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Abstract

In recent years, algebraic geometry (both complex and real) has proven to be useful in
numerous applications in optimization, statistics, quantum information, and physics. In this
thesis, we concentrate on studying semi-algebraic sets and varieties defined over the real
numbers that arise in these applied contexts.

We begin with the study of Gibbs manifolds and Gibbs varieties. Gibbs manifolds are
images of affine spaces of symmetric matrices under the matrix exponential map. They appear
naturally in the context of entropic regularization for semidefinite programming or entropy
maximization in quantum information theory and statistical physics. The Gibbs variety is
the zero locus of all polynomials that vanish on the Gibbs manifold. We compute these
polynomials and show that the Gibbs variety is low-dimensional. More precisely, we give
symbolic and numerical algorithms for implicitizing the Gibbs variety of a given affine space
of symmetric matrices that can be implemented in computer algebra systems. We show that
the dimension of the Gibbs variety is bounded by a linear function in the dimension of the
given space of matrices and the size of matrices. We give an exact formula for this dimension,
and an upper bound for the degree of the Gibbs variety. We apply our theory to a range
of scenarios: matrix pencils, quantum optimal transport, and sparse matrices. For matrix
pencils, we give a concrete description of the polynomial equations that vanish of their Gibbs
variety. For the quantum optimal transport problem, we show that the corresponding Gibbs
manifold is in fact a semi-algebraic set. For sparse matrices, we explore connections to graph
theory and prove a formula for the dimension of Gibbs varieties of linear spaces of symmetric
matrices defined by trees.

The role of Gibbs manifolds in quantum information theory leads us to consider the notion
of quantum conditional independence from an algebraic perspective. We take inspiration
from algebraic statistics, where graphical models encoding conditional independence relations
can be described as intersections of an algebraic variety with the probability simplex, and
study quantum counterparts of such models. These are families of quantum states satisfying
quantum conditional independence conditions encoded by a graph. We present several ways
to associate an algebraic variety to such a model. The first one is based on the notion of
quantum conditional mutual information, and the corresponding variety is called the QCMI
variety. The second one arises from the Petz recovery map, resulting in the Petz variety.
Finally, the third one comes from Gibbs varieties of linear spaces of Hamiltonians. We study
basic properties of these varieties and provide algorithms to compute their defining equations.
For instance, we show that the Petz variety is irreducible, and that the construction of the
Gibbs variety extends from linear spaces of symmetric matrices to unirational varieties thereof.
We also study toric varieties defined by commuting Hamiltonians arising from a graph in the
context of stabilizer codes. We give an efficient algorithm to compute the defining equations
of such a toric variety. Moreover, we investigate a quantum analog of maximum likelihood
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estimation for quantum exponential families, the so-called quantum information projection.
Our main result here is a quantum analog of Birch’s theorem from algebraic statistics, which
allows to compute quantum information projections by using algebraic methods.

We continue with studying (semi-)algebraic geometry of minimizing dual volumes of
polytopes. Similarly to Gibbs manifolds, this appears naturally in the context of regularization
of convex optimization problems. The interior point of a convex polytope that leads to a polar
dual of minimal volume is called the Santaló point. When translating the facet hyperplanes,
the Santaló point traces out a semi-algebraic set called the Santaló patchwork. We describe
and compute this set using algebraic and numerical techniques. In particular, we show that
its dimension is equal to that of the original polytope and give its defining equations and
inequalities. We then investigate several naturally defined algebraic varieties containing the
Santaló patchwork. One of them arises from the incidence variety of a statistical model called
Wachspress model. We connect the maximum likelihood degree of this model to the degree
of the Zariski closure of the Santaló patchwork. We continue by treating the question of
computing the Santaló points of polytopes numerically, by using homotopy continuation
techniques. We also explore connections to physics, where the dual volume function gives the
canonical form of a polytope. This is relevant for calculating scattering amplitudes in certain
quantum field theories.

Finally, we study Grasstopes. This is yet another class of semi-algebraic sets inspired by
physics. These are linear projections of the positive Grassmannian Gr≥0(k, n) to Gr(k, k+m).
When the linear projection is given by a totally positive matrix Z, we recover the definition
of the amplituhedron, a semi-algebraic set that computes scattering amplitudes in the N = 4
SYM quantum field theory. We divide Grasstopes into three categories (tame, wild and
rational) based on the properties of the matrix Z defining the linear projection. We concentrate
on the case m = 1, when the image lives in the projective space, and give a combinatorial
characterization of such Grasstopes in terms of sign flips, extending the results of Karp and
Williams for the amplituhedron. That is, we show that m = 1 Grasstopes consist of regions
of the oriented hyperplane arrangement defined by the matrix Z that are labeled by sign
vectors with sufficiently many sign changes. We also suggest a notion of a Grasstope coming
from an arbitrary (not necessarily realizable) oriented matroid.
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Introduction

Classical algebraic geometry is devoted to the study of algebraic varieties. These are sets of
solutions to systems of polynomial equations. Its methods, which originate in commutative
algebra, work best when the varieties of interest are defined over the field of complex numbers
(that is, we are looking for complex solutions to systems of polynomials with complex
coefficients) or other algebraically closed fields. Many modern real-life problems, however,
require us to study real solutions of polynomial systems. When passing to working with
polynomials defined over the field of real numbers, one has to keep in mind that this field has
a natural ordering. Therefore, it makes sense to study not just polynomial equations but also
polynomial inequalities. Sets defined by systems of polynomial equations and inequalities are
called semi-algebraic, and are central objects in the field of real algebraic geometry.

In recent years, algebraic geometry (both real and complex) has proven to be useful in
numerous applications in optimization, statistics, quantum information and physics. In this
thesis, we study semi-algebraic sets and varieties defined over the real numbers that arise in
these applied contexts. This is done by using methods from real and computational algebraic
geometry, as well as nonlinear algebra [MS21a]. Original research results are presented in
four chapters (Chapters 2–5), and Chapter 1 gives necessary background notions in order
to make this thesis as self-contained as possible. Our work relies heavily on computer
algebra software, and the supplementary code we used in our research is available at https:
//mathrepo.mis.mpg.de, an online research data repository of the Max Planck Institute for
Mathematics in the Sciences.

We now give a description of the results of this thesis. In Chapter 2, we introduce Gibbs
manifolds and Gibbs varieties. A Gibbs manifold is the image of an affine space of real
symmetric matrices under the matrix exponential map, and the corresponding Gibbs variety
is its Zariski closure. The names of these objects originate in physics: if one starts from a
linear space of Hamiltonians, the corresponding Gibbs manifold parametrizes Gibbs states (or
thermal states) associated to the elements of this linear space [Alh23,Vig99]. Our motivation
to study Gibbs manifolds from an algebraic point of view, however, comes from a different
angle, namely, from regularization techniques in convex optimization. In linear programming
one optimizes a linear function over a convex polytope. In the entropic regularization of
linear programming [STVvR24] an important role is played by the positive part of the toric
variety associated to this polytope via the moment map. A natural generalization of linear
programming is semidefinite programming [BPT12], in which one optimizes a linear function
over an affine section of the cone of real positive semidefinite matrices. Entropic regularization
techniques are also available here, as described in Section 2.4. In this context the role of the
positive part of the toric variety is played precisely by the Gibbs manifold of the linear span
of symmetric matrices defining the affine section. There is also an analog of the moment map.
From this point of view, Gibbs manifolds and varieties provide a natural noncommutative

https://mathrepo.mis.mpg.de
https://mathrepo.mis.mpg.de
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extension of toric geometry. In some special cases, Gibbs manifolds are semi-algebraic sets.
This is true, for instance, when the linear space we start from consists of pairwise commuting
matrices (Theorem 2.1.13). In general, however, this is not the case. In particular, the
dimension of the Gibbs variety can be higher than that of the corresponding Gibbs manifold.
We give a simple linear bound for the dimension of the Gibbs variety in terms of the dimension
of the linear space and the size of matrices we consider (Theorem 2.1.6). This bound implies
that Gibbs varieties are, in an appropriate sense, low-dimensional. We also give a somewhat
more intricate exact formula for the dimension of the Gibbs variety, which relies on particular
eigenvalue properties of the linear space (Theorem 2.1.9), and bound the degree of this variety
from above (Proposition 2.1.10). We present symbolic and numerical algorithms (Algorithms
1 and 2) to compute its defining equations. In addition, we elaborate on the connection
to optimization. The theory developed in this chapter is applied to several contexts, such
as pencils of quadrics (Section 2.3), quantum optimal transport (Section 2.5), and spaces
of sparse matrices (Section 2.6). This leads to applications in quantum information and
high-dimensional statistics.

As mentioned above, in quantum physics and quantum information theory Gibbs manifolds
parametrize thermal states. These are states of maximal entropy associated to families of
Hamiltonians. They can be thought of as quantum analogs of probability distributions
satisfying conditional independence statements [PH11]. This observation led us to a journey
of investigating algebraic approaches to the notion of quantum conditional independence, and
the results are presented in Chapter 3. In algebraic statistics [Sul18], graphical models [Lau96]
conveniently describe families of probability distributions satisfying conditional independence
constraints given by a graph. Methods of algebraic geometry have been used with great
success to understand the structure of these models, which turn out to be intersections of an
algebraic variety with the probability simplex. In this spirit, we introduce quantum graphical
models that parametrize quantum states satisfying certain independence constraints and
give three ways to associate algebraic varieties to such a model. The first one is the already
familiar Gibbs variety (Section 3.2). The second one is based on the notion of quantum
conditional mutual information (Section 3.1.1). Finally, the third one comes from the Petz
recovery map [Pet86] (Section 3.1.2). We study fundamental properties of these varieties and
present algorithms to obtain their defining equations. Classical graphical models are obtained
from these constructions by restricting to quantum states represented by diagonal matrices.

An important statistical problem of maximal likelihood estimation also has a natural
quantum analog. This is given by the quantum information projection. We study quantum
information projections to quantum exponential families defined by graphs that arise in the
context of stabilizer codes, and prove a generalization of Birch’s Theorem (Theorem 3.3.10).

Chapter 4, just like Chapter 2, is motivated by regularization problems in convex opti-
mization. The problem we are interested in is linear programming and the regularizer is the
universal barrier. This is the function giving the volume of the polar dual of the feasible
polytope with respect to each of its interior points. The unique minimizer of this dual volume
function on the interior of the polytope is called the Santaló point, and as the facet hyper-
planes of the polytope are translated, this point traces out a set called the Santaló patchwork.
We show that this set is semi-algebraic and compute its defining equations and inequalities.
Moreover, we show that it is a union of basic semi-algebraic sets that are in bijection with
the cells of the chamber complex of a point configuration (Corollary 4.3.3). We study Zariski
closures of these sets, and provide results bounding their degree (Proposition 4.4.6, Corollary
4.5.5). We explore connections to algebraic statistics via Wachspress models [KSS20] (Section
4.5). This chapter concludes with numerical algorithms for computing Santaló points. These
algorithms rely on homotopy continuation techniques. Another similarity with Chapter 2 is



List of Tables 17

that the dual volume function has a physical interpretation. It is the canonical function of
the polytope as a positive geometry [AHBL17]. For special polytopes, this function computes
scattering amplitudes in certain quantum field theories [AHBHY18] and string amplitudes in
string theory [AHHL21].

Chapter 5, the final chapter of this thesis, is inspired by physics. One of the main recent
breakthroughs in particle physics is the realization that certain scattering amplitudes (that is,
functions describing the probability that a certain interaction of elementary particles occurs)
can be computed as volumes of certain semi-algebraic sets defined by positivity constraints.
This was first discovered for N = 4 Super Yang-Mills quantum field theory, and the relevant
semi-algebraic set is the amplituhedron [AHT14]. The amplituhedron is the image of the
positive Grassmannian Gr≥0(k, n) under a projection to the Grassmannian Gr(k, k + m)
defined by a totally positive matrix Z. If one drops the total positivity constraint on Z, one
obtains the definition of a Grasstope, a natural generalization of the amplituhedron. We
study Grasstopes for m = 1 and provide a combinatorial characterization of these objects
in terms of the hyperplane arrangement defined by Z and sign flips (Theorem 5.2.1 and
Proposition 5.2.3). This generalizes the results of [KW19] for the amplituhedron. Finally,
we suggest an abstract notion of a Grasstope arising from an arbitrary oriented matroid
(Section 5.4). This work is among several recently appeared invitations to positive geometry
(cf. [Lam22]), an emerging area of mathematics on the intersection of combinatorics and
algebraic geometry that studies semi-algebraic sets defined by positivity conditions. For other
invitations, see [EGP+23,RST24].
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Chapter 1

Background

In this chapter we present the notions that are necessary to develop the following chapters of
this thesis. This includes basics of complex and real algebraic geometry, discrete geometry,
combinatorics, convex optimization, and quantum information theory.

1.1. Algebraic geometry
We begin with reviewing basic notions of complex and real algebraic geometry: varieties,
ideals and semi-algebraic sets. We mostly follow the exposition of [MS21a]. Since this thesis
is devoted to applications of real algebraic geometry, the notions we introduce in this section
will play a crucial role in every chapter. For more details on basics of complex and real
algebraic geometry, we refer to [Sha13] and [BCR13] respectively.

1.1.1. Varieties and ideals
We write K[x1, . . . , xn] for the polynomial ring in the variables x1, . . . , xn over a field K.
Generally speaking, algebraic varieties are zero sets of systems of polynomials, and they are
given by ideals of the relevant polynomial ring. We therefore start with defining ideals.
Definition 1.1.1 (Ideal). Let R be a commutative ring. A nonempty subset I ⊆ R is called an
ideal of R if for any a, b ∈ I we have a+ b ∈ I and for any a ∈ I and b ∈ R we have ab ∈ I.
Definition 1.1.2 (Prime ideal). An ideal I ⊂ R is called prime if ab ∈ I implies a ∈ I or b ∈ I
for all a, b ∈ R.

We are now ready to define affine and projective varieties.
Definition 1.1.3 (Affine variety). A (complex) affine variety V(f1, . . . , fk) ⊆ Cn is the zero set
of finitely many polynomials f1, . . . , fk ∈ C[x1, . . . , xn].

As one could guess from the name, projective varieties live in the projective space Pn.
Points in this space are given by homogeneous coordinates (x0 : x1 : . . . : xn), and these
are defined up to multiplication by a common scalar. This last fact means that the value
of a polynomial f ∈ C[x0, . . . , xn] at a point x ∈ Pn is not well-defined. However, if f is
homogeneous (that is, all of its monomials have the same degree), then we have f(x0, . . . , xn) =
0 if and only if f(λx0, . . . , λxn) = 0 for any λ ∈ C \ {0}. Therefore, the notion of vanishing
of a homogeneous polynomial at a point in the projective space is well-defined. This allows
us to define projective varieties similarly to the affine case.
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Definition 1.1.4 (Projective variety). A (complex) projective variety V(f1, . . . , fk) ⊆ Pn is the
zero set of finitely many homogeneous polynomials f1, . . . , fk ∈ C[x0, . . . , xn].

It is straightforward to check that the set of all polynomials that vanish on a given variety
(be it affine or projective) is an ideal of the corresponding polynomial ring. We will write V(I)
for the variety defined by the ideal I and IV for the ideal defining the variety V. Note that
although we defined our varieties over C, an analogous construction holds over any field (in
particular, over R). Hilbert’s basis theorem [MS21a, Corollary 1.14] states that a polynomial
ring over a field is Noetherian, that is, every ideal is generated by a finite number of elements.
Thus, every ideal I in K[x1, . . . , xn] defines a variety.
Remark 1.1.5. Although for convenience of exposition we have chosen V as the standard
notation for a variety in this section, in the following chapters we typically denote varieties
by capital latin letters (mainly X and Y ), as is customary in algebraic geometry.

We turn Cn and Pn into topological spaces by endowing them with the Zariski topology.
The closed sets in this topology are exactly varieties. This induces a topology on every variety,
in which the closed sets are its subvarieties (that is, subsets that are varieties themselves).

In algebraic geometry one often studies maps between algebraic varieties. Two important
classes of these are regular and rational maps. A map between two affine varieties V andW is
called regular if it is given by polynomials. A map between two (affine or projective) varieties
is called rational if it is given by rational functions. An important property of rational maps
is that they are not defined everywhere on V: denominators of the rational functions giving
the map define a subvariety of V on which the map is not well-defined. We will denote regular
maps by solid arrows (V → W) and rational maps by dashed arrows (V 99KW). Finally, we
say that a map is dominant if its image is Zariski dense in W.

We will often consider projections of affine varieties to coordinate subspaces of Cn.
Such a projection is a particularly simple regular map. If V lives in Cn with coordinates
x1, . . . , xn, the projection πd to the subspace corresponding to the first d coordinates is given
by (x1, . . . , xn) 7→ (x1, . . . , xd). The projected variety is the Zariski closure πd(V) (πd(V) itself
might not be closed). In the language of ideals, I

πd(V) is obtained from IV by elimination of
the variables xd+1, . . . , xn. That is, I

πd(V) = IV ∩ C[x1, . . . , xd] [MS21a, Theorem 4.2].
The two most fundamental invariants of a variety are its dimension and degree. Even

though these two numbers have an intuitive meaning (the dimension answers the question
“how big is the variety?”, and the degree tells us “how curvy it is?”), the formal definition
requires some work. We shall now present this.

Our first notion on the way to dimension and degree is somewhat self-explanatory. We
say that an ideal I ⊆ C[x1, . . . , xn] is monomial if it is generated by monomials, i.e. products
of variables. The set of all monomials in C[x1, . . . , xn] is naturally identified with the set Zn

≥0
of n-tuples of nonnegative integers: a = (a1, . . . , an) ∈ Zn

≥0 corresponds to xa = xa1
1 . . . xan

n .
Now consider a total ordering ≺ of Zn

≥0. We say that ≺ is a monomial order if for all a,b
and c ∈ Zn

≥0 firstly, we have (0, . . . , 0) ⪯ a and, secondly, a ⪯ b implies a + c ⪯ b + c. Here
a ⪯ b if a ≺ b or a = b. Finally, we say that a monomial order ≺ is degree-compatible if for
all a,b ∈ Zn

≥0 the inequality |a| < |b| implies a ≺ b. Here |a| is the sum of all entries of a.
Now, given a monomial order ≺ and a nonzero polynomial f ∈ C[x1, . . . , xn], we define

the initial monomial in≺(f) to be the largest monomial xa w.r.t. ≺ among those that appear
in f with a non-zero coefficient. The initial ideal in≺(I) of an ideal I ⊆ C[x1, . . . , xn] is then
naturally defined to be the monomial ideal generated by the initial monomials of all non-zero
elements of I.

Our next step is to define the Hilbert polynomial of a monomial ideal. First, we define
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the Hilbert function and the Hilbert series.
Definition 1.1.6 (Hilbert function and series). For a monomial ideal I ⊆ C[x1, . . . , xn] the
Hilbert function hI is a map Z≥0 → Z≥0 defined as follows: for q ∈ Z≥0 the value hI(q) is the
number of monomials of degree q not belonging to I. The Hilbert series is then the formal
power series

HSI(z) =
∞∑

q=0
hI(q)zq.

The Hilbert polynomial can now be defined in the statement of the following theorem.
Theorem 1.1.7 ( [MS21a, Theorem 1.25]). The Hilbert series of a monomial ideal I ⊆
C[x1, . . . , xn] is

HSI(z) = κI(z)
(1− z)n

,

where κI(z) is a polynomial with integer coefficients and κI(0) = 1. There exists a univariate
polynomial HP(q) of degree ≤ n − 1, known as the Hilbert polynomial of I, such that
HP(q) = hI(q) for all values of the integer q that are sufficiently large.

With this machinery at hand, we can finally define the dimension and the degree (first,
of a monomial ideal, and then of a variety). The correctness of this definition is ensured
by [MS21a, Lemma 1.33].
Definition 1.1.8 (Dimension and degree). Let I ⊆ C[x1, . . . , xn] be a monomial ideal and write

HPI(q) = g

(d− 1)!q
d−1 + lower-degree terms in q.

If HPI(q) is non-zero, the dimension of I is d and the degree of I is g. If HPI(q) is identically
zero, we say that I is zero-dimensional, and define the degree of I to be the dimension of a
finite-dimensional vector space C[x1, . . . , xn]/I. For a variety V , its dimension and degree are
those of the initial ideal in≺(I(V)). Here ≺ is any degree-compatible monomial order on the
corresponding polynomial ring.

We now define two fundamental properties of varieties that we deal with in this thesis.
Definition 1.1.9 (Irreducible variety). A variety V is called irreducible if it cannot be represented
as the union of two strictly smaller (w.r.t. inclusion) varieties. Equivalently, V is irreducible
if and only if IV is prime (see Definition 1.1.2).
Definition 1.1.10 (Unirational variety). A variety V is called unirational if it can be parametrized
by rational functions, that is, if there exists a dominant rational map from Cn or Pn to V.

A family of unirational varieties that plays a significant role in this thesis is that of toric
varieties. From a certain point of view, toric varieties are the simplest varieties. Yet, many
very general concepts of algebraic geometry can already be clearly understood when working
with toric varieties. A brief introduction into the topic is presented in [MS21a, Chapter 8],
a more comprehensive reference is [Tel22], and an in-depth study can be found in [CLS11].
Chapter 2 of this thesis offers a non-commutative extension of the notion of a toric variety.
We now define affine and projective toric varieties.
Definition 1.1.11 (Affine toric variety). An affine toric variety is the Zariski closure of the
image of a map (C∗)n → Cp, x 7→ (xa1 , . . . ,xap), where ai ∈ Zn and C∗ = C \ {0}.

That is, affine toric varieties are the varieties that can be parametrized by monomials.
Let A be a matrix whose columns are the vectors ai from the definition above. Such a matrix
defines the toric variety and therefore its ideal. If A contains the vector (1, . . . , 1) in its row
span, then the ideal of the corresponding affine toric variety is generated by homogeneous
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polynomials (this follows immediately from [MS21a, Lemma 8.8]). This means that the affine
toric variety is a cone over a projective variety. This motivates the following definition.
Definition 1.1.12 (Projective toric variety). A projective toric variety is a variety of the form
V(I), where I is a homogeneous ideal defined by a matrix A such that (1, . . . , 1) ∈ rowspan(A).

We now leave the toric world and conclude this subsection with a classical example of a
variety: the Grassmannian. This variety is the starting point for Chapter 5.
Example 1.1.13 (The Grassmannian). The Grassmannian Gr(k, n) is the variety parametriz-
ing k-dimensional subspaces of an n-dimensional complex linear space. Alternatively, it
parametrizes (k − 1)-dimensional projective subspaces of an (n− 1)-dimensional projective
space. A linear space, considered as an element of Gr(k, n), can be represented by a k × n-
matrix A whose rows span the space. The Grassmannian Gr(k, n) can then be realized as
a projective variety living in P(n

k)−1 via the Plücker embedding, which sends a matrix A
representing an element in Gr(k, n) to the vector of its maximal minors. Maximal minors of
A are called Plücker coordinates. This embedding does not depend on the choice of matrix
representatives. The Grassmannian is an irreducible unirational projective variety for any
k and n. Irreducibility is proven, for instance, in [MS21a, Theorem 5.4], and unirationality
follows from the construction of the Plücker embedding. This construction can be carried out
over R, resulting in the real Grassmannian GrR(k, n) living in the real projective space. ♦

1.1.2. Semi-algebraic sets
The reason why varieties in the previous subsection are defined over C is that this is an
algebraically closed field. This fact is crucial for many classical results in algebraic geometry.
For instance, Bézout’s theorem does not in general hold over non-closed fields [Sha13, Chapter
1, §1]. This makes studying varieties over R much more difficult. One more important
difference between R and C, however, is that the former is an ordered field. This allows
to consider polynomial inequalities over the real numbers. Real algebraic geometry mainly
studies sets that are defined by polynomial inequalities rather than equations. These are
known as semi-algebraic sets. We now give precise definitions.
Definition 1.1.14 (Basic semi-algebraic set). A basic closed (resp. open) semi-algebraic set in
Rn is the set of solutions to a system of finitely many polynomial inequalities of the form
f(x1, . . . , xn) ≥ 0 (resp. f(x1, . . . , xn) > 0), where f ∈ R[x1, . . . , xn].
Definition 1.1.15 (Semi-algebraic set). A semi-algebraic set in Rn is a finite boolean combina-
tion of basic semi-algebraic sets (open or closed).

One can also define semi-algebraic sets in the real projective space.
Definition 1.1.16 (Projective semi-algebraic set). A set S ⊆ RPn is semi-algebraic if it is the
image of a semi-algebraic set in Rn+1 under the natural map Rn+1 \ {0} → RPn.

The class of semi-algebraic sets is closed under projections and, more generally, polynomial
maps. This statement is the content of the Tarski-Seidenberg theorem [MS21a, Theorem
4.17], [BCR13, Theorem 1.4.2].
Theorem 1.1.17 (Tarski-Seidenberg). The image of a semi-algebraic set in Rn under a polyno-
mial map to Rm is again a semi-algebraic set.

Semi-algebraic sets play a significant role in convex optimization, as explained in Section 1.4.
Important examples introduced in that section are spectrahedra. Here we give another example
relevant for Chapter 5, continuing the story of the Grassmannian from Example 1.1.13.
Example 1.1.18 (The totally nonnegative Grassmannian). The totally nonnegative Grassman-
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nian Gr≥0(k, n) is the subset of Gr(k, n) consisting of the elements whose non-zero Plücker
coordinates are all real and have the same sign [Pos06,Wil21]. Each element in Gr≥0(k, n)
can be represented by a totally nonnegative k × n-matrix, that is, by a matrix with nonnega-
tive maximal minors. The totally positive Grassmannian Gr>0(k, n) is a subset of Gr(k, n)
consisting of the elements whose Plücker coordinates are all non-zero, real, and have the
same sign. Elements of Gr>0(k, n) can be represented by k×n matrices with strictly positive
maximal minors (such matrices are called totally positive). The condition that all Plücker
coordinates have the same sign is described by inequalities of the form pIpJ ≥ 0, where pI

and pJ are Plücker coordinates, so Gr≥0(k, n) and Gr>0(k, n) are semi-algebraic sets. ♦

1.2. Quantum information theory
Chapter 3 is devoted to problems arising in quantum information theory. Since this is an
area that is not necessarily familiar to an algebraic geometer, we briefly introduce the very
basic notions of this theory. Our main references here are [NC02] and [Lan19], and we follow
the exposition of [DPW23, Section 2].
Definition 1.2.1 (Quantum state). A quantum state on N qudits is represented by a vector
|ψ⟩ ∈ H = H1 ⊗ · · · ⊗ HN of unit length, where Hi is the Hilbert space (with the Hermitian
inner product) Hi

∼= Cd, i = 1, . . . , N . Here, we make use of the Dirac notation, i.e. |ψ⟩
denotes a column vector and ⟨ψ| its complex conjugate transpose. In the case N = 1 and
d = 2, |ψ⟩ is called a qubit.
Definition 1.2.2 (Density matrix). An ensemble of quantum states is a collection {pi, |ψi⟩}i
where {pi}i is a discrete probability distribution. The density matrix of an ensemble is

ρ =
∑

i

pi|ψi⟩⟨ψi|.

Equivalently, we can characterize density matrices as positive semidefinite endomorphisms
(that is, endomorphisms with real nonnegative eigenvalues) on H with unit trace. We will
use the terms “quantum state” and “density matrix” interchangeably. The set of all density
matrices on H is denoted by D(H).
Definition 1.2.3. Let ρAB be a bipartite quantum state, i.e. a density operator on HA ⊗HB.
We define the partial trace over the B-system on elementary tensors via

TrB(|ai⟩⟨aj | ⊗ |bk⟩⟨bl|) := |ai⟩⟨aj | · Tr(|bk⟩⟨bl|) = |ai⟩⟨aj | · ⟨bl|bk⟩,

where |ai⟩, |aj⟩ ∈ HA and |bk⟩, |bl⟩ ∈ HB and extend this operation linearly to ρAB. Note
that TrB ρAB is a density operator on HA and therefore we use the notation ρA := TrB ρAB.

One can think of the partial trace operation as the quantum analog of marginalization in
statistics. In physics ρA describes the state of the subsystem A of the composite system AB.
Example 1.2.4. Set |0⟩ := (1, 0)T , |1⟩ := (0, 1)T as a basis of C2 (this basis is called computa-
tional basis in the context of quantum information theory); we also adapt the notation to
write |ij⟩ for |i⟩ ⊗ |j⟩, i, j ∈ {0, 1}. Consider the Bell state

ρAB =
(

1√
2(|00⟩+ |11⟩)

) (
1√
2(⟨00|+ ⟨11|)

)
= 1

2(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|)

on C2 ⊗ C2. Then the partial trace over B is computed as

TrB ρAB = 1
2(|0⟩⟨0|⟨0|0⟩+ |0⟩⟨1|⟨1|0⟩+ |1⟩⟨0|⟨0|1⟩+ |1⟩⟨1|⟨1|1⟩) = 1

2(|0⟩⟨0|+ |1⟩⟨1|) = Id2
2 ,

called the maximally mixed state, meaning ρAB is maximally entangled [NC02, §2]. ♦
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Finally, when we speak of a Hamiltonian H, we simply mean a real symmetric matrix.
The reason we restrict to this class (and do not consider Hermitian matrices as would be
natural in many contexts in quantum physics) is that symmetric matrices form a linear space,
while the set of Hermitian matrices is not an algebraic variety. Likewise, we consider density
matrices to be real positive semidefinite (PSD), see Definition 1.4.3. Note that exp(H) is
positive definite and thus can (up to normalization) be regarded as a quantum state.

1.3. Discrete geometry
The content of Chapter 4 revolves around classical discrete geometry structures that have
been studied since antiquity: polytopes and cones. Several incarnations of these objects, e.g.
the cone of positive semidefinite matrices, also appear in other chapters. In this section we
define polytopes and cones and discuss some of their basic properties. We also introduce a
number of related notions that will be of use to us in the following chapters. Our primary
source here is [Zie12], while we also rely on [DLRS10] for the definition of the chamber
complex. Another source containing many of the notions introduced in this section is [Jos21].

1.3.1. Polyhedra, polytopes, and cones
The objects we are going to define in this section are examples of convex sets. Our first
definition is therefore that of convexity.
Definition 1.3.1 (Convex set). A set K ⊆ Rd is called convex if for any two points x, y ∈ K
the line segment connecting them lies in K. That is, λx+ (1− λ)y ∈ K for any λ ∈ [0, 1].

We are now ready to define the main characters of this section.
Definition 1.3.2 (Polyhedron). Let a1, . . . , ak ∈ Rd and b1, . . . , bk ∈ R. The set

{x ∈ Rd : ⟨x, ai⟩ ≥ bi for i = 1, . . . , k},

where ⟨·, ·⟩ is the standard scalar product on Rd, is called a polyhedron. That is, a polyhedron
is the intersection of a finite number of affine half-spaces in Rd. The dimension of a polyhedron
is the dimension of its affine hull (i.e. of the smallest affine-linear space containing it).
Definition 1.3.3 (Convex hull). Let v1, . . . , vn ∈ Rd be a finite collection of points. Their
convex hull is the set

conv(v1, . . . , vn) = {λ1v1 + . . .+ λnvn : λ1 + . . .+ λn = 1, λi ≥ 0 for i = 1, . . . , n}.

This is the smallest (w.r.t. inclusion) convex set containing all the points vi.
Definition 1.3.4 (Polytope). A polytope is the convex hull of finitely many points in Rd.

The following statement appears as the “Main theorem for polytopes” in [Zie12, §1.1].
Theorem 1.3.5. Polytopes are exactly bounded polyhedra.
Definition 1.3.6 (Cone). A non-empty set C ⊆ Rd is a cone if λx ∈ C for any x ∈ C and
λ ∈ R≥0. If a cone is in addition a polyhedron, then we call it a polyhedral cone.

Note that every cone contains the origin. We now introduce the notion of the conical hull,
which will be necessary to formulate an analog of Theorem 1.3.5 for cones.
Definition 1.3.7 (Conical hull). Let v1, . . . , vn ∈ Rd be a finite collection of vectors. Their
conical hull is the set

cone(v1, . . . , vn) = {λ1v1 + . . .+ λnvn : λi ≥ 0 for i = 1, . . . , n}.
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This is the smallest (w.r.t inclusion) cone containing all the vectors vi. If the scalars λi are
only allowed to be strictly positive, one gets the definition of the positive hull pos(v1, . . . , vn).

The following statement is the “Main theorem for cones” [Zie12, Theorem 1.3].
Theorem 1.3.8. A cone C ⊆ Rd is polyhedral if and only if it is the conical hull of finitely
many vectors.

Polyhedra, including polytopes and polyhedral cones, are objects with rich combinatorial
structure. We here give just one, arguably the most basic, illustration of this claim. We say
that a hyperplane H ⊂ Rd supports a polyhedron P if H bounds a half-space that contains
P . A face of P is the intersection of P with a supporting hyperplane. A face F of P is called
proper if F ⊊ P . Inclusion-maximal proper faces of P are called facets, and zero-dimensional
faces are called vertices. The faces of P are naturally ordered by inclusion and thus form
a partially ordered set called the face lattice F of P . We say that two polyhedra have the
same combinatorial type if their face lattices are isomorphic. We need one more definition for
polyhedral cones: their one-dimensional faces are called rays.

We now move on to defining several important properties of polytopes and cones that
play a role in this dissertation.
Definition 1.3.9. A full-dimensional polytope P ⊂ Rd is called simple if every vertex is
adjacent to exactly d facets. We call P simplicial if every proper face of P is a simplex
(equivalently, if every facet of P contains exactly d vertices).
Definition 1.3.10. A cone C ⊆ Rd is called pointed if C ∩−C = {0}, where −C = {−x : x ∈
C}. We call C proper if it is full-dimensional, closed in the Euclidean topology and pointed.

We conclude this subsection with a brief discussion on polar duality, a construction that
is essential for everything that happens in Chapter 4.
Definition 1.3.11 (Polar dual). For any subset P ⊆ Rd, the polar dual set is defined by

P ◦ := {y ∈ Rd : ⟨x, y⟩ ≤ 1 for all x ∈ P},

where ⟨·, ·⟩ is the standard scalar product on Rd. In what follows, we will normally refer to
P ◦ as simply the dual of P for the sake of brevity.

The following statement appears as Proposition A.3 in [Jos21] and demonstrates that
polytopes behave well with respect to polar duality. It is proven in [Zie12, §2.3].
Theorem 1.3.12. Let P be a full-dimensional polytope in Rd containing the origin in its
interior. Let v1, . . . , vk be the vertices of P . The following statements hold:

(i) The polar dual P ◦ is a full-dimensional polytope containing the origin in the interior.
More precisely,

P ◦ = v◦
1 ∩ . . . ∩ v◦

k.

(ii) The face lattice of P ◦ is anti-isomorphic to that of P . In particular, if P is simple, then
P ◦ is simplicial, and vice versa.

(iii) P ◦◦ = P .

1.3.2. Subdivisions, triangulations, and chambers
In discrete geometry one studies not just individual objects with interesting combinatorial
properties (such as polyhedra) but also nicely arranged collections of such objects. The
primary example here is the notion of a polyhedral complex.
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Definition 1.3.13 (Polyhedral complex). A polyhedral complex in Rd is a non-empty finite
collection Π of polyhedra that satisfies the two following properties. Firstly, any face of a
polyhedron in Π also lies in Π. Secondly, any (possibly empty) intersection of polyhedra
in Π is also in Π. A polyhedral complex composed of cones is called a polyhedral fan and
its one-dimensional elements are called rays, in analogy with the case of individual cones.
A polyhedral complex composed of polytopes is called a polytopal complex. We say that a
polyhedral complex Σ refines Π if each element of Σ is contained in an element of Π. In this
same case we say that Π coarsens Σ.

The ultimate goal of this subsection is to define the chamber complex of a polytope P .
The first step to this is the notion of a polyhedral subdivision.
Definition 1.3.14 (Subdivision). Let P be a polyhedron. A polyhedral complex Π is called a
subdivision of P if the union of its elements is equal to P .

There is a particularly simple and very important class of subdivisions.
Definition 1.3.15 (Triangulation). A subdivision Π of a polyhedron P is called a triangulation
if all of its elements are simplices.

We are now ready to define the chamber complex. The definition we give here is fairly
concise, and the one that is more convenient for computations is presented in Section 4.2.
Definition 1.3.16 (Chamber complex). Let P be a full-dimensional polyhedron in P . The
chamber complex C(P ) is the coarsest common refinement of all its triangulations. That
is, every triangulation of P coarsens C(P ) and there exists no subdivision of P with this
property that is strictly contained in C(P ). Elements of C(P ) are called chambers of P , and
full-dimensional chambers are referred to as cells.

In Chapter 4, we will give a slightly more general definition of the chamber complex of a
point configuration (Definition 4.2.2). We conclude this subsection with a simple example.
Example 1.3.17 (Chamber complex of a pentagon). The chamber complex of a pentagon in
R2 with the vertices (0, 0), (0, 1), (1, 0), (1, 2) and (2, 1) is shown in Figure 1.1. It has 10
zero-dimensional, 20 one-dimensional and 11 two-dimensional chambers. ♦

Figure 1.1: Chamber complex of a pentagon in R2.
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1.4. Convex optimization
Chapters 2 and 4 of this thesis are inspired by problems in convex optimization. A convex
optimization problem consists in minimizing a convex function over a convex set. Convex
sets are defined in Definition 1.3.1, and we start this section with defining convex functions.
Definition 1.4.1 (Convex function). Let K ⊆ Rn be a convex set and f : K → R be a real-valued
function on K. The function f is called convex (on K) if for all 0 ≤ t ≤ 1 and all x, y ∈ K we
have f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

This definition is naturally connected to that of a convex set. For K = R, the function is
convex if and only if its epigraph (the set of points “above” its graph) is a convex set in R2.

A general problem of convex optimization can then be formulated as follows:

minimize f(x) (1.4.1)
subject to x ∈ K, (1.4.2)

where K ⊆ Rn is a convex set and f is a convex function on K. We call K the feasible set or
feasible region of the optimization problem.

