Contents

Preface — V

Part A: Microscopic instruments

Chapter 1

Optical microscopy — 3

1.1 Introduction — 3
1.1.1 Geometrical optics — 4
1.1.2 Formation of optical image — 4
1.1.3 Resolution in case of optical microscope — 6
1.1.4 Diffraction grating — 7
1.1.5 Resolution and numerical aperture — 7
1.1.6 Depth of focus and depth of field — 9
1.2 Construction of the microscope — 9
1.3 Image observation and sensitivity of recording — 12
1.4 Specimen preparation — 16
1.5 Image contrast — 21
1.6 Working with computerized images — 27
1.6.1 Data collection — 27
1.6.2 Data processing and its analysis — 27
1.6.3 Storage of data and its presentation — 28
1.6.4 Computerized storage — 29
1.7 Image interpretation — 31
1.8 Illustrative example on characterization of nanocomposites through optical microscopy — 31
1.9 Conclusion — 32

Chapter 2

Transmission electron microscopy — 34

2.1 Introduction — 34
2.2 Basic principles — 37
2.2.1 Wave properties — 37
2.2.2 Resolution limits and aberrations associated with a lens system — 39
2.3 A comparative analysis between the scanning electron microscope and the transmission electron microscope — 41
2.4 Sample preparation — 43
2.4.1 Mechanical thinning — 44
2.4.2 Electrochemical thinning — 46
Chapter 3
Scanning electron microscope — 65
3.1 Introduction — 65
3.2 Components of a scanning electron microscope — 65
3.2.1 Interaction between the electron ray and the specimen — 67
3.2.2 Conditions associated with ray focusing — 68
3.2.2.1 The energy loss and inelastic dispersion — 70
3.2.3 Excitation of electrons associated with the X-rays — 70
3.2.3.1 Backscattered electrons — 76
3.2.3.2 Image contrast associated with the images from the backscattered electrons — 77
3.3 Scanning electron emission — 78
3.4 Different imaging modes — 81
3.5 Preparation of a specimen and the associated topology — 82
3.5.1 Sputter coating — 83
3.5.2 Failure analysis and fractography — 83
3.6 The process of stereoscopic imaging — 84
3.7 Measurement of parallax — 85
3.8 Illustrative examples — 86
3.9 Conclusion — 87

Chapter 4
Scanning probe microscopy — 91
4.1 Introduction — 91
4.1.1 Surface forces — 91
4.2 Scanning probe microscopes — 94
4.2.1 Atomic force microscopy — 96
Chapter 5
X-ray diffraction analysis — 104
5.1 Introduction — 104
5.1.1 Radiation scattering by crystals — 104
5.1.2 Laue equations and Bragg’s law — 105
5.1.3 Allowed and Forbidden wavelength reflections — 107
5.1.4 Complementary space — 108
5.1.5 The construction of limiting sphere — 109
5.1.6 Bragg’s law and its vector representation — 109
5.1.7 The commentary lattice — 109
5.2 Methods for X-ray diffraction — 110
5.3 The X-ray diffractometer — 111
5.3.1 Powder diffractions — 115
5.3.2 Single crystal Laue diffraction — 117
5.3.3 Rotating single crystal methods — 118
5.4 Diffraction analysis — 118
5.4.1 Atomic scattering factors — 118
5.4.2 Scattering associated with the unit cell — 119
5.4.3 Interpretation of the intensities diffracted — 120
5.4.4 Errors and assumptions made — 121
5.5 Illustrative example — 125
5.6 Conclusion — 128

Part B: Spectroscopic instruments

Chapter 6
Fourier transform infrared (FT-IR) spectrometer — 133
6.1 Introduction — 133
6.2 Instrumental details and working — 133
6.2.1 Radiation source — 133
6.2.1.1 Globar sources — 134
6.2.1.2 Nernst glowers — 134
6.2.2 Infrared detectors — 136
6.2.2.1 Thermal detectors — 136
6.2.2.2 Photon detectors or quantum detectors — 137
6.2.2.3 Mercury Cadmium Telluride — 137
6.2.3 Michelson interferometer — 138
6.3 Sample preparation — 139
6.3.1 Transmission sampling — 140
6.3.1.1 Transmission sampling of solids and powders — 140
6.3.1.2 Transmission sampling of liquids — 141
6.3.1.3 Transmission sampling of gases — 142
6.3.2 Reflectance sampling — 143
6.4 Data handling — 144
6.4.1 Apodization — 144
6.4.2 Resolution — 144
6.4.3 Phase correction — 144
6.4.4 Mirror misalignment — 145
6.5 Data interpretation — 145
6.5.1 Calibration — 146
6.5.2 Prediction — 146
6.5.3 Measurement of absorbance — 147
6.6 FT-IR spectroscopy: Nanofillers and nanocomposites — 147
6.6.1 Identification of metal oxide nanofillers — 147
6.6.2 Identification of carbonaceous nanofillers — 149
6.6.3 Identification in GO/ZnO nanocomposites — 150
6.6.4 Identification in case of polymeric nanocomposites — 151
6.7 Conclusion — 154

