
Vol.:(0123456789)1 3

CEAS Aeronautical Journal (2023) 14:271–280
https://doi.org/10.1007/s13272-022-00633-y

ORIGINAL PAPER

A semi‑automated approach for requirement‑based early validation
of flight control platforms

Philipp Chrysalidis1  · Hauke Hoeber1 · Frank Thielecke1

Received: 24 February 2022 / Revised: 8 November 2022 / Accepted: 6 December 2022 / Published online: 20 December 2022
© The Author(s) 2022

Abstract
With the current trends in aviation like Single-Pilot-Cockpits and more autonomous functions in aircraft, flight control avi-
onics are bound to become more complex. Future platforms will need to compensate for one or even both pilots, which will
require systems that are more reliable. However, state-of-the-art development of flight control avionics does not yet support
these demands efficiently. The development process involves numerous stakeholders who are communicating without stream-
lined interfaces. This leads to a slow and error-prone process during development. New methods are required to improve
efficiency and to pave the way for future technologies. In this work, the authors introduce a semi-automatic toolchain which
derives usable code for the configuration of devices from natural language requirements. The requirements are noted through
modular components, stored as a model-based configuration file and are transformed into executables in the last step. This
novel approach allows engineers to input their expertise when defining requirements, while removing tedious transformation
tasks. Through automatic configuration testing, the validity of the approach is confirmed.

Keywords  Early validation · Automatic toolchain · MBSE

1  Introduction

Avionic functions have become progressively more complex
in recent years and with the planned advancements like Sin-
gle-Pilot-Cockpits or completely autonomous aircraft, this
trend will most likely continue. To allow for development of
these futuristic systems, the development process itself also
must be adapted and made future-proof, since modern Flight
Control Systems (FCS) will have to substitute one or even
both pilots reliably in civil aviation. While the required tech-
nology has not matured enough yet, its implementation must

be made easier to allow for a feasible use once it is ready.
Therefore, current development, which is done mostly manu-
ally by the various stakeholders involved in the process, must
be changed to accommodate for the higher complexity, while
also ensuring the same level of safety and reliability.

Consequently, a semi-automatic toolchain was developed
which assists the stakeholders at the device development,
verification and validation, as to reduce the workload in this
specific domain. This is part of AvioNET, a broader model-
based approach for connecting avionics development tools
developed at the Institute of Aircraft Systems Engineering
(FST) of the Hamburg University of Technology (TUHH).
The holistic approach aims to solve the problem of increas-
ing complexity with generic and formalized processes for
the development of avionic systems. This is described in
greater detail, after a short discussion of related work regard-
ing toolchain development (Sect. 2) in Sect. 3. The method-
ology for the device development domain in the scope of
this paper is presented in Sect. 4 and afterward demonstrated
in a specific FCS use case in Sect. 5. The paper finishes
with Sect. 6 where the conclusion and an outlook for further
development are given.

Hauke Hoeber and Frank Thielecke have contributed equally to this
work.

 *	 Philipp Chrysalidis
	 philipp.chrysalidis@tuhh.de

	 Hauke Hoeber
	 hauke.hoeber@tuhh.de

	 Frank Thielecke
	 frank.thielecke@tuhh.de

1	 Institute of Aircraft Systems Engineering, Hamburg
University of Technology, Nesspriel 5, 21129 Hamburg,
Hamburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s13272-022-00633-y&domain=pdf
http://orcid.org/0000-0003-2236-4924

272	 P. Chrysalidis et al.

1 3

2 � Related work

An automated toolchain for the formal verification of avi-
onic Simulink designs has been developed at the Masaryk
University in cooperation with industry partner Honeywell
[1]. The toolchain is targeted at safety-critical systems,
as the manual verification for such complex systems is
error-prone and time-consuming. A finished Simulink
design acts as the input of the toolchain and is checked
by constraints automatically derived from the system
requirements. The approach is supported by proprietary
Honeywell tools and provides the user with the informa-
tion on the design validity. Should the design be invalid,
an alternative model design is proposed.

Fortiss and various research and industry partners, includ-
ing among others THALES, developed a Model-Based Sys-
tems Engineering (MBSE) approach to create the DREAMS
toolchain for a mixed-critically system [2]. While not fully
automated, the respective tools for the individual develop-
ment steps have manual exchange interfaces. Therefore, out-
put artifacts can be used as inputs when necessary. Addition-
ally, the artifacts ensure the process traceability required by
safety standards such as DO-178C [3]. Since the toolchain
is applied to multi-core processors, it is far more detailed
than any approach for a single-core platform would be, as
multi-core constraints must be considered. Nevertheless, a
trend for future development is emerging in research and in
the aviation industry and must be taken into account.

