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Abstract: We consider a network-based framework for studying causal relationships in financial markets
and demonstrate this approach by applying it to the entire U.S. stock market. Directed networks (referred to
as “causal market graphs”) are constructed based on publicly available stock prices time series data during
2001–2020, using Granger causality as a measure of pairwise causal relationships between all stocks. We
consider the dynamics of structural properties of the constructed network snapshots, group stocks into
network-based clusters, as well as identify the most “influential” market sectors via the PageRank algo-
rithm. Interestingly, we observed drastic changes in the considered network characteristics in the years that
corresponded to significant global-scale events, most notably, the financial crisis of 2008 and the COVID-19
pandemic of 2020.
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1 Introduction

Stock markets are complex interconnected systems, where various “local” factors can cause “global”
changes in the behavior of the entire market. For instance, favorable or unfavorable economic conditions
in certain market segments, or in certain countries, may affect other countries and industries and poten-
tially cause positive or negative fluctuations that span the entire U.S. and international markets. The idea of
describing causal relationships between different components of the market system has been addressed in
several recent studies. For instance, the survey [24] discussed the concept of contagion in financial markets,
which essentially implies the propagation of impact (such as risk) between different components of the
market. A network-based model is a natural way to mathematically represent these “contagion” processes;
however, the principles for constructing the networks that reflect certain types of processes may vary
depending on the respective goals and assumptions of a study.
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A simple and intuitive technique for constructing a network-based (or, graphical) model of the market
is to represent its elements (e.g., stocks) as nodes and connect the nodes by links (arcs) based on pairwise
correlations between the corresponding entities (i.e., the correlations between stock price fluctuations over
a certain period of time). Such an approach was studied in [5,6,23] in the context of identifying large
correlated clusters and diversified portfolios in the U.S. stock market. Although pairwise correlation-based
similarity measures have merit in certain applications, a substantial drawback of such measures is in the
inability to produce directed links between entities, that is, to establish the direction of “contagion” (i.e.,
the propagation from node i to node j vs the propagation from node j to node i).

In this work, we construct and analyze a directed network model, which describes causal relationships
between all pairs of stocks in the U.S. stock market using the concept of Granger causality [15,16]. It should
be noted that Granger causality (which will be formally defined later in the article) can be used to determine
whether the time series describing stock i contains useful information for predicting the behavior of the
time series of stock j. This should not be confused with the statement “the increase/decrease in the price of
stock i causes the increase/decrease in the price of stock j,” which is not necessarily true.

There are several previous studies constructing networks based on Granger causality, such as [12,26];
however, there has been no thorough analysis of the resulting networks. Also, the current literature con-
tains little discussion about the influence of market sectors. Further, little attention has been paid to
approaches widely used in network science, such as PageRank and k-core-based methods.

As it will be discussed in the next sections, networks constructed using Granger causality appear
to capture certain structural properties of the stock market that reflect overall tendencies in its behavior.
In particular, we investigate various aspects of connectivity patterns and the evolution of structural proper-
ties of the constructed network snapshots. In addition, the considered network representation is used to
group stocks into network-based clusters and to identify the most “influential” market entities (sectors/
industries).

2 Basic concepts, data description, network construction

2.1 Relevant graph-theoretic concepts

Let G N A,( )= be a simple directed graph with the set of nodes N and the set of arcs A i j i j N, : ,{( ) }= ∈ ,
where the head j and tail i of each arc i j,( ) are specified. Arc density of G is defined as the ratio of the

number of arcs in the graph to the maximum possible number of arcs: ρ G A
N N 1( )

∣ ∣

∣ ∣ (∣ ∣ )
=

−

, where A∣ ∣ is the

number of arcs and N∣ ∣ is the number of nodes in graph G. Obviously, ρ G 0, 1( ) [ ]∈ .