It is straightforward to see that any linear function in n variables is convex on Rn: the
non-strict inequality from Definition 1.4.1 always turns into equality in this case. The two
well-studied convex optimization problems that play a role in this thesis are linear and
semidefinite programming. In both cases one minimizes a linear function, and the specifics of
the problem is determined by a class of sets that K is chosen from. In our exposition of these
problems, we rely primarily on [BPT12].
Definition 1.4.2 (Linear programming). Linear programming is the problem of minimizing a
linear function subject to constraints given by linear equalities and inequalities. It is usually
presented in standard form

minimize cTx (1.4.3)
subject to Ax = b, x ≥ 0, (1.4.4)

where A is a d× n real matrix, b ∈ Rd, and the minimization is performed over x ∈ Rn. The
inequality x ≥ 0 is interpreted component-wise, i.e. xi ≥ 0 for i = 1, . . . , n.

The constraints of a linear program define a section of the positive orthant Rn
≥0 by an

affine subspace of Rn. This a polyhedron. Polyhedra are convex sets, so linear programming
is indeed a convex optimization problem.

Semidefinite programming is a generalization of linear programming, in which the decision
variables x are symmetric matrices, and the constraints are given by linear matrix inequalities.
Feasible regions of semidefinite programs are called spectrahedra. We now introduce all the
necessary notions to formulate a semidefinite program. We write Sn for the set of symmetric
real n× n-matrices. This is a real vector space of dimension

(n+1
2
)
.

Definition 1.4.3 (PSD matrix). A matrix A ∈ Sn is called positive semidefinite (PSD) if
xTAx ≥ 0 for all x ∈ Rn, and positive definite if xTAx > 0 for all nonzero x ∈ Rn. Equivalently,
A is positive semidefinite if all of its eigenvalues are nonnegative, and positive definite if all
of its eigenvalues are strictly positive.

We denote the set of positive semidefinite n×n-matrices by Sn
+. If A,B ∈ Sn

+ and x, y ≥ 0,
one sees from the first definition that xA+ yB ∈ Sn

+. Thus, Sn
+ is a closed convex cone in

Sn ∼= R(n+1
2 ). This cone is proper [BPT12, page 20] and, in particular, full-dmensional. Its

interior in the Euclidean topology is the set of positive definite matrices, which is an open
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cone. We therefore denote this open cone by int(Sn
+). One more piece of notation: instead of

A ∈ Sn
+, we sometimes write A ≽ 0.

Definition 1.4.4 (Linear matrix inequality). A linear matrix inequality has the form

A0 +
d∑

i=1
Aixi ≽ 0 for Ai ∈ Sn.

Definition 1.4.5 (Spectrahedron). A spectrahedron is a set of the form

S =
{

(x1, . . . , xd) ∈ Rd : A0 +
d∑

i=1
Aixi ≽ 0

}
.

Note that when the matrices Ai are diagonal, one recovers the definition of a polyhedron.

As the coefficients xi ∈ R vary, the matrices A0 +
d∑

i=1
Aixi trace out an d-dimensional

affine subspace of Sn. We can therefore interpret the corresponding spectrahedron as the
intersection of this affine space with the PSD cone Sn

+. In this interpretation spectrahedra live
in Sn rather than in Rd. We will make use of this when defining semidefinite programming in
standard primal form.

Affine subspaces are convex sets, and so is the PSD cone. The class of convex sets is
closed under taking intersections. Therefore, spectrahedra are convex sets. Moreover, the
PSD cone is a basic semi-algebraic set [BPT12, Proposition A.1]. Thus, any spectrahedron is
a basic semi-algebraic set as well. This clarifies our claim from Subsection 1.1.2.
Example 1.4.6 (The elliptope). One of the most classical examples of a spectrahedron is the
three-dimensional elliptope E3. This set is defined as follows:

E3 =

(x, y, z) ∈ R3 :

1 x y
x 1 z
y z 1

 ≽ 0

 .
It is the bounded component in Figure 1.2. ♦

Figure 1.2: The elliptope E3.

One final note before we define semidefinite programs is that the space of symmetric
matrices Sn has the scalar product ⟨X,Y ⟩ = Tr(XY ), where Tr denotes the matrix trace.
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Definition 1.4.7 (Semifdefinite programming (SDP)). Semidefinite programming (SDP) is the
problem of minimizing a linear function over a spectrahedron. It usually is presented in
standard primal form

minimize ⟨C,X⟩ (1.4.5)
subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m, (1.4.6)

X ≽ 0, (1.4.7)

where C,Ai ∈ Sn. The optimization is performed over X ∈ Sn
+.

When the matrices C and Ai are diagonal, one recovers the setup of linear programming.
We conclude this section with an observation that allows for a generalization of SDP

which we will however not consider in this thesis. The constraints of a linear program are
x ≥ 0 and Ax = b. The first one defines the positive orthant Rn

≥0 , which is a proper cone.
The second one defines its affine section. The setup of semidefinite programming is very
similar: the place of the positive orthant is taken by the PSD cone Sn

+, and we still consider
affine sections thereof. This is generalized by conic programming, in which one optimizes a
linear function over an affine section of an arbitrary proper cone. Powerful algebraic methods
are available for solving many conic programs (see, for instance, [Nem06]).

1.5. Algebraic combinatorics
In Chapter 5 we study Grasstopes from the point of view of algebraic combinatorics. The
main tools we use are hyperplane arrangements and oriented matroids. In this section we
define these objects, based on [BLVS+99] and following the exposition of [MPP23, Section 5].

1.5.1. Hyperplane arrangements
Definition 1.5.1 (Hyperplane arrangement). A (real) projective hyperplane arrangement P =
{H1, . . . ,Hn} is a finite set of hyperplanes in the real projective space RPk. Analogously, an
affine hyperplane arrangement A is a finite set of hyperplanes in Rk.
Definition 1.5.2 (Simple arrangement). A hyperplane arrangement is called simple if the
intersection of any i ≤ k hyperplanes in the arrangement has codimension exactly i in the
ambient k-dimensional space, and the intersection of any i > k hyperplanes is empty.
Definition 1.5.3 (Region). A region of a hyperplane arrangement is a connected component
of the complement of the union of the hyperplanes in the arrangement.

In [Zas75], Zaslavsky gives formulae for the total number of regions t(A) and the number
of bounded regions b(A) of a simple affine arrangement A of n hyperplanes in Rk:

t(A) = 1 + n+
(
n

2

)
+ ...+

(
n

k

)
,

b(A) =
(
n− 1
k

)
.

Note that since intersections of two hyperplanes in any projective arrangement P have
codimension two in Pk and there are a finite number of them, we can always find some
hyperplane avoiding them, and hence an affine chart which contains all of them (see Figure
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1.3). A projective arrangement P naturally induces an affine arrangement A in this chart. If
a region of P intersects the chosen hyperplane at infinity, it induces two unbounded regions
of A. Otherwise it induces a single bounded region. Thus, the total number of regions in P is

r(P) = b(A) + t(A)− b(A)
2 . (1.5.1)

−−−

−−+−+ +

−+−

+ +−

+−−

+ + +

1
2

3

Figure 1.3: An oriented hyperplane arrangement and sign labels of its regions

Definition 1.5.4 (Oriented arrangement). One can order the hyperplanes in a given affine
arrangement A. Each of the hyperplanes Hi ∈ A splits Rk into two half-spaces. One can
declare one of them to be positive with respect to Hi and the other one to be negative. We
will call A together with the ordering of hyperplanes and the choice of the positive half-space
for each of them an oriented hyperplane arrangement. Regions of an oriented hyperplane
arrangement are naturally labeled by ordered sequences of + and − signs, reflecting in
which half-space with respect to each hyperplane a given region lies. An affine hyperplane
arrangement A in Rk naturally induces a projective arrangement P in RPk−1. As explained
above, two unbounded regions of A give rise to one region of P. On the level of sign labels in
P, we identify the label σ and the label −σ obtained from σ by flipping all the signs.

An example of an oriented arrangement with sign labels is shown in Figure 1.3. As we will
see in Section 1.5.2, oriented hyperplane arrangements define realizable oriented matroids.

1.5.2. Oriented matroids
Much of the material on hyperplane arrangements can be naturally generalized to the setting
of oriented matroids. In this section, we review the basics of oriented matroid theory and
give a dictionary between the language of hyperplane arrangements and that of oriented
matroids. We begin by discussing signed circuits, which we will often abbreviate as circuits if
the meaning is clear from context.
Definition 1.5.5 (Signed circuit axioms). An oriented matroid consists of a ground set E and a
collection C of tuples of the form X = (X+, X−) called circuits, where X+, X− are disjoint
subsets of E satisfying

(i) (∅, ∅) is not a circuit.
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(ii) If X is a circuit, then so is −X = (X−, X+).

(iii) No proper subset of a circuit is a circuit.

(iv) (Elimination). IfX0 andX1 are two signed circuits withX0 ̸= X1 and e ∈ X+
0 ∩X

−
1 , then

there is a third circuit X ∈ C with X+ ⊂ (X+
0 ∪X

+
1 ) \ {e} and X− ⊂ (X−

0 ∪X
−
1 ) \ {e}.

We can obtain the oriented matroid of a matrix as follows.
Definition 1.5.6 (Oriented matroid of a matrix). Fix a matrix A and let

∑
i λivi = 0 be a

minimal linear dependency among its rows. Associate to this dependency the signed set
X = (X−, X+), where

X− = {i : λi < 0},
X+ = {i : λi > 0}.

Then the oriented matroid MA associated to A has as its signed circuits the signed sets
coming from minimal linear dependencies, that is, from left kernel vectors with minimal
support.

One can check that oriented matroids of matrices satisfy the signed circuit axioms.
Example 1.5.7 (Oriented matroid of a matrix A). Consider the matrix

A =


1 0 0
0 1 0
0 0 1
2 −3 4

 .
Then the only linear dependency up to scaling is v4−4v3 + 3v2−v1 = 0. Thus the only circuit
(when only one of X,−X is considered) is 2413, where we use a more compact notation in
which the bar indicates being in the negative part of the signed set. ♦

Remark 1.5.8. One can also define MA by signed bases; the matroid is then the map which
assigns to each size k subset I ⊂ [n] the sign of the determinant of AI . This definition is
called the chirotope definition [BLVS+99, page 6] and satisfies the chirotope axioms, which
we do not describe here. In particular, the database [Fin] that we use in Chapter 5 indexes
matroids by their chirotope.

We recall a few definitions we will need to explain how a hyperplane arrangement can be
viewed as an oriented matroid.
Definition 1.5.9 (Composition). Let X = (X+, X−) and Y = (Y +, Y −) be signed sets. Then
their composition X ◦ Y is (X+ ∪ (Y + \X−), X− ∪ (Y − \X+)).
Definition 1.5.10 (Orthogonality). Let X = (X+, X−) and Y = (Y +, Y −) be signed sets.
Define S(X,Y ) = (X+ ∩ Y −) ∪ (X− ∩ Y +). We say X and Y are orthogonal if S(X,Y ) and
S(X,−Y ) are both empty or both non-empty.

We define vectors as compositions of circuits, and cocircuits and covectors as the circuits
and vectors of the dual matroid [BLVS+99, page 4], respectively. An equivalent definition
which is easier for computing is that the covectors of M are the signed sets which are
orthogonal to all vectors of M. For more detail, see [BLVS+99, Chapter 1]. There is yet
another definition in terms of vector configurations.
Definition 1.5.11 (Oriented matroid of a vector configuration). One can also view the rows vi

of the matrix A as vectors in Rk. For such a vector configuration, the covectors ofMA can be
defined as the set of tuples YH = (Y +

H , Y −
H ) as H runs over oriented hyperplanes, where Y +

H is
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the set of vectors in the positive half-space defined by H, and Y −
H is the set of vectors in the

negative half-space. The cocircuits are the minimal covectors. They arise from hyperplanes
that are spanned by subsets of {v1, ..., vn}.
Definition 1.5.12 (Oriented matroid of a hyperplane arrangment). Let Hi be the hyperplane
given by the vanishing of li(x) = ai ·x. Then the oriented matroid of the arrangement {Hi}ni=1
is the matroid of the vector configuration given by a1, ..., an, or equivalently, the oriented
matroid of the matrix with rows a1, ..., an.

Remark 1.5.13. Faces of a hyperplane arrangement correspond to covectors of its oriented
matroid, and regions correspond to maximal covectors. The rank (denoted by r) of the
matroid is k + 1, where k is the dimension of the ambient space [BLVS+99, Chapter 1].
Example 1.5.14 (Oriented matroid of a matrix A). Let A be the matrix

A =


1 0 0
0 1 0
0 0 1
2 −3 4


as in Example 1.5.7. The cocircuits are given by considering hyperplanes H spanned by pairs
of rows. For example, if H = Span{a1, a3} = {y = 0}, then a2 is in the positive half-space
(since the y-coordinate is 1) and a4 is in the negative half-space (since the y coordinate is
−3). Thus we obtain the cocircuit 24̄.

The total set of cocircuits (not including negations) is {24̄, 34, 23, 14, 31̄, 12}. In the
previous sections we have used sign vector notation; that is, to each signed set we associate a
length n vector with ± at index i if i is in X± and 0 otherwise. Applying this convention,
one can check that the covectors are exactly the sign vectors with fewer than 3 sign changes.
For example, 24̄ ◦ 31̄ = 2314, which corresponds to (−+ +−) with two sign changes. ♦

Definition 1.5.15. An oriented matroid is realizable if it arises from a hyperplane arrangement
over R.

In Section 5.4 we will use the correspondence between hyperplane arrangements and
matroids to suggest an abstract definition of a Grasstope. This correspondence will also prove
helpful for our computations, presented in the same section.
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Chapter 2

Gibbs Manifolds

Toric varieties provide the geometric foundations for many successes in the mathematical
sciences. In statistics they appear as discrete exponential families [Sul18, p. 2], and their ideals
reveal Markov bases for sampling from conditional distributions [DS98]. In optimization, they
furnish nonnegativity certificates [FdW22] and govern the entropic regularization of linear
programming [STVvR24]. Sightings in phylogenetics, stochastic analysis, Gaussian inference
and chemical reaction networks motivate the slogan the world is toric [MS21a, Section 8.3].

In all of these applications, the key player is the positive part of the toric variety. That
real manifold is identified with a convex polytope by the moment map [MS21a, Theorem 8.24].
The fibers of the underlying linear map are polytopes of complementary dimension, and each
fiber intersects the toric variety uniquely, in the Birch point. This is the unique maximizer
of the entropy over the polytope [PS05, Theorem 1.10]. In statistical physics and computer
science [Vig99], the Birch point is called the Gibbs distribution. This name refers to the
maximum entropy state in a quantum system, and is the reason behind the title of this chapter.

This chapter offers a non-commutative extension of applied toric geometry. In that
extension, points in Rn are replaced by real symmetric n×n-matrices, and linear programing
is replaced by semidefinite programming. There is a moment map which takes the cone of
positive semidefinite matrices onto a spectrahedral shadow, and whose fibers are spectrahedra
of complementary dimension. The Gibbs manifold plays the role of the positive toric variety.
Each spectrahedron intersects the Gibbs manifold uniquely, in the Gibbs point. Just like in
the toric case, we study these objects algebraically by passing to the Zariski closure of our
positive manifold. The resulting analogues of toric varieties are called Gibbs varieties.

We illustrate these concepts for the following linear space of symmetric 3× 3-matrices:

L =


y1 + y2 + y3 y1 y2

y1 y1 + y2 + y3 y3
y2 y3 y1 + y2 + y3

 : y1, y2, y3 ∈ R

 . (2.0.1)

The Gibbs manifold GM(L) is obtained by applying the exponential function to each matrix
in L. Since the matrix logarithm is the inverse to the matrix exponential, it is a 3-dimensional
manifold, contained in the 6-dimensional cone int(S3

+) of positive definite 3× 3-matrices.
Consider the quotient map from the matrix space S3 ≃ R6 onto S3/L ≃ R3. This takes a

positive semidefinite matrix X = [xij ] to its inner products with the matrices in a basis of L:

π : S3
+ → R3 : X 7→

(
Tr(X) + 2x12, Tr(X) + 2x13, Tr(X) + 2x23

)
.

Precisely this map appeared in the statistical study of Gaussian models in [SU10, Example
1.1]. The fibers π−1(b) are three-dimensional spectrahedra, and these serve as feasible regions
in optimization, both for semidefinite programming and for maximum likelihood estimation.
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We here consider yet another convex optimization problem over the spectrahedron π−1(b),
namely maximizing the von Neumann entropy h(X) = Tr(X−X · log(X)). This problem has
a unique local and global maximum, at the intersection π−1(b) ∩ GM(L). See Theorem 2.4.1.
This Gibbs point is the maximizer of the entropy over the spectrahedron. Therefore, the
Gibbs manifold GM(L) is the set of Gibbs points in all fibers π−1(b), as b ranges over R3.

To study these objects algebraically, we ask for the polynomials that vanish on GM(L).
The zeros of these polynomials form the Gibbs variety GV(L). Thus, the Gibbs variety is the
Zariski closure of the Gibbs manifold. In our example, the Gibbs manifold has dimension 3,
whereas the Gibbs variety has dimension 5. The latter is the cubic hypersurface GV(L) ={
X ∈ S3 : (x11−x22)(x11−x33)(x22−x33) = x33(x2

13−x2
23)+x22(x2

23−x2
12)+x11(x2

12−x2
13)
}
.

As promised, the study of Gibbs manifolds and Gibbs varieties is a non-commutative
extension of applied toric geometry. Indeed, every toric variety is a Gibbs variety arising
from diagonal matrices. For instance, the toric surface {x ∈ R3 : x1x3 = x2

2 } is realized as

GV(L′) =
{
X ∈ S3 : x11x33 − x2

22 = x12 = x13 = x23 = 0
}

for the diagonal matrix pencil

L′ =


2y1 0 0

0 y1+y2 0
0 0 2y2

 : y1, y2 ∈ R

 . (2.0.2)

However, even for diagonal matrices, the dimension of the Gibbs variety can exceed that of
the Gibbs manifold. To see this, replace the matrix entry 2y1 by

√
2y1 in the definition of L′.

This explains why transcendental number theory will make an appearance in our study.

Our presentation in this chapter is organized as follows. Section 2.1 gives a more thorough
introduction to Gibbs manifolds and Gibbs varieties. Theorem 2.1.6 states that the dimension
of the Gibbs variety is usually quite small and Theorem 2.1.9 gives a formula for this dimension.
The proofs of these results are presented in Section 2.2. In that section we present algorithms
for computing the prime ideal of the Gibbs variety. This is an implicitization problem, where
the parametrization uses transcendental functions. We compare exact symbolic methods for
solving that problem with a numerical approach. A key ingredient is the Galois group for
the eigenvalues of a linear space of symmetric matrices. We implemented our algorithms in
Julia, making use of the computer algebra package Oscar.jl [OSC24]. Code and data for
this chapter are available at https://mathrepo.mis.mpg.de/GibbsManifolds.

In Section 2.3 we study the Gibbs varieties given by two-dimensional spaces of symmetric
matrices. This rests on the classical Segre-Kronecker classification of matrix pencils [FMS21].

In Section 2.4 we turn to the application that led us to study Gibbs manifolds, namely
entropic regularization in convex optimization. That section develops the natural generalization
of the geometric results in [STVvR24] from linear programming to semidefinite programming.
In Section 2.5 we study quantum optimal transport [CEFŻ22]. This is the semidefinite
programming analogue to the classical optimal transport problem [STVvR24, Section 3].
We show that its Gibbs manifold is the positive part of a Segre variety in matrix space.
We conclude in Section 2.6 with a discussion of logarithmic sparsity. A matrix is called
logarithmically sparse if its matrix logarithm has many zeros, and once a sparsity pattern is
fixed, such matrices form a Gibbs manifold. We study these special Gibbs manifolds and
explore a connection to graph theory.

https://mathrepo.mis.mpg.de/GibbsManifolds
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2.1. What are Gibbs manifolds and varieties?
We write Sn for the space of symmetric n×n-matrices. This is a real vector space of dimension(n+1

2
)
. The subset of positive semidefinite matrices is denoted Sn

+. This is a full-dimensional
closed semi-algebraic convex cone in Sn, known as the PSD cone. The PSD cone is self-dual
with respect to the trace inner product, given by ⟨X,Y ⟩ := Tr(XY ) for X,Y ∈ Sn.

The matrix exponential function is defined by the usual power series, which converges
for all real and complex n × n-matrices. It maps symmetric matrices to positive definite
symmetric matrices. The zero matrix 0n is mapped to the identity matrix idn. We write

exp : Sn → int(Sn
+) , X 7→

∞∑
i=0

1
i! X

i.

This map is invertible, with the inverse given by the familiar series for the logarithm:

log : int(Sn
+)→ Sn , Y 7→

∞∑
j=1

(−1)j−1

j
(Y − idn)j .

We next introduce the geometric objects studied in this chapter. We fix any matrix
A0 ∈ Sn and d linearly independent matrices A1, A2, . . . , Ad, also in Sn. We write L for the
affine subspace A0 + spanR(A1, . . . , Ad) of the vector space Sn ≃ R(n+1

2 ). Thus, L is an affine
space of symmetric matrices (ASSM) of dimension d. If A0 = 0, then L is a linear space of
symmetric matrices (LSSM). We are interested in the image of L under the exponential map:
Definition 2.1.1 (Gibbs manifold). The Gibbs manifold GM(L) of L is the d-dimensional
manifold exp(L) ⊂ Sn

+.
This is indeed a d-dimensional manifold inside the convex cone Sn

+. It is diffeomorphic to
L ≃ Rd, with the identification given by the exponential map and the logarithm map.

In notable special cases (e.g. that in Section 2.5), the Gibbs manifold is semi-algebraic,
namely it is the intersection of an algebraic variety with the PSD cone. However, this fails in
general, as seen above. It is still interesting to ask which polynomial relations hold between
the entries of any matrix in GM(L). This motivates the following definition.
Definition 2.1.2 (Gibbs variety). The Gibbs variety GV(L) of L is the Zariski closure of GM(L)
in C(n+1

2 ).
Example 2.1.3 (n = 4, d = 2). Consider the 2-dimensional linear space of symmetric matrices

L =




0 0 0 y1
0 0 y1 y2
0 y1 y2 0
y1 y2 0 0

 : y1, y2 ∈ R

 ⊂ S4.

Its Gibbs manifold GM(L) is a surface in S4 ≃ R10. The Gibbs variety GV(L) has dimension
five and degree three. It consists of all symmetric matrices X = (xij) whose entries satisfy

x13 − x22 + x44 = x14 − x23 + x34 = x24 − x33 + x44 = 0,

and rank
[
x11−x44 x12−x34 x22−x33
x12 x22−x44 x23−x34

]
≤ 1.

(2.1.1)

This follows from the general result on matrix pencils in Theorem 2.3.4. ♦
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We now investigate various properties of Gibbs varieties. We begin with an amusing fact
that if L is an LSSM with some additional symmetries, the Gibbs variety respects them.

We consider the tuple of variables x = {xij : 1 ⩽ i ⩽ j ⩽ n}. An element σ of
the symmetric group Sn acts on the polynomial ring C[x] by sending xij to xσ(i)σ(j) for
1 ⩽ i ⩽ j ⩽ n (we identify the variables xij and xji). We will also consider the action of Sn

on Sn by simultaneously permuting rows and columns of a matrix.
Proposition 2.1.4. Let L be an LSSM of n× n matrices that is invariant under the action
of σ ∈ Sn as a set, i.e. σ(L) = L. Then the ideal I(GV(L)) of the corresponding Gibbs
variety is also invariant under the action of σ.

Proof. To prove the Proposition, it suffices to show that if B ∈ L is obtained from A ∈ L by
simultaneously permuting rows and columns, then exp (B) is obtained from exp (A) in the
same way. Since exp (B) is a formal power series in B, it suffices to show that Bk is obtained
from Ak by simultaneously permuting rows and columns for any non-negative integer k. The
latter fact immediately follows from the matrix multiplication formula.

Note that Proposition 2.1.4 is equivalent to the well-known fact that exp (P−1AP ) =
P−1 exp (A)P for a permutation (and, more generally, orthogonal) matrix P . In Section 2.6,
we use Proposition 2.1.4 to show that ideals of Gibbs varieties of sparse LSSMs defined by
graphs are invariant under permutations of variables induced by graph automorphisms.
Example 2.1.5. Consider the LSSM

L =


y1 + y2 + y3 y1 y2

y1 y1 + y2 + y3 y3
y2 y3 y1 + y2 + y3

 : y1, y2, y3 ∈ R

 .
This linear space is spanned by the matrices

A1 =

1 1 0
1 1 0
0 0 1

 , A2 =

1 0 1
0 1 0
1 0 1

 , A3 =

1 0 0
0 1 1
0 1 1

 .
The transposition σ = (12) ∈ S3 acts on S3 in the following way:x11 x12 x13

x12 x22 x23
x13 x23 x33

 7→
x22 x12 x23
x12 x11 x13
x23 x13 x33

 .
This action restricts to a linear automorphism of L defined by sending A2 to A3 and A3
to A2, while leaving A1 intact. The Gibbs variety of L is a hypersurface in C6 whose prime
ideal is generated by a single polynomial

p(x11, x12, x13, x22, x23, x33) = (x11 − x22)(x11 − x33)(x22 − x33)−
− x33(x2

13 − x2
23)− x22(x2

23 − x2
12)− x11(x2

12 − x2
13).

The action of σ on C[x11, x12, x13, x22, x23, x33] sends p to −p and preserves the ideal. ♦

The following dimension bounds constitute one of our main results on Gibbs varieties.
Theorem 2.1.6. Let L ⊂ Sn be an ASSM of dimension d. The dimension of the Gibbs variety
GV(L) is at most n+ d. If A0 = 0, i.e. L is an LSSM, then dim GV(L) is at most n+ d− 1.
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These bounds are often attained, e.g. in Example 2.1.3. Our proof of Theorem 2.1.6
appears in Section 2.2, in the context of algorithms for computing the ideal of GV(L).

It turns out that when L is an LSSM, Theorem 2.1.6, extremely simple in its statement,
can be refined into an exact formula for the dimension of the Gibbs variety. This refinement
rests on the notions of eigenvalues of an ASSM L and of the L-centralizer of A ∈ L.
Definition 2.1.7 (Centralizer). Let A be an n × n-matrix, and L be an LSSM of n × n-
matrices. The centralizer C(A) of A is the set of all matrices that commute with A. The L-
centralizer CL(A) of A is C(A) ∩ L.

Note that CL(A) is a linear subspace of L. Its dimension is independent of A for a generic
choice of A ∈ L (see Section 2.6 for an explanation). This generic dimension will be denoted
by k in Theorem 2.1.9.

Since any ASSM can be written in the form L = {A0 + y1A1 + · · · + ydAd : yi ∈ R},
it can be identified with a single matrix with entries in the field R(y1, . . . , yd) of rational
functions in the variables y1, . . . , yd. The eigenvalues of this matrix are algebraic functions
in y1, . . . , yd (that is, elements of the algebraic closure R(y1, . . . , yd)) and will be referred to
as the eigenvalues of the corresponding ASSM L.

Example 2.1.8. Consider the LSSM spanned by A1 =
[
1 0
0 1

]
and A2 =

[
0 1
1 0

]
. It is identified

with the matrix
[
y1 y2
y2 y1

]
over R(y1, y2). Its eigenvalues are y1 − y2 and y1 + y2. ♦

Theorem 2.1.9. Let L be an LSSM of n × n-matrices of dimension d. Assume that L
has distinct eigenvalues. Let k be the dimension of the L-centralizer of a generic element
in L and m the dimension of the Q-linear space spanned by the eigenvalues of L. Then
dim GV(L) = m+ d− k.

The proof of Theorem 2.1.9 is also presented in Section 2.2. We now give a degree bound
for the Gibbs variety of an LSSM L, whose proof is contained in Section 2.2 as well. In what
follows, V(I) denotes the affine variety (over C) defined by the polynomial ideal I.
Proposition 2.1.10. Let L be an LSSM of n × n-matrices with Q-linearly independent
eigenvalues. Then deg GV(L) ⩽ n(n+1

2 )+2n.
Example 2.1.5 shows that this degree bound can be quite pessimistic: the actual degree

of the Gibbs variety is 3, while Proposition 2.1.10 gives 312.
While it might be difficult to find all polynomials that vanish on the Gibbs manifold, finding

linear relations is sometimes easier. Such relations are useful for semidefinite optimization,
see Remark 2.4.3. This brings us to the final geometric object of this chapter.
Definition 2.1.11 (Gibbs plane). The Gibbs plane GP(L) is the smallest affine space containing
GV(L).

Clearly, we have the chain of inclusions GM(L) ⊆ GV(L) ⊆ GP(L) ⊆ C(n+1
2 ).

Example 2.1.12. The Gibbs plane of the LSSM L from Example 2.1.3 is the 7-dimensional
linear space in C10 that is defined by the linear relations listed in the first row of (2.1.1). ♦

We claimed that this chapter offers a generalization of toric varieties. In what follows,
we make that claim precise, by discussing the case when L is a commuting family. This
means that the symmetric matrices A0, A1, . . . , Ad commute pairwise, i.e. AiAj = AjAi for
all i, j. We now assume that this holds. Then the ASSM L can be diagonalized, i.e. there is
an orthogonal matrix V such that Λi = V TAiV is a diagonal matrix, for all i. The vector
λi ∈ Rn of diagonal entries in Λi = diag(λi) contains the eigenvalues of Ai.
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The matrix exponential of any element in L can be computed as follows:

exp(A0 + y1A1 + · · ·+ ydAd) = V · exp(Λ0 + y1Λ1 + · · ·+ ydΛd) · V T . (2.1.2)

Let D denote this ASSM of diagonal matrices, i.e. D = {Λ0 + y1Λ1 + · · ·+ ydΛd : y ∈ Rd}.
Then the linear change of coordinates given by V identifies the respective Gibbs manifolds:

GM(L) = V ·GM(D) · V T . (2.1.3)

The same statement holds for the Gibbs varieties and the Gibbs planes:

GV(L) = V ·GV(D) · V T and GP(L) = V ·GP(D) · V T . (2.1.4)

The dimensions of these objects are determined by arithmetic properties of the eigenvalues.
Recall that Λi = diag(λi) where λi is a vector in Rn. Let Λ denote the linear subspace of

Rn that is spanned by the d vectors λ1, . . . , λd. We have D = λ0 + Λ, and therefore

GM(D) = exp(λ0) ⋆ exp(Λ) = {(eλ01w1, . . . , e
λ0nwn) : w ∈ exp(Λ)} ⊂ Rn.

Here ⋆ denotes coordinate-wise multiplication in Rn. Let ΛQ be the smallest vector subspace
of Rn spanned by elements of Qn which contains Λ. Its dimension dQ = dim ΛQ satisfies
d ≤ dQ ≤ n. Fix lattice vectors a1, a2, . . . , adQ in Zn that form a basis of ΛQ. Then, inside
the n-dimensional linear space defined by the diagonality condition, we have

GV(D) =
{(
eλ01

dQ∏
i=1

zai1
i , eλ02

dQ∏
i=1

zai2
i , . . . , eλ0n

dQ∏
i=1

zain
i

)
: z ∈ (C∗)dQ

}
. (2.1.5)

This is a toric variety of dimension dQ. The Zariski closure is taken in Cn. The Gibbs
manifold GM(D) is a d-dimensional subset of the real points in GV(D) for which z has strictly
positive coordinates. We summarize our discussion in the following theorem.
Theorem 2.1.13. Let L be an affine space of pairwise commuting symmetric matrices. Then
the Gibbs variety GV(L) is a toric variety of dimension dQ, given by (2.1.4) and (2.1.5).

For an illustration, consider the seemingly simple case d = 1 and A0 = 0. Here, GM(L) is
the curve formed by all powers of exp(A1), and GV(L) is a toric variety of generally higher
dimension. This scenario is reminiscent of that studied in [GS21].

Example 2.1.14. Let n = 3 and consider the LSSM L spanned by A1 =

4 1 1
1 3 1
1 1 3

. We have

A1 = V · diag(λ) · V T , where λ =
(
2, 4 +

√
2, 4−

√
2
)

and V = 1
2

 0
√

2 −
√

2
−
√

2 1 1√
2 1 1

 .
Here, D = Λ = Rλ, dQ = 2, and ΛQ = R{(1, 2, 2), (0, 1,−1)} = {p ∈ R3 : 4p1 = p2 + p3}.
Hence GV(D) is the toric surface {q4

11 = q22q33} in GP(D) = {Q ∈ S3 : q12 = q13 = q23 = 0}.
We transform that surface into the original coordinates via (2.1.4). The computation reveals

GV(L) = {X ∈ GP(L) : x4
23−4x3

23x33+6x2
23x

2
33−4x23x

3
33+x4

33+2x2
13−x2

23−2x23x33−x2
33 = 0}.

The ambient 3-space is GP(L) = {X ∈ S3 : x11−x23−x33 = x12−x13 = x22−x33 = 0}. ♦

This concludes our discussion of the toric Gibbs varieties arising from pairwise commuting
matrices. In the next section we turn to the general case, which requires new ideas.
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2.2. Implicitization of Gibbs varieties
Implicitization is the computational problem of finding implicit equations for an object that
comes in the form of a parametrization. When the parametrizing functions are rational
functions, these equations are polynomials and can be found using resultants or Gröbner bases
[MS21a, Section 4.2]. A different approach rests on polynomial interpolation and numerical
nonlinear algebra. This section studies implicitization of Gibbs varieties. The difficulty here
is in the fact that Gibbs manifolds are transcendental, since their parametrizations involve
the exponential function. We start out by presenting our proof of Theorem 2.1.6.

As in Section 2.1, L = A0 +spanR(A1, . . . , Ad) is a d-dimensional affine space of symmetric
n× n-matrices. Its elements are A0 + y1A1 + · · ·+ ydAd. We shall parametrize the Gibbs
manifold GM(L) in terms of the coordinates y1, . . . , yd on L. This uses the following formula.
Theorem 2.2.1 (Sylvester [Syl83]). Let f : D → R be an analytic function on an open set
D ⊂ R and M ∈ Rn×n a matrix that has n distinct eigenvalues λ1, . . . , λn in D. Then

f(M) =
n∑

i=1
f(λi)Mi, with Mi =

∏
j ̸=i

1
λi − λj

(M − λj · idn).

Note that the product on the right hand side is taken in the commutative matrix ring R[M ].

Proof of Theorem 2.1.6. The characteristic polynomial of A(y) = A0 + y1A1 + · · ·+ ydAd is

PL(λ; y) = det(A(y)− λ · idn) = c0(y) + c1(y)λ+ · · ·+ cn−1(y)λn−1 + (−1)n λn.

Its zeros λ are algebraic functions of the coordinates y = (y1, . . . , yd) on L.
We first assume that L has distinct eigenvalues, i.e. there is a Zariski open subset U ⊂ Rd

such that PL(λ; y∗) has n distinct real roots λ for all y∗ ∈ U . Sylvester’s formula writes the
entries of exp(A(y)) as rational functions of y, λi(y) and eλi(y) for y ∈ U . These functions
are multisymmetric in the pairs (λi, e

λi). They evaluate to convergent power series on Rd.
Let V be the subvariety of U × Rn that is defined by the equations

ci(y) = (−1)iσn−i(λ) for i = 0, . . . , n− 1, (2.2.1)

where σt(λ) is the tth elementary symmetric polynomial evaluated at (λ1, . . . , λn). We have
dimV = d. Define a map ϕ : V × Rn → Sn, using coordinates z1, . . . , zn on Rn, as follows:

(y1, . . . , yd, λ1, . . . , λn, z1, . . . , zn) 7−→
n∑

i=1
zi

∏
j ̸=i

1
λi − λj

(A(y)− λj · idn). (2.2.2)

The closure ϕ(V × Rn) of the image of this map is a variety. It contains the Gibbs variety:
setting zi = eλi parametrizes a dense subset of the Gibbs manifold, by Theorem 2.2.1.

The Gibbs variety of the LSSM RL spanned by the ASSM L also lies in ϕ(V × Rn),
because exp(y0A(y)) = ϕ(y0 · y, y0 · λ, ey0·λ) for any y ∈ U and y0 ∈ R\{0}. We thus have

dim GV(L) ≤ dimϕ(V × Rn) ≤ d+ n and dim GV(RL) ≤ d+ n.

Finally, suppose that L is an LSSM, i.e. A0 = 0. Then L is the linear span of an ASSM of
dimension d− 1 in Sn. The second inequality therefore gives dim GV(L) ≤ d+ n− 1.

We finally consider the case when L has m < n distinct eigenvalues. Since symmetric
matrices are diagonalizable, Sylvester’s formula can easily be adapted to this case: it suffices to
sum over the distinct eigenvalues of M , and to adjust the parametrization (2.2.2) accordingly.
That is, we replace n by m. See [HJ94, Chapter 6.1, Problem 14] for details.
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Remark 2.2.2. If the points exp(λ(y)) = (eλ1(y), . . . , eλn(y)), y ∈ U , lie in a lower-dimensional
subvariety W ⊂ Rn, then the proof of Theorem 2.1.6 gives the better bound dim GV(L) ≤
d+ dimW . We saw this in Example 2.1.14. In general, no such subvariety W exists, i.e. one
expects W = Rn. This is an issue of Galois theory, to be discussed at the end of this section.