Together with various industry partners, the University
of Oxford developed and validated a requirement-based
automated testing method [4]. Instead of manually produc-
ing test scripts for low-level requirements, they are auto-
matically generated through the combination of natural
language and model checking. Thereby, the overall test-
ing effort is reduced compared to the common industry
standard. Moreover, the authors prove, that automatic test
case generation is indeed capable of satisfying verification
objectives as required in DO-178C.

The Institute of Aircraft Systems at the University of
Stuttgart is currently developing a MBSE toolchain for the
development of Integrated Modular Avionics (IMA) plat-
forms [5]. The toolchain is embedded in a toolsuite which
aims to support multiple stakeholders in the IMA develop-
ment process. Artifacts are generated in their respective
development phase and can be distributed among tools
with appropriate interfaces. Nevertheless, the stakeholders
provide the majority of the system knowledge and remain
in control of the process. Through the removal of tedi-
ous transformation tasks between parties, the focus of the
manual labor can be focused on providing better engineer-
ing solutions. Thus creating a more suitable framework for
semi-automated knowledge-based engineering.

An MBSE approach for an avionics development tool-
chain was already introduced in a prior work at the FST.
Halle and Thielecke propose a seamless toolchain spanning
the complete IMA development process, separating it into
the four key segments Architecture, Configuration, Testing
and Simulation [6]. By providing interfaces for all align-
ing segments, the manual workload will be reduced signifi-
cantly, as tedious tasks (i.e., data transformation between
different formats) are automated. Additionally, the develop-
ment focuses on automating recurring and tedious processes
inside the individual segments. Thereby, the stakeholders
are not replaced, but instead have their development focus
shifted toward knowledge-based problem solving. Further-
more, the artifact exchange between segments provides the
opportunity of process traceability, which is a key avionic
certification requirement.

The need for further automation in the development pro-
cess is not unique to the aviation industry. It is also present
in other sectors, such as the automotive industry. Aniculaesei
et al. designed a SCADE-based toolchain with which the
user is assisted in generating test cases [7]. The only remain-
ing manual step is to derive and formalize system require-
ments, while various tools generate the tests automatically in
a step-by-step process. Similarly to the previously presented
works, the tools share common interfaces and artifacts are
generated for traceability purposes.

3 � Overall tool framework

As the trend toward further automation of the avionics
development process is imperative, the toolchain devel-
oped at the FST is continually being improved. The authors
advanced the methodology to encompass a holistic tool
network, which loosely follows the V-model for develop-
ment [8]. With the Avionics Next-Gen Engineering Tools
(AvioNET) shown in Fig. 1 the already existing segments of

ADAM

i t
vsc

a

Fig. 1   AvioNET Tool network overview

273A semi‑automated approach for requirement‑based early validation of flight control platforms﻿	

1 3

Architecture (A), Configuration (C), Testing (T) and Simula-
tion (S) in [6] are expanded by Verification and Validation
(V &V), Visualization and Insights (I) and Avionics Data
Management (ADAM).

All sections are highly interconnected and data is freely
transferable between them. Moving from a toolchain to a
tool network emphasizes the high degree of interconnectiv-
ity, which is necessary to create a seamless development
process from beginning to end through a high level of for-
malized methods and automation. Therefore, individual
tools need to have interfaces not only to tools from align-
ing segments, but they should also be compatible with the
tools of unaligned segments. However, allowing this amount
of flexibility by simply linking all the tools between each
other would lead to an infeasible workload, which is why
ADAM was introduced into AvioNET. As a central hub
for data exchange and storage, the tools only require a sin-
gle interface to ADAM, which allows for continuous data
transformation through standardized interfaces. The tool-
chain presented in this paper (see Sect. 4) is set into this tool
framework and therefore requires a generic MBSE approach
to satisfy the interconnectivity requirements in its own seg-
ment and outside its own scope as well.

3.1 � Validation and verification

In the context of AvioNET the toolchain is set in the Valida-
tion and Verification (V &V) segment, in which validation
and verification processes are aimed to be introduced earlier
in the development. This would decrease the workload and
cost of design flaws, as they are detected more timely and
therefore have a smaller effect on following steps. Conse-
quently, validation and verification must be done continu-
ously, which is made possible through the assessment of
virtual products.