Given a node n N∈ , its in-degree ndegG
in( ) is the number of incoming arcs and its out-degree ndegG

out( ) is
the number of outgoing arcs. Extensive empirical studies show that degree distributions of many real-life
graphs representing diverse datasets follow the well-known power-lawmodel [2–4, 8,19]. According to this
model, the probability that a node has a degree k (in- or out-degree for directed graphs) is k k γ�( ) ∝

− , or
k γ klog log const�( ) = − + in the log–log scale, which can be described by a straight line with the slope

equal to the parameter γ of the power-law degree distribution. One of the notable characteristics of such
networks (known as the scale-free property) is that their power-law structure should not depend on the
network’s size.

A directed graph G N A,( )= is called strongly connected if there is a directed path from each node to
every other node in the set N . A disconnected graph can be decomposed into strongly connected subgraphs,
which are referred to as strongly connected components of G. Distinct components can be interpreted as
clusters in the corresponding dataset. Several algorithms exist for the efficient identification of strongly
connected components in a directed graph. In our study, we use the popular Tarjan’s algorithm based on
the depth-first search technique [25].

In some situations, clusters based on strongly connected components can be extremely large and
comparable with the size of the whole graph (which is in fact the case for the considered graphs, as it
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will be shown later). Therefore, the clustering approach based on connected components may not be
necessarily appropriate for drawing meaningful conclusions regarding specific groups of nodes within a
graph. There is a variety of definitions for “tighter” structures that may be interpreted as clusters that have
specific cohesive properties of their connectivity patterns. In this study, we utilize the concepts of k-
degenerate graph and k-cores for undirected graphs, introduced by [22], and modify them for the case of
directed graphs. A simple undirected graph is called k-degenerate if every its subgraph has a vertex of
degree at most k. The degeneracy of a simple undirected graphG, denoted by δ G( )∗ , is the smallest value of k
such that G is k-degenerate. A k-core in a simple undirected graph is a subset of vertices that induces a
subgraph with the minimum degree at least k. Alternatively, one can define k-cores as connected compo-
nents that are left after all nodes of degree less than k have been removed from the graphG; therefore, δ G( )∗

is the maximum k for which G contains a nonempty k-core.
An extension of the notion of a k-core was proposed in [14] by introducing the concept of a D-core

in a directed graph. The authors consider min-in-degree and min-out-degree of a graph G defined as

δ G xdegminx N G
in in( ) { ( )}=

∈
and δ G xdegminx N G

out out( ) { ( )}=
∈

, respectively. Then, for two positive integers

k l, , a k l,( )-D-core is a maximal size subgraph G′ of G, where δ G kin( )′ ≥ and δ G lout( )′ ≥ . The intuition
behind this notion is to find a subset of the graph, where all the nodes have sufficient out- and in-degrees in
order to form a “tight” cluster. For the reasons that will become clear later in the article, we introduce a
slightly different structure referred to as a k-out-core, where each node is only required to have an out-
degree of at least k, i.e., the condition for the in-degree is relaxed. Therefore, for a positive integer k, a
k-out-core of the graph G is defined as a subgraph G′ of G, where δ G kout( )′ ≥ . As in the case of undirected
graphs, we can define k-out-cores as connected components that are left after all nodes of out-degree less
than k have been removed from the graph G; therefore, δ Gout( )∗ is the maximum k for which G contains a
nonempty k-out-core. Although the original definition of “degeneracy” differs from the definition of δ Gout( )∗ ,
for simplicity, we will use the same notation.

For a given k, k-out-cores can be easily found using a greedy algorithm, which recursively removes the
nodes with out-degree less than k one by one from the graph, until all the remaining nodes have sufficiently
large out-degrees. Then one can decompose the resulting network into connected components, which are
k-out-cores by definition. The degeneracy of G can be found using a simple binary search technique.

2.2 Granger causality

In the aforementioned previous studies of the network-based model of the U.S. stock market [5,6], the
market graphwas constructed in such a way that a given pair of nodes is connected by an undirected edge if
the corresponding stocks exhibit a similar behavior over a certain period of time. The similarity was
measured by Pearson’s correlation between the time series representing the returns of corresponding
stocks. In this study, we propose a different technique for constructing the set of arcs: the similarity
between stocks is measured by Granger causality [15,16], which is extensively used across many application
areas because of its simplicity, robustness, and flexibility [9,13]. The details of the network construction will
be presented in Section 2.3, whereas here we introduce the definition of causality and the procedure for
conducting Granger causality test between two time series.