For ease of exposition, we work only with LSSMs in the rest of this section. That is, we
set A0 = 0. We comment on the generalization to ASSMs in Remark 2.2.7. Our discussion
and the proof of Theorem 2.1.6 suggest Algorithm 1, for computing the ideal of the Gibbs
variety of an LSSM L. That ideal lives in a polynomial ring R[x] whose variables are the

Algorithm 1 Implicitization of the Gibbs variety of an LSSM L, defined over Q
Input: Linearly independent matrices A1, . . . , Ad ∈ Sn with rational entries
Output: Polynomials that define GV(L), where L = spanR(A1, . . . , Ad)

1: Compute the characteristic polynomial PL(λ; y) = c0(y) + c1(y)λ+ · · ·+ cn(y)λn

Require: PL(λ; y) has n distinct roots in R(y)
2: E′

1 ← {the n polynomials (−1)iσn−i(λ)− ci(y) in (2.2.1)}
3: E1 ← {generators of any associated prime over Q of ⟨E′

1⟩}
4: E2 ← {the entries of ϕ(y, λ, z)−X}, with X = (xij) a symmetric matrix of variables
5: E2, D ← clear denominators in E2 and record the least common denominator D
6: if the roots λ1, . . . , λn of PL(λ; y) are Q-linearly dependent then
7: E3 ← {zα − zβ :

∑
αiλi =

∑
βjλj , α, β ∈ Zn

⩾0}
8: else
9: E3 ← ∅

10: I ← the ideal generated by E1, E2, E3 in the polynomial ring R[y, λ, z,x]
11: I ← I : D∞

12: J ← elimination ideal obtained by eliminating y, λ, z from I
13: return a set of generators of J

entries of a symmetric n× n-matrix X. The algorithm builds three subsets E1, E2, E3 of the
larger polynomial ring R[y, λ, z,x]. After the saturation (step 11), the auxiliary variables
y, λ, z are eliminated. The equations E′

1 come from (2.2.1). They constrain (y, λ) to lie in
V . The set E1 generates an associated prime of ⟨E′

1⟩ (step 3), see the discussion preceding
Theorem 2.2.6. The equations E2 come from the parametrization (2.2.2). Note that, if L
has m < n distinct eigenvalues, this formula can be adjusted as in the end of the proof of
Theorem 2.1.6, and the requirement after step 1 can be dropped. Later in the algorithm,
one replaces n with m. It is necessary to clear denominators in order to obtain polynomials
(step 5). The saturation by D avoids spurious components arising from this step. Finally, E3
accounts for toric relations between the zi arising from Q-linear relations among the λi. If no
such relations exist, Theorem 2.2.5 ensures that the assignment E3 ← ∅ in step 9 is correct.

Steps 6 and 7 in Algorithm 1 require a detailed discussion. Further below we shall explain
the Q-linear independence of eigenvalues, how to check this, and how to compute E3. Ignoring
this for now, one can also run Algorithm 1 with E3 = ∅. Then step 13 still returns polynomials
that vanish on the Gibbs variety GV(L) but these may cut out a larger variety.

We implemented Algorithm 1 in Julia (v1.8.3), using Oscar.jl [OSC24], and tested it on
many examples. The code is available at https://mathrepo.mis.mpg.de/GibbsManifolds.
Example 2.2.3. The Gibbs variety GV(L) for the LSSM L in (2.0.1) has the parametrization

ϕ =
3∑

i=1

zi

q(λi, y1, y2, y3)

p11(λi, y1, y2, y3) p12(λi, y1, y2, y3) p13(λi, y1, y2, y3)
p12(λi, y1, y2, y3) p22(λi, y1, y2, y3) p23(λi, y1, y2, y3)
p13(λi, y1, y2, y3) p23(λi, y1, y2, y3) p33(λi, y1, y2, y3)

 , where

https://mathrepo.mis.mpg.de/GibbsManifolds
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q = 2y2
1 + 6y1y2 + 2y2

2 + 6y1y3 + 6y2y3 + 2y2
3 − 6y1λ− 6y2λ− 6y3λ+ 3λ2,

p11 = y2
1 + 2y1y2 + y2

2 + 2y1y3 + 2y2y3 − 2y1λ− 2y2λ− 2y3λ+ λ2,
p12 = −y2

1 − y1y2 − y1y3 + y2y3 + y1λ,
p13 = −y1y2 − y2

2 + y1y3 − y2y3 + y2λ,
p22 = y2

1 + 2y1y2 + 2y1y3 + 2y2y3 + y2
3 − 2y1λ− 2y2λ− 2y3λ+ λ2,

p23 = y1y2 − y1y3 − y2y3 − y2
3 + y3λ,

p33 = 2y1y2 + y2
2 + 2y1y3 + 2y2y3 + y2

3 − 2y1λ− 2y2λ− 2y3λ+ λ2.

Our Julia code for Algorithm 1 easily finds the cubic polynomial defining GV(L). ♦

In spite of such successes, symbolic implicitization is limited to small n and d. Numerical
computations can help, in some cases, to find equations for more challenging Gibbs varieties.
Example 2.2.4. We consider the LSSM of 4× 4 Hankel matrices with upper left entry zero:

L =




0 y2 y3 y4
y2 y3 y4 y5
y3 y4 y5 y6
y4 y5 y6 y7

 : (y2, . . . , y7) ∈ R6

 .
Algorithm 1 failed to compute its Gibbs variety. We proceed using numerics as follows.
Fix a degree D > 0 and let N =

(9+D
D

)
be the number of monomials in the 10 coordinates

x11, . . . , x44 on S4. We create M ≥ N samples on GM(L) by plugging in random values for
the six parameters yi and applying the matrix exponential. Finding all vanishing equations
of degree D on these samples amounts to computing the kernel of an M ×N Vandermonde
matrix. If this matrix has full rank, then there are no relations of degree D. We implemented
this procedure in Julia. In our example, Theorem 2.1.6 says that GV(L) is contained in a
hypersurface. Using our numerical method, we find one defining equation of degree D = 6.
We used M = 5205 ≥ N = 5005 samples. Our sextic has 853 terms with integer coefficients:

x3
11x22x24x34 − x3

11x
2
23x34 − x3

11x23x
2
24 + · · ·+ 3x23x

2
24x33x

2
34 + x4

24x33x34 − x3
24x

2
33x34.

Its Newton polytope has the f-vector (456, 5538, 21560, 41172, 44707, 29088, 11236, 2370, 211).
In fact, the Gibbs variety in this example is precisely the hypersurface defined by this sextic.
This follows from Theorem 2.1.9.

Note that the package Oscar.jl conveniently allows to perform symbolic and numerical
implicitization and polyhedral computations in the same programming environment.

We emphasize that our numerical Julia code is set up to find exact integer coefficients.
For this, we first normalize the numerical approximation of the coefficient vector by setting its
first (numerically) nonzero entry to one. Then we rationalize the coefficients using the built in
command rationalize in Julia, with error tolerance tol = 1e-7. Correctness of the result
is proved by checking that the resulting polynomial vanishes on the parametrization. ♦

We now turn to Q-linear relations among eigenvalues of L. Our arithmetic discussion
begins with a version of [Ax71, (SP)], which is well-known in transcendental number theory.
Theorem 2.2.5 (Ax-Schanuel). If the eigenvalues λ1, . . . , λn of the LSSM L are Q-linearly
independent, then eλ1 , . . . , eλn are algebraically independent over the field C(y1, . . . , yd).

On the other hand, suppose that the eigenvalues of L satisfy some non-trivial linear
relation over Q. We can then find nonnegative integers αi and βj , not all zero, such that

n∑
i=1

αiλi =
n∑

j=1
βjλj . (2.2.3)

This implies that the exponentials of the eigenvalues satisfy the toric relations
n∏

i=1
zαi

i =
n∏

j=1
z

βj

j . (2.2.4)
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The linear relations (2.2.3) can be found from the ideal ⟨E′
1⟩ in step 2 which specifies

that the λi are the eigenvalues of A(y). This ideal is radical if we assume that L has distinct
eigenvalues. We compute the prime decomposition of the ideal over Q. All prime components
are equivalent under permuting the λi, so we replace ⟨E′

1⟩ by any of these prime ideals in
step 3. We compute (2.2.3) as the linear forms in that prime ideal. Using (2.2.4), we compute
the toric ideal ⟨E3⟩ in step 7, which is also prime. This ideal defines a toric variety W ′, whose
Sn-orbit is the variety W in Remark 2.2.2. We arrive at the following result.
Theorem 2.2.6. Let L ⊂ Sn be an LSSM with distinct eigenvalues. The Gibbs variety GV(L)
is irreducible and unirational, and the ideal J found in Algorithm 1 is its prime ideal.

Proof. Sylvester’s formula yields a rational parametrization ψ of GV(L) with parameters
y1, . . . , yd, z1, . . . , zn. The parameters λi in (2.2.2) can be omitted: the entries in the image
are multisymmetric in (λi, zi), so that they can be expressed in terms of elementary symmetric
polynomials of the λi [Bri04, Theorem 1]. The point (z1, . . . , zn) lies on the toric variety W ′

defined above. The domain Cd×W ′ of ψ is an irreducible variety, and it is also rational. The
image of ψ is the Gibbs variety GV(L), which is therefore unirational and irreducible. The
ideals given by E1 and E2 in Algorithm 1 are prime, after saturation, and elimination in step
12 preserves primality. Hence the output in J in step 13 is the desired prime ideal.

We are now ready to prove Theorem 2.1.9 and Proposition 2.1.10.

Proof of Theorem 2.1.9. The dimension of a generic fiber of the map ϕ from the proof of
Theorem 2.1.6 is equal to the dimension of the centralizer of a generic element in this
fiber, i.e. to k. This is explained in Section 2.3, in the proof of Theorem 2.3.6. Note
that ϕ : V × Rn → Sn restricts to a dominant map from V ×W ′ to GV(L), where W ′ is
the variety from Theorem 2.2.6. This domain is irreducible, being the product of irreducible
varieties, and has dimension m+ d. GV(L) is also irreducible by Theorem 2.2.6. Thus, by
fiber dimension theorem [Har13, Exercise II.3.22], dim GV(L) = m+ d− k.

Proof of Proposition 2.1.10. By Algorithm 1, the prime ideal J of GV(L) is obtained by
elimination from the ideal I ⊆ C[xij , λi, zi, yi] of a polynomial ring in

(n+1
2
)

+ 2n+ d variables
generated by polynomials of degree at most n. By [MS21a, Theorem 4.2], the variety
V(J) is a projection of V(I) and therefore degV(J) ⩽ degV(I). Therefore, deg GV(L) =
degV(J) ⩽ degV(I). The variety V(I) lives in the affine space of dimension

(n+1
2
)

+ 2n+ d,
where d = dimL. Note that dimV(I) ⩾ dimL and thus codimV(I) ⩽

(n+1
2
)

+ 2n. Therefore,
by Bézout’s theorem [Ful98, Theorem 12.3], we have degV(I) ⩽ n(n+1

2 )+2n.

Once the degree of the Gibbs variety is known, one can use numerical techniques to find
its defining equations. In general, this allows to compute defining equations (in a set-theoretic
sense) of Gibbs varieties that are infeasible for symbolic algorithms, as seen in Example
2.2.4. This is due to the fact that any variety of degree d can be set-theoretically defined
by equations of degree at most d. Such a description is given by the Chow equations of a
variety [DS95, Proposition 3.1].

We now present Algorithm 2 for finding the equations of the Gibbs variety numerically.
This is based on [BKSW18, Chapter 5]. We write ⟨P ⟩ for the ideal generated by P ⊆ C[x].

Correctness of Algorithm 2 is ensured by the genericity condition imposed on the samples
picked in Step 3. Unfortunately, the degree upper bound in Proposition 2.1.10 restricts
the practical applicability of this algorithm to n ⩽ 3. However, if the Gibbs variety is a
hypersurface, then the algorithm can terminate immediately after finding a single algebraic
equation. The degree of this equation is usually much lower than the degree bound in
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Algorithm 2 Numerical implicitization of Gibbs varieties of known degree
Input: An LSSM L given as an R-span of d linearly independent matrices A1, . . . , Ad,

degree k of GV(L);
Output: A set of equations that define GV(L) set-theoretically.

Require: L has Q-linearly independent eigenvalues.
1: I ← {0}, l← 1, N ←

(n+1
2
)

2: for l = 1 to k do
3: Pick M >

(N+l−1
l

)
random samples in L such that they are not contained in a

lower-dimensional subspace of L
4: Let E be the set of matrix exponentials of the M picked samples
5: Construct a Vandermonde matrix A by evaluating all monomials of degree l on the

elements of E
6: Let Il be the basis of kerA
7: I ← ⟨I ∪ Il⟩

return a set of generators of I.

Proposition 2.1.10 (as seen in Example 2.1.5) and therefore the defining equation can be
found with this algorithm for larger n. This was the strategy used in Example 2.2.4.

As promised, we conclude this section with explaining the role of Galois theory in symbolic
implicitization of Gibbs varieties. We define the Galois group GL of an LSSM L to be the
Galois group of the characteristic polynomial PL(λ, y) over the field Q(y1, . . . , yd). Note that
GL is the subgroup of the symmetric group Sn whose elements are permutations that fix
each associated prime of ⟨E′

1⟩. Hence the index of the Galois group GL in Sn is the number
of associated primes. In particular, the Galois group equals Sn if and only if the ideal ⟨E′

1⟩
formed in step 2 of Algorithm 1 is prime.

The existence of linear relations (2.2.3) depends on the Galois group GL. If the Galois
group is small then the primes of ⟨E1⟩ are large, and more likely to contain linear forms.
There is a substantial literature in number theory on this topic. See [Gir82, Gir99] and
the references therein. For instance, by Kitaoka [Kit17, Proposition 2], there are no linear
relations if n is prime, or if n ≥ 6 and the Galois group is Sn or An. If this holds, E3 = ∅ in
step 9 of Algorithm 1.

The computation of Galois groups is a well-studied topic in symbolic computation and
number theory. Especially promising are methods based on numerical algebraic geometry
(e.g. in [HRS18]). These fit well with the approach to implicitization in Example 2.2.4. A very
interesting research question is to classify LSSMs by their Galois groups.
Remark 2.2.7. We briefly comment on how to adjust Algorithm 1 to compute the Gibbs
variety of an ASSM L with A0 ̸= 0. In this case, algebraic relations between eλ1 , . . . , eλn

come from Q-linear relations between the eigenvalues of L, but this time modulo C: an affine
relation

∑
αiλi =

∑
βjλj + γ gives zα − eγ · zβ = 0, where zi = eλi , αi, βj ∈ Z≥0, γ ∈ C.

Here γ is a Q-linear combination of eigenvalues of A0. Theorem 2.2.6 holds for ASSMs as
well, provided that these Q-linear relations modulo C can be computed in practice. This can
usually not be done over Q. We leave this algorithmic challenge for future research.

2.3. Pencils of quadrics
In this section we study the Gibbs variety GV(L) where L ⊂ Sn is a pencil of quadrics, i.e. an
LSSM of dimension d = 2. We follow the exposition in [FMS21], where pencils L are classified
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by Segre symbols. The Segre symbol σ = σ(L) is a multiset of partitions that sum up to n. It
is computed as follows. Pick a basis {A1, A2} of L, where A2 is invertible, and find the Jordan
canonical form of A1A

−1
2 . Each eigenvalue determines a partition, according to the sizes of

the corresponding Jordan blocks. The multiset of these partitions is the Segre symbol σ.
We use the canonical form in [FMS21, Section 2]. Suppose the Segre symbol is σ =

[σ1, . . . , σr], where the ith partition σi equals (σi,1 ≥ σi,2 ≥ · · · ≥ σi,n ≥ 0). There are r
groups of blocks, one for each eigenvalue αi of A1A

−1
2 . The j-th matrix in the i-th group is

the σi,j × σi,j-matrix

y1 ·


0 0 . . . 0 αi

0 0 . . . αi 1
...

... . . . . . .
...

0 αi 1 . . . 0
αi 1 . . . 0 0

 + y2 ·


0 . . . 0 0 1
0 . . . 0 1 0
0 . . . 1 0 0
... . . .

...
...

...
1 . . . 0 0 0

 .

There are 13 Segre symbols for n = 4; see [FMS21, Example 3.1]. It is instructive to
compute their Gibbs varieties. All possible dimensions, 2, 3, 4 and 5, are attained. Dimension
2 arises for the diagonal pencil Lσ = diag(α1y1+y2, α2y1+y2, α3y1+y2, α4y1+y2), with Segre
symbol σ = [1, 1, 1, 1]. When the αi are distinct integers, GV(Lσ) = GM(Lσ) is a toric
surface. This is similar to (2.0.2). Dimension 5 arises for σ = [4], see Example 2.1.3.

The following examples, also computed with Algorithm 1, exhibit the dimensions 5, 4, 3.
Example 2.3.1. Consider the Segre symbol σ = [3, 1]. The canonical pencil L[3,1] is spanned by

0 0 α1 0
0 α1 1 0
α1 1 0 0
0 0 0 α2

 and


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , for α1, α2 ∈ R distinct.

Here, dim GV(L[3,1]) = 5, the upper bound in Theorem 2.1.6. Algorithm 1 produces the ideal

J =
〈
x14, x24, x34, x13 − x22 + x33, x

2
12 − x11x22 − x12x23 + x11x33 + x22x33 − x2

33
〉
.

If α1 = α2, then the Segre symbol changes to σ = [(3, 1)]. We now find the additional cubic

x11x22x33 + 2x12x13x23 − x2
13x22 − x11x

2
23 − x2

12x33 − x44 ∈ J. (2.3.1)

This cuts down the dimension by one, and we now have dim GV(L[(3,1)]) = 4. ♦

Example 2.3.2. Consider the Segre symbol σ = [(2, 2)]. The pencil L[(2,2)] is spanned by
0 α 0 0
α 1 0 0
0 0 0 α
0 0 α 1

 and


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , for some α ∈ R.

A version of Algorithm 1 for LSSMs with multiple eigenvalues produces the ideal

J = ⟨x11 − x33, x12 − x34, x22 − x44, x13, x14, x23, x24 ⟩.

The Gibbs variety GV(L[(2,2)]) is 3-dimensional and equals the Gibbs plane GP(L[(2,2)]). ♦

The cubic (2.3.1) which distinguishes the Segre symbols [3, 1] and [(3, 1)] is explained by
the following result. This applies not just to pencils but to all ASSMs with block structure.
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Proposition 2.3.3. Let L be a block-diagonal ASSM with r blocks Xi(y) of size τi, where
τ1 + · · ·+ τr = n. The Gibbs plane GP(L) is contained in Sτ1 × · · · × Sτr ⊂ Sn. Moreover,
with the notation J = {{i, j} ∈

([r]
2
)

: Tr(Xi(y)) = Tr(Xj(y))}, we have

GV(L) ⊆ {(X1, . . . , Xr) ∈ GP(L) : det(Xi) = det(Xj) for all {i, j} ∈ J }.

Proof. Block-diagonal matrices are exponentiated block-wise. The entries outside the diagonal
blocks are zero. The statement follows from det(exp(Xi(y))) = exp(Tr(Xi(y))).

Proposition 2.3.3 holds for the canonical pencil Lσ of any Segre symbol σ. First of all,
for all indices (i, j) outside the diagonal blocks, we have xij = 0 on the Gibbs plane GP(Lσ).
Next, one has equations for the exponential of a single block, like those in Theorem 2.3.4
below. Finally, there are equations that link the blocks corresponding to entries σij of the
same partition σi. Some of these come from trace equalities between blocks of Lσ, and this
is the scope of Proposition 2.3.3. In particular, blocks ij and ik for which σij = σik mod 2
exponentiate to Xij ∈ Sσij

+ and Xik ∈ Sσik
+ with equal determinant. We saw this in (2.3.1). In

all examples we computed, the three classes of equations above determine the Gibbs variety.
We now derive the equations that hold for the exponential of a single block. To this end,

we fix σ = [n] with α1 = 0. The canonical LSSM L[n] consists of the symmetric matrices

Y =



0 0 . . . 0 y1
0 0 . . . y1 y2
...

... . . . . . . ...

0 y1 y2
... 0

y1 y2
... 0 0


.

The case n = 4 was featured in Example 2.1.3. In what follows we generalize that example.
Theorem 2.3.4. The following linear equations hold on the Gibbs plane GP(L[n]):

xi−1,j + xi+1,j = xi,j−1 + xi,j+1 for 2 ⩽ i < j ⩽ n. (2.3.2)

The 2× 2-minors of the following 2× (n− 1)-matrix vanish on the Gibbs variety GV(L[n]):

D(X) =
[
x11 x12 x22 . . .
x12 x22 x23 . . .

]
−
[
xn,n xn−1,n xn−1,n−1 . . .

0 xn,n xn−1,n . . .

]
. (2.3.3)

If the Galois group GL[n] is the symmetric group Sn, then the prime ideal of GV(L[n]) is
generated by (2.3.2) and (2.3.3), and we have dim GP(Ln) = 2n−1 and dim GV(L[n]) = n+1.
Remark 2.3.5. We conjecture that GL[n] = Sn. This was verified computationally for many
values of n, but we currently do not have a proof that works for all n. This gap underscores
the need, pointed out at the end of Section 2.2, for a study of the Galois groups of LSSMs.

Proof. We claim that the linear equations (2.3.2) hold for every non-negative integer power of Y .
This implies that they hold for exp(Y ). We will show this by induction. The equations clearly
hold for Y 0 = idn. Suppose they hold for (mij) = M = Y k. Write (bij) = B := Y k+1 = MY .

The two-banded structure of Y implies bi,j = y1 ·mi,n−j+1+y2 ·mi,n−j+2 for 1 ⩽ i < j. The
following identity holds for 2 ⩽ i < j, and it shows that exp(Y ) satisfies the equations (2.3.2):
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bi−1,j − bi,j−1 − bi,j+1 + bi+1,j = y1 ·mi−1,n−j+1 + y2 ·mi−1,n−j+2 − y1 ·mi,n−j+2−
y2 ·mi,n−j+3 − y1 ·mi,n−j − y2 ·mi,n−j+1 + y1 ·mi+1,n−j+1 + y2 ·mi+1,n−j+2

= y1 · (mi−1,n−j+1 −mi,n−j+2 −mi,n−j +mi+1,n−j+1) +
y2 · (mi−1,n−j+2 −mi,n−j+3 −mi,n−j+1 +mi+1,n−j+2) = 0.

We next consider the matrix D(X) in (2.3.3). We must show that D(X) has rank ≤ 1 for
X ∈ GV(L[n]). We claim that the rows of D(Y k) are proportional with the same coefficient
for all k ∈ Z≥0. This will imply that the rows of D(exp (Y )) are proportional. For the proof,
let v⃗1 and v⃗2 be the rows of D(B), where B = Y k. We will show that y1v⃗1 + y2v⃗2 = 0.

First note that D(idn) = 0. Also note that each column of D(B) has the form[
bi,i − bn+1−i,n+1−i

bi,i+1 − bn+1−i,n+2−i

]
or

[
bi,i+1 − bn−i,n+1−i

bi+1,i+1 − bn−i+1,n−i+1

]
.

We start with the left case. We must show y1(bi,i−bn+1−i,n+1−i)+y2(bi,i+1−bn+1−i,n+2−i) = 0.
Recall from above that bi,j = y1 ·mi,n−j+1 + y2 ·mi,n−j+2, where (mi,j) = M = Y k−1

for i < j. Using this and the fact that the powers of Y are symmetric, we write

y1(bi,i − bn+1−i,n+1−i) + y2(bi,i+1 − bn+1−i,n+2−i) =
= y1((y1 ·mi,n−i+1 + y2 ·mi,n−i+2)− (y1 ·mn+1−i,i + y2 ·mn+1−i,i+1)) +

y2((y1 ·mi,n−i + y2 ·mi,n−i+1)− (y1 ·mn+1−i,i−1 + y2 ·mn+1−i,i))
= y1y2(mi,n−i+2 −mi+1,n+1−i +mi,n−i −mn+1−i,i−1) = 0,

where the last equality follows from (2.3.2). Now, for the second case we have

y1(bi,i+1 − bn−i,n+1−i) + y2(bi+1,i+1 − bn−i+1,n−i+1) =
y1(y1 ·mi,n−i + y2 ·mi,n−i+1 − y1 ·mn−i,i − y2 ·mn−i,i+1) +
y2(y1 ·mi+1,n−i + y2 ·mi+1,n−i+1 − y1 ·mn−i+1,i − y2 ·mn−i+1,i+1) = 0.

This proves that the 2× 2-minors of D(X) vanish on the Gibbs variety GV(L[n]).
Suppose now that the eigenvalues of Y are Q-linearly independent. We can check this

directly for n ≤ 5. For n ≥ 6 it follows from our hypothesis GL[n] = Sn, by [Kit17,
Proposition 2]. That hypothesis implies dim GV(L[n]) = n+ 1, by Theorems 2.1.6 and 2.2.5.

For the primality statement, we note that the matrix D(X) is 1-generic in the sense of
Eisenbud [Eis87,Eis88]. By [Eis87, Theorem 1], the 2× 2-minors of D(X) generate a prime
ideal of codimension n − 2 in the coordinates of the (2n − 1)-dimensional space given by
(2.3.2). The equality of dimensions yields dim GP(L[n]) = 2n− 1, and we conclude that our
linear and quadratic constraints generate the prime ideal of GV(L[n]).

Theorem 2.1.6 and its refinement in Remark 2.2.2 furnish an upper bound on the dimension
of any Gibbs variety. This raises the question when this bound is attained. In general, this
question is answered by Theorem 2.1.9. In what follows, we offer a more concrete complete
answer for d = 2. Let L be a pencil with eigenvalues λi(y), and let W denote the Zariski
closure in Rn of the set of points exp(λ(y)) = (eλ1(y), . . . , eλn(y)), y ∈ R2.
Theorem 2.3.6. Let L = spanR(A1, A2), where A1A2 ≠ A2A1. Then dim GV(L) = dim(W ) +
1. In particular, if the Galois group GL is the symmetric group Sn then dim GV(L) = n+ 1.

Proof. We claim that the fibers of the map ϕ : V ×W → Sn defined by (2.2.2) are one-
dimensional. Let B ∈ ϕ(V ×W ) and consider any point p = (y1, y2, λ1, . . . , λn, z1, . . . , zn) ∈
ϕ−1(B). The condition that p lies in the fiber ϕ−1(B) is equivalent to
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(1) z1, . . . , zn are the eigenvalues of B, and

(2) X = y1A1 + y2A2 and B have the same eigenvectors, and

(3) λ1, . . . , λn are the eigenvalues of X.

Condition (1) follows from Theorem 2.2.1 for f = exp. It implies that there are only finitely
many possibilities for the z-coordinates of the point p in the fiber: up to permutations, they
are the eigenvalues of B. Condition (3) follows from (y1, y2, λ1, . . . , λn) ∈ V . It says that the
λ-coordinates are determined, up to permutation, by y1, y2. Therefore, it suffices to show
that the matrices in L whose eigenvectors are those of B form a one-dimensional subvariety.

Symmetric matrices have common eigenvectors if and only if they commute. Define
S = {X = y1A1 + y2A2 ∈ L : X · B = B · X} ⊂ L. This is a pairwise commuting linear
subspace. Note that S contains a nonzero matrix X, since there is a point in ϕ−1(B) whose
y-coordinates define a nonzero matrix in L. Therefore dimS ≥ 1. Since A1A2 ̸= A2A1, we
also have dimS ≤ 1. Hence dimS = dimϕ−1(B) = 1 and the upper bound dimW + 1 for
the dimension of GV(L), which is given by Remark 2.2.2, is attained in our situation.

2.4. Role in convex optimization
In this section we show how Gibbs manifolds arise from entropic regularization in optimization
(cf. [STVvR24]). We fix an arbitrary linear map π : Sn → Rd. This can be written in the form

π(X) =
(
⟨A1, X⟩, ⟨A2, X⟩, . . . , ⟨Ad, X⟩

)
.

Here the Ai ∈ Sn, and ⟨Ai, X⟩ := Tr(AiX). The image π(Sn
+) of the PSD cone Sn

+ under our
linear map π is a spectrahedral shadow. Hence it is a full-dimensional semi-algebraic convex
cone in Rd. Interestingly, π(Sn

+) can fail to be closed, as explained in [JS21].
Semidefinite programming (SDP) is the following convex optimization problem:

Minimize ⟨C,X⟩ subject to X ∈ Sn
+ and π(X) = b. (2.4.1)

See Section 1.4 or [MS21a, Chapter 12] for more details. The instance (2.4.1) is specified by
the cost matrix C ∈ Sn and the right hand side vector b ∈ Rd. The feasible region Sn

+∩π−1(b)
is a spectrahedron. The SDP problem (2.4.1) is feasible, i.e. the spectrahedron is non-empty,
if and only if b is in π(Sn

+).
Consider the LSSM L = spanR(A1, . . . , Ad). We usually assume that L contains a positive

definite matrix. This hypothesis ensures that each spectrahedron π−1(b) is compact.
As an extension of [STVvR24, eqn (2)], we now define the entropic regularization of SDP:

Minimize ⟨C,X⟩ − ϵ · h(X) subject to X ∈ Sn
+ and π(X) = b. (2.4.2)

Here ϵ > 0 is a small parameter, and h denotes the von Neumann entropy, here defined as

h : Sn
+ → R , X 7→ Tr

(
X −X · log(X)

)
.

We note that h is invariant under the action of the orthogonal group on Sn
+. This implies

that h(X) =
∑n

i=1(λi − λilog(λi)), where λ1, . . . , λn are the eigenvalues of X. Hence the von
Neumann entropy h is the matrix version of the entropy function on Rn

+ used in [STVvR24].
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Our next result makes the role of Gibbs manifolds in semidefinite programming explicit.
The following ASSM is obtained by incorporating ϵ and the cost matrix C into the LSSM:

Lϵ := L − 1
ϵ
C for any ϵ > 0.

Here we allow the case ϵ = ∞, where the dependency on C disappears and the ASSM is
simply the LSSM, i.e. L∞ = L. The following theorem is the main result in this section.
Theorem 2.4.1. For b ∈ π(Sn

+), the intersection of π−1(b) with the Gibbs manifold GM(Lϵ)
consists of a single point X∗

ϵ . This point is the optimal solution to the regularized SDP (2.4.2).
For ϵ =∞, it is the unique maximizer of von Neumann entropy on the spectrahedron π−1(b).

The importance of this result for SDP lies in taking the limit as ϵ tends to zero. This limit
limϵ→0X

∗
ϵ exists and it is an optimal solution to (2.4.1). The optimal solution is unique for

generic C. Entropic regularization is about approximating that limit.
Example 2.4.2. Consider the four matrices

A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 0 0
0 1 0
0 0 0

 , A3 =

0 0 0
0 0 0
0 0 1

 , A4 =

0 0 0
0 0 1
0 1 0


and the linear constraints ⟨A1, X⟩ = ⟨A2, X⟩ = ⟨A3, X⟩ = 1, ⟨A4, X⟩ = 0. These cut out a
two-dimensional spectrahedron inside the six-dimensional cone S3

+. Note that the first three
constraints define the familiar elliptope from Example 1.4.6. The Gibbs manifolds GM(Lϵ)
for the SDP problem with the cost matrix

C = 1
2

 0 −1 1
−1 0 0
1 0 0


are four-dimensional. When intersected with the affine space cut out by the first three
constraints, they become curves. These curves, along with the corresponding spectrahedron,
are shown in Figure 2.1. ♦

Figure 2.1: Gibbs manifolds GM(Lϵ) and the spectrahedron from Example 2.4.2
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Remark 2.4.3. Theorem 2.4.1 implies that adding the condition X ∈ GV(Lϵ) to (2.4.2)
leaves the optimizer unchanged. Hence, if we know equations for the Gibbs variety, we
may shrink the feasible region by adding polynomial constraints. Most practical are the
affine-linear equations: imposing X ∈ GP(Lϵ) allows to solve (2.4.2) on a spectrahedron of
lower dimension.

To prove Theorem 2.4.1, we derive two key properties of the von Neumann entropy:
Proposition 2.4.4. The function h satisfies:

(a) h is strictly concave on the PSD cone Sn
+, and

(b) the gradient of h is the negative matrix logarithm: ∇(h)(X) = −log(X).

Proof. For (a), we use a classical result by Davis [Dav57]. The function h is invariant in the
sense that its value h(X) depends on the eigenvalues of X. In fact, it is a symmetric function of
the n eigenvalues λ1, λ2, . . . , λn. This function equals h(λ1, λ2, . . . , λn) =

∑n
i=1(λi−λilog(λi)),

and this is a concave function on Rn
+. The assertion hence follows from the theorem in [Dav57].

For (b) we prove a more general result. For convenience, we change variables Y = X− idn

so that f(Y ) = h(Y + idn) is analytic at Y = 0. Fix any function f : R→ R that is analytic
in a neighborhood of the origin. Then Y 7→ Tr(f(Y )) is a well-defined real-valued analytic
function of n× n-matrices Y = (yij) that are close to zero. The gradient of this function is
the n× n-matrix whose entries are the partial derivatives ∂trace(f(Y ))/∂yij . We claim that

∇Tr(f(Y )) = f ′(Y T ). (2.4.3)

Both sides are linear in f , and f is analytic, so it suffices to prove this for monomials, i.e.

∇Tr(Y k) = k · (Y T )k−1 for all integers k ≥ 1. (2.4.4)

Note that trace(Y k) is a homogeneous polynomial of degree k in the matrix entries yij , namely
it is the sum over all products yi1i2yi2i3 · · · yik−2ik−1yik−1i1 that represent closed walks in the
complete graph on k nodes. When taking the derivative ∂/∂yij of that sum, we obtain k
times the sum over all walks that start at node j and end at node i. Here each walk occurs
with the factor k because yij can be inserted in k different ways to create one of the closed
walks above. This polynomial of degree k − 1 is the entry of the matrix power Y k−1 in row j
and column i, so it is the entry of its transpose (Y T )k−1 in row i and column j. To prove the
proposition, we now apply (2.4.3) to the function f(y) = (y + 1)− (y + 1) · log(y + 1).

If L = D consists of diagonal matrices then the Gibbs manifold GM(D) is a discrete
exponential family [Sul18, §6.2], and π(GM(D)) is the associated convex polytope. This uses
the toric moment map [MS21a, Theorem 8.24]. In particular, if the linear space D is defined
over Q then the polytope is rational and the Zariski closure of GM(D) is the toric variety of
that polytope. If the space D is not defined over Q then GM(D) is an analytic toric manifold,
whose Zariski closure is the larger toric variety GV(D) = GM(DQ) seen in (2.1.5).

The key step to proving Theorem 2.4.1 is a non-abelian version of the toric moment map.
Theorem 2.4.5. The restriction of the linear map π : Sn

+ → Rd to the Gibbs manifold GM(L)
defines a bijection between GM(L) and the open spectrahedral shadow int(π(Sn

+)) in Rd.

Proof. Fix an arbitrary positive definite matrix X ∈ int(Sn
+) and set b = π(X). We must

show that the spectrahedron π−1(b) contains precisely one point that lies in GM(L).
Consider the restriction of the von Neumann entropy h to the spectrahedron π−1(b). This

restriction is strictly concave on the convex body π−1(b) by Proposition 2.4.4. Therefore h
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attains a unique maximum X∗ in the relative interior of π−1(b). The first order condition at
this maximum tells us that ∇(h)(X∗) = −log(X∗) lies in L, which is the span of the gradients
of the constraints ⟨Ai, X⟩ = bi. Hence, the optimal matrix X∗ lies in the Gibbs manifold

GM(L) =
{
X ∈ Sn

+ : log(X) ∈ L
}
.

The assignment b 7→ X∗ = X∗(b) is well defined and continuous on the interior of the cone
π(Sn

+). We have shown that it is a section of the linear map π, which means π(X∗(b)) = b. It
is also surjective onto GM(L), because X∗(π(X)) = X, for X ∈ GM(L). We conclude that π
defines a homeomorphism between GM(L) and int(π(Sn

+)).

Proof of Theorem 2.4.1. For any fixed ϵ > 0, the minimizer X∗ = X∗
ϵ of the regularized

problem (2.4.2) lies in the interior of the spectrahedron π−1(b). This is because the gradient
of the entropy function diverges at the boundary (Proposition 2.4.4). By the same convexity
argument as in the proof of Theorem 2.4.5, the objective function in (2.4.2) has only one critical
point X∗ in the spectrahedron π−1(b). It satisfies the first order optimality conditions, which
impose C + ϵ · log(X∗) ∈ L. Therefore X∗ ∈ GM(Lϵ), and π−1(b) ∩GM(Lϵ) = {X∗

ϵ }.

We can now turn the discussion around and offer a definition of Gibbs manifolds and
Gibbs varieties purely in terms of convex optimization. Fix any LSSM L of dimension d
in Sn. This defines a canonical linear map π : Sn

+ → Sn/L⊥ ≃ Rd. Each fiber π−1(b) is a
spectrahedron. If this is non-empty then the entropy h(X) has a unique maximizer X∗(b) in
π−1(b). The Gibbs manifold GM(L) is the set of these entropy maximizers X∗(b) for b ∈ Rd.
The Gibbs variety GV(L) is defined by all polynomial constraints satisfied by these X∗(b).

This extends naturally to any ASSM A0 + L. Here we maximize the concave function
h(X) + ⟨A0, X⟩ over the spectrahedra π−1(b). The Gibbs manifold GM(A0 + L) collects all
maximizers, and the Gibbs variety GV(A0 + L) is defined by their polynomial constraints.
Example 2.4.6. Let L denote the space of all Hankel matrices [yi+j−1]1≤i,j≤n in Sn. This
LSSM has dimension d = 2n − 1. The linear map π : Sn

+ → Rd takes any positive definite
matrix X to a nonnegative polynomial b = b(t) in one variable t of degree 2n − 2. We
have b(t) = (1, t, . . . , tn−1)X(1, t, . . . , tn−1)T , so the matrix X gives a sum-of-squares (SOS)
representation of b(t). The fiber π−1(b) is the Gram spectrahedron [Sch22] of the polynomial b.
The entropy maximizer X∗(b) in the Gram spectrahedron is a favorite SOS representation
of b. The Gibbs manifold GM(L) gathers the favorite SOS representations for all non-negative
polynomials b. The Gibbs variety GV(L), which has dimension ≤ 3n− 2, is the tightest outer
approximation of GM(L) that is definable by polynomials in the matrix entries.

In Example 2.2.4 we saw a variant of L, namely the sub-LSSM where the upper left entry
of the Hankel matrix was fixed to be zero. If C = −E11 is the corresponding negated matrix
unit, then (2.4.1) is the problem of minimizing b(t) over t ∈ R. See [MS21a, Section 12.3] for a
first introduction to polynomial optimization via SOS representations. It would be interesting
to explore the potential of entropic regularization for polynomial optimization. ♦

One of the topics of [STVvR24] was a scaling algorithm for solving the optimization problem
(2.4.2) for linear programming (LP), i.e. the case when A1, . . . , Ad are diagonal matrices.
This algorithm extends the Darroch-Ratcliff algorithm for Iterative Proportional Fitting in
statistics. Combining this with a method for driving ϵ to zero leads to a numerical algorithm
for large-scale LP problems, such as the optimal transport problems in [STVvR24, Section 3].

