript will be twice as large. A more
space efficient proof system is Bulletproofs [BBB+18]. The core of the Bullet-
proof protocol is a proof which is not zero-knowledge, but convinces a verifier
that the inner product of two scalar vectors committed in a vector Pedersen
commitment is equal to some value. Instead of the expected proof size linear
in the length of the vectors, the protocol recursively folds the vectors in half
and thereby requires only logarithmically many communication rounds, each
with a constant size. This leads to logarithmically sized transcripts.
The disadvantage of the efficient inner product argument is that the veri-
fier learns the content of the vectors and thereby the protocol is not zero-
knowledge. Bulletproofs therefore build an outer protocol which encodes and
hides the witness in such a way that even though the verifier learns the vectors
of the inner product, they are unable to extract the witness. The original Bul-
letproof paper proposed outer protocols for generic arithmetic circuits and
more popular, a highly optimized version for range proofs. A range proof
convinces the verifier that a committed value is in a range between 0 and
2𝛽 − 1 for some integer 𝛽 (64 in most systems).
The outer protocols share some common techniques, which can be adapted
to prove other relations than range proofs. The first one is that a verifier is
convinced with high probability that a vector is zero ⃗𝑎 = ⃗0| ⃗𝑎|, if the inner prod-
uct of ⃗𝑎 with a random vector of verifier provided values ⃗𝑦 of same length is
zero: ⟨ ⃗𝑎, ⃗𝑦⟩ = 0. Instead of using | ⃗𝑦| different challenge variables, a smaller
communication size is achieved by only using one scalar 𝑦. If the inner prod-
uct ⟨ ⃗𝑎, ⃗𝑦| ⃗𝑎|⟩ = 0, where ⃗𝑦| ⃗𝑎| is a vector of consecutive powers of 𝑦, then by
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the Schwarz-Zippel lemma, the resulting polynomial in 𝑦 must have all zero
coefficients.
With this outer protocol, constraints which are representable as inner products
can be enforced. In the case of a range proof, the encoded witness ⃗𝑎 is the
binary decomposition of a value 𝑣 and the constraint is a vector of powers of
2. By showing that ⟨ ⃗𝑎, 2⃗𝛽⟩ = 𝑣 and ⃗𝑎 is binary, i.e. ⃗𝑎 ∈ {0, 1}𝛽, the verifier is
convinced that 𝑣 ∈ {0, … , 2𝛽 − 1}. To show that a vector is binary and only
consists of bits is a common scheme and achieved by creating an auxiliary
vector ⃗𝑏 = ⃗𝑎 − ⃗1𝛽. ⃗𝑏 is 0 wherever ⃗𝑎 is 1 and the equivalent of −1 in the finite
field wherever ⃗𝑎 is 0. By showing that ⃗𝑎 ∘ ⃗𝑏 = ⃗0𝛽, the verifier is assured that for
each position, either ⃗𝑎 is zero or ⃗𝑏 is zero. Given a challenge variable 𝑦 from
the verifier, the prover assures that ⟨ ⃗𝑎, ⃗𝑏 ∘ ⃗𝑦𝛽⟩ = 0. With a third constraint,
assuring that ⃗𝑏 = ⃗𝑎 − ⃗1𝛽, all non-zero positions of ⃗𝑎 must be 1. The difference
is shown as inner product ⟨ ⃗𝑎 − ⃗1𝛽 − ⃗𝑏, ⃗𝑦𝛽⟩ = 0.
Multiple inner product constraints are combined by creating a polynomial in
another verifier provided challenge variable 𝑧 which is only zero at a random
evaluation, if all coefficients are zero. This construction allows proving com-
plex constraints on values. Most importantly, Bulletproofs allow the prover
to provide the values in commitments. The value 𝑣 in the above range prove
example is available to the verifier only as commitment. This is sufficient to
enable range proofs for existing transaction systems such as Monero.

2.9.1 Extended Bulletproofs

Bulletproofs connect the inner product constraint witness to committed val-
ues. This requires that the prover knows an opening to all commitments pro-
vided. For operations on anonymity sets, it is required to prove a property
about a single value in one commitment, while using the remaining commit-
ments as anonymity set [LRR+19].
Omniring proposed an extended outer protocol around the same efficient in-
ner product protocol. The new outer protocol allows the prover to prove ar-
bitrary discrete logarithm relations for public group elements. It works on
groups where the discrete logarithm assumption holds. Instead of only prov-
ing that ⟨ ⃗𝑎, ⃗𝑏⟩ = 0 with 𝑎, 𝑏 ∈ ℤ𝑞

𝑚, the extended protocol attaches a different
constraint, namely for vector of public elements Λ ∈ 𝔾𝑛 with 𝑛 ≤ 𝑚, it also
holds that Λ∘𝑎[∶𝑛] = 𝐼 is the identity. The combination of the group identity
and the inner product constraints makes the extended Bulletproof protocol a
versatile proof system with logarithmic transcript size.
There is recent work on providing efficient proof systems for arbitrary arith-
metic circuit in a pairing based setting by Lai et al. [LMR19] and Attema et
al. [ACR20]. One option is to specify the arithmetic circuit required for our
relation. However by not using the protocol as a black-box, we improve the
communication complexity.
TheOmniring outer protocol uses challenge variables 𝑢, 𝑣, 𝑦, 𝑧 sent by the veri-
fier to compressmultiple constraints into a single inner product relation. Each
constraint is separated by a unique power of the challenge variables 𝑢, 𝑣, 𝑦, 𝑧
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and if the resulting polynomial has as many roots as the maximum power,
all constraints hold with overwhelming probability due to the Schwarz-Zippel
lemma. Each constraint consists of a vector ⃗v𝑖 of the same length as the en-
coded witnesses ⃗𝑐𝐿 and ⃗𝑐𝑅 and may be dependent on the challenge variables
𝑢, 𝑣, 𝑦. A constraint enforces a property on the witness by requiring an inner
product relation of the witness and the constraint to result in a publicly com-
putable scalar ̂v𝑖. We support four different relation classes between witness
and constraint vector named by 𝔪𝔲𝔩, 𝔡𝔦𝔯, 𝔰𝔲𝔪, 𝔬𝔫𝔢. I.e. if a constraint has the
class 𝔪𝔲𝔩, written as cls(𝑖) = 𝔪𝔲𝔩, the relation ⟨ ⃗𝑐𝐿, ⃗𝑐𝑅 ∘ ⃗v𝑖⟩ = ̂v𝑖 holds. A com-
bination of these constraints allow a prover to convince the verifier that thewit-
ness has a specific structure. E.g. it is possible to assure that the first value of
⃗𝑐𝐿 is 5 larger than the value at position 2 ( ⃗𝑐𝐿 = (𝑥 + 5, 𝑥, … ). Therefore create

a constraint vector ⃗v𝑖 of the class 𝔡𝔦𝔯 which has the values ⃗v𝑖 = (𝑦, −𝑦, 0, … )
at the same first positions. As the constraint is 𝔡𝔦𝔯, ⟨ ⃗𝑐𝐿, ⃗v𝑖⟩ = ̂v𝑖 must hold and
if ̂v𝑖 = 5𝑦, the verifier is convinced about the correct encoding of the witness.
The Omniring protocol between prover 𝒫 and verifier 𝒱 with 𝑚 = | ⃗𝑐𝐿| and
𝑛 = |Λ(… )| proceeds as follows:

𝒱 : 𝑣, 𝑢 $←−ℤ𝑞, 𝐷 $←−𝔾, 𝑃⃗ $←−𝔾𝑛, ⃗𝐺′ $←−𝔾𝑚−𝑛, 𝐻⃗ $←−𝔾𝑚

𝒫 ← 𝒱 : 𝑣, 𝑢, 𝐷, 𝑃⃗, ⃗𝐺′, 𝐻⃗

𝒫, 𝒱 : For 𝑤 ∈ ℤ𝑞 define ⃗𝐺𝑤 ∶= (Λ(𝐾⃗, 𝑢, 𝑣)∘𝑤 ∘ 𝑃⃗‖ ⃗𝐺′)

𝒫 : 𝑟𝐴
$←−ℤ𝑞, 𝐴 ∶= 𝐷𝑟𝐴 ⃗𝐺 ⃗𝑐𝐿

0 𝐻⃗ ⃗𝑐𝑅

𝒫 → 𝒱 : 𝐴

𝒱 : 𝑤 $←−ℤ𝑞 and

𝒫 ← 𝒱 : 𝑤

𝒫 : 1. ⃗𝑠𝐿
$←−ℤ𝑞

𝑚, ⃗𝑠𝑅 = (∀𝑖 ∈ [𝑚] ∶
⎧{
⎨{⎩

0 if ⃗𝑐𝑅[𝑖] = 0

𝑠 $←−ℤ𝑞 else
)

2. 𝑟𝑆
$←−ℤ𝑞, 𝑆 ∶= 𝐷𝑟𝑆 ⃗𝐺 ⃗𝑠𝐿𝑤 𝐻⃗ ⃗𝑠𝑅

𝒫 → 𝒱 : 𝑆

𝒱 : 𝑦, 𝑧 $←−ℤ𝑞

𝒫 ← 𝒱 : 𝑦, 𝑧

Now the prover and the verifier compress the constraints of the parametriza-
tion. Each constraint ⃗v𝑖 gets a unique index 𝑖 and cls( ⃗v𝑖) returns the class
{𝔪𝔲𝔩, 𝔡𝔦𝔯, 𝔰𝔲𝔪, 𝔬𝔫𝔢} of the constraint. Define 𝛿 ∶= ⟨ ⃗𝛼, 𝜇⃗⟩ + ⟨ ⃗1𝑚, ⃗𝜈⟩ + ∑𝑖 𝑧𝑖 ̂v𝑖
and

Θ⃗ ∶= ∑𝑖∶cls( ⃗v𝑖)=𝔪𝔲𝔩 𝑧𝑖 ⃗v𝑖 𝜇⃗ ∶= ∑𝑖∶cls( ⃗v𝑖)≠𝔪𝔲𝔩 𝑧𝑖 ⃗v𝑖 ⃗𝜈 ∶= ∑𝑖∶cls( ⃗v𝑖)=𝔬𝔫𝔢 𝑧𝑖 ⃗v𝑖

𝜔⃗ ∶= ∑𝑖∶ ⃗v′
𝑖≠0 𝑧𝑖 ⃗v′

𝑖 ⃗𝛼 ∶= Θ⃗∘−1 ∘ (𝜔⃗ − ⃗𝜈) ⃗𝛽 ∶= Θ⃗∘−1 ∘ 𝜇
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𝒫 : Define polynomials in 𝑋:
− 𝑙(𝑋) ∶= ⃗𝑐𝐿 + ⃗𝛼 + ⃗𝑠𝐿 ⋅ 𝑋 and
− 𝑟(𝑋) ∶= Θ⃗ ⋅ ( ⃗𝑐𝑅 + ⃗𝑠𝑅 ⋅ 𝑋) + 𝜇⃗ with
− 𝑡(𝑋) ∶= ⟨𝑙(𝑋), 𝑟(𝑋)⟩ = 𝛿 + 𝑡1𝑋 + 𝑡2𝑋2

for some 𝑡1 and 𝑡2, let 𝜏1, 𝜏2
$←−ℤ𝑞, 𝑇1 ∶= 𝐺𝑡1𝐷𝜏1 , 𝑇2 ∶= 𝐺𝑡2𝐷𝜏2

𝒫 → 𝒱 : 𝑇1, 𝑇2

𝒱 : 𝑥 $←−ℤ𝑞, 𝑄 $←−𝔾

𝒫 ← 𝒱 𝑥, 𝑄

𝒫 : 1. 𝜏 ∶= 𝜏1𝑥 + 𝜏2𝑥2

2. 𝑟 ∶= 𝑟𝐴 + 𝑟𝑆𝑥
3. ( ⃗𝑙, ⃗𝑟, 𝑡) ∶= (𝑙(𝑥), 𝑟(𝑥), 𝑡(𝑥))
4. padd ⃗𝑙 and ⃗𝑟 with 0 to length 2⌈log2(𝑚)⌉

5. 𝜋IP ← IPprove( ⃗𝑙, ⃗𝑟, ⃗𝐺𝑤, 𝐻⃗Θ⃗∘−1 , 𝑄)

𝒫 → 𝒱 : 𝜏, 𝑟, 𝜋IP, 𝑡

𝒱 : verify 𝑃 = 𝐴𝑆𝑥 ⃗𝐺 ⃗𝛼
𝑤𝐻⃗ ⃗𝛽 ⋅ 𝐷−𝑟 ⋅ 𝑄𝑡

and verify IPvf(𝜋IP, ⃗𝐺𝑤, 𝐻⃗Θ⃗∘−1 , 𝑃, 𝑄) = 1∧ 𝐺𝑡𝐷𝜏 = 𝐺𝛿𝑇𝑥
1𝑇𝑥2

2 ¸

The inner product protocol (IPprove, IPvf) is equal to Bulletproofs which sat-
isfies the language ((𝑃, 𝑄, 𝐺, 𝐻) ∈ 𝔾 ∶ ∃ ⃗𝑙, ⃗𝑟 ∈ ℤ𝑞

𝑚 s.t. 𝑃 = ⃗𝐺∘ ⃗𝑙𝐻⃗∘ ⃗𝑟𝑄⟨ ⃗𝑙, ⃗𝑟⟩).

2.10 utxo transaction systems

The common notation on signatures and arguments of knowledge allows us to
describe the core concepts of existing transaction systems without distracting
technical details. The description of the system is independent on if the system
is privacy-preserving or not. It merely provides the basics to then define the
security and privacy properties to achieve a privacy-preserving system.
UTXO transaction systems are one of the simplest form to keep track of bal-
ances. Similar to a bank ledger where all incoming and outgoing transactions
are registered, an UTXO system redistributes tokens between accounts. They
share the invariant that the total amount in circulation stays constant. What-
ever is added to one account must be deducted from another. If we capture
a snapshot of the current ownership as a state, a transaction tx represents a
valid update to a new state. Depending on the the environment of the system,
the state may be updated by outside actors. This is the case in most blockchain
systems, where new tokens are mined and added to the set of spendable out-
puts. This is a state change, which not necessarily adheres to the invariant and
must be controlled differently, e.g. through consensus. To ensure that every
participant reaches the same state, all transactionsmust be applied in the same
order. In a ledger, this is achieved by a consensus mechanism.
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Definition 2.9 (UTXO system). An UTXO transaction system consists of the
following ppt algorithms:
(pp, state) ← UTXO.Setup(1𝜆, ⃗bl): takes the security parameter 𝜆 and a vec-
tor of initial balances ⃗bl and outputs an initial state which holds accounts for
each balance and public parameters pp implicitly available to all other algo-
rithms.
(lts, ltp) ← UTXO.KeyGen(): generates a long term key pair (lts, ltp) to par-
ticipate in the system.
(acc, ck) ← UTXO.OTGen(ltp, 𝑣): takes a long term public key ltp and an
amount 𝑎 ∈ ℳ and outputs a one-time account acc alongwith secrets subsumed
as coin key ck.
tx ← UTXO.Spend(𝒮, 𝒯 , state): takes a set of inputs 𝒮 ∶= {acc𝒮

𝑖 , sk𝑖, 𝑎𝒮
𝑖 }|𝒮|

𝑖=1
with acc𝑆

𝑖 belonging to secret keys sk𝑖 and amount 𝑎𝒮
𝑖 . The second parameter is

a set of outputs 𝒯 = {pk𝑖, 𝑎𝒯
𝑖 }|𝒯 |

𝑖=1 for a long term key pk𝑖 and an amount 𝑎𝒯
𝑖 .

The spend algorithm may use the current state and then outputs a transaction
tx.
state′/⊥ ← UTXO.Verify(state, tx): takes a current state and a transaction
tx and outputs either a new state state′ or fails with ⊥.
(sk, 𝑎)/⊥ ← UTXO.Receive(lts, acc): takes a long term secret key lts and an
one-time account acc and if the account belongs to the owner of lts, it outputs
the amount stored 𝑎 and a one-time secret key sk.

The transaction system is correct if honestly generated one-time accounts,
known as transaction outputs, are correctly received, i.e., the amount is equal.
Any honestly generated transaction which uses inputs present in the state have
an equal sum of input and output amounts, and the secret keys sk𝑖 are correct
for the inputs, is valid. Formally it is defined as follows:

Definition 2.10 (Correctness). An UTXO system is correct if all the following
statements hold:

− For all 𝜆 ∈ ℕ with pp ← UTXO.Setup(1𝜆, ∅) and all (lts, ltp) ←
UTXO.KeyGen() it holds that for any 𝑎 ∈ ℳ , generate (acc, ck) ←
UTXO.OTGen(pk, 𝑎) and receive the same amount with
UTXO.Receive(sk, acc) = (sk, 𝑎).

− All honestly created transaction are valid: For all state, 𝒮 and 𝒯 with the
structure from above satisfying

– ∀𝑖 ∈ [|𝒮|] ∶ acc𝒮
𝑖 ∈ state.UTXO, where state.UTXO is the set of

all unspent outputs.

– ∀𝑖 ∈ [|𝒮|] ∶ UTXO.Receive(lts𝑖, acc𝒮
𝑖 ) = (𝑎𝒮

𝑖 , sk𝑖)

– ∑|𝒮|
𝑖=1 𝑎𝒮

𝑖 = ∑|𝒯 |
𝑖=1 𝑎𝒯

𝑖

it holds that UTXO.Verify(state, UTXO.Spend(𝒮, 𝒯 , state)) = state′

and state′ ≠ ⊥ with state′.UTXO containing the new accounts of 𝒯
and having all accounts {acc𝒮

𝑖 }|𝒮|
𝑖=1 removed.
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All UTXO systems share a common security property which reflects the in-
tuitive notion that the system prevents thefts of any kind. Theft can either
occur from another participant or from thin air. How this property is actually
achieved depends on the specific system. We will present one possibility, as
used in Monero like systems, which is based on Tags. Every transaction in-
put gets a Tag assigned. A new transaction is valid if it only uses inputs with
new tags. Thereby reusing the same transaction output twice is prevented as
it could be detected. Every one-time account is used exactly once, theft is
prevented, if the outputs of a transaction spend exactly as much as the inputs
consume. Then the transaction is balanced.
Regarding privacy, a transaction may provide sender and receiver anonymity
and value confidentiality. More formal definitions are available for concrete
systems, such as Zcash [SCG+14] or RingCT [LRR+19]. In Zcash, a trans-
action achieves perfect sender anonymity, while RingCT systems build upon
smaller anonymity sets in a trade-off for transparency and efficiency.

2.11 ringct

Due to the requirement for a trusted setup in Zcash like transaction systems,
we focus our further investigations on transaction systems with transparent
setups. A trusted setup allows for efficient constant size proofs but to set up
the system, a common reference string (CRS) with a trapdoor is needed to
which no onemust know the secret. Generating such a CRS in a setting, where
nobody can agree on a trusted party, this is impossible. To build a privacy-
preserving UTXO chain, there are a few core concepts which enable achieving
the desired properties.

− Transaction outputs, also described as one-time accounts must hide the
amount and remain unlinkable to the long term account they belong to.
As each transaction output is then distributed uniformly at random, the
system has receiver anonymity.

− Instead of a single reference to a previous transaction output, an input is
defined by a set of references tomultiple previous outputs. Only one ref-
erence is actually spent, while all other references contribute to sender
anonymity.

− Sender anonymity in UTXO systems introduces the issue that all partic-
ipants except for the sender cannot determine if an output is spent or
not. The UTXO property requires that only unspent outputs are used as
inputs. To prevent using the same input twice while hidingwhich inputs
are spent, privacy-preserving UTXO systems use a tag. Each real input
has a deterministically derived, unlinkable tag. All tags are stored as a
set like the outputs. If two transactions use the same tag, they intend to
spend the same transaction output which is detectable. Thereby double
spend detection is reduced to comparing tags. The correctness of a tag
for a specific input is proven in zero knowledge.
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− To achieve amount confidentiality, RingCT systems use commitments
and a zero knowledge proof that the amounts are conserved in a trans-
action.

The formalization of these notions have been published by the authors of
the Omniring system [LRR+19], which is the first to rigorously formalize the
RingCT transaction system. The popular system Monero operates with the
same principles, albeit with outdated NIZK protocols.

2.11.1 Tagging Scheme

The tagging scheme of a privacy-preserving UTXO system defines the relation
between a secret key, belonging to a transaction output, and a tag whichmarks
the output as spent. Intuitively, the tag must not be linkable to the public key.
A transaction creator is then able to publish the tags belonging to each real
input. The corresponding referenced outputs are then marked as spent and
each subsequent transaction which tries to spend the same output is detected
by having the same tag.
The tagging scheme consists of the algorithms TAG = (TagSetup, TagKGen,
TagEval). It uses a secret key space (𝜒, +), a public key space (𝒳, ⋅) and a
tag space 𝜓. TagKGen is homomorphic, i.e. for any 𝑥, 𝑥′ ∈ 𝜒, TagKGen(𝑥) ⋅
TagKGen(𝑥′) = TagKGen(𝑥 + 𝑥′). TagEval takes a key 𝑥 ∈ 𝜒 and outputs
a tag ∈ 𝒳 . We require related-input one-wayness and pseudorandomness.
The one-wayness of the scheme assures that given a tag and a partial secret key
in the form of a homomorphic part of the key, it is infeasible to recover the full
secret key. This is required as otherwise the tag key relation can be detected by
the creator of the one-time account. The pseudorandomness makes honestly
generated keys indistinguishable from randomly drawn elements in the tag
space 𝜓.
Tho examples of tagging systems are e.g.

omniring: TagKGen(𝑥) = 𝐻𝑥 and TagEval(𝑥) = 𝐺
1
𝑥 with 𝐺, 𝐻 ∈ 𝔾

monero: TagKGen(𝑥) = 𝐻𝑥 and TagEval(𝑥) = H(𝐻𝑥)𝑥 with 𝐻 ∈ 𝔾
and a random oracle H ∶ 𝔾 → 𝔾. The Monero tagging scheme is not
homomorphic.

They both satisfy one-wayness and pseudorandomness as proven by the Om-
niring paper.

2.11.2 Ring Sampling

The main difference between Zcash and RingCT based transaction system is
the size of the anonymity set for input references. As the most efficient proof
systems with transparent setup have linear verification time, RingCT based
systems have to heuristically select the anonymity set as a subset of all previous
transaction outputs. Which subset is selected greatly influences the possibility
to analyze the transaction graph and deanonymize senders.
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One approach is Binned Mixin Sampling [MSH+18], which samples tempo-
rally local groups of previous outputs to counter timing attacks and protect
against an adversary who controls many outputs. This means that for some
chunks of history, we achieve perfect anonymity and themore of these chunks
we include in the set, the better the anonymity.
Anonymity set sampling, also called ring sampling, is outside the scope of this
work and we refer to Ronge et al. [REL+20] for in depth research on this topic.

2.11.3 Monero

Combining the privacy-preserving methods explained before, Monero is the
most prominent system using RingCT. Previous versions of Monero used a
different transaction system, but the current structure of Monero transactions
is called RingCT-simple. As shown in Figure 2.3, such a transaction consists
of multiple parts:

− For each input, the sender samples an anonymity set which hides exactly
one real input. In our example, each real input is hidden in a set of size
3.

− The amount of the one true input is stored in the commitment as part
of the referenced output. This exact same amount is committed again
for each input, but with new randomness.

− Each output of a transaction is composed of a one-timederived key from
the tagging scheme and a commitment to an amount.

− Monero then uses one signature of knowledge for each input. The condi-
tion is that the signer knows the secret key of the real input, the amount
in the newly created commitment is equal to the real input and the tag is
correct according to the tagging function. Themessage of the SoK is the
whole transaction and importantly the full set of outputs. As the con-
crete instantiation, Monero uses a Multi-Layer Linkable Spontaneous
Ad-hoc Group Signature (MLSAG).

− For the balance of a transaction, it remains to show that the amounts
of inputs and outputs are balanced. The homomorphic property of
the commitments allows Monero to use a basic Σ-protocol AoK (Sec-
tion 2.6.1) to show the balance. To prevent negative outputs, each output
amount must be in a positive range, which is asserted by a Bulletproof
range proof.

Monero demonstrated the practicability and real world application of a
RingCT based system. However is has multiple disadvantages. The ML-
SAG construction signature has a linear size dependent on the size of the
anonymity set, financially incentivizing users to rely on a small anonymity
set. The current default is 10 decoy inputs for each real one. Safely upgrading
Monero to more efficient signatures is a lengthy process and requires careful
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(a) Monero RCT-simple

[][𝑎]

[ ][ ]

[ ][ ]

[ ][ ]

[ ][ ]

[][𝑎]

[][𝑎]
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tag, tag ← Omnisig

(b) Omniring

Figure 2.3: Transaction structures for (a) Monero RCT-simple and (b) Omnir-
ing transactions. 𝑎 represent arbitrary amounts. Dashed lines are
signatures to authorize spending and dotted lines ensure token con-
servation. [⋅] denotes a commitment to the value and if not blank,
the value is known to the signer. [EMP+21]

testing before deploying any change to the live system. Without these limita-
tions, a clean slate approach to RingCT can be made more efficient. This is
exactly what Omniring provides.

2.11.4 Omniring

The Omniring [LRR+19] authors narrowed down the essential parts of a
RingCT transaction and provided a rigorous formalization of the security and
anonymity such a system provides. A RingCT system needs to anonymously
select a set of real inputs from an anonymity set and show that the outputs
are balanced with regard to the inputs. Figure 2.3b shows an overview of the
Omniring transaction structure. Instead of multiple different signatures in
Monero, Omniring encompasses all constraints on the system into a single
SoK. The SoK checks that

− for each used input in the reference set, the sender knows a secret key

− the tags included in the transaction correspond to the used input keys

− and the sum of amounts in the real inputs is equal to the sum of output
amounts.

They build an efficient SoK by extending the Bulletproof protocol.
As we adapt the Omniring formalization to formalize our transaction systems,
we provide the original definitions to facilitate the comparison.
Compared to the generic UTXO definition 2.9, Omniring uses an explicit ring
ℛ to capture the anonymity set. Thisℛ is the subset of previous outputswhich
are possible inputs to anOmniring transaction. The beauty of this definition is
the fact that it captures not only RingCT but also Zcash like systems. In Zcash,
ℛ is the complete set of previous transaction outputs. The second change is
an explicit definition of a tag, which is used to mark outputs as used.

Definition 2.11. A RingCT scheme consists of a tuple of PPT algorithms ( Setup,
KeyGen, OTGen, Spend, VfTx, Receive) defined as follows:
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pp ← Setup(1𝜆, 1𝛼, 1𝛽) takes the security parameter 𝜆 and integers 𝛼 for a
maximum of 2𝛼 outputs of a transaction where each has an amount maxi-
mum of 2𝛽 −1. Then it outputs public parameters pp which are implicitly
given to all the following algorithms. Setup is called once when a RingCT
system is initialized.

(ltp, lts) ← KeyGen() generates a long term secret key lts with the correspond-
ing long term public key ltp for participants to initially join the system.
The ltp is distributed and serves as a recipient address.

acc, ck ← OTGen(ltp, 𝑎) creates a one-time account acc with coin key ck from
a long term public key ltp and an amount 𝑎 to then use this account as an
output in a transaction.

𝔱 ← Spend(𝒮, ℛ, 𝒯 ) takes the inputs

− 𝒮 = {(tag𝑖, 𝑗𝑖, sk𝑖, 𝑎𝒮
𝑖 , ck𝒮

𝑖 )}|𝒮|
𝑖=1 is a set of inputs with a tag𝑖 cor-

responding to accℛ
𝑗𝑖 at index 𝑗𝑖 ∈ [|ℛ|], secret key sk𝑖, amount 𝑎𝒮

𝑖

with coin key ck𝒮
𝑖 .

− ℛ = {accℛ
𝑖 }|ℛ|

𝑖=1 is a set of ring accounts to hide the real inputs.

− 𝒯 = {(acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ck𝒯
𝑖 )}|𝒯 |

𝑖=1 is a set of accounts acc𝒯
𝑖 with amount

𝑎𝒯
𝑖 and coin key ck𝒯

𝑖 .

It outputs a signature 𝔱 as authorization to spend the inputs to the desig-
nates outputs.

𝑏 ← VfTx(tx, 𝔱) takes a transaction defined as

tx(𝒮, ℛ, 𝒯 ) ∶= ({tag𝑖}
|𝒮|
𝑖=1, {accℛ

𝑖 }|ℛ|
𝑖=1, {acc𝒯

𝑖 }|𝒯 |
𝑖=1)

and the signature 𝔱 and returns a bit 𝑏 representing the validity.

(tag, sk, 𝑎, ck) ← Receive(acc, lts) gets an account acc and a long term secret
lts and returns the matching tag, secret key sk, amount 𝑎 and coin key ck
for acc if lts owns the account.

Further, we require the following two auxiliary algorithms to define the security
properties.

𝑏 ← ChkAcc(acc, 𝑎, ck) takes an account acc, an amount 𝑎 and a coin key ck
and checks if they are consistent.

𝑏 ← ChkTag(acc, tag, sk) takes an account acc, a tag and a secret key sk and
returns 1 if consistent, 0 otherwise.

Definition 2.12 (Correctness). A RingCT scheme is correct, if for all 𝜆, 𝛼, 𝛽 ∈
ℕ and all pp ∈ Setup(1𝜆, 1𝛼, 1𝛽):
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− Honestly generated payments are received correctly:
For any ltp, lts ∈ KeyGen(), any amount 𝑎 ∈ {0, … , 2𝛽 − 1}, any
(acc, ck) ∈ OTGen(ltp, 𝑎), and any (⋅, 𝑎′, ck′) ∈ Receive(acc, lts), it
holds that (𝑎, ck) = (𝑎′, ck′).

− Honestly received payments have a valid amount and tag: For any
(tag, sk, 𝑎, ck) ∈ Receive(acc, lts), ChkAcc(acc, 𝑎, ck) = 1 and
ChkTag(acc, tag, sk) = 1 holds.

− Honestly generated transactions are valid: For each 𝒮, ℛ, 𝒯 , defined as
above, that satisfy

– ∀𝑖 ∈ [|𝒮|], ChkTag(accℛ
𝑗𝑖 , tag𝑖, sk𝑖) = 1

– ∀𝑖 ∈ [|𝒮|], ChkAcc(accℛ
𝑗𝑖 , 𝑎𝒮

𝑖 , ck𝒮
𝑖 ) = 1

– ∀𝑖 ∈ [|𝒯 |], ChkAcc(acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ck𝒯
𝑖 ) = 1

– ∑{𝑎𝒮
𝑖 }|𝒮|

𝑖=1 = ∑{𝑎𝒯
𝑖 }|𝒯 |

𝑖=1

and for any signature 𝔱 ∈ Spend(𝒮, ℛ, 𝒯 ), it holds that VfTx(tx, 𝔱) =
1 with tx = tx(𝒮, ℛ, 𝒯 ).

Given this definition of a RingCT scheme, Omniring provides the security and
anonymity properties which match the intuitive understanding of Monero’s
security.
Most importantly, Omniring specifies a balance property. An adversary must
not be able to create a transactionwhich is valid but spendsmore amount in the
outputs than it consumes. The privacy of the system requires a more concrete
specification of sender and receiver anonymity. The goal is that any subset
of |𝒮| inputs from the total set ℛ has equal probability. Regarding recipient
anonymity, only the owner of the long term secret key lts is able to detect, link,
and receive an output. Both properties are captured by a security experiment,
where an adversary presents two partial transactions with two versions of in-
structions on how to complete the transaction given access to honest accounts.
The experiment creates one version and the adversary wins if they are able to
correctly guess which instructions were executed. This provides the adversary
with the freedom to attack the anonymity on the sender and receiver side, even
in the case where a transaction uses corrupted accounts as decoy inputs.
For the formal security and privacy experiments, we refer to the original Om-
niring paper [LRR+19].

2.12 assets

Previous work established a well formalized and proven secure UTXO trans-
action system. As the goal of this thesis is to extend it to handle multiple asset
types confidentially, we provide an overview of existing work on confidential
tokens. An asset type or simply a type in this thesis is a property of an amount
which may be read as currency. It is equivalent to color in our preliminary
work [EKB18] or colored Bitcoin.
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The most important factor to a confidential transaction system is the stor-
age of values. While previous UTXO systems used Pedersen commitments to
store amounts without a notion of currency or type, we require typed commit-
ments. Such commitments store an additional type, indicating the currency
the amount is in.
We provide the generalized formalization of the definitions from Confidential
Assets [PBF+17]:

Definition 2.13 (Typed Commitment Scheme). A type aware commitment
scheme TC consists of the PPT algorithms pp ← TC.Setup(1𝜆) which takes
the security parameter 𝜆 and outputs public parameters pp implicitly given to
com ← TC.Commit(ty, 𝑎; 𝑟) which takes a type ty ∈ 𝕋, an amount 𝑎 ∈ 𝕄
and randomness 𝑟 ∈ 𝕊 and outputs a commitment com.

The commitment has to satisfy the binding and hiding properties similar to
regular commitments.

Definition 2.14 (Hiding). A typed commitment scheme TC is hiding if for any
adversary 𝒜 , any ty ∈ 𝕋, any amount 𝑎 ∈ 𝕄 it holds that

Pr
⎡⎢⎢⎢
⎣

𝑏′ ← 𝒜(com)
𝑏′ = 𝑏

∶
pp ← Setup(1𝜆), 𝑏 $←−{0, 1}, 𝑟 $←−𝕊

ty0, 𝑎0, ty1, 𝑎1 ← 𝒜(pp)
com ← TC.Commit(ty𝑏, 𝑎𝑏; 𝑟)

⎤⎥⎥⎥
⎦

≤ negl(𝜆)

Definition 2.15 (Binding). A typed commitment scheme TC is binding if for any
adversary 𝒜 , any ty ∈ 𝕋, any amount 𝑎 ∈ 𝕄 it holds that

Pr

⎡⎢⎢⎢⎢⎢
⎣

com0 ← TC.Commit(ty0, 𝑎0; 𝑟0)
com1 ← TC.Commit(ty1, 𝑎1; 𝑟1)

com0 = com1

∧(ty0, 𝑎0) ≠ (ty1, 𝑎1)

∶
pp ← Setup(1𝜆)

ty0, 𝑎0, 𝑟0

ty1, 𝑎1, 𝑟1
← 𝒜(pp)

⎤⎥⎥⎥⎥⎥
⎦

≤ negl(𝜆)

One crucial feature of some commitments is their homomorphic property.
That means that two commitments can be combined to form a commitment
to some reasonable operation of the committed values. In Pedersen com-
mitments, the homomorphic operation results in the addition of the values.
I.e. (𝐺𝑎𝐻𝑟) ⋅ (𝐺𝑏𝐻𝑠) = 𝐺𝑎+𝑏𝐻𝑟+𝑠. With commitment to multiple values,
the homomorphism can have multiple variants. In the following two defini-
tions, we specify how the homomorphic property applies to the committed
values. In the first case, the commitments are additively homomorphic in each
domain, i.e. the amounts are reasonably added in 𝕄, but the types in 𝕋 are
added, which is undefined or results in a totally unrelated type. Therefore the
homomorphic addition of commitments does not represented the intuitive
addition of the amounts in each type. Instead of a homomorphic operation,
commitments are accompanied by a NIZK that their openings adhere to the
constraints.

Definition 2.16 (Homomorphic Property). If typed commitments TC satisfy
the additional property that for all ty0, ty1 ∈ 𝕋 and all 𝑎0, 𝑎1 ∈ 𝕄 it holds
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that TC.Commit(ty0, 𝑎0; 𝑟0)⊙TC.Commit(ty1, 𝑎1; 𝑟1) = TC.Commit(ty0 +
ty1, 𝑎0 +𝑎1; 𝑟) with an efficiently computable 𝑟, they have a homomorphic prop-
erty.

A succinct homomorphic TC scheme can be instantiated by a vector Ped-
ersen commitment. Let 𝒢 = (𝔾, 𝑞, 𝐺, 𝐹, 𝐻) be a group of order 𝑞 with
generators 𝐺, 𝐹, 𝐻 where the discrete logarithm assumption holds. A com-
mitment to the tuple (ty, 𝑎) ∈ ℤ𝑞

2 and randomness 𝑟 ∈ ℤ𝑞 is defined as
TC.Commit(ty, 𝑎) ∶= 𝐺𝑎𝐹ty𝐻𝑟.
A different homomorphic property is what we define as typed homomorphic
property. There commitments are additively homomorphic in respect to the
amounts if the typesmatch. Combined commitments of unequal types should
only have a valid opening if the sum of amounts in each type is 0. This is useful
to show that for any types available in a conservation, the amounts all sum up
to 0.

Definition 2.17 (Typed Homomorphic Commitments). Typed homomorphic
commitments THC are typed commitments TC which satisfy the additional
property that within the same type if for all ty ∈ 𝕋 and all 𝑎0, 𝑎1 ∈ 𝕄 it holds
that

THC.Commit(ty, 𝑎0; 𝑟0) ⊙ THC.Commit(ty, 𝑎1; 𝑟1)
= THC.Commit(ty, 𝑎0 + 𝑎1; 𝑟)

with an efficiently computable 𝑟.

As described by Poelstra et al. [PBF+17], THC can be constructed with 𝕋 =
{0, 1}∗ from a random oracle H ∶ {0, 1}∗ → 𝔾 as THC.Commit(ty, 𝑎) ∶=
(𝐶, 𝑉) with 𝐶 = H(ty)𝐻𝑟 and 𝑉 = 𝐶𝑎𝐻𝑠 with randomness 𝑟 and 𝑠. For
a simplified notation, we explicitly add an algorithm ComTypeGen(𝑛 ∈
{0, 1}∗) ∶= H(𝑛).
THC are updatable such that they commit to the same type but with new ran-
domness.

Theorem 2.1 (Updatable). For any ty, ty′ ∈ 𝕋 and any 𝑎 ∈ 𝕄 with (𝐶, 𝑉) =
Commit(ty, 𝑎; (𝑟, 𝑠)) and (𝐶′, 𝑉′) = Commit(ty′, 𝑎′; (𝑟′, 𝑠′)) it holds that
ty = ty′, if there exists a PPT algorithm to compute 𝜙1 in 𝐶 ⋅ 𝐶′−1 = 𝐺𝜙1 .
If additionally 𝜙2 in 𝑉 ⋅ 𝑉′−1 = 𝐺𝜙2 is PPT computable, ty = ty′ and 𝑎 = 𝑎′

holds.

Given these basic commitments schemes, there are two existing approaches
on proving that a transaction is balanced for each type separately.

2.12.1 Confidential Assets

With the type homomorphic property of the confidential assets construction
[PBF+17], showing that the inputs and outputs of a transaction are balanced re-
duces to a sigma protocol. When homomorphically combining two balanced
sets of commitments with one inverted, the value of every type is zero. If the
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prover can show an opening of a commitment to zero, the balance holds. It
remains to show that the newly created output commitments actually use a
valid type. This is verified by an asset surjection proof. We use the updatabil-
ity of typed homomorphic commitments to show that the type of each output
commitment is a rerandomization of an input commitment. If this rerandom-
ization proof provides set anonymity, the verifier does not learn which input
and output pairs are of the same type.

2.12.2 Cloaked Assets

A different approach pursued by Stellar [And] is to use two Pedersen commit-
ments. One for a type and one for a value. They designed an arithmetic circuit
that constrains the input and output commitments in away that only if the sum
of amounts is equal in each type, the proof is accepted. They use the arithmetic
circuit outer protocol of Bulletproofs to create an efficient construction.
One drawback of Confidential and Cloaked Assets is the limitation that they
require two group elements to commit to a typed amount. To reduce the over-
all transaction size, the commitments should be as small as possible, which is
a single element.