Consider two scalar-valued, stationary time series x t T: 1, ,t{ }= … and y t T: 1, ,t{ }= … corresponding
to the returns x, y of a pair of stocks. The basic idea behind the notion of causality is very general in its
nature: one can state that x causes y, denoted by x y⇒ , if x contains some unique information about y, so
that y can be better predicted using this information than in the absence of this information. In practice,
Granger causality is often tested using the following linear autoregressive model:

y a y b x ε ,t
i

k

i t i
j

k

j t j t
1 1

∑ ∑= + +

=

−

=

−
(1)

where k is the maximal time lag and εt is a regression error. Then, x does not cause y if and only if

b j kH : 0, 1, , .j0 = = …
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To test this hypothesis, one can apply the F-test, and rejecting H0 implies that x “Granger causes” y. The
procedure of testing for the presence of causality in the other direction y x( )⇒ is similar.

It should be noted that the Granger causality test is valid only if the time series are covariance (or weak)
stationary. In this article, we used the Augmented Dickey-Fuller test [20] to check the stationarity of time
series. Further, we assume homoscedasticity, i.e., constant variance of εt.

2.3 Network construction

In the constructed directed unweighted network, the nodes are stocks represented as “ticker” symbols. We
used all the stocks listed at NYSE, NASDAQ, and AMEX as of December 31, 2020: There were 7,240 stock
symbols in total. The list of stock symbols was obtained from EODdata.¹ We obtained historical stock prices
data from Yahoo Finance using yfinance² Python library.

The adjusted close prices data were transformed into the time series of daily returns, since returns
possess scalability property (i.e., the values in time series representing each stock returns have the same
order of magnitude) and thus are easily comparable. Furthermore, the logarithms of returns were calcu-
lated, due to the fact that log-returns have more attractive statistical properties [11], including weak
stationarity, which was verified for all considered time series. If P ti( ) and P t 1i( )− are the adjusted close
prices of stock i on days t and t 1− , respectively, then the log-return time series for each stock i are defined
as follows:

r t P t
P t

t Tln
1

, 2, , ,i
i

i
( )

( )

( )
=

−

= …

where T is the number of trading days in each of the considered calendar years (2001–2020).
A directed network (referred to as a causal market graph) was constructed for each time period

(calendar year) to reflect the causal relationships between stocks. It should be noted that a network
constructed for each time period contains only those stocks that were present in the market during that
entire time period; therefore, the cardinality and composition of the sets of nodes change from period to
period. Every stock is represented by a node, and the existence of an arc i j,( ) means that the time series of
stock i causes the time series of stock j in the sense of Granger causality. Recall that Granger causality test
checks the hypothesis that coefficients b j k0, 1,j = = … . The null hypothesis (all bj are equal to zero) is
rejected in favor of alternative if the p-value of F-test is less than a certain threshold. Hence, an arc between
stocks i and j is constructed if the corresponding p-value is less than a chosen threshold. We picked this
threshold to be 0.001, which means that Granger causality holds with 99.9% confidence. The motivation
behind this threshold choice is to ensure that the constructed networks are sparse enough, so that it would
be possible to observe significant changes in connectivity patterns over time (as opposed to the situation
where each network contains close to the maximum possible number of arcs, which makes it difficult to
detect any changes in connectivity patterns). Thus, only the most “meaningful” connections are reflected in
the constructed networks. The summary of statistics of autoregression coefficients in Eq. (1) for edges kept
in the networks is shown in Table 1. It is interesting that the values of b are often close to zero, even if the
null hypothesis is rejected.

The Granger causality test can be performed with different numbers of lags. In our preliminary com-
putations, we found that in many cases the Bayesian information criterion (BIC) [21] produced the optimal
quantity of one or two lags. Moreover, the corresponding p-values were very close for both cases. Since it is
computationally expensive to check the BIC for every pair of time series, one lag was chosen for all the
Granger causality tests, as it was optimal or near-optimal for most pairs of time series. This choice can also



1 https://eoddata.com/.
2 https://pypi.org/project/yfinance/.
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be justified by the widely used assumption in financial mathematics that stock returns possess the Marko-
vian property [18].