We are hopeful that the scaling algorithm can be extended to the problem (2.4.2) in full
generality. By combining this with a method for driving ϵ to zero, one obtains a numerical
framework for solving SDP problems such as quantum optimal transport in Section 2.5.
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One important geometric object for SDP is the limiting Gibbs manifold, limϵ→0 GM(Lϵ).
This is the set of optimal solutions, as b ranges over Rd. In the case of LP, with C generic, it
is the simplicial complex which forms the regular triangulation given by C. This reveals the
combinatorial essence of entropic regularization of LP, see [STVvR24, Theorem 7]. From the
perspective of positive geometry, it would be worthwhile to study limϵ→0 GM(Lϵ) for SDP.
This set is semi-algebraic, and it defines a nonlinear subdivision of the spectrahedral shadow
π(Sn

+). If we vary the cost matrix C, the theory of fiber bodies in [MM23] becomes relevant.

2.5. Quantum optimal transport
In this section we examine a semidefinite programming analog of the classical optimal
transport problem, known as quantum optimal transport (QOT). We follow the presentation
by Cole, Eckstein, Friedland, and Życzkowski in [CEFŻ22]. We consider the space Sd1d2 of real
symmetric matrices X of size d1d2×d1d2. Rows and columns are indexed by [d1]× [d2]. Thus,
we write X = (xijkl), where (i, j) and (k, l) are in [d1]× [d2]. The matrix being symmetric
means that xijkl = xklij for all indices. Each such matrix is mapped to a pair of two partial
traces by the following linear map:

Sd1d2 → Sd1 × Sd2 , X 7→ (Y,Z),

where the d1×d1-matrix Y = (yik) satisfies yik =
∑d2

j=1 xijkj , and the d2×d2-matrix Z = (zjl)
satisfies zjl =

∑d1
i=1 xijil. This is done in accordance with Definition 1.2.3. If X is positive

semidefinite then so are its partial traces Y and Z. Hence our marginalization map restricts
to a linear projection of closed convex cones, denoted

µ : Sd1d2
+ → Sd1

+ × Sd2
+ , X 7→ (Y,Z). (2.5.1)

Diagonal matrices in Sd1d2
+ can be identified with rectangular matrices of format d1×d2 whose

entries are nonnegative. The map µ takes such a rectangular matrix to its row sums and
column sums. Hence the restriction of µ to diagonal matrices in Sd1d2

+ is precisely the linear
map that defines classical optimal transport in the discrete setting of [STVvR24, Section 3.1].

The quantum optimal transportation problem (QOT) is the task of minimizing a linear
function X 7→ ⟨C,X⟩ over any transportation spectrahedron µ−1(Y,Z). This is an SDP. Our
main theorem in this section states that the Gibbs manifold of µ is semi-algebraic.
Theorem 2.5.1. The Gibbs manifold GM(L) for QOT is a semi-algebraic subset of Sd1d2

+ . It
consists of all symmetric matrices Y ⊗ Z, where Y ∈ Sd1

+ and Z ∈ Sd2
+ . The Gibbs variety

GV(L) ⊂ Sd1d2 is linearly isomorphic to the cone over the Segre variety P(d1+1
2 )−1×P(d2+1

2 )−1.
The image of the marginalization map µ generalizes the polytope ∆d1−1×∆d2−1, and the

fibers of µ are quantum versions of transportation polytopes. These shapes are now nonlinear.
Lemma 2.5.2. The image of the map µ is a convex cone of dimension

(d1+1
2
)

+
(d2+1

2
)
− 1:

image(µ) =
{
(Y,Z) ∈ Sd1

+ × Sd2
+ : Tr(Y ) = Tr(Z)

}
. (2.5.2)

For any point (Y,Z) in the relative interior of this cone, the transportation spectrahedron
µ−1(Y, Z) is a compact convex body of dimension 1

2(d1 − 1)(d2 − 1)(d1d2 + d1 + d2 + 2).

Proof of Lemma 2.5.2. The partial trace map µ restricts to tensor products as follows:

µ(Y ⊗ Z) =
(

Tr(Z) · Y , Tr(Y ) · Z
)
. (2.5.3)
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Hence, if Y ∈ Sd1
+ and Z ∈ Sd2

+ satisfy t = Tr(Y ) = Tr(Z) then 1
tY ⊗ Z is a positive

semidefinite matrix in the fiber µ−1(Y,Z). This shows that the image is as claimed on the
right hand side of (2.5.2). The image is a spectrahedral cone of dimension

(d1+1
2
)
+
(d2+1

2
)
−1.

Subtracting this from dim Sd1d2
+ =

(d1d2+1
2

)
yields the dimension of the interior fibers.

Example 2.5.3 (d1=d2=2). The map µ projects positive semidefinite symmetric 4×4-matrices

X =


x1111 x1112 x1121 x1122
x1112 x1212 x1221 x1222
x1121 x1221 x2121 x2122
x1122 x1222 x2122 x2222


onto a 5-dimensional convex cone, given by the direct product of two disks. The formula is

Y =
[
x1111 + x1212 x1121 + x1222
x1121 + x1222 x2121 + x2222

]
and Z =

[
x1111 + x2121 x1112 + x2122
x1112 + x2122 x1212 + x2222

]
.

The fibers of this map µ are the 5-dimensional transportation spectrahedra µ−1(Y,Z).
To illustrate the QOT problem, we fix the margins and the cost matrix as follows:

Y =
[
5 1
1 6

]
and Z =

[
7 2
2 4

]
and C =


2 3 5 7
3 11 13 17
5 13 23 29
7 17 29 31

 . (2.5.4)

We wish to minimize ⟨C,X⟩ subject to µ(X) = (Y,Z). The optimal solution X∗ is equal to[
3.579128995196972555885181314 2.148103387337332721011731020 2.671254991031789281229265149 −2.07566204542024789990696017
2.148103387337332721011731020 1.420871004803027444114818686 1.16978382139276763200240537 −1.671254991031789281229265149
2.671254991031789281229265149 1.169783821392767632002405371 3.420871004803027444114818686 −0.14810338733733272101173102
−2.07566204542024789990696017 −1.671254991031789281229265149 −0.14810338733733272101173102 2.579128995196972555885181314

]
.

This matrix has rank 2. The optimal value equals v = 156.964485798827271035367539305....
This is an algebraic number of degree 12. Its exact representation is the minimal polynomial

125v12 − 465480v11 + 770321646v10−744236670798v9+463560077206539v8−193865445786866004v7

+54901023652716544539v6 − 10330064181552258647604v5 + 1219620644420527588643307v4

−77994100149206862070472310v3 + 1395374211380010273312826701v2

+83502957914204004050312708316v − 2047417613706778627978564647804 = 0.

This was derived from the KKT equations in [NRS10, Theorem 3]. We conclude that the
algebraic degree of QOT for d1 = d2 = 2 is equal to 12. This is smaller than the algebraic
degree of semidefinite programming, which is 42. That is the entry for m=5 and n=4
in [NRS10, Table 2].

This drop arises because QOT is a very special SDP. The LSSM for our QOT problem is

L =



y1 + y3 y5 y4 0
y5 y1 0 y4
y4 0 y2 + y3 y5
0 y4 y5 y2

 : y1, y2, y3, y4, y5 ∈ R

 . (2.5.5)

This defines our 5-dimensional Gibbs manifold GM(L) in the 10-dimensional cone S4
+. Theo-

rem 2.5.1 states that it equals the positive part of the Gibbs variety, i.e. GM(L) = GV(L)∩S4
+.

We compute the entropy maximizer inside the 5-dimensional transportation spectrahedron
µ−1(Y, Z) for the marginal matrices Y and Z in (2.5.4). Notably, its entries are rational:

µ−1(Y, Z) ∩ GV(L) = µ−1(Y,Z) ∩ GM(L) =


1
11


35 10 7 2
10 20 2 4
7 2 42 12
2 4 12 24


 . ♦
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Proof of Theorem 2.5.1. By linear extension, the equation (2.5.3) serves as a definition of
the marginalization map µ on Sd1d2 . We observe the following for the inner product on Sd1d2 :

Tr
(
(A⊗ idd2)(Y ⊗ Z)

)
= Tr(Z) · Tr(AY ) for all A ∈ Sd1

and Tr
(
(idd1 ⊗B)(Y ⊗ Z)

)
= Tr(Y ) · Tr(BZ) for all B ∈ Sd2 .

Therefore, the (i, j) entry of Tr(Z) · Y is obtained as 1
2⟨(Eij +Eji)⊗ idd2 , Y ⊗ Z⟩, where Eij

is the (i, j)-th matrix unit. A similar observation holds for the entries of Tr(Y ) · Z. This
means that µ(X) is computed by evaluating Tr

(
(A⊗ idd2)X

)
and Tr

(
(idd1 ⊗B)X

)
, where A

ranges over a basis of Sd1 and B ranges over a basis of Sd2 . Therefore, we have

L =
{
A⊗ idd2 + idd1 ⊗B : A ∈ Sd1 and B ∈ Sd2

}
. (2.5.6)

Now, the key step in the proof consists of the following formula for the matrix logarithm

log(Y ⊗ Z) = log(Y )⊗ idd2 + idd1 ⊗ log(Z).

This holds for positive semidefinite matrices Y and Z, and it is verified by diagonalizing these
matrices. By setting Y = exp(A) and Z = exp(B), we now conclude that the Gibbs manifold
GM(L) consists of all tensor products Y ⊗ Z where Y ∈ Sd1

+ and Z ∈ Sd2
+ .

We have shown that GM(L) is the intersection of a variety with Sd1d2
+ . This variety must

be the Gibbs variety GV(L). More precisely, GV(L) consists of all tensor products Y ⊗ Z
where Y,Z are complex symmetric. This is the cone over the Segre variety, which is the
projective variety in P(d1d2+1

2 )−1 whose points are the tensor products X = Y ⊗ Z.

We have the following immediate consequence of the proof of Theorem 2.5.1. The entropy
maximizers have rational entries. This explains the matrix at the end of Example 2.5.3
Corollary 2.5.4. The Gibbs point for QOT is given by Y ⊗Z

Tr(Y ) , with Y,Z the given margins.
At this point, we revisit Section 2.2 and study its thread for the LSSM in (2.5.6).

Example 2.5.5. We apply Algorithm 1 to the LSSM L in (2.5.5). The eigenvalues of L are
distinct, and the ideal ⟨E′

1⟩ in step 2 is the intersection of six prime ideals. One of them is
⟨λ1 + λ2 − y1 − y2 − y3 , λ3 + λ4 − y1 − y2 − y3 ,

2λ2λ4 − λ2y1 − λ4y1 − λ2y2 − λ4y2 + 2y1y2 − λ2y3 − λ4y3 + y1y3 + y2y3 + y2
3 − 2y2

4 + 2y2
5,

λ2
2 + λ2

4 − λ2y1 − λ4y1 − λ2y2 − λ4y2 + 2y1y2 − λ2y3 − λ4y3 + y1y3 + y2y3 − 2y2
4 − 2y2

5 ⟩.
The other five associated primes are found by permuting indices of λ1, λ2, λ3, λ4. Hence,
the Galois group GL is the Klein four-group S2 × S2 in S4, and we infer the linear relation
λ1 +λ2−λ3−λ4. The set E3 in step 7 is the singleton {z1z2− z3z4}. The elimination in step
12 reveals the prime ideal in R[x] that is shown for arbitrary d1, d2 in Corollary 2.5.6. ♦

Our final result is derived from Theorem 2.5.1 using toric algebra [MS21a, Chapter 8].
Corollary 2.5.6. The Gibbs variety for QOT is parametrized by monomials xijkl = yikzjl that
are not all distinct. Its prime ideal in R[X] is minimally generated by the 2× 2 minors of a
matrix of format

(d1+1
2
)
×
(d2+1

2
)
, together with

(d1
2
)(d2

2
)

linear forms in the entries of X.
In Chapter 3, we extend QOT to quantum graphical models [WG23]. In statistics, every

undirected graph G on s vertices defines such a model [Sul18, Section 13.2]. The graphical
model lives in the probability simplex ∆d1d2···ds−1. Its points are nonnegative tensors of
format d1 × d2 × · · · × ds whose entries sum to 1. The quantum graphical model lives in the
high-dimensional PSD cone Sd1d2···ds

+ , where the marginalization records the partial trace for
every clique in G. We will study the Gibbs manifold and the Gibbs varieties for these models.
We will see that even for decomposable graphs G the dimension of the Gibbs variety is higher
than that of the Gibbs manifold. Theorem 2.5.1 therefore shows that QOT is a very special
example of a quantum graphical model. The graph G here has two nodes and no edges.
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2.6. Logarithmic sparsity
We conclude this chapter with studying the phenomenon of logarithmic sparsity. Loga-
rithmically sparse symmetric matrices are positive definite matrices for which the matrix
logarithm is sparse. Such matrices arise in high-dimensional statistics [Bat17], where struc-
tural assumptions about covariance matrices are necessary for giving consistent estimators,
and sparsity assumptions are natural to make. We will elaborate more on the statistical
relevance in the end of this section. Once the sparsity pattern is fixed, the corresponding set
of logarithmically sparse matrices forms a Gibbs manifold. In this section, we study these
special Gibbs manifolds. We show that the dimension of the corresponding Gibbs variety is
generally close to the upper bound given by Theorem 2.1.6 and can be computed by using
simple linear algebra. We also present one more implicitization algorithm for Gibbs varieties
defined by logarithmic sparsity.

Every simple undirected graph G on n nodes with edge set E(G) ⊆ {(i, j) : 1 ⩽ i < j ⩽ n}
defines a sparsity pattern on n× n symmetric matrices in the following way.
Definition 2.6.1 (Sparsity from graphs). We say that A = (aij) ∈ Sn satisfies the sparsity
condition given by G if aij = 0 whenever i ̸= j and (i, j) ̸∈ E(G). Note that the diagonal
entries of a matrix are never constrained to be zero. The set of all symmetric matrices
satisfying the sparsity condition given by G forms an LSSM, which we will denote by LG.

Note that if G has n nodes and e edges, then dimLG = n+ e.
Example 2.6.2. Let n = 4 and E(G) = {(1, 2), (1, 3), (2, 4)}. The corresponding LSSM

LG =


y11 0 0 y14
0 y22 y23 0
0 y23 y33 y34
y14 0 y34 y44


is cut out by the equations y12 = y13 = y24 = 0. ♦

Definition 2.6.3 (Logarithmic sparsity). We say that A ∈ int(Sn
+) satisfies the logarithmic

sparsity condition given by G if logA ∈ LG.
We are interested in an algebraic description of the set of matrices that satisfy a logarithmic

sparsity pattern given by G. This set of matrices is precisely the Gibbs manifold of LG. Since
disconnected graphs correspond to LSSMs with block-diagonal structure and block-diagonal
matrices are exponentiated block-wise, we will only consider the case of connected G.

We note that an automorphism σ of a graph G does not change the associated linear
space but induces a permutation of variables x (namely, xij is sent to xσ(i)σ(j)). Therefore, by
Proposition 2.1.4, the ideal of the Gibbs variety of LG in the polynomial ring C[x] is invariant
under permutations of variables induced by automorphisms of G.

LSSMs given by graphs are nice in the sense that finding the dimension of their Gibbs
varieties can be reduced to a simple linear algebra procedure of computing matrix centralizers.
This is justified by the following result, which implies that for an LSSM LG arising from a
graph on n nodes one always has m = n in Theorem 2.1.9.
Proposition 2.6.4. Let LG be an LSSM given by a simple connected graph G on n nodes.
Then its eigenvalues are Q-linearly independent.

Proof. By setting the variables yij to zero for i ̸= j and the variables yii to n Q-linearly
independent algebraic numbers, we obtain a diagonal element of LG whose eigenvalues
are linearly independent over Q. This immediately implies Q-linear independence of the
eigenvalues of LG.
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We now address the question of computing the LG-centralizer of a generic element A ∈ LG.
One way to do this is by straightforwardly solving the system of

(n
2
)

equations XA−AX = 0
in the variables xij over the field Q(aij) (the minimal field over which the coefficients of
the system are defined), where xij are the entries of X ∈ LG and aij are the entries of A.
However, there is a way to give a more explicit description of the LG-centralizer.

Note that by Proposition 2.6.4 the eigenvalues of LG are Q-linearly independent. In
particular, this implies that the eigenvalues of A ∈ LG are generically distinct and that A is
generically non-derogatory [HJ85, Definition 1.4.4]. Therefore, by [HJ94, Theorem 4.4.17,
Corollary 4.4.18], we have C(A) = spanR(idn, A, . . . , A

n−1), where idn is the n× n identity
matrix. Hence, finding CLG

(A) reduces to intersecting spanR(idn, A, . . . , A
n−1) with LG.

Such an intersection can be found by solving a system of linear equations p0idn + p1A+ . . .+
pn−1A

n−1 =
∑

(i,j)̸∈SG

cijEij in the variables p0, . . . , pn−1, cij . Since idn and A are both in LG,

the intersection is at least two-dimensional and we arrive at the following proposition.
Proposition 2.6.5. Let G be a simple connected graph on n nodes with e edges. Then
dim GV(LG) ⩽ 2n+ e− 2.

Note that by the same argument, the upper bound n+ d− 1 from Theorem 2.1.6 for the
dimension of the Gibbs variety of an arbitrary LSSM can be improved to n+ d− 2 for any
LSSM containing the identity matrix.

We conjecture that dim GV(LG) = min
(
2n+ e− 2,

(n+1
2
))

. When 2n+e−2 ⩽
(n+1

2
)
, the

conjecture is equivalent to the statement that {A2, . . . , An−1}∪{Eij |(i, j) ∈ E(G)}∪{Eii|i =
1, . . . , n} is a linearly independent set. Here E(G) denotes the set of edges of G. This
conjecture is true when G is a tree (that is, a graph with no loops), as we will see below.

We continue by characterizing Gibbs varieties for LSSMs of simple connected graphs
on n ⩽ 4 vertices. Direct computation shows that for n ⩽ 3 we always have dim GV(LG) =(n+1

2
)

and therefore GV(LG) is the entire ambient space C(n+1
2 ). For n = 4 there are 6

non-isomorphic simple connected graphs, 2 of which are trees. If G is not a tree, we once
again have dim GV(LG) = 10 =

(n+1
2
)

and GV(LG) = C(n+1
2 ). If G is a tree, then GV(LG) is

a hypersurface. We discuss the defining equations of these hypersurfaces in Example 2.6.7.
We now concentrate on the case when G is a tree. Trees are an important class of graphs

that give rise to LSSMs with the smallest possible dimension for a given number of nodes. It
is remarkable that for such LSSMs the dimension of the Gibbs variety only depends on the
number of nodes in the graph (or, equivalently, the size of the matrices), and the dependence
is linear. In what follows, we write Q(A) for the field of rational functions in the entries aij

of the matrix A over Q.
Theorem 2.6.6. Let LG be an LSSM given by a treeG on n nodes. Then dim GV(LG) = 3n− 3.

Proof. By Proposition 2.6.4 the dimension of the Q-linear space spanned by the eigenvalues
of LG is equal to n. The dimension of LG is equal to 2n− 1, since G is a tree and therefore
has n − 1 edges. It remains to compute the dimension of the LG-centralizer of a generic
element in LG. Suppose A ∈ LG. We are looking for solutions of the equation AY − Y A = 0,
Y ∈ LG. This is a system of homogeneous linear equations in the unknowns yij . We
have (AY −Y A)ik =

∑
aijyjk−

∑
yijajk. Note that since Y ∈ LG, yij is generically non-zero

if and only if (i, j) is an edge of G or i = j. The same is generically true for aij . Thus,
(AY − Y A)ik is not identically zero if and only if there exists j such that (i, j) and (j, k)
are edges of G or if (i, k) is itself an edge of G. In terms of the graph G, this means that
(AY −Y A)ik is not identically zero if and only if there is a path of edge length at most 2 from i
to k. Since G is a tree, there is at most one such path. Therefore, if i and k are connected
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by a path of edge length 2 via the node j, the corresponding entry of AY − Y A is equal to
aijyjk−ajkyij . It is equal to zero if yjk is proportional to yij with the coefficient aij/ajk (note
that ajk is generically non-zero). Since G is connected, we conclude that all the yij with i ̸= j
are proportional to each other with coefficients prescribed by A. If i and k are connected
by an edge, the corresponding entry of AY − Y A is equal to yiiaik − ykkaik − (aii − akk)yik.
If it is equal to zero, then ykk = yii −

aii − akk

aik
yik. We conclude that, since G is connected

and all the yik are proportional to each other over Q(A), all the yii can be expressed as
Q(A)-linear combinations of y11 and just one yjk with j ̸= k. Therefore, the centralizer,
which is the solution space of the considered linear system, is at most 2-dimensional. Since it
contains idn and A, it is exactly two-dimensional. The statement of the theorem now follows
from Theorem 2.1.9 for m = n, d = 2n− 1 and k = 2.

Example 2.6.7. For n = 4 there are exactly two non-isomorphic trees, shown below. By
Theorem 2.6.6, the dimension of their Gibbs varieties is equal to 9. Therefore, these Gibbs
varieties are hypersurfaces in C(n+1

2 ) = C10.

1 2

34

1 2

34

The corresponding LSSMs are
y11 y12 0 0
y12 y22 y23 0
0 y23 y33 y34
0 0 y34 y44

 and


y11 y12 y13 y14
y12 y22 0 0
y13 0 y33 0
y14 0 0 y44

 ,
respectively.

For the 4-chain, the graph on the left, the Gibbs variety is defined by a single homogeneous
equation of degree 6 that has 96 terms. For the graph on the right the defining equation is also
homogeneous of degree 6. It has 60 terms. These equations were found with Algorithm 2. ♦

We now add a bit more structure to our LSSMs by considering graphs that come with a
coloring. Sparse LSSMs defined by colored graphs appear in the study of colored Gaussian
graphical models in algebraic statistics [HL08], [SU10]. In this section, we study the properties
of Gibbs varieties of such LSSMs.

Consider the graph G and suppose its vertices are labeled by p colors and the edges are
labeled by q colors. The corresponding LSSM L is defined by the following sets of equations:

(i) xij = 0 if (i, j) is not an edge of G

(ii) xii = xjj if the vertices i and j have the same color.

(iii) xij = xkl if (i, j) and (k, l) are edges of G that have the same color.

We have dimL = p+ q.
We will denote colored graphs by G and the corresponding LSSMs by LG . The corre-

sponding uncolored graph will be denoted by G, as usual. Note that since LG ⊆ LG, the
inclusion of the Gibbs varieties also holds: GV(LG) ⊆ GV(LG). Since the identity matrix is
in LG for any G, the dimension bound from Proposition 2.6.5 holds for colored graphs as well.
This is reformulated in terms of numbers of colors in the following result.
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Proposition 2.6.8. Let G be a colored graph on n nodes in which vertices are labeled by p
colors and edges are labeled by q colors. Then dim GV(LG) ⩽ n+ p+ q − 2.
Definition 2.6.9 (Colored sparsity). We say that X ∈ Sn

+ satisfies the colored sparsity pattern
given by G if X ∈ LG .

Note that if G is a colored graph, the eigenvalues of LG are not necessarily Q-linearly
independent. Therefore, the upper bound from Proposition 2.6.8 is not always attained.
Example 2.6.10. Consider the graph . The corresponding LSSM isy1 y2 0

y2 y1 y3
0 y3 y1

 .
The eigenvalues of this LSSM are Q-linearly dependent: they satisfy the equation 2λ1 = λ2+λ3.
We have dim GV(L) = 3 < n + p+ q − 2 = 3 + 1 + 2 − 2 = 4, which can be verified using
Algorithm 1. Note that in this case dim GV(LG) = dim GM(LG). ♦

In order to illustrate how different colorings of the same graph affect the Gibbs variety,
we conclude our discussion of colored graphs with analyzing those of them for which the
underlying graph is the 3-chain. This is done using Algorithm 1.

(i)
The corresponding LSSM is

LG =

y1 y4 0
y4 y2 y5
0 y5 y3

 .
dim GV(LG) = 6 and there are no polynomial equations that hold on the Gibbs variety.

(ii)
The corresponding LSSM is

LG =

y1 y4 0
y4 y2 y4
0 y4 y3

 .
dim GV(LG) = 5 and the Gibbs variety is a cubic hypersurface whose prime ideal is
generated by the polynomial

x11x13x23 − x2
12x23 + x12x22x13 − x12x

2
13−
− x12x13x33 + x12x

2
23 − x22x13x23 + x2

13x23.

(iii)
The corresponding LSSM is

LG =

y1 y3 0
y3 y1 y4
0 y4 y2

 .
dim GV(LG) = 5 and the Gibbs variety is a cubic hypersurface. Its prime ideal is
generated by the polynomial

− x11x12x23 + x11x22x13 − x11x13x33 + x12x22x23−
− x2

22x13 + x22x13x33 + x3
13 − x13x

2
23.
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(iv)
The corresponding LSSM is

LG =

y1 y3 0
y3 y1 y3
0 y3 y2

 .
dim GV(LG) = 4. The Gibbs variety is a complete intersection, its prime ideal is
generated by the polynomials

x11 − x22 + x33,

−x12x23 + x22x13 − x2
13 − x13x33 + x2

23.

(v)
The corresponding LSSM is

LG =

y1 y3 0
y3 y2 y4
0 y4 y1

 .
dim GV(LG) = 5 and the Gibbs variety is a cubic hypersurface. Its prime ideal is
generated by the polynomial

−x11x12x23 + x2
12x13 + x12x23x33 − x13x

2
23.

(vi)
The corresponding LSSM is

LG =

y1 y3 0
y3 y2 y3
0 y3 y1

 .
dim GV(LG) = 4 and the Gibbs variety is an affine subspace with the prime ideal
generated by x12 − x23 and x11 − x33.

(vii)
The corresponding LSSM

LG =

y1 y2 0
y2 y1 y3
0 y3 y1


appeared in Example 2.6.10. We have dim GV(LG) = 3. The prime ideal of the Gibbs
variety is generated by 7 polynomials:

x12x13 − x22x23 + x23x33,

x11x13 − x12x23 + x13x33,

x11x22 − x11x33 − x2
22 + x22x33 + x2

13,

x2
12 − x2

22 + x2
13 + x2

33,

x11x12 − x12x22 + x13x23,

x2
11 − x2

22 + x2
13 + x2

23,

−x12x22x23 + x12x23x33 + x2
22x13 − x3

13 − x13x
2
33.
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(viii)

The corresponding LSSM is

LG =

y1 y2 0
y2 y1 y2
0 y2 y1

 .
This is a commuting family and therefore, by Theorem 2.1.13, dim GV(LG) = 2 and
GM(LG) = GV(LG) ∩ int(S3

+). The prime ideal of the Gibbs variety is generated by 3
linear forms and 1 quadric: x22 − x13 − x33, x12 − x23, x11 − x33 and −2x13x33 + x2

23.

Since the logarithm is an analytic function on R>0, the set of matrices satisfying the
logarithmic sparsity pattern given by a graph G can be defined via formal power series
equations. One way to write these equations is by using Sylvester’s formula (Theorem 2.2.1).

By setting f in Sylvester’s formula to be the logarithm function, we obtain a parametriza-
tion of logX with rational functions in the entries xij of X, the eigenvalues λi of X and
their logarithms log λi. The logarithmic sparsity condition induced on X requires that some
components of this parametrization are zero and therefore gives a system of polynomial
equations in xij , λi and log λi. By eliminating the variables λi and log λi from this system
while taking into account the polynomial relations between λi and xij given by the coefficients
of the characteristic polynomial, we obtain a set of defining equations of GV(LG). This
procedure is described by Algorithm 3. The notation I : a∞ stands for saturation of an
ideal I of a ring R by an element a ∈ R, that is, I : a∞ := {b ∈ R : ∃N ∈ Z⩾0 : aNb ∈ I}.
The quantities xij , λi and log λi are treated by the algorithm as variables in a polynomial
ring, without a priori algebraic dependencies between them. We note that the strategy of
Algorithm 3 is quite similar to that Algorithm 1. The difference is that now we set f in
Sylvester’s formula to be the logarithm rather than the exponential function. In addition, due
to the additional structure of LSSMs defined by graphs, we avoid introducing the variables
z, so our computations are performed in a polynomial ring with fewer variables, and fewer
variables are eliminated.

Algorithm 3 Implicitization of the Gibbs variety of LG given by a graph G

Input: A simple undirected connected graph G;
Output: A set of defining equations of GV(LG).

1: S ← {(i, j) : 1 ⩽ i ⩽ j ⩽ n and (i, j) ̸∈ E(G)}.
2: {aij} = A ←

n∑
i=1

log(λi)Xi, with Xi =
∏

j ̸=i

1
λi − λj

(X − λj · idn), where X = (xij)

is a symmetric matrix of variables.
3: E1 ← {aij : (i, j) ∈ S}.
4: Clear the denominators in E1 and record the least common denominator D.
5: Compute the characteristic polynomial PX(xij ;λ) = det(X − λidn) = c0(xij) + c1(xij)λ+
. . .+ cn(xij)λn.

6: E2 ← {the n polynomials (−1)iσn−i(λ)−ci(x)}, where σn−i(λ) is the (n−i)-th elementary
symmetric polynomial in the variables λ1, . . . , λn.

7: Let I be the ideal in Q[xij , λ, log λ] generated by E1 and E2.
8: I ← I : D∞.
9: J ← I ∩Q[xij ].

10: return a set of generators of J .

Theorem 2.6.11. Algorithm 3 is correct. The ideal J in step 9 is the prime ideal of GV(LG).
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Proof. Since the eigenvalues of LG are Q-linearly independent, the ideal generated by E2 is
prime. Moreover, there is no C-algebraic relation between the eigenvalues of X and their
logarithms that holds for any positive definite X. This is a consequence of Theorem 2.2.5.
Any Q-linear relation imposed on the logarithms of eigenvalues defines a set of positive
codimension in the set of positive definite matrices. Thus, one can assume that the logarithms
of eigenvalues, considered as functions in the entries of an indeterminate positive definite
matrix X, are Q-linear independent and apply Theorem 2.2.5. These two facts ensure that
all the algebraic relations between X, λ and log λ are accounted for, and that the algorithm
is thus correct. The ideal generated by E1 and E2 is therefore also prime, after saturation,
and elimination in step 9 preserves primality.

Note that since J is prime, GV(LG) is irreducible, as stated in Theorem 2.2.6.
We now briefly comment on the statistical relevance of logarithmic sparsity. A typical

problem in high-dimensional statistics is estimating the covariance matrix of a random vector
of length n from l ≪ n samples. It is known that no consistent estimator can be derived
in such setup without making additional assumptions on the structure of the covariance
matrix. This problem can in some cases be solved by assuming that the covariance matrix
has a fixed logarithmic sparsity pattern [Bat17], [Bat23]. An advantage of this assumption
is that once a logarithmic sparsity pattern is induced on the covariance matrix C, it is also
automatically induced on the concentration matrix K = C−1, since (expL)−1 = exp (−L).
In principle, one could relax the structural assumption of logarithmic sparsity and replace
it by the assumption that the covariance matrix is an element of the Gibbs variety. The
advantage of such relaxation is that checking whether a given set of polynomial equations is
satisfied by the matrix is generally simpler than computing the matrix logarithm and then
checking whether it satisfies the sparsity condition.

We conclude this chapter with a discussion of possible future research directions. One
problem already mentioned above is to classify LSSMs by their Galois groups. A very natural
question to ask is when is the Gibbs manifold semi-algebraic. It is clear that a necessary
condition is dim GV(L) = dim GM(L). Is this condition also sufficient? We saw that this is
the case, for instance, in Theorem 2.1.13 but we do not currently have a proof for the general
case. Finally, in the context of regularization of LP and SDP, what are other regularizers
giving rise to smooth manifolds via first-order optimality conditions? Is there a common
framework to compute the defining equations of their Zariski closures? As we will see in
Chapter 4, even for fairly well-studied and widely used functions such as the universal barrier,
the analog of the Gibbs manifold is not everywhere smooth.
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Chapter 3

Quantum Graphical Models

The goal of this chapter is to consider quantum graphical models [LP08] from the point of view of
algebraic geometry, with the aim of offering a new perspective on open problems in quantum
information theory. Roughly speaking, when passing from the classical to the quantum
setting, we replace probability distributions with density matrices, with the classical case
being recovered when these matrices are diagonal. The graph describes a physical quantum
system with nodes representing subsystems. Such models have also been coined quantum
Markov networks in the quantum information theory literature [BP12,DGMM20,PH11] and
have applications to quantum many-body systems, quantum error correction and the study of
entanglement. In this chapter we describe different approaches to obtain an algebraic variety
associated to a quantum graphical model.

In algebraic statistics, graphical models [Lau96] play a prominent role, with applications
to, among others, phylogenetics, causal inference and medical diagnosis [KF09,MDLW18].
Such a model arises from a graph imposing certain conditional independence statements on
random variables represented by nodes in the graph. As an example [PS05, Example 1.29],
consider the chain graph G on three vertices

X Y Z

with binary random variables X,Y and Z. This graph encodes the conditional independence
statement X ⊥⊥ Z | Y (“X is independent of Z given Y ”). This gives rise to a statistical
model described by the algebraic variety

MG = V(p001p100 − p000p101, p011p110 − p010p111) ⊆ P7 = Proj(C[p000, . . . , p111]).

More generally, graphical models for discrete and Gaussian random variables are algebraic
varieties. This algebraic perspective advances both the theoretical foundations for these
statistical models and the development of new computational methods for practical use. At
the core of these advances lies the understanding of the implicit and parametric descriptions
of the model and its likelihood geometry. This proved to be useful in model selection, causal
discovery, and maximum likelihood estimation [Eva20,GMS06,LUSB14,URBY13].

Motivated by this, we find ways to associate algebraic varieties to quantum graphical
models and make progress towards understanding their implicit and parametric descriptions.
This leads to a number of interesting varieties and new computational challenges. The role of
the maximum likelihood estimator is taken by the quantum information projection. We study
its geometry for quantum exponential families of commuting Hamiltonians, e.g. Hamiltonians
arising in the context of graph states.
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This chapter is organized as follows. In Section 3.1, we introduce the quantum conditional
mutual information (QCMI) variety and the Petz variety. The former is obtained from studying
the structure of quantum states satisfying strong subadditivity with equality [HJPW04]. The
latter is related to the Petz recovery map [Pet86] and the solution of the Quantum Marginal
Problem for the 3-chain [TV15]. In both instances, the graph imposes quantum conditional
independence statements, in direct analogy to the classical case. In Section 3.2, we suggest a
notion of a quantum graphical model as the Gibbs manifold of a certain family of Hamiltonians
and we consider the corresponding Gibbs variety. Here, the graph encodes a locality structure
imposed on the Hamiltonians [BP12]. This section also includes more results on Gibbs
varieties. In Section 3.3 we present results on quantum exponential families coming from
stabilizer codes [NC02, §10]. One particular example are families of Hamiltonians associated
to graph states [HEB04]. We study the quantum information projection [NGKG13] and
relate it to the classical theory of maximum likelihood estimation, proving a generalization of
Birch’s Theorem. We conclude with a short section on the stabilizer formalism, which allows
us to strengthen the results of Section 3.3.

Throughout the sections we provide algorithms to compute the varieties appearing in our
study and present computational examples. Those are implemented in Julia making use of
the computer algebra package Oscar.jl [OSC24] and the numerical algebraic geometry tool
HomotopyContinuation.jl [BT18]. The code is available at https://mathrepo.mis.mpg.
de/QuantumGraphicalModels.

For basic notions of quantum information theory and the notational conventions used in
this chapter we refer to Section 1.2. The ambient space of the algebraic varieties we consider
in this chapter is Sn ∼= Cn(n+1)/2, each point being a complex symmetric matrix. To recover
a specific quantum model, we intersect the variety with the PSD cone and the hyperplane of
trace one matrices. The space of real symmetric matrices will be denoted Sn

R
∼= Rn(n+1)/2.

Note a slight difference in notation compared to Chapter 2.

3.1. Quantum graphical models on trees
It is an important and mostly open problem in quantum information theory to describe the
set of compatible density matrices on subsystems of a composite system. This is known as
the Quantum Marginal Problem.
Problem 3.1.1 (Quantum Marginal Problem). Let S = {1, . . . , N} be a composite system on N
qudits and suppose we are given density matrices ρS1 , . . . , ρSn of n subsystems S1, . . . , Sn ⊆ S.
What conditions do ρS1 , . . . , ρSn have to satisfy to arise from ρS as ρSi = TrS\Si

ρS?
So far, for general graphs, this problem has only been solved in the case of disjoint

subsystems Si. See [TV15] for a survey. However, for trees it is possible to reconstruct a
quantum state from its two-body marginals [DGM21,DGMM20]. This can be done using
algebraic methods and motivates the algebro-geometric notions of quantum graphical models
we introduce in this section. Associating algebraic varieties to quantum graphical models
and studying their defining equations might provide a new way of attacking this problem.

3.1.1. Quantum conditional mutual information varieties
In this section we give the definition of quantum conditional mutual information (QCMI) and
collect some of its properties. The vanishing of QCMI can be thought of as a quantum analog
of conditional independence and gives rise to an algebraic variety called the QCMI variety.

https://mathrepo.mis.mpg.de/QuantumGraphicalModels
https://mathrepo.mis.mpg.de/QuantumGraphicalModels
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The von Neumann entropy S(ρ) of a quantum state ρ is S(ρ) := −Tr(ρ log ρ). Note a
slight difference with the definition is Section 2.4: we now omit the term Tr(ρ) since quantum
states have unit trace. The von Neumann entropy is a straightforward generalization of the
classical Shannon entropy; here, the logarithm has base two. Let ρABC be a tripartite state.
The quantum conditional mutual information between A and C given B is then

I(A : C |B) := S(AB) + S(BC)− S(ABC)− S(B),

where S(ABC) = S(ρABC), S(AB) = S(TrC ρABC) etc. Note that if one replaces the
von Neumann entropy with the Shannon entropy in the above definition, one obtains the
classical conditional mutual information Icl(A : C |B) between random variables A and C
given B. The identity Icl(A : C |B) = 0 is well-known to be equivalent to the conditional
independence A ⊥⊥ C | B and leads to two possible different factorizations of the joint
probability distribution p(a, b, c) [HJPW04]. The vanishing of QCMI of a tripartite system
behaves similarly, implying a more involved factorization of the density matrix of the tripartite
system (see Construction 3.1.4).