By establishing a virtual environment in which a virtual
platform mirroring the real hardware is available, test cases
can be executed independently of the real product even
before it is finished. Additionally, the real hardware operat-
ing system can be emulated to provide the possibility of test-
ing run time behavior of applications in a real-time environ-
ment. Once the real hardware is finished, it can be tested as
part of a hardware-in-the-loop simulation, since the virtual
and the real product are kept consistent with each other.

Through early validation, the common V-Model of
development will be improved and modernized to contain
a virtual branch, transferring it to a W-Model as depicted
in Fig. 2. When failing validation in the virtual branch, the
additional iteration cycle is far simpler as neither develop-
ment nor integration on real hardware is required.

When using a W-Model, it becomes apparent why the
high level of interconnectivity is required for AvioNET.
As setting up a virtual environment is additional work, the

invested time must be regained through a high degree of
reusability of artifacts and methods, i.e., for testing.

4 � Easy configuration toolchain

The objective of the Easy Configuration Toolchain (Easy-
Config) is to assist the configuration of avionics hardware
and validating said configuration continuously, as described
in the previous section. The necessary work flow is shown in
Fig. 3 and closely resembles the theoretical structure estab-
lished in subsect. 3.1. To initialize the toolchain the user sets
requirements for the device. These are relatively low-level
requirements, which are derived from the overall system
requirements and are set manually.

The requirements are written in natural language and
checked for relevant keywords representative of configu-
ration elements. Thereby, the requirement documentation
remains easy to understand while still providing a rule set
for the transformation into formal definitions. When setting
the requirements manually, it is important to formalize them
accordingly, so that their attributes follow a predefined set
of rules. The formalized natural language requirements can
then be interpreted and transformed into formal language.
Afterward, the formally defined system behavior and inter-
face definition of the avionics platform lay the basis for the
following model and test generation. The model generation
is twofold. Both a virtual model and a real configuration are
derived and are based on similar metamodels as to provide
an easy way for integrating interfaces. The configuration
for the virtual model is set to run in a virtual environment,
which mirrors the real hardware environment. In keeping
both the configurations and the environments consistent
with each other, their information value remains the same.
Thereby, the virtual tests partially replace the hardware tests
as a form of early validation. Instead, the demonstration on
real hardware ideally evolves to a mere formal step in the
certification process, not leading to any alterations. This way

System
Requirements

Architecture

Configuration

Integration
on Hardware

Hardware
Integration

Test

Verification

Validation

Setup of virtual
Environment

Virtual
Integration

Virtual
Verification

Virtual
Validation

Fig. 2   W-Model for early validation

274	 P. Chrysalidis et al.

1 3

expensive iteration cycles with hardware adaption would be
cut, but if retroactive changes prove to be necessary, both
configurations are easily kept consistent through their inter-
changeable data format. Therefore, changes are transferable
in both directions if adaptions are required. By following
this work flow, EasyConfig is the real world application
of the introduced W-Model, with a virtual and a real hard-
ware branch. As demanded in the AvioNET concept, a high
degree of interconnectivity is provided for in this toolchain
and the metamodel-based configurations allow for simple
data transformation and storage through easily generated
generic interfaces.

The device will be tested via bare module tests, since
the focus is the device itself and not the functionality of
an eventual application. Therefore, the test application will
be as complex as necessary but as simple as possible. This
way, the application design is easily verifiable beforehand
and does not require an additional major workload. Using
this approach also guarantees adaptability through simplic-
ity, as a simple application can be changed easier to fit the
respective test case.

4.1 � Automatic test case generation

The generation of the test cases follows a heuristic
approach. Through already available information of the
hardware, environment boundary conditions are derivable.
These are predetermined trough keywords such as “OS-
Partition” and further specified by more detailed defini-
tions and the quantity. Device ports would be defined as an
“I/O-Capability” with the respective communication pro-
tocol as the specification, i.e., “AFDX” or “CAN” with the

amount of ports depending on the chosen hardware. These
requirements are tested by running edge case scenarios,
covering a possible range or the complete spectrum. When
testing possible CAN IDs covering the whole range would
produce a high amount of unnecessary data, because test-
ing the edge cases already fulfills the goal. Using similar
approaches for other requirements is key in reducing the
overall test effort and speeding up automation.

