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Abstract: Explainability has been recognized as an important requirement of artificial intelligence (AI) systems. Transparent 
decision policies and explanations regarding why an AI system comes about a certain decision is a pre-requisite if AI is 
supposed to support human decision-making or if human-AI collaborative decision-making is envisioned. Human-AI 
interaction and joint decision-making is required in many real-world domains, where risky decisions have to be made (e.g. 
medical diagnosis) or complex situations have to be assessed (e.g. states of machines or production processes). However, 
in this paper we theorize that explainability is necessary but not sufficient. Coming from the point of view of work 
psychology we argue that for the human part of the human-AI system much more is required than intelligibility. In joint 
human-AI decision-making a certain role is assigned to the human, which normally encompasses tasks such as (i) verifying 
AI based decision suggestions, (ii) improving AI systems, (iii) learning from AI systems, and (iv) taking responsibility for the 
final decision as well as for compliance with legislation and ethical standards. Empowering the human to take this 
demanding role requires not only human expertise but e.g. also human motivation, which is triggered by a suitable task 
design. Furthermore, at work humans normally do not take decisions as lonely wolves but in formal and informal 
cooperation with other humans. Hence, to design effective explainability and to empower for true human-AI collaborative 
decision-making, embedding human-AI dyads into a socio-technical context is necessary. Coming from theory, this paper 
presents system design criteria on different levels substantiated by work psychology. The criteria are described and 
confronted with a use case scenario of AI-supported medical decision making in the context of digital pathology. On this 
basis, the need for further research is outlined.  

Keywords: Companion Technology, Explainable AI, Interactive Learning, Human Factors, Socio-Technical Systems, 
Motivation 

1. Introduction

Artificial intelligence (AI) may be deployed to automate or to informate decision-making (Zuboff, 1988). The 
former aims at reducing skill and labor requirements. In contrast, the latter aims at increasing the quality of 
decisions by allowing for a more informed human decision-making. Automation is not the subject of this 
paper. Effects of automation on humans are described in detail elsewhere (e.g. Bainbridge, 1987; 
Parasuraman, Mouloua & Molloy, 1996; Grote, Weik & Waefler, 1996; Grote, 1997; Waefler et al, 2003; 
Sheridan & Parasuraman, 2005; Manzey, 2012). Important negative consequences of automation on humans 
include: Overstraining humans when required to monitor automated processes, human over-confidence in 
technology, loss of situation awareness, loss of skills and experience, as well as demotivation as a result of 
automation. 

However, in this paper we advocate a deployment of AI that informates decision-making. Thus, decision-
quality is increased by an interaction of AI and the human, elsewhere referred to as augmented intelligence or 
augmented cognition (Crowe, LaPierre & Kebritchi, 2017; Kirste, 2019). Humans should be empowered to 
make more precise decisions (Scherk, Pöchhacker-Tröscher & Wagner, 2017). This includes AI support 
regarding the humans' susceptibility to errors (Both & Weber, 2014). Designing and implementing AI for joint 
human-AI decision-making is the overall objective of this approach.  

In joint human-AI decision-making a specific role is assigned to the human. For example, Samek, Wiegand and 
Müller (2017) suggest four major tasks for the human: (i) verification of AI based decision suggestions; (ii) 
improvement of AI systems, which involves the identification of biases in AI based decision suggestions that 
might emerge from biases in the data set used for training and/or from deficient decision models; (iii) learning 
from AI systems, that is, the human improves his or her knowledge by interacting with the system; and (iv) 
taking responsibility for the final decision as well as for compliance with legislation and ethical standards. All 
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four tasks require human understanding of both, the subject matter as well as the decision-making process. In 
line with this, the machine learning pioneer Donald Michie already characterized machine learning systems 
supporting human learning as 'ultra strong' (Muggleton et al, 2018). 
 
For humans, to understand and learn requires explainable AI. This refers to the language in which humans and 
AI communicate as well as to the communication's object. Both should contribute to the AI's explainability by 
making AI based decisions transparent to the human (Hager et al, 2017; Samek, Wiegand & Müller, 2017; 
Crandall et al., 2018). Some authors go even further by postulating that AI should provide information 
proactively even if the human is not (yet) looking for it (Ittermann et al., 2016). This may also include that the 
machine detects the human's intentions and needs (Heim, 2011; Ludwig, 2015). 
 
