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Abstract
With the current trends in aviation like Single-Pilot-Cockpits and more autonomous functions in aircraft, flight control avi-
onics are bound to become more complex. Future platforms will need to compensate for one or even both pilots, which will 
require systems that are more reliable. However, state-of-the-art development of flight control avionics does not yet support 
these demands efficiently. The development process involves numerous stakeholders who are communicating without stream-
lined interfaces. This leads to a slow and error-prone process during development. New methods are required to improve 
efficiency and to pave the way for future technologies. In this work, the authors introduce a semi-automatic toolchain which 
derives usable code for the configuration of devices from natural language requirements. The requirements are noted through 
modular components, stored as a model-based configuration file and are transformed into executables in the last step. This 
novel approach allows engineers to input their expertise when defining requirements, while removing tedious transformation 
tasks. Through automatic configuration testing, the validity of the approach is confirmed.
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1  Introduction

Avionic functions have become progressively more complex 
in recent years and with the planned advancements like Sin-
gle-Pilot-Cockpits or completely autonomous aircraft, this 
trend will most likely continue. To allow for development of 
these futuristic systems, the development process itself also 
must be adapted and made future-proof, since modern Flight 
Control Systems (FCS) will have to substitute one or even 
both pilots reliably in civil aviation. While the required tech-
nology has not matured enough yet, its implementation must 

be made easier to allow for a feasible use once it is ready. 
Therefore, current development, which is done mostly manu-
ally by the various stakeholders involved in the process, must 
be changed to accommodate for the higher complexity, while 
also ensuring the same level of safety and reliability.

Consequently, a semi-automatic toolchain was developed 
which assists the stakeholders at the device development, 
verification and validation, as to reduce the workload in this 
specific domain. This is part of AvioNET, a broader model-
based approach for connecting avionics development tools 
developed at the Institute of Aircraft Systems Engineering 
(FST) of the Hamburg University of Technology (TUHH). 
The holistic approach aims to solve the problem of increas-
ing complexity with generic and formalized processes for 
the development of avionic systems. This is described in 
greater detail, after a short discussion of related work regard-
ing toolchain development (Sect. 2) in Sect. 3. The method-
ology for the device development domain in the scope of 
this paper is presented in Sect. 4 and afterward demonstrated 
in a specific FCS use case in Sect. 5. The paper finishes 
with Sect. 6 where the conclusion and an outlook for further 
development are given.
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2 � Related work

An automated toolchain for the formal verification of avi-
onic Simulink designs has been developed at the Masaryk 
University in cooperation with industry partner Honeywell 
[1]. The toolchain is targeted at safety-critical systems, 
as the manual verification for such complex systems is 
error-prone and time-consuming. A finished Simulink 
design acts as the input of the toolchain and is checked 
by constraints automatically derived from the system 
requirements. The approach is supported by proprietary 
Honeywell tools and provides the user with the informa-
tion on the design validity. Should the design be invalid, 
an alternative model design is proposed.

Fortiss and various research and industry partners, includ-
ing among others THALES, developed a Model-Based Sys-
tems Engineering (MBSE) approach to create the DREAMS 
toolchain for a mixed-critically system [2]. While not fully 
automated, the respective tools for the individual develop-
ment steps have manual exchange interfaces. Therefore, out-
put artifacts can be used as inputs when necessary. Addition-
ally, the artifacts ensure the process traceability required by 
safety standards such as DO-178C [3]. Since the toolchain 
is applied to multi-core processors, it is far more detailed 
than any approach for a single-core platform would be, as 
multi-core constraints must be considered. Nevertheless, a 
trend for future development is emerging in research and in 
the aviation industry and must be taken into account.

Together with various industry partners, the University 
of Oxford developed and validated a requirement-based 
automated testing method [4]. Instead of manually produc-
ing test scripts for low-level requirements, they are auto-
matically generated through the combination of natural 
language and model checking. Thereby, the overall test-
ing effort is reduced compared to the common industry 
standard. Moreover, the authors prove, that automatic test 
case generation is indeed capable of satisfying verification 
objectives as required in DO-178C.