The generated test cases are transformed into a MAT-
LAB format and thereby available for toolchain process-
ing. In the next step, user action regarding the required
tests is needed. Since a metamodel approach was chosen
and devices from different suppliers usually also have dif-
fering metamodels, the user must actively choose, which
model elements fit the given test cases. As an example,
the partition ports for an ARINC 653 [9] conform device
can be examined. Each partition is required to provide
either sampling or queuing ports. In the model these can
be named either “Sampling Port”, “Queuing Port” or “Par-
tition Sampling Port” and so on. Each of these possible
naming conventions differs and is therefore not necessar-
ily identifiable by model interpreting algorithms. But an
engineer operating the toolchain is capable of recognizing
the fitting model name. Through this manual step no exten-
sive model knowledge must be incorporated into the test
generation code and therefore the approach is adaptive and
applicable to all models following a matching metamod-
eling approach. This makes the toolchain highly generic,
as it was demanded by the AvioNET requirements.

The results of the tests get recorded automatically in
the virtual and hardware environment via the respectively

Fig. 3   Toolchain for automatic
test generation

Real
Configuration

Requirements

Test Cases Configuration

Virtual Early
Validation

Real
Device

Virtual
Model

Virtual
Device

Virtual
Test

Real
Test

Interchangeable Data Format

Certification on
real Hardware

275A semi‑automated approach for requirement‑based early validation of flight control platforms﻿	

1 3

chosen test systems and are stored as separate artifacts and
analyzed against the set requirements.

4.2 � Early validation

In the following step, the virtual environment for the early
validation is set up. As shown in Fig. 4, the early validation
is almost completely independent of a real product and only
the configuration for the virtual and the real device share a
common root, as to keep the models consistent. Therefore,
a virtual product must be created mirroring the capabilities
of the real hardware, which in this case is a standard ARINC
653 capable device. While this model must be improved
upon to exactly match the behavior of the specific device, it
fulfills the task of validating the configurations as the real
hardware restrictions are applied in the virtual world as well.
Additionally, no real-time behavior has been implemented
yet, but since the real hardware tests will be done later in
the process, a preliminary validation still provides valuable
information.

The early validation is done in MATLAB Simulink and
requires no additional tools, once the requirements have
been transformed. Therefore, the automation process is
straight forward and easy to use, which makes it easy to
integrate into the existing development process. Because
of the chosen model-based approach, the virtual configura-
tion is transformable into the real hardware configuration,

meaning that possible changes can be included seamlessly in
both environments without any additional workload.

4.3 � Hardware integration and test

Following a successful early validation, the toolchain
finally will be applied to real hardware and the main goal
of AvioNET to reduce complexity and improve the devel-
opment process is realized. Configuring a safety-critical
piece of hardware such as a flight control device requires
various tedious tasks from the engineer which are replaced
through smart assistance by various tools and through a
high degree of formalization, leaving less room for human
errors. By linking various applications through strictly
defined manual and automatic interfaces, the process
becomes more clear and is easier to manage. The applica-
tions used in the toolchain are chosen based on their com-
mon use in the aviation industry and research. Require-
ments management is done in IBM Doors, since it has a
user-friendly graphical user interface, while also allowing
for exporting data in various machine-readable formats.
However, this process step is not limited to IBM Doors
and could be done in any other model-based descriptive
language. While being noted in natural language, the
requirement definitions must adhere to formulation rules,
as to make automatic extraction possible. Therefore, the
respective keywords must be used to correctly predefine

Fig. 4   Detailed work flow for
EasyConfig Requirements

(natural language) Export
Formalized

Requirements

Generation
Configuration for

Virtual Device

Integration on
Virtual Device

Integration on
Virtual Device

Simulation

Configuration
for Real Device

Transformation
Source
Code

Compile Executables

Automatic adaptions when necessary

276	 P. Chrysalidis et al.

1 3

the device. On the basis of these formalized requirements,
configurations and test descriptions are automatically
generated.

Based on the formalized requirements configurations,
test applications and test descriptions are generated via an
automation procedure, which was developed in MATLAB.
The automation environment executes the aforementioned
keyword-based algorithms for each requirement. These
algorithms must be defined by the test engineer once but
are completely reusable as most of the necessary tests for
e.g., a specific interface do not depend on the hardware.
The set of automatically generated tests is not meant to be
a complete set, but to replace tedious and repetitive tasks
otherwise done by an engineer. The tests can be easily
expanded manually, either by expanding the generation
algorithm or by creating the artifacts by hand.