Explainability is especially required for sub-symbolic approaches of machine learning (Adadi & Berrada, 2018), 
where decision-making models emerge and refine in neural networks by training or in reinforcement learning 
by operant conditioning (Mitchell, 2019). These algorithms adjust a large number of parameters in a self-
learning manner, which is no longer transparent for humans. Thus, machine learning acquires sort of a tacit 
knowledge that is difficult to communicate to humans. As a result, AI-based decisions are non-transparent for 
humans and accordingly cannot be traced. Consequently, machine learning systems become a black box for 
humans.  
 
However, in this paper we strongly emphasize that explainability is a necessary but not sufficient precondition 
for joint human-AI decision-making. We consider joint human-AI decision-making a process, occurring within a 
socio-technical system, where the AI forms the technical subsystem and humans form the social subsystem 
(e.g. Hollnagel & Woods, 2011). Furthermore, on the human side of the socio-technical system there is 
normally not a single human, i.e. an individual but rather many humans, i.e. a team, a department or even a 
hole organization. Regarding this socio-technical system, explainability is a design requirement that needs to 
be considered when engineering the human-AI interface. This is a necessary precondition for joint human-AI 
decision-making. But it is not enough. For humans to really take an active role in joint decision-making, more 
levels of socio-technical design requirements need to be considered (Waefler et al, 2003). This is because 
humans are human beings, which encompasses much more than being a cognitive information processor. 
Hence, providing information is not enough. Rather, socio-technical system design needs to make sure that 
humans actively aim for high quality decisions, engage in continuous improvement of decisions and take 
responsibility. If such aspects are not considered systematically when designing and implementing the human-
AI system, it is quite likely that the humans will not play the role expected by the system designers and as a 
consequence the system will not perform according to the designers’ intentions (e.g. Ulich, 2011). 
 
This is a theoretical paper. Its main purpose is to reflect on system design requirements for joint human-AI 
decision-making from the perspective of work psychology. The aim is to identify research topics regarding true 
human-AI partnership that go beyond explainability, considering insights from the tradition of socio-technical 
system design. To do so, two domains of system design are discussed: (i) design of the human-AI system on the 
one side, and (ii) design of the socio-technical integration of the human-AI system into a work organization on 
the other side. These two domains are explored more deeply in the following sections. Afterwards, digital 
pathology is presented as a use case. We will discuss the requirements of this application based on the 
introduced principles for system design and propose measures that need to be taken into account when 
introducing that kind of systems. Although we present a case from the medical domain, we strongly assume 
that similar aspects need to be considered when applying AI to other domains where human experts need to 
take critical decisions, e.g. production plants, energy systems, or rail transport. However, we conclude with the 
insight that in order to apply human-AI systems successfully, focusing on the design of human-AI interaction is 
not sufficient. Rather, a broader view on system integration needs to be adopted. Appropriate design solutions 
are still to be developed.  

2. Design of the human-AI system 

Combining (new) technologies with humans always transforms the humans' tasks and with it the conditions 
under which the humans perform and learn. This can cause several problems. Bainbridge (1983) described the 
"ironies of automation" which emerge when automation is used to replace humans where the automation 
outperforms them. However, often the task remaining with the humans is to supervise the automated 
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processes. The irony is that the humans are expected to supervise a performance, by which they are 
outperformed. Thus, this task is beyond their capabilities and hence unaccomplishable.  
 
Furthermore, the human is expected to intervene when the automation fails. Often this is another 
unaccomplishable task due to deskilling effects of automation (Manzey, 2012). Since humans learn skills by 
doing, they will lose those skills related to activities that are replaced by automation. Imagine a car driver who 
is expected to supervise an autonomously driving car. Where does he or she train the driving skills, such as the 
estimation of a breaking distance or the estimation whether or not the car’s speed is soundly adapted to the 
weather conditions, when he or she never drives manually? Skills like these will disappear and in turn the 
human driver will not be able to supervise the autonomous driving. When designing human-machine systems 
it is therefore important to consider the competencies the humans need to perform the role they are expected 
to take. Many, if not most of these competencies – especially regarding human expertise – base on tacit 
knowledge, which is acquired by experience, i.e. by doing. This refers to both aspects of expertise, the know-
how as well as the know-why. In addition to the risk of loss of relevant expertise, the implementation of new 
technologies normally also brings about the need of new competencies (Parasuraman, Mouloua & Molloy, 
1996). As a consequence, joint human-AI decision making requires not less, but even more human expertise. 
 