The Institute of Aircraft Systems at the University of 
Stuttgart is currently developing a MBSE toolchain for the 
development of Integrated Modular Avionics (IMA) plat-
forms [5]. The toolchain is embedded in a toolsuite which 
aims to support multiple stakeholders in the IMA develop-
ment process. Artifacts are generated in their respective 
development phase and can be distributed among tools 
with appropriate interfaces. Nevertheless, the stakeholders 
provide the majority of the system knowledge and remain 
in control of the process. Through the removal of tedi-
ous transformation tasks between parties, the focus of the 
manual labor can be focused on providing better engineer-
ing solutions. Thus creating a more suitable framework for 
semi-automated knowledge-based engineering.

An MBSE approach for an avionics development tool-
chain was already introduced in a prior work at the FST. 
Halle and Thielecke propose a seamless toolchain spanning 
the complete IMA development process, separating it into 
the four key segments Architecture, Configuration, Testing 
and Simulation [6]. By providing interfaces for all align-
ing segments, the manual workload will be reduced signifi-
cantly, as tedious tasks (i.e., data transformation between 
different formats) are automated. Additionally, the develop-
ment focuses on automating recurring and tedious processes 
inside the individual segments. Thereby, the stakeholders 
are not replaced, but instead have their development focus 
shifted toward knowledge-based problem solving. Further-
more, the artifact exchange between segments provides the 
opportunity of process traceability, which is a key avionic 
certification requirement.

The need for further automation in the development pro-
cess is not unique to the aviation industry. It is also present 
in other sectors, such as the automotive industry. Aniculaesei 
et al. designed a SCADE-based toolchain with which the 
user is assisted in generating test cases [7]. The only remain-
ing manual step is to derive and formalize system require-
ments, while various tools generate the tests automatically in 
a step-by-step process. Similarly to the previously presented 
works, the tools share common interfaces and artifacts are 
generated for traceability purposes.

3 � Overall tool framework

As the trend toward further automation of the avionics 
development process is imperative, the toolchain devel-
oped at the FST is continually being improved. The authors 
advanced the methodology to encompass a holistic tool 
network, which loosely follows the V-model for develop-
ment [8]. With the Avionics Next-Gen Engineering Tools 
(AvioNET) shown in Fig. 1 the already existing segments of 
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Fig. 1   AvioNET Tool network overview
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Architecture (A), Configuration (C), Testing (T) and Simula-
tion (S) in [6] are expanded by Verification and Validation 
(V &V), Visualization and Insights (I) and Avionics Data 
Management (ADAM).

All sections are highly interconnected and data is freely 
transferable between them. Moving from a toolchain to a 
tool network emphasizes the high degree of interconnectiv-
ity, which is necessary to create a seamless development 
process from beginning to end through a high level of for-
malized methods and automation. Therefore, individual 
tools need to have interfaces not only to tools from align-
ing segments, but they should also be compatible with the 
tools of unaligned segments. However, allowing this amount 
of flexibility by simply linking all the tools between each 
other would lead to an infeasible workload, which is why 
ADAM was introduced into AvioNET. As a central hub 
for data exchange and storage, the tools only require a sin-
gle interface to ADAM, which allows for continuous data 
transformation through standardized interfaces. The tool-
chain presented in this paper (see Sect. 4) is set into this tool 
framework and therefore requires a generic MBSE approach 
to satisfy the interconnectivity requirements in its own seg-
ment and outside its own scope as well.

3.1 � Validation and verification

In the context of AvioNET the toolchain is set in the Valida-
tion and Verification (V &V) segment, in which validation 
and verification processes are aimed to be introduced earlier 
in the development. This would decrease the workload and 
cost of design flaws, as they are detected more timely and 
therefore have a smaller effect on following steps. Conse-
quently, validation and verification must be done continu-
ously, which is made possible through the assessment of 
virtual products.

By establishing a virtual environment in which a virtual 
platform mirroring the real hardware is available, test cases 
can be executed independently of the real product even 
before it is finished. Additionally, the real hardware operat-
ing system can be emulated to provide the possibility of test-
ing run time behavior of applications in a real-time environ-
ment. Once the real hardware is finished, it can be tested as 
part of a hardware-in-the-loop simulation, since the virtual 
and the real product are kept consistent with each other.