The following constitutes a quantum analog of the conditional independence axioms for
probability distributions, see [LP08, Theorem 4.5].
Proposition 3.1.2. Let S be a composite quantum system with disjoint subsystems
A,B,C,D ⊆ S. Then the following implications hold:

(i) I(A : C |B) = 0⇒ I(C : A |B) = 0 (Symmetry),

(ii) I(A : CD |B) = 0⇒ I(A : C |B) = 0 (Decomposition),

(iii) I(A : CD |B) = 0⇒ I(A : C |BD) = 0 (Weak Union),

(iv) I(A : B |CD) = 0 and I(A : D |C) = 0⇒ I(A : BD |C) = 0 (Contraction).

The QCMI is closely related to the celebrated strong subadditivity (SSA) inequality [LR73]

S(ABC) + S(B) ≤ S(AB) + S(BC).

The case of equality in SSA, i.e. I(A : C |B) = 0, has been intensively studied; the main
result is the following theorem from [HJPW04].
Theorem 3.1.3. A quantum state ρABC on HA ⊗HB ⊗HC satisfies SSA with equality if and
only if there exists a decomposition of HB as

HB =
⊕

j

HbL
j
⊗HbR

j

such that ρABC decomposes as

ρABC =
⊕

j

qjρAbL
j
⊗ ρbR

j C ,

where {qj}j is a probability distribution and ρAbL
j
, ρbR

j C are states on HA⊗HbL
j

and HbR
j
⊗HC ,

respectively.
Construction 3.1.4 (QCMI variety of the 3-chain graph). The following reformulation of
Theorem 3.1.3 plays a central role in the construction of the QCMI variety. Setting ΛAB :=⊕

j qjρAbL
j
⊗ IdbR

j C and ΛBC :=
⊕

j IdAbL
j
⊗ ρbR

j C , we arrive at

I(A : C |B) = 0 if and only if ρABC = ΛABΛBC with [ΛAB,ΛBC ] = 0, (3.1.1)
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where ΛAB,ΛBC are symmetric matrices acting on HA ⊗HB ⊗HC and ΛAB acts as identity
on HC , and, likewise, ΛBC acts as identity on HA [BP12]. Then the right hand side of (3.1.1)
gives rise to a parametrization of a variety we denote by QI(A:C | B).
Example 3.1.5 (QI(A:C | B) in the qubit case). Let HA

∼= HB
∼= HC

∼= C2 and write ΛAB =
M ⊗ Id2, ΛBC = Id2 ⊗ N for M,N ∈ S4. In this case, the parametrization of the variety
QI(A:C | B) induced by the right hand side of (3.1.1) sends

M =


x1 x2 x3 x4
x2 x5 x6 x7
x3 x6 x8 x9
x4 x7 x9 x10

 and N =


y1 y2 y3 y4
y2 y5 y6 y7
y3 y6 y8 y9
y4 y7 y9 y10


to the matrix



x1y1 + x2y4 x1y2 + x2y5 x1y4 + x2y6 x1y7 + x2y9 x4y1 + x7y4 x4y2 + x7y5 x4y4 + x7y6 x4y7 + x7y9
x1y2 + x2y7 x1y3 + x2y8 x1y5 + x2y9 x1y8 + x2y10 x4y2 + x7y7 x4y3 + x7y8 x4y5 + x7y9 x4y8 + x7y10
x2y1 + x3y4 x2y2 + x3y5 x2y4 + x3y6 x2y7 + x3y9 x5y1 + x8y4 x5y2 + x8y5 x5y4 + x8y6 x5y7 + x8y9
x2y2 + x3y7 x2y3 + x3y8 x2y5 + x3y9 x2y8 + x3y10 x5y2 + x8y7 x5y3 + x8y8 x5y5 + x8y9 x5y8 + x8y10
x4y1 + x5y4 x4y2 + x5y5 x4y4 + x5y6 x4y7 + x5y9 x6y1 + x9y4 x6y2 + x9y5 x6y4 + x9y6 x6y7 + x9y9
x4y2 + x5y7 x4y3 + x5y8 x4y5 + x5y9 x4y8 + x5y10 x6y2 + x9y7 x6y3 + x9y8 x6y5 + x9y9 x6y8 + x9y10
x7y1 + x8y4 x7y2 + x8y5 x7y4 + x8y6 x7y7 + x8y9 x9y1 + x10y4 x9y2 + x10y5 x9y4 + x10y6 x9y7 + x10y9
x7y2 + x8y7 x7y3 + x8y8 x7y5 + x8y9 x7y8 + x8y10 x9y2 + x10y7 x9y3 + x10y8 x9y5 + x10y9 x9y8 + x10y10


.

This results in a twelve-dimensional variety inside S8 cut out by 735 equations in degrees one
to five; the degree of QI(A:C | B) is 110. As all of these equations are homogeneous, QI(A:C | B)
can be considered as a subvariety of P35 = Proj(C[z1, . . . , z36]). Among these equations only
two are linear:

z14 − z18 + z23 − z29 = 0, z12 − z16 − z25 + z31 = 0,

and just one has degree five:

− z13z22z29z31z33 − z13z22z
2
31z35 + z13z24z

2
29z33 + z13z24z29z31z35 + z2

22z29z31z33

+ z2
22z

2
31z35 + z22z24z25z29z35 − z22z24z25z31z33 − z22z24z

2
29z33 − 2z22z24z29z31z35

+ z22z24z
2
31z33 − z23z

2
24z29z35 + z23z

2
24z31z33 + z2

24z
2
29z35 − z2

24z29z31z33 = 0.

Here the variables z1, . . . , z36 denote the entries of a symmetric 8 × 8-matrix written in
order starting from left to right and continuing from top to bottom. Note that if you set all
non-diagonal entries in M and N to zero, this results in a monomial parametrization of the
classical graphical model of the 3-chain as presented in the beginning of this chapter. ♦

Proposition 3.1.6. The variety QI(A:C | B) is irreducible.

Proof. Under the composition of morphisms

U(8)× R4 × R4 → S8 × S8 mult.−−−→ S8

given by

(U, λ, µ) 7→
(
U diag(λ1, λ1, . . . , λ4, λ4)U−1, U diag(λ1, . . . , λ4, λ1, . . . , λ4)U−1

)
(M,N) 7→M ·N,

where λ = (λ1, . . . , λ4) and µ = (µ1, . . . , µ4), QI(A:C | B) is the image of an irreducible variety.
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In analogy to the classical theory of graphical models, we associate QCMI statements to
separations in an undirected graph. A separator between two sets of nodes A and C in a
graph G is a set B of nodes such that every path from a node in A to a node in C contains a
node in B. For classical graphical models on undirected graphs, the Hammersley–Clifford
Theorem [Lau96, Theorem 3.9] (see also [CH71]) states that a positive probability distribution
satisfies the conditional independence statements associated to separations in a graph if
and only if it factorizes according to the graph. One might attempt to achieve a similar
factorization theorem for quantum graphical models. However, such a description is not
available for arbitrary graphs. Still, there is a “quantum Hammersley–Clifford Theorem” for
trees.
Theorem 3.1.7 ( [PH11, Theorem 1]). Let G = (V,E) with V = {v1, . . . , vN} be a tree and
let ρ be a positive definite quantum state on a Hilbert space H = H1 ⊗ · · · ⊗ HN satisfying
all QCMI statements imposed by G. Then ρ can be written as the exponential of a sum of
local commuting Hamiltonians, i.e. ρ = exp(H) with

H =
∑

C∈C(G)
hC , [hC , hC′ ] = 0 for all C,C ′ ∈ C(G),

where C(G) is the set of cliques of G and hC is only nontrivial on the clique C, i.e. hC is an
endomorphism on H acting as identity on each Hi where vi /∈ C.

This quantum Hammersley–Clifford Theorem is a generalization of Equation (3.1.1) to
trees. Along with Example 3.1.5, this suggests the following construction of the QCMI variety
of a tree and an associated quantum graphical model.
Construction 3.1.8 (QCMI variety of a tree). Let G = (V,E) be an undirected tree with
vertices labelled S1, . . . , SN . Let ρV = ρS1...SN

be a quantum state on H1 ⊗ · · · ⊗ HN . For
each triple of vertices Si, Sj , Sk such that Sj separates Si from Sk in G, we impose the QCMI
statement I(Si : Sk |Sj) = 0, i.e. we require

TrV \{Si,Sj ,Sk} ρV = ΛSiSj ΛSjSk
with

[
ΛSiSj ,ΛSjSk

]
= 0 (3.1.2)

as in (3.1.1). Moreover, for any two QCMI statements I(Si : Sk |Sj) = 0 = I(Si′ : Sk′ |Sj′)
we impose the compatibility constraints

TrT \(T ∩T ′) ρT = TrT ′\(T ∩T ′) ρT ′ where T = (Si, Sj , Sk), T ′ = (Si′ , Sj′ , Sk′). (3.1.3)

In the qubit case, this construction gives rise to Algorithm 4 whose output is a variety inside
S2N . We call this variety the QCMI variety associated to G and denote it by QG. Algorithm 4
constructs the QCMI variety by considering the conditions (3.1.2), (3.1.3) as polynomial
constraints in the entries of an arbitrary density matrix ρ and of the matrices ΛSiSj ,ΛSjSk

,
then it eliminates the Λ parameters. The QCMI variety QG defines a quantum graphical
model MG by restricting to PSD matrices with trace one inside QG. Note that Algorithm 4
and the notion of the QCMI variety generalize straightforwardly to arbitrary qudit systems.
Remark 3.1.9. Let G be the path graph on three vertices with ordered vertex labels A,B
and C and consider the qubit case HA

∼= HB
∼= HC

∼= C2. Then QG is the variety QI(A:C | B)
from Example 3.1.5. The computations in this example were carried out using Algorithm 4.
Remark 3.1.10. Note that as we consider trees, it is equivalent to impose QCMI statements
on triples of vertices as in Construction 3.1.8 or to impose a global quantum Markov property,
in the sense that one imposes the QCMI statement I(A : C |B) for any triple of sets of
vertices A,B,C ⊆ V such that B separates A from C, as one can derive the latter from the
former by using the Weak Union and Contraction axioms from Proposition 3.1.2.
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Algorithm 4 Computing the QCMI variety QG

Input: A graph G = (V,E)
Output: Polynomials defining QG ⊆ S2N

1: N ← #V
2: ρV ← symmetric 2N × 2N -matrix consisting of variables ρ11, ρ12, . . . , ρ2N 2N

3: E ← ∅ initialize list of equations
4: for every triple of vertices T = (Si, Sj , Sk) such that Sj separates Si from Sk in G do
5: ΛSiSj ← (λT

lm)⊗ Id2 where (λT
lm) is a symmetric 4× 4-matrix of variables

6: ΛSjSk
← Id2 ⊗ (µT

lm) where (µT
lm) is a symmetric 4× 4-matrix of variables

7: E ′ ← entries of TrV \T ρV − ΛSiSj ΛSjSk

8: E ′′ ← entries of
[
ΛSiSj ,ΛSjSk

]
9: E ← E ∪ E ′ ∪ E ′′

10: for every pair of triples of vertices T = (Si, Sj , Sk) and T ′ = (Si′ , Sj′ , Sk′) do
11: E ′′′ ← entries of TrT \(T ∩T ′) ρT − TrT ′\(T ∩T ′) ρT ′

12: E ← E ∪ E ′′′

13: I ← ideal generated by E in C[ρ, λ, µ]
14: J ← elimination ideal I ∩ C[ρ]
15: return a set of generators of J

Example 3.1.11. Consider the claw tree G on four vertices with labels A,B,C,D, the set
of edges {{A,D}, {B,D}, {C,D}}, and the corresponding Hilbert spaces HA

∼= HB
∼= HC

∼=
HD
∼= C2. The Hilbert space of the full system is H = HA ⊗HB ⊗HC ⊗HD

∼= C16. Every
path in G with three vertices imposes a QCMI statement and any such path contains the node
D. The model MG consists of all density matrices ρ that satisfy the three QCMI statements

I(A : B |D) = I(A : C |D) = I(B : C |D) = 0.

These lead to factorizations of the marginal subsystems as

TrA ρABCD = ρBCD = ΛBDΛCD with [ΛBD,ΛCD] = 0,
TrB ρABCD = ρACD = ΛADΛCD with [ΛAD,ΛCD] = 0,
TrC ρABCD = ρABD = ΛADΛBD with [ΛAD,ΛBD] = 0.

In addition, there are compatibility conditions on the marginals which lead to

TrB ρABD = TrC ρACD, TrA ρABD = TrC ρBCD, TrA ρACD = TrB ρBCD.

It is computationally very challenging to obtain defining equations of QG as Algorithm 4
would involve eliminating 60 variables in a polynomial ring in 196 variables, which is infeasible
with current computational resources. ♦

Question 3.1.12. Is the variety QG irreducible for any tree G?
It would be desirable to find a parametrization of QG. Quantum information theory

provides a map that recovers a unique quantum state compatible with given two-body
marginals on a tree, called the Petz recovery map [HJPW04,Pet86]. However, our algebraic
version of this map does not parametrize the QCMI variety QG due to the fact that we are
working with complex symmetric matrices instead of Hermitian matrices. The Petz recovery
map therefore gives rise to a different variety, which we introduce in the next subsection.
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3.1.2. Petz varieties
The Quantum Marginal Problem asks about how to reconstruct a quantum state of a composite
system from the states of its subsystems. In the case of the 3-chain graph with ordered
vertices A,B and C, one can ask for a quantum state ρABC with given two-body marginals
ρAB and ρBC and satisfying the quantum Markov condition I(A : C |B) = 0. The answer to
this particular problem is given by the Petz recovery map. This map is of algebraic nature
and gives rise to an algebraic variety, the Petz variety, which we study in this subsection.

We start by introducing the Petz recovery map for the 3-chain graph with the associated
Hilbert space H = HA ⊗HB ⊗HC . Let C be the set of pairs of compatible invertible density
operators on HA ⊗ HB and HB ⊗ HC , respectively, i.e. an element in C is of the form
(ρAB, ρBC), where ρAB and ρBC are invertible density operators satisfying the compatibility
condition TrA ρAB = TrC ρBC . The Petz recovery map RG for the 3-chain graph G is

RG : C → D(HA ⊗HB ⊗HC)

RG(ρAB , ρBC) = (ρ1/2
AB⊗ IdC)(IdA⊗ρ−1/2

B ⊗ IdC)(IdA⊗ρBC)(IdA⊗ρ−1/2
B ⊗ IdC)(ρ1/2

AB⊗ IdC), (3.1.4)

where IdA, IdB and IdC are the identity operators on HA,HB and HC , respectively. The
recovered state is compatible with the marginals and satisfies I(A : C | B) = 0. Moreover,
it is the unique maximizer of the von Neumann entropy among all states on H [DGMM20,
Theorem 1]. This, in particular, shows that the map R′

G defined by

R′
G(ρAB, ρBC)=(IdA ⊗ ρ1/2

BC)(IdA ⊗ ρ−1/2
B ⊗ IdC)(ρAB ⊗ IdC)(IdA ⊗ ρ−1/2

B ⊗ IdC)(IdA ⊗ ρ1/2
BC)

recovers the same state [DGMM20, Remark 2].
The Petz recovery map (3.1.4) gives rise to a rational map RG. From this point forward

we restrict to the qubit case HA
∼= HB

∼= HC
∼= C2; the general case is a straightforward

generalization. Let ρ1/2
AB = X = (xij) be a 4×4-symmetric matrix of variables x11, x12, . . . , x44.

In the same way, let ρ1/2
BC = Y = (yij). Finally, let ρ1/2

B = Z = (zij) be a 2 × 2-symmetric
matrix of variables. To reflect the required marginal compatibilities between ρAB, ρBC and ρB,
we impose the conditions TrC(Y 2) = TrA(X2) = Z2. These conditions cut out a variety V in
S4
R × S4

R × S2
R. Analogously to (3.1.4), the map RG : V 99K S8

R sends a point (x, y, z) ∈ V to

(x⊗ IdC)(IdA ⊗ z−1 ⊗ IdC)(IdA ⊗ y)(IdA ⊗ z−1 ⊗ IdC)(x⊗ IdC). (3.1.5)

We call the Zariski closure of RG(V ) inside S8, the space of complex symmetric 8×8-matrices,
the Petz variety of G and denote it PG.
Remark 3.1.13. The expression (3.1.5) for RG gives a concrete polynomial parametrization
of PG. The polynomials appearing in RG have degree five and have a minimum of 20 and
maximum of 32 terms. The number of parameter variables is 23 while the variety V has
dimension 17. Algorithm 5 provides a symbolic routine to compute the ideal of the Petz
variety for arbitrary trees. When restricting to the case where x, y and z are diagonal, (3.1.5)
gives yet another parametrization of the classical graphical model of the 3-chain from the
beginning of this chapter.
Proposition 3.1.14. Let G be the 3-chain graph. The Petz variety PG is irreducible.

Proof. Consider the subset S ⊂ S8
R × S8

R consisting of pairs of invertible matrices whose
partial traces agree. The condition that their partial traces agree defines a linear subspace
of S8

R × S8
R. Linear spaces are irreducible and taking out the locus of positive codimension

where the matrices become singular preserves irreducibility. Therefore, S is irreducible. Note
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that RG can be considered as a map on S and the Zariski closure of its image coincides with
PG since square roots and inverses of symmetric matrices are again symmetric. Therefore,
since RG is continuous, PG is irreducible.

The Petz map can be generalized to arbitrary trees by iteratively applying the procedure
for 3-chains of a tree G [DGM21,DGMM20]. This is done by taking two leaves v1 and v2
of a tree G, and replacing G \ {v1, v2} by a single vertex representing a joint state on this
subgraph. The joint state on G is then expressed in terms of states on G \ {v1} and G \ {v2}
via (3.1.4); by applying this procedure iteratively to G \ {v1} and G \ {v2}, we reduce to the
level of two-body marginals. This process leads to a map as in (3.1.4) involving only one- and
two-body marginals; again, we denote the resulting map by RG. Note that the expression for
RG depends on the choice of v1 and v2 in each iteration.

We now generalize the construction of the Petz variety to arbitrary trees.
Construction 3.1.15 (Petz variety). Let G be a tree with N vertices and let us fix an expression
for RG as obtained in the previous paragraph. Let ϱ1 and ϱ2 be the sets of one- and two-body
marginals occurring in RG. Moreover, let V be the variety inside S = (S2

R)#ϱ1 × (S4
R)#ϱ2

consisting of tuples of symmetric matrices satisfying compatibility constraints according to
G. In analogy to (3.1.4), RG gives rise to a rational map RG : V 99K S2N

R . The Petz variety
PG of G is defined as RG(V ) ⊆ S2N .

Algorithm 5 makes this construction explicit and computes the ideal of PG.

Algorithm 5 Computing the Petz variety PG

Input: A graph G with N vertices
Output: An ideal defining the Petz variety PG ⊆ S2N

1: RG ← expression for RG in terms of one- and two-body marginals
2: ϱ1, ϱ2 ← sets of one- and two-body marginals, respectively, involved in RG

3: for all ρv ∈ ϱ1 do
4: Zv ← (zv

ij) symmetric 2× 2-matrix of variables
5: for all ρv1v2 ∈ ϱ2 do
6: Xv1v2 ← (xv1v2

ij ) symmetric 4× 4-matrix of variables
7: S ← (S2

R)#ϱ1
{Zvi } × (S4

R)#ϱ2
{Xvivj }

8: E ← ∅
9: for all pairs (ρv1v2 , ρw1w2) ∈ ϱ2

2 such that v2 = w1 do
10: E ← E ∪ {entries of Trv1(X2

v1v2)−Trw2(X2
w1w2)} ∪ {entries of Trv1(X2

v1v2)−Z2
v2}

11: V ← variety defined by E inside S
12: RG ← RG with every ρv1v2 replaced by Xv1v2 and every ρv replaced by Zv

13: return ker(RG : C[S2N ]→ C[V ])

Proposition 3.1.16. The Petz variety PG does not depend on the choice of expression for the
recovery map RG.

Proof. By the same argument as for the 3-chain graph above, the map RG does not depend
on the chosen expression. Let C be the domain of RG; each element of C is a tuple consisting
of #E-many compatible invertible two-body marginals, where E is the set of edges of G.
Consider the set (S4

R)#E of #E-tuples of real symmetric 4× 4-matrices; it is Zariski dense
in the set of complex symmetric matrices. We have RG(C ∩ (S4

R)#E) = RG(V ∩ U) where
U ⊆ C2N ×2N is the Zariski dense open set of invertible matrices. The set RG(V ∩ U)
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is Zariski dense in the Petz variety PG. Let R′
G be another expression for the recovery

map, then RG(C ∩ (S4
R)#E) = R′

G(V ∩ U) and denote by P ′
G the variety defined by R′

G.
It follows that R′

G(V ∩ U) = RG(V ∩ U) so PG and P ′
G agree on a dense open set, thus

PG = RG(V ) = R′
G(V ) = P ′

G.

Proposition 3.1.17. For any tree G, the Petz variety PG is irreducible.

Proof. The proof is analogous to that of Proposition 3.1.14: PG can be represented as the
Zariski closure of the image of a linear space under a continuous map.

Remark 3.1.18. Computing the defining equations of the Petz variety is very challenging.
Even in the case of the 3-chain graph, Algorithm 5 does not terminate as it involves symbolic
computations in a polynomial ring with 59 variables. Applying numerical implicitization
techniques is also not straightforward for the same reason.
Remark 3.1.19. If we considered Hermitian matrices, the set of states recovered by the Petz
map would coincide with the set of states satisfying SSA with equality [HJPW04]. However,
since the ambient space of our varieties is that of complex symmetric matrices, the QCMI
variety QG and the Petz variety PG are not the same.

3.2. Quantum graphical models from Gibbs manifolds
In this section, we revisit the concluding remark of Section 2.5 and consider a new class of
quantum graphical models, which arise as Gibbs manifolds of families of Hamiltonians. These
serve as examples of quantum exponential families [Zho08].

In physics, the Gibbs manifold parametrizes thermal states of a family of Hamiltonians.
Those states are crucial to quantum many-body systems theory and computation [Alh23].
When the LSSM L consists of diagonal matrices with rational entries, Theorem 2.1.13 ensures
that the corresponding Gibbs manifold is semi-algebraic. For such L the resulting Gibbs
variety is toric and recovers the classical notion of exponential families [Efr22]. Moreover, the
Gibbs manifold in this case is the intersection of the Gibbs variety with the PSD cone.

3.2.1. Gibbs varieties of linear systems of Hamiltonians
The quantum Hammersley–Clifford Theorem (Theorem 3.1.7) suggests to consider expo-
nentials of local Hamiltonians, i.e. those that act non-trivially only on a small subsystem.
However, we do not consider the class of local commuting Hamiltonians as they neither form
an LSSM nor a unirational variety (see Subsection 3.2.2).

To a simple, undirected graph G = (V,E) we associate an LSSM of Hamiltonians as
follows. For each clique C in G, let LC be the LSSM given by all Hamiltonians supported on
C, i.e. those that act nontrivially only on the tensor factors Hi such that vi ∈ C and act as
identity on all other subsystems. More precisely, LC = ⊗iL

i
C where Li

C = Sdi for vi ∈ C and
Li

C = Iddi
otherwise. The family of Hamiltonians associated to G is then LG =

∑
C∈C(G) LC

where the sum runs over all cliques of G [WG23, eqn (17)]. The quantum graphical model is
GM(LG) intersected with the space of trace one matrices. The Gibbs variety GV(LG) gives
an algebraic description of this model.
Example 3.2.1. Consider the 3-chain graph G and assume we are in the qubit case, i.e.
HA
∼= HB

∼= HC
∼= C2. Then we have LG = S2 ⊗ S2 ⊗ Id2 + Id2 ⊗ S2 ⊗ S2. Using numerical

algebraic geometry techniques, we verify that no linear or quadratic equations vanish on
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GV(LG). The higher degree equations are not amenable to our computational techniques.
The dimension of GM(LG) is 15 while the dimension of GV(LG) is at most 22. ♦

As we have seen in Example 3.2.1 and in several examples in Chapter 2, the defining
ideals of Gibbs varieties are often difficult to compute. In view of this, one might hope to
simplify the defining equations of the Gibbs variety by restricting the family of Hamiltonians
to a subset inside LG. This approach is pursued in the next subsection.

3.2.2. Gibbs varieties of unirational varieties of Hamiltonians
A natural subset to consider inside LG is XG :=

∑
C∈C(G)XC , where XC is the set of

decomposable tensors supported on C. Note that XG is not a linear space. However, it is still
a unirational variety. This motivates the following extension of the notion of Gibbs varieties.
Definition 3.2.2. Let X be a unirational variety of symmetric matrices of size n× n. The
Gibbs variety GV(X) of X is the Zariski closure of exp(X) ⊆ Sn.

A number of concepts related to Gibbs varieties of linear spaces generalize to the case of
smooth unirational varieties of symmetric matrices. If X is unirational and has dimension d,
then it can be parametrized by rational functions in d variables y1, . . . , yd [Oja90, Proposition
1.1]. Therefore, one can think of X as a single matrix with entries in C(y1, . . . , yd). The
eigenvalues of this matrix are elements of C(y1, . . . , yd) and will be referred to as the eigenvalues
of X. If A ∈ Sn, then the X-centralizer of A is the set ZX(A) = {B ∈ X | AB −BA = 0},
in full analogy with Definition 2.1.7. We collect properties of Gibbs varieties of unirational
varieties in the following statement.
Proposition 3.2.3. Let X be a smooth unirational variety of n × n-symmetric matrices of
dimension d. Let m be the dimension of the Q-linear space spanned by the eigenvalues
of X and let k be the dimension of the X-centralizer of a generic element of X. Then
dim(GV(X)) = m+ d− k. In particular, dim(GV(X)) ≤ n+ d. Moreover, if X has distinct
eigenvalues, then GV(X) is irreducible and unirational.

Proof. This proposition generalizes Theorem 2.1.9 and Theorem 2.2.6. Proofs of these
statements carry over to the case of unirational varieties, since they only use the fact that an
LSSM can be parametrized by rational functions in y1, . . . , yd and do not depend on these
functions being linear.

Note that symbolic (Algorithm 1) and numerical (Algorithm 2) implicitization methods
for Gibbs varieties generalize accordingly.
Example 3.2.4. Again, consider the 3-chain graph G in the qubit case. The associated
unirational variety is XG = {K ⊗ L ⊗ Id2 + Id2 ⊗M ⊗ N | K,L,M,N ∈ S2} ⊆ S8. The
dimension of X is equal to 10 inside the 36-dimensional space of symmetric 8× 8-matrices.
The Gibbs variety GV(X) is a 14-dimensional irreducible variety cut out by nine linear
forms and 66 quadratic equations in S8. These results were obtained by using techniques of
numerical algebraic geometry. More precisely, we create a sample of points on GM(X) and
then interpolate with polynomials of a fixed degree by setting up a Vandermonde matrix and
computing its kernel via QR-decomposition to obtain a sparse representation, see [BKSW18].
This procedure yields polynomials of degree one and two. As these equations cut out an
irreducible variety of the correct dimension, we obtain generators of the prime ideal of GV(X).

The equations we obtained exhibit a remarkably simple structure. For instance, all
polynomials have coefficients ±1 and consist of at most eight terms. It would be very
interesting to obtain a theoretical explanation of this phenomenon. ♦
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3.3. Toric varieties from quantum exponential families
associated to graphs

In this section we explore a completely different family of Hamiltonians HG associated to a
graph G. This results in quantum exponential families that have a richer structure than the
ones considered in Section 3.2. However, it should be emphasized that, unlike the previous
constructions, this is not a generalization of classical graphical models. On the other hand,
all the results in this section hold for general undirected graphs, not only trees.

3.3.1. Commuting Hamiltonians from graphs
In quantum physics, to an undirected graph G one associates an LSSM HG which gives rise
to the definition of graph states, used in the study of entanglement, e.g. [HEB04]. More
precisely, the graph state associated to G is the stabilizer state of HG. Stabilizer states appear
in the framework of the stabilizer formalism used in quantum error correction [NC02, §10.5].
In fact, all results in this section generalize to stabilizers. For more details, we provide an
introduction to the stabilizer formalism in Section 3.4. However, instead of studying the
graph states associated to HG, here we focus on its Gibbs variety. This latter perspective
gives yet another example of quantum exponential families.

Let G = (V,E) be a graph with vertices V = {v1, . . . , vN}. To each vertex vi, we associate
a Hamiltonian Hi =

⊗N
j=1Hi,j with

Hi,j =


σX if i = j,
σZ if (i, j) ∈ E,
Id2 else.

Here, σX and σZ are the Pauli-X and Pauli-Z matrices

σX =
[
0 1
1 0

]
, σZ =

[
1 0
0 −1

]
.

Denote the linear span of this set of Hamiltonians by HG := ⟨Hi | i = 1, . . . , N⟩. The
Hamiltonians Hi are elements of the Pauli group PN where

P1 := {±Id2,±iId2,±σX ,±iσX ,±σY ,±iσY ,±σZ ,±iσZ}

and PN is the set of all N -fold tensor products of elements of P1 equipped with multiplication
as the group operation. Here, σY denotes the Pauli-Y matrix

σY =
[
0 −i
i 0

]
.

Example 3.3.1. Consider the graph G on four vertices depicted in Figure 3.1. The Hamiltonian
H1 is given by

H1 = σX ⊗ σZ ⊗ σZ ⊗ Id2.

The linear space HG is spanned by the four Hamiltonians

σX ⊗ σZ ⊗ σZ ⊗ Id2, σZ ⊗ σX ⊗ σZ ⊗ σZ , σZ ⊗ σZ ⊗ σX ⊗ Id2, Id2 ⊗ σZ ⊗ Id2 ⊗ σX .

♦
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4 σX σZ
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Figure 3.1: Left: the graph G. Right: illustration of the Hamiltonian H1.

In the following we consider the Gibbs variety of HG. We start by showing that HG is a
commuting family, implying that GV(HG) is toric after a linear change of coordinates and
the Gibbs manifold GM(HG) is semi-algebraic (Theorem 2.1.13).
Lemma 3.3.2. Any two matrices H,H ′ ∈ HG commute.

Proof. W.l.o.g. assume H and H ′ are generators Hm and Hn of HG. Note that the Pauli
matrices satisfy the commutation relation

[σj , σk] = 2iϵjklσl,

where ϵjkl is the Levi-Civita symbol (it is zero if j, k and l are not pairwise distinct and is
the sign of the permutation (jkl) otherwise) and we denote σ1 = σX , σ2 = σY and σ3 = σZ .
For P ∈ PN , let SuppX(P ) := {j ∈ [N ] | σ(j) = σX} and SuppZ(P ) := {j ∈ [N ] | σ(j) = σZ}
denote the supports of σX and σZ , respectively. Then two Pauli product matrices P,Q ∈ PN

containing only Id2, σX or σZ as tensor factors commute if and only if

#(SuppX(P ) ∩ SuppZ(Q)) + #(SuppZ(P ) ∩ SuppX(Q)) ≡ 0 mod 2. (3.3.1)

Let N(v) denote the set of neighbouring vertices of v in G. Assume vn ∈ N(vm); then the
left-hand side of (3.3.1) for P = Hm and Q = Hn becomes #{m} + #{n} = 2. Finally, if
vn /∈ N(vm) ∪ {vm} the left-hand side of (3.3.1) is just zero.

Let us briefly recall from Section 2.1 how to obtain the toric variety and the coordinate
change from GV(HG). The symmetric matrices H1, . . . ,HN ∈ HG are simultaneously diago-
nalizable, i.e. there exist an orthogonal matrix U and diagonal matrices D1, . . . , DN such that
U−1HiU = Di for i = 1, . . . , N . The exponential of an element in HG can then be written as

exp(x1H1 + · · ·+ xNHN ) = U exp(x1D1 + · · ·+ xNDN )U−1

and thus GV(HG) = U ·GV(D)·U−1 where D = ⟨D1, . . . , DN ⟩. LetDi = diag(di), i = 1, . . . , N
for di ∈ R2N and let D = ⟨d1, . . . , dN ⟩ ⊆ R2N be the R-vector space spanned by the diagonals.
Consider the smallest vector subspace DQ ⊆ R2N containing D that is spanned by elements
of Q2N and choose an integral basis a1, . . . , aN ∈ Z2N of DQ. If A denotes the N × 2N -matrix
with rows a1, . . . , aN then GV(D) is the toric variety XA associated to A.

We will need the following standard fact from the theory of quantum stabilizer codes. A
proof is provided in Section 3.4.
Lemma 3.3.3 ( [NC02, Prop. 10.5]). Let S = ⟨P1, . . . , PN−k⟩ be a subgroup of PN generated
by N−k independent1 and commuting Pauli product matrices such that −Id2N /∈ S. Then the
vector space VS := {v ∈ R2N | Piv = v ∀i = 1, . . . , N − k} of simultaneous (+1)-eigenvectors
has dimension 2k.

1i.e. ∀i = 1, . . . , N − k : ⟨P1, . . . , P̂i, . . . , PN−k⟩ ≠ S where the hat denotes that this generator is omitted.
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Remark 3.3.4. Note that any Pauli product matrix P ∈ PN has eigenvalues ±1, both with
multiplicity 2N−1 each. Lemma 3.3.3 can then be rephrased as follows: the (±1)-eigenspaces
of Pi intersect the eigenspaces of all P1, . . . , Pi−1 in half their dimension. This fact is essential
to the next theorem establishing a strong connection between quantum exponential families
and classical algebraic statistics.
Theorem 3.3.5. For any graph G with N vertices, GV(HG) is an independence model on N
binary random variables after a linear change of coordinates.

Proof. As shown above, GV(HG) = U ·XA ·U−1 where the rows of A are the diagonal entries
of Di = U−1HiU for i = 1, . . . , N and XA is the (affine) toric variety associated to A. By
Remark 3.3.4, we can assume A to be of the form

A =


−1 −1 −1 −1 . . . −1 −1 −1 −1 1 1 1 1 . . . 1 1 1 1
−1 −1 −1 −1 . . . 1 1 1 1 −1 −1 −1 −1 . . . 1 1 1 1

...
...

...
... . . . ...

...
...

...
...

...
...

... . . . ...
...

...
...

−1 −1 1 1 . . . −1 −1 1 1 −1 −1 1 1 . . . −1 −1 1 1
−1 1 −1 1 . . . −1 1 −1 1 −1 1 −1 1 . . . −1 1 −1 1

 (3.3.2)

i.e. the columns of A are the vertices of the N -dimensional hypercube [−1, 1]N . Thus, XA is
an independence model on N binary random variables.

Remark 3.3.6. The variety XA above is not the independence model in its standard description.
For example, for N = 3 we have

A =

−1 −1 −1 −1 1 1 1 1
−1 −1 1 1 −1 −1 1 1
−1 1 −1 1 −1 1 −1 1

 ;

the prime ideal of XA is

IA =⟨x1x8 − 1, x6x7 − x5x8, x4x7 − x3x8, x2x7 − 1, x4x6 − x2x8,

x3x6 − 1, x4x5 − 1, x3x5 − x1x7, x2x5 − x1x6, x2x3 − x1x4⟩ ⊆ C[x1, . . . , x8].

The matrix A′ of the independence model has as columns the vertices of the hypercube [0, 1]N .
Adding a row of ones to A and to A′ yields the same variety. Thus, XA is an affine patch of
the independence model, i.e. of the Segre variety σ(P1 × P1 × P1) ⊆ P7.

A priori, it is not obvious how to obtain defining equations for GV(HG) computationally in
an efficient manner. However, Theorem 3.3.5 gives rise to Algorithm 6 making computations
of defining ideals for graphs with four or more vertices feasible.

Note that Step 3 in Algorithm 6 can be pre-computed. This allows to reduce finding
the equations of GV(HG) to a linear algebra problem, therefore reducing the computational
complexity. An implementation of this algorithm is available at https://mathrepo.mis.
mpg.de/QuantumGraphicalModels.
Example 3.3.7. Let G be the graph from Example 3.3.1. Using Algorithm 6, we compute that
GV(HG) ⊆ S16 is defined by 296 quadratic equations in 136 variables. The average number
of terms of each generator is about 1982. This highlights the fact that the equations defining
the Gibbs variety can be quite involved. It would be impossible to compute these equations
without using the additional structure of HG being diagonalizable. Both Algorithm 1 and
Algorithm 2 failed to compute this example. ♦

https://mathrepo.mis.mpg.de/QuantumGraphicalModels
https://mathrepo.mis.mpg.de/QuantumGraphicalModels
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Algorithm 6 Computing defining equations of GV(HG)
Input: A graph G
Output: Polynomials defining GV(HG)

1: Compute HG = ⟨H1, . . . ,HN ⟩
2: U ← matrix simultaneously diagonalizing H1, . . . ,HN

3: I ← ideal of the independence model defined by A as in (3.3.2) in variables pi,i for
i = 1, . . . , 2N

4: Y = (yij)← linear coordinate change according to UPU−1 where P = (pij)
5: for all generators gk of I do
6: hk ← gk changed to Y -coordinates
7: J ← ideal generated by all hk and yij = 0 for all i ̸= j ∈ {1, . . . , 2N}
8: return a set of generators of J

3.3.2. Quantum information projections
Given an arbitrary quantum state ρ we can ask for the member ρ̃ ∈ Q of some quantum
exponential family Q = GM(L) “closest” to ρ. Here, “closest” means minimizing the quantum
relative entropy.
Definition 3.3.8. The quantum relative entropy D(ρ||σ) between a state ρ and a positive
semidefinite operator σ is

D(ρ||σ) :=
{

Tr(ρ(log(ρ)− log(σ))) if Supp(ρ) ⊆ Supp(σ)
+∞ otherwise.