2.13 trading

A simple multi-type transaction system in itself only provides limited func-
tionality over separate transaction systems each dedicated to one type. Partic-
ipants need to have a mechanism to exchange tokens of different types with
each other. Between different systems, there are multiple proposals summa-
rized by Deshpande et al. [DH20] which include provable privacy guarantees.
However, the meta data leakage when operating multiple systems is unavoid-
able. An example are two privacy-preserving type unaware transaction sys-
tems. One representing a fungible currency and the other a highly valued asset
which is rarely transferred. An uptake in transactions of the rare asset serves as
indicator of more volatility andmight trigger financial decisions. Having both
assets share an anonymity set, the transaction frequency cannot be attributed
to a specific asset.
To fairly exchange tokens of different type within a single system, there exists
an approach by Gao et al. [GXK+19]. They introduce an optional sibling out-
put to each transaction output and allow to store debt in transaction outputs.
The sibling output cannot be spent before their parent output and all debt at-
tached to inputs needs to be compensated by appropriate additional inputs to
cancel the debt.
An exchange then takes the following sequence of transactions shown in Fig-
ure 2.4.

1. Party A creates a transaction which has at least two special outputs. One
parent note with spendable funds in type blue and a debt of red tokens.
To balance the transaction, there is a sibling output (dashed) which can-
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Figure 2.4: Example of an atomic swap with debt and sibling outputs.

cels the debt. As this sibling is only spendable after the parent output
was spent, i.e. the debt is payed off, this does not violate the balance
property.

2. Party A shares the parent note with the exchange party B who pays off
the debt in red tokens and is allowed to reclaim the blue tokens of A.

3. The sibling output of A is now spendable and A has access to the red
tokens.

In case party B does not cooperate, A recombines the parent and sibling output
to get back the blue tokens offered for exchange.
While this exchangemechanism is fair, i.e. atomic, it requires three transaction
to complete the exchange.

2.14 conclusion

In a conclusion, this chapter covered the basic cryptographic tools needed for
our constructions and presented existing work related to our research.
We identified the following six properties required by a privacy-preserving
multi-type ledger transaction system:

sender and receiver anonymity (SRA) ensures that senders of
funds should remain hidden to all parties and that recipients are known
only to the sender of a transaction. This enables basic user privacy in
transactions.

confidential amounts (COA)hide the amounts transferred and thereby
prevent heuristic deanonymization of rational transactors.

confidential types (COT) support independent token types within
one transaction system and hide the type to provide a single joint
anonymity set over all types.

decentralized setup (DSE) ensures that the security and privacy of
the system does not rely on a trusted party or ceremony. This increases
the trust for a truly decentralized system.

non-interactive transactions (NIT) guarantee that transactions
consist of a single, non-interactive broadcast message. Any direct
communication between senders and receivers decreases the sender
anonymity as the receiver learns the network identity of the sender
through meta-data. Additionally it reduces performance and practica-
bility of the scheme.
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Table 2.2: Overview of systems and their supported properties. Partial support
of a feature is noted with (✓).

SRA COA COT DSE NIT DEX
MimbleWimble [FOS19] ✓ ✓[ZYD+20] ✓ (✓)

Confidential Assets [PBF+17] ✓ ✓ ✓ ✓
Stellar [AGN+19] ✓ ✓ ✓ ✓
Zcash [SCG+14] ✓ ✓ ✓[GXK+19] ✓ (✓[GXK+19])

X-Chain Swap [DH20] ✓ ✓ ✓ ✓ (✓)
Monero [AH18] ✓ ✓ ✓ ✓

Omniring [LRR+19] ✓ ✓ ✓ ✓

decentralized exchanges (DEX) should be used to trade tokens of
different types. Trading is achieved by supporting transactions which
exchange the ownership of tokens of different types. As they atomically
swap the ownership of tokens, we name them atomic swap transactions.
To satisfy the NIT property, atomic swaps need to be non-interactive
and work without a trusted third party. By non-interactive we mean
to restrict the sender to a single message to e.g. an exchange or a peer.
This is analogous to a classical exchange, where a party submits a bid
to an exchange and then forgets about it until it is fulfilled. Our non-
interactivity especially excludes the offering party to actively participate
in the merging of offers. For sender anonymity, swap transactions hide
the number of participants resulting in the indistinguishability of simple
transfers and swaps providing additional privacy by a joint anonymity
set.

Table 2.2 provides an overview of our related work and presents in which prop-
erties the existing systems lack support. No existing system supports all prop-
erties in a combined way.
With these tools and systems, we will present our contributions in the follow-
ing chapters. These are motivated by the shortcomings of existing solutions.

− As existing privacy-preserving transaction systems do not support a
notion of type, we extend the RingCT system to accommodate multi-
ple types. Importantly, types must remain confidential and thereby all
transactions share a common anonymity set.

− To achieve space efficient Multi-type RingCT transactions, we require
an efficient Multi-type conservation proof which allows the use of suc-
cinct commitments. Neither Confidential Assets nor Cloaked Assets
support succinct commitments.

− For efficient, fair and anonymous trading of tokens in a Multi-type
RingCT system, our goal is to develop a novel exchange mechanism
such that a trade is executed in a single transaction.
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3
3.1 overview

In this chapter, we introduce an essential building block to aggregate signed
messages and achieve anonymity of the participating signers. The work pre-
sented here was previously published in [EMP+21]. In our scenario, we have
multiple parties who jointly want to sign a set of messages. In the swap appli-
cation, the signers represent the authorization and the messages are the new
outputs of a transaction. To sign, they use one or more keys which are unlink-
able to each other and the signer’s identity. Each participant contributes some
messages and signs them with one or more signatures. The goal is that each
participant non-interactively creates their part and then submits it to an un-
trustedmerging party. Themerger is able to aggregate all parts into a signature
signed by all participants for the union of all messages. Each signer is assured
that if one of their signatures is part of the aggregate, their set of messages is
included in the union of messages.
A naive solution without anonymity works as follows: Each participant cre-
ates a digital signature for each key and their subset of messages. An untrusted
merger aggregates themby concatenating all parts. This solution has two draw-
backs. Anyone is able to deaggregate the merged signature into its original
parts and may combine them differently. The possibility to split the signature
and verify parts of it individually leads to an anonymity issue. The number
of all possible combinations between signers and messages is small enough
to brute force the mapping. We require anonymity of all participants in the
final signature. I.e., the number of participants and the mapping between sig-
natures and messages must be hidden. Therefore only the complete merged
signature must be valid and any parts must not be able to be validated on their
own.
As our first contribution, we build such an aggregatable signature based on
carefully distributing balanced randomness. An overview is shown in Figure
3.1. For eachmessage 𝑚𝑖, the signer generates a random proxymessage 𝑠𝑖. The
signers with secret keys sk𝑗 then sign random messages 𝑥𝑗. The requirement

sk1
sk2
sk3
sk4
sk5

𝑚1
𝑚2
𝑚3
𝑚4
𝑚5
𝑚6

×

×
✓

𝑠1 ←
𝑠2 ←
𝑠3 ←
𝑠4 ←
𝑠5 ←
𝑠6 ←

→ Sign(𝑥1)
→ Sign(𝑥2)
→ Sign(𝑥3)
→ Sign(𝑥4)
→ Sign(𝑥5)

∑𝑖 𝑥𝑖 = ∑𝑖 𝑠𝑖

Figure 3.1: Overview of our aggregatable signature.
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for a valid signature is that the sum of message proxies ∑𝑖 𝑠𝑖 is equal to the
sum of random signed messages ∑𝑗 𝑥𝑗. This property is maintained when ag-
gregating two parts of a signature. Each part has the same sum of randomness
inmessage proxies and signedmessages so the equality holds when combining
the parts. For any subset of signatures and messages, the sum of randomness
is not equal and thereby the signature is not valid. A verifier first checks that
each signature is valid with the help of the public keys and then checks that
∑𝑖 𝑥𝑖 = ∑𝑖 𝑠𝑖. The issue using the scheme like this, is that the partial verifica-
tion is still possible. Brute force comparing the sum of all subsets of 𝑥-s with
the subsets of 𝑠-s will reveal the parts which were aggregated. To prevent this
attack, we use a homomorphic, hiding commitment to hide the values 𝑥 and 𝑠.
To allow the verifier checking the equality between 𝑥 and 𝑠, they need access
to the hiding factors. However it is sufficient to reveal only the sum of the hid-
ing factors. This aggregation of the hiding factors is the irreversible operation
when merging two signatures. To prevent reuse of the commitments and bind
the proxies 𝑠 to the actual messages, we add SoKs using the openings of the
commitments as witness.
In the following sections, we provide a formalization of our signature scheme
and then define its security and privacy properties. We present an efficient
construction from the discrete log assumption and prove its security. As an
outlook we present possible relation of our scheme to an open problem on
merging signatures.

3.2 formalization

Our formalization has little requirements on the type of signature used, so we
model it with a flexible, generic Signature of Knowledge (SoK) with any NP-
complete language ℒ as defined in Section 2.8. The generalized problem is a
set of signers, each with a set of messages {𝑚𝑗}|𝒯 |

𝑗=1 and a set of statements and
witnesses {(stmt𝑖, wit𝑖)}|𝒮|

𝑖=1 for the SoK. Each of the signers create signatures
{𝔯𝑖}|𝒮|

𝑖=1 which bind the messages to the given signatures. However, linking sig-
natures to specificmessagesmust be infeasible. Verificationmust only succeed
on the full set of all signatures and messages.

Definition 3.1 (Anonymous Aggregatable Signature). An anonymous aggre-
gatable signature scheme consists of AS = (AS.Setup, AS.Sign, AS.Verify,
AS.Merge) parametrized with an NP Language ℒ and the corresponding re-
lation Rℒ . The algorithms are defined as follows:

pp ← AS.Setup(1𝜆, ℒ) takes the security parameter 𝜆 and the language ℒ
which parametrizes the SoK and outputs the public parameters pp. The
public parameters pp are implicit input to the subsequent algorithms.

({𝔯𝑖}|𝒮|
𝑖=1, 𝔞) ← AS.Sign({(stmt𝑖, wit𝑖)}|𝒮|

𝑖=1, {𝑚𝑗}|𝒯 |
𝑗=1) takes a set of statement

and witness tuples {(stmt𝑖, wit𝑖)}|𝒮|
𝑖=1 and a set of messages {𝑚𝑗}|𝒯 |

𝑗=1 and
outputs a set of signatures {𝔯𝑖}|𝒮|

𝑖=1 and a proof 𝔞.



3.3 security 39

𝔞 ← AS.Merge(𝔞1, 𝔞2) takes two proofs 𝔞1, 𝔞2 and outputs a combined proof
𝔞.

𝑏 ← AS.Verify({(𝔯𝑖, stmt𝑖)}|𝒮|
𝑖=1, 𝔞, {𝑚𝑗}|𝒯 |

𝑗=1) takes the signatures 𝔯𝑖 and state-

ments stmt𝑖, a proof 𝔞 and the messages {𝑚𝑗}|𝒯 |
𝑗=1 and outputs a bit 𝑏 de-

pending on the validity of the signatures and the proof.

Definition 3.2 (Correctness). The anonymous aggregatable signature scheme
is correct if

1. Honestly signed messages are valid: For all (stmt𝑖, wit𝑖) ∈ Rℒ and all
messages {𝑚𝑗 ∈ {0, 1}∗}|𝒯 |

𝑗=1 with

({𝔯𝑖}|𝒮|
𝑖=1, 𝔞) ← AS.Sign({(stmt𝑖, wit𝑖)}|𝒮|

𝑖=1, {𝑚𝑗}|𝒯 |
𝑗=1)

it holds that

AS.Verify({(𝔯𝑖, stmt𝑖)}|𝒮|
𝑖=1, 𝔞, {𝑚𝑗}|𝒯 |

𝑗=1) = 1

2. Honestly merged signatures are valid: With 𝑡 ∈ {1, 2}, for any (stmt𝑡,𝑖,
wit𝑡,𝑖) ∈ Rℒ and all messages 𝑀𝑡 ∶= {𝑚𝑡,𝑗 ∈ {0, 1}∗}|𝒯𝑡|

𝑗=1 with

({𝔯𝑡,𝑖}
|𝒮𝑡|
𝑖=1, 𝔞𝑡) ← AS.Sign({stmt𝑡,𝑖, wit𝑡,𝑖}

|𝒮𝑡|
𝑖=1, 𝑀𝑡)

and 𝔞 ← AS.Merge(𝔞1, 𝔞2) it holds that

AS.Verify( ⋃
𝑡∈{1,2}

{(𝔯𝑡,𝑖, stmt𝑡,𝑖)}|𝒮𝑡|
𝑖=1, 𝔞, ⋃

𝑡∈{1,2}
𝑀𝑡) = 1

3.3 security

We define the security property that if a signature is included, all the intended
messages must be included in the unified set of messages. More formally, if
a SoK 𝔯𝑖 is part of the merged signature, then the set of messages must be a
superset of the signed messages, such that all previously signed messages are
included.

Definition 3.3 (Security). Given a secure SoK scheme, an anonymous aggregat-
able signature scheme AS is secure, if for all PPT adversaries 𝒜 , all statements
and witnesses {(stmt𝑖, wit𝑖) ∈ Rℒ}|𝒮|

𝑖=1 and all messages {𝑚𝑗 ∈ {0, 1}∗}|𝒯 |
𝑗=1

with

({𝔯𝑖}|𝒮|
𝑖=1, 𝔞) ← AS.Sign({(stmt𝑖, wit𝑖)}|𝒮|

𝑖=1, {𝑚𝑗}|𝒯 |
𝑗=1)

it must hold that In the security
definition, we assume
that 𝔯 is not
rerandomized by the
adversary. One
option is to use the
public key of the
signature as unique
identifier.

Pr ⎡⎢
⎣

{𝔯′
𝑖}

|𝒮′|
𝑖=1 ∩ {𝔯𝑖}|𝒮|

𝑖=1 ≠ ∅, 𝒯 ′ ⊉ 𝒯
AS.Verify({(𝔯′

𝑖 , stmt′
𝑖)}|𝒮′|

𝑖=1, 𝔞′, {𝑚′
𝑗}

|𝒯 ′|
𝑗=1) = 1

∣
∣∣
∣

pp ← AS.Setup(1𝜆)
({(𝔯′

𝑖 , stmt′
𝑖)}|𝒮′|

𝑖=1, 𝔞′, {𝑚′
𝑗}

|𝒯 ′|
𝑗=1))

← 𝒜({(𝔯𝑖, stmt𝑖)}|𝒮|
𝑖=1, 𝔞, {𝑚𝑗}|𝒯 |

𝑗=1)

⎤
⎥
⎥
⎥
⎦

≤ negl(𝜆)
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To show that the scheme does not reveal the witness, we require that an effi-
cient simulator exists to produce an indistinguishable transcript without the
witness.

Definition 3.4 (Simulatability). AS is simulatable if there exists an efficient PPT
simulator AS.Sim for which it holds that

⎧{
⎨{⎩

𝑥
∣
∣∣
∣

pp ← AS.Setup(1𝜆, ℒ)
𝑥 ← AS.Sign({(stmt𝑖, wit𝑖)}|𝒮|

𝑖=1, {𝑚𝑗}|𝒯 |
𝑗=1)

⎫}
⎬}⎭

=
⎧{
⎨{⎩

𝑥
∣
∣∣
∣

pp ← AS.Setup(1𝜆, ℒ)
𝑥 ← AS.Sim({stmt𝑖}|𝒮|

𝑖=1, {𝑚𝑗}|𝒯 |
𝑗=1)

⎫}
⎬}⎭

3.4 privacy

The privacy of the AS scheme is expressed by the security experiment in Algo-
rithm 3.1. The mapping of signatures to messages and the number of partici-
pants must remain hidden. An Adversary 𝒜 generates a valid set of signatures
Σ, statements STMT andmessages ℳ and provides instructions 𝐼, 𝐽 for the ex-
periment to append signatures and messages. For two cases of the parameter
𝑏 ∈ {0, 1}, the adversary 𝒜 specifies which party 𝑘 ∈ 𝔘𝑡 gets access to the
witnesses wit𝑖 where 𝑢𝒮

𝑡,𝑖 = 𝑘 and messages 𝑚𝑖 with 𝑢𝒯
𝑡,𝑖 = 𝑘. 𝒜 wins by

calculating 𝑏 correctly.The parties on the
signing and message
side need to be equal,
meaning there cannot

be a signer without
messages or messages

without a signer

Definition 3.5 (Privacy). An AS scheme is private, if for all PPT adversaries 𝒜
it holds that

∣Pr[ASPrivacy0
𝒜(1𝜆) = 1] − Pr[ASPrivacy1

𝒜(1𝜆) = 1]∣ ≤ negl(𝜆)

with ASPrivacy𝑏
𝒜(1𝜆) defined in Algorithm 3.1.

3.5 construction

We present a novel construction for the aggregatable signature scheme AS
which allows the non-interactive merging of offers. Related aggregatable sig-
nature schemes [dGTP17; BJ10] are not applicable in our setting as they either
require communication or aggregate values within a single messages.
Regarding privacy, our scheme provides anonymity of the mapping between
individual messages and signatures. Regarding security, tampering of mes-
sages is detected by verifying the full set of messages and signatures as a whole.
The important feature which results from these properties is the possibility for
multiple parties to generate such signatures which are later combined into a
single signature valid for the union of signatures andmessages. The aggregated
signature is indistinguishable from one created by a single party.
We achieve this balance by introducing randomness in the form of commit-
ments and then revealing just enough of this randomness such that verification
is feasible. Let 𝒢 = (𝔾, 𝑞, 𝐺, 𝐻) be a cyclic group 𝔾 of prime order 𝑞 with
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Algorithm 3.1 ASPrivacy𝑏
𝒜(1𝜆)

pp ← AS.Setup(1𝜆)
(𝐼, 𝐽, Σ, STMT, ℳ, 𝔞) ← 𝒜(pp)
Σ0 ∶= Σ1 ∶= Σ, ℳ0 ∶= ℳ1 = ℳ, 𝔞0 ∶= 𝔞1 ∶= 𝔞
parse Σ as {𝔯𝑖}|Σ|

𝑖=1 and STMT as {stmt𝑖}|Σ|
𝑖=1

if AS.Verify({(𝔯𝑖, stmt𝑖)}|Σ|
𝑖=1, 𝔞, {𝑚𝑖}|ℳ|

𝑖=1) = 0 then return 0
parse 𝐼 as {({𝑢𝒮

𝑡,𝑖}1
𝑡=0, stmt𝑖, wit𝑖)}|𝐼|

𝑖=1
parse 𝐽 as {({𝑢𝒯

𝑡,𝑖}1
𝑡=0, 𝑚𝑖)}|𝐽|

𝑖=1
for all 𝑡 ∈ {0, 1} do

𝔘𝐼
𝑡 ∶= {𝑢𝒮

𝑡,𝑖}
|𝐼|
𝑖=1, 𝔘𝐽

𝑡 = {𝑢𝒯
𝑡,𝑗}

|𝐽|
𝑗=1

if 𝔘𝐼
𝑡 ≠ 𝔘𝐽

𝑡 then return 0
for all 𝑘 ∈ 𝔘𝐼

𝑡 do
STMT𝑘

𝑡 ∶= {stmt𝑖|𝑢𝒮
𝑡,𝑖 = 𝑘}|𝐼|

𝑖=1
WIT𝑘

𝑡 ∶= {(stmt𝑖, wit𝑖)|𝑢𝒮
𝑡,𝑖 = 𝑘}|𝐼|

𝑖=1
ℳ𝑘

𝑡 ∶= {𝑚𝑖|𝑢𝒯
𝑡,𝑖 = 𝑘}|𝐽|

𝑖=1
(Σ𝑘

𝑡 , 𝔞𝑘
𝑡 ) ← AS.Sign(WIT𝑘

𝑡 , ℳ𝑘
𝑡 )

// % zips: |𝐴| = |𝐵| and 𝐴%𝐵 ∶= {(𝑎1, 𝑏1), … , (𝑎|𝐴|, 𝑏|𝐵|)}
if AS.Verify(Σ𝑘

𝑡 %STMT𝑘
𝑡 , 𝔞𝑘

𝑡 , ℳ𝑘
𝑡 ) = 0 then return 0

ℳ𝑡 ∶= ℳ𝑡 ∪ ℳ𝑘
𝑡 , Σ𝑡 ∶= Σ𝑡 ∪ Σ𝑘

𝑡 , 𝔞𝑡 ← Merge(𝔞𝑡, 𝔞𝑘
𝑡 )

𝑏′ ← 𝒜(Σ𝑏, 𝔞𝑏) return 𝑏′

generators 𝐺 and 𝐻 where the discrete logarithm assumption holds. Further,
we require a random oracle 𝔥 ∶ {0, 1}∗ → ℤ𝑞 which could be implemented
using a hash function. These, along with the language of the actual SoK (ℒ)
are returned as public parameters by AS.Setup.

Algorithm 3.2 AS.Sign({(stmt𝑖, wit𝑖)}|𝒮|
𝑖=1, {𝑚𝑗}|𝒯 |

𝑗=1)

⃗𝑠, ⃗𝑟 $←−ℤ|𝒯 |
𝑞 , 𝐶 ∶= 𝐷 ∶= ∅

for all 𝑗 ∈ [|𝒯 |] do
𝐶𝑗 = 𝐺𝑠𝑗𝐻𝑟𝑗

𝜋𝒯
𝑗 ← SoK[ℒped]Sign(stmt ∶= 𝐶𝑗, wit ∶= (𝑠𝑗, 𝑟𝑗), 𝑚𝑗)

ℎ𝑗 = 𝔥(𝑚𝑗||𝐶𝑗)
⃗𝑥 $←−ℤ|𝒮|−1

𝑞 , 𝑥|𝒮| ∶= ∑|𝒯 |
𝑗=1(ℎ𝑗 + 𝑠𝑗) − ∑|𝒮|−1

𝑖=1 𝑥𝑖
for all 𝑖 ∈ [|𝒮|] do

𝐷𝑖 ∶= 𝐺𝑥𝑖 , 𝜋𝒮
𝑖 ← SoK[ℒcom]Sign(𝑠𝑡𝑚𝑡 ∶= 𝐷𝑖, 𝑤𝑖𝑡 ∶= (𝑥𝑖), 42)

𝔯𝑖 ← SoK[ℒ]Sign(stmt𝑖, wit𝑖, 𝐷𝑖)
𝔞 ∶= ({(𝜋𝒮

𝑖 , 𝐷𝑖)}|𝒮|
𝑖=1, {(𝜋𝒯

𝑗 , 𝐶𝑗)}|𝒯 |
𝑗=1, ∑|𝒯 |

𝑗=1 𝑟𝑗)
return ({𝔯𝑖}|𝒮|

𝑖=1, 𝔞)
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3.5.1 Signing (Algorithm 3.2)

Using the messages 𝑚𝑗 directly as messages in SoK[ℒ]Sign reveals the link
between SoK signatures andmessages since the correctmessage is required for
verification. Therefore we generate a Pedersen commitment 𝐶𝑗 = 𝐺𝑠𝑗𝐻𝑟𝑗 to a
random value 𝑠𝑗 ∈ ℤ𝑞 with a blinding factor 𝑟𝑗 ∈ ℤ𝑞 for each message 𝑚𝑗. To
assure that the prover knows the randomness (𝑠𝑗, 𝑟𝑗) and link the proof to the
message, we require a SoK[ℒped] proof 𝜋𝒯

𝑗 over the two exponents in each
commitment 𝐶𝑗. The language is defined as ℒped ∶= {𝐶 ∶ ∃(𝑠, 𝑟) s.t. 𝐶 =
𝐺𝑠 ⋅ 𝐻𝑟}. To get a scalar in ℤ𝑞 we hash the concatenation of the message 𝑚𝑗
and the commitment 𝐶𝑗 to get ℎ𝑗 = 𝔥(𝑚𝑗‖𝐶𝑗). This links the commitment
to the signature as otherwise 𝑠𝑗 and 𝑟𝑗 are sufficient to change the message
without having access to the signers secret key. With the commitment 𝐶𝑗 and
the correct message, a verifier calculates 𝐺ℎ𝑗 ⋅ 𝐶𝑗 = 𝐺ℎ𝑗+𝑠𝑗 ⋅ 𝐻𝑟𝑗 to verify if the
messages belong to the signatures.
The signature 𝜋𝒯

𝑗 is necessary, proving knowledge about the values in the
commitment. Without 𝜋𝒯

𝑗 , an adversary, given 𝑟 may calculate 𝐺𝑠 = 𝐶𝑗 ⋅𝐻−𝑟

and reuse it in one of their commitments, convincing a verifier that the original
message and 𝑠 are present. In conclusion, 𝑠𝑗 is a hidden proxy for 𝑚𝑗. Knowl-
edge of 𝑠𝑗 is required to change the message while keeping 𝐺ℎ𝑗 ⋅ 𝐶𝑗 constant.
For a singlemessage, the privacy is irrelevant, as there was exactly one party in-
volved. Withmultiplemessages however, we define a secret sum ∑|𝒯 |

𝑗=1(ℎ𝑗 +𝑠𝑗)

and a public sum 𝑟 = ∑|𝒯 |
𝑗=1 𝑟𝑗. Given the value of 𝑟, the messages 𝑚𝑗 and com-

mitments 𝐶𝑗, which imply ℎ𝑗, it is infeasible for the verifier to calculate an indi-
vidual 𝑠𝑗. It is also infeasible to change a message 𝑚∗

𝑗 and adapt some 𝑠∗
𝑗 such

that ∑|𝒯 |
𝑗=1(ℎ𝑗 + 𝑠𝑗) stays constant without knowing 𝑠𝑗. Original signers can

always replace their part in a merged signature and replace it with a different
part.
We use this property to distribute the value of ∑|𝒯 |

𝑗=1(ℎ𝑗 + 𝑠𝑗) randomly over
the messages for SoK[ℒ]Sign. For each signature, we create a simple com-
mitment 𝐷𝑖 = 𝐺𝑥𝑖 with the constraint that ∑|𝒮|

𝑖=1 𝑥𝑖 = ∑|𝒯 |
𝑗=1(ℎ𝑗 + 𝑠𝑗). A

pragmatic approach is to use |𝒮| − 1 random values and calculate the last as
𝑥|𝒮| ∶= ∑|𝒯 |

𝑗=1(ℎ𝑗 + 𝑠𝑗) − ∑|𝒮|−1
𝑖=1 𝑥𝑖. To assure the honest creation of these

commitments, a valid argument of knowledge (AoK[ℒcom]) proof 𝜋𝒮
𝑖 as de-

fined in Section 2.6 must be attached. The language is defined as ℒcom ∶=
{𝐷 ∶ ∃𝑥 s.t. 𝐷 = 𝐺𝑥}. We see that the product of signing side commitments
𝐷𝑖 are equal to the product of message commitments 𝐶𝑗 with ∏|𝒮|

𝑖=1 𝐷𝑖 =
𝐻−𝑟 ⋅ ∏|𝒯 |

𝑗=1(𝐺ℎ𝑗 ⋅ 𝐶𝑗) up to the randomness 𝐻𝑟 which is known to the veri-
fier, as 𝑟 is published. Finally each SoK[ℒ] 𝔯𝑖 is generated with the supplied
statements stmt𝑖 and witnesses wit𝑖 and the messages 𝐷𝑖. The aggregatable
signature then consists of the commitments 𝐶𝑗, 𝐷𝑖 with their SoK/AoK sig-
natures 𝜋𝒯

𝑗 , 𝜋𝒮
𝑖 , the SoK[ℒ] signatures 𝔯𝑖 and the sum of blinding factors

𝑟.
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Algorithm 3.3 AS.Merge(𝔞1, 𝔞2)

parse 𝔞1 as ({(𝜋𝒮
𝑖,1, 𝐷𝑖,1)}|𝒮1|

𝑖=1, {(𝜋𝒯
𝑗,1, 𝐶𝑗,1)}|𝒯1|

𝑗=1, 𝑟1)
parse 𝔞2 as ({(𝜋𝒮

𝑖,2, 𝐷𝑖,2)}|𝒮2|
𝑖=1, {(𝜋𝒯

𝑗,2, 𝐶𝑗,2)}|𝒯2|
𝑗=1, 𝑟2)

𝔞 = ({(𝜋𝒮
𝑖,1, 𝐷𝑖,1)}|𝒮1|

𝑖=1 ∪ {(𝜋𝒮
𝑖,2, 𝐷𝑖,2)}|𝒮2|

𝑖=1,

{(𝜋𝒯
𝑗,1, 𝐶𝑗,1)}|𝒯1|

𝑗=1 ∪ {(𝜋𝒯
𝑗,2, 𝐶𝑗,2)}|𝒯2|

𝑗=1, 𝑟1 + 𝑟2)
return 𝔞

3.5.2 Merging (Algorithm 3.3)

To merge two valid signatures 𝔞1, 𝔞2, it is sufficient to add their randomness
𝑟1 + 𝑟2 = 𝑟 and use the union of the sets in 𝔞.

Algorithm 3.4 AS.Verify({(𝔯𝑖, stmt𝑖)}|𝒮|
𝑖=1, 𝔞, {𝑚𝑗}|𝒯 |

𝑗=1)

parse 𝔞 as ({(𝜋𝒮
𝑖 , 𝐷𝑖)}|𝒮|

𝑖=1, {(𝜋𝒯
𝑗 , 𝐶𝑗)}|𝒯 |

𝑗=1, 𝑟)
Γ ∶= 𝐻−𝑟, Δ = 𝐼
for all 𝑗 ∈ [|𝒯 |] do

if SoK[ℒped]Verify(stmt ∶= 𝐶𝑗, 𝜋𝒯
𝑗 , 𝑚𝑗) = 0 then return 0

Γ ∶= Γ𝐶𝑗𝐺
𝔥(𝑚𝑗||𝐶𝑗)

for all 𝑖 ∈ [|𝒮|] do
if SoK[ℒcom]Verify(stmt ∶= 𝐷𝑖, 𝜋𝒮

𝑖 , 42) = 0 then return 0
if SoK[ℒ]Verify(𝔯𝑖, stmt𝑖, 𝐷𝑖) = 0 then return 0
Δ ∶= Δ𝐷𝑖

return 𝑏 ∶= Γ = Δ

3.5.3 Verification (Algorithm 3.4)

If the publicly calculable product equality

|𝒮|
∏
𝑖=1

𝐷𝑖 = 𝐻−𝑟 ⋅
|𝒯 |
∏
𝑗=1

(𝐺ℎ𝑗 ⋅ 𝐶𝑗)

holds, and all proofs (𝜋𝒯
𝑗 , 𝜋𝒮

𝑖 , 𝔯𝑖) are valid, 1 is returned, 0 otherwise.

3.6 analysis

Our construction fulfills all required definitions.

Theorem 3.1 (Secure). Given a non-malleable SoK, the construction for the ag-
gregatable signature is secure according to Definition 3.3.

Proof. To show the security of our AS scheme, we start with the most simple
scenario of one signature and onemessage. Then we use the adversary 𝒜 to ef-
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ficiently construct an adversary against the discrete logarithm problem. Given
a discrete logarithm challenge chl = (𝐺, 𝐺𝛾) we proceed as follows.

1. Sample a statement and witness (stmt1, wit1) ∈ Rℒ .

2. Sample a message 𝑚1 ∈ {0, 1}∗ and 𝑟1 ∈ ℤ𝑞.

3. Calculate 𝐶1 = 𝐺𝛾𝐻𝑟1 .

4. Simulate 𝜋𝒯
1 = SoK[ℒped]Sim(stmt = 𝐶1, 𝑚1).

5. Calculate ℎ1 = 𝔥(𝑚1||𝐶1) and 𝐷1 = 𝐺𝛾 ⋅ 𝐺ℎ1 .

6. Simulate 𝜋𝒮
1 = AoK[ℒcom]Sim(stmt = 𝐷1).

7. Sign 𝐷1 with 𝔯1 = SoK[ℒ]Sign(stmt1, wit1, 𝐷1).

This results in a valid aggregated signature

({𝔯1}, ({(𝜋𝒮
1 , 𝐷1)}, {(𝜋𝒯

1 , 𝐶1)}, 𝑟))

for stmt1 and𝑚1. The adversary𝒜 , given the signature above, is able to output
a new valid signature for

({𝔯1} ∪ {𝔯𝑖}|𝒮|
𝑖=2, ({(𝜋′𝒮

𝑖 , 𝐷′
𝑖)}|𝒮|

𝑖=1, {(𝜋′𝒯
𝑗 , 𝐶′

𝑗)}|𝒯 |
𝑗=1, 𝑟′))

which uses the same 𝔯1 along with possible other signatures {𝔯𝑖}|𝒮|
𝑖=2 but a set

of messages 𝑀 = {𝑚′
𝑗}

|𝒯 |
𝑗=1 which does not include 𝑚1 (𝑚1 ∉ 𝑀). As 𝔯1

is a non-malleable signature, it follows that 𝐷′
1 = 𝐷1 = 𝐺𝛾 ⋅ 𝐺ℎ1 . For

all other {𝐷′
𝑖}

|𝒮|
𝑖=2 created by 𝒜 , we use the efficient extractor AoK[ℒcom]ℰ

which exists due to AoK[ℒcom]Verify(𝜋′𝒮
𝑖 , 𝐷′

𝑖) = 1 to extract {𝑥′
𝑖}

|𝒮|
𝑖=2 from

{𝜋′𝒮
𝑖 }|𝒮|

𝑖=2 for which 𝐷′
𝑖 = 𝐺𝑥′

𝑖 holds. On the message side all proofs are valid
SoK[ℒped]Verify(𝜋𝒮

𝑖 , 𝐶𝑖, 𝑚𝑖) = 1 and are created by𝒜 , as our simulated𝜋𝒯
1

is invalid for all 𝑚′ ∈ 𝑀. Therefore, we extract {(𝑠′
𝑖, 𝑟′

𝑖)}|𝒯 |
𝑖=1 from {𝜋′𝒯

𝑖 }|𝒯 |
𝑖=1

with SoK[ℒped]ℰ . As the new signature is valid, the products are equal and
by comparing exponents of 𝐺 we calculate 𝛾 = ∑|𝒯 |

𝑗=1 𝑠′
𝑗 − ℎ1 − ∑|𝒮|

𝑖=2 𝑥′
𝑖 .

Theorem 3.2 (Simulatable). Given a simulatable SoK, the AS construction is
simulatable according to Definition 3.4.

Proof. The witnesses wit𝑖 are used only in SoK[ℒ]Sign, for which an efficient
simulator exists. An efficient simulator AS.Sim is defined by replacing 𝔯𝑖 with
𝔯𝑖 ← SoK[ℒ]Sim(stmt, 𝐷𝑖).

Theorem 3.3 (Private). Given a simulatable SoK, the construction for AS is pri-
vate according to Definition 3.5.
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Proof. The information given to the adversary in the experiment about 𝑏 is
Σ𝑏, 𝔞𝑏. Let Σ𝑏 be simulated by AS.Sim. Sets are closed under the union op-
eration and thereby reveal nothing about 𝑏. For both 𝑏 ∈ {0, 1} it holds that
𝔞𝑏 = ({𝜋𝒮

𝑏,𝑖, 𝐷𝑏,𝑖}|𝐼|
𝑖=1, {𝜋𝒯

𝑏,𝑖, 𝐶𝑏,𝑖}|𝐽|
𝑖=1, 𝑟𝑏). Again, the union of the sets does

not reveal the initial subsets. The randomness 𝑟𝑏 is the sum of random values
and thereby itself uniformly random. As none of the values is dependent on
the signer’s identity 𝑢𝑏,𝑖, Theorem 3.3 holds.

3.7 conclusion

Our novel aggregatable signature scheme enables multiple parties to non-
interactively create a joint signature over sets of messages. Previous work on
set homomorphic signatures [JMSW02] left the union only feature as an open
questions. While they proposed a scheme for this setting based on groups
with infeasible inversion, our scheme achieves the union only property from
standard assumptions.
We will use this signature scheme as a building block of our SwapCT scheme.
It allows creating partial transactions which can be merged. However, the gen-
eral concept of balanced randomness is also applicable in Zcash based trans-
actions as outlined in our future work in Section 8.5.





ASSET CONSERVAT ION PROOFS

4
4.1 overview

This chapter describes our second building block. From a functional perspec-
tive, a transaction system has to ensure that any transaction consumes exactly
as many tokens as it outputs. Thereby the total supply of tokens remains con-
stant and transactions only change the ownership of tokens. In plaintext trans-
actions, this conservation is directly achievable by summing up the inputs and
subtracting the output amounts. If the sum is zero and all outputs are non-
negative, the total supply of tokens remains constant. If tokens have a type
and a value, the plaintext summation must hold for each type separately.
Plaintext amounts and types provide a lot of insight into transactions and al-
low tracing of users across transactions. One option to conceal the amounts
and types is through commitments as discussed in Section 2.12. Given a set of
committed input amounts and output amounts, a verifier can no longer sum
the values directly. Instead, the prover has to provide a NIZK proof that the
committed values sumup to zero. Additionally, the prover has to show that the
output values are all positive. Without types and using homomorphic Peder-
sen commitments, the sum equality is achieved by a sigma protocol proving an
opening of zero for the homomorphic combination of input commitments and
inverse of output commitments. Together with a range proof of each output
commitment to have an amount in a specified non-negative range, a verifier
can be convinced that the total number of tokens is conserved.
To support a notion of type for tokens, we require the sum of amounts to be
zero for each type separately. If the type is a public property of inputs and out-
puts, amount confidentiality is achieved though multiple sigma protocols as
explained above. Revealing the type allows for tracking of users, which is why
the types should be confidential too. As each transaction output is of exactly
one type, a subsequent transaction using this as input is then linked to the same
type. Public types effectively reduce the anonymity set to only transactions of
the same type. This has similar anonymity guarantees as a separate system per
type has. We therefore include the type in the amount commitment. There are
multiple options to commit to a type and an amount. Poelstra et al. [PBF+17]
proposed a type homomorphic commitment, which is homomorphic within
each type, facilitating proof for a valid sum. In Section 4.3, we will present a
NIZK proof with reduced size compared to their protocol.
One drawback of the typed hommomorphic commitment scheme is its size.
As our second contribution, we propose to use a succinct1 vector Pedersen
commitment to commit to types and amounts. While this achieves an opti-
mal commitment size of a single group element, it is no longer type homo-
morphic. This requires a novel NIZK proof for the conservation. Instead of

1 The size of a vector Pedersen commitment is a single group element and thereby independent
of the opening size.
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representing the conservation as generic arithmetic circuit and using the Bul-
letproof extension for bilinear circuits [LMR19] or compressed Σ-protocols
[ARR21], we achieve a more efficient scheme with a fraction of multiplication
gates. As a trade-off, we require one additional communication round with
a single group element, i.e. an intermediate commitment. Our NIZK proof
has approximately the same size as the one required for typed homomorphic
commitments, but the total transaction size is reduced due to the smaller com-
mitments.

4.2 asset conservation proofs

To preserve amounts per type individually while keeping both confidential in a
commitment may be done with a NIZK proof for the language ℒ∅. Given two
sets of commitments for the |𝒮| inputs {com𝒮

𝑖 }|𝒮|
𝑖=1 and |𝒯 | outputs {com𝒯

𝑖 }|𝒯 |
𝑖=1

and the openings as a witness, the language assures that:

1 The input and output commitments are well formed.

2 The output amounts are in a valid range 𝑎𝒯
𝑖 ∈ {0, … , 2𝛽 − 1} for a

specified 𝛽 with |𝒯 | ⋅ 2𝛽 < |𝕄| such that calculations in the message
space of the commitment 𝕄 are equal to the integers ℤ.

3 For each type in the set of output types {ty𝑖}
|𝒯 |
𝑖=1, the sum of input

amounts of this type ∑{𝑎𝒮
𝑖 |ty𝒮

𝑖 = ty} is equal to the sum of output
amounts ∑{𝑎𝒯

𝑖 |ty𝒯
𝑖 = ty}.