Through early validation, the common V-Model of 
development will be improved and modernized to contain 
a virtual branch, transferring it to a W-Model as depicted 
in Fig. 2. When failing validation in the virtual branch, the 
additional iteration cycle is far simpler as neither develop-
ment nor integration on real hardware is required.

When using a W-Model, it becomes apparent why the 
high level of interconnectivity is required for AvioNET. 
As setting up a virtual environment is additional work, the 

invested time must be regained through a high degree of 
reusability of artifacts and methods, i.e., for testing.

4 � Easy configuration toolchain

The objective of the Easy Configuration Toolchain (Easy-
Config) is to assist the configuration of avionics hardware 
and validating said configuration continuously, as described 
in the previous section. The necessary work flow is shown in 
Fig. 3 and closely resembles the theoretical structure estab-
lished in subsect. 3.1. To initialize the toolchain the user sets 
requirements for the device. These are relatively low-level 
requirements, which are derived from the overall system 
requirements and are set manually.

The requirements are written in natural language and 
checked for relevant keywords representative of configu-
ration elements. Thereby, the requirement documentation 
remains easy to understand while still providing a rule set 
for the transformation into formal definitions. When setting 
the requirements manually, it is important to formalize them 
accordingly, so that their attributes follow a predefined set 
of rules. The formalized natural language requirements can 
then be interpreted and transformed into formal language. 
Afterward, the formally defined system behavior and inter-
face definition of the avionics platform lay the basis for the 
following model and test generation. The model generation 
is twofold. Both a virtual model and a real configuration are 
derived and are based on similar metamodels as to provide 
an easy way for integrating interfaces. The configuration 
for the virtual model is set to run in a virtual environment, 
which mirrors the real hardware environment. In keeping 
both the configurations and the environments consistent 
with each other, their information value remains the same. 
Thereby, the virtual tests partially replace the hardware tests 
as a form of early validation. Instead, the demonstration on 
real hardware ideally evolves to a mere formal step in the 
certification process, not leading to any alterations. This way 
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Fig. 2   W-Model for early validation



274	 P. Chrysalidis et al.

1 3

expensive iteration cycles with hardware adaption would be 
cut, but if retroactive changes prove to be necessary, both 
configurations are easily kept consistent through their inter-
changeable data format. Therefore, changes are transferable 
in both directions if adaptions are required. By following 
this work flow, EasyConfig is the real world application 
of the introduced W-Model, with a virtual and a real hard-
ware branch. As demanded in the AvioNET concept, a high 
degree of interconnectivity is provided for in this toolchain 
and the metamodel-based configurations allow for simple 
data transformation and storage through easily generated 
generic interfaces.

The device will be tested via bare module tests, since 
the focus is the device itself and not the functionality of 
an eventual application. Therefore, the test application will 
be as complex as necessary but as simple as possible. This 
way, the application design is easily verifiable beforehand 
and does not require an additional major workload. Using 
this approach also guarantees adaptability through simplic-
ity, as a simple application can be changed easier to fit the 
respective test case.

4.1 � Automatic test case generation

The generation of the test cases follows a heuristic 
approach. Through already available information of the 
hardware, environment boundary conditions are derivable. 
These are predetermined trough keywords such as “OS-
Partition” and further specified by more detailed defini-
tions and the quantity. Device ports would be defined as an 
“I/O-Capability” with the respective communication pro-
tocol as the specification, i.e., “AFDX” or “CAN” with the 

amount of ports depending on the chosen hardware. These 
requirements are tested by running edge case scenarios, 
covering a possible range or the complete spectrum. When 
testing possible CAN IDs covering the whole range would 
produce a high amount of unnecessary data, because test-
ing the edge cases already fulfills the goal. Using similar 
approaches for other requirements is key in reducing the 
overall test effort and speeding up automation.

The generated test cases are transformed into a MAT-
LAB format and thereby available for toolchain process-
ing. In the next step, user action regarding the required 
tests is needed. Since a metamodel approach was chosen 
and devices from different suppliers usually also have dif-
fering metamodels, the user must actively choose, which 
model elements fit the given test cases. As an example, 
the partition ports for an ARINC 653 [9] conform device 
can be examined. Each partition is required to provide 
either sampling or queuing ports. In the model these can 
be named either “Sampling Port”, “Queuing Port” or “Par-
tition Sampling Port” and so on. Each of these possible 
naming conventions differs and is therefore not necessar-
ily identifiable by model interpreting algorithms. But an 
engineer operating the toolchain is capable of recognizing 
the fitting model name. Through this manual step no exten-
sive model knowledge must be incorporated into the test 
generation code and therefore the approach is adaptive and 
applicable to all models following a matching metamod-
eling approach. This makes the toolchain highly generic, 
as it was demanded by the AvioNET requirements.