Here, the support of a linear operator is the subspace orthogonal to the kernel with respect
to the standard inner product on Cn, and all logarithms are taken to have base two.

This is a quantum generalization of the Kullback–Leibler divergence in classical information
theory. Note that, similarly to the Kullback–Leibler divergence, the quantum relative entropy
is not an actual metric as it is not symmetric and does not satisfy the triangle inequality.
However, it does satisfy non-negativity (quantum Gibbs’ inequality). More precisely, if
Tr(σ) ≤ 1 we have D(ρ||σ) ≥ 0 with equality if and only if ρ = σ. See [Wil13, §11.8] for an
extensive reference.
Definition 3.3.9. The quantum information projection ρ̃ of a quantum state ρ to a quantum
exponential family Q is the element of Q which is the closest to ρ with respect to the quantum
relative entropy

ρ̃ = argmin
ρ′∈Q

D(ρ||ρ′).

The quantum information projection is unique and has been characterized in the case
where Q consists of exponentials of local Hamiltonians [NGKG13, Lemma 2]. Since the
Gibbs manifold considered in the previous subsection is semi-algebraic, we can use algebraic
techniques to find the quantum information projection in this case. The following theorem
gives an algebraic characterization of the quantum information projection for a quantum
exponential family Q of commuting Hamiltonians, in particular for Q = GM(HG).
Theorem 3.3.10. Let H = ⟨H1, . . . ,Hk⟩ be a linear span of commuting Hamiltonians in Sd

R,
fix a positive definite matrix ρ ∈ Sd

R and let bi := ⟨Hi, ρ⟩ = Tr(Hiρ) for i = 1, . . . , k. Let Mρ

be the affine linear space defined by

Mρ := {A ∈ Sd
R | ⟨Hi, A⟩ = bi for i = 1, . . . , k}.
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Then Mρ ∩GM(H) consists of a unique point ρ∗. It is the maximiser of the von Neumann
entropy inside Mρ and the quantum information projection of ρ to GM(H).
Remark 3.3.11. This result generalizes Birch’s Theorem [DSS08, Proposition 2.1.5] to quantum
exponential families that become toric after a linear change of coordinates.

Proof. The fact that Mρ ∩ GM(H) = {ρ∗} and ρ∗ is the unique point maximising the von
Neumann entropy is a direct consequence of Theorem 2.4.1. It remains to show that this
point is the quantum information projection of ρ to GM(H).

Let ρ̃ be the quantum information projection of ρ to GM(H). As in the discussion
preceding Lemma 3.3.3, let U be the matrix diagonalizing H into D = ⟨D1, . . . , Dk⟩, i.e.
Hi = UDiU

−1 for i = 1, . . . , k, so ρ̃ ∈ U GM(D)U−1. Minimizing the quantum relative
entropy between ρ and GM(H) is then equivalent to minimizing the quantum relative entropy
between U−1ρU and GM(D). Let σ := U−1ρU ; then we want to maximize Tr(σ log(∆)) over
diagonal matrices ∆ ∈ GM(D), i.e. find ρ̃′ = diag(δ̂) such that

ρ̃′ = argmax
∆∈GM(D)

∑
j

σjj log ∆jj .

This is the same problem as finding the maximum likelihood estimator on the exponential
family GM(D) given data u = (σ11, σ22, . . . , σdd). Note that every coordinate of u is nonzero.
By Birch’s Theorem, δ̂ is the unique point on GM(D) satisfying Aδ̂ = Au where A is the
matrix whose ith row is the diagonal of Di as in (3.3.2). Observe that

(Au)i =
∑

j

(Di)jjσjj = Tr(Diσ) = Tr(DiU
−1ρU) = Tr(UDiU

−1ρ) = Tr(Hiρ) = bi;

analogously, (Aδ̂)i = Tr(Hiρ̃). This shows ρ̃ ∈Mρ ∩GM(H) and thus ρ̃ = ρ∗.

Theorem 3.3.10 provides a way to compute the quantum information projection to GM(HG)
algorithmically by using numerical algebraic geometry; concretely, one can first compute
Mρ ∩GV(HG) and then choose the unique point lying in the PSD cone.
Example 3.3.12. Consider the positive definite matrix

ρ =



84 −22 11 −51 −15 −8 −26 4
−22 51 −5 −7 23 −13 17 40

11 −5 51 25 −16 −3 9 28
−51 −7 25 70 −19 17 18 −26
−15 23 −16 −19 92 32 23 24
−8 −13 −3 17 32 62 2 −36
−26 17 9 18 23 2 94 10

4 40 28 −26 24 −36 10 109


and the 3-chain graph G. The intersection Mρ ∩GV(HG) consists of six real matrices. Only
one of them is positive semidefinite, namely the matrix

ρ̃ =



20.5417 −12.5 −20.5 −12.4746 −5.5 3.34685 −5.48884 −3.34006
−12.5 20.5417 12.4746 20.5 3.34685 −5.5 3.34006 5.48884
−20.5 12.4746 20.5417 12.5 5.48884 −3.34006 5.5 3.34685

−12.4746 20.5 12.5 20.5417 3.34006 −5.48884 3.34685 5.5
−5.5 3.34685 5.48884 3.34006 20.5417 −12.5 20.5 12.4746

3.34685 −5.5 −3.34006 −5.48884 −12.5 20.5417 −12.4746 −20.5
−5.48884 3.34006 5.5 3.34685 20.5 −12.4746 20.5417 12.5
−3.34006 5.48884 3.34685 5.5 12.4746 −20.5 12.5 20.5417


.

This matrix is the quantum information projection of ρ to GM(HG). ♦
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3.4. Stabilizer formalism
The purpose of this last section is to provide a proof of Lemma 3.3.3 to make this chapter
self-contained, and to generalize Theorem 3.3.5 by introducing the stabilizer formalism. This
framework is commonly used in quantum error correction for a very convenient description of
quantum code spaces. In our exposition we follow [NC02, §10.5.1].

Any subgroup S ≤ PN of the Pauli group acts on the vector space of N qubit states by
multiplication. The vector space stabilized by S is denoted VS and we call S the stabilizer of
VS . In quantum error correction, VS is the code space.

Let S be generated by S = ⟨p1, . . . , pl⟩; the generators p1, . . . , pl are called independent if
for all i = 1, . . . , l : ⟨p1, . . . , p̂i, . . . , pl⟩ ⪇ S, where the hat means that the element is omitted.
Lemma 3.4.1 ( [NC02, Proposition 10.5]). Let S = ⟨p1, . . . , pN−k⟩ ≤ PN be generated by
N − k independent and commuting Pauli product matrices such that −Id2N /∈ S. Then VS

has dimension 2k.

Proof. First note that any Pauli matrix σ ∈ {σX , σY , σZ} has eigenvalues ±1, and the
projector on the ±1-eigenspace of σ is Id2±σ

2 . For any x = (x1, . . . , xN−k) ∈ (Z/2Z)N−k,
define

Px
S := 1

2N−k

N−k∏
j=1

(Id2N + (−1)xjpj);

P 0
S is the projector onto VS as the composition of projectors onto the eigenspaces of the pi’s.

Claim 3.4.2. For any x ∈ (Z/2Z)N−k, dim(Im(Px
S )) = dim(Im(P 0

S )).
We represent a Pauli product matrix p ∈ PN as a (row) vector vp ∈ (Z/2Z)2N as follows:

(vp)i =


1 if i ≤ N and the i-th tensor factor of vp is either σX or σY ,
1 if i > N and the (i−N)-th tensor factor of vp is either σZ or σY ,
0 else.

Then two Pauli product matrices p, p′ ∈ PN commute if and only if vpΛvT
p′ = 0, where Λ is

the 2N × 2N -matrix

Λ =
[

0 IdN

IdN 0

]
.

Let p1, . . . , pN−k be the independent generators of S. For any i = 1, . . . , N − k there exists a
p ∈ PN such that ppip

† = −pi and ppjp
† = pj for all j ̸= i. Indeed, consider the (N −k)×2N -

matrix P with rows vp1 , . . . , vpN−k
; as the generators are independent, one can check that

the rows of P are linearly independent. Therefore, the linear system PΛx = ei, where ei

is the ith standard basis vector, has a solution, say s ∈ (Z/2Z)2N . Then we define p ∈ PN

by vp = sT . Thus, for any j ̸= i we have vpj Λvp = 0, so p and pj commute and ppjp
† = pj .

Moreover, vpiΛvp = 1, hence ppip
† = −pi.

The argument above shows that for any x ∈ (Z/2Z)N−k, there exists px ∈ PN such that
Px

S = pxP
0
S p

†
x, proving the claim.

Let x,x′ ∈ (Z/2Z)N−k be two distinct vectors, i.e. there exists an i ∈ {1, . . . , N − k} such
that xi ̸= x′

i. Then Im(Px
S ) and Im(Px′

S ) are orthogonal. Indeed, the Hilbert–Schmidt inner
product between Px

S and Px′
S evaluates to

⟨Px
S , P

x′
S ⟩ = 1

22(N−k) Tr

(Id + pi)(Id− pi)
∏
j ̸=i

(Id + (−1)xjpj)(Id + (−1)x′
jpj)

 = 0
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as (Id + pi)/2 and (Id− pi)/2 are projectors on complementary eigenspaces of pi.
Finally, observe that ∑

x∈(Z/2Z)N−k

Px
S = Id2N ,

so the 2N−k many vector spaces Im(Px
S ) form an equidimensional partition of C2N , hence

dim(VS) = dim(Im(P 0
S )) = 2k.

We will now see that Theorem 3.3.5 does not rely on the structure of the graph but
generalizes to stabilizers.
Theorem 3.4.3. Let S = ⟨p1, . . . , pN ⟩ ≤ PN be generated by N independent and commuting
Pauli product matrices such that −Id2N /∈ S. Then GV(S) is an independence model on N
binary random variables after a linear change of coordinates.

Proof. The proof of Theorem 3.3.5 immediately extends to this setup with Lemma 3.4.1.

We now summarize open research questions that are motivated by this chapter. Are QCMI
varieties irreducible for all trees? As seen in Example 3.2.4, Gibbs varieties of unirational
varieties of Hamiltonians defined by graphs exhibit a remarkably simple structure in their
defining equations. Is there a theoretical explanation for this fact? We have seen that
computing the defining equations of QCMI varieties, Petz varieties and Gibbs varieties in
computationally very challenging. Are there ways to exploit the structure and theoretical
properties of these varieties to facilitate implicitization, in the spirit of Example 3.3.7?
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Chapter 4

Minimizing Dual Volumes of Polytopes

This chapter studies the (semi-)algebraic geometry of minimizing volumes of dual polytopes.
At this point it is instructive to revisit basics of discrete geometry in Section 1.3. Motivations
for our study include optimization, statistics and particle physics.

4.1. The Santaló point
We start with some terminology. A polytope P ⊂ Rm is the convex hull of finitely many
points. If P has dimension m, then each point y in its interior defines a dual polytope

(P − y)◦ = {z ∈ Rm : ⟨y′ − y, z⟩ ≤ 1, for all y′ ∈ P}.

The function y 7→ volm (P − y)◦ is strictly convex on the interior of P . In fact, this is true
when P is replaced by any convex body, see the proof of Proposition 1(i) in [MW98]. It
follows that there is a unique minimizer y∗ ∈ int(P ). This is called the Santaló point of P :

y∗ = argmin
y∈int(P )

volm (P − y)◦ = argmin
y∈int(P )

∫
(P −y)◦

dz1 · · · dzm. (4.1.1)

A special property of polytopes, compared to general convex bodies, is that our volume
function is rational. It follows from Theorems 3.1 and 3.2 in [Gae20] that

volm (P − y)◦ = γ · αP (y)
ℓ1(y) · · · · · ℓk(y) , (4.1.2)

where γ is a nonzero real constant, ℓi(y) = 0 is an affine-linear equation defining the i-th
facet hyperplane of P , and αP (y) is the adjoint polynomial. We will recall a formula for αP

in Section 4.2. Having established the identity (4.1.2), computing the Santaló point of P
comes down to minimizing a convex rational function or, equivalently, its logarithm.
Example 4.1.1 (m = 2, k = 5). We consider the pentagon P in R2 given by the inequalities

y1 + 1
5 ≥ 0, y2 + 1

5 ≥ 0, 2y1 + 2y2 + 1
5 ≥ 0, −2y1 − y2 + 1

5 ≥ 0, −y1 − 2y2 + 1
5 ≥ 0.

It is shown, together with the poles and zeros of vol2(P − y)◦, in Figure 4.1 (left). We have

vol2(P − y)◦ = 1
125

−50y2
1 − 25y1y2 + 15y1 − 50y2

2 + 15y2 + 11
(y1 + 1

5)(y2 + 1
5)(2y1 + 2y2 + 1

5)(−2y1 − y2 + 1
5)(−y1 − 2y2 + 1

5)
. (4.1.3)

The Santaló point minimizes this function on int(P ): y∗ = (−0.00311069,−0.00311069).
♦
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Figure 4.1: Left: the pentagon P from Example 4.1.1, together with its adjoint curve
(red) and facet hyperplanes (blue). Right: a two-dimensional slice of the chamber complex
CA.

The first motivation for computing Santaló points comes from convex optimization [NN94].
In that context, P is the feasible region of a linear program, whose optimal solution is typically
a vertex of P . Interior point methods approximate that vertex by first optimizing a strictly
convex (barrier) function. The resulting interior optimizer is then tracked to the optimal
vertex by varying a regularization parameter, in the spirit of Section 2.4. For more details,
see [Gül96, NN94], where (4.1.2) is called the universal barrier. For a summary, see the
introduction of [STVvR24].

We are interested in how the Santaló point varies when the facet hyperplanes of P are
translated. More precisely, we fix a nonnegative d× n-matrix A ∈ Rd×n

≥0 of rank d, none of
whose columns is the zero vector, and consider the fibers of the projection A : Rn

≥0 → Rd:

Pb = {x ∈ Rn
≥0 : Ax = b}, b ∈ pos(A).

Here pos(A) is the image of A : Rn
>0 → Rd. If b lies in pos(A), then Pb is a polytope of

dimension m = n− d. A point x in its relative interior defines a full-dimensional polytope
Pb − x in the (n− d)-dimensional vector space kerA ≃ Rn−d. We define

V : Rn
>0 −→ R≥0, x 7−→ voln−d (PAx − x)◦. (4.1.4)

This is defined up to a scaling factor, which depends on the choice of basis for kerA. We
prove that this global volume function is piecewise rational, meaning that it is a rational
function when restricted to certain n-dimensional subcones of Rn

>0 (Proposition 4.2.5). These
subcones correspond to the cells of the chamber complex CA associated to A, see e.g. [BGS93]
for more details. Moreover, on each of these subcones, V is homogeneous of degree d − n
(Proposition 4.2.5).

Each fiber Pb has a unique Santaló point. This defines a natural section of A : Rn
>0 → Rd:

x∗(b) = argmin
x∈int(Pb)

V (x) . (4.1.5)

The image x∗(b) of a point b can be efficiently computed using numerical methods, see
Example 4.6.1. The map x∗ : pos(A)→ Rn

>0 is piecewise algebraic. Its image is called the
Santaló patchwork. We show that the Santaló patchwork is a union of d-dimensional basic
semi-algebraic sets, one for each d-dimensional cell in the chamber complex CA (Corollary
4.3.3). We give inequalities for each of its pieces (called Santaló patches), and bound the
degree of their Zariski closures.
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Figure 4.2: Visualization of the Santaló patchwork for A from (4.1.6).

Example 4.1.2 (d = 3, n = 5). The pentagon in Example 4.1.1 is the fiber Pb − x for the data

A =

1 1 1 1 1
2 1 0 1 0
1 2 0 0 1

 , b = 1
5

5
4
4

 , x = 1
5
[
1 1 1 1 1

]T
. (4.1.6)

The coordinates y1 and y2 in Example 4.1.1 are with respect to the following basis of kerA:

B = 1
18

[
5 −4 2 −6 3
−4 5 2 3 −6

]T

.

The columns of A are the vertices of a pentagon in R3. They define the polyhedral complex
shown in Figure 4.1 (right). The chamber complex CA is the polyhedral fan over that complex.
There are 11 3-dimensional cells. Our b lies in the central pentagonal cell. For any x ∈ R5

≥0
such that Ax lies in this cell, we have the following formula for the volume function V (x):

V (x) = 3x1x2x3 + 2x1x3x5 + 2x1x4x5 + 2x2x3x4 + 2x2x4x5
x1x2x3x4x5

. (4.1.7)

This is given by Corollary 4.2.6. To match this with (4.1.3), use Ax = b and BTx = y to
switch from x- to (b, y)-coordinates and substitute b = (1, 4/5, 4/5). A different rational
function is needed when b belongs to a different cell, because the combinatorial type of Pb

changes. For instance, one checks that for b = (1, 6/5, 4/5), Pb is a quadrilateral. Each cell in
CA gives a patch of the Santaló patchwork, which is a 3-dimensional semi-algebraic set in
R5

≥0. Intersecting this with the 4-dimensional simplex {
∑5

i=1 xi = 1} and projecting to R3,
we obtain Figure 4.2. ♦

Understanding the degrees of Santaló patches relies on insights from algebraic statistics
[DSS08]. Minimizing the logarithm of the dual volume has the interpretation of maximum
likelihood estimation for a particular discrete statistical model, called Wachspress model
[KSS20, Section 2]. Every righthand side vector b ∈ pos(A) defines a Wachspress model. The
maximum likelihood degree (ML degree) [CHKS06] of this model is constant for generic b
in the interior of a cell in the chamber complex. We conjecture that, under mild genericity
assumptions, it gives a lower bound for the degree of the corresponding Santaló patch, see
Conjecture 4.4.7 and Proposition 4.5.4. Example 4.5.8 gives evidence that this lower bound
is close to the actual degree of the Santaló patch. We show how to compute the ML degree
numerically, and Conjecture 4.5.7 gives a formula for polygons. A sketch of proof is included.

The outline of this chapter is as follows. Section 4.2 studies the volume function (4.1.4).
Sections 4.3 and 4.4 describe the Santaló patchwork and its Zariski closure. Section 4.5
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makes the link to Wachspress models. Finally, in Section 4.6 we discuss homotopy based
methods for computing Santaló points. First, we use monodromy to compute the Santaló
point of some fiber Pb0 . Next, we compute the Santaló point of a new fiber Pb1 from
that of Pb0 , such that b0 and b1 belong to the same chamber of CA. We use numerical
homotopy continuation [SW+05] to track x∗(b0) to x∗(b1) along a smooth path on the Santaló
patchwork. Our algorithms are implemented in a Julia package Santalo.jl, which is available
at https://mathrepo.mis.mpg.de/Santalo.

The content of this chapter fits nicely into a broader story of semi-algebraic sets in convex
optimization, algebraic statistics and particle physics. Different strictly convex objective
functions used in interior point methods give rise to other interesting geometric objects,
see [DLSV12,STVvR24]. For the log-barrier function V (x) = −

∑n
i=1 log xi, the role of the

Santaló patchwork is played by the positive reciprocal linear space associated to the row span
of the matrix A. The Santaló point is replaced by the analytic center. Entropic regularization
uses V (x) =

∑n
i=1 xi log xi − xi and leads naturally to consider the positive toric d-fold

associated to A, with the Birch point being its unique intersection with Pb. From a statistical
point of view, these scenarios correspond to maximum likelihood estimation for linear models
and exponential families respectively. Next to optimization and statistics, the dual volume
function (4.1.2) shows up in particle physics as the canonical function of P , viewed as a
positive geometry [AHBL17]. This enters in the proof of Propostion 4.2.5. For some specific
polytopes, V (x) is a scattering amplitude [AHBHY18]. Recently, dual volumes have been
used in the study of toric singularities [MS21b].

All of these connections motivate our effort to study the Santaló geometry of polytopes.
This chapter provides new theoretical insights into Santaló points, and practical tools for
computing them. It leads to several new possible research directions, see Section 4.6.

4.2. Dual volumes of polytopes
To avoid confusion, below we write Q ⊂ Rm for a full-dimensional polytope (where, usually,
m = n− d), and Pb ⊂ Rn for the (n− d)-dimensional fibers of A : Rn

≥0 → pos(A).
This section describes the dual volume function (4.1.2) of a full-dimensional polytope

Q ⊂ Rm. We start with the numerator of this rational function, called the adjoint polynomial
αQ(y). Recall that Q is simple if each vertex is adjacent to exactly m facets.

Suppose Q is simple and has minimal facet representation

Q = {y′ ∈ Rm : ⟨wi, y
′⟩+ ci ≥ 0, i = 1, . . . , k}. (4.2.1)

Here wi ∈ Rm and ci ∈ R. The adjoint polynomial of Q, introduced by Warren [War96], is

αQ(y) = volm(Q− y)◦ ·
k∏

i=1
(⟨wi, y⟩+ ci). (4.2.2)

For completeness, we include a proof of a convenient formula for αQ(y). We collect the
vectors wi in an m × k matrix W and write WI for the submatrix of columns indexed by
I ⊂ {1, . . . , k}. Let V(Q) be the set of vertices of Q. For each v ∈ V(Q), we let I(v) = {i :
⟨wi, v⟩+ ci = 0} ⊂ {1, . . . , k} be the m-element index set of the facets containing v.
Proposition 4.2.1. For a simple full-dimensional polytope Q ⊂ Rm with minimal facet
representation (4.2.1) the adjoint polynomial αQ(y) is given by

αQ(y) =
∑

v∈V(Q)
|detWI(v)| ·

∏
i ̸∈I(v)

(⟨wi, y⟩+ ci) . (4.2.3)

https://mathrepo.mis.mpg.de/Santalo
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Proof. For y ∈ int(Q) the translated polytope Q− y has the following facet representation:

Q− y = {y′ ∈ Rm : ⟨wi, y
′⟩+ (⟨wi, y⟩+ ci) ≥ 0, i = 1, . . . , k}.

The dual polytope is then simplicial and can be described as

(Q− y)◦ = conv
({

wi

⟨wi, y⟩+ ci
: i = 1, . . . , k

})
.

We compute its volume as the sum of volumes over the pieces of its triangulation:

volm(Q− y)◦ =
∑

v∈V(Q)
volm

conv

{0} ∪ ⋃
i∈I(v)

{
wi

⟨wi, y⟩+ ci

} =

∑
v∈V(Q)

∣∣∣detWI(v)

∣∣∣ ∏
i∈I(v)

(⟨wi, y⟩+ ci)−1 .

Since by definition αQ(y) = volm(Q− y)◦ ·
k∏

i=1
(⟨wi, y⟩+ ci), we get the formula in (4.2.3).

To avoid confusion, we point out that what we call the adjoint of Q is the adjoint of the dual
polytope Q◦ in some of the literature [KR20,War96]. The variety inside Rm defined by αQ is
the adjoint hypersurface associated to Q, see [KR20]. When the facet hyperplanes of Q form
a simple arrangement (that is, the intersection of any i hyperplanes has codimension i), the
adjoint hypersurface is the unique hypersurface of minimal degree interpolating the residual
arrangement of Q. This arrangement is the union of all affine spaces that are contained in
the intersections of facet hyperplanes but do not contain a face of Q [KR20, Theorem 6]. In
Figure 4.1 (left), the residual arrangement consists of 5 points defining a unique adjoint conic.

We now switch back to the setting where m = n−d and the polytope Q arises as a fiber Pb

of the linear projection A : Rn
≥0 → Rd for some A ∈ Rd×n

≥0 . If x is an interior point of Pb, then
the translate Pb − x is a full-dimensional polytope inside kerA ∼= Rn−d. We are interested in
minimizing its dual volume voln−d(Pb − x)◦ with respect to x. In order to treat this problem
algebraically, we will first project Pb to kerA. To do so, fix an n× (n− d)-matrix B whose
columns span kerA. The projection of Pb is denoted by Qb = BT · Pb and the coordinates y
on kerA are induced from y = BTx.

By construction, the matrix obtained by concatenating A and BT vertically is an n× n-
matrix of full rank. It therefore defines an invertible coordinate change[

b
y

]
=
[
A
BT

]
x. (4.2.4)

This means that in order to compute the Santaló point x∗(b) of Pb, it is sufficient to compute
the Santaló point y∗(b) of Qb and then apply the inverse coordinate change:

x∗(b) =
[
A
BT

]−1 [
b

y∗(b)

]
. (4.2.5)

We will now study the dual volume function voln−d (Qb − y)◦ for the polytope Qb. Our
aim is to show that this is a piecewise rational function of y and b. A key role will be played by
the chamber complex CA of cone(A) = pos(A), the conical hull of the columns of A. We now
give a definition that is slightly more general than Definition 1.3.16 and is more convenient
for computations.

Let ai denote the i-th column of A. For a nonempty subset σ ⊂ [n] = {1, . . . , n} we define
Aσ = {ai : i ∈ σ} to be the submatrix with columns indexed by σ.
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Definition 4.2.2. For b ∈ cone(A), define the chamber Cb :=
⋂

cone(Aσ)∋b cone(Aσ). The
chamber complex of A is the collection of all such chambers:

CA := {Cb : b ∈ cone(A)}.

In the rest of this chapter, full-dimensional chambers are called cells of CA.
For more details on the chamber complex, see [BGS93] and [DLRS10, Chapter 5].

Proposition 4.2.3. For each b in the interior of a cell C ∈ CA, the (n−d)-dimensional polytopes
Pb and Qb are simple, and so are their facet hyperplane arrangements. As b varies over int(C),
the combinatorial types of Pb and Qb are equal and constant.

Proof. Since b is in pos(A), the interior of cone(A), Pb has dimension n − d. Since every
vertex v of Pb is a solution of Av = b with vi = 0 for n− d entries of v [BT97, Theorem 2.4],
it is on exactly n− d facet hyperplanes, and the polytope Pb is simple. For essentially the
same reason, the facet hyperplane arrangement of Pb is simple for any b ∈ int(C).

The affine span of Pb is parallel to kerA. The matrix B whose columns span kerA defines
a projection to kerA, and the projected polytope Qb = BT · Pb has the same dimension and
combinatorial type as Pb. The fact that the combinatorial type of Pb stays the same as b
varies over a given chamber C ∈ CA appears as Theorem 18 in [AH23].

Example 4.2.4. The columns of the matrix A from Example 4.1.2 define the vertices of a
pentagon shown in Figure 4.1 (right). The positive hull pos(A) is a cone over this pentagon,
and the chamber complex CA is the fan over the polyhedral complex obtained by taking the
common refinement of all triangulations of this pentagon. The chamber complex has 11 cells:
one cone over a pentagon and 10 cones over triangles. When b is in the central cell, the
polytope Pb is itself a pentagon. When b is in one of the five cells that share a facet with the
central one, Pb is a quadrilateral. Finally, when b is one of the five remaining cells, Pb is a
triangle. The following code snippet computes the chamber complex in Macaulay2 [GS].

A = matrix{{1,1,1,1,1},{2,1,0,1,0},{1,2,0,0,1}} 1
B = {{5,-4},{-4,5},{2,2},{-6,3},{3,-6}} 2
F = gfanSecondaryFan B 3
all_fulldim_cones = cones(n,F) 4
all_rays = rays(F) 5
matrices = apply(all_fulldim_cones, s -> A*submatrix(all_rays,s)) 6
cells_CA = apply(matrices,i->posHull(i)) 7

The list cells_CA contains all cells of CA. Our computation follows [AH23, Remark 21]. ♦

Proposition 4.2.5. Let C ∈ CA be a cell. Let nC be the number of facets of Pb for b ∈ int(C)
and let Qb = BT · Pb, for some kernel matrix B ∈ Rn×(n−d) of A. The function f(b, y) =
voln−d(Qb − y)◦ is a homogeneous rational function on

{(b, y) : b ∈ C ∩ pos(A), y ∈ int(Qb)},

of degree d− n. Its numerator has degree d− n+ nC and the denominator has degree nC .

Proof. We prove the statement for b ∈ int(C). The result extends to b ∈ C ∩ pos(A) by
continuity. The dual volume function can be expressed as follows:

f(b, y) = voln−d (Qb − y)◦ = γ(b) · α(b, y)
ℓ1(b, y) · · · · · ℓnC (b, y) .
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Here γ is a nonzero function of b, ℓi(b, y) = 0 is a linear equation defining the i-th facet
hyperplane of Qb, and α(b, y) is the adjoint polynomial of Qb, see (4.1.2). The proposition
will follow from analyzing these functions. By construction, the ℓi(b, y) can be chosen as nC

of the (homogeneous) linear entries of the following vector:

[
A
BT

]−1 [
b
y

]
. (4.2.6)

We denote these by ℓi(b, y) = ci(b) + ⟨wi, y⟩, where wi ∈ Rn−d and ci(b) are homogeneous
linear forms in b. By Proposition 4.2.3, Qb is a simple polytope. Hence, we can apply (4.2.3)
to compute the adjoint polynomial α(b, y):

α(b, y) =
∑

v∈V(Qb)

| detWI(v)| ·
∏

i ̸∈I(v)
(ci(b) + ⟨wi, y⟩)

 .
Since Qb is simple, each vertex is adjacent to exactly n− d facets. This means that, up to
the prefactor, α(b, y) is a nonzero sum of homogeneous polynomials of degree nC − (n− d).
We have now determined the function voln−d (Qb − y)◦ up to an overall scaling by γ(b). The
proposition is proved once we show that γ(b) ∈ R \ {0} is a constant. For this, we rely on
the theory of positive geometries [AHBL17,Lam22]. Since the dual volume is the canonical
function of Qb as a positive geometry [Lam22, Theorem 3], the residues of this function at the
vertices of Qb must be equal to ±1 for any b ∈ C. Taking the residue at u ∈ V(Qb) results in

resu voln−d (Qb − y)◦ = γ(b)κu
α(b, u)∏

i ̸∈I(u)
(ci(b) + ⟨wi, u⟩)

= ±1,

where κu = (detWI(u))−1 ∈ R \ {0}. Using the fact that α(b, u) equals

α(b, u) = |detWI(u)| ·
∏

i ̸∈I(u)
(ci(b) + ⟨wi, u⟩) ,

we see that γ(b) = ±(detWI(u)/| detWI(u)|) = ±1 is indeed a nonzero constant.

In x-coordinates, the proof of Proposition 4.2.5 leads to nice expressions like (4.1.7) for
the dual volume V (x) from (4.1.4). For any b ∈ int(C), let FC ⊂ [n] be the indices of the
entries of (4.2.6) which correspond to facets of Qb and, for each vertex of Qb, let I(v) ⊂ FC

be the set of indices of facets containing v. These sets are independent of the choice of
b ∈ int(C). The set of all index sets I(v) records the vertices of Qb for b ∈ int(C). We denote
it by VC . For an index set I ⊂ [n], we write xI =

∏
i∈I xi for the corresponding product of

x-variables. Since A ·W = 0, we have detWI(v) = ±γ detA[n]\I(v) for some γ ∈ R, which
shows the following.
Corollary 4.2.6. Let C ∈ CA be a cell. The restriction of the dual volume function V (x) =
voln−d(BT · PAx −BT · x) to the cone {x ∈ Rn

>0 : Ax ∈ C} is given by

VC(x) = γ ·
∑

I(v)∈VC
| detA[n]\I(v)| · xFC\I(v)

xFC

for some positive constant γ which depends on the choice of B.
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We conclude this section by using Proposition 4.2.5 to derive the degree bound for the
algebraic boundary of an important class of objects in convex geometry, the so called Santaló
regions. These are defined in [MW98] for an arbitrary convex body K and any a ∈ R>0:

Ka := {x ∈ int(K) : vol(K − x)◦ − vol(K − x∗)◦ ≤ a},

where x∗ is the Santaló point of K. When K is a polytope, the dual volume function is
rational, and Ka is a semi-algebraic set. When K is simple, Proposition 4.2.5 says that the
algebraic boundary of each Santaló region has degree ≤ nC , the number of facets of K.

4.3. The Santaló patchwork
As shown in the previous section, the dual volume function f(b, y) = voln−d(Qb − y)◦ is a
piecewise rational function in b and y, with one piece fC(b, y) per chamber C ∈ CA. As noted
in the beginning of this chapter, for a fixed b this function in strictly convex with respect
to y on the interior of Qb, and therefore attains a unique minimum at y∗(b), which is the
Santaló point of Qb = BT · Pb. The Santaló point x∗(b) of Pb is then recovered via the linear
change of coordinates given in (4.2.5). In this section we introduce the Santaló patchwork, a
semi-algebraic set keeping track of the Santaló points x∗(b) for all b ∈ pos(A).
Definition 4.3.1. The Santaló patchwork SP(A) of A ∈ Rd×n

≥0 is the image of the map
ϕ : pos(A)→ Rn

>0, which sends b to the Santaló point x∗(b) = arg minx∈Pb
voln−d(Qb−BTx)◦.

Proposition 4.3.2. The map ϕ from Definition 4.3.1 is a homeomorphism onto SP(A).

Proof. It is convenient to work in (b, y) coordinates first. Let Σ(B) be the open cone

Σ(B) =

(b, y) ∈ Rn :
[
A
BT

]−1 [
b
y

]
> 0

 .
It is clear that Σ(B) ≃ Rn

>0 via the linear coordinate change
(

A
BT

)
. The map ϕ factors as

ϕ =
(

A
BT

)−1
◦ψ, where ψ(b) = (b, y∗(b)) ∈ Σ(b). It suffices to show that ψ is a homeomorphism

onto its image. First, we note that the restriction of ψ to the interior of any cell C ∈ CA

is given by algebraic functions and is therefore continuous. Indeed, for a fixed b ∈ int(C),
y∗(b) minimizes the rational function fC(b, y) = voln−d(Qb − y)◦. Let b0 be a point in the
Euclidean boundary ∂C ∩ pos(A). By continuity of the dual volume, fC(b0, y) is the dual
volume of Qb0 − y for any y ∈ int(Qb0). The Santaló point y∗(b0) is the unique minimizer of
this function on int(Qb0). Since the dual volume is strictly convex on int(Qb0) [MW98, Proof
of Proposition 1(i)], y∗(b0) is a non-degenerate solution to the system of algebraic equations

∂yifC(b0, y)
fC(b0, y) = 0, for i = 1, . . . , n− d. (4.3.1)

By the Implicit Function Theorem, there exist a neighborhood Ω(b0, C) ⊂ pos(A) of b0 and a
unique algebraic function y∗

C(b) such that y∗
C(b0) = y∗(b0) and

∂yifC(b, y∗
C(b))

fC(b, y∗
C(b)) = 0, for i = 1, . . . , n− d and b ∈ Ω(b0, C). (4.3.2)

Moreover, being a solution of (4.3.2), y∗
C(b) minimizes the dual volume voln−d(Qb − y) for

b ∈ Ω(b0, C) ∩ C, that is, y∗
C(b) = y∗(b) for b ∈ Ω(b0, C) ∩ C. Note that by construction, for
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two cells C,C ′ ∈ CA and for b0 ∈ C ∩ C ′ ∩ pos(A), we have y∗
C(b0) = y∗

C′(b0) = y∗(b0). Since
pos(A) is covered by C ∩ pos(A) for cells C ∈ CA, we get that y∗(b) is continuous on pos(A).
We conclude that ψ is injective and continuous, so it is a homeomorphism between pos(A)
and its image, the graph of y∗(b). See Figure 4.2 for an illustration of such a graph.

We now find a description of SP(A) as a finite union of basic semi-algebraic sets. This
will imply that SP(A) is a semi-algebraic set. For b ∈ int(C), the Santaló point x∗(b) is
the unique positive point among the critical points of the following (equality) constrained
optimization problem:

minimize log VC(x), subject to Ax = b. (4.3.3)

Here VC(x) is the rational function in Corollary 4.2.6. We simplify the notation by setting

γ = 1, αC(x) =
∑

I(v)∈VC

|detA[n]\I(v)| · xFC\I(v), and VC(x) = αC(x)
xFC

. (4.3.4)

Recall that xFC
=
∏

i∈FC
xi is the product of all variables xi which contribute a facet in the

cell C. Note that xi contributes a facet if and only if every b ∈ int(C) is in the interior of the
convex hull of all but the i-th column of A. Furthermore, αC(x) depends only on xi, i ∈ FC .
The partial derivatives of log VC with respect to the variables x are given by

∂xi(log VC) =
{∂xi αC

αC
− 1

xi
i ∈ FC ,

0 i ∈ [n] \ FC .

Here we write ∂xi for ∂
∂xi

. Applying the method of Lagrange multipliers to (4.3.3) we obtain
the following set of rational function equations in the variables x, λ = (λ1, . . . , λd):

(∂x1(log VC), . . . , ∂xn(log VC))T = AT · λ and Ax = b.

To eliminate the multipliers λ, we apply BT to the left- and righthand side of the first set of
equations. Writing BC for the submatrix of B whose rows are indexed by FC , we obtain

BT
C ·
(
∂xiαC

αC
− 1
xi

)
i∈FC

= 0 and Ax = b.

These equations make sense for minimizing the dual volume of Pb only when Ax = b ∈
C ∩ pos(A), and the minimizer is the unique solution in that cone. We define the Santaló
patch of the cell C ∈ CA to be the following basic semi-algebraic set:

SC =
{
x ∈ Rn

>0 : Ax ∈ C ∩ pos(A) and BT
C ·
(
∂xiαC

αC
− 1
xi

)
i∈FC

= 0
}
. (4.3.5)

Notice that the rational equations in this definition make sense, since αC and the coordinate
functions xi are positive on Rn

>0. We now state a consequence of the proof of Proposition 4.3.2.

Corollary 4.3.3. For a cell C ∈ CA, ϕ|C∩pos(A) : C ∩ pos(A)→ SC is a homeomorphism. In
particular, the Santaló patchwork SP(A) is the union of the Santaló patches:

SP(A) =
⋃

C∈CA

SC ,

where the union is taken over the cells of CA.
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Figure 4.3: The Santaló patchwork (left) and chamber complex (right) from Example
4.3.4.