In summary ℒ∅ ∶=

⎧{{{{{{
⎨{{{{{{⎩

stmt = ({com𝒮
𝑖 }|𝒮|

𝑖=1, {com𝒯
𝑖 }|𝒯 |

𝑖=1)

∃wit = ({ty𝒮
𝑖 , 𝑎𝒮

𝑖 , 𝑟𝒮
𝑖 }|𝒮|

𝑖=1, {ty𝒯
𝑖 , 𝑎𝒯

𝑖 , 𝑟𝒯
𝑖 }|𝒯 |

𝑖=1) s.t.

∀𝑖 ∈ [|𝒮|] ∶ 1 com𝒮
𝑖 = Commit(ty𝒮

𝑖 , 𝑎𝒮
𝑖 ; 𝑟𝒮

𝑖 )

∀𝑖 ∈ [|𝒯 |], 1 com𝒯
𝑖 = Commit(ty𝒯

𝑖 , 𝑎𝒯
𝑖 ; 𝑟𝒯

𝑖 ) ∧ 2 𝑎𝒯
𝑖 ∈ {0, … , 2𝛽 − 1}

3 ∀ty ∈ {ty𝑖}
|𝒯 |
𝑖=1, ∑{𝑎𝒮

𝑖 |ty𝒮
𝑖 = ty} = ∑{𝑎𝒯

𝑖 |ty𝒯
𝑖 = ty}

In the following section, and present an overview of our solutions for ℒ∅.

4.3 instantiation with hierarchial pedersen commit-
ments

While Poelstra et al. [PBF+17] provided aworking instantiation of an asset con-
servation proof, we present a smaller instantiation based on Bulletproofs. The
proof still consists of the three elements. A sigma protocol to show an opening
to zero, an asset surjection proof, which assures that the types of the outputs
are equal to one of the inputs, and a range proof for the output amounts.
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Using the typed homomorphic commitment scheme, we get a concrete lan-
guage ℒTHC

∶=

⎧{{{{{{{
⎨{{{{{{{⎩

stmt = ({(𝐶𝒮
𝑖 , 𝑉𝒮

𝑖 )}|𝒮|
𝑖=1, {(𝐶𝒯

𝑖 , 𝑉𝒯
𝑖 )}|𝒯 |

𝑗=1) ∶

∃wit = ({ty𝒮
𝑖 , 𝑎𝒮

𝑖 , (𝑟𝒮
𝑖 , 𝑠𝒮

𝑖 )}|𝒮|
𝑖=1, {ty𝒯

𝑗 , 𝑎𝒯
𝑗 , (𝑟𝒯

𝑗 , 𝑠𝒯
𝑗 )}|𝒯 |

𝑗=1) ∶

∀𝑗 ∈ [|𝒯 |] ∶
⎧{{
⎨{{⎩

∏ 𝐶𝒯
𝑗 ⋅ ⃗𝐶𝒮

∘−𝑒𝑖𝑗 = 𝐺𝜙1,𝑗

𝑉𝒯
𝑗 = 𝐶𝒯

𝑗
𝑎𝒯

𝑗 𝐺𝑠𝒯
𝑗 , 𝑎𝒯

𝑖 ∈ {0, … , 2𝛽 − 1}

∏|𝒮|
𝑖=1 𝑉𝒮

𝑖 ⋅ ∏|𝒯 |
𝑗=1 𝑉𝒯

𝑗
−1

= 𝐺𝜙2

with 𝜙 efficiently calculatable.
For the instantiation, we parametrize the bulletproof language described in
Section 2.9.1. We compress the public elements 𝐺, ⃗𝐶𝒮 , ⃗𝐶𝒯 and one publicly
computable element 𝑉̂ in the function Λ. The remaining parameters are con-
structed as follows:
Λ ∶= (𝐺‖ ⃗𝐶𝒮 ‖ ⃗𝐶∘𝑢⋅𝑣⃗|𝒯 |

𝒯 ‖ 𝑉̂ )
⃗𝑐𝐿 ∶= (𝜉 ‖ ⃗̂𝑒 ‖ ⃗𝑎𝒯 ‖ 1 ‖ vec(E) ‖ vec(B) )
⃗𝑐𝑅 = (0‖ ⃗0|𝒮| ‖ ⃗0|𝒯 | ‖ 0 ‖vec(E) − ⃗1|𝒯 |⋅|𝒮|‖vec(B) − ⃗1|𝒯 |𝛽)
⃗v0 ∶= (0‖ ⃗0|𝒮| ‖ ⃗0|𝒯 | ‖ 0 ‖ ⃗𝑦|𝒯 |⋅|𝒮|+|𝒯 |𝛽 )
⃗v1 ∶= (0‖ ⃗0|𝒮| ‖ ⃗0|𝒯 | ‖ 0 ‖ ⃗𝑦|𝒯 |⋅|𝒮|+|𝒯 |𝛽 )
⃗v2 ∶= (0‖ ⃗0|𝒮| ‖ ⃗0|𝒯 | ‖𝑦|𝒯 |‖ ⃗𝑦|𝒯 | ⊗ ⃗1|𝒮| ‖ ⃗0|𝒯 |𝛽 )
⃗v3 ∶= (0‖ ⃗0|𝒮| ‖ − ⃗𝑦|𝒯 | ‖ 0 ‖ ⃗0|𝒯 |⋅|𝒮| ‖ ⃗𝑦|𝒯 | ⊗ 2⃗𝛽 )
⃗v4 ∶= (0‖− ⃗𝑦|𝒮|‖ ⃗0|𝒯 | ‖ 0 ‖ ⃗𝑣|𝒯 | ⊗ ⃗𝑦|𝒮| ‖ ⃗0|𝒯 |𝛽 )

with

𝑉̂ = ∏ ⃗𝐶∘−𝑣⃗|𝒯 |

𝒯 ⋅ ∏ 𝑉⃗∘−𝑢⋅𝑣⃗|𝒯 |

𝒯 ⋅ ∏ 𝑉⃗∘𝑢2
𝒮 ⋅ ∏ 𝑉𝒯

∘−𝑢2

𝜙1( ⃗𝑟𝒯 , ⃗𝑟′,E, 𝑣) = ⟨ ⃗𝑣|𝒯 |, ⃗𝑟𝒯 + E ⃗𝑟′⟩ = ∑𝑗 𝜙1,𝑗

𝜙2( ⃗𝑟′, ⃗𝑠′, ⃗𝑎′, ⃗𝑟𝒯 , ⃗𝑠𝒯 , ⃗𝑎𝒯 ) = ⟨ ⃗1|𝒮|, ⃗𝑎′ ∘ ⃗𝑟′ + ⃗𝑠′⟩ − ⟨ ⃗1|𝒯 |, ⃗𝑎𝒯 ∘ ⃗𝑟𝒯 + ⃗𝑠𝒯 ⟩, 𝜉 =
−𝜙1 + 𝑢⟨ ⃗𝑣|𝒯 |, ⃗𝑠𝒯 ⟩ − 𝑢2𝜙2

vec(E) ∶= ( ⃗𝑒1𝑗
‖ ⃗𝑒2𝑗

‖ … ‖ ⃗𝑒|𝒯 |𝑗) and ⃗̂𝑒 = ⃗𝑣|𝒯 |E

bin(𝑎) ∶= 𝛽 -bit binary representation of 𝑎

vec(B) ∶= (bin(𝑎𝒯
1 )‖ … ‖bin(𝑎𝒯

|𝒯 |))
and the constraints to

− show that B and E are binary: ⟨ ⃗𝑐𝐿, ⃗𝑐𝑅 ∘ ⃗v0⟩ = 0, ⟨ ⃗𝑐𝐿 − ⃗𝑐𝑅 − ⃗1𝑚, ⃗v1⟩ = 0

− show that E consists of unit vectors and ⃗𝑐𝐿 is 1 at the position of 𝑉̂:
⟨ ⃗𝑐𝐿, ⃗v2⟩ = ⟨ ⃗1|𝒯 |+1, ⃗𝑦|𝒯 |+1⟩

− show that all output commitment values have a binary decomposition
in B: ⟨ ⃗𝑐𝐿, ⃗v3⟩ = 0

− show that each output type has a corresponding input type: ⟨ ⃗𝑐𝐿, ⃗v4⟩ =
0.
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Figure 4.1: Our ℒ∅ proof structure with 4 inputs and 3 outputs. Dots are zeros.

4.4 construction for committed vectors

We create a smaller non-interactive zero-knowledge (NIZK) proof for the lan-
guage ℒ∅ based on grouping of amounts by type and using succinct type com-
mitments. Similar to confidential assets, we use the Bulletproof [BBB+18]
structure presented in Omniring [LRR+19] for the compression to a logarith-
mic size transcript.
Without the type homomorphic property of a THC scheme, our protocol has
to check the amounts and types individually. The idea of our construction
is that for each type present in the outputs, we check that the sum of input
amounts of this type is equal to the sum of output amounts for the same type.
Figure 4.1 shows an example of a transaction with four inputs 𝒮 (1 blue, 5 blue,
3 red, 2 blue) and three outputs 𝒯 (2 blue, 3 red, 6 blue). To select inputs and
outputs of equal type, we construct two binary matrices E𝒮 and E𝒯 , each with
one column per output up to a total of |𝒯 | columns. For ease of readability ofThere are at most

min(|𝒮|, |𝒯 |) types
in a transaction but

for simplicity we
assume |𝒮| ≥ |𝒯 |

the resulting language ℒΠ below, we use circled numbers as references. The
binary matrices correspond to 1 . The 𝑖-th column of E𝒮 contains a 1 in all
positions with an equal type to output 𝑖. I.e. the first output is of type blue, so
the first column of E𝒮 is 1 at the position of every blue input. The outputs are
grouped the same way in E𝒯 . In our example (cf. Figure 4.1) the first column
indicates all outputs with the same type as the first output. In the case that
multiple outputs have the same type, in our example, the first and last output
is blue, only one output is considered for the grouping of this type, in our case
the first one, thus only the first column of E𝒮 and E𝒯 are used for type blue.
Subsequent outputs of the same type use a zero vector for the corresponding
columns of E𝒮 and E𝒯 . This achieves two objectives. First, each input and
output belongs to exactly one group, i.e. each row is a unit vector 2 . And
second, it hides the true number of unique types in the outputs. A transaction
with |𝒯 | outputs may have outputs with up to |𝒯 | different types (assuming
|𝒮| ≥ |𝒯 |).
With each type grouped into a column, the input amounts belonging to the
group are summed up and the sum of outputs in the output group of the same
type is subtracted. I.e. in the first column, the blue inputs 1,5,2 are added to 8
and the blue outputs 2,6 referenced by the first column of E𝒯 subtract to zero.
If this holds for every column, we achieve typed conservation.
So far, there is no connection of thematricesE𝒮 ,E𝒯 to the actual input ⃗𝐶𝒮 and
output ⃗𝐶𝒯 commitments of the statement. To create this link, we require the
concrete instantiation of our typed commitments as described in the prelim-
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inaries, specifically TC.Commit(ty, 𝑎; 𝑟) = 𝐺𝑎𝐹ty𝐻𝑟. The prover first needs
to show that the commitments are well formed by proving knowledge of their

exponents for the inputs ⃗ty𝒮 , ⃗𝑎𝒮 , ⃗𝑟𝒮 and outputs ⃗ty𝒯 , ⃗𝑎𝒯 , ⃗𝑟𝒯 with respect to
𝐺, 𝐹 and 𝐻 3 .
To check the type equality of inputs and outputs, we use the homomor-
phic property of the typed commitments. Note that this is not the typed
homomorphic property from Definition 2.17. A homomorphic commit-
ment 𝐶 = 𝐺𝑎𝐹ty𝐻𝑟 can be inverted 𝐶−1 into a commitment to the values
of −ty, −𝑎, −𝑟. Proving that two commitments 𝐶1 = 𝐺𝑎1𝐹ty𝐻𝑟1 , 𝐶2 =
𝐺𝑎2𝐹ty𝐻𝑟2 are of the same type ty having different amounts 𝑎1, 𝑎2 and ran-
domness 𝑟1, 𝑟2 is efficiently achieved by proving knowledge of an opening to
𝐶1 ⋅ 𝐶−1

2 = 𝐺𝑎1−𝑎2𝐹0𝐻𝑟1−𝑟2 with a type of zero. We construct an or-proof
of type equality using a secret bit 𝑏 ∈ {0, 1}. If a prover has knowledge of an
opening 𝜙, 𝜂 to the product 𝐶𝑏

1 ⋅ 𝐶−𝑏
2 = 𝐺𝜙𝐻𝜂, either the types are equal and

𝜙 = 𝑎1 − 𝑎2, 𝜂 = 𝑟1 − 𝑟2 or 𝑏 = 0 with 𝜙 = 𝜂 = 0.
To check if input 𝑗 has the same type as output 𝑖, we use the element E𝒮[𝑗, 𝑖]
as bit in the product of the commitments ⃗𝐶𝒮[𝑖]E𝒮 [𝑗,𝑖] ⋅ ⃗𝐶𝒯 [𝑖]

−E𝒮 [𝑗,𝑖]
=

𝐺𝜙ty,𝒮,𝑖,𝑗𝐹0𝐻𝜂ty,𝒮,𝑖,𝑗 . If E𝒮[𝑗, 𝑖] = 0, the opening of the product is always
zero and proves nothing about the committed values, however, if E𝒮[𝑗, 𝑖] = 1,
the types must be equal to result in an opening with 𝐹0 4 . E.g. the input
matrix E𝒮 indicates that the second input has the same type as the first output
E𝒮[2, 1] = 1. To verify this, we raise the input commitment to this bit and
the output commitment to the inverse: 5 E𝒮 [2,1]⋅ 2 −E𝒮 [2,1] = 3 . The type
cancels out and the prover knows a valid opening of the result. The output
matrix E𝒯 is linked to the output commitments in the same way 5 .
Instead of achieving a type of zero, we apply the same method to achieve
amounts of zero. For each group of equal type, represented by a column in E𝒮 ,
we raise the input commitment vector ⃗𝐶𝒮 to the elements of the 𝑖-th column of
E𝒮 and then multiply the results together. I.e. input group 1: 1 1⋅ 5 1⋅ 3 0⋅
2 1 = 8 input group 2: 1 0⋅ 5 0⋅ 3 1⋅ 2 0 = 3 input group 3: 1 0⋅
5 0⋅ 3 0⋅ 2 0 = 0 . This results in |𝒯 | commitments, each to the sum of

input amounts in the specific type. We repeat this for the output commitments
and get the sum of output amounts per type. I.e. output group 1: 2 1⋅ 3 0⋅
6 1 = 8 output group 2: 2 0⋅ 3 1⋅ 6 0 = 3 output group 3: 2 0⋅ 3 0⋅
6 0 = 0 . The input sums per type have to be equal to the output sum of

the same type. Therefore, the prover has to present an opening to the product
of the combined input commitments and the inverse of output commitments
for each type. I.e. group 1: 8 ⋅ 8 −1 = 0 group 2: 3 ⋅ 3 −1 = 0 group 3:
0 ⋅ 0 −1 = 0 The non-zero type and randomness of the openings for group

𝑖 are 𝜒𝑎,𝑖 and 𝜂𝑎,𝑖 6 .
To ensure that the sum of amounts hold in ℤ while the commitment space is
ℤ𝑞, we add a range proof for all 𝑎𝒯 [𝑖]. We prove that a value is in a given range
{0, … , 2𝛽 − 1} by proving knowledge of its 𝛽-bit binary representation. The
representations of all output amounts ⃗𝑎𝒯 yield the binary matrix B. In most



52 asset conservation proofs

systems, 𝛽 equals 64 7 . Given our instantiations and efficiently computable
𝜒’s and 𝜂’s from the witness, we get the language ℒΠ ∶=
⎧{{{{{{{{{{
⎨{{{{{{{{{{⎩

stmt = ( ⃗𝐶𝒮 , ⃗𝐶𝒯 )∃wit = ( ⃗ty𝒮 , ⃗𝑎𝒮 , ⃗𝑟𝒮 ,E𝒮 ,E𝒯 ,B, ⃗ty𝒯 , ⃗𝑎𝒯 , ⃗𝑟𝒯 ) s.t.

7 B binary, size 𝛽 × |𝒯 |; 1 E𝒮 binary, size |𝒮| × |𝒯 |;E𝒯 binary, size |𝒯 | × |𝒯 |

∀𝑖 ∈ [|𝒯 |],

⎧{{{{{
⎨{{{{{⎩

3 ⃗𝐶𝒯 [𝑖] = 𝐺 ⃗𝑎𝒯 [𝑖]𝐹 ⃗ty𝒯 [𝑖]𝐻 ⃗𝑟𝒯 [𝑖]; 7 B[𝑖] binary repr. of ⃗𝑎𝒯 [𝑖]

∀𝑗 ∈ [|𝒮|], 4 ⃗𝐶𝒮[𝑗]E𝒮 [𝑗,𝑖] ⋅ ⃗𝐶𝒯 [𝑖]
−E𝒮 [𝑗,𝑖]

= 𝐺𝜙ty,𝒮,𝑖,𝑗𝐹0𝐻𝜂ty,𝒮,𝑖,𝑗

∀𝑗 ∈ [|𝒯 |], 5 ⃗𝐶𝒯 [𝑗]E𝒯 [𝑗,𝑖] ⋅ ⃗𝐶𝒯 [𝑖]
−E𝒯 [𝑗,𝑖]

= 𝐺𝜙ty,𝒯 ,𝑖,𝑗𝐹0𝐻𝜂ty,𝒯 ,𝑖,𝑗

6 ∏ ⃗𝐶∘E𝒮 [𝑖]
𝒮 ⋅ ∏ ⃗𝐶∘−E𝒯 [𝑖]

𝒯 = 𝐺0𝐹𝜒𝑎,𝑖𝐻𝜂𝑎,𝑖

2 E𝒮 ⋅ ⃗1|𝒯 | = ⃗1|𝒮|;E𝒯 ⋅ ⃗1|𝒯 | = ⃗1|𝒯 |; ∀𝑖 ∈ [|𝒮|] ∶ 3 ⃗𝐶𝒮[𝑖] = 𝐺𝑎𝒮
𝑖 𝐹ty𝒮

𝑖 𝐻𝑟𝒮
𝑖

4.5 vector pedersen commitment nizk instantiation

To efficiently prove equivalency of a single position in multiple pairs of vector
Pedersen commitments, i.e. only amount or type equivalency, we present an
extended outer protocol. It enables a prover to dealwith the “noise” introduced
by unequal positions in the commitments and the compression of multiple
comparisons.
Our protocol allows the prover to commit to arbitrary values ⃗𝑘′ at an inter-
mediate stage, where only a partial set of challenge variables is known to the
prover. The committed intermediate values are then usable in subsequent con-
straints andmay be compressedwith the remaining challenge variables. In our
case, the prover is able to commit to the noise introduced by the amounts and
blinding factors of the statement commitments ⃗𝐶𝒮 , ⃗𝐶𝒯 in the compression of
constraints for type equality. The committed values ⃗𝑘′ are then usable in sub-
sequent constraints, e.g. to cancel out noise when proving the knowledge of
a discrete logarithm of aggregated commitments where only some generators
have an exponent of 0. To maintain the security of the protocol, the commit-
ment 𝐾′ to the values ⃗𝑘′ with a randomness 𝑟𝜅 is a vector Pedersen commit-
ment with bases 𝐾⃗′

𝐺 ∈ 𝔾|𝑘⃗′|+1 generated by the verifier. More concretely, we
build a NIZK proof for a language which is a parametrization of the following
language: ℒebp ∶=

⎧{{{{{{{{
⎨{{{{{{{{⎩

stmt = 𝐾⃗ ∈ 𝔾𝑚′∃wit = ( ⃗𝑐𝐿 ∶= ⃗𝑐𝐿,1‖ ⃗𝑐𝐿,2, ⃗𝑐𝑅) ∈ (ℤ𝑞
𝑚+𝑛 × ℤ𝑞

𝑚+𝑛) s.t.

∏ Λ(𝐾⃗, 𝐾′, 𝐾⃗′
𝐺, 𝑢, 𝑣, 𝑣′, 𝑣″)∘𝑐𝐿,1 = 𝐼;

∀𝑖 ∈ { ⃗v𝑖 ∶ cls(𝑖) = 𝔬𝔫𝔢} ∶ ⟨ ⃗𝑐𝐿 − ⃗𝑐𝑅 − ⃗1𝑚+𝑛, ⃗v𝑖⟩ = ̂v𝑖

∀𝑖 ∈ { ⃗v𝑖 ∶ cls(𝑖) = 𝔪𝔲𝔩} ∶ ⟨ ⃗𝑐𝐿, ⃗𝑐𝑅 ∘ ⃗v𝑖⟩ = ̂v𝑖

∀𝑖 ∈ { ⃗v𝑖 ∶ cls(𝑖) = 𝔡𝔦𝔯} ∶ ⟨ ⃗𝑐𝐿, ⃗v𝑖⟩ = ̂v𝑖

∀𝑖 ∈ { ⃗v𝑖 ∶ cls(𝑖) = 𝔰𝔲𝔪} ∶ ⟨ ⃗𝑐𝐿, ⃗v𝑖⟩ + ⟨ ⃗𝑐𝑅, ⃗v′
𝑖⟩ = ̂v𝑖

The parameters for the language ℒebp are first the public function Λ and the
set of constraints ⃗v𝑖 with class cls(𝑖) and value ̂v𝑖. Instead of a single challenge
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variable 𝑣, we support arbitrary more to achieve better independent compres-
sion. In our setting they are 𝑣, 𝑣′, 𝑣″. Λ takes 𝐾⃗, 𝐾′, 𝐾⃗′

𝐺, 𝑢, 𝑣, 𝑣′, 𝑣″ as input.
The intermediate commitment 𝐾′ is supplied by the prover after receiving the
challenge variables 𝑣, 𝑣′, 𝑣″ but importantly before the variable 𝑢.
Let 𝑚 = | ⃗𝑐𝐿| and 𝑛 = |Λ(… )|, he present the full protocol with changes to
Omniring are marked in boxes .

𝒱 : 𝑣, 𝑣′, 𝑣″ $←−ℤ𝑞, 𝐾⃗𝐺
$←−𝔾5

𝒫 ← 𝒱 : 𝑣, 𝑣′, 𝑣″, 𝐾⃗𝐺

𝒫 : 𝑟𝜅
$←−ℤ𝑞, commit 𝐾′ = ∏ 𝐾⃗∘(𝜙ty,𝜂ty,𝜒𝑎,𝜂𝑎,𝑟𝜅)

𝐺

𝒫 → 𝒱 : 𝐾⃗′

𝒱 : 𝑢 $←−ℤ𝑞, 𝐷 $←−𝔾, 𝑃⃗ $←−𝔾𝑛, ⃗𝐺′ $←−𝔾𝑚−𝑛, 𝐻⃗ $←−𝔾𝑚

𝒫 ← 𝒱 : 𝑢, 𝐷, 𝑃⃗, ⃗𝐺′, 𝐻⃗
𝒫, 𝒱 : For 𝑤 ∈ ℤ𝑞 define ⃗𝐺𝑤 ∶= ( Λ(𝐾⃗, 𝐾′, 𝐾⃗𝐺, 𝑢, 𝑣, 𝑣′, 𝑣″)

∘𝑤
∘ 𝑃⃗‖ ⃗𝐺′)

𝒫 : 𝑟𝐴
$←−ℤ𝑞, 𝐴 ∶= 𝐷𝑟𝐴 ⃗𝐺 ⃗𝑐𝐿

0 𝐻⃗ ⃗𝑐𝑅

𝒫 → 𝒱 : 𝐴
𝒱 : 𝑤 $←−ℤ𝑞
𝒫 ← 𝒱 : 𝑤

𝒫 : 1. ⃗𝑠𝐿
$←−ℤ𝑞

𝑚, ⃗𝑠𝑅 = (∀𝑖 ∈ [𝑚] ∶
⎧{
⎨{⎩

0 if ⃗𝑐𝑅[𝑖] = 0

𝑠 $←−ℤ𝑞 else
)

2. 𝑟𝑆
$←−ℤ𝑞, 𝑆 ∶= 𝐷𝑟𝑆 ⃗𝐺 ⃗𝑠𝐿𝑤 𝐻⃗ ⃗𝑠𝑅

𝒫 → 𝒱 : 𝑆
𝒱 : 𝑦, 𝑧 $←−ℤ𝑞
𝒫 ← 𝒱 : 𝑦, 𝑧
Now the prover and the verifier compress the constraints of the parametriza-
tion. Each constraint ⃗v𝑖 gets a unique index 𝑖 and cls( ⃗v𝑖) returns the class
{𝔪𝔲𝔩, 𝔡𝔦𝔯, 𝔰𝔲𝔪, 𝔬𝔫𝔢}of the constraint. Define 𝛿 ∶= ⟨ ⃗𝛼, 𝜇⃗⟩ + ⟨ ⃗1𝑚, ⃗𝜈⟩ + ∑𝑖 𝑧𝑖 ̂v𝑖
and

Θ⃗ ∶= ∑𝑖∶cls( ⃗v𝑖)=𝔪𝔲𝔩 𝑧𝑖 ⃗v𝑖 𝜇⃗ ∶= ∑𝑖∶cls( ⃗v𝑖)≠𝔪𝔲𝔩 𝑧𝑖 ⃗v𝑖 ⃗𝜈 ∶= ∑𝑖∶cls( ⃗v𝑖)=𝔬𝔫𝔢 𝑧𝑖 ⃗v𝑖

𝜔⃗ ∶= ∑𝑖∶ ⃗v′
𝑖≠0 𝑧𝑖 ⃗v′

𝑖 ⃗𝛼 ∶= Θ⃗∘−1 ∘ (𝜔⃗ − ⃗𝜈) ⃗𝛽 ∶= Θ⃗∘−1 ∘ 𝜇

𝒫 : Define polynomials in 𝑋:

𝑙(𝑋) ∶= ⃗𝑐𝐿 + ⃗𝛼 + ⃗𝑠𝐿 ⋅ 𝑋
𝑟(𝑋) ∶=Θ⃗ ⋅ ( ⃗𝑐𝑅 + ⃗𝑠𝑅 ⋅ 𝑋) + 𝜇⃗

with 𝑡(𝑋) ∶= ⟨𝑙(𝑋), 𝑟(𝑋)⟩ = 𝛿 + 𝑡1𝑋 + 𝑡2𝑋2 for some 𝑡1 and 𝑡2, let
𝜏1, 𝜏2

$←−ℤ𝑞, 𝑇1 ∶= 𝐺𝑡1𝐷𝜏1 , 𝑇2 ∶= 𝐺𝑡2𝐷𝜏2
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𝒫 → 𝒱 : 𝑇1, 𝑇2

𝒱 : 𝑥 $←−ℤ𝑞, 𝑄 $←−𝔾
𝒫 ← 𝒱 : 𝑥, 𝑄
𝒫 : 1. 𝜏 ∶= 𝜏1𝑥 + 𝜏2𝑥2 ; 𝑟 ∶= 𝑟𝐴 + 𝑟𝑆𝑥 ; ( ⃗𝑙, ⃗𝑟, 𝑡) ∶= (𝑙(𝑥), 𝑟(𝑥), 𝑡(𝑥))

2. padd ⃗𝑙 and ⃗𝑟 with 0 to length 2⌈log2(𝑚)⌉

3. 𝜋IP ← IPprove( ⃗𝑙, ⃗𝑟, ⃗𝐺𝑤, 𝐻⃗Θ⃗∘−1 , 𝑄)
𝒫 → 𝒱 : 𝜏, 𝑟, 𝜋IP, 𝑡
𝒱 : verify 𝑃 = 𝐴𝑆𝑥 ⃗𝐺 ⃗𝛼

𝑤𝐻⃗ ⃗𝛽 ⋅ 𝐷−𝑟 ⋅ 𝑄𝑡

and verify IPvf(𝜋IP, ⃗𝐺𝑤, 𝐻⃗Θ⃗∘−1 , 𝑃, 𝑄) = 1∧ 𝐺𝑡𝐷𝜏 = 𝐺𝛿𝑇𝑥
1𝑇𝑥2

2
We use the inner product protocol (IPprove, IPvf) from Bulletproofs which
satisfies the language

((𝑃, 𝑄, 𝐺, 𝐻) ∈ 𝔾 ∶ ∃ ⃗𝑙, ⃗𝑟 ∈ ℤ𝑞
𝑚 s.t. 𝑃 = ⃗𝐺∘ ⃗𝑙𝐻⃗∘ ⃗𝑟𝑄⟨ ⃗𝑙, ⃗𝑟⟩)

Given this NIZK protocol for ℒebp in Section 2.9.1, we construct the proto-
col for ℒΠ. Therefore, we split ℒΠ into its four main parts (well formed-
ness of commitments, grouping of types, amount equality and valid amount
ranges) and explain how each part contributes partial parameters for a single
parametrization of ℒebp.

4.5.1 Well-formedness of Commitments

In the first part of parametrization, the prover shows the well-formedness of
the input and output commitments ( 3 in ℒΠ). This shows that the commit-
ments have a valid opening and the prover knows the opening. To do this,
we use the proof for knowledge of discrete logarithms in ℒebp. For a single
commitment 𝐶 = 𝐺𝑎𝐹ty𝐻𝑟, we encode Λ(𝐶, … ) ∶= (𝐺, 𝐹, 𝐻, 𝐶) and spec-
ify the witness vectors as ⃗𝑐𝐿 = (−𝑎, −ty, −𝑟, 1) and ⃗𝑐𝑅 = ⃗04 ∶= (0, 0, 0, 0).
This is sufficient to prove well-formedness of the commitment 𝐶, if the last
element of ⃗𝑐𝐿 is exactly one: ⃗𝑐𝐿[4] = 1. Our outer protocol proves that
∏ Λ(… )∘𝑐𝐿,1 = 𝐼 and with ⃗𝑐𝐿,1 = ⃗𝑐𝐿, the first three elements of the wit-
ness must be the exponents of 𝐺, 𝐹, 𝐻 to cancel out the commitment 𝐶 and
therefore be ⃗𝑐𝐿[1] = −𝑎, ⃗𝑐𝐿[2] = −ty, ⃗𝑐𝐿[3] = −𝑟.
While the outer protocol allows us to prove only one identity, we compress all
the identity relations for each input and output commitment by raising each
to a unique power of the challenge variable 𝑣. For a honestly chosen 𝑣 ≠ 0
by the verifier, the resulting polynomial of constraints only results in the iden-
tity, if all coefficients are the identity. The exponents of 𝐺, 𝐹, 𝐻 then show the
knowledge of all commitment openings. We construct the partial parameters
of ℒebp as:
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Λwf ∶= ( 𝐺 ‖ 𝐹 ‖𝐻‖ ⃗𝐶𝒮‖ ⃗𝐶𝒯 )
⃗𝑐wf
𝐿 ∶= (𝜙0‖𝜒0‖𝜂0‖ ⃗𝑣|𝒮|+|𝒯 | ‖ ⃗𝑎𝒮‖ ⃗𝑎𝒯 ‖ ⃗ty𝒮‖ ⃗ty𝒯 ‖ ⃗𝑟𝒮‖ ⃗𝑟𝒯 ); ⃗𝑐wf

𝑅 = ⃗03+4(|𝒮|+|𝒯 |)

⃗vwf
1 ∶= ( 1 ⋅ ⋅ ⋅ ⋅ ‖ ⃗𝑣|𝒮|+|𝒯 |‖ ⋅ ⋅ ⋅ ⋅ ): 𝔡𝔦𝔯, ̂vwf

1 = 0
⃗vwf
2 ∶= ( ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ‖ ⃗𝑣|𝒮|+|𝒯 | ‖ ⋅ ⋅ ): 𝔡𝔦𝔯, ̂vwf

2 = 0
⃗vwf
3 ∶= ( ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‖ ⃗𝑣|𝒮|+|𝒯 |): 𝔡𝔦𝔯, ̂vwf

3 = 0
⃗vwf
4 ∶= ( ⋅ ⋅ ⋅ ⃗𝑦|𝒮|+|𝒯 | ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ): 𝔡𝔦𝔯, ̂vwf

4 = ∑|𝒮|+|𝒯 |
𝑖=1 (𝑣𝑦)𝑖

with 𝜙0 = −⟨ ⃗𝑣|𝒮|+|𝒯 |, ⃗𝑎𝒮‖ ⃗𝑎𝒯 ⟩
𝜒0 = −⟨ ⃗𝑣|𝒮|+|𝒯 |, ⃗ty𝒮‖ ⃗ty𝒯 ⟩
𝜂0 = −⟨ ⃗𝑣|𝒮|+|𝒯 |, ⃗𝑟𝒮‖ ⃗𝑟𝒯 ⟩. The first three constraints ensure that the vector

⃗𝑐wf
𝐿 , namely the openings ⃗𝑎𝒮 , ⃗𝑎𝒯 , ⃗ty𝒮 , ⃗ty𝒯 , ⃗𝑟𝒮 , ⃗𝑟𝒯 and combined exponents

𝜙0, 𝜒0, 𝜂0 are correctly encoded. This holds, as e.g. the inner product ⟨ ⃗𝑐𝐿, ⃗vwf
1 ⟩

is only 0, if ⃗𝑐𝐿[1] = − ⟨ ⃗𝑣|𝒮|+|𝒯 |, ⃗𝑐𝐿,𝑎⟩ with

⃗𝑐𝐿,𝑎 ∶= ( ⃗𝑐𝐿[3+|𝒮|+|𝒯 |+1], … , ⃗𝑐𝐿[3+2(|𝒮|+|𝒯 |)])

. Combined with the constraint that

∏( ⃗𝐶𝒮‖ ⃗𝐶𝒯 )∘𝑣⃗|𝒮|+|𝒯 | ⋅ 𝐺𝜙0 ⋅ 𝐹𝜒0 ⋅ 𝐻𝜂0 = 𝐼

the verifier is convinced that the vector ⃗𝑐𝐿,𝑎 contains the amounts of the com-
mitments ⃗𝐶𝒮 and ⃗𝐶𝒯 . Constraints ⃗vwf

2 and ⃗vwf
3 work equivalently for the type

and randomness.
Constraint ⃗vwf

4 ensures that ⃗𝑐𝐿 has consecutive powers of 𝑣 for elements 4 to 4+
|𝒮| + |𝒯 |. Instead of a single constraint for each commitment individually, we
check them all together with a polynomial of |𝒮|+|𝒯 | powers of the challenge
variable 𝑦 as ⟨ ⃗𝑐𝐿, ⃗v4⟩ = ̂vwf

4 ⇔ ( ⃗𝑐𝐿[4], … , ⃗𝑐𝐿[4+|𝒮|+|𝒯 |]) = ⃗𝑣|𝒮|+|𝒯 |.

4.5.2 Grouping of Equal Types

Given that all commitments are well-formed, we describe the partial param-
eters for ℒebp grouping inputs and outputs of equal type ( 4 5 in ℒΠ) as
detailed in Section 4.4. We first group the inputs and show that E𝒮 is cor-
rect. The input commitments ⃗𝐶𝒮 at the positions of ones in E𝒮[𝑖] have to
commit to the same type as the 𝑖-th output commitment 𝐶𝒯 [𝑖]. We achieve
this by proving knowledge of exponents for 𝐺 and 𝐻 in 𝐺𝜙ty,𝑆,𝑖,𝑗𝐻𝜂ty,𝑆,𝑖,𝑗 =

⃗𝐶𝒮[𝑗]E𝒮 [𝑗,𝑖] ⋅ ⃗𝐶𝒯 [𝑖]
−E𝒮 [𝑗,𝑖]

for each position 𝑗 ∈ [|𝒮|]. If E𝒮[𝑗, 𝑖] = 1, the
openings ty𝒮[𝑗] and ty𝒯 [𝑖] of the input and output commitment must be
equal. Otherwise, there will be a non-zero type in the commitment product,
which is not satisfiable without an exponent of 𝐹. As all products of commit-
ments must result in an exponent of zero for 𝐹, we compress all comparisons
into a polynomial with two variables 𝑣, 𝑣′. Each row of E𝒮 is separated by the

challenge variable 𝑣 and each column by 𝑣′. The product of ⃗𝐶∘ ⃗̃𝑒ty,𝒮
𝒮 ⋅ ⃗𝐶∘ ⃗̃𝑒

′
ty,𝒯

𝒯 with

⃗̃𝑒ty,𝒮 = E𝒮 ∘ ( ⃗𝑣|𝒮| ⋅ ( ⃗𝑣′|𝒯 |
)⊤) ⋅ ⃗1|𝒯 | and ⃗̃𝑒

′
ty,𝒯 = ⃗1|𝒮| ⋅ (−E𝒮 ∘ ( ⃗𝑣|𝒮| ⋅ ( ⃗𝑣′|𝒯 |

)⊤)



56 asset conservation proofs

has to result in 𝐺𝜙′
ty𝐹0𝐻𝜂′

ty . The exponents of the remaining elements 𝐺 and
𝐻 are 𝜙′

ty = Υ′
ty(𝑎), 𝜂′

ty = Υ′
ty(𝑟) with

Υ′
ty(𝜓) = − ⃗1|𝒮| ⋅ (−E𝒮 ∘ (( ⃗𝑣|𝒮| ∘ ⃗𝜓𝒮) ⋅ ( ⃗𝑣′|𝒯 |

)⊤))

+ ⃗1|𝒮| ⋅ (−E𝒮 ∘ ( ⃗𝑣|𝒮| ⋅ ( ⃗𝑣′|𝒯 |
∘ ⃗𝜓𝒯 )⊤).

After proving that E𝒮 is constructed correctly, the proof needs to show cor-
rectness of the output grouping specified by E𝒯 . This is done analogous to
the input grouping. The prover calculates a vector of exponents ⃗̃𝑒

″
ty,𝒯 for ⃗𝐶𝒯

which compresses all comparisons into a second polynomial in 𝑢, 𝑣″, where
instead of 𝑣′, the columns of E𝒯 are separated by the challenge 𝑣″ resulting in

⃗̃𝑒
″
ty,𝒯 = E𝒯 ∘ ( ⃗𝑣|𝒯 | ⋅ ( ⃗𝑣″|𝒯 |

)⊤) ⋅ ⃗1|𝒯 | + ⃗1|𝒯 | ⋅ (−E𝒯 ∘ ( ⃗𝑣|𝒯 | ⋅ ( ⃗𝑣″|𝒯 |
)⊤).

The polynomial has to result in an exponent of zero for 𝐹 and the openings for
𝐺 and 𝐻 are 𝜙″

ty = Υ″
ty(𝑎), 𝜂″

ty = Υ″
ty(𝑟) with

Υ″
ty(𝜓) = ⃗1|𝒯 | ⋅ (−E𝒯 ∘ ( ⃗𝑣|𝒯 | ⋅ ( ⃗𝑣″|𝒯 |

∘ ⃗𝜓𝒯 )⊤)

− ⃗1|𝒯 | ⋅ (−E𝒯 ∘ (( ⃗𝑣|𝒯 | ∘ ⃗𝜓𝒯 ) ⋅ ( ⃗𝑣″|𝒯 |
)⊤)) .