The results of the tests get recorded automatically in 
the virtual and hardware environment via the respectively 

Fig. 3   Toolchain for automatic 
test generation
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chosen test systems and are stored as separate artifacts and 
analyzed against the set requirements.

4.2 � Early validation

In the following step, the virtual environment for the early 
validation is set up. As shown in Fig. 4, the early validation 
is almost completely independent of a real product and only 
the configuration for the virtual and the real device share a 
common root, as to keep the models consistent. Therefore, 
a virtual product must be created mirroring the capabilities 
of the real hardware, which in this case is a standard ARINC 
653 capable device. While this model must be improved 
upon to exactly match the behavior of the specific device, it 
fulfills the task of validating the configurations as the real 
hardware restrictions are applied in the virtual world as well. 
Additionally, no real-time behavior has been implemented 
yet, but since the real hardware tests will be done later in 
the process, a preliminary validation still provides valuable 
information.

The early validation is done in MATLAB Simulink and 
requires no additional tools, once the requirements have 
been transformed. Therefore, the automation process is 
straight forward and easy to use, which makes it easy to 
integrate into the existing development process. Because 
of the chosen model-based approach, the virtual configura-
tion is transformable into the real hardware configuration, 

meaning that possible changes can be included seamlessly in 
both environments without any additional workload.

4.3 � Hardware integration and test

Following a successful early validation, the toolchain 
finally will be applied to real hardware and the main goal 
of AvioNET to reduce complexity and improve the devel-
opment process is realized. Configuring a safety-critical 
piece of hardware such as a flight control device requires 
various tedious tasks from the engineer which are replaced 
through smart assistance by various tools and through a 
high degree of formalization, leaving less room for human 
errors. By linking various applications through strictly 
defined manual and automatic interfaces, the process 
becomes more clear and is easier to manage. The applica-
tions used in the toolchain are chosen based on their com-
mon use in the aviation industry and research. Require-
ments management is done in IBM Doors, since it has a 
user-friendly graphical user interface, while also allowing 
for exporting data in various machine-readable formats. 
However, this process step is not limited to IBM Doors 
and could be done in any other model-based descriptive 
language. While being noted in natural language, the 
requirement definitions must adhere to formulation rules, 
as to make automatic extraction possible. Therefore, the 
respective keywords must be used to correctly predefine 

Fig. 4   Detailed work flow for 
EasyConfig Requirements 

(natural language) Export
Formalized 

Requirements

Generation
Configuration for

Virtual Device

Integration on
Virtual Device

Integration on
Virtual Device

Simulation

Configuration 
for Real Device

Transformation
Source 
Code

Compile Executables

Automatic adaptions when necessary



276	 P. Chrysalidis et al.

1 3

the device. On the basis of these formalized requirements, 
configurations and test descriptions are automatically 
generated.

Based on the formalized requirements configurations, 
test applications and test descriptions are generated via an 
automation procedure, which was developed in MATLAB. 
The automation environment executes the aforementioned 
keyword-based algorithms for each requirement. These 
algorithms must be defined by the test engineer once but 
are completely reusable as most of the necessary tests for 
e.g., a specific interface do not depend on the hardware. 
The set of automatically generated tests is not meant to be 
a complete set, but to replace tedious and repetitive tasks 
otherwise done by an engineer. The tests can be easily 
expanded manually, either by expanding the generation 
algorithm or by creating the artifacts by hand.

The configurations for the tests are generated in a sys-
tematic AvioNET specific hardware independent format, 
that aims to be easy to transform in a variety of hardware-
specific configurations. The applications are generated as 
MATLAB Simulink models as Simulink is widely sup-
ported by the industry already, and it is also possible to 
generate code from the model that could be integrated.