Chapter 7
Raman spectrometer — 155
7.1 Introduction — 155
7.2 Instrumental detail, working, and handling of the Raman spectroscopy — 156
7.2.1 Excitation source — 157
7.2.2 Continuous wave lasers — 158
7.2.3 Neodymium-YAGs — 158
7.2.4 Diode lasers — 158
7.3 Sample illumination and collection — 159
7.3.1 Wavelength selector — 159
7.3.2 Monochromators — 160
7.4 FT Raman spectroscopy — 160
7.4.1 Detection of the Raman spectrum — 161
7.4.1.1 Photon counting — 161
7.4.1.2 Photodiode array — 162
7.4.1.3 Charge coupled device (CCD) — 162
7.5 Sample preparation — 164
7.6 Sample handling — 165
7.7 Data handling and interpretation — 166
7.7.1 Quantitative interpretation — 167
7.7.2 Qualitative interpretation — 168
7.8 Examples of Raman spectroscopy — 169
7.8.1 Raman spectroscopy on polystyrene nanocomposites with single-walled carbon nanotubes — 169
7.8.2 Raman spectroscopy on analyzing the interfacial load transfer in case of graphene-based nanocomposites — 172
7.9 Conclusions — 176

Chapter 8
X-ray photoelectron spectroscopy — 177
8.1 Introduction — 177
8.2 Instrumental details and working — 177
8.2.1 Vacuum systems — 178
8.2.2 X-ray sources — 179
8.2.2.1 Standard sources — 180
8.2.2.2 Monochromatic sources — 180
8.2.2.3 Synchrotron sources — 181
8.2.3 Energy analyzer — 181
8.2.4 Cylindrical mirror analyzer (CMA) — 181
8.2.5 Concentric hemispherical analyzer (CHA) — 182
8.2.6 Detectors — 183
8.2.7 Electron multipliers — 184
8.2.8 Channeltrons — 185
8.3 Sample preparation — 185
8.4 Data analysis and interpretation — 187
8.4.1 Pre-alignment — 187
8.4.2 Background signals — 188
8.4.3 Quantification — 188
8.5 Examples on XPS — 189
8.5.1 XPS study of PPy — 189
8.5.2 XPS study of PPy-WO₃ nanocomposites — 190
8.6 Conclusion — 192

Chapter 9
Ultraviolet photoelectron spectroscopy — 193
9.1 Introduction — 193
9.2 Instrumental details and working — 194
9.2.1 Radiation source — 194
9.2.2 Atomic line radiation — 194
9.2.3 Synchrotrons — 196
9.2.4 Monochromators — 196
9.2.5 Vacuum requirements — 198
9.2.6 Energy analyzer — 198
9.2.7 Electron detectors — 199
9.3 Sample analysis — 200
9.3.1 Sample surface analysis — 200
9.3.2 Photoelectron intensities — 201
9.3.3 UV spectra and their interpretation — 203
9.4 Examples on UV-Vis spectrum — 204
9.4.1 Metallic nanoparticles as nanofillers — 204
9.5 Conclusion — 208

Chapter 10
Fluorescence spectroscopy — 210
10.1 Introduction — 210
10.2 Instrumental details — 211
10.2.1 Light source — 211
10.2.2 Monochromator — 212
10.2.3 Flexible cell housing — 212
10.2.3.1 Detection system — 212
10.2.3.2 Correction system — 212
10.2.3.3 Polarizer — 213
10.2.4 Phosphorimeter attachment — 214
10.3 Experimental sample handling and holders — 214
10.3.1 Working with dilute solutions — 216
10.4 Spectral analysis and interpretation of fluorescence — 216
10.4.1 Inner filter effect — 218
10.4.2 Fluorescence excitation spectrum — 218
10.4.3 Mirror image rule — 219
10.4.4 Fluorescence and light diffusion — 219
10.4.4.1 Fluorescence lifetime — 220
10.4.4.2 Fluorescence lifetime measurements — 221
10.5 Examples on fluorescence studies for polymeric nanocomposites — 222
10.6 Conclusion — 225

Chapter 11
Nuclear magnetic resonance spectroscopy — 226
11.1 Introduction — 226
11.2 Instrumental details and working — 226
11.2.1 Powerful magnets — 227
11.2.2 Probe — 229
11.2.3 Sweep coils and recorder — 229
11.2.4 Few other useful accessories — 230
11.3 Sample preparation, loading, and handling — 231
11.3.1 Sample preparation — 231
11.3.2 Sample tube placement — 232
11.3.3 Referencing — 232
11.3.4 Integration — 232
11.3.5 Field/frequency locking — 233
11.3.6 Spectrometer operation — 233
11.3.7 Measurements of relaxation times — 234
11.4 Analysis of NMR spectra — 234
11.4.1 Chemical shift — 234
11.4.2 Coupling constant — 235
11.4.3 First-order spectra — 236
11.4.4 Second-order spectra — 237
11.5 Example for NMR of polymeric nanocomposites — 237
11.6 Conclusion — 241

References — 243

Index — 247