The configurations for the tests are generated in a sys-
tematic AvioNET specific hardware independent format,
that aims to be easy to transform in a variety of hardware-
specific configurations. The applications are generated as
MATLAB Simulink models as Simulink is widely sup-
ported by the industry already, and it is also possible to
generate code from the model that could be integrated.

The configurations and the generated test applications
are used to generate a virtual representation of the device
(see [10]), but also used to generate a load for the real
hardware. As mentioned in subsect. 4.2 with the virtual
representation of the device, it is possible to define and
execute tests without the need for real hardware. The trans-
formation between the proprietary virtual and the stand-
ardized real hardware environment is done via XML style
sheet transformations (XSLT). The proprietary configura-
tion and the test application is compiled with the HIGH-
TEC compiler to provide the load for the device. The load
is flashed onto the device via the Universal Debug Engine
(UDE) from PLS. This process is automated through the
Component Object Model (COM) interface between the
UDE and MATLAB. The test descriptions for both the
virtual and the real device are adapted to their respec-
tive test systems, Simulink Test and the UDE respectively.
Both of these test systems are highly flexible, which makes
them applicable to every configuration, which is neces-
sary to fulfill the generic requirements for EasyConfig
derived from AvioNET. The UDE provides the possibil-
ity of recording all commonly used avionics communi-
cation protocols as separate channels. Using a common
real-time recording device for all possible communication
configurations, each specific result documentation remains
comparable and consistent even between different devices
and models. Additionally, this allows for using a device
and model independent approach for analyzing the data,
which is especially important for the real hardware, as the

virtual environment is always modeled within the same
framework.

4.4 � Toolchain artifacts

As it was already pointed out in Sect. 2 ensuring traceability
is of the utmost importance when developing safety critical
avionics software. Therefore, the toolchain was developed
with traceability as a necessary requirement. For every step,
artifacts are created and stored independently of the previous
and following steps, as to keep each artifact uncorrupted. For
traceability, the corresponding requirement of the artifact is
stored in the metadata of the artifact. The following artifacts
are created:

•	 Requirements document
•	 Virtual device configuration
•	 Hardware device configuration
•	 Hardware device source code
•	 Hardware device executables
•	 Test specification document
•	 Test scripts for generated test cases
•	 Recorded test data

The readability of the different artifacts in their pure form var-
ies drastically. While the requirements document is written
in natural language and therefore is easy to understand for a
human user, both the source code and the configuration files
are generated in harder to read formal language. While the
source code must be analyzed with common code reviewing
techniques, the hardware configuration can be analyzed easily,
as an additional Eclipse-based tool for reading and writing the
document was developed for a more user-friendly experience.
Thereby, traceability is possible through either common meth-
ods or specifically designed tools, which makes the toolchain
applicable for a proper avionics development processes.

Additionally, to providing traceability, one of the artifacts
also acts as an interface document between EasyConfig and
AvioNET. As described in Sect. 3 EasyConfig is supposed
to be implemented into the holistic MBSE tool network
developed at the FST. To ensure this interconnectivity, the
hardware configuration document is based on an Ecore-
metamodel. This document design is key, as it provides the
possibility for automatically transforming the data through
metamodel-based interfaces between the different process
segments in AvioNET.

5 � Use‑case for a flight control system

The toolchain was applied to an FCS platform to determine
its usability in a realistic use case. The executable is config-
ured for a platform used for hosting industrial Flight Control

277A semi‑automated approach for requirement‑based early validation of flight control platforms﻿	

1 3

Applications. Therefore, the obtained data about the validity
of the toolchain is applicable to a proper industrial develop-
ment process. In the scope of the process, the set require-
ments and the chosen application are low-level as to provide
a simple-to-understand Proof of Concept (PoC).

5.1 � Device requirements

The chosen device is an Aurix Tricore Board (ATB)
designed by Infineon. As Commercial Off The Shelf (COTS)
single-core hardware becomes less available, choosing a
multi-core board is a future-proof method, as development
and support will continue over the next decades [11]. Fur-
thermore, research into multi-core systems has gained sig-
nificant traction, as already discussed in Sect. 2 (see [2]).
Proving the validity of a newly developed toolchain for such
a device is of utmost importance, since the flexibility of pro-
viding configuration to both single- and multi-core platforms
will become a necessity.