When designing human-machine interaction, different levels of interfaces need to be taken into consideration. 
Though usability and user experience are important features of human-machine interaction, they are not at 
the core of the problems sketched above. These problems refer rather to human-machine function allocation, 
which determines the human’s task when cooperating with the machine, and hence the human’s 
opportunities for learning and developing expertise (Grote, Weik & Waefler, 1996). In the car driver example 
mentioned above, a good usability cannot compensate for lacking skills. Rather function allocation needs to 
make sure, that the human has the opportunity to acquire task-relevant expertise. This is not reached by the
human interacting with the interface, but rather by interacting through the interface with the process 
(Hollnagel & Woods, 2005). 
 
Current concepts regarding human-machine function allocation consider humans and machines as 
complementary (Waefler et al, 2003). The basic assumption is, that humans and machines are not comparable 
in a quantitative way. Rather they differ qualitatively from each other. What is an easy task for machines (e.g. 
playing chess, computing a huge amount of data) is very demanding for humans, and vice versa (e.g. loading 
the dishwasher, acting in a unstructured environment). The aim of complementary system design is to 
combine humans and machines in a way allowing for mutual fostering of strengths as well as for mutual 
compensation of weaknesses. Current concepts assume that the coping with ill-defined problems is a human 
strength, whereas the machine is good in handling well-defined problems. With this background, criteria for 
assessment and design of human-machine function allocation where developed that allow for human control 
over automated processes. These criteria encompass aspects such as process transparency, human-machine 
coupling, authority over information, authority over process control, and flexibility of function allocation (e.g. 
Waefler et al, 2003; see Fig. 1). 
 
With the emergence of AI systems in real world domains, corresponding concepts and criteria need to be 
developed further. This is because AI systems show capabilities formerly considered exclusive human. 
Probably most prominent is the capability of machine learning systems to recognize patterns in unstructured 
data and hence to handle ill-defined problems (Muggleton et al, 2018). Whether humans and AI are still 
complementary is a question that consequently needs to be rethought. Of course, there is already evidence of 
human-AI complementarity. Mitchel (2019) describes shortcomings of machine learning approaches like 
overfitting to and biases in training data. In general, in most AI systems perception is realized very different 
from the way humans perceive. Most prominent is that AI systems do not have background knowledge and 
therefore cannot understand objects in their context. 
 
Humans on the other hand are also prone to cognitive biases (e.g. Kahneman, 2011). In contrast to AI 
however, cognitive failures of humans often emerge from context information that biases human perception 
and decision-making (e.g. confirmation bias). Consequently, one aspect of human-AI complementarity is the 
AI’s capability of digging deep into the data whereas the human capability is to embed perception into broad 
background knowledge allowing for understanding and interpreting (Brynjolfsson & McAfee, 2014). Or as 
Floridi (2014) states: Computers are good at computing and humans are good at thinking, and these are 
different capabilities. With this background, human-AI system design does not only need to make sure that the 
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human does not lose his capability to think. Even more, the humans' ability to think – that is e.g., the humans' 
ability to understand – needs to be fostered by the way the humans cooperate with the AI systems – 
specifically with machine learning systems, which can detect regularities in highly complex information 
(Muggleton et al, 2018). 
 
However, within the human-AI system the human is not a cognitive resource only. Disposing of respective 
human expertise is a prerequisite only for the human to take the intended role. There is yet another aspect of 
human-AI complementarity required, which refers to genuine human attributes such as motivation and 
responsibility taking. Whether or not such human qualities emerge is not independent from socio-technical 
system design and hence from the way a human-AI system is integrated into a work organization. The next 
section will reflect on this topic. 

3. Design of the socio-technical integration of the human-AI system 

As it is well known in work psychology, motivation and responsibility taking requires a suitable job design (e.g. 
Ulich, 2011). Whether or not a person is motivated, is only partly due to his or her personality. Many context 
factors do affect motivation too, extrinsically as well as intrinsically. Especially context factors regarding 
intrinsic motivation are set by the concrete design of human-machine systems. Hackman and Oldham (1980) 
with their ‘Job Characteristic Model’ identified three critical psychological states required for intrinsic 
motivation: (i) knowledge of the actual results of the work activities, (ii) experienced responsibility for 
outcomes of the work, and (iii) experienced meaningfulness of the work. For motivation and responsibility 
taking it is crucial that humans really do experience these states. It is not sufficient to impose responsibility to 
the humans by job description. Rather it is important that the humans feel a sense of responsibility. This 
feeling is triggered, among other aspects, by autonomy. This is because humans do not feel responsible for 
decisions taken elsewhere, be it by another human or by an AI.  
 