3 Dynamics of structural properties of causal market graph

To reveal the long-term evolution of causal market graph characteristics over time, we consider 20 non-
overlapping 1-year periods spanning the most recent two decades. We consider the dynamics of character-
istics of the causal market graph, including the number of nodes, arc density, node degrees, connectivity,
and degree distribution. In addition, we compute strongly connected components, k-out-cores and propose
a structural decomposition of the causal market graph.

3.1 Basic characteristics

The set of stocks traded on NASDAQ, NYSE, and AMEX has undergone significant changes during
2001–2020. As it is shown in Table 2, the number of nodes (stocks) increased from 2087 in period 1 to
7240 in period 20. The number of publicly traded stocks increased by 246% despite the fact that many
companies present in the market in earlier periods ceased to exist in later periods.

Table 1: Summary statistics for autoregressive model from Eq. (1), all networks

Mean Std min 25% 50% 75% max

b −0.000160 0.001923 −0.040823 −0.000692 0.000108 0.000621 0.046510

Table 2: Basic characteristics of networks corresponding to each time period

Year #Nodes #Arcs Max. o.d. Max i.d. Arc density (%) GCC size (%) In-in assort. Out-out assort.

2001 2,087 30,082 176 456 0.69 95.35 −0.028 0.111
2002 2,253 33,625 292 641 0.66 94.85 −0.048 0.115
2003 2,352 15,230 84 153 0.28 89.71 −0.020 0.092
2004 2,482 27,947 154 242 0.45 93.03 0.160 0.244
2005 2,656 22,133 103 257 0.31 93.34 −0.084 0.100
2006 2,841 33,701 128 878 0.42 94.65 −0.067 0.177
2007 3,084 134,188 791 855 1.41 98.51 −0.028 0.053
2008 3,418 651,729 1,649 2,591 5.58 99.44 −0.214 0.060
2009 3,558 110,200 997 2,212 0.87 98.37 −0.069 −0.009
2010 3,700 95,185 1,432 1,820 0.70 95.62 0.009 0.023
2011 3,944 185,331 2,004 2,495 1.19 98.07 −0.091 −0.006
2012 4,130 82,420 450 1,598 0.48 97.34 −0.011 0.168
2013 4,410 93,113 598 978 0.48 96.67 −0.063 0.175
2014 4,697 121,270 557 1,630 0.55 98.59 −0.025 0.163
2015 5,061 224,480 999 2,120 0.88 99.19 −0.017 0.144
2016 5,403 205,611 558 2,106 0.70 99.44 −0.034 0.173
2017 5,720 101,240 335 1,742 0.31 99.28 −0.069 0.058
2018 6,147 407,644 1,198 3,081 1.08 99.74 −0.017 0.172
2019 6,701 273,246 1,101 2,417 0.61 99.69 −0.003 0.184
2020 7,240 3,416,051 4,720 5,685 6.52 99.90 −0.118 −0.091

(max. o.d. and max i.d. are maximum out-degree and maximum in-degree, respectively; GCC size is the size of the giant
connected component as the percentage of the total number of nodes; the last two columns show the respective in- and out-
degree assortativity).
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The threshold value used to identify whether two nodes are connected controls the total number of arcs
in the graph. Although the threshold specified in the previous section was chosen to be rather conservative,
one can see that the number of arcs can still be large; however, it varies greatly: from 15,230 arcs in 2003 to
over 3.4 million arcs in 2020. Due to the difference in the number of nodes in the networks corresponding to
different time periods, it makes sense to calculate the arc density (i.e., the ratio of the number of arcs to the
maximum possible number of arcs), which is a unit-less measure; thus, it can be used to compare graphs
with different numbers of nodes. Table 2 summarizes basic characteristics of the networks corresponding to
all considered time periods.