Example 4.3.4 (d = 2, n = 3). Consider the matrix A = ( 2 1 0
0 1 2 ). The open cone pos(A) is

R2
>0 and the polytope Pb, for b ∈ pos(A), is a line segment. The complex CA has two cells:

C1 = {(b1, b2) ∈ R2
≥0 : b1 ≤ b2}, C2 = {(b1, b2) ∈ R2

≥0 : b1 ≥ b2}.

For C1, we have FC1 = {1, 2} and VC1 = {{1}, {2}}. The dual volume function is

VC1(x1, x2, x3) = | 1 0
1 2 | · x2 + | 2 0

0 2 | · x1
x1x2

= 2x2 + 4x1
x1x2

.

Notice that VC1 does not depend on x3, because x3 = 0 does not contribute a facet to the
line segment Pb, b ∈ int(C1). Setting B =

(
1 −2 1

)T
gives BT

C1
=
(
1 −2

)
. We find the

following inequality description of the Santaló patch SC1 :

SC1 =
{
x ∈ R3

>0 : 2x1 + x2 ≤ x2 + 2x3,

( 4
2x2 + 4x1

− 1
x1

)
− 2

( 2
2x2 + 4x1

− 1
x2

)
= 0

}
=
{
x ∈ R3

>0 : x1 ≤ x3, 2x1 − x2 = 0
}
.

With an analogous computation we find the following data for the cell C2:

VC2(x1, x2, x3) = 4x3 + 2x2
x2x3

, SC2 =
{
x ∈ R3

>0 : x1 ≥ x3, 2x3 − x2 = 0
}
.

We conclude that the Santaló patchwork SP(A) is the union of two 2-dimensional cones in R3.
The projection A : SP(A)→ pos(A) is a homeomorphism, see Figure 4.3. To underscore the
analogy with Chapter 2, in Figure 4.4 we show the Santaló patchwork of A together with the
Gibbs manifold of A (i.e. with the positive part of the toric surface x1x3 = x2

2 of A). ♦

Example 4.3.5 (d = 2, n = 4). The chamber complex CA for A = ( 1 1 1 1
0 1 2 3 ) has three cells:

C1 = {b2 ≥ 0, b1 ≥ b2}, C2 = {b1 ≤ b2, 2b1 ≥ b2}, C3 = {2b1 ≤ b2, 3b1 ≥ b2}.

For b ∈ int(C1) and b ∈ int(C3), Pb is a triangle, and for b ∈ int(C2), it is a quadrilateral:

FC1 = {2, 3, 4}, VC1 = {{2, 3}, {2, 4}, {3, 4}},
FC2 = {1, 2, 3, 4}, VC2 = {{1, 3}, {1, 4}, {2, 3}, {2, 4}},
FC3 = {1, 2, 3}, VC3 = {{1, 2}, {1, 3}, {2, 3}}.
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Figure 4.4: Comparing the Santaló patchwork (green) and the Gibbs manifold (red).

Figure 4.5: The Santaló patchwork (left) and chamber complex (right) from Example
4.3.5.

With these data, it is straightforward to write down the dual volume functions:

VC1 = 3x4 + 2x3 + x2
x2x3x4

, VC2 = 2x2x4 + x2x3 + 3x1x4 + 2x1x3
x1x2x3x4

, VC3 = x3 + 2x2 + 3x1
x1x2x3

.

The Santaló patches are 2-dimensional semi-algebraic subsets of R4. They are given by

SC1 = {x > 0, Ax ∈ C1, 2x3 − x2 = 3x4 − 2x3 = 0},
SC2 = {x > 0, Ax ∈ C2, x1x2 − 6x1x4 + 2x2x3 + x3x4 = x1x2 − 4x1x3 + 4x2x4 − x3x4 = 0},
SC3 = {x > 0, Ax ∈ C3, −x3 + 2x2 = −2x2 + 3x1 = 0}.

To visualize the Santaló patchwork, we restrict A : R4
>0 → pos(A) to the probability simplex

∆3 = {x > 0, x1 + x2 + x3 + x4 = 1}. The image of this restriction is the interior of the line
segment that is the convex hull of the columns of A. The set SP(A) ∩∆3 is a piece-wise
algebraic curve, homeomorphic to this line segment, see Figure 4.5. Note the similarity
between Figure 4.5 and [STVvR24, Figure 2], where dual volume is replaced by entropy. ♦

Example 4.3.6. The Santaló patchwork for the matrix A in our running example (Example
4.1.2) consists of 11 patches, one for each cell in the chamber complex shown in Example
4.1.1. These 11 patches are separated by the black curves on the surfaces in Figure 4.2. ♦
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The following statement is a tautology. It emphasizes the role of SP(A) in solving (4.1.5).
Proposition 4.3.7. The Santaló point of Pb is given by x∗(b) = ϕ(b) = SP(A) ∩ Pb.
Example 4.3.8. For A from Example 4.3.4, the polytope Pb for b = (1, 2) is the blue line
segment in Figure 4.3 (left). Its intersection point with SP(A) is the center of that line
segment, which is its Santaló point x∗(b). For A from Example 4.3.5, Pb for b = (1, 3/2) is
the blue quadrilateral in Figure 4.5. Again, SP(A) ∩ Pb is the Santaló point. ♦

4.4. Patch varieties
Section 4.3 describes the set of all solutions to the optimization problem (4.1.5) as a semi-
algebraic set called the Santaló patchwork. For computations, it is often convenient to work
with algebraic sets instead. This section studies algebraic varieties containing the Santaló
patches SC defined in (4.3.5). A natural thing to do is take the Zariski closure. We define

XC = SC ⊂ Cn.

We call XC the patch variety of the cell C. A simple way to find equations vanishing on XC

is by dropping the inequalities in (4.3.5). Let XC ⊂ Cn be the Zariski closure of the set

X ◦
C =

x ∈ Cn : αC(x)
∏

i∈FC

xi ̸= 0 and BT
C ·
(
∂xiαC

αC
− 1
xi

)
i∈FC

= 0

 .
Theorem 4.4.1. The patch variety XC is a d-dimensional irreducible component of XC .

Proof. We switch to (b, y)-coordinates using the transformation from (4.2.4). We view

BT
C ·
(
∂xiαC

αC
− 1
xi

)
i∈FC

= 0 (4.4.1)

as equations in y, parametrized by b. For b0 ∈ C ∩ pos(A), by strict convexity of VC(x), the
Santaló point x∗(b0) ∼ (b0, y

∗(b0)) corresponds to an isolated solution. By [SW+05, Theorem
A.14.1], it follows that x∗(b0) lies on a d-dimensional irreducible component Z◦ of X ◦

C , and
hence on an irreducible component Z = Z◦ of XC . This is true for every b0 ∈ C ∩ pos(A), so
that SC is contained in Z. Hence, XC ⊂ Z and it has dimension at most d. By Corollary 4.3.3,
SC is d-dimensional, so XC has dimension at least d. We conclude that XC = Z ⊂ XC .

Remark 4.4.2. Notice that, by construction, the Santaló patch SC is stable under simultaneous
scaling of the coordinates: x∗(t · b) = t · x∗(b) for any t ∈ R>0. It follows that the ideal of XC

can be generated by homogeneous equations. Furthermore, since the equations defining X ◦
C

are homogeneous (of degree −1), I(XC) is a homogeneous ideal as well.
If A ∈ Qd×n

≥0 has rational entries, the vanishing ideal I(XC) of XC can be computed using
computer algebra software such as Macaulay2 [GS] or Oscar.jl [OSC24] as follows. Consider
the ideal of the ring Q[(xi)i∈FC

, (σi)i∈FC
, z] generated by the n− d+ nC + 1 equations

BT
C · (z ∂xiαC − σi)i∈FC

, xiσi − 1, i ∈ FC , and αC(x) z − 1.

From this ideal, eliminate the variables σi, i ∈ FC and z. The result is I(XC).
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Example 4.4.3. We perform the computation explained above for our running Example 4.1.2,
for the 3-dimensional cell C ∈ CA with five facets containing b = (1, 4/5, 4/5). The adjoint is

αC(x) = 3x1x2x3 + 2x1x3x5 + 2x1x4x5 + 2x2x3x4 + 2x2x4x5,

i.e., the numerator of (4.1.4). The elimination takes place in a polynomial ring with 11
variables. The ideal I(XC) is prime, homogeneous, and of degree 14. It is generated by
five quintics. Here is how to compute αC and I(XC) using our Julia package Santalo.jl,
available at the online repository https://mathrepo.mis.mpg.de/Santalo:

using Santalo # load the package 1
A = [1 1 1 1 1; 2 1 0 1 0; 1 2 0 0 1]; b = 1//5*[5; 4; 4]; 2
R, alpha = adjoint_x(A,b) 3
T, J = ideal_XC(A,b) 4

The outputs in line 3 are the adjoint alpha = αC and a polynomial ring R containing it. In
line 4, we compute the ideal J = I(XC) and a polynomial ring T containing it. ♦

Next, we ask whether XC may fail to be equidimensional. I.e., can it have components
of dimension > d? We do not know the answer, but we expect that for general matrices we
even have XC = XC (see Conjecture 4.4.7). We show that the answer is no if we perturb the
objective function VC(x) slightly. More precisely, we consider the new objective function

VC,u(x) = αC(x)u0∏
i∈FC

xui
i

. (4.4.2)

Here u0, ui, i ∈ FC are new parameters. Setting u = 1 = (1, . . . , 1) recovers our original
objective function VC . We will see in Section 4.4 that these new parameters have a natural
statistical interpretation. The critical point equations of log VC,u define the incidence

X ◦
C =

(x, u) ∈ Cn × CnC+1 : αC(x)
∏

i∈FC

xi ̸= 0 and BT
C ·
(
u0∂xiαC

αC
− ui

xi

)
i∈FC

= 0

 .
We write πu : X ◦

C → CnC+1 for the projection (x, u) 7→ u, and denote its fiber π−1
u (u) by

X ◦
C,u. The variety X ◦

C is X ◦
C,1. The Zariski closure of X ◦

C is XC ⊂ Cn × CnC+1. Fibers of
πu : XC → CnC+1 are denoted by XC,u. We have X ◦

C,u ⊂XC,u, and in particular XC ⊂XC,1.

Proposition 4.4.4. The varieties X ◦
C ,XC are irreducible of dimension nC + 1 + d. There is a

dense open subset U ⊂ CnC+1 such that, for u ∈ U , XC,u is pure dimensional of dimension d.

Proof. We consider the other projection πx : X ◦
C → Cn which sends (x, u) to x. A fiber π−1

x (x)
is defined by linear equations in u0, ui, i ∈ FC . These equations are linearly independent,
because BC has rank n− d. This last claim follows from the fact that the rows of B giving
rise to BC are indexed by FC , which means that they contain the rays of the normal fan to
a full-dimensional polytope Qb for b ∈ int(C). Hence, all fibers of πx are linear, and hence
irreducible, of dimension nc + 1 − n + d. By [Sha13, Chapter 1, §6, Theorem 8], X ◦

C is
irreducible of dimension nC +1+d. The same holds for XC . Since the map πu : XC → CnC+1

is dominant, the proposition now follows from [Sha13, Chapter 1, §6, Theorem 7].

The following statement summarizes the role of these varieties in the study of the Santaló
point of Pb: they provide useful semi-algebraic descriptions.

https://mathrepo.mis.mpg.de/Santalo


90 Minimizing Dual Volumes of Polytopes

Theorem 4.4.5. Let b ∈ C∩pos(A) for some cell C ∈ CA and let P ◦
b = relint(Pb). The Santaló

point x∗(b) is given by

x∗(b) = SP(A)∩P ◦
b = SC∩P ◦

b = XC∩P ◦
b = X ◦

C∩P ◦
b = XC∩P ◦

b = X ◦
C,1∩P ◦

b = XC,1∩P ◦
b .

Proof. The first two equalities are essentially Proposition 4.3.7. The equality x∗(b) = X ◦
C ∩P ◦

b

follows from strict convexity of the dual volume function on Pb: there is only one critical
point of log VC on P ◦

b . Since (XC \ X ◦
C) ∩ Rn

>0 = ∅, replacing X ◦
C with XC does not change

the intersection with P ◦
b . The equality x∗(b) = XC ∩ P ◦

b now follows from x∗(b) ∈ XC ⊂ XC .
The last two equalities follow from X ◦

C,1 = X ◦
C and (XC,1 \X ◦

C,1) ∩ Rn
>0 = ∅.

Next, we state a naive degree bound for the varieties defined in this section.
Proposition 4.4.6. For • = XC ,XC or XC,u, for generic u, we have the inequality

deg(•) ≤ (2nC − n+ d− 1)n−d.

Proof. For XC , this follows from clearing denominators in (4.4.1) and applying Bézout’s
bound [Har13, Chapter I, Theorem 7.7]. For XC , we use Theorem 4.4.1. Finally, for XC,u,
note that for generic u ∈ CnC+1 we have XC,u = X ◦

C,u. Adding the parameters u to the
equations (4.4.1) does not change the Bézout number.

The bound from Proposition 4.4.6 is pessimistic. E.g., for Example 4.4.3 it reads 14 ≤ 49.
In particular, the varieties XC = XC and XC,u have the same degree in that example. In the
next section, we use insights from algebraic statistics to prove a lower bound on deg XC,u for
generic u (Corollary 4.5.5). That bound is relevant for our homotopy method for computing
Santaló points in Section 4.6. Also, in experiments, we find that it approximates the actual
degree more closely (Example 4.5.8). As motivated by the next conjecture, which is suggested
by the examples we computed, we here mean both the degree of XC and XC,u.
Conjecture 4.4.7. For generic matrices A ∈ Rd×n

≥0 and for each cell C ∈ CA, there exists a
dense open subset U ⊂ CnC+1 such that the variety XC,u is irreducible of dimension d for
u ∈ U . Moreover, 1 ∈ U and we have XC,1 = XC = XC .

4.5. Wachspress models
In algebraic statistics [DSS08,Sul18], a statistical model for a discrete random variable with
N +1 states is the intersection of a complex algebraic variety MC with the probability simplex

∆N = {(p0, . . . , pN ) ∈ RN+1
>0 : p0 + · · ·+ pN = 1}.

We denote this model by M = MC ∩∆N , and require that this intersection is non-empty.
For our purposes, it suffices to consider parametric models, i.e., models that come with a
rational parametrization. This is true for many commonly used models, including exponential
families and (conditional) independence models. Let pi(y) = pi(y1, . . . , ym), i = 0, . . . , N be
rational functions of m < N variables such that

∑N
i=0 pi = 1. The variety MC is the closure

of the image of the rational map Cm 99K CN+1 given by y 7→ (p0(y), . . . , pN (y)). Maximum
likelihood estimation for the model M means finding the probability distribution p ∈M which
makes an experimental observation u ∈ NN+1 most likely. More precisely, suppose that state
i was observed ui times in an experiment. One maximizes the log-likelihood function

Lu = log pu0
0 pu1

1 · · · p
uN
N
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subject to the constraint p ∈M . To study this problem algebraically, one often relaxes it to
finding all complex critical points of Lu on an open subset of MC. In our parametric setting,
we solve the system of rational function equations

∂yiLu(y) =
N∑

j=0
uj
∂yipj(y)
pj(y) = 0, i = 1, . . .m for y ∈ Cm \D. (4.5.1)

Here D ⊂ Cm is the union of the supports of the divisors div(pj), j = 0, . . . , N . That is,
it is the union of all hypersurfaces in Cm along which one of the pj has a zero or a pole.
We refer to these equations as the likelihood equations for the model M . The number of
complex solutions y ∈ Cm \D for generic, complex data u ∈ CN+1 is an invariant called the
maximum likelihood degree (ML degree) of MC [CHKS06], which we denote by MLdeg(MC).
This assumes that the map Cm \D →MC given by y 7→ (p0(y), . . . , pN (y)) is birational.

The models that are relevant to our story are called Wachspress models. These are
associated to simple polytopes Q ⊂ Rm, and the number of states equals the number of
vertices |V(Q)|. We use the notation (4.2.1) for the face description of Q. The parametrizing
functions of our model are naturally obtained from the formula (4.2.3) for the adjoint:

pv(y) =
|detWI(v)| ·

∏
i/∈I(v)(ci + ⟨wi, y⟩)
αQ(y) , v ∈ V(Q). (4.5.2)

This gives a rational map Cm 99K P|V(Q)|−1, whose image closure MC(Q) is the Wachspress
variety of Q. Note that the coordinates pv for v ∈ V(Q) sum to 1 by construction. These
varieties appear in the context of geometric modelling [GPS10], and Wachspress surfaces were
studied in [IS14]. To the best of our knowledge, the interpretation as a statistical model first
appeared in [KSS20, Section 2]. Bayesian integrals for these models were studied in [BSST23].
The divisor D from (4.5.1) for the Wachspress model MC(Q) is the union of the adjoint
hypersurface αQ(y) = 0 and the facet hyperplanes ci + ⟨wi, y⟩ = 0. We denote this by D(Q).
Lemma 4.5.1. Let Q ⊂ Rm be a simple polytope with Wachspress model MC(Q). LetH ⊂ PN

be the divisor (
∑N

i=0 pi)
∏N

i=0 pi = 0 for N = |V(Q)|−1. The map ψ :Cm\D(Q)→MC(Q)\H
given by y 7→ (pv(y))v∈V(Q), with pv from (4.5.2), is an isomorphism.

Proof. First note that the morphism ψ is well-defined. The functions pv are regular on
Cm \D(Q), and the image of Cm \D(Q) is contained in the complement of H.

It remains to show that ψ is invertible. Consider the automorphism φ of PN defined by
pv 7→ pv

| det WI(v)| . The map φ ◦ ψ is a restriction of the Wachspress map defined in [KR20,
Equation (5)], which is invertible by [KR20, Theorem 4]. Thus, ψ is invertible too.

Corollary 4.5.2. The maximum likelihood degree MLdeg(MC(Q)) of the Wachspress model
of Q equals the absolute value of the Euler characteristic χ(Cm \D(Q)) = χ(MC(Q) \ H).

Proof. MC(Q)\H is smooth (Lemma 4.5.1), so [HS14, Theorem 1.7] implies the statement.

Solving the likelihood equations of MC(Q) with data u is equivalent to computing the
intersection of the fiber X ◦

C,u′ , defined in Section 4.3, with a linear space. The parameters
u′ ∈ CnC+1 are obtained from u via a linear map. This is the content of our next theorem.
Theorem 4.5.3. Let Qb0 = BT · Pb0 for b0 ∈ C ∩ pos(A), where C ∈ CA is a cell in the
chamber complex of A. The complex critical points of the log-likelihood function Lu(y) for
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the Wachspress model MC(Qb0) with data u = (uv)v∈V(Qb0 ) are in one-to-one correspondence
with the complex critical points of VC,u′(x) from (4.4.2) on {Ax = b0}, where u′ has entries

u′
0 = −

∑
v∈V(Qb)

uv, u′
i = −

∑
v:i/∈I(v)

uv, i ∈ FC . (4.5.3)

More precisely, the critical points ycrit ∈ Cn−d \D(Qb0) of Lu(y) are BT · xcrit, where xcrit
ranges over the points in the intersection X ◦

C,u′ ∩ {Ax = b0},

Proof. The likelihood function Lu(y) for the data u = (uv)v∈V(Qb0 ) is given by

expLu(y) =
∏

v∈V(Qb0 )

(
| detWI(v)| ·

∏
i∈FC\I(v)(ci(b0) + ⟨wi, y⟩)
αQb0

(y)

)uv

= VC,u′

[ A
BT

]−1 [
b0
y

] .
This uses the change of coordinates (4.2.4): xi = ci(b0) + ⟨wi, y⟩. The chain rule gives

∂yj log VC,u′ =
∑

i∈FC

∂xi log VC,u′ · dxi

dyj
.

It follows that the likelihood equations for the Wachspress model MC(Qb0) are equivalent to

W T
C ·

(
u′

0∂xiαC

αC
− u′

i

xi

)
i∈FC

= 0 and Ax = b0.

Here Ax = b0 is b = b0 in x-coordinates, and WC is the submatrix of the matrix W of facet
normals whose rows are indexed by FC . The column span of WC equals that of BC by
construction, so these are precisely the equations for X ◦

C,u′ ∩ {Ax = b0}.

Our next statement uses the following definition. An isolated solution x to the n equations

BT
C ·
(
ũ0∂xiαC

αC
− ũi

xi

)
i∈FC

= 0 and Ax = b0 (4.5.4)

for fixed ũ ∈ CnC+1 is regular if the rank of the Jacobian matrix at x is n.
Proposition 4.5.4. Let b0 ∈ C ∩ pos(A) for some cell C ∈ CA. There is a dense open
subset U ⊂ CnC+1 such that, for ũ ∈ U , the set I(ũ, b0) := X ◦

C,ũ ∩ {Ax = b0} consists of
MLdeg(MC(Qb0)) regular points. Moreover, the number of regular isolated points in I(ũ, b0)
for any ũ is at most MLdeg(MC(Qb0)).

Proof. The data points u = (uv)v∈V(Qb0 ) for the Wachspress model MC(Qb0) parametrize
a linear subspace H of CnC+1 via (4.5.3). By Theorem 4.5.3 and the definition of the ML
degree, the number of points in I(u′, b0) is MLdeg(MC(Qb0)) for generic u′ ∈ H. By Corollary
4.5.2, this number equals the signed Euler characteristic of Cm \D(Qb0). By [Huh13, Theorem
1], that Euler characteristic is the number of regular complex critical points of

VC,ũ

[ A
BT

]−1 [
b0
y

] =
αQb0

(y)ũ0∏
i∈FC

(ci(b0) + ⟨wi, y⟩)ũi
.

for generic ũ ∈ CnC+1. The final statement about the upper bound follows from the fact that
the generic number of regular isolated solutions to the system of equations (4.5.4) equals the
maximal number of regular isolated solutions, see for instance [SW+05, Theorem 7.1.1].
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Corollary 4.5.5. For any cell C ∈ CA and generic ũ ∈ CnC+1 the degree of the variety
XC,ũ ⊂ Cn is at least MLdeg(MC(Qb0)), where b0 is a generic point in int(C).

Proof. By Proposition 4.4.4, XC,ũ is pure dimensional of dimension d for generic u. Its degree
is the maximal number of regular intersection points with a linear space of codimension d. This
is at least the cardinality of I(ũ, b0). The statement is a consequence of Proposition 4.5.4.

Though the Santaló point of Qb0 is one of the regular intersection points in I(1, b0) =
X ◦

C,1∩{Ax = b0} (Theorem 4.4.5), the usefulness of the results in this section for our original
problem may seem somewhat mysterious. It will become clear in Section 4.6 that Proposition
4.5.4 is crucial for our homotopy continuation based algorithm for computing Santaló points.
Remark 4.5.6. Dual volume minimization is not the only convex optimization problem on Pb

that has the interpretation of a maximum likelihood estimation problem. Other commonly
used objective functions lead to maximum likelihood estimation for different models. We
briefly discuss the cases V (x) = −

∑n
i=1 log xi (log-barrier) and V (x) =

∑n
i=1 xi log xi − xi

(entropic regularization) mentioned in the beginning of this chapter. In each case, there are
N + 1 = n states. For ease of exposition, we make some additional assumptions on A.

First, for V (x) = −
∑n

i=1 log xi, assume that the entries of each column of A sum to the
same number c. The statistical model M in this context is the linear model obtained by
intersecting the row span MC of A with ∆n−1. It is parametrized by pi(y) = (yTai)/(yTA1),
where ai is the i-th column of A and 1 ∈ Rn is the all-ones vector. One checks that the
maximum likelihood estimate for the data u = (1, . . . , 1) is the unique positive minimizer of
the log-barrier function V (x) on the affine-linear space {Ax = b}, where b = c−1A1.

For V (x) =
∑n

i=1 xi log xi− xi, the model comes from a toric variety. We assume that the
first row of A is the all-ones vector 1 and write ai ∈ Rd

≥0 for the i-th column. These columns
define a monomial map, whose image is MC. Concretely, let f(y) = ya1 + ya2 + · · ·+ yan and
consider the rational parametrization functions pi(y) = yai/f(x), parametrizing MC. For any
data vector u = (u1, . . . , un) ∈ Nn, let ū = (

∑n
i=1 ui)−1 · u be the empirical distribution. As a

consequence of Birch’s theorem [DSS08, Proposition 2.1.5], the maximum likelihood estimate
for the model M is the unique positive minimizer of the entropy V (x) on {Ax = Aū}.

There is no explicit formula yet for the maximum likelihood degree of the Wachspress
model MC(Q). We end the section with conjectures for polygons in the plane. We represent
a generic n-gon by a fiber Pb of A : Rn

≥0 → cone(A), where A ∈ R(n−2)×n
≥0 is generic among

those matrices for which there is a cell in CA whose fibers are n-gons. Concretely, let

Cmax = cone(A[n]\{1})∩cone(A[n]\{2})∩· · ·∩cone(A[n]\{n}) ̸= ∅ and dim(Cmax) = n−2.

This uses the notation introduced before Definition 4.2.2. In general, Cmax is a union of cells
in CA. We pick b ∈ int(C) for any cell C ⊂ Cmax.
Conjecture 4.5.7. Let Q = BT · Pb be a generic n-gon. The maximum likelihood degree of
the corresponding Wachspress model is MLdeg(MC(Q)) = (n− 1)(n− 2) + (n− 3)(n− 5)− 1.

Sketch of proof. By Corollary 4.5.2, we have MLdeg(MC(Q)) = χ(C2 \D(Q)), where DQ is
the curve {αQ(y)

∏n
i=1 li(y) = 0}. Here we write li(y) = ci + ⟨wi, y⟩ for the equations of the

lines defining the edges of Q. The excision property of the Euler characteristic gives

χ(C2 \D(Q)) = χ
(
C2 \

{ n∏
i=1

li(y) = 0
})
− χ

(
{αQ(y) = 0} \

{ n∏
i=1

li(y) = 0
})
.
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Since the line arrangement of l1, . . . , ln is generic, the first term is
(n−1

2
)

[HKS05, Equation
(8)]. On the second term, we use excision once more:

χ
(
{αQ(y) = 0} \

{ n∏
i=1

li(y) = 0
})

= χ({αQ(y) = 0})− χ
(
{αQ = 0} ∩

{ n∏
i=1

li(y) = 0
})
.

Here the second term is −
(n−1

2
)
−1, the number of residual points of Q [KPR+21, Section 2.1].

What’s missing is the Euler characteristic of the affine curve χ({αQ(y) = 0}. We conjecture
that, for generic Q, this curve is generic in the sense of [Huh13, Theorem 3], with Newton
polytope equal to that of (1 + y1 + y2)n−3. That would imply that its Euler characteristic
equals −(n− 3)2 + 2(n− 3). Summing all this up gives the formula in the conjecture.

In the spirit of Corollary 4.5.5, we can compare the number (n−1)(n−2)+(n−3)(n−5)−1
to the degree of the variety XC,u, and hence that of XC and XC (Conjecture 4.4.7).

Example 4.5.8. For n = 3, 4, . . . , 11 we generate a totally positive matrix A ∈ (R)(n−2)×n
≥0

(meaning that all (n − 2)-minors are positive) and we pick a cell C ⊂ Cmax. Using the
numerical homotopy continuation techniques discussed in the next section, we compute that

n 3 4 5 6 7 8 9 10 11
(n− 1)(n− 2) + (n− 3)(n− 5)− 1 1 4 11 22 37 56 79 106 137
deg(XC,u) = deg(XC) = deg(XC) 1 4 14 27 44 65 90 119 152

For instance, for n = 5, a generic linear space {Ãx = b̃} of dimension 2 intersects XC,u in 14
points. By Proposition 4.5.4, the special linear space {Ax = b} leads to only 11 points. Hence,
the lower bound in 4.5.5 may be strict. The table leads us to conjecture that for n ≥ 5,

deg(XC) = (n− 1)(n− 2) + (n− 3)(n− 5)− 1 + 2(n− 3)− 1.

Code for computing these degrees is found at https://mathrepo.mis.mpg.de/Santalo.
♦

4.6. Computing Santaló points
We discuss how to compute Santaló points numerically. We consider two different situations.
First, the input is a polytope Q ⊂ Rm, and the output is its Santaló point y∗ from (4.1.1). Our
continuation algorithm exploits the likelihood geometry from Section 4.5. The second scenario
computes the Santaló point x∗(b1) from x∗(b0), assuming b1 lies in the same cell C ∈ CA as b0.
The strategy here is to track a real path on the Santaló patch SC . These algorithms are imple-
mented in Julia (v1.9.1) using Oscar.jl (v0.14.0) [OSC24] and HomotopyContinuation.jl
(v2.9.3) [BT18]. All code is available at https://mathrepo.mis.mpg.de/Santalo.

The computational paradigm behind our algorithms is that of homotopy continuation. We
briefly recall the main idea and refer to the standard textbook [SW+05] for more details. Let
F : (Cn\D)×Cm → Cn be a map whose coordinates are rational functions in x = (x1, . . . , xn),
depending polynomially on m parameters q = (q1, . . . , qm). We assume that the denominators
of these functions do not depend on q, and their vanishing locus is contained in the hypersurface
D ⊂ Cn, so that F is a regular map. We consider the incidence variety

Y = F−1(0) = {(x, q) ∈ (Cn \D)× Cm : F (x, q) = 0}.

A fiber of the natural projection πq : Y → Cm is denoted by Yq0 = π−1
q (q0). It consists of

all solutions to the n equations in n variables F (x, q0) = 0. A solution (x0, q0) in Yq0 is

https://mathrepo.mis.mpg.de/Santalo
https://mathrepo.mis.mpg.de/Santalo
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called isolated and regular if the Jacobian of F (with respect to x) evaluated at (x0, q0) is
an invertible n× n-matrix. Typically, one has computed all isolated regular solutions in Yq0

and is interested in computing those in Yq1 , for some parameters q0 ̸= q1 ∈ Cm. Homotopy
continuation rests on the parameter continuation theorem [SW+05, Theorem 7.1.4]. First,
this states that the number of isolated regular solutions in Yq0 is constant for q0 ∈ Cm \ ∇,
where ∇ ⊂ Cm is a proper subvariety. Second, let γ : [0, 1]→ Cm be a continuous path such
that γ(0) = q0, γ(1) = q1 and γ([0, 1)) ∩∇ = ∅. Since q0 /∈ ∇, each isolated regular solution
(x0, q0) ∈ Yq0 defines a unique smooth solution path (t, x(t)) satisfying

F (x(t), γ(t)) = 0, t ∈ [0, 1), x(0) = x0.

Moreover, the limits of all these solution paths as t→ 1 contain all isolated regular solutions
in Yq1 . Numerical path trackers, such as that implemented in HomotopyContinuation.jl,
track these solution paths numerically for t going from 0 to 1. For obvious reasons, the system
of equations F (x, q0) = 0 is called the start system, and F (x, q1) = 0 is the target system.

A useful algorithm for finding all isolated regular solutions in Yq0 , i.e., the solutions to the
start system, is itself based on homotopy continuation. It uses monodromy loops [DHJ+19].
The method needs the assumption that one solution (x0, q0) ∈ Yq0 is known. One chooses
γ to be a closed path, i.e., γ(0) = γ(1) = q0. If this path encircles a ramification point
of the branched cover πq : Y → Cm, then the corresponding solution path (t, x(t)) may
provide a new regular isolated solution in Yq0 : x(1) ̸= x(0). If Y is irreducible, then all
isolated regular solutions can be found by repeating this process [DHJ+19, Remark 2.2].
To know when enough loops are tracked, it is very useful to compute the maximal number
of solutions from a theoretical argument. This is one of the purposes of Proposition 4.5.4
and Conjecture 4.5.7. The monodromy method, and in particular its implementation in the
command monodromy_solve in HomotopyContinuation.jl, is very efficient and reliable in
practice.

4.6.1. From likelihood equations to dual volume
Let Q ⊂ Rm be a full-dimensional simple polytope with minimal facet representation

Q = {y ∈ Rm : W y + c ≥ 0}, for W ∈ Rn×m, c ∈ Rn.

Let A ∈ Rd×n be a cokernel matrix of W (A ·W = 0). Here d = n−m, and A can be chosen
so that its entries are nonnegative. Setting x = W y + c, we see that Q is a projection of
Pb = {x ∈ Rn

≥0 : Ax = b}, with b = Ac. More precisely, Q is given by W † · (Pb − c), where
W † ∈ Rm×n is the pseudo-inverse of W . Though we assumed nonnegative entries to guarantee
compact fibers of A : Rn

≥0 → pos(A), it is not necessary to find a nonnegative representation
for computing the Santaló point. We think of the likelihood equations (4.5.4) as a system of
equations with variables x1, . . . , xn and parameters q = (u0, (ui)i∈FC

):

F (x; q) =

BT
C ·
(

u0∂xi αC

αC
− ui

xi

)
i∈FC

Ax− b

 = 0. (4.6.1)

In order to solve this for generic parameters q0 ∈ CnC+1 using monodromy loops, we need to
compute one regular solution in Yq0 . This is done as follows. Select a random point x0 ∈ Cn

so that Ax0 = b and solve the linear system F (x0; q) for q. We can pick any solution to these
linear equations as the start parameters q0. Since Y = X ◦

C is irreducible, see Proposition
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4.4.4, all other solutions to F (x, q0) can be found using monodromy loops. By Proposition
4.5.4, the number of solutions is the ML degree of the Wachspress model MC(Q).

Once we have computed Yq0 , we set γ(t) = (1− t) · q0 + t ·1 and track the MLdeg(MC(Q))-
many solution paths for t ∈ [0, 1]. Precisely one of the end points is positive. Indeed, the
regular isolated solutions for q1 = 1 are critical points of the logarithm of the dual volume
function on Q. Among them, the Santaló point is the unique positive point, by convexity.
Example 4.6.1. We illustrate the code on our running example using the data in (4.1.6):

using Santalo # load the package 1
A = [1 1 1 1 1; 2 1 0 1 0; 1 2 0 0 1] 2
B = transpose(1//18*[5 -4 2 -6 3; -4 5 2 3 -6]) 3
b = 1//5*[5; 4; 4] 4
Q = compute_Q(A,b,B) # Q = B^T*Pb 5
ystar = get_santalo_point(Q) # Santalo point in y-coordinates 6
xstar = get_santalo_point(A,b) # Santalo point in x-coordinates 7

The result y∗ is as reported in Example 4.1.1, and x∗ ≈ (0.197, 0.197, 0.188, 0.210, 0.210). ♦

Example 4.6.2. The user can also construct a polytope Q using the functionalities of Oscar.jl
and use it as input for the function get_santalo_point. As a 3D example, we consider the
permutahedron; a simple polytope with f -vector (24, 36, 14).

using Oscar # load the package Oscar to construct polytopes 1
Q = project_full(permutahedron(3)) 2
ystar = get_santalo_point(Q) # output: (2.5, 2.5, 2.5) 3

Here Q is the convex hull of all points (j, k, l), where (i, j, k, l) ∈ S4 is a permutation of
(1, 2, 3, 4). This permutahedron is represented by the following values for A and b:

A =



1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1 0 0 0 1



, b =



3
7
4
5
5
5
3
5
5
5
7



.

We note that b does not lie in the interior of a full dimensional cell of CA: the facet hyperplane
arrangement of the permutahedron is not simple (see Proposition 4.2.3). Still, because Q is a
simple polytope, the adjoint polynomial αC(x) can be computed using the formula in (4.3.4).
It has degree 11, and all its coefficients are equal:

x1x2x3x4x5x6x7x8x9x12x14 + x1x2x3x4x5x6x8x9x12x13x14 + x1x2x3x4x5x6x8x10x11x12x13+
x1x2x3x4x5x8x9x11x12x13x14 + x1x2x3x4x5x8x10x11x12x13x14 + x1x2x3x4x6x7x8x9x10x11x14+
x1x2x3x4x6x7x8x9x11x12x14 + x1x2x3x5x6x7x9x10x11x13x14 + x1x2x3x5x6x7x10x11x12x13x14+
x1x2x3x5x7x8x9x11x12x13x14 + x1x2x3x5x7x8x10x11x12x13x14 + x1x2x3x6x7x8x9x10x11x13x14+
x1x2x3x6x7x8x9x11x12x13x14 + x1x2x4x5x6x7x8x9x10x11x14 + x1x3x4x5x6x7x8x10x11x12x13+
x1x3x4x5x6x7x9x10x11x13x14 + x1x3x4x5x6x7x10x11x12x13x14 + x1x4x5x6x7x8x9x10x11x13x14+
x2x3x4x5x6x7x8x9x10x12x14 + x2x3x4x5x6x8x9x10x11x12x13 + x2x3x4x5x6x8x9x10x12x13x14+
x2x4x5x6x7x8x9x10x11x12x14 + x3x4x5x6x7x8x9x10x11x12x13 + x4x5x6x7x8x9x10x11x12x13x14.
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This is found using adjoint_x(A,b), as in Example 4.4.3. The command get_santalo_point
computes the Santaló point by first solving the likelihood equations for random parameters:

A, b, W, c = free_representation(Q) 1
solve_likelihood_startsystem(A,b) 2

The first line computes the representations Pb = {x ≥ 0, Ax = b} and Q = {Wy + c ≥ 0}.
The result of line 2 shows that the ML degree of the Wachspress model of the permutahedron
is 569. Interestingly, we find that the Santaló point of the permutahedra of dimensions 2, 3,
4 and 5 is A† · b. That is, it is the closest point to the origin satisfying Ax = b. ♦

4.6.2. Tracking paths on Santaló patches
Suppose the Santaló point x∗(b0) of Pb0 was computed for some b0 ∈ int(C), where C ∈ CA

is a cell. We are interested in computing x∗(b1) for some b1 ∈ C contained in the same
cell. Note that b1 is not necessarily contained in the interior of C. In particular Pb1 is not
necessarily simple. This time, the parametric equations depend only on b:

F (x; b) =

BT
C ·
(

∂xi αC

αC
− 1

xi

)
i∈FC

Ax− b

 = 0. (4.6.2)

The path γ is γ(t) = (1− t) · b0 + t · b1. At every t ∈ [0, 1] the solution path (t, x(t)) described
by the Santaló point is smooth: it is a regular solution to the equations F (x; γ(t)) by convexity
of the dual volume. In this homotopy, we track only one path, and all computations can be
done over the real numbers. This feature of our problem makes the procedure extra efficient.
Example 4.6.3. In our running Example 4.1.1, we can set b0 = (1, 4/5, 4/5), b1 = (1, 1, 4/5),
see Figure 4.1. The fiber Pb1 is a quadrilateral: b1 lies on the boundary of the pentagonal
cell in CA. As t moves from 0 to 1, the Santaló point x∗(γ(t)) of Pγ(t) describes a path on
the Santaló patchwork from Figure 4.2. In the (y1, y2)-plane, this is a path in the interior of
pentagon Qγ(t) which degenerates continuously to a quadrilateral. The Santaló point x∗(b0)
was computed in Example 4.6.1. The command santalo_path computes x∗(b1) from x∗(b0):

A = [1 1 1 1 1; 2 1 0 1 0; 1 2 0 0 1] 1
b0 = 1//5*[5; 4; 4]; b1 = 1//5*[5; 5; 4]; 2
x0 = get_santalo_point(A,b0) 3
x1 = santalo_path(A,b0,b1,x0) 4

The result is x∗(b1) = (0.291, 0.181, 0.145, 0.237, 0.146). ♦

We conclude with a summary of ideas for future research. Two challenges are provided by
Conjectures 4.4.7 and 4.5.7. More generally, it is interesting to find formulas for the maximum
likelihood degree of Wachspress models in terms of the combinatorics of the polytope.