In total the “noise” introduced by amounts and hiding factors of the com-
mitments in the comparison operations sums up to 𝜙ty = 𝜙′

ty + 𝜙″
ty and

𝜂ty = 𝜂′
ty + 𝜂″

ty.
To capture this as parameters of ℒebp, we use the preliminary commitment
phase which allows the prover to provide 𝜙ty, 𝜂ty after receiving the challenge
variables 𝑣, 𝑣′, 𝑣″ but before 𝑢. Even if the values 𝜙ty, 𝜂ty are maliciously
crafted, they do not interfere with the comparison of types as the exponent
of 𝐹 is fixed to 0 and we assume that the pairwise discrete logarithm between
𝐺, 𝐹, 𝐻 holds. As the preliminary commitment is used for the amounts too,
we will discuss it in detail when combining all parts in Section 4.5.5.
Λgr ∶= ( 𝐺 ‖ 𝐻 ‖ ⃗𝐶𝒮 ‖ ⃗𝐶𝒯 ); ⃗𝑐𝑅 = ⃗02+|𝒮|+|𝒯 |+|𝒮||𝒯 |+|𝒯 ||𝒯 |

⃗𝑐gr𝐿 ∶= (𝜙ty‖𝜂ty‖ ⃗̃𝑒ty,𝒮 ‖ ⃗̃𝑒
′
ty,𝒯 + ⃗̃𝑒

″
ty,𝒯 ‖ vec(E𝒮) ‖ vec(E𝒯 ) )

⃗𝑐gr𝑅 ∶= ( ⋅ ⋅ ⋅ ⋅ ‖ vec(E𝒮) − ⃗1|𝒮||𝒯 | ‖vec(E𝒯 ) − ⃗1|𝒯 ||𝒯 |)

⃗vgr
1 ∶= ( ⋅ ⋅ − ⃗𝑦|𝒮| ⋅ ⃗𝑣′|𝒯 |

⊗ ( ⃗𝑣|𝒮| ∘ ⃗𝑦|𝒮|) ⋅ )

⃗vgr
2 ∶= ( ⋅ ⋅ ⋅ ⃗𝑦|𝒯 | ‖( ⃗𝑣′|𝒯 |

∘ ⃗𝑦|𝒯 |) ⊗ ⃗𝑣|𝒮|‖ ⃗𝑣∗ )
⃗vgr
3 ∶= ( ⋅ ⋅ ⋅ ⋅ ⃗1𝒯 ⊗ ⃗𝑦|𝒮| ⋅ )
⃗vgr
4 ∶= ( ⋅ ⋅ ⋅ ⋅ ⋅ ⃗1𝒯 ⊗ ⃗𝑦|𝒯 | )
⃗vgr
5 ∶= ( ⋅ ⋅ ⋅ ⋅ ⃗𝑦|𝒮|⋅|𝒯 |+|𝒯 |2 )

with ⃗𝑣∗ ∶= ⃗𝑣″|𝒯 |
⊗ ( ⃗𝑣|𝒯 | ∘ − ⃗𝑦|𝒯 |) + ( ⃗𝑣″|𝒯 |

∘ ⃗𝑦|𝒯 |) ⊗ ⃗𝑣|𝒯 |. Similar to the
⃗vwf
1 , ⃗vwf

2 in the previous section, the constraints ⃗vgr
1 and ⃗vgr

2 are of class 𝔡𝔦𝔯 with
̂vgr
0 = ̂vgr

1 = 0 to show the correctness of the ⃗̃𝑒ty vectors in the witness at
positions 3 to 2 + |𝒮| + |𝒯 |. To show that E𝒮 and E𝒯 contain a single 1
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in each row, the following two constraints ⃗vgr
3 , ⃗vgr

4 are of class 𝔡𝔦𝔯 with ̂vgr
3 =

⟨ ⃗1|𝒮|, ⃗𝑦|𝒮|⟩ and ̂vgr
4 = ⟨ ⃗1|𝒯 |, ⃗𝑦|𝒯 |⟩. Additionally we require the matrices to be

binary, i.e. contain only 0 and 1. We show that equivalently to the original
Bulletproof protocol with the following two constraints ⃗vgr

6 ∶= ⃗vgr
5 , one 𝔪𝔲𝔩

and the other 𝔬𝔫𝔢 with both evaluating to zero ̂vgr
5 = ̂vgr

6 = 0.

4.5.3 Equality of Amounts

With thematricesE𝒮 ,E𝒯 of grouping by type established, we show the amount
equality of inputs to outputs within each group of equal type. This is done with
the same method as the grouping. The product of all input commitments in a
group times the inverse of the output commitments in the same group require
an opening to the amount zero, i.e. prove knowledge of exponents for 𝐹, 𝐻.
With a challenge 𝑣, all |𝒯 | amount equalities are compressed into the exponent
vectors ⃗̃𝑒𝑎,𝒮 = E𝒮 ∘( ⃗1|𝒮| ⋅( ⃗𝑣|𝒯 |)⊤)⋅ ⃗1|𝒯 | and ⃗̃𝑒𝑎,𝒯 = −E𝒯 ∘( ⃗1|𝒯 | ⋅( ⃗𝑣|𝒯 |)⊤)⋅ ⃗1|𝒯 |

for the input and output commitments.
Λam ∶= ( 𝐹 ‖𝐻‖ ⃗𝐶𝒮 ‖ ⃗𝐶𝒯 ); ⃗𝑐am𝐿 = ⃗02+|𝒮|+|𝒯 |+|𝒮||𝒯 |+|𝒯 ||𝒯 |

⃗𝑐am𝐿 ∶= (𝜒𝑎‖𝜂𝑎‖ ⃗̃𝑒𝑎,𝒮 ‖ ⃗̃𝑒𝑎,𝒯 ‖ vec(E𝒮) ‖ vec(E𝒯 ) )
⃗vam
1 ∶= ( ⋅ ⋅ − ⃗𝑦|𝒮| ⋅ ⃗𝑣|𝒯 | ⊗ ( ⃗1|𝒮| ∘ ⃗𝑦|𝒮|) ⋅ ): 𝔡𝔦𝔯
⃗vam
2 ∶= ( ⋅ ⋅ ⋅ ⃗𝑦|𝒯 | ⋅ ⃗𝑣|𝒯 | ⊗ ( ⃗1|𝒯 | ∘ ⃗𝑦|𝒯 |)): 𝔡𝔦𝔯

with ̂vam
0 = 0 and ̂vam

1 = 0. Note that the constraint for the matrices to be
binary is already captured by ⃗vgr

5 , ⃗vgr
6 . The types and randomness for the expo-

nents of ⃗𝐶𝒮 and ⃗𝐶𝒯 do not add to zero, so the prover compensates with some
exponents of 𝐹 and 𝐻 which are fixed by the preliminary commitment with
𝜒𝑎 = Υ𝑎(ty), 𝜂𝑎 = Υ𝑎(𝑟) and

Υ𝑎(𝜓) = ⃗1|𝒮| ⋅ −E𝒮 ∘ ( ⃗𝜓𝒮 ⋅ ( ⃗𝑣|𝒯 |)⊤) ⋅ ⃗1|𝒯 |

+ ⃗1|𝒯 | ⋅ E𝒯 ∘ ( ⃗𝜓𝒯 ⋅ ( ⃗𝑣|𝒯 |)⊤) ⋅ ⃗1|𝒯 |

4.5.4 Range proofs

Theamount equivalence above only holds, if all outputs are positive. Therefore,
the prover has to show that the output amounts ⃗𝑎𝒯 lie in the specified range
{0, … , 2𝛽 − 1}. As in the Bulletproof protocol, we show the range by proving
a binary decomposition into 𝛽 bits. All binary decompositions of the outputs
form the matrix B. We specify the partial parameters of ℒebp for the range:

⃗𝑐ra𝐿 ∶= ( ⃗𝑎𝒯 ‖ vec(B) ); Λra = ()
⃗𝑐ra𝑅 ∶= ( ⃗0|𝒯 | ‖vec(B) − ⃗1𝛽|𝒯 |)
⃗vra
1 ∶= ( ⋅ ⃗𝑦𝛽|𝒯 | ): 𝔪𝔲𝔩, ̂vra

1 = 0
⃗vra
2 ∶= ( ⋅ ⃗𝑦𝛽|𝒯 | ): 𝔬𝔫𝔢, ̂vra

2 = 0
⃗vra
3 ∶= (− ⃗𝑦|𝒯 | ⃗𝑦|𝒯 | ⊗ 2⃗𝛽 ): 𝔡𝔦𝔯, ̂vra

3 = 0
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Constraints ⃗vra
1 and ⃗vra

2 serve the equivalent purpose for B as ⃗vgr
5 , ⃗vgr

6 do for
E𝒮 and E𝒯 , i.e. that B is a binary matrix. The last constraint ⃗vra

3 shows that
B is the binary decomposition of all values ⃗𝑎𝒯 . In combination with the well-
formedness of the output commitments, all output amounts have a valid range.

4.5.5 Compression of Parts

In this section, we compress the four sets of parameters of ℒebp described
above and the preliminary commitment into a single instance of ℒebp.
To compensate for the noise in the equality and amount parts, we need to
commit to the four values 𝜙ty, 𝜂ty, 𝜒𝑎, 𝜂𝑎. Before receiving the challenge
𝑢, the prover gets five bases 𝐾⃗′

𝐺 from the verifier and creates the commit-

ment 𝐾′ = ∏ ⃗𝐾′∘(𝜙ty,𝜂ty,𝜒𝑎,𝜂𝑎,𝑟𝜅)
𝐺 with randomness 𝑟𝜅. The well formed-

ness of 𝐾′ is captured by more ℒebp parameters: Λpc = (𝐾′‖𝐾⃗−1
𝐺 ), ⃗𝑐pc𝐿 =

(1‖𝜙ty, 𝜂ty, 𝜒𝑎, 𝜂𝑎, 𝑟𝜅), ⃗𝑐pc𝑅 = ⃗06 and one 𝔡𝔦𝔯 constraint ⃗vpc
1 = (1‖ ⃗05) with

̂vpc
1 = 1 assuring that ⃗𝑐pc𝐿 [1] = 1.

Once the commitment 𝐾′ is submitted to the verifier, the prover gets the chal-
lenge 𝑢 to compress all five public functions Λ. We build a polynomial in
𝑢 where well-formedness is 𝑢0, type grouping 𝑢1, amount equality 𝑢2, range
proofs 𝑢3, although the range proof has no elements (Λra = ()), and well-
formedness of 𝐾′ is 𝑢4. We start by creating a common Λ as the union of
all elements required. We raise 𝐾′ and the bases directly to 𝑢4 to reduce the
complexity of the encoded witness resulting in:
Λ ∶= (𝐺‖𝐹‖𝐻‖𝐾′𝑢4

‖ ⃗𝐺−𝑢4
𝐾 ‖ ⃗𝐶𝒮‖ ⃗𝐶𝒯 )

⃗𝑐𝐿 ∶= (𝜙‖𝜒‖ 𝜂 ‖ 1 ‖𝜙ty‖𝜂ty‖𝜒𝑎‖𝜂𝑎‖𝑟𝜅‖ ⃗̃𝑒𝒮 ‖ ⃗̃𝑒𝒯 ‖ ⃗𝑎𝒮‖ ⃗𝑎𝒯 ‖ ⃗ty𝒮‖ ⃗ty𝒯 ‖ ⃗𝑟𝒮‖ ⃗𝑟𝒯 ‖ ⃗𝑐𝐿,2)
⃗𝑐𝑅 ∶= ( ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‖ ⃗𝑐𝑅,2)
⃗𝑐𝐿,2 ∶= (vec(E𝒮)‖vec(E𝒯 )‖vec(B))
⃗𝑐𝑅,2 ∶= ( ⃗𝑐𝐿,2 − ⃗1|𝒮|⋅|𝒯 |+|𝒯 |2+|𝒯 |𝛽 )

with
𝜙 = 𝜙0+𝑢𝜙ty
𝜒 = 𝜒0 +𝑢2𝜒𝑎

𝜂 = 𝜂0 +𝑢𝜂ty +𝑢2𝜂𝑎
⃗̃𝑒𝒮 = 𝑢 ⃗̃𝑒ty,𝒮 +𝑢2 ⃗̃𝑒𝑎,𝒮
⃗̃𝑒𝒯 = 𝑢 ⃗̃𝑒ty,𝒯 +𝑢2 ⃗̃𝑒𝑎,𝒯

The constraint vectors of the five parts are adapted by repositioning elements
to match the new witness structure and, where necessary, multiplied with a
power of 𝑢.

4.6 evaluation

To corroborate our claim of a smaller typed conservationNIZK proof, we eval-
uate our construction and compare it to existing solutions, namely the original
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Figure 4.2: Size comparison of type conservation proofs. We compare CL
(blue) and our CO (green) and succinct construction (red). We
plot dependencies by the number of outputs and show the differ-
ence of 2 (solid) and 20 (dashed) inputs with the line type. While
we plot lines, the sizes are only defined at integer positions. (a)
shows the witness length without the range proof, (b) includes the
range proof for 64 bit. (c) shows the size in Bytes of the resulting
proof transcript and (d) the transcript plus the size of the outputs.
The following plots show the generation time of the implementa-
tions, (e) for 2 inputs, (f) for 20 inputs. Similarly (g) and (h) show
the verification time for 2 and 20 inputs.

confidential assets and cloaked assets. We assume group and field elements are
of the same size, i.e. 32 Bytes. For 𝑚 inputs and 𝑛 outputs, let

⎧{{{
⎨{{{⎩

𝑠 = 2, 𝑐 = 11 if 𝑚 ⋅ 𝑛 = 1 ∧ 𝑚 + 𝑛 > 2

𝑠 = 5, 𝑐 = 11 if 𝑚 = 𝑛 = 1

𝑠 = 0, 𝑐 = 14 otherwise.

Our typed homomorphic commitment proof transcript is 7 + 2 + 2⌈log2(2 +
𝑚+𝑛+𝑚𝑛+64𝑛)⌉ elements and a cloaked asset one is 2+2⌈log2(11(𝑛+𝑚−
2) − 5(min(𝑚, 𝑛) − 2) − 𝑠 + 64𝑛)⌉ + 𝑐 elements in size. Both require output
commitments with a total size of 2𝑛. With vector Pedersen commitments, we
achieve a transcript with 7+2+1+2⌈log2(4+5+4(𝑛+𝑚)+𝑛⋅𝑚+𝑛2+64𝑛)⌉
elements and merely 𝑛 elements for our succinct commitments.
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As all three approaches follow the general Bulletproof structure, we compare
their internal structure. All witness vectors include a 64-bit range proof for
each output. Figure (4.2a) shows the witness length without the range proof,
which in our construction is quadratic in 𝑚 and 𝑛. The impact of the quadratic
length on the total length of the witness is minimal as most transactions have
few inputs and outputs and the length is dominated by the range proofs in-
cluded in Figure (4.2b). Applying the logarithmic compression results in very
similar transcript sizes shown in Figure (4.2c). Padding to powers of two cause
the steps in size. The offsets between the systems stem from the different num-
ber of constant communication required, i.e. CL requires 14 elements and CO
9. In our protocol, the additional intermediate commitment 𝐾′ requires an ad-
ditional element to a total of 10. Regarding the transcript itself, our approach is
slightly larger than the CO proof as it utilizes the type homomorphic property.
However, conservation proofs are usually part of a transaction where inputs
are references to previous transaction outputs and only the outputs are stored
with the transaction. Including the size of the outputs in our consideration in
Figure (4.2d), as most transaction systems do, we achieve an improved scaling
due to the 32 B succinct commitments.
While our focus is on the size, we provide a proof of concept implementation
to show the performance of our systems. Implementations are available for
our improved confidential asset proof2 for cloaked assets3 and for our vector
Pedersen scheme4. All use rust and were measured on a ThinkPad T460p run-
ning kubuntu 21.04 with kernel 5.11 and rust 1.48 on an i7-6820HQ processor.
The signature generation (4.2e for 2 inputs, 4.2f for 20 inputs) is similar in
all systems is linear in the length of the witness (4.2b) including padding to
a power of two. The verification time (4.2g for 2 inputs, 4.2h for 20 inputs)
behaves similarly. We notice that the verification of our vector and confiden-
tial asset scheme is significantly slower than cloaked assets. This is due to the
structure of the extended Bulletproof protocol where the generators to commit
the witness vectors are dynamically generated instead of relying on reusable el-
ements.

4.7 analysis

Both constructions are parametrizations of the bulletproof structure. For both
construction, it holds that:

Theorem 4.1. The protocol has a public coin verifier 𝒱 with logarithmic rounds
and is perfectly complete and special honest verifier zero knowledge.

Theorem 4.2. Given the discrete logarithm assumption holds in 𝒢 , the protocol
has computational witness-extended emulation. Additionally, given computa-
tionally unique responses, it is transformable to perfectly complete, extractable,

2 https://github.com/SwapCT/SwapCT
3 https://github.com/stellar/slingshot/tree/main/spacesuit/
4 https://anonymous.4open.science/r/coloring-EEC3

https://github.com/SwapCT/SwapCT
https://github.com/stellar/slingshot/tree/main/spacesuit/
https://anonymous.4open.science/r/coloring-EEC3
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perfectly simulatable signature of knowledge for any message 𝑚 ∈ {0, 1}∗ using
Fiat-Shamir [FS] which holds for logarithmic rounds [DFM20, Thm. 23].

4.8 security proofs

As the THC construction did not provide a proof for the updatability, we pro-
vide an explicit one.

Proof of Theorem 2.1 (Update). We show that THC is binding according to
Definition 2.15. Given a discrete log challenge chl = (𝐺, 𝐺𝛾) ∈ 𝔾2, we
define an oracle H𝒪 for the adversary to use. Sample a secret sk $←−{0, 1}𝜆 and
define a new hash function 𝔥 ∶ {0, 1}∗ → ℤ𝑞. On input of 𝑖, calculate a bit
𝑏 = 𝔥(𝑖‖sk) mod 2 and return (𝐺𝛾)𝔥(𝑖‖sk) if 𝑏 = 0 and 𝐺𝔥(𝑖‖sk) otherwise.
The output is indistinguishable from a uniformly random distribution over
𝔾. Assume that an efficient adversary 𝒜 exists, which returns

𝑖, 𝑖′, 𝑣, 𝑣′, (𝑟, 𝑠), (𝑟′, 𝑠′) ← 𝒜H𝒪 (pp)

for which

Commit(ty, 𝑣; 𝑟, 𝑠) = Commit(ty′, 𝑣′; 𝑟′, 𝑠′)∧(𝑖 ≠ 𝑖′ ∨(𝑖 = 𝑖′ ∧𝑣 ≠ 𝑣′))

holds with ty = ComTypeGen(𝑖) and ty′ = ComTypeGen(𝑖′).
This is equal to H𝒪(𝑖)𝐺𝑟 = H𝒪(𝑖′)𝐺𝑟′ and H𝒪(𝑖)𝑣𝐺𝑟𝑣+𝑠 = H𝒪(𝑖′)𝑣′𝐺𝑟′𝑣′+𝑠′ .
We have two cases:

for 𝑖 = 𝑖′ the pre-image is equal, so 𝑣 ≠ 𝑣′ is true and 𝑣 − 𝑣′ ≠ 0. Then
𝐻𝒪(𝑖)𝑣−𝑣′ = 𝐺𝑟′𝑣′+𝑠′−𝑟𝑣−𝑠. In 1

2 of the executions, 𝔥(𝑖‖sk) ≡ 0
mod 2, and thereby (𝐺𝛾)𝑣−𝑣′ = 𝐺𝑟′𝑣′+𝑠′−𝑟𝑣−𝑠 from which we return
𝛾 = 𝑟′𝑣′−𝑟𝑣

𝑣−𝑣′ to with the challenge.

for 𝑖 ≠ 𝑖′ with different identifiers, it holdswith 1
2 probability that𝔥(𝑖‖sk) ≢

𝔥(𝑖′‖sk) mod 2. Without loss of generality, assume H𝒪(𝑖) = 𝐺𝔥(𝑖‖sk)

and H𝒪(𝑖′) = 𝐺𝛾𝔥(𝑖′‖sk). From

(𝐺𝔥(𝑖‖sk))𝑣 𝐺𝑟𝑣+𝑠 = (𝐺𝛾𝔥(𝑖′‖sk))
𝑣′

𝐺𝑟′𝑣′+𝑠′

we calculate 𝛾 = 𝑣𝔥(𝑖‖sk)+𝑟𝑣+𝑠−𝑟′𝑣′−𝑠′

𝑣′𝔥(𝑖′‖sk) and return 𝛾 to solve the chal-
lenge.

In both cases, independent of the adversary’s choice of 𝑖, 𝑖′, we have 1
2 >

negl(𝜆) chance to solve the discrete logarithm challenge. Therefore we con-
clude that no efficient adversary against the binding property exists.
As THC is binding, it is also securely updatable according to Theorem 2.1.
We show that from an efficient adversary 𝒜 against the update Theorem 2.1,
we can derive an efficient Adversary for the binding property of Def. 2.15
which proceeds as follows: Sample 𝑖 $←−{0, 1}∗ and 𝑣, 𝑟, 𝑠, 𝑣′, 𝑟′, 𝑠′ $←−ℤ𝑞 with
𝑣 ≠ 𝑣′. Then commit (𝑇, 𝑉) = Commit(ComTypeGen(𝑖), 𝑣; 𝑟, 𝑠) and
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(𝑇′, 𝑉′) = Commit(ComTypeGen(𝑖), 𝑣′; 𝑟′, 𝑠′). Invoke the adversary to get
a 𝜙2 for which 𝑉 ⋅ 𝑉′−1 = 𝐺𝜙2 holds. From this calculate the discrete loga-
rithm of H(𝑖) to base 𝐺 as 𝜙2−𝑣𝑟−𝑠+𝑣′𝑟′+𝑠′

𝑣−𝑣′ from which an efficient adversary
against the binding property is easily constructed.

Proof of Theorem 4.1 (Simulatability). By inspection, the protocol is public
coin, has logarithmic rounds and is complete. It is special honest verifier zero
knowledge with an efficient simulator Sim similar to the one of Omniring.
Given a statement ⃗𝐶𝒮 , ⃗𝐶𝒯 and the public coins

( ⃗𝐺𝐾, 𝐷, 𝑃⃗, ⃗𝐺′, 𝐻⃗, 𝑣, 𝑣′, 𝑣″, 𝑢, 𝑤, 𝑥, 𝑦, 𝑧)

− Sim samples 𝐾′ $←−𝔾

− computes ⃗𝐺𝑤 as the verifier

− samples random 𝐴, 𝑇2, 𝜏, 𝑟, ⃗𝑙, ⃗𝑟

− sets 𝑡 = ⟨ ⃗𝑙, ⃗𝑟⟩.

To satisfy the verification equations, Sim calculates

𝑆 = (𝐷−𝑟𝐴 ⃗𝐺 ⃗𝛼− ⃗𝑙
𝑤 𝐻⃗ ⃗𝛽− ⃗𝜃∘−1∘ ⃗𝑟)−1/𝑥

and

𝑇1 = (𝐺𝛿−𝑡𝐷−𝜏𝑇𝑥2
2 )−1/𝑥

and outputs (𝐾′, 𝐴, 𝑆, 𝑇1, 𝑇2, 𝜏, 𝑟, ⃗𝑙, ⃗𝑟, 𝑡)

The extractability of the Omniring protocol holds as we have not changed the
protocol after ⃗𝐺𝑤 is calculated. Thereby we are sure to get an extracted witness
⃗𝑐′
𝐿, ⃗𝑐′

𝑅 which given the constraints is correctly encoded. It remains to show for
Theorem4.2 that the addition of the preliminary commitment does not impact
the security. For a grid of subvector comparisons of vector Pedersen commit-
ment pairs, either the subvector equality holds or there is a reduction to an
adversary against the discrete logarithm assumption. We exemplarily show
the proof for type grouping but it holds equivalently for amount comparisons.

Lemma 4.1 (Type Equality). Two typed commitments are of equal type, if for
any PPT adversary 𝒜 and all pp ← TC.Setup(𝜆), it holds that

Pr ⎡⎢
⎣

∀𝑖 ∈ {0, 1} ∶ 𝐶𝑏 = 𝐺𝑎𝑏𝐹ty𝑏𝐻𝑟𝑏

𝐶0 ⋅ 𝐶−1
1 = 𝐺𝜙𝐻𝜂 ∧ ty0 ≠ ty1

∶
({𝑎𝑏, ty𝑏, 𝑟𝑏}1

𝑏=0, 𝜙, 𝜂)
← 𝒜(pp)

⎤⎥
⎦

≤ negl(𝜆)

Proof. Given a discrete logarithm challenge (𝐵, 𝐵𝛾), we prepare the public
parameters such that 𝐹 ∶= 𝐵𝛾, 𝐺 ∶= 𝐵 and for a uniformly random 𝑥 $←−ℤ𝑞set
𝐻 ∶= 𝐵𝑥. From an efficient adversary 𝒜 , we receive ({𝑎𝑏, ty𝑏, 𝑟𝑏}1

𝑏=0, 𝜙, 𝜂) for
which

𝐺𝑎0𝐹ty0𝐻𝑟0 ⋅ 𝐺−𝑎1𝐹−ty1𝐻−𝑟1 = 𝐺𝜙𝐻𝜂
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and ty0 ≠ ty1 holds. With our knowledge of the setup, this equation translates
to

𝐵𝑎0+𝛾ty0+𝑥𝑟0−𝑎1−𝛾ty1−𝑥𝑟1 = 𝐵𝜙−𝑥𝜂

and 𝛾 = 𝜙−𝑥𝜂−𝑎0−𝑥𝑟0+𝑎1+𝑥𝑟1
ty0−ty1

. This equation is well defined as ty0 − ty1 ≠ 0
because ty0 ≠ ty1, solving the discrete logarithm challenge.

Lemma 4.2 (Type Group Equality). Type equality holds for all input output
commitment relations indicated by 1 in a binary matrix E, if for any PPT adver-
saries 𝒜1.𝒜2 and all pp ← TC.Setup(𝜆), it holds that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∀𝑖 ∈ [|𝒮|] ∶ 𝐶𝒮[𝑖] = 𝐺 ⃗𝑎𝒮 [𝑖]𝐹 ⃗ty𝒮 [𝑖]𝐻 ⃗𝑟𝒮 [𝑖]

∀𝑖 ∈ [|𝒯 |] ∶ 𝐶𝒯 [𝑖] = 𝐺 ⃗𝑎𝒯 [𝑖]𝐹 ⃗ty𝒯 [𝑖]𝐻 ⃗𝑟𝒯 [𝑖]

|𝒯 |
∏
𝑖=1

|𝒮|
∏
𝑗=1

𝑣′𝑖𝑣𝑗(𝐶𝒮[𝑗]𝐶𝒯 [𝑖]−1)E[𝑗,𝑖] = 𝐺𝜙𝐻𝜂

E[𝑗, 𝑖] = 1 ⇏ ty𝒮[𝑗] = ty𝒯 [𝑖]

∶

(aux, 𝒮, 𝒯 ) ← 𝒜1(pp)

𝑣, 𝑣′ $←−ℤ𝑞

(𝜙, 𝜂,E) ← 𝒜2(aux, 𝑣, 𝑣′)

( ⃗𝑎𝒮 , ⃗ty𝒮 , ⃗𝑟𝒮) ∶= 𝒮

( ⃗𝑎𝒯 , ⃗ty𝒯 , ⃗𝑟𝒯 ) ∶= 𝒯

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

≤ negl(𝜆)

Proof. For an adversary 𝒜 to have a non-negligible advantage, at least one
element of E needs to be 1. Different pairs of (𝑖, 𝑗) cannot influence each other
as they are separated by different powers of the challenge variables 𝑣′𝑖𝑣𝑗. Given
efficient adversaries 𝒜1, 𝒜2, we construct an efficient adversary against the
single comparison of Lemma 4.1 by outputting a pair ( ⃗𝑎𝒮[𝑗], ⃗ty𝒮[𝑗], ⃗𝑟𝒮[𝑗]),
( ⃗𝑎𝒯 [𝑖], ⃗ty𝒯 [𝑖], ⃗𝑟𝒯 [𝑖]) where E[𝑗, 𝑖] = 1 and ty𝒮[𝑗] = ty𝒯 [𝑖].

Given the lemmata above, the extracted witness actually satisfies the conserva-
tion language.

4.9 conclusion

In this section we presented two asset conservation NIZK protocols based on
the Bulletproof structure. For this we adapted the existing protocol such that
it supports efficient equality checks of individual positions of vector Peder-
sen commitments. This saves on expensive zero-knowledge multiplications
compared to using a blackbox arithmetic circuit protocol. Compared to the
existing asset conservation proofs for type homomorphic commitments, we
reduce the proof size from linear to logarithmic in the number of inputs. The
resulting small asset conservation proofs provide the central NIZK for the full
transaction systems we describe in the next chapters.





ii
MULT I -T YPE TRANSACT IONS





COLOR ING

5
5.1 overview

Having the building blocks for a multi-type system, we finally join them to-
gether to form an actual system. The goal of the system is to support RingCT-
style transactions while hiding an additional type for each output. The con-
servation rules for this type in a transaction are the same as defined by the
asset conservation where now the amount per type is equal in the transaction
inputs and its outputs. We name this system Coloring. As in Omniring, we
use a combined transaction signature, which authorizes the spending of the in-
puts as well as proves the correct conservation. The authorization part of the
signature assures that every input selected from a common, large anonymity
set corresponds to a tag published along with the signature. Without a notion
of types, the conservation in Omniring just calculates the sum of all selected
inputs and proves its equivalency to the sum of all outputs. Our conserva-
tion perform this equivalency check for each type involved. Additionally, the
union of all used inputs in any of the types need to have matching tags.
To check the equality for each type individually, we use technique from our as-
set conservation proof and group the equal types first and then check for the
sum equality. To hide the number of different types transferred in a transac-
tion, we use the upper bound of possible groups and assume that each output
is of a different type, creating its own group. In the example of Figure 5.1, the
left type equality group captures all blue inputs and the two blue outputs. The
middle equality compares the red top input and red bottom output. The last
comparison group is empty, as all types present in the transaction are already
handled because two outputs were of the same color (blue).
We cannot have three separated conservation proofs, as the authorization sig-
nature reveals the tags for the used input. This discloses the number of inputs
of the type in consideration. To keep the composition of input and output
types confidential, we first aggregate the used inputs from each type and then
provide the authorization signature for the subset of all used inputs together.
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Figure 5.1: Multi-Type RingCT construction showing the conservation for all
three possible types involved. The left equality is for all blue inputs
and outputs, the middle for all red inputs and outputs and the right
one is empty as there is no third type.
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Thereby the tags can no longer be matched to a type or leak the number of
inputs per type.
Using succinct vector Pedersen commitments, we enable storing additional
attributed for our transaction outputs. We showcase this by including a time
lock. An output is only spendable after the time, specified in the time lock,
passed. This time lock remains confidential and a zero knowledge proof en-
sures that the time lock has passed compared to a publicly provided input date.
Using the efficient Bulletproof protocol from our asset conservation argu-
ments to compare the inputs, our multi-type extension adds minimal over-
head to Omniring transactions. For typical numbers of inputs and outputs,
the size overhead is less than 10% and the runtime is approximately twice as
slow to manage all constraints on the additional two attributes per output
instead of a simple sum of all real inputs.

5.2 formalization

Regarding the formalization, a multi-type RingCT system is a standard
RingCT system, where each amount is replaced by a tuple (𝑎, ty).

Definition 5.1. A privacy-preserving multi-type RingCT system consists of the
following algorithms which are the extension of Omniring:

pp ← Setup(1𝜆, 1𝛼, 1𝛽) takes the security parameter 𝜆 and integers 𝛼 for a
maximum of 2𝛼 outputs of a transaction where each has an amount maxi-
mum of 2𝛽 −1. Then it outputs public parameters pp which are implicitly
given to all the following algorithms. Setup is called once when a Multi-
type RingCT system is initialized.

(ltp, lts) ← KeyGen() generates a long term secret key lts with the correspond-
ing long term public key ltp for participants to initially join the system.
The ltp is distributed and serves as a recipient address.

ty ← TypeGen(name) generates a type ty given a name.

acc, ck ← OTGen(ltp, 𝑎, ty) creates a one-time account acc with coin key ck
from a long term public key ltp and an amount 𝑎 of a type ty to then use
this account as an output in an offer or a new type registration.

𝔱 ← Spend(ℛ, 𝒮, 𝒯 ): takes as input

− a set of ring inputs ℛ = {accℛ
𝑖 }|ℛ|

𝑖=1.

− a set of inputs 𝒮 = {𝑎𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 , sk𝑖, 𝑗𝑖}|𝒮|

𝑖=1 with amounts 𝑎𝒮
𝑖 of typ

ty𝒮
𝑖 with coin key ck𝒮

𝑖 and secret key sk𝑖 for the account accℛ
𝑗𝑖

− a set of outputs 𝒯 = (ck𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , acc𝒯

𝑖 ), defined by their
amount 𝑎𝒯

𝑖 of type ty𝒯
𝑖 hidden by coin key ck𝒯

𝑖 in the account
acc𝒯

𝑖

The algorithm outputs a signature 𝔱 for the transaction.
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𝑏 ← VfTx(tx, 𝔱) takes a transaction defined as

tx(ℛ, 𝒮, 𝒯 ) ∶= ({tag𝑖}
|𝒮|
𝑖=1, {accℛ

𝑖 }|ℛ|
𝑖=1, {acc𝒯

𝑖 }|𝒯 |
𝑖=1)

and the signature 𝔱 and returns a bit 𝑏 representing the validity.

(tag, sk, 𝑎, ty, ck) ← Receive(acc, lts) gets an account acc and a long term se-
cret lts and returns the matching tag, secret key sk, amount 𝑎, type ty and
coin key ck for acc.

Further, we require the following two auxiliary algorithms to define the security
properties.

𝑏 ← ChkAcc(acc, 𝑎, ty, ck) takes an account acc, an amount 𝑎 with type ty
and a coin key ck and checks if they are consistent.

𝑏 ← ChkTag(acc, tag, sk) takes an account acc, a tag and a secret key sk and
returns 1 if consistent, 0 otherwise.

The system has to fulfill the following correctness criteria:

Definition 5.2 (Correctness). A Multi Color RingCT scheme is correct, if for all
𝜆, 𝛼, 𝛽 ∈ ℕ and all pp ∈ Setup(1𝜆, 1𝛼, 1𝛽):

− Honestly generated payments are received correctly: For any ltp, lts ∈
KeyGen(), any name ∈ (0, 1)∗, ty = TypeGen(name), any amount
𝑎 ∈ {0, … , 2𝛽 − 1}, any (acc, ck) ∈ OTGen(ltp, 𝑎, ty), and any
(⋅, 𝑎′, ty′, ck′) ∈ Receive(acc, lts), it holds that (𝑎, ty, ck) = (𝑎′, ty′, ck′).

− Honestly received payments have a valid amount, type and tag: For any
(tag, sk, 𝑎, ty, ck) ∈ Receive(acc, lts), it holds thatChkAcc(acc, 𝑎, ty, ck) =
1 and ChkTag(acc, tag, sk) = 1.

− Honestly generated transactions are valid: For each 𝒮, ℛ, 𝒯 , defined as
above, that satisfy

– ∀𝑖 ∈ [|𝒮|], ChkTag(accℛ
𝑗𝑖 , tag𝑖, sk𝑖) = 1

– ∀𝑖 ∈ [|𝒮|], ChkAcc(accℛ
𝑗𝑖 , 𝑎𝒮

𝑖 , ty𝒮
𝑖 , ck𝒮

𝑖 ) = 1

– ∀𝑖 ∈ [|𝒯 |], ChkAcc(acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

𝑖 ) = 1
– |𝒯 | ≤ 2𝛼

– ∀𝑖 ∈ [|𝒯 |] ∶ 𝑎𝒯
𝑖 ∈ {0, … , 2𝛽 − 1}

– ∀ty ∈ {ty𝒯
𝑖 }|𝒯 |

𝑖=1 ∶ ∑{𝑎𝒮
𝑖 |ty𝒮

𝑖 = ty}|𝒮|
𝑖=1 = ∑{𝑎𝒯

𝑖 |ty𝒯
𝑖 = ty}|𝒯 |

𝑖=1

and for any signature 𝔱 ∈ Spend(𝒮, ℛ, 𝒯 ), it holds that VfTx(tx, 𝔱) =
1 with tx = tx(𝒮, ℛ, 𝒯 ).
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5.3 security & privacy

We require at least the same security and privacy guarantees in a type aware
system as Omniring does. The security and privacy experiments are equiva-
lent to the ones described by Omniring up to replacing any amount with an
(amount, type, lock time) tuple. Balance is the most basic property a transac-
tion system must satisfy, i.e., no participant must be able to steal tokens from
the system or other users.

Algorithm 5.1 Balancerct𝒜,ℰ𝒜
(1𝜆, 1𝛼, 1𝛽)

pp ← Setup(1𝜆, 1𝛼, 1𝛽)
(tx, 𝔱) ← 𝒜(pp)
(𝒮, ℛ, 𝒯 ) ← ℰ𝒜(pp, tx, 𝔱)

parse 𝒮 as {tag𝑖, 𝑗𝑖, sk𝑖, 𝑎𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 }

|𝒮|

𝑖=1
parse ℛ as {accℛ

𝑖 }|ℛ|
𝑗=1

parse 𝒯 as {acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

𝑖 }
|𝒯 |

𝑖=1
𝑏1 ∶= VfTx(tx, 𝔱)
𝑏2 ∶= tx = tx(𝒮, ℛ, 𝒯 )
𝑏3 ∶= ∀𝑖 ∈ [|𝒮|], ChkTag(accℛ

𝑗𝑖 , sk𝑖, tag𝑖) = 1
𝑏4 ∶= ∀𝑖 ∈ [|𝒮|], ChkAcc(accℛ

𝑗𝑖 , 𝑎𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 ) = 1

𝑏5 ∶= ∀𝑖 ∈ [|𝒯 |], ChkAcc(acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

𝑖 ) = 1

𝑏6 ∶= ∀ty ∈ {ty𝒯
𝑖 }|𝒯 |

𝑖=1 ∶ ∑{𝑎𝒮
𝑖 |ty𝒮

𝑖 = ty}|𝒮|
𝑖=1 = ∑{𝑎𝒯

𝑖 |ty𝒯
𝑖 = ty}|𝒯 |

𝑖=1
return 𝑏1 ∧ 𝑏2 ∧ ¬(𝑏3 ∧ 𝑏4 ∧ 𝑏5 ∧ 𝑏6)

Definition 5.3 (Balance). A multi-type RingCT scheme is balanced, if the func-
tions ChkAcc and ChkTag are binding to the amount and type similar to the
definition in Omniring. Additionally, the Omniring balance experiment per type
involved in the transaction holds. Specifically, instead of 𝑏5 ∶= ∑{𝑎𝒮

𝑖 }|𝒮|
𝑖=1 =

∑{𝑎𝒯
𝑖 }|𝒯 |

𝑖=1 in the Omniring BalanceΩ,𝒜,ℰ𝒜
experiment, the equality has to hold

per type:

𝑏5 ∶= ∀ty ∈ {ty𝑖}
|𝒯 |
𝑖=1, ∑{𝑎𝒮

𝑖 |ty𝒮
𝑖 = ty} = ∑{𝑎𝒯

𝑖 |ty𝒯
𝑖 = ty}

More formally, the scheme is balanced, if for all PPT adversaries 𝒜 and all posi-
tive integers 𝛼, 𝛽 ∈ poly(𝜆), there exists a PPT extractor ℰ𝒜 such that

Pr[Balancerct
𝒜,ℰ𝒜

(1𝜆, 1𝛼, 1𝛽) = 1] ≤ negl(𝜆)

with Balancerct
𝒜,ℰ𝒜

(1𝜆, 1𝛼, 1𝛽) defined in Algorithm 5.1.

As our resulting protocol has the same privacy and non-slanderability require-
ments as Omniring, the security experiments are identical up to handling a
type, amount tuple wherever an amount is considered. For the time lock, our
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security stems directly from the intuition. A PPT adversary wins the time
lock experiment, if they are able to spend an output before the block number
is reached.
The privacy definition lets an adversary interact with a spending oracle which
generates valid transactions for accounts to which the adversary has no secret
keys. After the interaction with the oracle, the adversary presents a partial
transactionwith two possible subsets of uncompromized inputs to spend from
and two sets of uncompromized recipients. The security experiment will cre-
ate one of these two possible transactions and the adversary wins the game if
they successfully distinguish which one was created. This captures sender and
receiver anonymity as well as amount and type confidentiality. Knowledge of
any of them easily distinguishes the two versions of the experiment.