In the case of correlation-based (undirected) graph instances constructed over a shorter timeframe, the
arc density steadily increased over time [5]. However, the causal market graph does not have this property:
Table 2 presents the nonmonotonic dynamics of the number of arcs and the arc density, the latter being also
visualized in Figure 1. One can interpret the arc density of the causal market graph as a proportion of
ordered pairs of stocks, such that the data corresponding to returns of one stock can be potentially used in
order to forecast the future return values of the other. Table 2 presents two other fields related to the
network structure: maximum out- and in-degrees. Based on the model of causality, the stocks with high
out-degrees are the most “informative” in the sense that their statistics could be used for investigating the
behavior of a large number of adjacent stocks (successor nodes in the causal market graph). The in-degree
of a node can be treated as the property reflecting the number of stocks containing unique information
about this stock. Although this characteristic may be meaningful in certain contexts, in this part of the
study, we concentrate mainly on out-degrees of nodes due to the aforementioned considerations.

The evolution of the density in the causal market graph is shown in Figure 1. One can observe that it has
relatively small values during 2001–2006, but it starts to increase in 2007. Further, the arc density attains its
highest values in 2008 and 2020. Many economists associate 2007 with the beginning of the worst financial
downfall since the Great Depression (started with the U.S. subprime mortgage crisis). The most significant
economic event of 2008 is the collapse of the stock market when Dow Jones and S&P500 endured their
worst year since 1930. In 2009, although the US economy was still weak, the stock market started to slowly
recover after hitting the bottom in March 2009. As one can see, the values of arc density fell drastically
compared to 2008, and they stayed relatively stable until 2020, when COVID-19 pandemic started. It can
also be observed that in-in assortativity has its lowest values in 2008 and 2020.

Although the analysis of these basic properties of the constructed networks may not by itself be
sufficient to draw comprehensive conclusions, it can be seen that extreme values of arc density and
maximum out-degree of the causal market graph correspond to extreme events in the stock market, and
the trends can be noted for the transition periods as well. The different nature of events that impacted the
market between 2008 and 2020 may explain the difference in the magnitude of these metrics. In particular,
it can be observed that two drastic “spikes” of arc density of the causal market graph (in 2008 and 2020)

Figure 1: Evolution of arc density.
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appear to be inherently different: the 2008 spike was preceded by a smaller yet still significant increase of
arc density in 2007 (in fact, the arc density of the 2007 graph is the third largest among the considered time
periods), whereas the 2020 spike was not preceded by such an increase. The difference between the
respective underlying events that affected the market in 2008 and 2020 is that the 2008 crisis was antici-
pated by experts based on market trends that started during 2007, but the crisis associated with the 2020
COVID-19 pandemic was not anticipated during 2019.

In addition, we consider the specific nodes (stocks/companies) that are most “influential” in the sense
that their time series data contain useful information about a large number of other stocks. Figure 2 presents
the aggregate distribution of highest out-degree stocks by sector for all considered periods. As one may
intuitively expect, the top sectors in this diagram are Funds (that corresponds to Funds, Trusts, and
Tracking Stocks) and Financial Services, followed by several other important sectors of the market.

3.2 Degree distribution

As mentioned in Section 2.1, many previous studies have shown that the power-law distribution of out- and
in-degrees appears to be a common property for many real-world networks. The degree distribution of most
of the constructed causal market graphs also appears to follow a power law, although the quality of power-
law fit varies between different network snapshots. Table 3 summarizes the evolution of the power-law
parameter γ and the respective R2 value (which reflects the quality of a least-square fit of a straight line to
the log–log data). One can observe from Table 3 that the R2 is only about 63% for 2008 and about 71% for
2020 out-degree distribution fit, but it is significantly higher for other years. Thus, it appears that more
substantial deviations from power-law degree distributions coincide with significant events affecting the
market. For illustrative purposes, we present the out- and in-degree distributions for causal market graph
instances (plotted in the log–log scale) for 2008 and 2019 (see Figures 3 and 4).

Although the value of the parameter γ is rather stable for most of the considered time periods, there is a
visible decrease for out- and in-degree distributions corresponding to 2008 and 2020, which is consistent
with the aforementioned observations of other metrics, since a smaller value of γ implies a heavier tail of
the distribution (i.e., more nodes with high degrees).