Since the objective is to develop an FCS platform, the
original ARINC 653 specification for IMA systems is over
defined. Instead, the platform devices will be specified by
the subset ARINC 653 Part 4 [12]. This standard is spe-
cifically designed for systems with fewer capabilities and a
lower complexity than usual IMA platforms. Thereby, it is
possible to develop IMA-like applications and still meeting
a well-defined and commonly used standard, which ensures
the quality of the designed platform. Furthermore, testing
conditions are already predefined in the standard and can be
implemented seamlessly in EasyConfig.

For the communication between devices CAN was cho-
sen, as the protocol is commonly used in avionics applica-
tions. An ATB provides two CAN-Interfaces without any
additional hardware expansions, which satisfies the require-
ments for the chosen PoC. With the described constraints
taken into consideration, the requirements listed in Table 1
were derived.

As already mentioned, these are simple requirements for
proving the validity of EasyConfig. However, they are still
sufficient for providing the necessary basis for this research.
The blue marked parts for each requirement are the key-
words the algorithm analyzes and on which the configura-
tion is build upon. It becomes apparent that only small parts
of the natural language sentence are actually formalized,
and that each requirement is easily readable still. However,
the keywords must be set beforehand and made available to
the requirements engineer, so that proper formalization is
possible. As demanded in AvioNET the process is overall
more standardized and this allows for a higher degree of
automation and therefore provides easier access to interfaces
between the various process steps, while remaining intuitive
for any user.

Some of these requirements are static and don’t need
to get reconfigured every test run, since they are the basis
an ARINC 653 system is build on. Dynamic requirements
include the CAN IDs, the message content, the baud rate,
the message length and the periodic cycle for the partition
process. Changing the parameters of these dynamic require-
ments produces the biggest amount of the unproductive
workload, aimed to be reduced by EasyConfig.

Said dynamic parameters are depicted in Fig. 5 in square
brackets in relation to each other. As previously discussed,
testing the entire range of every requirement is undesirable,

Table 1   Requirement list No. Requirement

1 The device shall host 1 separate OS partition
1.1 The OS partition shall have 2 CAN sampling ports
1.1.1 The CAN ports shall have a nonextended specifiable CAN ID
1.1.2 The CAN ports shall send and receive messages
1.1.3 The CAN ports shall support specified baud rates [125;250;500;1000] kBaud
1.1.4 The output message length shall be configurable
1.1.5 All viable message lengths shall be receivable
2 The device shall host 1 application partition
2.1 The partition shall host 1 periodicprocess
2.1.1 The process cycle time shall be freely configurable
3 The partitions shall communicate via 1 intra-partition sampling port

OS
Partition

Application
Partition

Partition
Cycle

Process
[time]

[baud Rate]

CAN [ID]

CAN [ID]

[DLC]

[DLC]

CAN [ID]

CAN [ID]

 [DLC]

[DLC]

[baud Rate]

[Data][Data]

Fig. 5   Device configuration

278	 P. Chrysalidis et al.

1 3

especially considering the need for cross-testing of the
parameters, as to ensure that no fault is caused by combina-
tions which were not taken into account. Therefore, each rel-
evant parameter is given an individual range of values to be
tested, which is accounted for in all variations. The “Cycle
Process Time” is divided in values equal to 2 to the power
of n in milliseconds, with n being a value between 0 and
10, as to cover a wide range of possible cycle times. Since
no precise information on possible cycle times is available,
these values were chosen under the assumption that most
application requirements are fulfilled. “Data Values” were
set depending on the given data type, with the focus set on
examining the resulting edge cases, which are derived from
the minima and maxima. Data types included are:

•	 (un-)signed int8
•	 (un-)signed int16
•	 (un-)signed int32
•	 single

This list can be extended if needed, but was deemed as suf-
ficient for the examined PoC.

The “CAN ID” is non-extended and therefore varies
between the natural values of 0 and 2047. These are the edge
cases that will be tested for the in- and outgoing messages.
Therefore, each test configuration needs at least two out-
and two ingoing CAN Messages. The “CAN Data Length
Code (DLC)” ranges between 1 and 8. But since the range
is determined indirectly through the bitwise setting of the
respective messages, not all DLC values must be checked.
Instead, the focus will be set on ensuring that each data field
is written and read correctly. The “baud rate” will be tested
for every case, since the usage domain is fairly small due to
the defined requirements. Additionally, 125 kbit/s and 1000
kbit/s represent the minimum and maximum baud rate for
CAN communication, so that both low and high speed buses
are analyzed.