To allow for the three critical psychological states, Hackman and Oldham (1980) identified five core dimensions 
of job design: (i) skill variety, (ii) task identity, (iii) task significance, (iv) autonomy, and v) feedback from the 
task. Job design criteria like these are shaped when a human-AI decision-making system is created and when it 
is implemented into organizational processes. If this shaping is not deliberately designed but emerges 
randomly as a by-product of technology engineering, it is likely, that motivational preconditions are not set 
adequately. Imagine a human is expected to decide jointly with an AI system. If the human is not experiencing 
autonomy in the decision-making process, it will be likely that he or she just pitches under the AI-generated 
decision suggestion. Even though the system designers intended to assign the human an active role in joint 
human-AI decision-making, he or she will not live up to it. And he or she will likely not feel responsible even if 
responsibility is formally assigned to him or her. However, what human autonomy really means in joint 
human-AI decision-making is yet to be better understood. The same applies to the other core dimensions of 
job design. 
 
With this background different methods for job design provide design criteria regarding the integration of 
humans, technology and organization on the level of individual tasks as well as on the level of organizational 
design. As a representative of such methods the KOMPASS criteria (see Fig. 1; Waefler et al, 2003) are 
mentioned in the following. On the individual task level these are: Task completeness, decision-making 
requirements, communication requirements, opportunities for learning, variety, transparency of work flow, 
influence over work conditions, and temporal flexibility. On the level of organizational design, these criteria 
are: Complete task, independence of the work system, fit between regulation requirements and opportunities, 
polyvalence of work system members, autonomy of work group, and boundary regulation by the supervisor.  
 
When engineering the AI part of joint human-AI decision-making systems, criteria like these are not directly 
applicable. However, this does not mean that they are unimportant. Neglecting them results in an 
underperforming system since the preconditions for the human to play his or her intended role in joint human-
AI decision-making are not met. 
 
As a consequence, concepts for integrating AI into task design on both levels are yet to be elaborated, i.e. on 
the level of individual work tasks, as well as on the level of integrating AI systems into organizational 
processes. We will illustrate this for a scenario of medical decision making. The presented analysis can be 
applied likewise for other risky decision-making, e.g. in industrial production, where deciding whether a 
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machine is in a safe state can be critical when an unnecessary stop results in financial loss, but omitting to stop 
the machine can result in serious injuries of workers and damage of goods. 
 

 

Figure 1: The Individual-Technology-Organization cycle (Waefler et al, 2003) 

4. Use case: Human-AI-partnership for expert medical decision-making 

Reliable diagnosis of cancer at an as early stage as possible is one of the most challenging domains of medical 
diagnosis. Missing a malign tumor has severe consequences and erroneous classification of the type of a tumor 
can lead to inefficient treatment – possibly with undesired side-effects for the patient. Furthermore, false 
alarms bring unnecessary anxiety to patients and can result in superfluous surgical interventions. Many types 
of cancer are diagnosed based on imaging techniques such as radiography, computed tomography of specific 
body parts or microscopy of tissue samples (Najarian & Splinter, 2005). Experts need long training times to be 
able to interpret such medical images. To analyze image-based data, human experts often take into account 
spatial information. In colon cancer diagnosis, medical experts analyze the tissue composition and the depth of 
invasion of tumors. For instance, if tumor tissue already touches fat, the tumor class is more critical compared 
to a situation where the tumor is included in fascial tissue (Wittekind, 2016). In general, there are five classes 
of tumors, ordered by severeness, labelled as pT0 (healthy), pT1, . . . pT4. 
 
Digital pathology provides image analysis techniques to support medical experts when analyzing tissue 
samples. In an ongoing research project, we design a machine learning based assistance system to support 
medical decision-making (Schmid & Finzel, 2020). The TraMeExCo (transparent medical companion) system 
combines convolutional neural networks (CNNs) and inductive logic programming (ILP). CNNs show impressive 
results for image classification (Krizhevsky, Sutskever & Hinton, 2012; Li et al, 2014). CNNs allow end-to-end 
learning from raw data – here bitmaps – to class, thereby making unnecessary a preprocessing step to extract 
features. However, CNNs have the usual problems of data intensive deep learning approaches: To train a CNN, 
huge amounts of pre-labelled data are prerequisite. And – as mostly is the case in the medical domain – there 
is no real ground truth to label the data. At best, there are diagnostic measures with high reliability (so called 
gold standard). Furthermore, a trained CNN is a black box giving the human only the class decision but no 
indication on how it came about this decision (Adadi & Berrada, 2018). 
 