Figure 2: Distribution of highest out-degree stocks by sectors for all considered years.
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3.3 Strongly connected components

Another interesting question concerning the causal market graph is whether it is strongly connected. If the
answer is “yes,” then it would mean that each stock i has some relationship with every other stock j via a
directed path of causal relationships connecting nodes i and j. To address this question, we have identified
the largest strongly connected component in each considered network snapshot. We observed that every
considered causal market graph had a “giant” component containing almost all of the nodes. In particular,
the smallest size of a giant strongly connected component among the considered networks, which was
observed for the 2003 network snapshot, contained almost 90% of the total number of nodes, whereas in
many other instances, the relative size of the giant connected component was close to 100%.

Table 3: Power-law fit results for in-degree and out-degree distributions

Year γ in( ) R in
2

( )
γout( ) R out

2
( )

2001 1.3114 0.8517 1.4595 0.8856
2002 1.2130 0.8418 1.4457 0.8497
2003 1.5744 0.8433 1.9149 0.8822
2004 1.4431 0.8929 1.5107 0.8469
2005 1.4516 0.8614 1.7908 0.8578
2006 1.1817 0.7709 1.6346 0.8683
2007 1.0375 0.8090 1.1608 0.8565
2008 0.7791 0.7800 0.7257 0.6368
2009 1.0251 0.7584 1.2947 0.8085
2010 1.1015 0.8113 1.1790 0.7953
2011 1.0251 0.7867 1.1766 0.8145
2012 1.0573 0.7613 1.4694 0.8593
2013 1.0987 0.8123 1.5229 0.8362
2014 1.0875 0.7789 1.3902 0.8391
2015 1.0006 0.7807 1.2824 0.8642
2016 0.9873 0.7449 1.3971 0.7651
2017 1.3792 0.8172 1.6743 0.7321
2018 0.8402 0.6907 1.1444 0.7974
2019 1.1093 0.7716 1.3782 0.8196
2020 0.7239 0.7070 0.7314 0.7109

Figure 3: Out-degree distributions for 2008 (left) and 2019 (right).

184  Oleg Shirokikh et al.



Returning to Table 3, it can be seen that the parameter γ of the power-law distribution fluctuates
between 0.7 and 1.9 for both out- and in-degrees. Most of these values of γ are consistent with the range
corresponding to the existence (with high probability) of a giant connected component in a power-law
random graph, which has been theoretically proven to be 1, 3.4785( ) for the undirected version of the
power-law model in [1].

3.4 Identifying cohesive clusters based on k-out-cores

Due to the presence of a giant strongly connected component discussed in the previous subsection, strongly
connected components cannot be used for clustering (i.e., partitioning a graph into subgraphs according to
some similarity criterion), since one cluster would contain virtually all nodes in the graph. Therefore, in this
section, we focus our attention on k-out-cores, which are more “cohesive” network clusters compared to
connected components.

Recall from Section 2.1 that a k-out-core is a highly interconnected set of nodes with out-degrees of at
least k within this set. Therefore, in the context of the causal market graph, this structure represents a group
of stocks, where each stock has causal relationships with at least k other stocks within the group. To find
out how large the number k can be, we compute the graph degeneracy for each time period, as described in
Section 2.1. Table 4 presents the degeneracy (δ Gout( )∗ ), and k-out-core size (�∣ ∣) for k δ Gout( )=

∗ , and the
proportion of the k-out-core size to the number of nodes ( N�∣ ∣ ∣ ∣/ ) in the causal market graph for all
considered periods.

Taking a closer look at the k-out-core found in the 2008 network snapshot, one can see that 923 stocks
form a connected cohesive structure, in which every stock has an out-degree of at least 92. This is a rather
interesting observation, taking into account that Granger causality links were constructed using a very
conservative threshold value. An intuitive explanation of this fact is that the crisis of 2007–2008 impacted a
large portion of the market, which in turn substantially increased the number of statistically significant
causal relationships between stocks. An even “denser” k-out-core (with out-degree of each node at least
256!) was found in the 2020 network, which was affected by COVID-19 pandemic. Overall, the k-out-core
decomposition approach confirms the observations reported earlier; moreover, it allows one to observe
“amplified” trends corresponding to significant events affecting the market.