The configurations and the generated test applications 
are used to generate a virtual representation of the device 
(see [10]), but also used to generate a load for the real 
hardware. As mentioned in subsect. 4.2 with the virtual 
representation of the device, it is possible to define and 
execute tests without the need for real hardware. The trans-
formation between the proprietary virtual and the stand-
ardized real hardware environment is done via XML style 
sheet transformations (XSLT). The proprietary configura-
tion and the test application is compiled with the HIGH-
TEC compiler to provide the load for the device. The load 
is flashed onto the device via the Universal Debug Engine 
(UDE) from PLS. This process is automated through the 
Component Object Model (COM) interface between the 
UDE and MATLAB. The test descriptions for both the 
virtual and the real device are adapted to their respec-
tive test systems, Simulink Test and the UDE respectively. 
Both of these test systems are highly flexible, which makes 
them applicable to every configuration, which is neces-
sary to fulfill the generic requirements for EasyConfig 
derived from AvioNET. The UDE provides the possibil-
ity of recording all commonly used avionics communi-
cation protocols as separate channels. Using a common 
real-time recording device for all possible communication 
configurations, each specific result documentation remains 
comparable and consistent even between different devices 
and models. Additionally, this allows for using a device 
and model independent approach for analyzing the data, 
which is especially important for the real hardware, as the 

virtual environment is always modeled within the same 
framework.

4.4 � Toolchain artifacts

As it was already pointed out in Sect. 2 ensuring traceability 
is of the utmost importance when developing safety critical 
avionics software. Therefore, the toolchain was developed 
with traceability as a necessary requirement. For every step, 
artifacts are created and stored independently of the previous 
and following steps, as to keep each artifact uncorrupted. For 
traceability, the corresponding requirement of the artifact is 
stored in the metadata of the artifact. The following artifacts 
are created:

•	 Requirements document
•	 Virtual device configuration
•	 Hardware device configuration
•	 Hardware device source code
•	 Hardware device executables
•	 Test specification document
•	 Test scripts for generated test cases
•	 Recorded test data

The readability of the different artifacts in their pure form var-
ies drastically. While the requirements document is written 
in natural language and therefore is easy to understand for a 
human user, both the source code and the configuration files 
are generated in harder to read formal language. While the 
source code must be analyzed with common code reviewing 
techniques, the hardware configuration can be analyzed easily, 
as an additional Eclipse-based tool for reading and writing the 
document was developed for a more user-friendly experience. 
Thereby, traceability is possible through either common meth-
ods or specifically designed tools, which makes the toolchain 
applicable for a proper avionics development processes.

Additionally, to providing traceability, one of the artifacts 
also acts as an interface document between EasyConfig and 
AvioNET. As described in Sect. 3 EasyConfig is supposed 
to be implemented into the holistic MBSE tool network 
developed at the FST. To ensure this interconnectivity, the 
hardware configuration document is based on an Ecore-
metamodel. This document design is key, as it provides the 
possibility for automatically transforming the data through 
metamodel-based interfaces between the different process 
segments in AvioNET.

5 � Use‑case for a flight control system

The toolchain was applied to an FCS platform to determine 
its usability in a realistic use case. The executable is config-
ured for a platform used for hosting industrial Flight Control 
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Applications. Therefore, the obtained data about the validity 
of the toolchain is applicable to a proper industrial develop-
ment process. In the scope of the process, the set require-
ments and the chosen application are low-level as to provide 
a simple-to-understand Proof of Concept (PoC).

5.1 � Device requirements

The chosen device is an Aurix Tricore Board (ATB) 
designed by Infineon. As Commercial Off The Shelf (COTS) 
single-core hardware becomes less available, choosing a 
multi-core board is a future-proof method, as development 
and support will continue over the next decades [11]. Fur-
thermore, research into multi-core systems has gained sig-
nificant traction, as already discussed in Sect. 2 (see [2]). 
Proving the validity of a newly developed toolchain for such 
a device is of utmost importance, since the flexibility of pro-
viding configuration to both single- and multi-core platforms 
will become a necessity.