In contrast, ILP approaches (Muggleton & De Raedt, 1994) can be trained with small sets of data (Gulwani et al, 
2015). They belong to the class of interpretable machine learning approaches together with decision trees and 
related approaches (Furnkranz & Kliegr, 2015). Learned models are white box – i.e., represented in a symbolic, 
human readable, explicit form (Doshi-Velez & Kim, 2017). It has been shown that rules learned with ILP can 
support human decision-making in complex domains (Muggleton et al, 2018). Transforming such rules into 
verbal explanations can be done with similar methods as have been introduced in the context of expert 
systems (Clancey, 1983; Siebers & Schmid, 2019). 
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To provide explainability and hence to support joint human-AI decision-making, normally an explanation 
interface is provided. Typically, explanations for CNNs are given visually – marking that regions in the image, 
which had the most influence on the classification (Samek et al, 2016; Ribeiro, Singh & Guestrin, 2016). 
However, to explain a tumor class based on a tissue scan, human experts rely on spatial relations as pointed 
out above. A visual explanation can only highlight information which is present in an image. It cannot convey 
special relations between different components (e.g. a tumor tissue that touches fat). However, ILP learned 
models can generate such relational explanations (Rabold et al, 2019).  
 
For the TraMeExCo system we enriched the ILP learned model with a background theory for spatial relations 
(Schmid & Finzel, 2020). Furthermore, to take into account that the initial class labels with which TraMeExCo 
has been trained contain erroneous labels and noise, our learning approach is human-AI interactive (Ware et 
al, 2001), i.e. TraMeExCo allows the human expert to modify current explanations in addition to class 
corrections (for details see Finzel, 2019). 
 
In Figure 2 we present our human-AI mutual explanation interface. In the upper part, a selection of tissue 
scans is presented which have been classified – e.g. by a CNN classifier. Four scans have been classified as 
tumor class pT3 and the ILP learner induced a model characterizing these scans in contrast to two scans 
classified as healthy ('gesund'). A human expert inspects the learned rules given in the bottom of the interface 
and discovers that one of the rules contains an erroneous 'touches relation'. He or she marks the erroneous 
part and can define the constraint that this part should be excluded from future models (see bottom middle of 
the interface). The model is updated and as a result, scans previously classified as pT3 are now moved to the 
negative examples (see top right of the interface). The expert can inspect these scans and either change their 
label or modify the rules again. 

 

Figure 2: User interface for joint human AI decision-making in digital pathology 

On the top, digital image data first is presented as classified by a CNN. Data is referred to as 'scan' followed by 
a number. Class labels are 'gesund' (healthy) or a tumor class name such as pT3. The medical expert can sort a 
sample of data into two groups: positive examples for a given class (here pT3) and negative examples. In the 
top right area, it is shown that the expert contradicts the classification decision of the CNN and classifies 
scan562 and scan538 as negative instances, which should not be classified as pT3. The digital image is shown 
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by a mouse-over. Furthermore, its representation in symbolic form can be inspected. This information is 
represented in the programming language and consists of a set of facts describing an image, such as 
'contains_tissue' (scan0523,t1), 'is_tumor(t1)' (scan0523). The middle part of the interface offers a button to 
start learning a new set of rules on the basis of the corrections made by the human expert. In the shown 
episode, the learned model covers all shown instances correctly, that is, none of the examples classified as 
negative by the expert are classified as pT3. At the bottom of the interface, an example of the learned rules is 
described in natural language and in Prolog. This is the explanation why the system classified the examples as 
belonging to tumor class pT3. The human expert can inspect the explanations and select parts of the 
explanations for which he or she can determine that this part must or nor must not occur in the classification
rule. The information in Prolog is not intended for the domain expert but for the developer. 

5. Discussion of the use case

As described above, optimal integration of individuals, technology and organization requires consideration of 
two domains of system design: Design of the human-AI system, and design of the socio-technical integration of 
the human-AI system into a work organization.  