Definition 5.4 (Privacy). A multi-type RingCT scheme is private, if any PPT
adversary has a negligible advantage in the Omniring privacy experiment.

In a transaction scheme, where tokens are marked as spent, it is important
that only the owner can spend the tokens and that no one else can prevent the
rightful owner to spend the tokens. This means publishing a tag for someone
else must be prevented. The non-slanderability property captures this as an
adversary wins the experiment, if they present a valid tag for an account which
is uncompromized and was not used by the oracle in a transaction.

Definition 5.5 (Non-Slanderability). A multi-type RingCT scheme is non-
slanderable, if any PPT adversary has a negligible chance of winning the Omnir-
ing Non-slanderability experiment.

5.4 construction

In this section we describe how to integrate our efficient multi-type conserva-
tion NIZK proof into Omniring to support confidential types.
The Omniring transaction signature which satisfies all security and privacy re-
quirements of a privacy-preserving transaction system is similar to a threshold
linkable ring signature which authorizes the spending of a hidden subset of all
inputs. To prevent double spending and assure that each output is referenced
as real spending input exactly once, a signature is only valid, if it is unlinkable
to all previous transaction signatures. The linkability is explicitly denoted by a
tagging scheme consisting of TagKGen to get the public key from a secret key
and TagEval to get the tag from the secret key. To maintain key anonymity,
the tag is not linkable to the public key without knowledge of the secret key.
This double spend protection is reduced to verifying uniqueness of tags, given
that the transaction signature assures correct tag to secret key relations.
Formally, the Omniring transaction signature fulfils the language ℒomni. The
statement consists of the anonymity set ℛ of inputs referenced with a pub-
lic key pkℛ

𝑖 and a commitment comℛ
𝑖 . For each used input, there is a corre-

sponding tag𝑖 and regarding the outputs 𝒯 , only the commitments com𝒯
𝑖 are

relevant, as the recipients public keys are not verified. The witness is a set of
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openings 𝑎𝒮
𝑖 , 𝑟𝒮

𝑖 to each real input commitment comℛ
𝑗𝑖 at secret position 𝑗𝑖. The

secret keys for the public key pk𝑗𝑖 of the hidden positions are 𝑥𝑖. The output
commitment openings 𝑎𝒯

𝑖 , 𝑟𝒯
𝑖 form the last part of the witness. The language

assures that the relevant commitments are well formed, tags correspond to the
public keys and tokens are conserved: ℒomni ∶=

⎧{{{{{{{{{{{
⎨{{{{{{{{{{{⎩

stmt = ({pkℛ
𝑖 , comℛ

𝑖 }|ℛ|
𝑖=1, {tag𝑖}

|𝒮|
𝑖=1, {com𝒯

𝑖 }|𝒯 |
𝑖=1)

∃wit = ({(𝑗𝑖, 𝑥𝑖, 𝑎𝒮
𝑖 , 𝑟𝒮

𝑖 )}|𝒮|
𝑖=1, {𝑎𝒯

𝑖 , 𝑟𝒯
𝑖 }|𝒯 |

𝑖=1)}) s.t.

∑𝑖∈[|𝒮|] 𝑎𝒮
𝑖 = ∑𝑖∈[|𝒯 |] 𝑎𝒯

𝑖

∀𝑖 ∈ [|𝒮|] ∶

⎧{{{
⎨{{{⎩

pkℛ
𝑗𝑖 = TagKGen(𝑥𝑖)

comℛ
𝑗𝑖 = PC.Commit(𝑎𝒮

𝑖 , 𝑟𝒮
𝑖 )

tag𝑖 = TagEval(𝑥𝑖)

∀𝑖 ∈ [|𝒯 |] ∶
⎧{
⎨{⎩

com𝒯
𝑖 = PC.Commit(𝑎𝒯

𝑖 , 𝑟𝒯
𝑖 )

𝑎𝒯
𝑖 ∈ {0, … , 2𝛽 − 1}

Our goal is to integrate confidential types into the Omniring transaction sys-
tem. Given the three asset conservation protocols (CO, CL and ours), our
protocol is best suited due to its small transaction sizes: We are not aware of
an efficient type homomorphic commitment scheme which requires only one
element, thereby we outperform CO by a scaling factor of 2 with a similar
transcript size. A succinct type homomorphic commitment scheme can be
built with a zero-knowledge hash function, however due to the non-algebraic
properties, this is prohibitively expensive in a transparent setup. The CL struc-
ture heavily depends on the possibility to shuffle all inputs. To achieve sender
set anonymity, CL requires a preliminary step with a threshold ring signa-
ture adding unnecessary size in the form of additional rerandomized commit-
ments. In addition, CL depends on two separate commitments which results
in the same scaling as CO.Our protocol structure however is naturally adapted
to the threshold setting. The fact that our commitments have the same size as
the non-type aware Pedersen commitments of Omniring leads to a marginal
(≈5-10%) size increase when integrating confidential types compared to the
original Omniring.
The vector Pedersen commitment and our subvector comparison enable in-
tegrating additional attributes of outputs without increasing the commitment
size, e.g. requiring knowledge of an additional secret key or time locks. A time
locked output is only usable as input to a transaction after a specific point in
time, usually measured in blocks. E.g. a sender creates an output which is only
usable by the recipient after block 42000. Using the output as a real input be-
fore block 42000 cannot yield a valid transaction signature. Due to the confi-
dentiality, the output may be used as mixin earlier. If there is no constraint on
spending, the time lock is set to block 0 and thereby is always spendable. Such
time locks are an important step towards enabling layer two systems, such
as payment channels [MBL+20; TMSS20] on privacy-preserving ledgers. Pay-
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ment channels allow for high frequency low cost transactions while preserving
a decentralized network [EKK+17].
Given vector Pedersen commitments (VC) for vectors of length 3, we specify
the language for our type aware confidential Omniring extension and mark
the changes in boxes. The proof requires the current block height ℎ and the
openings to the commitments (𝑎, ty, ℎ). This results in ℒcoloring ∶=.

⎧{{{{{{{{{{{{
⎨{{{{{{{{{{{{⎩

stmt = ({(pkℛ
𝑖 , comℛ

𝑖 )}|ℛ|
𝑖=1, {tag}|𝒮|

𝑖=1, {com𝒯
𝑖 }𝒯

𝑖=1, ℎ ) ∶

∃wit = ({𝑗𝑖, sk𝑖, 𝑎𝒮
𝑖 , ty𝒮

𝑖 , ℎ𝒮
𝑖 , 𝑟𝒮

𝑖 }|𝒮|
𝑖=1, {𝑎𝒯

𝑖 , ty𝒯
𝑖 , ℎ𝒯

𝑖 , 𝑟𝒯
𝑖 }|𝒯 |

𝑖=1) s.t.

∀𝑖 ∈ [|𝒮|],

⎧{{{
⎨{{{⎩

pk𝑗𝑖 = TagKGen(sk𝑖)

tag𝑖 = TagEval(sk𝑖)

comℛ
𝑗𝑖 = VC.Commit(𝑎𝒮

𝑖 , ty𝒮
𝑖 , ℎ𝒮

𝑖 ; 𝑟𝒮
𝑖 ); ℎ𝒮

𝑖 < ℎ

∀𝑖 ∈ [|𝒯 |],
⎧{{
⎨{{⎩

com𝒯
𝑖 = VC.Commit(𝑎𝒯

𝑖 , ty𝒯
𝑖 , ℎ𝒯

𝑖 ; 𝑟𝒯
𝑖 )

𝑎𝒯
𝑖 ∈ {0, … , 2𝛽 − 1}

∀ty ∈ {ty𝑖}
|𝒯 |
𝑖=1, ∑{𝑎𝒮

𝑖 |ty𝒮
𝑖 = ty} = ∑{𝑎𝒯

𝑖 |ty𝒯
𝑖 = ty}

5.5 instantiation

In this section, we extend our NIZK protocol for ℒ∅ (Section 4.2) to support
the additional requirements from ℒcoloring. In addition to the type conserva-
tion, the transactions provide means to keep track of the used inputs. There-
fore, we introduce a new |ℛ| × |𝒮| matrix T which contains |𝒮| unique unit
vectors of length |ℛ|, each indicating a used position in the ring (marked by
1 in ℒ𝜔 below). E.g., the red input in our example is grouped into the sec-
ond column of E𝒮 and the second column of T specifies that this input is
used. The well-formedness for the commitment raises the input ring to the
columns of T and shows a valid opening: 1 0⋅ 5 0⋅ 0⋅ 0⋅ 3 1⋅ 2 0⋅

0 = Commit(red, 3, 𝑟). We extend the matrix E𝒮 to a total of |ℛ| rows to
accommodate all input commitments ( 2 in ℒ𝜔). Instead of requiring a single
1 in each row of E𝒮 , we require that the rows containing a 1 are represented in
T with a unit vector row too ( 3 in ℒ𝜔). This assured that any input belong-
ing to a type group has a corresponding unit vector in T. Figure 5.2 shows our
construction for the same example as in Figure 4.1 but with three additional
mixins at positions 3,4 and 7.
We now use the matrix T to verify the correct tags for each used input. The
set of public keys for each input is defined as 𝑅⃗ = {pk𝑖}|ℛ|

𝑖=1 and each used
input has a corresponding tag 𝑇⃗ = {tag𝑖}

|𝒮|
𝑖=1 ( 4 in ℒ𝜔). The secret keys

𝑥𝑖 of the used inputs are part of the witness as ⃗𝑥 in the same order as the in-
puts are specified in T ( 5 in ℒ𝜔). Given the matrix T, the well-formedness
of the input commitments ⃗𝐶ℛ is only required for used inputs ( 6 in ℒ𝜔).
This is achieved by using the unit vectors of T, selecting each commitment
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Figure 5.2: Our NIZK proof structure for ℒcoloring with 4 inputs, hidden in a
ring of 7, and 3 outputs. In the matrices, 0 is substituted with a dot.

separately. Additionally, the private key of the inputs have to match the tag.
The tagging scheme instantiation of Omniring uses TagKGen(𝑥) ∶= 𝐻𝑥 and
TagEval(𝑥) ∶= 𝐺𝑥−1 and for each used input the corresponding tag must be
correct ( 7 in ℒ𝜔). We integrate additional, confidential input attributes, like
lock times, by extending the vector Pedersen commitment by a position with a
new generator 𝑇 ∈ 𝔾. Thewell-formedness shows knowledge of a valid open-
ing, including the lock time ( 6 and 8 inℒ𝜔). The type grouping and amount
conservation makes use of intermediate committed values 𝜏ty and 𝜏𝑎 respec-
tively to compensate the noise. The lock time check is performed by showing
that the difference between the time of the inputs and the current time ℎ 9
from a public input is a positive number. The binary representations of the
differences for each input are the columns of the matrix B′ ( 0 in ℒ𝜔). The
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constraints are analog to the range proof. All properties are summarized by
our concrete language ℒ𝜔 ∶=

⎧{{{{{{{{{{{{{{{{{{{{{
⎨{{{{{{{{{{{{{{{{{{{{{⎩

stmt = ( 4 𝑅⃗, 𝑇⃗, ⃗𝐶ℛ , ⃗𝐶𝒯 , 9 ℎ)

∃wit = ( 5 ⃗𝑥, ⃗ty𝒮 , ⃗𝑎𝒮 , ⃗𝑟𝒮 , ℎ⃗𝒮E𝒮 ,E𝒯 ,B, 1 T, ⃗ty𝒯 , ⃗𝑎𝒯 , ⃗𝑟𝒯 , ℎ⃗𝒯 ) s.t.

B binary, size 𝛽 × |𝒯 |;B′ binary, size 24 × |𝒮|;

E𝒮 binary, size 2 |ℛ| × |𝒯 |;E𝒯 binary, size |𝒯 | × |𝒯 |

∀𝑖 ∈ [|𝒯 |],

⎧{{{{{{
⎨{{{{{{⎩

8 𝐶𝒯 [𝑖] = 𝐺 ⃗𝑎𝒯 [𝑖]𝐹 ⃗ty𝒯 [𝑖]𝑇ℎ⃗𝒯 [𝑖]𝐻 ⃗𝑟𝒯 [𝑖]

B[𝑖] binary repr. of ⃗𝑎𝒯 [𝑖]

∀𝑗 ∈ [|ℛ|] ∶ ⃗𝐶ℛ[𝑗]E𝒮 [𝑗,𝑖] ⋅ ⃗𝐶𝒯 [𝑖]
−E𝒮 [𝑗,𝑖]

= 𝐺𝜙ty,𝒮,𝑖,𝑗𝐹0𝑇𝜏ty,𝒮,𝑖,𝑗𝐻𝜂ty,𝒮,𝑖,𝑗

∀𝑗 ∈ [|𝒯 |], ⃗𝐶𝒯 [𝑗]E𝒯 [𝑗,𝑖] ⋅ ⃗𝐶𝒯 [𝑖]
−E𝒮 [𝑗,𝑖]

= 𝐺𝜙ty,𝒯 ,𝑖,𝑗𝐹0𝑇𝜏ty,𝒯 ,𝑖,𝑗𝐻𝜂ty,𝒯 ,𝑖,𝑗

∏ ⃗𝐶∘E𝒮 [𝑖]
𝒮 ⋅ ∏ ⃗𝐶∘−E𝒯 [𝑖]

𝒯 = 𝐺0𝐹𝜒𝑎,𝑖𝑇𝜏𝑎,𝑖𝐻𝜂𝑎,𝑖

E𝒮 ⋅ ⃗1|𝒯 | = 3 T ⋅ ⃗1|𝒮|;E𝒯 ⋅ ⃗1|𝒯 | = ⃗1|𝒯 |

∀𝑖 ∈ [|𝒮|] ∶

⎧{{{{{
⎨{{{{{⎩

6 ⃗𝐶∘T[𝑖]
ℛ = 𝐺 ⃗𝑎𝒮 [𝑖]𝐹 ⃗ty𝒮 [𝑖]𝑇ℎ⃗𝒮 [𝑖]𝐻 ⃗𝑟𝒮 [𝑖]

7 𝑅⃗∘T[𝑖] = 𝐻sk𝑖 ; 𝑇⃗[𝑖] = 𝐺sk−1
𝑖

1 T[𝑖] unit vector, length |ℛ|

0 B′[𝑖] bin. repr. of ℎ − ℎ⃗𝒮[𝑖]

Weproceed to highlight the difference to our constructionwithout an anonymity
set. Generally, wherever we used all inputs, we now have to select the used
ones with the help of the matrix T.

5.5.1 Well-formedness of Commitments

Instead of raising each input commitment in ⃗𝐶𝒮 to increasing powers of the
challenge variable 𝑣, we only raise the used commitments of ⃗𝐶ℛ to consecutive
powers of 𝑣 with the help of the unit vectors in T.
Λwf ∶= ( 𝐺 ‖ 𝐹 ‖ 𝑇 ‖𝐻‖ ⃗𝐶ℛ ‖ ⃗𝐶𝒯 )

⃗𝑐wf
𝐿 ∶= (𝜙0‖𝜒0‖𝜏0‖𝜂0‖ ⃗̂𝑣 ‖𝑣|𝒮| ⃗𝑣|𝒯 |‖ ⃗𝑎𝒮‖ ⃗𝑎𝒯 ‖ ⃗ty𝒮‖ ⃗ty𝒯 ‖ ⃗𝑡𝒮‖ ⃗𝑡𝒯 ‖ ⃗𝑟𝒮‖ ⃗𝑟𝒯 ‖ vec(T) )
⃗vwf
4 ∶= ( ⋅ ⋅ ⋅ ⋅ − ⃗𝑦|ℛ| ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⃗𝑣|𝒮| ⊗ ⃗𝑦|ℛ|)
⃗vwf
5 ∶= ( ⋅ ⋅ ⋅ ⋅ ⋅ ⃗𝑦|𝒯 | ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ )
⃗vwf
6 ∶= ( ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⃗𝑣|𝒮|+|𝒯 | ⋅ )

with ⃗̂𝑣 ∶= T ⃗𝑣|𝒮| and ⃗vwf
1 to ⃗vwf

3 equivalent to Section 4.5.1. All constraints are

𝔡𝔦𝔯 and ̂vwf
𝑖 = 0 for 𝑖 ∈ {1, 2, 3, 4, 6} and ̂vwf

5 = ∑|𝒯 |
𝑖=1 𝑣|𝒮|+𝑖𝑦𝑖.

We notice that T has to consist of unit vectors. We add the constraints for this
in Section 5.5.3 with the correctness for tags and keys.
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5.5.2 Grouping of Equal Types and Equality of Amounts

In our grouping of types and equality of amounts, we select inputs and out-
puts according to the positions of ones in the matrix E𝒮 . This is unaffected by
additional rows of zeros and it suffices to adapt the constraints which iterate
over all inputs from length |𝒮| to |ℛ|. To compensate the noise introduced
by the time locks, the prover commits to additional values 𝜏ty, 𝜏𝑎 in the pre-
liminary commitment 𝐾′. The range proofs are completely unaffected by the
input commitments.

5.5.3 Correctness of Tags and Keys

As the tags included in a transaction specify the used inputs and prevent dou-
ble spending, it is important to prove that the tags belong to the used input

secret keys 𝑥𝑖 as tag𝑖 = 𝐺
1
𝑥𝑖 . With a challenge 𝑣, all tags are compressed into

𝑇̂ = ∏ 𝑇⃗∘𝑣⃗|𝒮| and ⃗̃𝑡 = T ⃗𝑣|𝒮|. In the compression of all parameters, the element
𝑇̂ is compressedwith𝐾′ separated by a power of𝑢, therefore not increasing the
length of the encoded witness. With 𝜙2 = −⟨ ⃗𝑣|𝒮|, ⃗𝑥∘−1⟩ and 𝜂2 = −⟨ ⃗𝑣|𝒮|, ⃗𝑥⟩
the constraints are
Λtk ∶= ( 𝐺 ‖𝐻‖𝑇̂‖ 𝑅⃗ )

⃗𝑐tk𝐿 ∶= (𝜙2‖𝜂2‖1‖ ⃗̃𝑡 ‖ ⃗𝑥 ‖ vec(E𝒮) ‖ vec(T) )
⃗𝑐tk𝑅 ∶= ( ⋅ ⋅ ⋅ ⋅ ⃗𝑥∘−1 vec(E𝒮) − ⃗1|ℛ||𝒯 |‖vec(T) − ⃗1|ℛ||𝒮|)
⃗vtk
1 ∶= ( ⋅ 1 ⋅ ⋅ ⃗𝑣|𝒮| ⋅ ⋅ ): 𝔡𝔦𝔯, ̂vtk

1 = 0
⃗vtk
2 ∶= ( ⋅ ⋅ ⋅ ⋅ ⃗𝑦|𝒮| ⋅ ⋅ ): 𝔪𝔲𝔩, ̂vtk

2 = 𝑦∗

⃗vtk
3 ∶= ( 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ): 𝔰𝔲𝔪, ̂vtk

3 = 0
⃗v′tk3 ∶= ( ⋅ ⋅ ⋅ ⋅ ⃗𝑣|𝒮| ⋅ ⋅ )
⃗vtk
4 ∶= ( ⋅ ⋅ ⋅ ⋅ ⋅ ⃗1|𝒯 | ⊗ ⃗𝑦|ℛ| ‖ − ⃗1|𝒮| ⊗ ⃗𝑦|ℛ| ): 𝔡𝔦𝔯, ̂vtk

4 = 0
⃗vtk
5 ∶= ( ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⃗𝑦|𝒮| ⊗ ⃗1|ℛ| ): 𝔡𝔦𝔯, ̂vtk

5 = 𝑦∗

⃗vtk
6 ∶= ( ⋅ ⋅ ⋅ − ⃗𝑦|ℛ| ⋅ ⋅ ⃗𝑣|𝒮| ⊗ ⃗𝑦|ℛ| ): 𝔡𝔦𝔯, ̂vtk

6 = 0
with 𝑦∗ = ⟨ ⃗1|𝒮|, ⃗𝑦|𝒮|⟩. Constraint ⃗vtk

2 assures the correct inverse of ⃗𝑥 and ⃗vtk
5

checks that T consists of unit vectors. Additionally Tmust be binary, which is
accounted for by extending the constraints ⃗vgr

5 and ⃗vgr
6 .

5.6 security analysis

The security of the resulting multi-type system is captured by the following
theorem.

Theorem 5.1 (Multi-type Omniring). If the typed commitments are binding,
and our extended SoK[ℒcoloring] is extractable, our construction is balanced ac-
cording to Definition 5.3. If the Omniring construction is private and the commit-
ments are binding and hiding and SoK[ℒcoloring] is simulatable, our construc-
tion is private. If Omniring is non-slanderable, and SoK[ℒcoloring] is extractable
and simulatable, our construction is non-slanderable.
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Figure 5.3: Size of out multi-type construction relative to Omniring for
anonymity set sizes (a) 𝑟 = 100 and (d) 𝑟 = 1000. The signing
and verification times are for equal numbers of inputs and outputs
and 100 ring members for (b)(c) and 1000 in (e)(f).

As we do not change the Omniring construction and the vector Pedersen com-
mitments are binding and hiding, the security holds analogous to the proofs
of Omniring. Then it remains to show that SoK[ℒcoloring] is a secure NIZK
SoK which is simulatable and extractable. As the protocol is only a different
parametrization including set anonymity and time locks of the proof for ℒ𝑒𝑏𝑝,
SoK[ℒcoloring] is simulatable and extractable according to the Theorems 4.1
and 4.2.

5.7 evaluation

To show the change in transaction size and computation time of extending
Omniring with confidential types, we adapted our prototype type conserva-
tion implementation to integrate the additional requirements. Our transac-
tions require 2𝑛+𝑚+7+2+1+2⌈log2(5+7+𝑟+𝑟+𝑛+𝑚+4(𝑛+𝑚)+𝑟⋅𝑛+
𝑟 ⋅𝑚+𝑛2 +64𝑛+24𝑚)⌉ elements for 𝑚 inputs and 𝑛 outputs with anonymity
set size 𝑟. We chose to compare our scheme to the original Omniring which
has a transaction size of 2𝑛 + 𝑚 + 7 + 2 + 2⌈log2(3 + 𝑟 + 𝑟 ⋅ 𝑚 + 64𝑛 + 3𝑚)⌉
elements. Figure 5.3a presents the overhead of our construction in relation to
Omniring for an anonymity set of 100. Even for large anonymity set sizes of
1000 inputs (Figure 5.3d), our typed construction has only up to 10% overhead
while providing confidential types and time locks. The runtime differences of
Omniring and our construction are promising for a proof of concept imple-
mentation as seen in Figures 5.3b,5.3c for 𝑟 = 100 and 5.3e,5.3f for 𝑟 = 1000.
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5.8 conclusion

In this chapter we formalized a multi-type RingCT system on the basis of the
Omniring RingCT formalization. The similarity to the Omniring model al-
lowed us to use their existing boilerplate and only change the core transac-
tion signature to achieve a construction. Our new transaction signature nearly
achieves the performance of the Omniring counterpart while supporting con-
fidential types. Our presented multi-type RingCT scheme is useful for appli-
cations which require many separate types of tokens but have little interaction
between them. Still, all types benefit from the common anonymity set and
transactions do not leak the types involved. We present an example of such an
application in Chapter 7.



SWAP TRANSACT ION SYSTEM

6
6.1 overview

The privacy-preserving multi-type transaction system of the previous section
allows for efficient transfer of differently typed tokens between participants.
However to exchange tokens of different types, this system has to rely on exter-
nal, trusted exchanges. We propose an integrated exchangemechanismwhich
enables participants to anonymously and fairly trade tokens in so-called swap
transactions. An earlier version of the results presented in this chapter were
published as [EMP+21]. Compared to other exchange mechanism, such as
OMAP [GXK+19] or cross chain swaps, we rely on partial transactions, so
called offers which can be merged without interaction of the creator. This al-
lows us to perform an atomic swap in a single persisted transaction.
In a swap transaction, e.g. Alice starts off with owning an UTXO of green to-
kens and Bob one with red tokens. They both want some of the other’s type.
Assuming a fair exchange rate of e.g. 2 greens are worth 5 reds, both authorize
to spend a portion of their tokens on the condition that they get the equivalent
amount in the opposite type. Seen as transactions, neither Alice’s nor Bob’s
authorizations and outputs are balanced and thereby cannot be published as
transactions. We call these unbalanced transactions offers. However taking
the union of both authorizations and outputs, we get a balanced transaction.
This enabled merging of offers and once published to a ledger, both parties
spend their inputs and get the outputs in the new type. Importantly, neither
party can steal the funds by aborting the protocol early, thereby we achieve an
atomic swap.
Monero as well as Omniring require the final set of outputs to be fixed at
the time of signing the input ring(s), which is not available in non-interactive
swaps since the swap partnermight not be known in advance. To support non-
interactive swap transactions, we propose a new transaction structure which
slightly resembles Monero. Figure 6.1 a shows two independent parties (Al-
ice and Bob), each with one input [][42, tyg] and [][100, tyr]. However, instead
of directly signing inputs with ring signatures, using all outputs concatenated
as signing message, we use our new anonymously aggregatable signature (AS)
(Chapter 3) in combination with an efficient linkable ring signature for each
input. We use a separate ring signature for each input to hide if multiple in-
puts are contributed by the same signer. Each partial transaction, called offer,
has its own outputs [] 𝑎,ty which are joined by merging offers. We use the in-
termediate copies for amounts and types 𝑎,ty as Monero does for amounts only.
The openings of our intermediate and output commitments are part of the of-
fer and therefore offers must not be published globally. We envision multiple
off-chain dissemination scenarios:

1. The offer is not shared with anyone. The outputs are then designated
recipients, resulting in a simple transaction.
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(a) SwapCT offerer
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Bob: tag ← AS
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[42,tyg]

[5,tyr]

[ ][40,tyg]
[ ][5,tyr]

[ ][2,tyg]

(b) SwapCT merger

Seal
tag, tag ← AS

Figure 6.1: Transaction structures for (a) two SwapCT offers and (b) merged
into one SwapCT transaction. Dashed rectangles enclose the mes-
sage for the signatures to authorize spending and dotted rectan-
gles enclose the message for the asset conservation SoK. [⋅] de-
notes a commitment to the amount, type, or a one-time key.
Empty [] denote that the opening is not known to the signer or
merger.[EMP+21]

2. The offer is sent to a peer who created a matching offer. The offers are
merged by the peer for an atomic swap transaction.

3. The offer is shared with a small group of participants who may be inter-
ested to fulfill the offer.

4. The offer is sent to a mostly untrusted exchange. Exchanges in our
SwapCT system are entrusted with publishing an order-book and merg-
ing of offers. Due to our AS, ring signature and one-time accounts,
SwapCT exchanges cannot steal tokens or deanonymize their users.

A merged transaction is sealed to assure amount and type conservation (Seal).
The real senders are hidden from themerger who only seals a transaction with
access to the opening of the output commitments and the intermediate com-
mitments. However a merger does not know the witness of the ring signature
keeping senders anonymous and the merger only gets a uniformly random
output one-time public key. Miners without insight into transactions have no
advantage reordering them to front-run offers.
To support confidential types, thewealth conservation requires a zero-knowledge
proof that the committed types are valid. The ledger, similar to the UTXO
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set, maintains a list of valid types. New types are registered by proposing a
one-time account which holds the initial supply of tokens. If the new type is
unique, it is persisted in the DLT and future transactions can reference it as
input.
For efficient ring signatures and conservation proofs in SwapCT, our contri-
bution is to propose two efficient NIZK proofs based on the Bulletproof inner
product protocol. With an anonymity set size of 𝑟 and 𝑚 inputs, this results in
transaction sizes of SwapCT between the logarithmic efficiency of Omniring
𝒪(log(𝑚⋅𝑟)) and the linear efficiency ofMonero 𝒪(𝑚⋅𝑟). We achieve a trans-
action size logarithmic in the size of the anonymity set per input 𝒪(𝑚 log(𝑟))
because of the non-interactive ring signature creation. Depending on the use-
case, the SwapCT system is easily adapted to use vector Pedersen commit-
ments to store types and then relies on the conservation proof of Chapter 4.
For simplicity, we describe SwapCT with Type Homomorphic Commitments
only.
An efficient proof for large ring sizes is important to provide sender anonymity.
As SwapCT ring signatures provide the same anonymity asMonero ring signa-
tures, we can use the Binned Mixin Sampling from Möser et al. [MSH+18] to
select the ring members. Binned Mixin Sampling references temporally local
groups of previous outputs to counter timing attacks and protect against an
adversary who controls many outputs. Sampling a proper ring is important,
as transaction graph analysis with external information may trace an input to
a real sender with high probability. While Monero users are financially incen-
tivized to keep the ring size small due to linear transaction fees per mixin, our
SwapCT ring signature sizes only grow logarithmically in the ring size. The de-
fault Monero ring size of 11 may provide a worst-case effective untraceability
set of 4 to 6 possible inputs. With suggested 123 ring members in SwapCT, the
worst-case effective untraceability is between 40 and 60 accoring to Möser et
al. [MSH+18]. The effective untraceability is the anonymity set expected after
running statistical deanonymization attacks on the transaction graph.

6.2 example

To show the usual interaction of the algorithms of our SwapCT system, we de-
scribe a swap between Alice and Bob in Figure 6.2. The system is transparently
set up and to participate both users generate a long termkeywith KeyGen serv-
ing as their identity (line 1). As there are no types registered yet, both create
their own type with TypeGen from type identifiers (line 2) and generate one-
time accounts with themselves as recipients (line 3). The total supply of each
type is fixed in this operation. The consensus accepts the registration of a new
token type as the identifiers (green, red) are unique regarding all previous
registrations (line 4). Alice now possesses all green tokens and Bob all red
tokens. Alice wants 5 red tokens and proceeds to generate outputs acc𝐴′ and
acc𝐴″ which deduct 2 green tokens from her account acc𝐴 and give her 5 red
tokens (lines 5,6). She authorizes the tentative spending of acc𝐴 by creating
an offer off𝐴 with inputs 𝒮𝐴 (line 7), outputs 𝒯𝐴 (line 8) and ring members
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DLT

Merger

Setup
Alice Bob

ltp𝐴 ∶= KeyGen ltp𝐵 ∶= KeyGen
tyg = TypeGen(green) tyr = TypeGen(red)

acc𝐴 = OTGen(ltp𝐴, 42, tyg) acc𝐵 = OTGen(ltp𝐵, 100, tyr)
acc𝐴, green

acc𝐵, red
acc𝐴′ = OTGen(ltp𝐴, 40, tyg)
acc𝐴″ = OTGen(ltp𝐴, 5, tyr)

𝒮𝐴 = {(acc𝐴, tag𝐴)}
𝒯𝐴 = {acc𝐴′ , acc𝐴″}
𝔬𝐴 = Offer(𝒮𝐴, ℛ𝐴, 𝒯𝐴)

acc𝐵′ = OTGen(ltp𝐵, 95, tyr)
acc𝐵″ = OTGen(ltp𝐵, 2, tyg)

𝒮𝐵 = {(acc𝐵, tag𝐵)}
𝒯𝐵 = {acc𝐵′ , acc𝐵″}

𝔬𝐵 = Offer(𝒮𝐵, ℛ𝐵, 𝒯𝐵)
off𝐴 = off(𝒮𝐴, ℛ𝐴, 𝒯𝐴) off𝐵 = off(𝒮𝐵, ℛ𝐵, 𝒯𝐵)

off𝐴, 𝔬𝐴, off𝐵, 𝔬𝐵
𝔬 = Merge(𝔬𝐴, 𝔬𝐵)

𝔱 = Seal(off𝐴 ∪ off𝐵, 𝔬)
tx = tx(off𝐴 ∪ off𝐵)

VfTx(tx, 𝔱)
(40, tyg), (5, tyr) = Receive(tx) (95, tyr), (2, tyg) = Receive(tx)

Figure 6.2: Example of a full SwapCT system with setup, type registration and
an atomic swap of 2 green for 5 red tokens between Alice and Bob
with an untrusted Merger and DLT. Sampling of the rings ℛ𝑎 and
ℛ𝑏 is covered by related research [MSH+18]. [EMP+21]

ℛ𝐴 (sampled from all previous outputs) signed by Offer (line 9). Bob cre-
ates a complementary offer, which trades 5 red tokens for 2 green tokens. The
spending authorization includes publishing of a tag corresponding to the in-
put account. The offers (line 11) and osser signatures are then merged with
Merge by either an independent Merger, Alice or Bob (line 12). Merging does
not require any secret input. However, each input in an offer contains a unique
tag to prevent double-spending. Anyone with access to an offer will recognize
its tag in a persisted transaction. Still, access to an offer does not deanonymize
the sender or receiver and only reveals the tokens transferred.
A balanced offer, where the input tokens and output tokens match, is then
sealed with Seal (line 13) and submitted along with the public elements of the
transaction (line 14) to the consensus for verification (VfTx) (line 15). The
transaction is persisted, if the signatures are valid and all tags are unique re-
garding all previous transactions. After persisting the transaction, the desig-
nated outputs {acc′

𝐴, acc″
𝐴} and {acc′

𝐵, acc″
𝐵} generated in the offer process

are received with Receive (line 16) and are usable as future transaction inputs.

6.3 formalization

The security of single-type set anonymous systems is well formalized by Om-
niring [LRR+19]. We extend this formalization to encompass type support
and swap transactions.
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Definition 6.1. A Swap Confidential Transaction (SwapCT) scheme consists of
a tuple of PPT algorithms (Setup, KeyGen, TypeGen, OTGen, Offer, VfOffer,
Merge, Seal, VfTx, Receive) defined as follows:

pp ← Setup(1𝜆, 1𝛼, 1𝛽) takes the security parameter 𝜆 and integers 𝛼 for a
maximum of 2𝛼 outputs of a transaction where each has an amount maxi-
mum of 2𝛽 −1. Then it outputs public parameters pp which are implicitly
given to all the following algorithms. Setup is called once when a SwapCT
system is initialized.

(ltp, lts) ← KeyGen() generates a long term secret key lts with the correspond-
ing long term public key ltp for participants to initially join the system.
The ltp is distributed and serves as a recipient address.

ty ← TypeGen(name) generates a type ty given a name.

acc, ck ← OTGen(ltp, 𝑎, ty) creates a one-time account acc with coin key ck
from a long term public key ltp and an amount 𝑎 of a type ty to then use
this account as an output in an offer or a new type registration.

𝔬 ← Offer(𝒮, ℛ, 𝒯 ) takes the inputs

− 𝒮 = {(tag𝑖, 𝑗𝑖, sk𝑖, 𝑎𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 )}|𝒮|

𝑖=1 is a set of inputs with a tag𝑖
corresponding to accℛ

𝑖,𝑗𝑖 at index 𝑗𝑖 ∈ [|ℛ𝑖|], secret key sk𝑖, amount

𝑎𝒮
𝑖 and type ty𝒮

𝑖 with coin key ck𝒮
𝑖 .

− ℛ = {{accℛ
𝑖,𝑗}

|ℛ𝑖|
𝑗=1}|𝒮|

𝑖=1 is a set of ring account sets, one set per input
to hide the real account.

− 𝒯 = {(acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

𝑖 )}|𝒯 |
𝑖=1 is a set of accounts acc𝒯

𝑖 with
amount 𝑎𝒯

𝑖 , type ty𝒯
𝑖 and coin key ck𝒯

𝑖 .
It outputs a signature 𝔬 as authorization to spend the inputs.

𝑏 ← VfOffer(off, 𝔬) takes a signature 𝔬 and an offer

off(𝒮, ℛ, 𝒯 ) ∶= ({tag𝑖, 𝑎𝒮
𝑖 , ty𝒮

𝑖 }|𝒮|
𝑖=1,

{{accℛ
𝑖,𝑗}

|ℛ𝑖|
𝑗=1}|𝒮|

𝑖=1, {acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

𝑖 }|𝒯 |
𝑖=1)

(6.1)

and returns a bit 𝑏 specifying if the offer is valid.

𝔬 ← Merge(𝔬0, 𝔬1) takes two offer signatures and generates a combined one 𝔬
valid for the union of both offers.

𝔱 ← Seal(off, 𝔬) Takes a valid balanced offer defined as above and its signature
𝔬 and outputs a seal proof 𝔱.

𝑏 ← VfTx(tx, 𝔱) takes a transaction defined as

tx(off) ∶= ({tag𝑖}
|𝒮|
𝑖=1, {{accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1}|𝒮|

𝑖=1, {acc𝒯
𝑖 }|𝒯 |

𝑖=1)

and the signature 𝔱 and returns a bit 𝑏 representing the validity.
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(tag, sk, 𝑎, ty, ck) ← Receive(acc, lts) gets an account acc and a long term se-
cret lts and returns the matching tag, secret key sk, amount 𝑎, type ty and
coin key ck for acc.

Further, we require the following two auxiliary algorithms to define the security
properties.

𝑏 ← ChkAcc(acc, 𝑎, ty, ck) takes an account acc, an amount 𝑎 with type ty
and a coin key ck and checks if they are consistent.

𝑏 ← ChkTag(acc, tag, sk) takes an account acc, a tag and a secret key sk and
returns 1 if consistent, 0 otherwise.

Definition 6.2 (Correctness). A SwapCT scheme is correct, if for all 𝜆, 𝛼, 𝛽 ∈
ℕ and all pp ∈ Setup(1𝜆, 1𝛼, 1𝛽):

− Honestly generated payments are received correctly: For any ltp, lts ∈
KeyGen(), any name ∈ (0, 1)∗, ty = TypeGen(name), any amount
𝑎 ∈ {0, … , 2𝛽 − 1}, any (acc, ck) ∈ OTGen(ltp, 𝑎, ty), and any
(⋅, 𝑎′, ty′, ck′) ∈ Receive(acc, lts), it holds that (𝑎, ty, ck) = (𝑎′, ty′, ck′).

− Honestly received payments have a valid amount, type and tag: For any
(tag, sk, 𝑎, ty, ck) ∈ Receive(acc, lts),ChkAcc(acc, 𝑎, ty, ck) = 1 and
ChkTag(acc, tag, sk) = 1 hold.

− Honestly generated offers are valid: For each 𝒮, ℛ, 𝒯 , defined as above,
that satisfy

– ∀𝑖 ∈ [|𝒮|], ChkTag(accℛ
𝑖,𝑗𝑖 , tag𝑖, sk𝑖) = 1

– ∀𝑖 ∈ [|𝒮|], ChkAcc(accℛ
𝑖,𝑗𝑖 , 𝑎

𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 ) = 1

– ∀𝑖 ∈ [|𝒯 |], ChkAcc(acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

𝑖 ) = 1
and for any signature 𝔬 ∈ Offer(𝒮, ℛ, 𝒯 ), it holds thatVfOffer(off, 𝔬) =
1 with off = off(𝒮, ℛ, 𝒯 ).

− Honestly merged valid offers are again valid: For each pair of valid
𝒮𝑘, ℛ𝑘, 𝒯𝑘 with 𝑘 ∈ {0, 1}, each 𝔬𝑘 ∈ Offer(𝒮𝑘, ℛ𝑘, 𝒯𝑘) and 𝔬 =
Merge(𝔬0, 𝔬1), it holds that VfOffer(off, 𝔬) = 1 with off = off(𝒮0 ∪
𝒮1, ℛ0 ∪ ℛ1, 𝒯0 ∪ 𝒯1).