5.2 � Test setup

The tests are set up as depicted in Fig. 6. On the Control-PC,
the executables get generated from the source requirements
and are subsequently loaded onto the UDE via the USB con-
nection before the configuration is flashed from the UDE
onto the FCS-Device via the JTAG-connection. All of these
steps are monitored and controlled through the MATLAB
instance running on the Control-PC, which controls the UDE
via a COM interface.

As shown in Fig. 6, the two CAN-Ports from the FCS-
Device are connected to each other and are used to close
a CAN-Loop for testing both in- and output of the device
with as little effort as possible. The CAN-Loop is forked,
with the UDE as a read-only participant in the CAN-bus.

Thereby, the UDE can record all messages sent on the bus
and store them on an internal storage before transferring
them to the Control-PC via the USB connection, where
the validity of the test run is examined. A live validation
is not necessary, as the goal is to test multiple configura-
tions in a row without any manual interference. Should
one or more configurations exhibit faulty behavior, it can
be manually analyzed in a following step not covered in
EasyConfig, as this task would require more extensive user
input. Alternatively, since AvioNET is planned as a holis-
tic tool network approach, eventually test analysis meth-
ods will be made available as well. The engineer would
then have to use the respective interface within AvioNET
to get provided with assistance to improve the debugging
process. Nevertheless, the workload for finding faulty
behavior or confirming the validity of the configurations
is completely removed and only an eventual fix must be
designed manually.

The proper hardware setup is shown in Fig. 7. The Flight
Control Hardware (FCS-HW) is shown on the right, with
the UDE being on the left. The CAN cables are fitted with
resistors as required by the CAN protocol, and the JTAG

UDE

FCS-Device

Control-PC

CAN

USB

JTAG

Fig. 6   Test setup

Fig. 7   Test setup with real hardware

279A semi‑automated approach for requirement‑based early validation of flight control platforms﻿	

1 3

and PC connection from the UDE to the FCS-HW and PC
respectively are shown as well.

6 � Conclusion and outlook

The objective of this paper was to develop a semi-automatic
toolchain for implementing a configuration derived from
requirements on a Flight Control Hardware. This was suc-
cessfully achieved with EasyConfig as a part of the newly
developed holistic approach AvioNET at the FST, which
provides a seamless model-based approach for avionics
development. By deriving the requirements written in natu-
ral language automatically and transforming this data into
configurations for virtual and real hardware development,
the overall workload is reduced significantly, and continuous
validation was enabled. Furthermore, test cases for the gen-
erated configurations were derived parallelly and applied for
verification purposes. EasyConfig utilizes popular and com-
monly available tools in the aviation industry, which makes
it easy to implement for manufacturers. Additionally, the
virtual and hardware configuration artifacts are convertible
throughout the complete development, which also makes
early validation without the specific devices possible. Over-
all, it was possible to remove various tedious transforma-
tion steps and to decrease the manual workload significantly.
Nevertheless, the user still has full control over the process
and is able to monitor all important artifacts and intervene
in the process. This shifts the focus of the stakeholders to a
knowledge-based engineering approach, since time spent on
trivial tasks is reduced.

The automatically generated test cases prove that the con-
figurations are valid and fulfill the requirements set by the
ARINC 653 Part 4 standard, which means that the toolchain
is applicable for the analyzed IMA-like FCS systems.

While the application used in this paper was merely a
PoC, future development should focus on implementing
more complex applications, as to examine the scalability
of the approach. Additionally, the configuration of the I/
Os must be expanded further, so that the full spectrum of
avionic communications is covered. Furthermore, the possi-
bility of adapting the toolchain to provide assistance for con-
figuring multi-core systems should be explored. Since this
technology will gain importance in the future and the access
to a multi-core board is already established, this step is a
natural follow-up. Lastly, an intuitive user interface should
be added, as to further improve the usability of the toolchain.

Moreover, it should be noted that the presented
approach is not just limited to Flight Control Hardware,
but applicable to other fields as well. Due to the focus
on standardization and formalization of the underlying
models, interfaces are easily introduced, which allows
the methodology to be easily be integrated into any IMA

workflow and the authors plan to adapt the toolchain as
such. Future works will expand the toolchain’s interfaces
to allow for additional (virtual) device configurations.