Figure 4: In-degree distributions for 2008 (left) and 2019 (right).
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4 Identifying influential market sectors using pagerank

While a stock’s out-degree appears to be a reasonable quantitative measure of the stock’s importance, it
treats all links as equal and does not take into account the difference in importance of out-neighbors. The
PageRank method, which was proposed in [7] for ranking webpages in Google’s search engine, is a simple
yet very effective technique that overcomes this drawback. It can be applied to rank nodes in a directed
network according to their importance or “centrality” expressed by a certain score. [10] describes the
PageRank method as a “democracy,” with links interpreted as votes in favor of the webpages they are
directed to. Each webpage can vote for other webpages, and its score is divided evenly over the set of
webpages it is voting for. In the realm of a causal market graph, webpages are replaced with stocks and
hyperlinks – with causality relations. In addition, we reverse the directions of arcs in the causal market
graph to reflect the idea that stock i causing stock j corresponds to stock j “voting” for stock i. We call the
resulting network a reverse causal graph and denote it by G N A,r r( )= . Then, a stock’s score can be viewed
as a weight wi assigned to the stock i, which is uniformly distributed among its out-neighbors in the reverse
causal graph, and is computed as the sum of the corresponding proportional weights of in-neighbors, i.e.,

w
w

j
i N

deg
, 1, , ,i

j j i A

j

G: ,
out

r r
( )

∣ ∣
( )

∑= = …

∈

(2)

or, in the matrix form, w Bw= , where B bij i j
N
, 1[ ]=

=

∣ ∣ is given by

b j
j i A

deg
1 , if , ;

0, otherwise .
ij G

rout
r

⎧

⎨
⎩

( )
( )

=

∈

(3)

Hence, the problem of finding the scores reduces to computing the eigenvector of the column-sto-
chastic matrix B that corresponds to the eigenvalue equal to 1. As soon as the scores are computed, we can
rank the stocks by ordering the scores from highest to lowest. To overcome technical shortcomings arising
when the network has nodes of out-degree 0 or is not connected, the original PageRank method is based on

Table 4: k-out-cores in causal market graphs for 2001–2020

Year Degeneracy k -out-core size Proportion (%)

2001 6 519 24.87
2002 7 656 29.12
2003 2 1,754 74.57
2004 5 172 6.93
2005 3 1,735 65.32
2006 5 48 1.69
2007 17 952 30.87
2008 92 923 27.00
2009 9 493 13.86
2010 9 402 10.86
2011 17 365 9.25
2012 7 164 3.97
2013 9 394 8.93
2014 9 1,415 30.13
2015 29 173 3.42
2016 11 2,713 50.21
2017 7 3,774 65.98
2018 17 2,475 40.26
2019 19 524 7.82
2020 256 1,797 24.82
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solving the system w d S wdB 1( ( ) )= + − instead of w Bw= , where d 0.85= and S is an N N∣ ∣ ∣ ∣× matrix
with all entries equal to N1 ∣ ∣/ . More detail on PageRank method and related literature are provided in [10].

In our experiments, we use PageRank to identify market sectors and industries within a given sector
that are most important with respect to aggregated causal relationships. To rank the market sectors over a
certain time period, we apply PageRank to the newly introduced causal market sector graph G N A,s s s( )=

that is obtained from a causal graph G N A,r r( )= by merging a subset of nodes Ir representing stocks from
the same market sector into a single node is (referred to as sector node). In addition, for any two-sector
nodes is and js in Ns, we assign a weight l i j,s s( ) to the arc between them as follows:

l i j i j, 1 , ,s s
i I j J

A
,r r

r( ) (( ))∑=

∈ ∈

where Ir and Jr are subsets of all nodes in Nr that were used to define ir and jr, respectively; and i j1 ,Ar(( )) is
the indicator function for Ar, which yields 1 if i j A, r( ) ∈ and 0 otherwise. To apply the PageRank method to
the edge-weighted graph Gs, we need to solve the system