− Honestly sealed transactions are valid: For any 𝒮, ℛ, 𝒯 as above that
satisfies all offer criteria and:

– |𝒯 | ≤ 2𝛼, ∀𝑖 ∈ [|𝒯 |] ∶ 𝑎𝒯
𝑖 ∈ {0, … , 2𝛽 − 1}

– ∀ty ∈ {ty𝒯
𝑖 }|𝒯 |

𝑖=1 ∶ ∑{𝑎𝒮
𝑖 |ty𝒮

𝑖 = ty}|𝒮|
𝑖=1 = ∑{𝑎𝒯

𝑖 |ty𝒯
𝑖 = ty}|𝒯 |

𝑖=1

and for any proof 𝔱 ∈ Seal(off, 𝔬) it holds that VfTx(tx, 𝔱) = 1 with
off = off(𝒮, ℛ, 𝒯 ) and tx = tx(off).
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6.4 security

To formalize the security of a SwapCT scheme, we borrow components
from other RingCT schemes, namely Omniring, as transactions of a SwapCT
scheme should have comparable properties to their single type RingCT coun-
terparts. For the non-slanderability, we make use of the definitions from
Omniring [LRR+19], which allows an attacker to make arbitrary transactions
through oracles andwhomust then output a valid transactionwhich uses a tag
of the honest, oracle controlled accounts that was not previously authorized.
Theft prevention and privacy of SwapCT require additional constraints to en-
sure these properties in the presence of offers, types and multiple distrusting
parties jointly transacting.

6.4.1 Theft

The core of any transaction system is to assure that no value is created out of
thin air. Moreover, for individual participants it is of paramount importance
that all outgoing transactions from their wealth are authorized.
The authorization in the case of a single transactor is simple: Signing the trans-
action with a set of inputs for a final set of outputs. This is not directly applica-
ble to offers that may not have a final output set at the time of authorizing the
first inputs. The authorization given to an offer translates to a condition that
the signer accepts the spending of the inputs if and only if the specified out-
puts are fulfilled. As offers have to be authorized before some untrusted party
uses them to seal a transaction and without further interaction, the authoriza-
tion must be conditioned that all designated outputs are included in the final
transaction without modifications. As long as at least one input authorization,
identified by a tag, is used from an offer, the transaction outputs must be a
super-set of the original offer outputs. The tag is anonymously bound to the
hidden input.
To achieve theft prevention, we require ChkAcc and ChkTag to be binding.
Then, if a tag is bound to a source account, double-spend detection is reduced
to checking for duplicate tags. In addition, the binding property prevents
opening an account to a different amount or type.

Definition 6.3 (Theft). A SwapCT scheme is theft protecting, if for any 𝜆 ∈ ℕ
and all 𝛼, 𝛽 ∈ poly(𝜆) with pp ← Setup(1𝜆, 1𝛼, 1𝛽)

1. ChkTag and ChkAcc are binding such that for any adversary 𝒜 it holds
that

Pr ⎡⎢
⎣

ChkTag(acc, sk, tag) = 1
ChkTag(acc, sk′, tag′) = 1, (sk, tag) ≠ (sk′, tag′)

∣∣∣∣
(acc, sk, tag, sk′, tag′) ← 𝒜(pp)] ≤ negl(𝜆)
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and

Pr

⎡
⎢⎢⎢⎢⎢
⎣

ty = TypeGen(𝑛), ty′ = TypeGen(𝑛′)
ChkAcc(acc, ck, 𝑎, ty) = 1

ChkAcc(acc, ck′, 𝑎′, ty′) = 1
(𝑎, 𝑛, ck) ≠ (𝑎′, 𝑛′, ck′)

∣
∣∣∣∣∣∣
∣

(acc, 𝑎, 𝑛, ck, 𝑎′, 𝑛′, ck′) ← 𝒜(pp)] ≤ negl(𝜆)

2. for all PPT adversaries 𝒜 and all 𝒮, ℛ, 𝒯 defined as above, it holds that

Pr ⎡⎢
⎣

{tag′
𝑖}

|𝒮′|
𝑖=1 ∩ {tag𝑖}

|𝒮|
𝑖=1 ≠ ∅

{acc′𝒯
𝑖 }|𝒯 ′|

𝑖=1 ⊉ {acc𝒯
𝑖 }|𝒯 |

𝑖=1, VfOffer(off′, 𝔬′) = 1

∣∣∣∣
𝔬 ← Offer(𝒮, ℛ, 𝒯 )

(𝔬′, off′) ← 𝒜(pp, 𝔬, off(𝒮, ℛ, 𝒯 ))
⎤⎥
⎦

≤ negl(𝜆).

6.4.2 Balance

To prevent users from spending more value than they have as input or spend-
ing the same value twice, increasing the total supply, a transaction must be
balanced. Our balance property only differs from a type unaware RingCT sys-
tem in the fact that the balance has to hold for each type individually.
To achieve the balance property, we rely on theft prevention, as a prerequisite.
The balance experiment in Figure 6.1 states that for any efficient adversary 𝒜
which generates a valid transaction tx, 𝔱, there exists an extractor ℰ𝒜 which
extracts the witness 𝒮, ℛ, 𝒯 of this transaction. The witness must satisfy that
the tags match the inputs accℛ

𝑖,𝑗𝑖 . In addition, the amounts and types must
match the input and output accounts with ChkAcc. Unlike single type trans-
action systems, we additionally require that each output type is present in the
input. Then, the sum of amounts in the inputs must be equal to the sum of
outputs per type.
Assume an efficient adversary creating a valid transaction signature for an un-
balanced transaction. The signature ensures balance and thereby the adversary
can be used to create an efficient adversary against one of the binding proper-
ties. This means being able to spend the same account under a different tag or
change the amount or type.

Definition 6.4 (Balance). A SwapCT scheme is balanced if it prevents theft (Def.
2) and for all PPT adversaries 𝒜 and all positive integers 𝛼, 𝛽 ∈ poly(𝜆), there
exists a PPT extractor ℰ𝒜 such that

Pr[Balance𝒜,ℰ𝒜
(1𝜆, 1𝛼, 1𝛽) = 1] ≤ negl(𝜆)

with Balance𝒜,ℰ𝒜
(1𝜆, 1𝛼, 1𝛽) defined in Algorithm 6.1.
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Algorithm 6.1 Balance𝒜,ℰ𝒜
(1𝜆, 1𝛼, 1𝛽)

pp ← Setup(1𝜆, 1𝛼, 1𝛽)
(tx, 𝔱) ← 𝒜(pp)
(𝒮, ℛ, 𝒯 ) ← ℰ𝒜(pp, tx, 𝔱)

parse 𝒮 as {tag𝑖, 𝑗𝑖, sk𝑖, 𝑎𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 }

|𝒮|

𝑖=1

parse ℛ as {{accℛ
𝑖,𝑗}

|ℛ𝑖|
𝑗=1}

|ℛ|

𝑖=1

parse 𝒯 as {acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

𝑖 }
|𝒯 |

𝑖=1
𝑏1 ∶= VfTx(tx, 𝔱), 𝑏2 ∶= tx = tx(𝒮, ℛ, 𝒯 )
𝑏3 ∶= ∀𝑖 ∈ [|𝒮|], ChkTag(accℛ

𝑖,𝑗𝑖 , sk𝑖, tag𝑖) = 1
𝑏4 ∶= ∀𝑖 ∈ [|𝒮|], ChkAcc(accℛ

𝑖,𝑗𝑖 , 𝑎
𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 ) = 1

𝑏5 ∶= ∀𝑖 ∈ [|𝒯 |], ChkAcc(acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

𝑖 ) = 1
𝑏6 ∶= ∀ty ∈ {ty𝒯

𝑖 }|𝒯 |
𝑖=1 ∶ ∑{𝑎𝒮

𝑖 |ty𝒮
𝑖 = ty}|𝒮|

𝑖=1 = ∑{𝑎𝒯
𝑖 |ty𝒯

𝑖 = ty}|𝒯 |
𝑖=1

return 𝑏1 ∧ 𝑏2 ∧ ¬(𝑏3 ∧ 𝑏4 ∧ 𝑏5 ∧ 𝑏6)

6.4.3 Privacy

The privacy of a SwapCT scheme consists of two different settings. Offers re-
quire sender and receiver anonymity, while for sealed transactions the regular
RingCT privacy must hold, which consists of sender and receiver anonymity
as well as value confidentiality. To provide value confidentiality in a SwapCT,
we have to extend the RingCT model by also hiding the type.
The transaction creation process may be distributed and offers are passed
to possibly malicious parties. Therefore, we require sender and receiver
anonymity for offers, too. Value and type confidentiality are not desired
for offers, as other parties must be able to access the offered assets and de-
cide if they want to merge the offer. To ensure that swap transactions are
indistinguishable from single-user transactions, the number of offers merged
together must remain hidden, makingmerged offers appear identical to single
transactions.
Sender and receiver anonymity is defined by an adversary interacting with a
set of oracles and then presenting a maliciously crafted offer together with in-
structions for the security experiment on how to construct two sets of offers.
The instructions contain input ring accounts with two possible senders and
recipients together with amounts and types. In addition, they contain an iden-
tifier of the party which should use the input or output, thereby showing that
the offers do not reveal the participants. The adversary should not be able to
distinguish which set of offers is created and merged.
More formally, we specified a security experiment OffPv𝑏 in Figure 6.2 with
a bit 𝑏 ∈ {0, 1}. An adversary 𝒜 queries the available oracles (Algorithms
6.3,6.4,6.5,6.6) and then returns a valid offer (off, 𝔬) and instructions 𝐼 and
𝐽. 𝐼 contains {({𝑢𝒮

𝑡,𝑖, 𝑗𝑡,𝑖}1
𝑡=0, {accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1)}|𝐼|

𝑖=1 where 𝑢𝒮
𝑏,𝑖 is the identifier of the
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Algorithm 6.2 OffPv𝑏
𝒜(1𝜆, 1𝛼, 1𝛽)

pp ← Setup(1𝜆, 1𝛼, 1𝛽), InitOracles()
𝕆 = {KeyGen𝒪, Offer𝒪}
(𝐼, 𝐽, off, 𝔬) ← 𝒜𝕆(pp)
𝔬0 ∶= 𝔬1 ∶= 𝔬, off0 ∶= off1 ∶= off, 𝒮0 ∶= 𝒮1 ∶= 𝒯0 ∶= 𝒯1 ∶= ∅
if VfOffer(off, 𝔬) = 0 then return 0
parse 𝐼 as {({(𝑢𝒮

𝑡,𝑖, 𝑗𝑡,𝑖)}1
𝑡=0, {accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1)}|𝐼|

𝑖=1
for all 𝑖 ∈ [|𝐼|] do

for all 𝑡 ∈ {0, 1} do
(tag𝑡,𝑖, sk

𝒮
𝑡,𝑖, 𝑎𝒮

𝑡,𝑖, ty𝒮
𝑡,𝑖, ck𝒮

𝑡,𝑖) ∶= TryReceive(accℛ
𝑖,𝑗𝑡,𝑖

)
𝒮𝑡[𝑖] = (tag𝑡,𝑖, 𝑗𝑡,𝑖, sk

𝒮
𝑡,𝑖, 𝑎𝒮

𝑡,𝑖, ty𝒮
𝑡,𝑖, ck𝒮

𝑡,𝑖)
if tag𝑡,𝑖 ∈ Offrd ∧ (tag𝑡,𝑖, {accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1) ∉ Offrd then return 0

if 𝑎0,𝑖 ≠ 𝑎1,𝑖 ∨ ty0,𝑖 ≠ ty1,𝑖 then return 0

parse 𝐽 as {({(𝑢𝒯
𝑡,𝑖, 𝑘𝒯

𝑡,𝑖)}1
𝑡=0, 𝑎𝒯

𝑖 , ty𝒯
𝑖 )}|𝐽|

𝑖=1
for all 𝑗 ∈ [|𝐽|] do

for all 𝑡 ∈ {0, 1} do
(acc𝒯

𝑡,𝑗, ck𝒯
𝑡,𝑗) ← OTGen(LTP[𝑘𝑡,𝑗], 𝑎𝒯

𝑗 , ty𝒯
𝑗 )

𝒯𝑡[𝑗] = (acc𝒯
𝑡,𝑗, 𝑎𝒯

𝑗 , ty𝒯
𝑗 , ck𝒯

𝑡,𝑗)

for all 𝑡 ∈ {0, 1} do
𝔘𝐼

𝑡 ∶= {𝑢𝒮
𝑡,𝑖}

|𝐼|
𝑖=1, 𝔘𝐽

𝑡 ∶= {𝑢𝒯
𝑡,𝑗}

|𝐽|
𝑗=1

if 𝔘𝐼
𝑡 ≠ 𝔘𝐽

𝑡 then return 0
for all 𝑘 ∈ 𝔘𝐼

𝑡 do
𝒮𝑘

𝑡 ∶= {𝒮𝑡[𝑖]|𝑢𝒮
𝑡,𝑖 = 𝑘}|𝐼|

𝑖=1
ℛ𝑘

𝑡 ∶= {{acc𝑖,𝑗}|ℛ|
𝑗=1|𝑢𝒮

𝑡,𝑖 = 𝑘}|𝐼|
𝑖=1

𝒯 𝑘
𝑡 ∶= {𝒯𝑡[𝑗]|𝑢𝒯

𝑡,𝑖 = 𝑘}|𝐽|
𝑗=1

off𝑘𝑡 ← off(𝒮𝑘
𝑡 , ℛ𝑘

𝑡 , 𝒯 𝑘
𝑡 )

𝔬𝑘
𝑡 ← Offer(𝒮𝑘

𝑡 , ℛ𝑘
𝑡 , 𝒯 𝑘

𝑡 )
if VfOffer(off𝑘𝑡 , 𝔬𝑘

𝑡 ) = 0 then return 0
off𝑡 ∶= off𝑡 ∪ off(𝒮𝑘

𝑡 , ℛ𝑘
𝑡 , 𝒯 𝑘

𝑡 )
𝔬𝑡 ← Merge(𝔬𝑡, 𝔬𝑘

𝑡 )
𝑏′ ← 𝒜𝕆(off𝑏, 𝔬𝑏) return 𝑏′

Algorithm 6.3 InitOracles()
LTP ∶= LTS ∶= ∅
Offrd ∶= ∅

Algorithm 6.4 KeyGen𝒪()
(ltp, lts) ← KeyGen()
LTP ∶= LTP‖ltp
LTS ∶= LTS‖lts
return ltp
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Algorithm 6.5 TryReceive(acc)
for all 𝑖 ∈ [|LTS|] do

(tag, sk, 𝑎, ty, ck) ← Receive(acc, LTS[𝑖])
if (tag, sk, 𝑎, ty, ck) ≠ ⊥ then

return (tag, sk, 𝑎, ty, ck)
return ⊥

Algorithm 6.6 Offer𝒪(𝐼, 𝒯 )
𝒮 ∶= ∅
parse 𝐼 as {𝑗𝑖, {accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1}|𝐼|

𝑖=1
for all 𝑖 ∈ [|𝐼|] do

𝒮𝑖 ∶= (tag𝑖, sk𝑖, 𝑎𝑖, ty𝑖, ck𝑖) ∶= TryReceive(accℛ
𝑖,𝑗𝑖)

// Check that the same tag was not used with another ring
if (tag𝑖, ⋅) ∈ Offrd ∧ (tag𝑖, {accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1) ∉ Offrd then return ⊥

ℛ = {{accℛ
𝑖,𝑗}

|ℛ𝑖|
𝑗=1}|𝐼|

𝑖=1, off = off(𝒮, ℛ, 𝒯 ), 𝔬 ← Offer(𝒮, ℛ, 𝒯 )
if VfOffer(off, 𝔬) = 0 then return ⊥
Offrd ∶= Offrd ∪ {(tag𝑖, {accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1)}|𝐼|

𝑖=1
return 𝔬

party who should use input 𝑖 depending on the selected bit 𝑏. The set of all in-
put identifiers {𝑢𝒮

𝑡,𝑖}
|𝐼|
𝑖=1 form the unordered set 𝔘𝐼

𝑡 for 𝑡 ∈ {0, 1}. 𝑗𝑡,𝑖 specifies
the index in the set of ring accounts {accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1 on which the experiment calls

(tag𝑡,𝑖, 𝑎𝒮
𝑡,𝑖, ty𝒮

𝑡,𝑖, sk
𝒮
𝑡,𝑖) ← TryReceive(accℛ

𝑖,𝑗𝑡,𝑖
) to recover the account secrets.

Some trivial cases which are easy to distinguish are excluded. An efficient
adversary exists, if the amount and type of the two ring accounts may be dif-
ferent, as these values will be published in the merged offer. Therefore, we
require 𝑎𝒮

0,𝑖 = 𝑎𝒮
1,𝑖 and ty𝒮

0,𝑖 = ty𝒮
1,𝑖 for all 𝑖. We also abort if one of the tags

was already disclosed in another offer: (tag𝑡,𝑖, ⋅) ∉ Offrd. This implies that
when a participant decides to create multiple offers with the identical input, it
is important to the sender anonymity that the input uses the same ring in each
offer as otherwise, the real sender is an account of the intersection of all rings.
The output instructions 𝐽 are similar to 𝐼, as they contain

{({𝑢𝒯
𝑡,𝑖, 𝑘𝒯

𝑡,𝑖}1
𝑡=0, 𝑎𝒯

𝑖 , ty𝒯
𝑖 )}|𝐽|

𝑖=1

where 𝑢𝒯
𝑡,𝑖 specifies the party to use this output and all output identifiers form

the unordered set 𝔘𝐽
𝑡 , equal to 𝔘𝐼

𝑡 . The element 𝑘𝑡,𝑖 references an uncompro-
mized long term public key LTP[𝑘𝑡,𝑖] from which a one-time account acc𝒯

𝑡,𝑗

is derived. As the amounts 𝑎𝒯
𝑖 and types ty𝒯

𝑖 of an offer are public, they are
equivalent in both values of 𝑏. The experiment proceeds by distributing the in-
puts and outputs to each identifier in the set 𝔘𝑡 = 𝔘𝐼

𝑡 = 𝔘𝐽
𝑡 , then creates a set

of offers and authorizes each of them. All offers off𝑏𝑘, along with the malicious
off are merged. The adversary wins by correctly guessing the bit 𝑏.
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Definition 6.5 (Offer Privacy). A SwapCT scheme has private swaps, if for all
PPT adversaries 𝒜 and all positive integers 𝛼, 𝛽 ∈ poly(𝜆) it holds that

∣Pr[OffPv0
𝒜(1𝜆, 1𝛼, 1𝛽) = 1] − Pr[OffPv1

𝒜(1𝜆, 1𝛼, 1𝛽) = 1]∣ ≤ negl(𝜆)

with OffPv𝑏
𝒜(1𝜆, 1𝛼, 1𝛽) defined in Figure 6.2.

6.4.4 Transaction Privacy

The privacy of a sealed transaction extends the offer privacy as follows. As
the amounts 𝑎𝒮

𝑖 , 𝑎𝒯
𝑖 and types ty𝒮

𝑖 , ty𝒯
𝑖 of an offer are discarded in the seal op-

eration, the requirement on the instructions from the adversary to have equal
amounts and types are lifted. According toDefinition 6.5, the number of trans-
actors is hidden. Thereby, it is sufficient to show the case where the adversary
provides instructions to just one party. The security experiment in Figure 6.7
then seals the merged transaction at the end.

Algorithm 6.7 TxPv𝑏
𝒜(1𝜆, 1𝛼, 1𝛽)

pp ← Setup(1𝜆, 1𝛼, 1𝛽), InitOracles()
𝕆 = {KeyGen𝒪, Offer𝒪}
(𝐼, 𝐽, off, 𝔬) ← 𝒜𝕆(pp)
𝒮0 ∶= 𝒯0 ∶= 𝒮1 ∶= 𝒯1 ∶= ℛ ∶= ∅
parse 𝐼 as {({𝑗𝑡,𝑖}1

𝑡=0, {accℛ
𝑖,𝑗}

|ℛ𝑖|
𝑗=1)}|𝐼|

𝑖=1
for all 𝑖 ∈ [|𝐼|] do

for all 𝑡 ∈ {0, 1} do
(tag𝑡,𝑖, sk

𝒮
𝑡,𝑖, 𝑎𝒮

𝑡,𝑖, ty𝒮
𝑡,𝑖, ck𝒮

𝑡,𝑖) ∶= TryReceive(accℛ
𝑡,𝑗𝑡,𝑖

)
𝒮𝑡[𝑖] = (tag𝑡,𝑖, 𝑗𝑡,𝑖, sk

𝒮
𝑡,𝑖, 𝑎𝒮

𝑡,𝑖, ty𝒮
𝑡,𝑖, ck𝒮

𝑡,𝑖)
ℛ[𝑖] = {accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1

if tag0,𝑖 ≠ tag1,𝑖 ∧ {(tag𝑡,𝑖, ⋅)}1
𝑡=0 ∩ Offrd ≠ ∅ then return 0

parse 𝐽 as {{(𝑘𝒯
𝑡,𝑗 , 𝑎𝒯

𝑡,𝑗, ty𝒯
𝑡,𝑗)}1

𝑡=0}|𝐽|
𝑗=1

for all 𝑗 ∈ [|𝐽|] do
for all 𝑡 ∈ {0, 1} do

(acc𝒯
𝑡,𝑗, ck𝒯

𝑡,𝑗) ∶= OTGen(LTP[𝑘𝒯
𝑡,𝑗], 𝑎𝒯

𝑡,𝑗, ty𝒯
𝑡,𝑗)

𝒯𝑡[𝑗] ∶= (acc𝒯
𝑡,𝑗, 𝑎𝒯

𝑡,𝑗, ty𝒯
𝑡,𝑗, ck𝒯

𝑡,𝑗)

for all 𝑡 ∈ {0, 1} do
𝔬𝑡 ← Merge(𝔬, Offer(𝒮𝑡, ℛ, 𝒯𝑡))
off𝑡 ∶= off(𝒮𝑡, 𝑅, 𝒯𝑡) ∪ off
tx𝑡 ∶= tx(off𝑡)
𝔱𝑡 ← Seal(off𝑡, 𝔬𝑡)
if VfOffer(off𝑡, 𝔬𝑡) = 0 ∨ VfTx(tx𝑡, 𝔱𝑡) = 0 then return 0

𝑏′ ← 𝒜𝕆(tx𝑏, 𝔱𝑏) return 𝑏′
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Definition 6.6 (Transaction Privacy). A SwapCT has private transactions, if
the participants are able to share messages by an anonymous broadcast, and if
for all PPT adversaries 𝒜 and all positive integers 𝛼, 𝛽 ∈ poly(𝜆) it holds that

∣Pr[TxPv0
𝒜(1𝜆, 1𝛼, 1𝛽) = 1] − Pr[TxPv1

𝒜(1𝜆, 1𝛼, 1𝛽) = 1]∣ ≤ negl(𝜆)

with TxPv𝑏
𝒜(1𝜆, 1𝛼, 1𝛽) defined in Algorithm 6.7.

6.5 construction of components

We require a protocol to anonymously authorize spending from a set of ring
accounts {(pk𝑖, com𝑖)}|ℛ|

𝑖=1 without revealing the true source (pk𝑗, com𝑗) and
prevent double-spending. Especially the creator of the authorization does not
necessarily know the secret keys of all the ring accounts nor interacts with the
parties holding the secret keys. A ring signature solves exactly this problem to
sign amessagewithout revealing the true secret key sk used. In addition, we re-
quire linkability if the same secret key and thereby the same account was used
in two different ring signatures. This is achieved by publishing a tag which
is anonymously bound to the public key pk𝑗. If two signatures have the same
tag, they were created by the same secret key. This is known as a tagged ring
signature scheme TRS, similar to theMLSAG scheme inMonero [AH18]. The
TRS is parameterized with a tagging scheme TAG and a typed homomorphic
commitment scheme THC. We define this in the form of a SoK parameterized
with the following language ℒ ring

∶=

⎧{{{{{
⎨{{{{{⎩

stmt = ({(pk𝑖, com𝑖)}|ℛ|
𝑖=1, tag, com′) ∶

∃wit = (𝑗, sk, 𝑎, ty, ck, ck′) s.t.

pk𝑗 = TagKGen(sk), com𝑗 = Commit(ty, 𝑎; ck)

tag = TagEval(sk), com′ = Commit(ty, 𝑎; ck′)

Thereby, we assure that the signer knows at least one secret key sk of the ring
accounts, and the tag matches this account 𝑗. The TRS also shows that a com-
mitment com′ commits to a type ty and amount 𝑎, which is the same as the
amount and type in com𝑗, referenced by tag but has a different coin key ck′ to
hide the link to com𝑗. From ℒ ring, we see that given a binding THC scheme
and a secure TAG scheme, the SoK ring signature is set anonymous and as-
sures equal values in com𝑗 and com′.

6.5.1 Instantiation

We instantiate the tagged ring signature by specifying the parameters of the
previously defined efficient SoK. Using the concrete instantiations for THC
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(com ∶= (𝑇, 𝑉)) with Theorem 2.1 and TAG, we get the following language
ℒ ring

THC,TAG

∶=

⎧{{{{{
⎨{{{{{⎩

stmt = ({(pk𝑖, (𝑇𝑖, 𝑉𝑖))}|ℛ|
𝑖=1, tag, (𝑇′, 𝑉′)) ∶

∃wit = (𝑗, 𝑥, 𝑎, ty, (𝑟, 𝑠), (𝑟′𝑠′)) s.t.

⃗pk
∘ ⃗𝑒𝑗 = 𝐻𝑥, tag = 𝐺𝑥−1 , ∏(𝑇⃗ ⋅ 𝑇′−1)∘ ⃗𝑒𝑗 = 𝐺𝜙1

∏(𝑉⃗ ⋅ 𝑉′−1)∘ ⃗𝑒𝑗 = 𝐺𝜙2 , ⃗𝑒𝑗 unit vector , | ⃗𝑒𝑗| = |ℛ|

Given the challenge variables 𝑢, 𝑣 from the extended Bulletproof system, we
compress the conditions into 𝐾⃗′ ∶= ⃗pk ∘ (𝑇⃗ ⋅ 𝑇′−1)∘𝑢 ∘ (𝑉⃗ ⋅ 𝑉′−1)∘𝑢2 . To
satisfy ∏ 𝐾⃗∘ ⃗𝑐𝐿,1 = 𝐼 and check for a correct tag, we extend 𝐾⃗′ with tag, 𝐺, 𝐻.
The encoding for ⃗𝑐𝐿,1 is chosen appropriately with 𝜉 = −𝑢𝜙1 −𝑢2𝜙2 −𝑢3𝑥−1

with 𝜙1(𝑟, 𝑟′) = 𝑟 − 𝑟′ and 𝜙2(𝑎, 𝑟, 𝑠, 𝑟′, 𝑠′) = 𝑎𝑟 + 𝑠 − 𝑎𝑟′ − 𝑠′. It combines
to

𝐾 ∶= (tag𝑢3‖𝐺‖ 𝐻 ‖ 𝐾⃗′ )
⃗𝑐𝐿 ∶= ( 1 ‖𝜉 ‖−𝑥 ‖ ⃗𝑒𝑗 ‖𝜙1‖𝜙2)
⃗𝑐𝑅 ∶= ( 0 ‖0‖𝑥−1‖ ⃗𝑒𝑗 − ⃗1|ℛ|‖ 0 ‖ 0 )

To enforce correct witness encoding, we define inner product relations. A con-
straint is parameterized by the variables 𝑢 and 𝑣 as well as a new challenge 𝑦:

⃗v0 ∶= (0‖0‖ 0 ‖ ⃗𝑦|ℛ|‖0‖ 0 ) ⟨ ⃗𝑐𝐿, ⃗𝑐𝑅 ∘ ⃗v0⟩= 0
⃗v1 ∶= (0‖0‖ 0 ‖ ⃗𝑦|ℛ|‖0‖ 0 )⟨ ⃗𝑐𝐿 − ⃗𝑐𝑅 − ⃗1𝑚, ⃗v1⟩= 0
⃗v2 ∶= (𝑦‖0‖ 0 ‖1|ℛ|‖0‖ 0 ) ⟨ ⃗𝑐𝐿, ⃗v2⟩= ⟨ ⃗12, ⃗𝑦2⟩
⃗v3 ∶= (0‖1‖ 0 ‖ ⃗0|ℛ|‖𝑢‖𝑢2)
⃗v′
3 ∶= (0‖0‖𝑢3 ‖ ⃗0|ℛ|‖0‖ 0 ) ⟨ ⃗𝑐𝐿, ⃗v3⟩ + ⟨ ⃗𝑐𝑅, ⃗v′

3⟩= 0
⃗v4 ∶= (0‖0‖−𝑦‖ ⃗0|ℛ|‖0‖ 0 ) ⟨ ⃗𝑐𝐿, ⃗𝑐𝑅 ∘ ⃗v4⟩= 𝑦

Using these parameters, we get an efficient SoK for the Tagged Ring Signature
which has logarithmic communication size in the members of the ring allow-
ing for large anonymity sets with small proof sizes.

Theorem 6.1 (SoK Signatures). Given the parameters above, the resulting pro-
tocol is perfectly complete, perfectly special honest-verifier zero-knowledge and
logarithmic round argument of knowledge scheme for ℒ ring. Given witness-
extended emulation and computationally unique responses, it is transformable
to a perfectly complete, extractable, perfectly simulatable signature of knowledge
for the language and any message 𝑚 ∈ {0, 1}∗ using Fiat-Shamir [FS] which
holds for multiple rounds [DFM20, Thm. 23]. As the simulator and an extrac-
tion proofs follow the same structure as Omniring proofs we refer the reader to
Lai et al. [LRR+19].



6.5 construction of components 93

6.5.2 SwapCT

With a tagging scheme (Section 2.11.1), a tagged ring signature (TRS), a seal
signature for asset conservation (Chapter 4), the SwapCT construction Ξ is
the interaction of the following algorithms. Intuitively, we create accounts
with the public key of the tagging scheme and store the amount and type in
a commitment. For each input of an offer, the real account is hidden in a set
of ring accounts and a tagged ring signature assures that the published tag be-
longs to the account from which the amount and type is spent. To decouple
the sender anonymity set from the remainder of the transaction, we create an
intermediate, randomized commitment with a copy of the input values. Out-
put accounts are derived from the recipients long term public key. To combine
inputs with outputs, we use our anonymously aggregatable signature scheme
which enables the simple merging of offers. Finally, an offer is sealed by the
seal signature to become a verifiable transaction to be persisted.
For a detailed description, let 𝜒 be the key space of TAG and ℝ the THC
randomness space. Let 𝔥 ∶ {0, 1}∗ → 𝜒 be a random oracle. Setup (Algo-
rithm 6.8) generates the public parameters of each component by calling their
setup functions.

Algorithm 6.8 Setup(1𝜆, 1𝛼, 1𝛽)
ppTHC ← ComSetup(1𝜆)
ppPKE ← PKESetup(1𝜆)
ppTAG ← TagSetup(1𝜆)
ppAS ← AS.Setup(1𝜆, ℒ ring)
ppseal ← SoK[ℒ∅]Setup(1𝜆, 1𝛼, 1𝛽, ppTHC)
pp ∶= (ppTHC, ppPKE, ppTAG, ppAS, ppseal)
return pp

To participate, each entity generates a long term key (ltp, lts) with KeyGen
(Algorithm 6.9) that consists of two key pairs of the PKE scheme: (vpk, vsk)
is used for access to received amounts and (apk, ask) is used to recover the
authorization key to spend the received funds. The long term credentials fur-
ther include a key pair ( ̄sk, ̄pk) from the TAG to later calculate tags for each
derived account.

Algorithm 6.9 KeyGen()
(vpk, vsk) ← KeyGen(ppPKE)
(apk, ask) ← KeyGen(ppPKE)

̄sk ∶= 𝑥 $←−𝜒, ̄pk ∶= 𝑋 ← TagKGen(𝑥)
ltp ∶= (vpk, apk, ̄pk)
lts ∶= (vsk, ask, ̄sk)
return (ltp, lts)

The different token types available in a SwapCT system are not specified a pri-
ori but are dynamically added. A new type ty is generated by specifying a
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new unique name and using ComTypeGen of the commitment scheme as de-
scribed in TypeGen (Algorithm 6.10). The mere specification of a type ty is
not sufficient to introduce the new type into circulation. To allow trading with
this new type, a new account acc is derived from a long term public key ltp
by OTGen (Algorithm 6.11). The acc is piggybacked onto a regular transac-
tion to pay the registration fee. The matching lts is then allowed to spend the
newly minted tokens of type ty. The uniqueness of the name in such a type
registration must be ensured by the consensus mechanism.

Algorithm 6.10 TypeGen(name)
ty ∶= ComTypeGen(name) return ty

The one-time account generation is used in subsequent transactions to spec-
ify the outputs. OTGen generates a random ephemeral key ek and uses it to
generate a public key pk for which only the recipient can recover the secret
key sk. A THC com is created to the amount 𝑎 and type ty with a random
coin key ck ∈ ℝ. Finally, the secret values ek, ty, 𝑎, ck are encrypted under
the recipient’s keys apk, vpk to be decrypted with ask, vsk recovering the to-
kens. The structure of the one-time accounts is very similar to the Omniring
construction apart from using a typed homomorphic commitment.

Algorithm 6.11 OTGen(ltp, 𝑎, ty)
parse ltp as (vpk, apk, ̄pk)
ek $←−{0, 1}𝜆

ck $←−ℝ
𝑠 ∶= 𝔥(ltp, ek)
pk ∶= ̄pk ⋅ TagKGen(𝑠)
com ∶= Commit(ty, 𝑎; ck)

̃ek ← Enc(apk, (pk, com), ek)
̃ck ← Enc(vpk, (pk, com), (ty, 𝑎, ck))

acc = (pk, com, ̃ek, ̃ck)
return (acc, ck)

The owner of the long term secret key lts is able to receive an account acc by
Receive (Algorithm6.12). This is again similar toOmniringwith the exception
of a different commitment. First the recipient decrypts the ciphertexts ̃ek, ̃ck
with the labeled encryption scheme to get ek, the amount 𝑎, type ty and ck and
then derives the tag for this account from the tagging scheme.
With all accounts set up, Offer (Algorithm 6.13) ensures sender anonymity by
creating a temporary commitment com′

𝑖 for each input 𝑖 ∈ [|𝒮|] with fresh
randomness ck′

𝑖 ∈ ℝ. It then calls the aggregatable signature scheme pa-
rameterized with the tagged ring signature language ℒ ring. The SoK for TRS
requires the temporary commitment com′

𝑖 as well as the ring accounts as state-
ment, which is the input for the AS.Sign function. The transaction output ac-
counts acc𝒯

𝑖 are used as messages. An offer then consists of off(𝒮, ℛ, 𝒯 ),
defined in Eq (6.1), and 𝔬 = ({𝔯𝑖, com′

𝑖, ck′
𝑖}|𝒮|

𝑖=1, 𝔞).
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Algorithm 6.12 Receive(acc, lts)
parse acc as (pk, com, ̃ek, ̃ck)
parse lts as (vsk, ask, ̄sk)
ek = Dec(ask, (pk, com), ̃ek)
(ty, 𝑎, ck) = Dec(vsk, (pk, com), ̃ck)
𝑠 ∶= 𝔥(ltp, ek)
sk ∶= ̄sk + 𝑠
pk′ = TagKGen(𝑠𝑘)
com′ = Commit(ty, 𝑎; ck))
if (pk, com) ≠ (pk′, com′) then

return ⊥
tag ← TagEval(sk)
return (tag, sk, 𝑎, ty, ck)

Algorithm 6.13 Offer(𝒮, ℛ, 𝒯 )

parse 𝒮 as {(tag𝑖, 𝑗𝑖, sk𝑖, 𝑎𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 )}|𝒮|

𝑖=1
parse ℛ as {{accℛ

𝑖,𝑗 ∶= (pkℛ
𝑖,𝑗 , comℛ

𝑖,𝑗 , ⋅)}|ℛ𝑖|
𝑗=1}|𝒮|

𝑖=1

parse 𝒯 as {(acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

𝑖 )}|𝒯 |
𝑖=1

{ck′
𝑖

$←−ℝ, com′
𝑖 ← Commit(ty𝒮

𝑖 , 𝑎𝒮
𝑖 ; ck′

𝑖)}|𝒮|
𝑖=1

{stmt𝑖 = ({(pkℛ
𝑖,𝑗 , comℛ

𝑖,𝑗)}|ℛ𝑖|
𝑗=1, tag𝑖, com′

𝑖)}|𝒮|
𝑖=1

{wit𝑖 = (𝑗𝑖, sk𝑖, 𝑎𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 , ck′

𝑖)}|𝒮|
𝑖=1

({𝔯𝑖}|𝒮|
𝑖=1, 𝔞) ← AS.SignSoK[ℒ ring]({(stmt𝑖, wit𝑖)}|𝒮|

𝑖=1, {acc𝒯
𝑗 }|𝒯 |

𝑗=1)
return ({𝔯𝑖, com′

𝑖, ck′
𝑖}|𝒮|

𝑖=1, 𝔞)

With the underlying aggregatable signature scheme AS, merging offers 𝔬1, 𝔬2
with Merge (Algorithm 6.14) directly translates to merging aggregatable sig-
natures 𝔞1, 𝔞2. The offers along with the temporary commitments com′ and
authorization signatures 𝔯 are combined by using their union.

Algorithm 6.14 Merge(𝔬1, 𝔬2)

parse 𝔬1 as ({(𝔯1
𝑖 , com′1

𝑖 , ck′1
𝑖 )}|𝒮1|

𝑖=1, 𝔞1)
parse 𝔬2 as ({(𝔯2

𝑖 , com′2
𝑖 , ck′2

𝑖 )}|𝒮2|
𝑖=1, 𝔞2)

𝔞 ← AS.Merge(𝔞1, 𝔞2)
return ({(𝔯1

𝑖 , com′1
𝑖 , ck′1

𝑖 )}|𝒮1|
𝑖=1 ∪ {(𝔯2

𝑖 , com′2
𝑖 , ck′2

𝑖 )}|𝒮2|
𝑖=1, 𝔞)

Offers are verifiable byVfOffer (Algorithm6.15)which checks that the commit-
ments com′, com𝒯 agree with the opened values 𝑎𝒮 , ty𝒮 , 𝑎𝒯 , ty𝒯 and verifies
𝔬 with AS.Verify.
Once an offer is balanced and valid, it can be sealed. Seal (Algorithm 6.16)
uses a SoK with the seal language ℒ∅ with a message of tx = tx(off) and a
statement stmt(tx) ∶= ({com′

𝑖}
|𝒮|
𝑖=1, {com𝒯

𝑗 }|𝒯 |
𝑗=1) containing the relevant in-
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Algorithm 6.15 VfOffer(off, 𝔬)

parse off as ({tag𝑖}
|𝒮|
𝑖=1, {{accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1}|𝒮|

𝑖=1, {acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

𝑖 }|𝒯 |
𝑖=1)

parse acc𝒯
𝑖 as (pk𝑖, com𝒯

𝑖 , ̃ek, ̃ck) and 𝔬 as ({𝔯𝑖, com′
𝑖, ck′

𝑖}|𝒮|
𝑖=1, 𝔞)

for all 𝑖 ∈ [|𝒮|] do
if com′

𝑖 ≠ Commit(ty𝑖, 𝑎𝑖; ck′
𝑖) then return ⊥

stmt𝑖 ∶= ({(pkℛ
𝑖,𝑗 , comℛ

𝑖,𝑗)}|ℛ𝑖|
𝑗=1, tag𝑖, com′

𝑖)

for all 𝑗 ∈ [|𝒯 |] do
if com𝒯

𝑗 ≠ Commit(ty𝒯
𝑗 , 𝑎𝒯

𝑗 ; ck𝒯
𝑗 ) then return ⊥

return AS.VerifySoK[ℒ ring]({(𝔯𝑖, stmt𝑖)}|𝒮|
𝑖=1, 𝔞, {acc𝒯

𝑗 }|𝒯 |
𝑗=1)

termediate commitments com′ and output commitments com𝒯 . The match-
ing witness is the set of committed values: wit(𝒮, {com′

𝑖, ck′
𝑖}|𝒮|

𝑖=1, 𝒯 ) =
({ty𝒮

𝑖 , 𝑎𝒮
𝑖 , ck𝒮

𝑖 }|𝒮|
𝑖=1, {ty𝒯

𝑗 , 𝑎𝒯
𝑗 , ck𝒯

𝑗 }|𝒯 |
𝑗=1). The seal algorithm operates on the

temporary commitments com′ and keeps the real sender hidden in the set
of ring accounts. The TRS ensures that com′ commits to the same type and
value as the real input. The seal signature 𝔱 then contains the SoK signature 𝔰
and all parts of the offer signature 𝔬, without the temporary coin keys ck′.