Acknowledgements  This work was funded by the German Federal
Ministry of Economic Affairs and Energy (BMWi) within the PLA-
TEAU project. Their support and the cooperation of the partners is
greatly appreciated.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Barnat, J., Beran, J., Brim, L., Kratochvíla, T., Ročkai, P.: Tool
Chain to Support Automated Formal Verification of Avionics
Simulink Designs. In: Formal Methods for Industrial Critical
Systems, 17th International Workshop, Paris, France (2012)

	 2.	 Barner, S., Diewald, A., Migge, J., Syed, A., Fohler, G.,
Faugère, M., Pérez, D.G.: DREAMS Toolchain: Model-Driven
Engineering of Mixed-Criticality Systems. In: 2017 ACM/IEEE
20th International Conference on Model Driven Engineering
Languages and Systems (MODELS), Austin, TX, USA (2017)

	 3.	 DO-178C - Software Considerations in Airborne Systems and
Equipment Certification. Standard, Radio Technical Commis-
sion for Aeronautics (RTCA), Washington, D.C., USA (2011)

	 4.	 Sun, Y., Brain, M., Kroening, D., Hawthorn, A., Wilson, T.,
Schanda, F., Jiménez, F.J.G., Daniel, S., Bryan, C., Broster, I.:
Functional Requirements-Based Automated Testing for Avion-
ics. In: 2017 22nd International Conference on Engineering of
Complex Computer Systems (ICECCS), Fukuoka, Japan (2017)

	 5.	 Darwesh, D.N., Annighöfer, B., Reichel, R.: Semi-automated
Deployment of a High-lift System on IMA Using the Selective
Middleware. In: 2017 22nd International Conference on Engi-
neering of Complex Computer Systems (ICECCS), San Diego,
CA, USA (2019)

	 6.	 Halle, M., Thielecke, F.: Tool Chain for Avionics Design,
Development, Integration and Test. In: 1st Workshop on Avi-
onics Systems and Software Engineering AvioSE’19, Stuttgart,
Germany (2019)

	 7.	 Aniculaesei, A., Vorwald, A., Rausch, A.: Automated Gen-
eration of Requirements-Based Test Cases for an Automotive
Function Using the SCADE Toolchain. In: The Eleventh Inter-
national Conference on Adaptive and Self-Adaptive Systems
and Applications (ADAPTIVE 2019), Venice, Italy (2019)

	 8.	 Halle, M., Thielecke, F.: Avionics Engineering Tool Network
(AvioNET):Experiences With Highly Automised and Digital
Processes for Avionics Platform Development. In: 2021 AIAA/

http://creativecommons.org/licenses/by/4.0/

280	 P. Chrysalidis et al.

1 3

IEEE 40th Digital Avionics Systems Conference (DASC) Pro-
ceedings, San Antonio, TX, USA (2021)

	 9.	 653P1-5 Avionics Application Software Standard Interface,
Part 1, Required Services. Standard, SAE ITC, ARINC Industry
Activities, Bowie, MD, USA (2019)

	10.	 Hoeber, H., Thielecke, F.: Eine Simulationsbasierte Meth-
ode zur Fruehzeitigen Validierung Von Avionik-Plattformen.
In: Deutscher Luft- und Raumfahrtkongress DLRK, Frie-
drichshafen, Germany (2018)

	11.	 Kim, J.-E., Yoon, M.-K., Bradford, R., Sha, L.: Integrated
Modular Avionics (IMA) Partition Scheduling with Conflict-
Free I/O for Multicore Avionics Systems. In: 2014 IEEE 38th
Annual Computer Software and Applications Conference, Vast-
eras, Sweden (2014)

	12.	 653P4 Avionics Application Software Standard Interface, Part
4, Subset Services. Standard, SAE ITC, ARINC Industry Activi-
ties, Bowie, MD, USA (2012)

	A semi-automated approach for requirement-based early validation of flight control platforms
	Abstract
	1 Introduction
	2 Related work
	3 Overall tool framework
	3.1 Validation and verification

	4 Easy configuration toolchain
	4.1 Automatic test case generation
	4.2 Early validation
	4.3 Hardware integration and test
	4.4 Toolchain artifacts

	5 Use-case for a flight control system
	5.1 Device requirements
	5.2 Test setup

	6 Conclusion and outlook
	Acknowledgements
	References