Since the objective is to develop an FCS platform, the 
original ARINC 653 specification for IMA systems is over 
defined. Instead, the platform devices will be specified by 
the subset ARINC 653 Part 4 [12]. This standard is spe-
cifically designed for systems with fewer capabilities and a 
lower complexity than usual IMA platforms. Thereby, it is 
possible to develop IMA-like applications and still meeting 
a well-defined and commonly used standard, which ensures 
the quality of the designed platform. Furthermore, testing 
conditions are already predefined in the standard and can be 
implemented seamlessly in EasyConfig.

For the communication between devices CAN was cho-
sen, as the protocol is commonly used in avionics applica-
tions. An ATB provides two CAN-Interfaces without any 
additional hardware expansions, which satisfies the require-
ments for the chosen PoC. With the described constraints 
taken into consideration, the requirements listed in Table 1 
were derived.

As already mentioned, these are simple requirements for 
proving the validity of EasyConfig. However, they are still 
sufficient for providing the necessary basis for this research. 
The blue marked parts for each requirement are the key-
words the algorithm analyzes and on which the configura-
tion is build upon. It becomes apparent that only small parts 
of the natural language sentence are actually formalized, 
and that each requirement is easily readable still. However, 
the keywords must be set beforehand and made available to 
the requirements engineer, so that proper formalization is 
possible. As demanded in AvioNET the process is overall 
more standardized and this allows for a higher degree of 
automation and therefore provides easier access to interfaces 
between the various process steps, while remaining intuitive 
for any user.

Some of these requirements are static and don’t need 
to get reconfigured every test run, since they are the basis 
an ARINC 653 system is build on. Dynamic requirements 
include the CAN IDs, the message content, the baud rate, 
the message length and the periodic cycle for the partition 
process. Changing the parameters of these dynamic require-
ments produces the biggest amount of the unproductive 
workload, aimed to be reduced by EasyConfig.

Said dynamic parameters are depicted in Fig. 5 in square 
brackets in relation to each other. As previously discussed, 
testing the entire range of every requirement is undesirable, 

Table 1   Requirement list No. Requirement

1 The device shall host 1 separate OS partition
1.1 The OS partition shall have 2 CAN sampling ports
1.1.1 The CAN ports shall have a nonextended specifiable CAN ID
1.1.2 The CAN ports shall send and receive messages
1.1.3 The CAN ports shall support specified baud rates [125;250;500;1000] kBaud
1.1.4 The output message length shall be configurable
1.1.5 All viable message lengths shall be receivable
2 The device shall host 1 application partition
2.1 The partition shall host 1 periodicprocess
2.1.1 The process cycle time shall be freely configurable
3 The partitions shall communicate via 1 intra-partition sampling port
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Fig. 5   Device configuration
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especially considering the need for cross-testing of the 
parameters, as to ensure that no fault is caused by combina-
tions which were not taken into account. Therefore, each rel-
evant parameter is given an individual range of values to be 
tested, which is accounted for in all variations. The “Cycle 
Process Time” is divided in values equal to 2 to the power 
of n in milliseconds, with n being a value between 0 and 
10, as to cover a wide range of possible cycle times. Since 
no precise information on possible cycle times is available, 
these values were chosen under the assumption that most 
application requirements are fulfilled. “Data Values” were 
set depending on the given data type, with the focus set on 
examining the resulting edge cases, which are derived from 
the minima and maxima. Data types included are:

•	 (un-)signed int8
•	 (un-)signed int16
•	 (un-)signed int32
•	 single

This list can be extended if needed, but was deemed as suf-
ficient for the examined PoC.

The “CAN ID” is non-extended and therefore varies 
between the natural values of 0 and 2047. These are the edge 
cases that will be tested for the in- and outgoing messages. 
Therefore, each test configuration needs at least two out- 
and two ingoing CAN Messages. The “CAN Data Length 
Code (DLC)” ranges between 1 and 8. But since the range 
is determined indirectly through the bitwise setting of the 
respective messages, not all DLC values must be checked. 
Instead, the focus will be set on ensuring that each data field 
is written and read correctly. The “baud rate” will be tested 
for every case, since the usage domain is fairly small due to 
the defined requirements. Additionally, 125 kbit/s and 1000 
kbit/s represent the minimum and maximum baud rate for 
CAN communication, so that both low and high speed buses 
are analyzed.