w d S wdB 1 ,s s s s( ( ) )= + − (4)

where B bs
pq
s

p q
N
, 1
s[ ]=

=

∣ ∣ is given by

Figure 5: Breakdown of the most influential market sectors for each time period based on the PageRank method.
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d 0.85= , and Ss is an N Ns s∣ ∣ ∣ ∣× matrix with all entries equal to N1 s∣ ∣/ .
Figure 5 shows the breakdown of most influential market sectors for each time period according to their

PageRank scores. One can observe that Funds, Trusts, and Tracking Stocks is the top-ranked sector in all
time periods except 2002, when Financial Services sector had the same PageRank score. The fact that
Funds, Trusts, and Tracking Stocks is the most influential market sector is not surprising, since many
stocks in this sector are by definition reflective of the behavior of the entire market. The fact that Financial
Services is the second-most influential sector in most of the considered time periods is also somewhat
expected; however, it is interesting to observe that the PageRank scores of Financial Services, Industrial,
and Technology sectors have decreased in the most recent years. Although the PageRank-based approach
has limitations since it takes into account only the respective network topology, these observations may be
worth investigating further from more traditional economics, and finance-based perspectives.

5 Conclusion

In this article, we constructed a network-based map of causal relationships in the entire U.S. stock market.
The considered network-based model of the stock market is based on publicly available stock prices data
and a quantitative causality measure, which makes the model easily interpretable and reproducible.
The proposed approach enables one to apply the rich arsenal of network analysis tools toward revealing
market trends and investigating the properties of individual nodes and market clusters that may not be
apparent otherwise. We focused on studying the basic structural properties of the causal market graph and
detecting its most influential entities. The considered network-based metrics are nonmonotonic, with an
interesting observation that significant changes over time appear to coincide with global-scale events, such
as COVID-19 pandemic and the 2008 financial crisis. In addition, the proposed PageRank-based technique
for identifying “influential” market sectors revealed interesting observations that may be worth investi-
gating further.

In terms of other possible methods for constructing the respective networks, another potential direction
of further research would be to analyze networks constructed using other connectedness computation
methods such as [17,27]. It would also be of interest to consider heteroscedasticity in Granger causality
and see its effect on the resulting networks. Future research may also include the investigation of the
possibility of constructing a market index solely based on Granger causality metrics. The implication of
the presence of power-law degree distribution in many of the networks is that a relatively small number of
stocks have a large number of strong causal links to a large remaining portion of the market. Further, this
observation suggests that the set of stocks comprising the k-out-cores can be potentially used to create a
conceptually new network-based market index.

A limitation of this study, which may be addressed in future research, is the problem of multiple compar-
isons. In order to construct the edges, we do pair-wise Granger causality tests between each pair of nodes. For
each pair-wise comparison, the employed statistical tests may result in incorrect rejection of the null hypoth-
esis and adding a wrong edgewith 0.1% chance. Even though the probability of adding a “wrong” edge is low,
the networks analyzed in this article contain thousands of nodes, and considering independent tests, these
networks may contain a few “wrong” edges. Despite the fact that these potential effects cannot be completely
ruled out, the results presented in the article networks still contain interesting properties, such as the pre-
sence of power-law degree distributions, patterns of arc density changes corresponding to financial crises,
and other observations, which are unlikely to appear solely due to statistical anomalies.

The considered approaches can potentially be applied in a wider variety of settings. One interesting
future research direction would be to consider networks of causal relationships that span stock markets of
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multiple countries. Another potential area of interest would be applying these techniques to shorter time
periods, possibly with smaller time increments between data points (e.g., one could consider hourly, or
minute-by-minute stock prices data over a time period of several days or weeks). In particular, although this
article focused mainly on a descriptive rather than predictive/prescriptive analysis of stock market data, it
would be interesting to see if the considered network-based approaches (perhaps with some modifications)
could be used in the context of predictive models of market trends.
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