Algorithm 6.16 Seal(off, 𝔬)
if VfOffer(off, 𝔬) ≠ 1 then return ⊥
tx = tx(off)
parse 𝔬 as ({𝔯𝑖, com′

𝑖, ck′
𝑖}|𝒮|

𝑖=1, 𝔞) and off as (𝒮, ℛ, 𝒯 )
𝔰 ← SoK[ℒ∅]Sign(stmt(tx), wit(𝒮, {com′

𝑖, ck′
𝑖}|𝒮|

𝑖=1, 𝒯 ), tx)
return 𝔱 = (𝔰, {𝔯𝑖, com′

𝑖}
|𝒮|
𝑖=1, 𝔞)

Many public ledgers use financial incentives. We suggest using a com-
mon native type for all incentives (transactions fees and mining rewards)
as it is equally valued by every participant. A block reward is generated
by (accreward, ck) ← OTGen(ltpminer, 𝑎reward, tynative) and accreward is in-
cluded in the block. A transaction fee is handled by generating a commitment
comfee = Commit(tynative, 𝑎fee, 𝑟) and appending it to the transaction with
the plaintext values 𝑎fee, 𝑟. A verifier checks the commitment and then ap-
pends it to the ℒ∅ statement of output commitments {com𝒯

𝑗 }|𝒯 |
𝑗=1 ∪ {comfee}.

This assures that the inputs provide enough tokens in the native type to satisfy
all regular outputs and the fee. In a swap, offers may include a small surplus
of native tokens not claimed by any output. The merger creates a single com-
mitment to the sum of surplus from each offer and proceeds as explained
above. Exchanges may request operation fees. Therefore they accept only
offers which have the requested surplus to be claimed on merging in a regu-
lar output to the exchange. Regarding the transaction size, this requires one
additional input and output for each merged transaction by the exchange.
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A transaction is verified with VfTx (Algorithm 6.17) which proceeds similarly
toVfOffer except that it does not verify the openings of the commitments com′

𝑖
and com𝒯

𝑗 but only the aggregatable signature 𝔞. Instead, the commitments
are checked by verifying the seal signature 𝔰. ChkAcc (Algorithm 6.18) and
ChkTag (Algorithm 6.19) verify the consistency of the inputs by verifying the
THC and TAG schemes.

Algorithm 6.17 VfTx(tx, 𝔱)

parse tx as ({tag𝑖}
|𝒮|
𝑖=1, {{accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1}|𝒮|

𝑖=1, {acc𝒯
𝑖 }|𝒯 |

𝑖=1)
parse accℛ

𝑖,𝑗 as (pkℛ
𝑖,𝑗 , comℛ

𝑖,𝑗 , ⋅)
parse acc𝒯

𝑖 as (pk𝑖, com𝒯
𝑖 , ⋅)

parse 𝔱 as (𝔰, {𝔯𝑖, com′
𝑖}

|𝒮|
𝑖=1, 𝔞)

∀𝑖 ∈ [|𝒮|] ∶ stmt𝑖 ∶= ({(pkℛ
𝑖,𝑗 , comℛ

𝑖,𝑗)}|ℛ𝑖|
𝑗=1, tag𝑖, com′

𝑖)
𝑏0 ∶= |𝒯 | < 2𝛼

𝑏1 ∶= AS.VerifySoK[ℒ ring]({(𝔯𝑖, stmt𝑖)}|𝒮|
𝑖=1, 𝔞, {acc𝒯

𝑗 }|𝒯 |
𝑗=1)

𝑏2 ∶= SoK[ℒ∅]Verify(𝔰, stmt(tx), tx))
return 𝑏 ∶= 𝑏0 ∧ 𝑏1 ∧ 𝑏2

Algorithm 6.18 ChkAcc(acc, ck, 𝑎, ty)
parse acc as (pk, com, ̃ek, ̃ck)
return com = Commit(ty, 𝑎; ck)

Algorithm 6.19 ChkTag(acc, sk, tag)
parse acc as (pk, com, ̃ek, ̃ck)
return tag = TagEval(sk) ∧ pk = TagKGen(sk)

6.6 analysis

The construction is correct and satisfies to the following security properties.

Theorem 6.2 (Non Slanderability). If AS is extractable and simulatable, TAG
is related-input one-way, and 𝔥 is modeled as a random oracle, then the construc-
tion Ξ is non-slanderable.

Asweuse the sameTAG scheme asOmniring, and their security proof for non-
slanderability requires only a simulator for the transaction signature,Theorem
6.2 holds in our setting, as our new transaction signature is simulatable by
AS.Simℒ ring (Theorem 3.2) and SoK[ℒ∅]Sim.

Theorem 6.3 (Theft Prevention). If THC is binding and AS is secure and Ξ is
non-slanderable, it prevents theft.
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Proof of Theorem 6.3 (Theft). For ChkTag to be computationally binding, as-
sume aPPTadversarywhich outputs two valid openings (acc, sk, tag, sk′, tag′).
The validity requires pk = TagKGen(sk) = TagKGen(sk′) which forces
sk = sk′ because TagKGen is a bijection. As TagEval is deterministic,
tag = tag′, contradicting (sk, tag) ≠ (sk′, tag′)
ChkAcc is binding because it requiresCommit(ty, 𝑎; ck) = Commit(ty′, 𝑎′; ck′)
with (ty, 𝑎) ≠ (ty′, 𝑎′) which contradicts the THC binding property.
We show that an adversary cannot change a valid offer

off ∶= ({tag, ⋅}|𝒮|
𝑖=1, ℛ, {acc𝒯

𝑖 , ⋅}|𝒯 |
𝑖=1), 𝔬 ∶= ({𝔯𝑖, ⋅}|𝒮|

𝑖=1, 𝔞)

to off′ ∶= ({tag′, ⋅}|𝒮′|
𝑖=1, ℛ ′, {acc′𝒯

𝑖 , ⋅}|𝒯 ′|
𝑖=1 ), 𝔬′ ∶= ({𝔯′

𝑖 , ⋅}
|𝒮′|
𝑖=1, 𝔞′), such that it

is valid (VfOffer(off′, 𝔬′) = 1), reuses a tag from off ({tag′
𝑖}

|𝒮′|
𝑖=1 ∩{tag𝑖}

|𝒮|
𝑖=1 ≠

∅) and changes or removes an output acc𝒯 from off.
Assume that some tag∗ ∈ {tag𝑖}

|𝒮|
𝑖=1 from off is reused in off′ (tag∗ ∈

{tag′
𝑖}

|𝒮′|
𝑖=1) and an output acc𝒯

∗ ∈ {acc𝒯
𝑖 }|𝒯 |

𝑖=1 was modified or removed
(acc𝒯

∗ ∉ {acc′𝒯
𝑖 }|𝒯 ′|

𝑖=1 ). As the offer off′ is valid, this implies that 𝔞′ is valid
by AS.Verify in VfOffer. The security of the AS scheme from Definition 3.3
then implies that no signature was reused ({𝔯𝑖}|𝒮|

𝑖=1 ∩ {𝔯′
𝑖 , }

|𝒮|
𝑖=1 = ∅), as at

least one output message, namely acc𝒯
∗ , was changed. An efficient adversary

against Theorem 6.3 can be used to construct an efficient adversary against
the security of SoK[ℒ ring] as the verification in AS.VerifySoK[ℒ ring] requires
that for each SoK[ℒ ring]Verify(𝔯𝑖, stmt𝑖, ⋅) = 1. The non-slanderability of
Theorem 6.2 prevents exactly this.

Theorem 6.4 (Balance). If THC is binding and SoK[ℒ∅] is extractable and Ξ
is non-slanderable the construction is balanced.

Proof of Theorem 6.4 (Balance). To show the balance property, we proceed
by constructing an efficient extractor ℰ . As VfTx(tx, 𝔱) = 1 implies that
SoK[ℒ∅]Verify(𝔱, stmt(tx), tx) = 1. Then there exists an efficient extractor
SoK[ℒ∅]ℰ𝒜 extracting a wit for stmt(tx). Parse the statement as

stmt = ({com′
𝑖}

|𝒮|
𝑖=1, {com𝒯

𝑗 }|𝒯 |
𝑗=1)

and the witness as

wit = ({ty𝒮
𝑖 , 𝑎𝒮

𝑖 , ck′
𝑖}|𝒮|

𝑖=1, {ty𝒯
𝑗 , 𝑎𝒯

𝑗 , ck𝒯
𝑗 }|𝒯 |

𝑗=1)

where

∀𝑖 ∈ [|𝒮|] ∶ com′
𝑖 = Commit(ty𝒮

𝑖 , 𝑎𝒮
𝑖 ; ck′

𝑖)

∀𝑗 ∈ [|𝒯 |] ∶ com𝒯
𝑗 = Commit(ty𝒯

𝑗 , 𝑎𝒯
𝑗 ; ck𝒯

𝑗 )

∀ty ∈ {ty𝒯
𝑗 }|𝒯 |

𝑗=1 ∶ ∑{𝑎𝒮
𝑖 |ty𝒮

𝑖 = ty}|𝒮|
𝑖=1 = ∑{𝑎𝒯

𝑖 |ty𝒯
𝑖 = ty}|𝒯 |

𝑖=1

holds. This directly implies the following conditions of the balance experi-
ment:
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− ∀𝑖 ∈ [|𝒯 |], ChkAcc(acc𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

𝑖 ) = 1

− ∀𝑖 ∈ [|𝒯 |], ty𝒯
𝑖 ∈ {ty𝒮

𝑗 }|𝒮|
𝑗=1

− and ∀ty ∈ {ty𝒯
𝑖 }|𝒯 |

𝑖=1 ∶
∑{𝑎𝒮

𝑖 |ty𝒮
𝑖 = ty}|𝒮|

𝑖=1 = ∑{𝑎𝒯
𝑖 |ty𝒯

𝑖 = ty}|𝒯 |
𝑖=1.

The validity of VfTx(tx, 𝔱) = 1 additionaly requires

AS.VerifySoK[ℒ ring]({(𝔯𝑖, stmt𝑖)}|𝒮|
𝑖=1, 𝔞, {acc𝒯

𝑗 }|𝒯 |
𝑗=1) = 1.

This is only true, if for each 𝑖 ∈ [|𝒮|]: SoK[ℒ ring]Verify(𝔯𝑖, stmt𝑖, ⋅) = 1
holds. Due to the extended witness emulation of SoKs, there exist effi-
cient extractors SoK[ℒ ring]ℰ𝒜,𝑖 extracting wit𝑖 for stmt𝑖. Parse the state-
ments as stmt𝑖 = ({(pk𝑖,𝑘, com𝑖,𝑘)}|ℛ|

𝑘=1, tag𝑖, com′
𝑖) and the witnesses as

wit𝑖 = (𝑗𝑖, sk𝑖, 𝑎𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 , ck′

𝑖). ℒ ring then enforces

pk𝑗𝑖 = TagKGen(sk𝑖)tag𝑖 = TagEval(sk𝑖)
com𝑖,𝑗𝑖 = Commit(ty𝑖, 𝑎𝑖; ck𝑖)com′

𝑖 = Commit(ty𝑖, 𝑎𝑖; ck′
𝑖)

which implies the remaining conditions of the balance experiment, namely for
each 𝑖,

− ChkTag(accℛ
𝑖,𝑗𝑖 , sk𝑖, tag𝑖) = 1 and

− ChkAcc(accℛ
𝑖,𝑗𝑖 , 𝑎

𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 ) = 1

hold. With a binding THC, intermediate commitments com′
𝑖 commit to the

same witnesses (𝑎𝒮 , ty𝒮) in Offer and Seal. Thereby, it holds that

Pr[Balance𝒜,ℰ(1𝜆, 1𝛼, 1𝛽) = 1] ≤ negl(𝜆).

Theorem 6.5 (Offer Privacy). If THC is hiding and binding, PKE is IND-CCA
secure and key-private, AS is simulatable and private, and TAG is related-input
pseudo random, Ξ has offer privacy.

Proof of Theorem 6.5 (Offer Privacy). We use a series of hybrids to prove the
offer privacy by progressing in indistinguishable steps from the experiment
with 𝑏 = 0 to 𝑏 = 1. The hybrids are defined as:
OHyb1 is the same as OffPv0

𝒜
OHyb2 differs in that the aggregatable signature AS in Offer is simulated by
AS.SimℒTRS(). The information available to the Adversary are off0 which in-
cludes

off0 = ({tag0,𝑖, 𝑎𝒮
0,𝑖, ty𝒮

0,𝑖}
|𝒮|
𝑖=1, {{accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1}|𝒮|

𝑖=1,

{acc𝒯
0,𝑖, 𝑎𝒯

𝑖 , ty𝒯
𝑖 , ck𝒯

0,𝑖}|𝒯 |
𝑖=1)
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and the intermediate commitments with coin keys {com′
0,𝑖, ck′

0,𝑖}|𝒮|
𝑖=1. Every-

thing else in the signature 𝔬0 = ({(𝔯0,𝑖, com′
0,𝑖, ck′

0,𝑖)}|𝒮|
𝑖=1, 𝔞0) is simulated.

Values indepent of 𝑏 are ignored, reducing the data to

({tag0,𝑖}
|𝒮|
𝑖=1, {acc𝒯

0,𝑖, ck𝒯
0,𝑖}|𝒯 |

𝑖=1)

and {com′
0,𝑖, ck′

0,𝑖}|𝒮|
𝑖=1

OHyb3 changes the intermediate commitment to {com′
1,𝑖, ck′

1,𝑖}|𝒮|
𝑖=1, leaving

({tag0,𝑖}
|𝒮|
𝑖=1, {acc𝒯

0,𝑖, ck𝒯
0,𝑖}|𝒯 |

𝑖=1)

OHyb4 changes the tags to the experiment with 𝑏 = 1, resulting in

({tag1,𝑖}
|𝒮|
𝑖=1, {acc𝒯

0,𝑖, ck𝒯
0,𝑖}|𝒯 |

𝑖=1)

and {com′
1,𝑖, ck′

1,𝑖}|𝒮|
𝑖=1

OHyb5 : The output accounts consist of a public key and a commitment

acc𝒯
0,𝑖 = (pk𝒯

0,𝑖, com𝒯
0,𝑖). First we change the public keys to

({tag1,𝑖}
|𝒮|
𝑖=1, {pk𝒯

1,𝑖, com𝒯
0,𝑖, ck𝒯

0,𝑖}|𝒯 |
𝑖=1)

and {com′
1,𝑖, ck′

1,𝑖}|𝒮|
𝑖=1

OHyb6 changes output commitments and coin keys to

({tag1,𝑖}
|𝒮|
𝑖=1, {pk𝒯

1,𝑖, com𝒯
1,𝑖, ck𝒯

1,𝑖}|𝒯 |
𝑖=1)

and {com′
1,𝑖, ck′

1,𝑖}|𝒮|
𝑖=1

OHyb7 reverts to the real signature AS.Sign instead of the simulated one,

which results in OffPv1
𝒜 .

We now show the indistinguishability of the hybrids.
OHyb1 ≡ OHyb2 follows from the simulatability of AS.
OHyb2 ≡ OHyb3 : To show the equivalence, we define |𝒮| + 1 sub-hybrids
where each changes one intermediate commitment. The first sub-hybrid is
equal to OHyb2,0 = OHyb2 and the last is OHyb2,|𝒮| = OHyb3. In OHyb2,𝑙
the information available to the adversary is

({tag0,𝑖}
|𝒮|
𝑖=1, {acc𝒯

0,𝑖, ck𝒯
0,𝑖}|𝒯 |

𝑖=1)

and {com′
1,𝑖, ck′

1,𝑖}𝑙
𝑖=1 ∪ {com′

0,𝑖, ck′
0,𝑖}|𝒮|

𝑖=𝑙+1. To show that OHyb2,𝑙−1 ≡
OHyb2,𝑙 we know that the amount 𝑎𝒮

𝑙 and type ty𝒮
𝑙 committed to in com′

𝑘,𝑙
are equal for both 𝑘 ∈ {0, 1}. The coin keys ck′

𝑘,𝑙 are distributed uniformly at
random. Thereby, the commitment com′

1,𝑙 is fully defined.
OHyb3 ≈𝑐 OHyb4 : To show the indistinguishability of the tags, we again de-
fine |𝒮| + 1 sub-hybrids with OHyb3,0 = OHyb3 to OHyb3,|𝒮| = OHyb4. The
information available to the adversary in OHyb3,𝑙 is

({tag0,𝑖}𝑙
𝑖=1 ∪ {tag1,𝑖}

|𝒮|
𝑖=𝑙+1, {acc𝒯

0,𝑖, ck𝒯
0,𝑖}|𝒯 |

𝑖=1)
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and {com′
1,𝑖, ck′

1,𝑖}|𝒮|
𝑖=1. The indistinguishability OHyb3,𝑙−1 ≈𝑐 OHyb3,𝑙 holds

because TagEval is called with a uniformly random value 𝑥 + 𝑠. According to
the related-input pseudorandomness of TAG, tag0,𝑙 and tag1,𝑙 are computa-
tionally indistinguishable.
OHyb4 ≡ OHyb5 : To show the equivalence, we define |𝒯 | + 1 sub-hybrids
where each changes one public key of the account. The first sub-hybrid is equal
to OHyb4,0 = OHyb4 and the last is OHyb4,|𝒯 | = OHyb5. In OHyb4,𝑙 the
information available to the adversary is

({pk𝒯
1,𝑖, com𝒯

0,𝑖, ck𝒯
0,𝑖}𝑙

𝑖=1 ∪ {pk𝒯
0,𝑖, com𝒯

0,𝑖, ck𝒯
0,𝑖}|𝒯 |

𝑖=𝑙+1) {tag1,𝑖}
|𝒮|
𝑖=1

and {com′
1,𝑖, ck′

1,𝑖}|𝒮|
𝑖=1. Aspk𝒯

0,𝑙 andpk𝒯
1,𝑙 are identically distributed, OHyb4,𝑙−1 ≡

OHyb4,𝑙 holds.
OHyb5 ≡ OHyb6 : To show the equivalence, we define |𝒯 | + 1 sub-hybrids
where each commitment and coin key is changed by the same argument as in
OHyb2 ≡ OHyb3.
OHyb6 ≡ OHyb7 holds by the simulatability of AS.

Theorem 6.6 (Transaction Privacy). If Ξ has offer privacy and SoK[ℒ∅] is
simulatable, the construction Ξ has transaction privacy.

Proof of Theorem 6.6 (Transactions). Similarly to the offer privacy, we prove
the transaction privacy with a set of hybrids.
THyb1 is the same as TxPv0

𝒜
THyb2 differs such that in each Seal call, 𝔱 is simulated by

SoK[ℒ∅]Sim(stmt(𝑡𝑥), 𝑡𝑥)

THyb3 differs in each call to Offer, the aggregatable signature is simulated by
AS.SimℒTRS .
The information available to the adversary is now limited to

tx0 = ({tag0,𝑖}
|𝒮|
𝑖=1, {{accℛ

𝑖,𝑗}
|ℛ𝑖|
𝑗=1}|𝒮|

𝑖=1 , {acc𝒯
0,𝑖}

|𝒯 |
𝑖=1)

and {com′
0,𝑖}

|𝒮|
𝑖=1 in 𝔱0, as everything else in 𝔱0 = (𝔰0, {𝔯0,𝑖, com′

0,𝑖}
|𝒮|
𝑖=1, 𝔞0) is

simulated. The ring accounts do not contain any information about 𝑏. Only
({tag0,𝑖}

|𝒮|
𝑖=1, {acc𝒯

0,𝑖}
|𝒯 |
𝑖=1) and {com′

0,𝑖}
|𝒮|
𝑖=1 is left, which we gradually change

to ({tag1,𝑖}
|𝒮|
𝑖=1, {acc𝒯

1,𝑖}
|𝒯 |
𝑖=1) and {com′

1,𝑖}
|𝒮|
𝑖=1.

THyb4 changes the intermediate commitments and simulate the proofs from

({tag0,𝑖}
|𝒮|
𝑖=1, {acc𝒯

0,𝑖}
|𝒯 |
𝑖=1)

and {com′
1,𝑖}

|𝒮|
𝑖=1

THyb5 changes the tags and simulate the proofs from

({tag1,𝑖}
|𝒮|
𝑖=1, {acc𝒯

0,𝑖}
|𝒯 |
𝑖=1)
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and {com′
1,𝑖}

|𝒮|
𝑖=1

THyb6 changes the output accounts which consist of acc𝒯
𝑖 ∶= (pk𝒯

𝑖 , com𝒯
𝑖 )

and this hybrid changes the output accounts and simulates the proofs from

({tag1,𝑖}
|𝒮|
𝑖=1, {pk𝒯

1,𝑖, com𝒯
0,𝑖}

|𝒯 |
𝑖=1)

and {com′
1,𝑖}

|𝒮|
𝑖=1

THyb7 changes the output commitments and simulates the proofs from

({tag1,𝑖}
|𝒮|
𝑖=1, {pk𝒯

1,𝑖, com𝒯
1,𝑖}

|𝒯 |
𝑖=1)

and {com′
1,𝑖}

|𝒮|
𝑖=1

THyb8 differs such that the aggregatable signature is no longer simulated but
the actual AS.SignℒTRS() is used.
THyb9 differs such that 𝔱 in Seal is no longer simulated but a real

SoK[ℒ∅]Sign(stmt(tx1), wit(𝒮1, {com′
1,𝑖, ck′

1,𝑖}|𝒮|
𝑖=1), tx1)

which is equal to the privacy experiment TxPv1
𝒜

We now show the indistinguishability of the hybrids:
THyb1 ≡ THyb2 follows from the simulatability of SoKs.
THyb2 ≡ THyb3 follows from the simulatability of AS.
THyb3 ≈𝑐 THyb4 : To show the indistinguishability, we define |𝒮| + 1 sub-
hybrids where each changes one intermediate commitment. The first sub-
hybrid is equal to THyb3,0 = THyb3 and the last is THyb3,|𝒮| = THyb4. The
information available to the adversary in THyb3,𝑙 is ({tag0,𝑖}

|𝒮|
𝑖=1, {acc𝒯

0,𝑖}
|𝒯 |
𝑖=1)

and {com′
1,𝑖}𝑙

𝑖=1 ∪ {com′
0,𝑖}

|𝒮|
𝑖=𝑙+1. With the hiding property of THC,

THyb3,𝑙−1 ≈𝑐 THyb3,𝑙 holds.
THyb4 ≈𝑐 THyb5 : Changing the tags holds by the same reasoning as
OHyb3 ≈𝑐 OHyb4.
THyb5 ≡ THyb6 holds because of the randomly distributed pk in the same
reason as OHyb4 ≡ OHyb5.
THyb6 ≈𝑐 THyb7 : To show the indistinguishability, we define |𝒯 | + 1 sub-
hybrids where each changes one intermediate commitment. The first sub-
hybrid is equal to THyb6,0 = THyb6 and the last is THyb6,|𝒯 | = THyb7.
In THyb6,𝑙 the information available to the adversary is

({tag1,𝑖}
|𝒮|
𝑖=1, {pk𝒯

1,𝑖, com𝒯
1,𝑖}𝑙

𝑖=1 ∪ {pk𝒯
1,𝑖, com𝒯

0,𝑖}
|𝒯 |
𝑖=𝑙+1)

and {com′
1,𝑖}

|𝒮|
𝑖=1. With the hiding property of THC, THyb6,𝑙−1 ≈𝑐 THyb6,𝑙

holds.
THyb7 ≡ THyb8 holds by the simulatability of AS.
THyb8 ≡ THyb9 holds by the simulatability of SoK.
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Figure 6.3: a)Transaction size for 4 and 2 inputs and outputs depending on
the ring size. For Omniring, we assumed a common ring size of
𝑟. Run time for (b) transaction generation with ring size indepen-
dent sealing time part and (c) transaction verification with a ring
independent seal verification in SwapCT, Omniring and Monero
(RCTsimple) with same number of inputs and outputs for two dif-
ferent ring sizes 𝑟 ∈ {11, 123} (Monero’s default is 11 and there is
no Omniring data for 11, as the ring size must be larger than num-
ber of inputs). The points show the median and the error bars the
minimum and maximum time of 30 runs.[EMP+21]
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6.7 evaluation

The offer and transaction sizes of our SwapCT system are competitive com-
pared to other RingCT systems. The parameters which influence the transac-
tion size are the number of inputs 𝑚, the number of outputs 𝑛, and the size of
the anonymity set 𝑟. We denote the size of an elliptic curve point 𝔾̃ and a field
element ℤ̃, both 32 Bytes in our implementation with curve25519. The final
transactions consist of an offer and a nearly constant seal signature (≈ 800 B)
which is independent of 𝑟. Both signatures together with the outputs, keys and
commitments total to
rings: 𝑚 ⋅ (5ℤ̃ + (2 + 1 + 4 + 2 ⋅ ⌈log2(𝑟 + 5)⌉)𝔾̃)
aggregation: +𝑚(1ℤ̃ + 2𝔾̃) + 𝑛(2ℤ̃ + 2𝔾̃) + 1ℤ̃
seal: +5ℤ̃ + (4 + 2⌈log2(2 + 𝑚 + 𝑛 + 𝑚 ⋅ 𝑛 + 64𝑛)⌉)𝔾̃
outputs +3𝔾̃
While significantly better than Monero’s proofs (𝒪(𝑚 ⋅ 𝑟 + log(𝑛))), we ob-
serve our size to be asymptotically linear in 𝑚 and 𝑛 while single [LRR+19]
and multi-type (Chapter 5) Omniring transaction have no linear components:
𝒪(log(𝑟 ⋅ 𝑚 + 𝑛)). The possibility to non-interactively merge offers requires
independent proofs for each input and output, prohibiting aggregation. How-
ever, we achieve a similar logarithmic dependency on 𝑟. Absolute transaction
sizes are shown in Figure (7.2a) where a common transaction (4 in/4 out) re-
quires approximately 5 kB (offer: 4.5 kB, seal: 0.8 kB).These sizes even hold for
ring sizes of 1000, out of reach for the current Monero transaction signatures.
To show the applicability of our SwapCT scheme, we implemented a prototype
in rust based on curve25519_dalek [Isi20]. All benchmarks are compiled
with rustc 1.48 and run on a ThinkPad T460p with a i7-6820HQCPU running
kubuntu 20.10 on kernel 5.8.0-43. Timings for your hardware are easily gen-
erated by running our published code1. We provide a Dockerfile with all de-
pendencies, however execution in a container might impact performance. For
comparison, we chose Monero’s RCTsimple as it is the only system with an
implementation available, which includes all aspects of transaction generation,
e.g. encryption of account values. For a better comparison to Omniring, we
implemented a full Omniring system and provide a performance comparison
in the omniring branch.
Compared to systemswithout swaps, the total time to create a SwapCT transac-
tion consists of creating an offer and then sealing it (Figure 7.2b). Either a sin-
gle signer creates a balanced offer themselves, or multiple offers are merged by
a sub millisecond operation of adding randomness. Signing an offer depends
on the anonymity set size. A transaction always requires a sealing operation,
independent of the anonymity set size, which is shown as an offset.
The verification in SwapCT consists of the same two parts (Figure 7.2c). An
ring size independent seal signature verification and the offer verification. As
Monero only supports complete transactions, we compare the sum of neces-
sary steps in SwapCT (offer+seal and verify offer+verify seal) to the Monero
implementation.

1 https://github.com/SwapCT/SwapCT

https://github.com/SwapCT/SwapCT
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While our prototype is slightly slower than Monero, it is comparable to the de-
ployed production system with fewer features. The largest discrepancy for low
ring size transaction verification is the result of meticulous optimization of the
Monero verification code over multiple years, as it is run by every participant
of the network. For larger anonymity sets, we perform on par, showing that
our protocol works efficiently and is production-ready after a security audit of
the implementation.

6.8 conclusion

With our SwapCT system, we present a novel decentralized transaction sys-
temwhich supports both privacy-preserving transactions and non-interactive
atomic swaps as answer to our second research question. We formalize the sys-
tem and provide an efficient instantiation which offers logarithmically sized
transactions for large anonymity sets. Our prototype implementation demon-
strates equal performance to current systems that do not support multiple to-
kens or swap transactions. Thereby, our SwapCT system enables secure and
private trading ofmultiple types for decentralized transaction systems and dig-
ital currencies. At a larger scale, our system allows anyone to operate a fully
functional decentralized token exchange.
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7
7.1 overview

The applications possible with a privacy-preserving multi-type system are
manyfold. Like on Ethereum, a type may be purely used for random specu-
lation or sold as entry ticket to raise funding for a service to be built. With
the time lock capability, even complex ICO schemes, such as flexible air-drop
mechanics and proportional distribution of initial stake according to the
maximum value raise are implementable.
One might argue that our privacy-preserving multi-type systems are not suit-
able for more complex state transitions, which are usually handled with smart
contracts. Especially the transaction structure does not allow transferring to-
kens from a party depending on some predicate. Only an active party can
transfer their tokens. In the example below, we showcase how a licensing sys-
tem for 3D printed objects is implemented under these limitations on top of
our system. A naive, non-confidential implementation with a global state as
e.g. an Ethereum smart contract, directly specifies public rules on which li-
cense updates are allowed. The license management approach presented in
this chapter was earlier published as [ESG+21].
The license management system handles all necessary operations to deal with
registration of objects to licenses, selling of licenses and production of phys-
ical parts. After manufacturing of parts, our system enables track and trace
throughout the life-cycle and decommissioning of the part.
We achieve this by assigning each part in the system its own account intowhich
parts are able to receive tokens. The account has the special property that it has
no key to spend the received tokens, thereby locking them to the part forever.
The confidentiality of amounts and types allows only the handlers of the part to
recover which tokens the part owns. All other participants of the system get no
insight at all. Different properties are encoded using special types registered
to a specific company. For 3Dmodel files, the type includes a implicit integrity
check.
As the system is purely digital, it relies on the interfaces to the real world to act
honestly. It incentivizes honest behavior as honest participants have a record
of their actions in the case of a dispute.

7.2 use case setting

In this section, we describe the general setting in which we apply our license
management system shown in Figure 7.1. First, there is a designer creating a
digital representation of a 3D object 1 . This 3D file is then registered in our
system by the designer, attributing this design to the designer. Once registered,
the designer sells licenses either directly to manufacturers 3 or to intermedi-
aries 2 . Anyone with a license can manufacture the part and register it by
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
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Figure 7.1: Setting of a license management system with entities and interac-
tions.[ESG+21]

permanently binding the license to a unique identifier assigned to the part 4 .
Therefore parts are first-class citizens in our transaction system and have their
own accounts owning the license. This allows someone handling the part to
verify its legitimacy 5 . Further attributes arising during the part’s life cycle,
e.g. assembly, disassembly, certification and recycling, are also permanently
logged to allow for continuous tracking of the part. This process flow is espe-
cially relevant in industries where parts need to be meticulously documented
like aviation. As licensing and production data provides detailed insight and
often leads to a competitive advantage, the actions must only be visible to en-
tities involved in handling the parts. In summary, we identified the following
requirements for our license management system:

− Only correctly licensed objects are verifiable as legitimate.

− Once a design is registered, it cannot be re-registered by another partic-
ipant.

− The general public and competitors can verify that no licenses are mis-
used (e.g. assigning the same license to multiple printed objects).

− Only the directly involved parties get insight into plaintext information.
This allows oversight of operations by competitors without revealing de-
tailed insight. Participants must participate anonymously as otherwise
meta-data information about their location and general transaction vol-
umes get leaked.

7.3 confidential token transaction system

Our system is built on top of a privacy-preserving unspent transaction output
(UTXO) protocol for typed tokens such as the ones presented in Chapters 5
and 6. While we our transaction systems provide an efficient platform, we de-
scribe our licensing construction in a way, where another multi-type privacy-
preserving UTXO scheme, such as Stellar (although with reduced anonymity
guarantees), can be used.
Our System requires two types of long term accounts, one from which to-
kens are spendable and receive only accounts. The regular long term accounts,
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have a secret key lts with (lts, ltv, ltp) $←−AccGen() and lts is used to autho-
rize spending. Receive only accounts have no secret key and thereby are not
able to sign outgoing transactions (ltv, ltp) $←−ItemGen(eID) where eID is any
identifier. A recipient retrieves all received tokens, from a read only account
or a standard account with View(ltv, acc) where ltv is the long term view key
available for regular account and receive only account.
We present the algorithms required for our application which is a superset of
the privacy-preserving definition of theUTXO formalization inDefinition 2.9.

Definition 7.1. A privacy-preserving multi-type system based on one-time
accounts consists of the following algorithms which are a close adaptation of
SwapCT:

pp ← Setup(1𝜆): takes the security parameter 𝜆 and outputs public parameters
pp, implicitly given to the subsequent algorithms.

(lts, ltv, ltp) ← AccGen(seed): optionally takes a seed, if non provided uses a
random seed and outputs a long term spend key lts, view key ltv and the
matching public key ltp.

(ltv, ltp) ← ItemGen(eID): takes a part eID ∈ {0, 1}𝜆 and outputs a long
term view key lts with matching public key ltp.

(acc, ck) ← OTGen(ltp, ty, 𝑎): generates a one-time account from a long term
public ltp, a type ty ∈ 𝕋 and an amount 𝑎. It returns an account acc and
a coin key ck.

𝜎 ← Spend(𝒮, 𝒯 ): takes a set of inputs 𝒮 = {𝑎𝒮
𝑖 , ty𝒮

𝑖 , ck𝒮
𝑖 , sk𝑖, acc𝒮

𝑖 }|𝒮|
𝑖=1 with

amounts 𝑎𝒮
𝑖 of typ ty𝒮

𝑖 with coin key ck𝒮
𝑖 and secret key sk𝑖 for the ac-

count acc𝒮
𝑖 . The outputs 𝒯 = (ck𝒯

𝑖 , 𝑎𝒯
𝑖 , ty𝒯

𝑖 , acc𝒯
𝑖 ) are defined by their

amount 𝑎𝒯
𝑖 of type ty𝒯

𝑖 hidden by coin key ck𝒯
𝑖 in the account acc𝒯

𝑖 . The
algorithm outputs a signature 𝜎 for the transaction tx which is defined as
tx(𝒮, 𝒯 ) ∶= ({aux𝒮

𝑖 }𝒮
𝑖=1, {acc𝒯

𝑖 }|𝒯 |
𝑖=1) with some auxiliary information

aux𝑖 anonymously referencing the inputs.

𝜎 ← CoinGen(𝒯 ): takes a set of outputs defined as𝒯 = (ck𝒯
𝑖 , 𝑎𝒯

𝑖 , ty𝒯
𝑖 , acc𝒯

𝑖 )
and outputs a signature 𝜎 for the token initiation transaction defined as
tx(𝒯 ) ∶= ({}, {ty𝒯

𝑖 , acc𝒯
𝑖 }|𝒯 |

𝑖=1).

state′/⊥ ← Verify(state, tx, 𝜎): takes the state state of the system and a trans-
action tx with its signature 𝜎 . It either outputs a new state state′ with the
transaction included or ⊥.

(𝑎, ty, ck) ← View(ltv, acc): takes a long term view key ltv for an account acc
and outputs the containing amount 𝑎 of typ ty with coin key ck.

sk ← Receive(lts, acc): takes a long term secret key lts for an account acc and
outputs the corresponding account secret key sk.
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0/1 ← ChkKey(sk, acc): takes an account acc and a secret key sk and outputs
a bit depending on the validity.

0/1 ← ChkValue(ck, ty, 𝑎, acc): takes an account acc a coin key ck and checks
if the ty and amount 𝑎 match the account.

The system has to fulfill the following correctness criteria:

Definition 7.2 (Correctness). A multi-type transaction system is correct if

correctly generated one-time accounts are viewable:
For all ty ∈ 𝕋 and all 𝑎 ∈ {0, … , 264 − 1} and (lts, ltv, ltp) ←
AccGen() or (ltv, ltp) ← ItemGen(eID) the account
(acc, ck) ← OTGen(ltp, ty, 𝑎) is viewable with
(𝑎′, ty′, ck′) ← View(ltv, acc) such that (𝑎, ty, ck) = (𝑎′, ty′, ck′).

correctly generated one-time accounts from AccGen is

receivable: For all ty ∈ 𝕋 and all 𝑎 ∈ {0, … , 264−1} and (lts, ltv, ltp) ←
AccGen() the account (acc, ck) ← OTGen(ltp, ty, 𝑎) is receivable with
sk ← Receive(lts, acc) such that ChkKey(sk′, acc) = 1.

honestly generated transactions should verify: For any
tuple 𝒮, 𝒯 with the structure from Spend, where

− ∀𝑖 ∈ [|𝒮|] ∶ ChkKey(sk𝑖, acc𝒮
𝑖 ) = 1

− ∀𝑖 ∈ [|𝒮|] ∶ ChkValue(ck𝒮
𝑖 , ty𝒮

𝑖 , 𝑎𝒮
𝑖 , acc𝒮

𝑖 ) = 1

− ∀𝑖 ∈ [|𝒯 |] ∶ ChkValue(ck𝒯
𝑖 , ty𝒯

𝑖 , 𝑎𝒯
𝑖 , acc𝒯

𝑖 ) = 1

− ∀ty ∈ {ty𝒯
𝑖 }|𝒯 |

𝑖=1 ∶ ∑{𝑖∶ty𝒮
𝑖 =ty} 𝑎𝒮

𝑖 = ∑{𝑖∶ty𝒯
𝑖 =ty} 𝑎𝒯

𝑖

holds and all input accounts acc𝒮
𝑖 are spendable in state, it holds for any

proof 𝜎 ← Spend(𝒮, 𝒯 ) that
Verify(state, tx, 𝜎) ≠ ⊥ with tx = tx(𝒮, 𝒯 ).

new generated types are valid: For all tuples 𝒯 where all ty𝒯
𝑖 are

not previously registered in state and

∀𝑖 ∈ [|𝒯 |] ∶ ChkValue(ck𝒯
𝑖 , ty𝒯

𝑖 , 𝑎𝒯
𝑖 , acc𝒯

𝑖 ) = 1,

it holds for any 𝜎 ← CoinGen(𝒯 ) that Verify(state, tx, 𝜎) ≠ ⊥ with
tx = tx(𝒯 ).

As one concrete example of such a system, we use the SwapCT instantiation of
Chapter 6.

7.3.1 Construction for missing algorithms

For the algorithms which have no equivalent in SwapCT (Chapter 6) or Col-
oring (Chapter 5), we present the construction in this section. When using
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SwapCT, Spend is the immediate combination of Seal(Offer(𝒮, 𝒯 )). To gen-
erate a receive only account, we us a key derivation function KDF ∶ {0, 1}∗ ×
𝐷 → 𝕂 where 𝐷 is the domain of labels for what the key is used and 𝕂 is
the appropriate key space. We present ItemGen in Algorithm 7.1. The track-
ing and view long term secret keys tsk, vsk are derived from the eID and their
corresponding public keys are generated with the public key function PK. Im-
portantly, the spending long term public key pk is directly generated by the
KDF such that the private key is infeasible to calculate.