Regarding the human-AI system, the mutual explanation interface of the TraMeExCo system meets 
corresponding design criteria (cf. figure 1) quite well. It provides process transparency as it makes AI-based 
decision-making criteria transparent. It allows for human authority over information, as the human has the 
possibility to influence what information he or she gets from the AI. And it allows for authority over process 
control as the human can shape the AI's decision model and hence the AI's decision-making process. However, 
more research will provide further possibilities to meet these criteria even better.  

Other criteria regarding the human-AI system are not yet reflected in the design of the TraMeExCo interface. 
This refers especially to human-machine coupling and to flexibility of function allocation. The former concerns 
whether or not the machine determines the way of task execution. The latter aims to enable switching 
between different degrees of distributing process control to the human and the machine. The aim of both 
criteria is to allow the human to personalize the way of task execution. From a work psychological point of 
view this is important regarding aspects like supporting different levels of human expertise or allowing for the 
experience of self-efficacy – just two examples for setting the preconditions regarding active human role 
taking. However, to develop design solutions regarding such aspects, a better understanding of the human 
decision-making process and especially of different decision-making styles is required. This may lead to an AI 
system design allowing the individual to adapt the system to his or her personal work style. 

The second domain of system design refers to the socio-technical integration of the human-AI system into a 
work organization. As outlined above, in this domain two levels need to be distinguished: Individual task 
design and organizational design (cf. figure 1). At first glance, these two levels are not directly affected by the 
design of the TraMeExCo system's mutual explanation interface. Nevertheless, both levels are important to 
prepare the human for active role taking in joint human-AI decision making. On the individual level, the human 
may develop competencies required to classify digital images when performing sub-tasks with no AI 
interaction. As a consequence, task completeness for example may be critical for the availability of required 
human expertise.  

The level of organizational design refers for instance to the way the joint human-AI decision making is 
integrated into organizational decision-making processes. This is important because different people with 
different expertise may increase their collective decision-making quality by creating human-human synergy. 
Polyvalence of work system members for example might therefore be important to promote mutual 
understanding and hence the ability to cooperate. Although aspects like these are not directly dependent of 
human-AI system design, they are nevertheless crucial for human-AI system success. Since we do not yet have 
a sufficient understanding of how the AI-system design shapes such aspects, further research is required to 
find new design solutions. 

6. Conclusion

This is a theoretical paper. The core assumptions of our reflections are that AI systems are currently not 
mature enough to provide high quality decisions autonomously. Therefore, humans need to take an active role 
in the decision-making process. Furthermore, we assume that humans will keep an active role although AI 
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systems may become more mature in future. We take this assumption, because we adopt a complementary 
approach, that considers humans and technology as qualitatively different. Hence, they are not competing for 
which of the two is better regarding capabilities that are comparable in a quantitative way. Rather, they 
complement each other with qualitatively different capabilities. As Floridi (2014) states, computers are good in 
computing, humans are good in thinking, and this is not the same. Consequently, a clever human-technology 
combination will always perform better in comparison to what the human or the technology could deliver each 
on its own. Regarding AI systems we strongly assume that this is especially true, where decision-making 
requires understanding and responsibility taking, both major human characteristics. 
 
However, in order for a joint human-AI system to effectively perform it is not enough to assign the human an 
active role in the decision-making process. Rather, the human needs those preconditions required for high 
level of engagement at work. The reason for this is that being active, showing commitment or taking 
responsibility is not something that can be forced just by order or by assignment. That kind of human
contributions must be intrinsically motivated by an adequate job design. To do so, work psychology provides 
job design criteria on three levels of socio-technical system design: Human-machine function allocation, job 
design on the individual level, and integration into organizational processes (cf. figure 1). 
 
Applying this approach to our case of AI supported medical decision-making shows, that on the level of the 
human-machine function allocation, explainable AI addresses some of the relevant criteria. If explainability is 
mutual, that is, if the AI does not only make decisions transparent to the human but the human can also 
influence the AI, these design criteria are met even better. However, much more research is required to reach 
true complementarity in the interaction of humans an AI in joint decision-making. On the other two levels of 
socio-technical system design – i.e. job design on the individual level, and integration into organizational 
processes – there is still much less knowledge available regarding how the introduction of AI impacts the 
corresponding criteria. Though these two levels are not directly related to AI system design, they are 
important for the success of joint human-AI decision-making systems. This is because work design on these 
levels is crucial for human behavior at work and if the work design is bad, humans will not take the active role 
expected from them when cooperating with AI. Much more research is required on these two levels to better 
understand how they are affected by the introduction of AI. 
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