5.2 � Test setup

The tests are set up as depicted in Fig. 6. On the Control-PC, 
the executables get generated from the source requirements 
and are subsequently loaded onto the UDE via the USB con-
nection before the configuration is flashed from the UDE 
onto the FCS-Device via the JTAG-connection. All of these 
steps are monitored and controlled through the MATLAB 
instance running on the Control-PC, which controls the UDE 
via a COM interface.

As shown in Fig. 6, the two CAN-Ports from the FCS-
Device are connected to each other and are used to close 
a CAN-Loop for testing both in- and output of the device 
with as little effort as possible. The CAN-Loop is forked, 
with the UDE as a read-only participant in the CAN-bus. 

Thereby, the UDE can record all messages sent on the bus 
and store them on an internal storage before transferring 
them to the Control-PC via the USB connection, where 
the validity of the test run is examined. A live validation 
is not necessary, as the goal is to test multiple configura-
tions in a row without any manual interference. Should 
one or more configurations exhibit faulty behavior, it can 
be manually analyzed in a following step not covered in 
EasyConfig, as this task would require more extensive user 
input. Alternatively, since AvioNET is planned as a holis-
tic tool network approach, eventually test analysis meth-
ods will be made available as well. The engineer would 
then have to use the respective interface within AvioNET 
to get provided with assistance to improve the debugging 
process. Nevertheless, the workload for finding faulty 
behavior or confirming the validity of the configurations 
is completely removed and only an eventual fix must be 
designed manually.

The proper hardware setup is shown in Fig. 7. The Flight 
Control Hardware (FCS-HW) is shown on the right, with 
the UDE being on the left. The CAN cables are fitted with 
resistors as required by the CAN protocol, and the JTAG 

UDE

FCS-Device

Control-PC

CAN

USB

JTAG

Fig. 6   Test setup

Fig. 7   Test setup with real hardware
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and PC connection from the UDE to the FCS-HW and PC 
respectively are shown as well.

6 � Conclusion and outlook

The objective of this paper was to develop a semi-automatic 
toolchain for implementing a configuration derived from 
requirements on a Flight Control Hardware. This was suc-
cessfully achieved with EasyConfig as a part of the newly 
developed holistic approach AvioNET at the FST, which 
provides a seamless model-based approach for avionics 
development. By deriving the requirements written in natu-
ral language automatically and transforming this data into 
configurations for virtual and real hardware development, 
the overall workload is reduced significantly, and continuous 
validation was enabled. Furthermore, test cases for the gen-
erated configurations were derived parallelly and applied for 
verification purposes. EasyConfig utilizes popular and com-
monly available tools in the aviation industry, which makes 
it easy to implement for manufacturers. Additionally, the 
virtual and hardware configuration artifacts are convertible 
throughout the complete development, which also makes 
early validation without the specific devices possible. Over-
all, it was possible to remove various tedious transforma-
tion steps and to decrease the manual workload significantly. 
Nevertheless, the user still has full control over the process 
and is able to monitor all important artifacts and intervene 
in the process. This shifts the focus of the stakeholders to a 
knowledge-based engineering approach, since time spent on 
trivial tasks is reduced.

The automatically generated test cases prove that the con-
figurations are valid and fulfill the requirements set by the 
ARINC 653 Part 4 standard, which means that the toolchain 
is applicable for the analyzed IMA-like FCS systems.

While the application used in this paper was merely a 
PoC, future development should focus on implementing 
more complex applications, as to examine the scalability 
of the approach. Additionally, the configuration of the I/
Os must be expanded further, so that the full spectrum of 
avionic communications is covered. Furthermore, the possi-
bility of adapting the toolchain to provide assistance for con-
figuring multi-core systems should be explored. Since this 
technology will gain importance in the future and the access 
to a multi-core board is already established, this step is a 
natural follow-up. Lastly, an intuitive user interface should 
be added, as to further improve the usability of the toolchain.

Moreover, it should be noted that the presented 
approach is not just limited to Flight Control Hardware, 
but applicable to other fields as well. Due to the focus 
on standardization and formalization of the underlying 
models, interfaces are easily introduced, which allows 
the methodology to be easily be integrated into any IMA 

workflow and the authors plan to adapt the toolchain as 
such. Future works will expand the toolchain’s interfaces 
to allow for additional (virtual) device configurations.
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