Algorithm 7.1 ItemGen
Require: eID

tsk ← KDF(eID, track)
vsk ← KDF(eID, view)
vpk ← PK(vsk)
tpk ← PK(tsk)
pk ← KDF(eID, own)
ltp = (vpk, tpk, pk)
ltv = (vsk, tsk) return ltv, ltp

7.3.2 Our requirements on a private transaction System

If the abovementioned operations are supported in a privacy-preservingman-
ner, the protocol is suitable for our application. We require the following pri-
vacy guarantees from the token protocol summarized in Definition 5.4. For
our system to be secure:

sender-anonymity: The owners of transaction inputs must only be
known to the transaction creator.

recipient-anonymity: The owners of outputs of a transaction must
only be known to the sender, i.e. the creator of the transaction.

confidentiality: The amounts and types of tokens transferred in a
transaction must only be known to the sender. Each recipient should
only have access to the amount and type of their respective output.

7.3.3 Generic Operations

As most operations of our proposed system require a transfer of tokens or is-
suing a new token type, we present high level operations.
Given a state, an amount 𝑎 for a new type with domain 𝑑 ∈ {0, 1}∗ and pre-
image 𝑝 ∈ {0, 1}∗ to the owner of the long term key ltp we issue a token type
with Algorithm 7.2. We use a random oracle H ∶ 𝐷 × {0, 1}∗ → 𝕋 from the
set of domains 𝐷 and arbitrary input to a type.
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Algorithm 7.2 Issue Token
Require: state, 𝑎, 𝑑, 𝑝, ltp

ty ← H(𝑑‖𝑝)
(acc, ck) ← OTGen(ty, 𝑎, ltp)
𝜎 ← CoinGen(𝒯 = {(ck, 𝑎, ty, acc)})

return Verify(state, tx(𝒯 ), 𝜎)

Given a state, an amount 𝑎 of tokens of typ ty from a one-time account acc
with keys (lts, ltv, ltp), Algorithm 7.3 transfers the tokens to the owner of the
long term key ltp𝒯 .

Algorithm 7.3 Transfer Token

Require: state, 𝑎, ty, acc𝒮 , (lts𝒮 , ltv𝒮 , ltp𝒮), ltp𝒯

sk ← Receive(lts𝒮 , acc𝒮)
(ty′, 𝑠, ck) ← View(ltv𝒮 , acc𝒮)
if ty′ ≠ ty ∨ 𝑠 < 𝑎 then return ⊥
(acc𝒯 , ck𝒯 ) ← OTGen(ty, 𝑎, ltp𝒯 )
𝒮 = {(𝑠, ty, ck, sk, acc𝒮)}
if 𝑠 − 𝑎 = 0 then

𝜎 ← Spend(𝒮, 𝒯 = {(ck𝒯 , 𝑎, ty, acc𝒯 )})
else

(acc𝑅, ck𝑅) ← OTGen(ty, 𝑠 − 𝑎, ltp𝒮)
𝒯 = {(ck𝒯 , 𝑎, ty, acc𝒯 ), (ck𝑅, 𝑠 − 𝑎, ty, acc𝑅)}
𝜎 ← Spend(𝒮, 𝒯 )

return Verify(state, tx(𝒮, 𝒯 ), 𝜎)

7.4 our token-based licensing system

Given the scenario above and amulti-type confidential transaction protocol as
explained before, our system requires to track licenses and the state of objects
in a distributed system. The persisted information must be immutable and
should be visible only to those parties concerned. To achieve the persistence
and immutability without a trusted third party, we use a distributed ledger.
A functional approach for a blockchain-based license transaction system is to
store the state of the licenses and tracked objects in a smart contract and pro-
grammatically update their state according to some smart contract rules. Here,
we show that a license management system does not require arbitrary state
changes, as is possible with e.g. Ethereum, but can work with the much sim-
pler UTXO model. Our approach achieves this using a transaction logic for
multiple token types. The benefit of this reduced requirement is an enhanced
level of privacy. We propose an application on a blockchain based system to
confidentially store the license and life-cycle information of parts which relies
on distributed trust and zero knowledge proofs achieving a publicly verifiable
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history of operations. Therefore, we represent licenses and attributes of ob-
jects as tokens. Each 3D model is linked to its own type. Every token of this
type is a license. Abstract attributes are types too and the tokens of this type
certify that their owner holds the attribute. All tokens are then transferred con-
fidentially. To assign a license or attribute to an object, the according tokens
are transferred to the account of the object. Access to the eID of a part allows
reconstruction of the part’s account for the verification of its attributes. In the
remainder of the work, we use a multi-type system defined in Chapter 6.
The following sections describe the actions of the participants in more detail.
First a new design is created and issued. Then license tokens of this design
are traded. Once the part is manufactured, it gets a unique identifier and an
account in the system. By transferring a license to the part it is permanently
registered to the system. Any further actions in the life-cycle of the part, such
as post processing or quality assurance, are then logged by attributes bound
to the part’s account. The actions are verifiable by anyone with access to the
unique identifier.

7.4.1 Design Issuance

The process starts with a designer creating a 3D object as a CAD file. The de-
signers and engineers or their companies, respectively, own the intellectual
property of the object’s design. As our goal is to manage licenses of such de-
signs, we have to identify the first and original owner and prevent others from
claiming the property rights after the first registration. We identify a design
by a cryptographic hash value of its CAD file.
Small adaptations of the CAD file lead to different object identities, but the
exact same file always results in the same identity. Automatically assessing the
similarity of two designs is difficult and out of scope of our work. Various
authors [HSKK01; CHL+17; MR11; LQQ+16] proposed different approaches
of similarity measures, all ineffective in a malicious setting due to heuristic
approaches. In our setting the designers are malicious entities trying to claim
ownership of an existing design of another designer.
The designer derives a new token type 𝐹□ = H('design'‖file.cad) and
registers it in our system with an initial amount as a new token on the ledger.
The designer now owns the initial supply of tokens of type 𝐹□. This initial sup-
ply should be chosen large enough because no new tokens of the same type
can be generated again. For general parts, we suggest to have an initial sup-
ply of e.g. 264 − 1 which is plentiful. On the other hand, artificial scarcity is
achieved by, e.g., issuing only 100 tokens. The designer is now in possession
of the newly issued tokens. A transfer requires the matching private key of the
designer. For all other participants, the registration process reveals only that
someone registered a token type. Everyone can verify that this type was not
registered before but gains no additional information.
Algorithm 7.4 shows the steps to register a design and requires an amount 𝑎,
by default 𝑎 = 264 − 1, the file and the long term public key of the designer
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ltp𝐷 generated by AccGen. The domain 'design' is used to separate tokens
representing a CAD design from other token types in the system.

Algorithm 7.4 Issue Design
Require: state, 𝑎, file.cad, ltp𝐷

return IssueToken(state, 𝑎, 'design', file.cad, ltp𝐷)

7.4.2 Trading

For any registered design, the designer initially owns all license tokens. Each
token represents a license that allows the owner to manufacture one physical
object. Most of the designers are notmanufacturing the objects themselves but
rather sell licenses tomanufacturing companies, e.g. 3D print services. License
tokens are therefore traded for other tokens in the system, most likely (but not
limited to) representing fiat currencies.
To exchange tokens of different types when using SwapCT, it provides a swap
mechanism which ensures atomic execution. Either both parties receive each
other’s tokens, or the swap is not performed at all. The exchanged tokens can
either be used to manufacture the object or be traded again by performing
another swap transaction. Each owner of a license token can use it to manu-
facture and register a legitimate object of this type. UsingColoring, an external
exchange is needed.
The representation of a license as a token deviates slightly from a license in
most legal systems. Tokens of a specific type are indifferentiable from each
other and not batched together in purchases. Another difference is that there
might be many intermediary owners of the license token, before it reaches the
manufacturer which is uncommon in legal licensing contracts. Given such
intermediary owners and due to the sender anonymity, the reconstruction of a
transaction path back to the designer requires all previous owners to cooperate.
Nevertheless, every participant of the system can verify that the total amount
of tokens per type stays constant.
In a multi-type system using vector Pedersen commitments, it is possible to
implement an additional attribute which specifies the age of a token. The con-
servation NIZK then assures that all output tokens are one epoch older than
the inputs. Thereby the token owner can verify the number of intermediaries.

7.4.3 Manufacturing

A manufacturer owning a license for an object can download the correspond-
ing file from the designer or any shared storage. Our system implicitly protects
the integrity of the file by linking it to the token type of the license. To verify
the integrity, the file is hashed to a type 𝐹′ = H('design'‖file.cad) and
then compared to the token type 𝐹′ ?= 𝐹□. If the two hash values match, the
fetched file is correct and can be printed.
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In most cases, the CAD file is fed into a CNC mill or a 3D printer to create
the object. After a successful object of the design exists, the manufacturer is
trusted to, e.g., either measure (microscopic surface structure patterns, physi-
cally unclonable functions) or assign a unique identifier eID to this part. Ide-
ally, this eID is integrated monolithically in the part in order to prevent an
undesirable non-destructive extraction or alternation of the eID. A typical
representation of an electronic identification feature is a radio-frequency iden-
tification (RFID) tag. RFID tags are widely used in a variety of branches like
logistics, commerce, and identification documents.
From a security perspective, the eID must not be guessable for an object. Ac-
cording to the NIST SP800 [Dwo07] publication, this is achieved by a random
bit-string of at least 96 bit. More importantly the eID needs to be a unique fea-
ture of the part and difficult to copy to another part. For high stake parts,
where identification is important, an integrated smart card might be used
[RE04]. The smart card has the benefit of generating a unique random private
key and supports authentication challenges to prove the authenticity. This is
much harder to copy onto another part as an RFID identifier, but is orders of
magnitude more expensive.
From the eID, themanufacturer generates a new read only account (ltv, ltp) =
ItemGen(eID). This enables anyone knowing the eID to verify which tokens
were sent to the part by View(ltv). To identify this part as legitimately man-
ufactured, the license token has to be transferred to the part’s account. The
special feature of such an account, generating an immutable log of properties
(received tokens), is the absence of a spend key. Algorithm 7.5 denotes the
steps to register a valid part with an eID, the CAD file and the manufacturer’s
funding account acc𝑀 along with the long term secret keys (lts𝑀, ltv𝑀, ltp𝑀).

Algorithm 7.5 Register Item
Require: state, eID, file.cad, acc𝑀, (lts𝑀, ltv𝑀, ltp𝑀)

ty ← H('design'‖file.cad)
(ltv𝐼 , ltp𝐼) = ItemGen(eID)
return TransferToken(state, 1, ty, acc𝑀, (lts𝑀, ltv𝑀, ltp𝑀), ltp𝐼)

7.4.4 Post Processing & Quality Assurance

Aftermanufacturing, parts regularly undergo post-processing and inspections.
To attest such processes in the history of the part, the testing entity transfers a
token to the part.
These tokens are not license tokens, but behave the same and can therefore
use the same underlying confidential transactions. A property of parts is also
represented in a new token type. Instead of the hash value of a CAD file, the
new type is derived from hashing a unique string, e.g. "Quality Assured
by A. Inc." in the domain 'property'. The creator should publish this
unique string to allow others to verify if a token really originated from them.
The new type 𝐹𝑄 is then registered on the ledger by Algorithm 7.6 taking the
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unique string 𝑄, the authorities ltp𝑄 and a large initial amount 𝑎. Every time
the company decides to tag a part with this property, they transfer one token
of the type to the part’s account.

Algorithm 7.6 Issue Certificate Tokens
Require: state, 𝑎, 𝑄, ltp𝑄

return IssueToken(state, 𝑎, 'property', 𝑄, ltp𝑄)

Thepart then has the license token and the 𝐹𝑄 token of themanufacturer. The
absence of a private key for the part locks these tokens forever to the part. Thus,
the tokens cannot be secretly transferred to a different part, given the unique
identifier cannot be copied or cloned.
This process is repeated, if required, to log multiple properties to the part. On
publication of a transfer, the transaction is timestamped persisting the date
and time when the part received the property. The transaction to a part’s ac-
count is not limited to simple binary properties. Small tomedium scalar values
can be stored by transferringmultiple tokens of the same type to the object. Al-
gorithm 7.7 requires the part eID, the type of certificate 𝑄 and the spending
key lts𝑄 of the owner of acc𝑄. The amount of tokens 𝑎 transferred represents
the value. An example could be the quality of the part on a scale from one to
five, depending on the number of 𝑄 tokens received. Instead of scalar values,
the number of tokens can be interpreted as a map to strings.

Algorithm 7.7 Attest Post-Processing
Require: state, eID, 𝑄, 𝑎 = 1, acc𝑄, (lts𝑄, ltv𝑄, ltp𝑄)

ty ← H('property'‖𝑄)
(ltv𝐼 , ltp𝐼) = ItemGen(eID)
return TransferToken(state, 𝑎, ty, acc𝑄, (lts𝑄, ltv𝑄, ltp𝑄), ltp𝐼)

7.4.5 Verification

Anyone with physical access to the part can retrieve the eID from the object
and derive the account key with the same steps as themanufacturer previously
did. With this key, all tokens transferred to the part can be recovered from
the public ledger. The license token is checked to verify the original designer,
𝑄 tokens attest a correct print and quality check by a known manufacturer
and any further properties. This is shown in Algorithm 7.8 which requires the
parts eID and recovers all received tokens. The transactions of the tokens are
all timestamped, which allows the reconstruction of the part’s history.
All digital systems are only as reliable as the information inserted into it.
The interface between the physical world and the immutable ledger has to
be trusted. At least our system incentivizes actors to act correctly, as an
immutable documentation proves their operations in case of dispute.
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Algorithm 7.8 Item Verification
Require: state, eID

𝑡 = ∅
(ltv𝐼 , ltp𝐼) = ItemGen(eID)
for all acc ∈ state do

𝑑 ← Receive(ltv𝐼 , acc)
if 𝑑 ≠ ⊥ then

parse 𝑑 as (ty, 𝑎, ck)
𝑡 = 𝑡 ∪ (ty, 𝑎, ck)

return 𝑡

For all other participants of the system without the part or the part number
(eID), it is impossible to identify which tokens the part possesses. Thereby, the
information is available to parties with legitimate interests only.
Our system can be a basis for a complete tracking and tracing system of parts
which is often desired by industries, especially in the aviation industry, where
a life-long tracking of parts is not only done in production but also during the
full life-cycle of a part. This can easily be used to establish a real digital twin
not only on system level, but on part level. While there are already several
tracking and tracing systems on part level in aviation industry, none of them
presents a complete end-to-end solution as our proposed system would.

7.4.6 Proxy Accounts for Sensitive Parts

For sensitive parts, it might be interesting to limit the scope of which parties
have insight into the tokens owned by the part. While the ownership of tokens
is directly derived from the eID and every token received by the part is not
spendable, we provide an extension where tracking and viewing of tokens is
limited to a part owner. In this case, the view secret key ltv is not derived from
the eID directly but randomized by the owner by concatenating randomness
𝑠. For verification, the owner creates a designated verifier proof that the item
received a specific amount of a given type without disclosing possible other
tokens of the part. For a designated verifier party with key ltp𝑉 , the part owner
creates a zero knowledge proof of knowledge (PoK):

PoK(stmt = (acc, ltp𝑉 , ty, 𝑎, eID)∃wit = (lts𝑉 , ck, 𝑠)
s.t. ItemGen(eID‖𝑠) = (ltv𝐼 , ltp𝐼) ∧ View(ltv𝐼 , acc) = (ck, ty, 𝑎)

∨ ltp𝑉 = PK(lts𝑉))

Such a proof transcript still reveals the one-time account acc belonging to the
part. To improve privacy at the cost of performance, the proxy party creates
an anonymous reference with an anonymity set of 𝑛 accounts {acc𝑖}𝑛

𝑖=1:

PoK(stmt = ({acc𝑖}𝑛
𝑖=1, ltp𝑉 , ty, 𝑎)∃wit = (lts𝑉 , 𝑗 ∈ {1, … , 𝑛}, ck)

s.t. ItemGen(eID‖𝑠) = (ltv𝐼 , ltp𝐼) ∧ View(ltv𝐼 , acc𝑗) = (ck, ty, 𝑎)
∨ ltp𝑉 = PK(lts𝑉))
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This does not reveal to the verifier which transaction output contains the li-
cense or property.

7.4.7 Life cycle

The digital representation of properties in an immutable ledger is especially
relevant during themanufacturing process, but also providesmultiple benefits
during the life-cycle of the part. Parts being resold or refurbished are tracked
by a token of a new type. As an example, B. Inc.’s business model is to buy old
parts, refurbish them and then sell them again. This is realised with a token of
type "refurbished by B. Inc.", which is transferred to the refurbished
part. Everyone trusting that this token is really from B. Inc. can then check if a
part is genuine and can view the history of production. This is again performed
by Algorithm 7.6 and 7.7.
The identifier of the type belonging to known companies might be signed in
a traditional PKI based system of which the root is controlled by a regulatory
authority of the industry sector. E.g., aviation authorities such as the Euro-
pean Union Aviation Safety Agency (EASA) can sign token types from Origi-
nal Equipment Manufacturer (OEM) or Tier-1 Suppliers in order to verify the
originality of parts or services such as a refurbishment.
Once a property token is transferred to a part, it is impossible to take it away
due to the lack or a private key. If removing tokens is desired, a simple con-
vention can resolve this, by issuing a secondary token type, which negates the
original one. Any part with only the positive token is valid, but if the part
also owns the negated one, it is invalid. Once negated, no one can remove
the negated token from the part. One example for such a negated token is the
revocation of a part. Assume a company’s inventory of parts get stolen. In
this scenario, the company can issue a revocation token type "revoked by
A. Inc." and transfer tokens to the stolen parts. Everyone trusting A. Inc.
can check whether the part was revoked. Such revocation tokens have to be
carefully verified if they are genuine or not, as they enable a denial of service
attack, if such a token is transferred to a still working part.

7.4.8 Transient Properties

For many tokens owned by parts, it is crucial that they cannot be transferred
away from the part to a different account belonging to a different part. This
would facilitate the theft of license tokens and certification of subpar parts.
However, some life-cycle properties are transient and being passed around be-
tween the part and people ormachines interactingwith it. This can e.g. be used
for a per item payment system. Each part processed earns one token which is
then used to claim a reward.
For this requirement, participants must be able to transfer tokens away from
the object. This is achieved by a secondary account of each item with a spend
key 𝑃 = AccGen(eID). A set of 𝑎 tokens of type 𝑇 is applied to a part eID
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from some operator with private key lts𝑂 from account acc𝑂 with Algorithm
7.9.

Algorithm 7.9 Apply Transient
Require: state, eID, 𝑇, 𝑎, acc𝑂, (lts𝑂, ltv𝑂, ltp𝑂)

ty ← H('attribute'‖𝑇)
(ltv𝐼 , lts𝐼 , ltp𝐼) = AccGen(eID)
return TransferToken(state, 𝑎, ty, acc𝑂, (lts𝑂, ltv𝑂, ltp𝑂), ltp𝐼)

All tokens held in this account can be claimed from the object by anyone hav-
ing access to the eID, the type 𝑇, an amount 𝑎 (mostly 𝑎 = 1) and a recipient
operator ltp𝑂 with Algorithm 7.10. Even after a token was transferred away
from the part, it is still possible to verify that the object once owned the prop-
erty token. The receiving and removal transactions even leave timestamps for
both operations.

Algorithm 7.10 Recover Transient
Require: state, eID, 𝑎, acc𝐼 , ltp𝑂

(ltv𝐼 , lts𝐼 , ltp𝐼) = AccGen(eID)
sk ← Receive(lts𝐼 , acc𝐼)
(ty, 𝑠, ck) ← View(ltv𝐼 , acc𝐼)
return TransferToken(state, 𝑎, ty, acc𝐼 , (lts𝐼 , ltv𝐼 , ltp𝐼), ltp𝑂)

7.5 security analysis

The confidentiality of the transaction data is important for the participants.
Transfers of licenses quite always reflect some business interactions, which
gives competitors valuable insight into metrics private to a company. The pub-
lic nature of a blockchain requires all transactions to be public, so that a con-
sensus can be reached. Our approach uses a blockchain which reaches a con-
sensus and allows to verify the conservation rules publicly without revealing
the data. This is achieved by using privacy-preserving transactions [EMP+21].
Each transaction includes non-interactive zero knowledge (NIZK) proofs to
convince other participants of the system that the transactor created the trans-
action according to the conservation rules. These NIZK proofs are publicly
verifiable and are used to reach consensus about the validity of a transaction.

7.5.1 Attacker Model

We assume all actors of the system are malicious with the exception that they
semi-honestly provide inputs from the physical world. Meaning they try to
attack the transaction system but do not insert bogus measurements. The re-
quirement for semi-honest interfaces cannot be solved by any purely digital
system. However the persistent logging incentivizes all participants to report
correct data as they can be held accountable retrospectively. If for example a
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manufacturer creates two parts with an identical eID, a single license makes
both parts appear as legitimate. To prevent this, the system has to trust the
manufacturers that no two objects are created with the same eID. Thanks to
the persistence, once two identical parts are found, the creator of the duplicate
cannot repudiate their actions. A more pro-active security measure, which de-
creases the trust in the manufacturer, includes trusted hardware integrated
into printers. This enables securely booted platforms which ensure that every
printed part is assigned exactly one license and the eID are created with good
randomness. In such a setting, we can model an adversary as malicious.
The verification and persistence of transactions is performed by the entirety
of actors following a consensus protocol. We assume that the majority of ac-
tors are honest and we therefore model the verification party as honest-but-
curious. Instead of a Proof of Work consensus, used e.g. in Bitcoin where an
unknown number of entities participate in the consensus protocol and their
voting power is proportional to some brute force computation, we suggest run-
ning our transaction system on a ledger which is controlled by a classical con-
sensus protocol such a paxos [Lam19]. Including a large number of suppliers,
manufacturers, clients and designers in the consensus process, most of them
need to collude to change a sequence of historical events. Having a public set
of entities, each with equal voting power in the consensus process, prevents
sibyl attacks [Dou02] where one entity pretends to be multiple voters to un-
fairly gain more votes.

7.5.2 Security Reduction

All operations of our system either create transactions or receive transaction
outputs in a way that the security model of the underlying transaction system
is taking care of. So regarding anonymity and confidentiality, our system pro-
vides the same guarantees as the used privacy-preserving transaction system.
An efficient attacker to the security of our system can be directly used to break
the security properties of the underlying UTXO transaction system.
The permanent binding of a license to accounts of parts holds because the
accounts do not have a secret key by design. Without the secret key, it is com-
putationally infeasible to create a valid spend transaction for the underlying
transaction system to transfer the tokens away. To generally prove ownership
of a license, any holder of a license token is able to prove that they have not yet
spent it by revealing the tag or creating a zero knowledge proof of solvency.
Protocols therefore are presented for multiple privacy-preserving protocols
[DV19; DJV19].
To securely deploy our token licensing system, several components require
special attention. In the following sections, we elaborate on specific areas
of confidentiality, which are important to license transactions and life-cycle
tracking.
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7.5.3 Revealing Transactions

In some circumstances, transactors have to reveal past transactions to third
parties or authorities. If the underlying ledger uses anonymity sets, where
each transactor is hidden in a set of unrelated transactors and too many trans-
actions in a system are publicly known, it gets more and more difficult to stay
anonymous within the network of transactions. So revealing some selected
transactions to business partners or regulatory entities does not interfere with
the anonymity in the system. It is generally in the participants’ interest to keep
their transactions secret from the general public and especially from competi-
tors.
However, in some industries access to information needs to be granted to cer-
tain institutions or authorities. Example use-cases are regular audits to ensure
compliance or an investigation following an accident. To achieve this, an es-
crow key of the involved companies is stored at a safe place. The escrow key
cannot be abused to gain insights into transactions of other participants.
If it is sufficient for the auditing entity, the part ownersmay present zero knowl-
edge proofs of compliance instead of revealing the secret keys. This is achieved
equivalently to the proxy accounts from Section 7.4.6.

7.5.4 Item eID Enumeration

Another important issue to care about, are eIDs of parts. As they are the seed
of the public account keys, theymust not be guessable by someone not owning
or having access to the part. Otherwise the part’s account can be revealed. Also
enumeration attacks where parts have consecutive numbers can lead to attacks
on the confidentiality of tokens sent to these parts. A reliably non guessable
source as of NIST-SP800 [Dwo07] is to use 96 bits of uniformly random data.
From this, a part account is derived which is not guessable. This keeps the
tokens transferred to the part secret to the owners of the part only. As previ-
ously mentioned, another option is to integrate a smart card with a randomly
generated private key.
It is still important to know that everyone who had access to the part in its
history is able to store the eID and track future transactions of the part.

7.6 performance

To evaluate the performance of the system we take a closer look at the op-
erations required and estimate a number of transactions per second. Opera-
tions are defined as the transfer of tokens from one account to another. Going
back to the example of the aircraft industry an airplane is made up of around
350,000 [NBC10] to 6 million [Alt16] parts from hundreds of different sup-
pliers and subsuppliers. All those parts could be integrated into our license
management system. Airbus and Boeing manufacture around 800 airplanes
per year [Air19]. This equals to around 8,87 operations per second for a com-
pany like Airbus. Taking into account other industries like car manufacturing
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Figure 7.2: Transaction generation time of our prototype implementation on
a Raspberry Pi first generation, representing an embedded system
within a printer. As the secret keys are only required in part of the
transaction, it is sufficient to execute the Pre-Spend on the embed-
ded device and the remaining part can be offloaded to a powerful
computer with minimal privacy loss. We use an anonymity set size
of 27. The error bars are the minimum and maximum runtime of
10 executions. [ESG+21]

the numbers of operations are significantly higher. A car is made up of around
7,000 [Alt16] to 15,000 [KR08] parts and 97 Million cars and commercial vehi-
cles were produced in 2017 [Man18]. If every part is produced based on a token
transfer, this results in around 46,000 operations per second. Extending to the
multitude of manufacturing sectors where a confidential license management
system could be integrated the potential number of operations could be man-
ifold.
To show the applicability of our scheme, we evaluated the performance rel-
evant for different scenarios. The transaction generation for e.g. registering
items is most likely performed by the 3D printer. We use a Raspberry Pi first
generation to represent the resource constraint device. Figure 7.2 shows that
usual transactions with few inputs and outputs require less than one minute,
negligible in relation to the printing duration.
Transaction verification is most likely performed in an on-premise data center
with powerful machines. As test payload we used transactions with 2 inputs
and 2 outputs, as they will be most frequent in the system. On an dual socket
AMD EPYC 7281 Server (64 threads) with Ubuntu 20.04, we achieved a me-
dian of 591 transaction verifications per second with a worst case performance
of 582.
Another relevant time is scanning all transaction outputs for ones belonging
to a part or an account. Only with the eID it is possible to detect an output. We
measured a median of 260,000 output verifications per second on the above
mentioned server.
From these measurements and an estimation of 50,000 operations per second
and 5 kB storage per transaction, we derive the computational requirements
of our system. Depending on the time by which a transaction output is reused
in a subsequent transaction, the verification of transactions can be massively
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parallelized. For the verification to keep up with the transaction generation,
each participant requires around 100 servers to verify all transactions in real
time and one server to track new outputs. This is comparable to other systems
with similar throughput. To store all transactions, around 20 TB per day are
required. An efficient consensus mechanism easily achieves this throughput
resulting in a global total order of transactions.
Within a trusted environment, e.g. in a single company, only one node is re-
quired to verify and store all transactions. Smaller nodes trusting the central
entity can validate part properties based on the central, verified storage. For a
system tracking each part of every car manufactured, these requirements are
possible with current commodity hardware and allow an immutable, publicly
verified log of all operations

7.6.1 Concurrency

Every state change of a part is reflected with a transaction. However, the order
of the persisted transactions cannot be determined in advance. Transacting
two tokens to the account of a part at approximately the same instant will re-
sult in an arbitrary order. There are no guarantees like first in first out, even
for a single part, as each transaction is hiding the recipient and there might be
a separate actor transmitting a token to said part. To implement strict condi-
tional dependencies, it is necessary to query the persisted log, if the condition
is persisted.
The certification accounts have to split their initial output, after issuing, into
multiple smaller outputs. Using the change output from the previous part is
only possible after the transaction is persisted, so repetitively using the change
to attest many parts in short succession is not possible. This issue is mitigated
by using smaller outputs in a round robin fashion.

7.7 conclusion

The tracking and tracing of parts in complex industries such as automotive or
aviation is a fundamental task, especially having intricate business relations.
In addition, reliably differentiating legitimately licensed parts from reputable
sources is a difficult feat. On top, the information about parts must remain
secret from competitors and alike.
Our proposed system is able to provide all required functionality while main-
taining confidentiality of operations in an untrusted environment. We defined
protocols to represent the complex life-cycle actions in the form of basic trans-
fers of tokens. By building the system on top of a privacy-preserving multi-
type blockchain, our system inherits the confidentiality guarantees. Given
an efficient consensus mechanism for transaction ordering, the verification is
massively parallelizable and can handle up to 10 transactions per core per sec-
ond. These features combined with a decent performance makes our system
directly applicable to many real world life-cycle management scenarios.
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This application especially demonstrates the usefulness of our previous contri-
butions in building privacy-preserving multi-type transaction systems.
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8
8.1 research answers

In this thesis, we answered the two main research questions. The first one was:
How to integrate confidential types into private transaction systems? To inte-
grate confidential types into a transaction system, we formalized a Coloring
system in Chapter 5. Then we proposed an conservation NIZK which is de-
signed for succinct typed commitments in Chapter 4. This cuts the linear com-
ponent of transaction sizes in half compared to previously existing schemes.
We embedded the conservation NIZK into a transaction system to achieve
efficient, confidential multi-type transactions Chapter 5. For the full function-
ality, we integrated an authorization NIZK for a 𝑚-out-of-𝑛 anonymity set.
To showcase the flexibility and space efficiency of our scheme, we added an
additional attribute to transaction outputs, namely a time lock. Time locked
outputs allow building second layer solutions, such as payment channels, on
top of a transaction system.
For the second research question on how to enable fair, anonymous trading in
a multi-type system, we proposed a new concept of partial transactions, called
offers in Chapter 6. Mergeable offers enable atomic and fair exchange of typed
tokens. Compared to previous exchange protocols, our solution results in a
single transaction persisted on the ledger and requires only a single message
from the offer creators. The core of the mergeable offers is an anonymously
aggregatable signature scheme which we formalize and efficiently instantiate
in Chapter 3. Thereby, offer creators authorize contributing their tokens if and
only if the final transaction is a superset of their intended outputs.
To substantiate our claim that Coloring and SwapCT as privacy-preserving
multi-type transaction systems provide an expressive platform, we presented
a fully featured confidential license management system in Chapter 7. In ad-
dition to distribution and verification of licenses the system is capable confi-
dentially persisting manufacturing supply chains of sizable industries. Such
an application with high confidentiality requirements is impossible without
support for confidential types.

8.2 limitations

While this work presents novel techniques for flexible privacy-preserving
transaction systems, there are still multiple obstacles to overcome towards
more privacy-preserving functionality.
In swap transactions, the final transaction submitted to the ledger will benefit
from very similar privacy guarantees as current privacy-preserving transac-
tion systems. This assumes that the statistical sampling method of anonymity
sets are the same across offers and only depend on the real input. Otherwise
transactions may be decomposed according to their anonymity set sampling.
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An example is an old offer, which obviously sampled the anonymity set from
outputs existing at the time of creation, merged with a new offer allows sep-
arating inputs by their anonymity set. Input anonymity sets which contain
new outputs can only belong to the new offer. Limiting offers to epochs might
remedy this issue, but this introduces new parameters, such as the length of
these epochs, which are highly dependent on the specific environment where
the system is deployed.
However, for unfinished offers, we provide no amount or type confidentiality
and suggest users to disseminate them carefully. To be matched, offers need
to be published to a group of peers with enough liquidity. We have no experi-
mental data on how much advantage observed offers provide to an adversary
against the anonymity of persisted transactions.
Summarizing the issues above, the privacy achieved by our transaction sys-
tem depends on the carefulness of the participants. From the adoption of
anonymity sets in Monero [MSH+18], we expect that users only choose pri-
vacy friendly methods if they are forced to and otherwise optimize for lower
transaction fees. Applied to offers, a privacy unfriendly scenario could arise,
where all offers are publicly broadcasted, allowing an always listening adver-
sary to fully reconstruct the transaction graph. Therefore it is important to
incentivize the participants to limit the exposure of their secret information.
From a technical perspective, it is sufficient for offers to publish an aggregate
imbalance, however our solution requires that the amounts and types of each
input and output are revealed. Once a real transaction system with confiden-
tial types is deployed, it will be interesting to perform an analysis if it facilitates
transaction graph reconstructions.
In a more general perspective, privacy-preserving UTXO systems, such as the
ones we propose always fall short in pruning historical data. Because of the
anonymity guarantee, all old data might be relevant. A more favorable trans-
action system has a state size linear in the number of active users and indepen-
dent of time. Systems asZether [BAZB20] andQuisQuis [FMMO19] solve this,
but they are architecturally incompatible with our approach to non-interactive
merging of transactions. The major difference is, that in these systems, it is
important to always use the most recent version of an account. This prevents
creating offers which are eventually matched in the future by when the inputs
used for the offer are already obsolete.
After applying our security definitions of swap transactions to other scenarios,
we noticed that in amore general setting, we either require that offers commute
under merging, or redesign the oracle to increase the power of the adversary.
To specify a precise, general security definition of swap transactions requires
further research.
Apart from the technical issues, one can argue from an economical perspec-
tive that our offers, fixed in exchange rate, do not create an efficient market.
Our system does not support the equivalent of market orders, where an ex-
change matches an offer at whatever price is currently available. This requires
some form of malleable offers which we have not yet considered. Other direc-
tions to investigate are privacy-preserving automated market makers (AMM)
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Figure 8.1: QuisQuis transaction overview.

[XVPC21] or securemulti-party computation based exchanges [BDF21] which
distribute the trust over multiple entities.
To address some of the limitations we continue our research for possible solu-
tions in follow up projects:

8.3 quisquis and key value commitments

One major issue with UTXO based privacy-preserving systems is the inability
to decide if an output is already spent or still available. This prevents clients
to prune the set of outputs and only store the unspent outputs. Therefore the
state held by the clients has a monotonically increasing size.
QuisQuis [FMMO19] solves this problem by using updatable accounts. A
QuisQuis transaction consumes a set of accounts acc𝒮 and creates a new set
of accounts acc𝒯 (Figure 8.1). All old inputs are then pruned by the clients.
To achieve set anonymity, the sender has to include foreign accounts as inputs.
The transaction NIZK assures that only accounts to which the sender presents
a valid key acc𝒮

𝑠 decrease in value and all other accounts may only increase.
The updates 𝛿acc hold positive amounts except for the first one, correspond-
ing to the sender. The accounts are built with ElGamal style commitments,
which are rerandomizeable and hide the permutation between inputs and out-
puts of a transaction.
One obstacle of integrating confidential types into a QuisQuis like system is
the non-interactive update of accounts. InRingCT like systems, we are assured
that each output holds exactly one type. This does not hold when other parties
can deposit tokens of a new type to an existing account.
To support accounts with multiple types, we are currently working on a ho-
momorphic key value commitment with efficient NIZK proofs. It allows com-
mitments to scalar values for keys from a large universe (exponentially in the
security parameter). The homomorphic operation on two commitments re-
sults in a commitment to the union of keys. Each value from the intersection
of the openings will be added together. This property is equivalent to the in-
tuitive deposit to a multi-type account. Whenever the type is already present,
the value gets increased and types not present have an implicit balance of zero.
To build the authorization and conservation NIZK for a multi-type QuisQuis
version, it is necessary to prove properties of all values 𝑣𝑘 in a key value map



130 conclusion & future work

commitment without revealing the keys. We therefore formalize a generic
NIZK on a arithmetic circuit 𝒞 as

AoK(stmt = {com𝑖}𝑛
𝑖=1, wit = {{𝑣𝑘,𝑖}𝑘∈𝐾}𝑛

𝑖=1 s.t.
𝒞({{𝑣𝑘,𝑖, 𝑘}𝑘∈𝐾}𝑛

𝑖=1) = 1 ∧ ∀𝑖 ∈ [𝑛] ∶ com𝑖 = Commit({𝑣𝑘,𝑖}𝑘∈𝐾))

with a runtime linear in |𝐾| and a transcript size logarithmic in the number
of multiplication gates in 𝒞 . While we have a candidate construction, there is
still work to be done on a rigorous proof of our protocol.

8.4 union only signatures

While we previously just claimed other application of our anonymously aggre-
gatable signature scheme, we discovered that it solves a property, most homo-
morphic signature schemes do not have. Johnson et al. [JMSW02] proposed
the open problem if there exists a signature scheme which is homomorphic
only to the union of messages, but not to their intersection. Such schemes are
interesting in settings where multiple signers want to merge their signatures
and only all messages together should be considered. A subset of the merged
message might be incriminating and with a union only signature, a valid sig-
nature on a subset cannot be created without the signers’ help. Given two sig-
natures over the sets of messages 𝑈 and 𝑉, the scheme allows non-interactive
merging into a single signature of 𝑈 ∪ 𝑉. However, importantly, it was not
possible to create a valid signature for 𝑈 ∖ 𝑉. Molnar [Mol] proposed a so-
lution based on groups with infeasible inversion (GII), however, we are not
aware of a construction from standard assumptions. For their deduction, they
assume that signatures are deterministic which does not apply for our scheme.
Therefore our schemes does not provide a construction for GII.
Due to the anonymity and history hiding properties, it is suitable for aggrega-
tion of medical data in combination with differently incentivized parties. In
most settings the signed messages are unique. This results in the same real
union and multiset union. To achieve a real union of messages, where equal
messages collapse when calculating the union, we might be able to describe a
recursive SNARK.

8.5 offers in zcash

From the beginning of our project, we focused on a transparent setup which
is important for public transaction systems. Still, our formalizations of the
atomic swap exchange can easily be adapted to the anonymity model in Zcash.
We aim to build Zcash based construction with even higher anonymity guar-
antees as SwapCT. What remains is the idea of aggregatable partial transac-
tions. Given the efficiency of SNARKs provided by the trusted setup, we can
integrate input output ambiguity, such that the transaction does not reveal if
an account is used as input or output. In a cross over to our work on Multi-
type QuisQuis, it is possible to have transaction outputs which hold amounts
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in multiple types. With the homomorphic property of key value map com-
mitments, offers are easily aggregated and the conservation is achieved by a
Schnorr signature.
Such a Zcash based system might additionally achieve better anonymity
guarantees of the offers themselves. SwapCT provides sender and receiver
anonymity for offers but reveals the opening of the value and type commit-
ments. In a Zcash like offer, we hope that it is sufficient to reveal a single
aggregate opening for the offer, hiding its internal distribution. This was not
possible in SwapCT as the sealing party requires the full opening to create the
asset surjection proof. This surjection proof is replaced by a direct pre-image
proof of a hash function in zero knowledge.
Multi-type and swap support in Zcash provides improved verifier runtime and
is suitable for our licensing application. The participants of the licensing sys-
tem might be cooperating in honestly creating the required setup.

8.6 conclusion

In conclusion, our work on building privacy-preserving transaction systems
which accommodate confidential types demonstrates that these systems are
not limited to simple transfers of amounts. Complemented with research
on improving type-unaware protocols, we notice a trend towards privacy-
preserving systems with extensive functionality. This helps the participants
to keep their personal information private while enabling them to partic-
ipate in complex financial or other token-based operations. Augmenting
tokens with additional attributes next to amounts is common practice in
non-privacy-preserving transaction systems and there helps to create more
efficient protocols like payment channels.
We see ourwork as an important step on the path towards privacy-friendly dig-
ital currencies. Embracing digital financial services is important for increas-
ing the convenience and reducing friction in our society. However this conve-
niencemust not result in an intrusion into our private lives. Even thoughmany
fellow citizens care little about their digital footprint, their private informa-
tion is used against their interest by companies extracting profit. Our privacy-
preserving multi-type transaction system serves as tool to finely balance the
required societal oversight and the privacy of every individual. We close the
gap between siloed single-type systems and enable a unified approach, increas-
ing anonymity and decreasing friction.
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