In the context of linear programming, it is relevant to study the strictly convex objective
function cTx+ log VC,ϵ·1(x), with VC,u as in (4.4.2), for varying values of ϵ ∈ R≥0. For ϵ→∞,
we recover the dual volume objective. For ϵ→ 0, we are solving a linear program. We propose
to study the degeneration of the Santaló patchwork as ε moves from ∞ to 0.

Next to their important role in convex optimization, we believe that generalized Santaló
points, meaning critical points of log VC,u(x) from (4.4.2), can be used for the numerical
evaluation of Euler integrals via the saddle point method [MHMT23, Section 5, problem 1].
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Another next step is to go beyond convex polytopes. The Santaló point is well-defined for
any full-dimensional convex body. One could start with spectrahedra, which is natural in the
context of semidefinite programming. The Santaló patchwork of a spectrahedron replaces the
Gibbs manifold for entropic regularization (Section 2.4) when the volumetric barrier is used.

Finally, we propose to study the broader context of Remark 4.5.6: which strictly convex
functions give rise to interesting semi-algebraic subsets of Rn

>0? Furthermore, when and how
are these semi-algebraic sets naturally connected to maximum likelihood estimation?
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Chapter 5

Grasstopes

The (tree) amplituhedron, introduced by Arkani-Hamed and Trnka in [AHT14], is a geometric
object playing an important role in calculations of scattering amplitudes in planar N = 4
Super-Yang-Mills theory. It is defined as the image of the totally nonnegative Grassmannian
Gr≥0(k, n) under a totally positive linear map Z̃ : Gr(k, n) 99K Gr(k, k + m) given by an
n× (k +m)-matrix Z. While immediate physical relevance of the amplituhedron becomes
manifest at m = 4, it is an object of independent mathematical interest for any m. It is
known that when k = 1, it is a cyclic polytope [Stu88] and when k +m = n, it is isomorphic
to the totally nonnegative Grassmannian Gr≥0(k, n).

In recent years, the amplituhedron has been studied extensively from the point of view of
algebraic combinatorics for m = 1, 2, 4 (see [EZLT21,GL20,KM23,KW19,LPW23,PSBW23]).
The structure of the amplituhedron in the m = 1 case is particularly simple: Karp and
Williams [KW19] show that it is linearly homeomorphic to the complex of bounded cells of
an affine hyperplane arrangement and therefore is homeomorphic to a closed ball.

One reason that the amplituhedron is so amenable to combinatorial study is that the
totally nonnegative Grassmannian itself has a rich combinatorial structure. In particular,
Gr≥0(k, n) admits a stratification by positroid cells, which are all homeomorphic to open
balls [Pos06]. However, amplituhedra are images of very special linear maps, just as cyclic
polytopes are very special polytopes. From this point of view, it makes sense to consider
images of the totally nonnegative Grassmannian under arbitrary linear maps. In [Lam16],
Lam considers the images of positroid cells under arbitrary linear maps, and calls them
Grassmann polytopes. Images of the whole totally nonnegative Grassmannian are referred to
as full Grassmann polytopes.

While amplituhedra have attracted significant attention from the mathematical community,
many results in this area rely on the total positivity of the map Z̃, and much less is known about
more general Grassmann polytopes. Most of the known results are assembled in [Lam16, Part
2]. Many of them are limited to the case when Z̃ does not have base points on the totally
nonnegative Grassmannian, i.e. is regular (well-defined) on Gr≥0(k, n).

In this final chapter, we initiate the study of general full Grassmann polytopes (Grasstopes)
and focus on the case of m = 1, when the ambient Grassmannian is the dual projective space
(RPk)∨. We extend the results of [KW19], showing that when Z̃ is regular on Gr≥0(k, n), the
resulting Grasstope is a union of cells of a projective hyperplane arrangement satisfying a
certain sign variation condition. This, in particular, implies that Grasstopes arising from such
Z̃ are closed and connected, in accordance with [Lam16, Proposition 15.2]. When there are
no additional restrictions on Z̃, we show that the image of the totally positive Grassmannian
Gr>0(k, n) can still be characterized in terms of sign changes, although the image of Gr≥0(k, n)
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might have irregular boundary. We also show that, unlike amplituhedra, general m = 1
Grasstopes are not necessarily homeomorphic to closed balls or even contractible.

This chapter is organized as follows. In Section 5.1, we define Grasstopes. We divide
Grasstopes into three categories (tame, wild, and rational) based on the properties of the
map Z̃. We introduce the concepts necessary for the sign variation characterization of m = 1
Grasstopes and prove some auxiliary results about general Grasstopes. In Section 5.2, we
study the combinatorics and geometry of Grasstopes for m = 1 and prove the sign variation
characterization results for tame and wild Grasstopes, as well as for open rational Grasstopes.
Section 5.3 is devoted to examples. Finally, in Section 5.4 we investigate how many regions
of a hyperplane arrangement can be in an m = 1 Grasstope, and, based on the sign variation
characterization, suggest a definition of the Grasstope of an arbitrary oriented matroid.

5.1. What is a Grasstope?
Our mathematical story in this section starts with the notion of the totally nonnegative
Grassmannian Gr≥0(k, n). It is instructive to revisit Examples 1.1.13 and 1.1.18 for a
definition. Let Z be a real n× (k +m)-matrix of full rank, where k +m ≤ n. The matrix Z
defines a rational map Z̃ : Gr(k, n) 99K Gr(k, k +m) by [A] 7→ [AZ], where [A] is the class
in Gr(k, n) of a matrix A.
Definition 5.1.1 (Grasstopes). The image Z̃(Gr≥0(k, n)) ⊆ Gr(k, k+m) is called the (n, k,m)-
Grasstope of Z and is denoted by Gn,k,m(Z).

The totally nonnegative Grassmannian Gr≥0(k, n) is a semi-algebraic set (that is, it can
be described by polynomial equations and inequalities) and Gn,k,m(Z) is its image under a
polynomial map. Thus, it follows from the Tarski-Seidenberg theorem (Theorem 1.1.17) that
Gn,k,m(Z) is also semi-algebraic.

In [Lam16] Gn,k,m(Z) are called full Grassmann polytopes. When Z is a totally positive
matrix, one recovers the definition of the (tree) amplituhedron An,k,m(Z) [AHT14], a geometric
object of fundamental importance to calculating scattering amplitudes in particle physics.

Note that the matrix AZ defines an element in Gr(k, k +m) if and only if AZ has full
rank. It is a priori not guaranteed that the map Z̃ is well-defined on Gr≥0(k, n), that is, that
AZ has full rank for any totally nonnegative k × n matrix A. In general, Z̃ has base locus

B(Z̃) := {V : dim(V ∩ kerZT ) ≥ 1} ⊂ Gr(k, n),

which may or may not intersect Gr≥0(k, n). Note that B(Z̃) is a Schubert variety, so in
particular, it is closed in Gr(k, n) [Lam16, Section 17]. We will often view Gr≥0(k, n) as a
parameter space of (k − 1)-dimensional subspaces of RPn−1, in which case the base locus is
all projective subspaces which are not disjoint from P(kerZT ).

Finding combinatorial conditions for Z̃ to be well-defined on Gr≥0(k, n) had been an
active area of research for several years. In [Lam16, Proposition 15.2] Lam proved that if Z̃ is
well-defined on Gr≥0(k, n), then Gn,k,m(Z) is closed and connected. In the same proposition
he showed that the following condition is sufficient for Z̃ to be well-defined.

There exists a (k+m)×k-matrix M such that all k×k-minors of ZM are positive. (5.1.1)

Geometrically, condition (5.1.1) means that the element of Gr(k +m,n) represented by Z
contains a totally positive k-dimensional subspace, that is, an element of Gr>0(k, n). Lam
also conjectured that this condition is necessary for Z̃ to be well-defined on Gr≥0(k, n). A
combinatorial criterion was given in [Kar17, Theorem 4.2]. Based on this criterion, Galashin
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gave a counterexample to Lam’s conjecture (see [KW19, Remark 9.3] and Example 5.3.2).
This conjecture gives rise to the following definition.
Definition 5.1.2 (Tame Grasstope). The Grasstope Gn,k,m(Z) is called tame if Z satisfies
(5.1.1).

Let ϕ : V →W be a map of vector spaces. We define its kth exterior power ∧kϕ :
∧k V →∧k W by v1 ∧ . . . ∧ vk 7→ ϕ(v1) ∧ . . . ∧ ϕ(vk). If M is a matrix representing ϕ in bases {ei} of

V and {ẽj} of W , then we denote the matrix representing ∧kϕ in the induced bases of
∧

k V
and

∧
k W by ∧kM . Then the matrix of Z̃ is ∧kZ, where we use the standard embedding

Gr(k, n) →
∧k(Rn), Span{v1, . . . , vk} 7→ v1 ∧ . . . ∧ vk. Concretely, the entries of ∧kM are

the k × k-minors of M . Those minors are ordered by multi-indices in reverse lexicographic
order (according to Macaulay2 convention [GS]).

We now give a simple geometric criterion of tameness. In what follows, for the sake of
simplicity, we slightly abuse notation and write Gn,k,m(Z) both for the Grasstope as a subset
of Gr(k, k +m) and its image under the Plücker embedding.
Proposition 5.1.3. An n× (k +m)-matrix Z satisfies (5.1.1) (i.e. Gn,k,m(Z) is tame) if and
only if there exists a hyperplane in RP(k+m

k )−1, corresponding to a point in Gr(k, k + m)
which does not intersect Gn,k,m(Z).

Proof. Any (k+m)×k-matrixM defines a hyperplane in RP(k+m
k )−1 by its Plücker coordinates:

a point p ∈ RP(k+m
k )−1 lies on the hyperplane defined by M if and only if (∧kM)T p = 0.

Suppose that Z satisfies (5.1.1) and M is a (k+m)×k-matrix such that ZM is totally positive.
Suppose that a point in Gn,k,m(Z) lies on the hyperplane defined by M . Then, for some A ∈
Gr≥0(k, n), it holds that (∧kM)T (∧kAZ)T = 0, which implies that (∧k(ZM))T (∧kA)T = 0.
Since all k × k-minors of A are non-negative, and at least one is nonzero, it is not possible
for all k × k-minors of ZM to have the same sign. Thus, if there exists M such that ZM
has all positive (or negative) k × k-minors, then the image Gn,k,m(Z) does not intersect the
hyperplane defined by M .

Now suppose that Z does not satisfy (5.1.1), that is, for any M the matrix ZM has
either a zero k × k-minor or at least one positive and one negative k × k-minor. We will
show that there exists a matrix A ∈ Gr≥0(k, n) such that (∧k(ZM))T (∧kA)T = 0, so that
the hyperplane defined by M intersects Z̃(Gr≥0(k, n)).

In the first case, when ZM has a zero minor in the ith Plücker coordinate, one can find
an element A ∈ Gr≥0(k, n) which has all Plücker coordinates equal to zero except for the ith
one. In this case, (∧k(ZM))T (∧kA)T = 0.

Now consider the second case, in which ZM has at least one positive and one negative k×k-
minor. By the pigeonhole principle, there exists a set of column indices I = {i1, . . . , ik−1}
such that two Plücker coordinates involving I (which we label pI∪{i} and pI∪{j}) have
different signs. Then, take (q1,...k : · · · : qn−k+1,...,n) ∈ RP(n

k)−1 such that all coordinates
except for qI∪{i}, qI∪{j} are zero, and qI∪{i} = |pI∪{j}| and qI∪{j} = |pI∪{i}|. Then, all
Plücker relations are satisfied so this point represents an element A ∈ Gr≥0(k, n). We have
(∧k(ZM))T (∧kA)T = 0, so the hyperplane given by M intersects the Grasstope Gn,k,m(Z).

Note that when m = 1, every hyperplane in RP(k+m
k )−1 corresponds to some point in

Gr(k, k+m). Then by choosing a hyperplane disjoint from Gn,k,1(Z) to be the hyperplane at
infinity, we arrive at the following result.
Corollary 5.1.4. The Grasstope Gn,k,1(Z) is tame if and only if its image under the Plücker
embedding is contained in some affine chart of RP(k+m

k )−1.
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Tame Grasstopes share many nice properties with amplituhedra. In particular, for m = 1
they are homeomorphic to closed balls and can be described as complexes of bounded cells of
affine hyperplane arrangements [KW19, Section 9]. The focus of this chapter, however, is
to take a step away from the tame case and study Grasstopes that behave somewhat less
regularly. We note that the terms “tame” and “wild” for Grasstopes are due to Thomas Lam.
Definition 5.1.5 (Wild Grasstope). If the map Z̃ is well-defined on Gr(k, n)≥0 but Z does not
satisfy (5.1.1), then the Grasstope Gn,k,m(Z) is called wild.

Even though Z̃ might not be well-defined on Gr≥0(k, n), it still makes sense to consider
the image of Gr≥0(k, n) \ (B(Z̃) ∩ Gr≥0(k, n)), where B(Z̃) is the base locus of Z̃. In this
case we will still write Z̃(Gr≥0(k, n)) for this image.
Definition 5.1.6 (Rational Grasstope). Suppose the map Z̃ is not well-defined on Gr(k, n)≥0.
Then the image Gn,k,m(Z) = Z̃(Gr(k, n)≥0) is called a rational Grasstope. The image
G◦

n,k,m(Z) = Z̃(Gr(k, n)>0) of the totally positive Grassmannian is called an open rational
Grasstope. This is indeed an open set, as shown in Proposition 5.2.4.

We conclude this section with technical results that will prove useful in characterization
of m = 1 Grasstopes in Section 5.2.

Given a point u in RPn, we associate a sign pattern σ = (σ0, . . . , σn) ∈ {+,−, 0}n+1 to
u in the following way. Pick i such that ui ̸= 0 and set σi := +. Then σj := sign(uiuj),
which is a well-defined function of homogeneous coordinates of u. Since we associate sign
labels to points in projective space, we will identify sign labels σ and −σ. Each orthant of
the RPn consists of the points with the same sign pattern. For instance, the sign pattern
(+ : + : − : +) for a point in RP3 represents the orthant defined by

{u0u1 > 0, u0u2 < 0, u0u3 > 0, u1u2 < 0, u1u3 > 0, u2u3 < 0}.

Given a point x ∈ RPk being the image of a hyperplane X = Span{w1, ..., wk} under the
Plücker embedding of Gr(k, k + 1), and any point v ∈ RPk, one may consider the map

T : RPk × RPk → R

x, v 7→ det

 | | |
w1 ... wk v
| | |

 =
k∑

j=1
(−1)jp1...ĵ...kvj .

Then T (x, v) = 0 if and only if v is contained in X. If v = Zi for some row Zi of Z, then
T (x, Zi) is called a twistor coordinate of X with respect to Z [Wil21, Definition 4.5].
Remark 5.1.7. One may also fix either argument x or v of T to get a linear form on RPk. In
this chapter we will consider the twistor coordinates as functions of x by setting v = Zi and
denote the resulting forms by li(x). We will see in Theorem 5.2.1 that the vanishing loci of
the li’s are exactly the hyperplanes which contain the boundaries of Gn,k,m(Z).

We now recall the definition of sign variation from [KW19].
Definition 5.1.8 (Sign variation). Given a sequence v of n real numbers, let var(v) be
the number of sign changes in v (zeros are ignored). Let var(v) := max{var(w) : w ∈
Rn such that wi = vi for all i ∈ [n] with vi ̸= 0}, i.e. var(v) is the maximum number of sign
changes in v after a sign for each zero component is chosen. Note that both var and var are
well-defined functions of homogeneous coordinates of a point in RPn−1.

We call a (k − 1)-dimensional subspace of RPn−1 positive if it is a point in Gr≥0(k, n)
and totally positive if it is a point in Gr>0(k, n). Given a point u ∈ RPn−1, we define the
hyperplane Hu given by u to be the hyperplane orthogonal to u with respect to the standard
dot product, i.e. Hu := {v ∈ RPn−1 : u · v = 0}. Then we have the following proposition.
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Proposition 5.1.9. Let Hu be the hyperplane given by u ∈ RPn−1.

(i) Hu contains a positive subspace of dimension k − 1 if and only if var(u) ≥ k.

(ii) Hu contains a totally positive susbspace of dimension k − 1 if and only if var(u) ≥ k.

Proof. We start by proving the first statement. A hyperplane Hu contains a positive subspace

of dimension k if and only if u is in the kernel of some matrix of the form
(

A

B

)
where

A ∈ Gr≥0(k, n), and B ∈ Gr(n−k−1, n). Here A represents the positive subspace, and B the

additional points to define a hyperplane. Note that u ∈ ker
(

A

B

)
if and only if u ∈ ker(A)

and u ∈ ker(B). Then, the “only if" direction follows directly from [GK50, Theorems V1
and V6] (also [KW19, Theorem 3.4(i)]). The “if" direction also follows, with the note that
one can always find n− k − 1 additional points to form the matrix B such that u ∈ ker(B).
The second statement is proved analogously, with replacing Gr≥0(k, n) by Gr>0(k, n) and
using [KW19, Theorem 3.4(ii)].

5.2. Grasstopes for m = 1: tame, wild, and rational
We begin by stating our main theorem which describes any m = 1 Grasstope Gn,k,1(Z) arising
from a well-defined map Z̃ as a subset of RPk ∼= Gr(k, k + 1). This theorem recovers and
generalizes many of the results of Karp and Williams describing m = 1 amplituhedra and
tame Grasstopes [KW19, Section 6].
Theorem 5.2.1. Suppose Z̃ : Gr(k, n) 99K Gr(k, k + 1) is well-defined on Gr≥0(k, n). Then
the Grasstope Gn,k,1(Z) consists of the points x ∈ RPk such that var(L(x)) ≥ k, where L(x)
is the vector of twistor coordinates of x with respect to Z.

Proof. Let L(x) = (l1(x) : . . . : ln(x)) ∈ RPn−1 (see Remark 5.1.7). By Proposition 5.1.9, it
suffices to show that HL(x) contains a positive subspace if and only if X ∈ Gn,k,1(Z).

For the “if" direction, suppose that A ∈ Gr≥0(k, n) and x is the vector of Plücker
coordinates of [AZ]. Then for each row Ai of A, we have

L(x) ·Ai =
n∑

j=1
T (x, Zj)Aij = T (x,

n∑
j=1

AijZj) = 0,

since
∑
AijZj is a row of AZ. Thus HL(x) contains A.

For the “only if" direction, suppose that HL(x) contains a positive subspace A, and let
v ∈ kerZT . Then

L(x) · v =
n∑

i=1
T (x, Zi)vi = T (x,

n∑
i=1

Zivi) = T (x, 0) = 0.

So HL(x) contains P(kerZT ). Since P(kerZT ) ∩A = ∅ by regularity of Z̃ on Gr≥0(k, n), we
have by dimension considerations that any two hyperplanes containing A and P(kerZT ) must
be equal. However, by the “if" direction, if a is the vector of Plücker coordinates of [AZ],
then HL(a) contains A. In addition, HL(a) contains P(kerZT ). Therefore HL(x) = HL(a).
Since u 7→ Hu is injective, we obtain x = a.
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Note that in the proof of Theorem 5.2.1, the well-defined condition is necessary, since
otherwise there might be positive subspaces which intersect P(kerZT ). In this case, there is no
guarantee that a hyperplane containing a positive subspace also contains a positive subspace
disjoint from P(kerZT ), which might cause problems on the boundary of the Grasstope.

However, as we show in the following results, we can still describe the open rational
Grasstope in the case that the map Z̃ is not well-defined on Gr≥0(k, n). We first need the
following lemma about totally positive subspaces to show that intersection with P(kerZT )
does not cause any issues.
Lemma 5.2.2. Let H be a hyperplane in RPn−1 containing an (n − k − 1)-dimensional
subspace P . If H contains a totally positive (k − 1)-dimensional subspace, then it contains a
totally positive (k − 1)-dimensional subspace disjoint from P .

Proof. Let V ⊂ H be a totally positive (k − 1)-dimensional subspace. Let l = dim(V ∩ P ).
Then dim(V + P ) = n − l − 2 and V + P ⊂ H. In particular, the codimension of V + P
inside H is equal to l. Pick l + 1 points q1, . . . , ql+1 in general position in H \ (V + P ).
Let M be a matrix representing V + P ∈ Gr(n − l − 1, n) such that the first k + 1 rows
of M represent V ∈ Gr>0(k, n) and there is a subset of rows r1, . . . , rl+1 of M representing
V ∩ P ∈ Gr(l, n). Denote by B the submatrix of M given by its first k + 1 rows. Note that
the k − l rows s1, . . . , sk−l of B that are not r1, . . . , rl+1 span a subspace W disjoint from P .
Consider a matrix M ′ obtained from M by replacing ri with ri + εiq̃i for i = 1, . . . , l + 1,
where εi > 0 and q̃i is a vector of homogeneous coordinates of the point qi. Since the points
q1, . . . , ql+1 are in general position in H \ (V +P ), the matrix M ′ has full rank and represents
an (n− l − 2)-dimensional subspace of H. Denote the first k + 1 rows of M ′ by B′. Then
for ε1, . . . , εl+1 small enough B′ represents a subspace V ′ ∈ Gr>0(k, n). We claim that V ′ is
disjoint from P . To show this, consider the matrix D obtained by stacking B′ below a matrix
C representing P . Note that D represents the projective subspace V ′ + P . Since the points
in RPn−1 defined by rows r1, . . . , rl+1 are in P , by performing row operations on D, one can

reduce it to the form D′ =
(
C

Q

)
, where Q consists of the rows s1, . . . , sk−l, q̃1, . . . , q̃l+1. Due

to the choice of q1, . . . , ql+1 and the fact that W is disjoint from P , D′ has full rank. This
means that dim(V ′ + P ) = dim(V ′) + dim(P ), so V ′ and P are disjoint.

Following Lemma 5.2.2, we are ready to describe the open rational Grasstope Z̃(Gr>0(k, n)).
Recall that B(Z̃) denotes the set of base points of Z̃.
Proposition 5.2.3. For a map Z̃ : Gr⩾0(k, n) 99K Gr(k, k + 1), given by a matrix Z, the open
Grasstope Z̃(Gr>0(k, n)) consists of the points x ∈ RPk such that var(L(x)) ≥ k, where L(x)
is the vector of twistor coordinates of x with respect to Z.

Proof. We will prove this statement by slightly modifying the proof of Theorem 5.2.1. Fix a
totally positive matrix A ∈ Gr>0(k, n) \ B(Z̃) and let x be the vector of Plücker coordinates
of [AZ]. Then the hyperplane HL(x) contains RP(kerZT ) and the totally positive subspace
A. Conversely, if a hyperplane H contains P(kerZT ) and a totally positive subspace A, then,
by Lemma 5.2.2, H contains a totally positive subspace A′ disjoint from P(kerZT ) (thus,
A′ ̸∈ B(Z̃)). The hyperplane is then uniquely determined by its containment of P(kerZT )
and A′, so it must be HL(x), where x is the vector of Plücker coordinates of [A′Z]. We now
use the second part of Proposition 5.1.9 to conclude that the open Grasstope Z̃(Gr>0(k, n))
consists of the points in x ∈ RPk such that var(L(x)) ≥ k.

Proposition 5.2.4. The open rational Grasstope of Z is open and, if Z has no zero rows, the
rational Grasstope of Z is contained in the closure of the open rational Grasstope of Z.
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Proof. Let Z define a rational Grasstope and consider a point x with var(L(x)) ≥ k, where
L(x) is the vector of twistor coordinates of x with respect to Z. Then for all points x′ in a
sufficiently small neighborhood around it, L(x′) has the same signs as L(x) in all the indices
of the nonzero entries of L(x). Since changing the zero entries cannot decrease the sign
variation, the neighborhood is contained in the open rational Grasstope.

Similarly to the reasoning of Theorem 5.2.1, it follows from the second part of Proposition
5.1.9 that the rational Grasstope of Z must be contained in the set C := {x : var(L(x)) ≥ k}.
We show that when Z has no zero rows, C is the closure of the open rational Grasstope
of Z. First, we show that the complement of C, the set {x : var(L(x)) < k}, is open. Let
x be such that var(L(x)) < k. Then for all points x′ in a sufficiently small neighborhood
around x, L(x′) has the same signs as L(x) in all the indices of the nonzero entries of L(x).
Since changing the values of the zero entries cannot increase var, we know var(L(x′)) < k.
Therefore C is closed.

Now consider a point x ∈ C and an open neighborhood N of points around it. We will
show that there is some x′ ∈ N with var(L(x′)) ≥ k, which is sufficient to conclude that C is
the closure of the open rational Grasstope of Z. Since Z has no zero rows, each zero entry
of L(x) corresponds to containment of x in a hyperplane. Any open neighborhood around
x contains points on either side of the hyperplane. Similarly, if x lies in the intersection of
several hyperplanes, any open neighborhood of x contains points in each orthant defined by
these hyperplanes, so any sign pattern can be achieved in the entries which are zero in L(x).
In particular, this means that there is a point x′ with signs in the nonzero entries of L(x)
equal to the signs of the corresponding entries of L(x′) (since we can restrict N to be small
enough such that the signs in the nonzero entries of L(x) are unchanged), and signs of the
zero entries replaced by the signs which ensure that var(L(x′)) ≥ k.

In Section 5.3, we show that the rational Grasstope may be equal to the closure of the
open rational Grasstope. However, we do not know if this holds in general, since it might be
possible for points in the boundary to fall out. Thus the question of fully describing which
parts of the boundary are contained in m = 1 rational Grasstopes remains open.

5.3. Examples
In this section we provide examples of the families of Grasstopes we considered. We begin
with an example of a tame Grasstope.
Example 5.3.1 (A tame Grasstope). Let

Z =

1 0 −1 −3 −2
0 1 1 2 1
0 0 1 −1 −2


T

.

This matrix is not totally positive, since p123 = 1 and p124 = −1. However, the first two rows
of ZT span a totally positive line, so Z satisfies (5.1.1) with the matrix M being[

1 0 0
0 1 0

]T

.

Therefore the resulting Grasstope is tame but is not an amplituhedron. The rows of Z define
5 linear forms, as noted in Remark 5.1.7:

l1 = z, l2 = −y, l3 = x− y − z, l4 = −x− 2y − 3z, l5 = −2x− y − 2z.
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Figure 5.1: Affine chart in which the tame Grasstope is bounded. The six lines
corresponding to the rows of Z are colored red, orange, yellow, green, and blue, in
order, with orientations given by arrows. The shaded portion of the figure is the
Grasstope, which consists exactly of the regions with at least two sign changes.

Not every affine chart that we choose results in a bounded picture. For instance, if we
map (x : y : z) 7→ (x+ y : y : z) and dehomogenize with respect to the first coordinate, the
resulting picture is unbounded. However, as predicted by Corollary 5.1.4, there are lines
disjoint from the Grasstope. One of them is {−4x+ z = 0} in RP2. By picking it to be the
line at infinity (that is, by mapping (x : y : z) 7→ (−4x+ z : y : z) and dehomogenizing with
respect to the first coordinate), we obtain affine lines given by the linear forms

l̃1 = ỹ, l̃2 = −x̃, l̃3 = −1− 4x̃− 3ỹ
4 , l̃4 = −1− 8x̃− 13ỹ

4 , l̃5 = 1− 2x̃− 5ỹ
2 .

Each line has an orientation, with the positive half-space given by the points (x̃, ỹ)
for which l̃(x̃, ỹ) ≥ 0. The lines divide the affine plane into regions, each of which has a
corresponding sign vector with ith coordinate being + if l̃i(x̃, ỹ) > 0 for all (x̃, ỹ) in the region,
and − if l̃i(x̃, ỹ) < 0. The Grasstope of Z consists exactly of those points in the regions for
which var(u) ≥ 2, as can be seen in Figure 5.1. ♦

Example 5.3.2 (A wild Grasstope). Let

Z =

2 2 0 −1 1 0
2 3 1 0 2 0
2 2 0 0 2 1


T

.

This is the example found by Galashin (and communicated to us by Lam [Lam23]) to show
that wild Grasstopes exist. Indeed, suppose there exists a 3× 2 matrix M such that ZM has
positive 2×2-minors. The 2×2-minors of ZM are the entries of ∧2(ZM) = ∧2(Z)×∧2(M) =

=

 2 2 2 2 3 1 2 1 −1 −2 0 0 0 0 0
0 0 0 2 2 0 2 2 0 −2 2 2 0 −1 1
−2 −2 −2 0 0 0 0 2 2 0 2 3 1 0 2


T p12

p13
p23

 ,
where p12, p13, p23 are the minors of M . Then, column 4 of (∧2Z)T tells us that p12 + p13 > 0
but column 10 tells us that p12 + p13 < 0, so no such matrix M can exist.
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The six rows of Z correspond to the six linear forms

l1 = 2x− 2y + 2z, l2 = 2x− 3y + 2z, l3 = −y
l4 = −z, l5 = 2x− 2y + z, l6 = x.

Mapping (x : y : z) 7→ (x+ y : y : z) and dehomogenizing with respect to the first coordinate,
we obtain affine lines given by the linear forms

l̃1 = 2ỹ − 4x̃+ 2, l̃2 = 2ỹ − 5x̃+ 2, l̃3 = −x̃,
l̃4 = −ỹ, l̃5 = ỹ − 4x̃+ 2, l̃6 = −x̃+ 1.

We draw these in the affine plane and color them (in order) red, orange, yellow, green, blue,
and purple. We also give the lines orientations with the positive half-space given by the
points (x̃, ỹ) for which l̃(x̃, ỹ) > 0. Then the Grasstope of Z consists exactly of those points
in the regions between the lines for which var(u) ≥ 2, as can be seen in Figure 5.2. ♦

Figure 5.2: The six lines corresponding to the rows of Z are pictured as described, with
orientations given by the arrows. The regions can then be labelled by sign patterns. The
shaded portion of the figure is the Grasstope, and it consists exactly of those regions
with at least two sign changes.

Example 5.3.3 (A rational Grasstope with closed boundary and Möbius strip topology). Let

Z =

1 0 0 −1 0 0
0 1 0 −1 1 −1
0 0 3 0 −2 −1


T

.

Note that (1, 1, 1, 1, 1, 1) ∈ ker(ZT ), so the map Z̃ has base points on Gr≥0(2, 6). Following
Proposition 5.2.3 we can still describe its open Grasstope. As in the previous examples, we
find 6 dehomogenized linear forms corresponding to six affine lines

l̃1 = ỹ, l̃2 = −x̃, l̃3 = −3x̃+ 3,
l̃4 = x̃− ỹ, l̃5 = x̃− 2, l̃6 = 2x̃− 1.



108 Grasstopes

Figure 5.3: The six lines corresponding to the rows of Z are pictured as described, with
orientations given by the arrows. The regions can then be labelled by sign patterns. The
shaded portion of the figure is the Grasstope, and it consists exactly of those regions
with at least two sign changes. In this case, the shaded region is a Möbius strip.

Then we can find the open rational Grasstope of Z as in Figure 5.3.
We claim that the rational Grasstope of Z is the closure of the open rational Grasstope.

One can check this by directly finding Plücker coordinates for some M ∈ Gr≥0(2, 6) which
map to the points that lie on the boundary. For example, to find such M for any point of
the form (0, a) with a ≥ 0, we solve ∧2(Z) × ∧2(M) = (1 : 0 : a). Then ∧2(M) must have
nonnegative entries which satisfy the Plücker relations. This process is made easier if one
recalls that the Plücker relations are trivially satisfied if all entries are zero except for ones
which correspond to pairwise overlapping submatrices, that is any two nonzero minors come
from submatrices which share a column. In this case, since

∧2(Z) =

1 0 0 −1 1 0 1 0 0 −1 −1 0 0 1 0
0 3 0 0 0 3 −2 0 0 2 −1 0 0 1 0
0 0 3 0 0 3 0 −2 −3 2 0 −1 3 1 −3


T

,

we find that the point (1 : 0 : a) is given by ∧2(M) = (0 : 0 : a/3 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :
0 : 0 : 0). Since the only nonzero entries correspond to the minors p23 and p24, the Plücker
relations are satisfied. Thus the portion of the boundary line x = 0 with y ≥ 0 is part of
the rational Grasstope of Z. One can similarly check that all other parts of all six lines are
included. Therefore the rational Grasstope of Z is closed. Furthermore, topologically, as one
can see from Figure 5.3, it is a Möbius strip. ♦

5.4. Extremal counts and oriented matroid Grasstopes
This section relies heavily on the machinery of oriented matroids. An introduction is given in
Section 1.5, and [BLVS+99] is a comprehensive reference.

Given an n× (k+ 1)-matrix Z, one may ask questions about the topology of the resulting
m = 1 Grasstope. For instance, is it closed, connected, contractible? How many regions
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of the hyperplane arrangement does it contain? For the m = 1 amplituhedron, the answer
to the first three questions is “yes” [KW19, Corollary 6.18]. As for the latter, the m = 1
amplituhedron contains as few regions as possible, that is, all possible sign vectors with
var < k appear as labels of regions in the corresponding arrangement [KW19, Proposition
6.14]. In this section, we investigate this last question for more general m = 1 Grasstopes.

We start by recalling Equation (1.5.1) for the number of regions in a projective hyperplane
arrangement P given the total number of regions t(A) and the number of bounded regions
b(A) in the corresponding affine arrangement A:

r(P) = b(A) + t(A)− b(A)
2 . (5.4.1)

We write β(k, n) for the number of possible sign patterns of length n with sign variation
less than k and γ(k, n) for the number of sign patterns with variation greater or equal than
k (we identify sign patterns σ and −σ). Note that β(k, n) = 1 +

(n−1
2
)

+ ... +
(n−1

k

)
, and

γ(k, n) = 2n−1 − β(k, n). Theorem 5.2.1 and Proposition 5.2.4 then give the lower bound
r(P)− β(k, n) for the number of regions in Gn,k,1(Z), where P is the hyperplane arragnement
defined by Z. An upper bound is given by the minimum of γ(k, n) and r(P).

The database [Fin] contains a catalog of isomorphism classes of oriented matroids [Fin01,
Section 6]. Each matroid is indexed by a vector of signs of its bases and each hyperplane
arrangement corresponds to a realizable matroid, as explained in the previous section. An
arrangement is simple if the vector of signs of bases of its matroid does not contain zeros,
that is, the matroid is uniform.

We iterate over all uniform oriented matroid isomorphism classes in this catalog for small
values of k and n. Note that, for all the values of k and n which we consider, all uniform
matroids are realizable [FMM13], that is, arise from hyperplane arrangements. Within each
isomorphism class, we iterate over all possible reorderings of the ground set and reorientations.
If the matroid is realizable, at the level of the matrix Z defining the arrangement as described
in Section 5.1, reorderings correspond to permuting the rows and reorientations to negating
certain rows. For each isomorphism class, ordering of the hyperplanes, and a choice of
orientation, we compute the number of regions in the corresponding Grasstope (that is, the
number of maximal covectors with sign variation greater or equal than k; see Remark 1.5.13).

It turns out that for many values of k and n the minimal and maximal number of regions
in the Grasstope when iterating over reorderings and reorientations does not depend on the
oriented matroid isomorophism class. The minimal and maximal number of regions in the
Grasstope for these values of k and n are presented in Table 5.1. The Python code used to
extract this data is available at https://mathrepo.mis.mpg.de/Grasstopes. We therefore
have a computational proof of the following statement.
Proposition 5.4.1. For each pair of values of k and n in Table 5.1 the minimal and maximal
possible number of regions in a Grasstope arising from a simple arrangement of n hyperplanes
in Pk do not depend on the choice of arrangement.

Out of the entries in Table 5.1, note that for k = 2 and the pairs (3, 5) and (4, 6), there is
only one oriented matroid up to isomorphism [Fin]. For k = 2, this is because any matrix
may be turned into a totally positive matrix by permuting the rows. This can be done by
viewing rows as vectors in the plane and arranging them in counterclockwise position.

The pair (3, 7) does not appear in Table 5.1. This is the first time we see variation
depending on which simple arrangement we choose, with the maximal number of regions
ranging from 38 to 42. The reorientations and reorderings of a totally positive matrix (i.e.
the amplituhedron case) give at most 42 regions, while all other oriented matroid classes

https://mathrepo.mis.mpg.de/Grasstopes
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k, n Minimal Maximal r(P) β(k, n) γ(k, n)
2, 6 10 16 16 6 26
2, 7 15 22 22 7 57
3, 5 4 5 15 11 5
3, 6 10 16 26 16 16
4, 6 5 6 31 26 6
4, 7 15 22 57 42 22

Table 5.1: Minimal and maximal possible number of regions in a Grasstope.

achieve fewer. We can see the maximal numbers of regions for other small k, n in Table 5.2.
It would be interesting to see whether the maximal number of regions attained by reorienting
and reordering a totally positive matrix attains the upper bound in general.

k, n Maximal r(P) γ(k, n)
3, 7 42 42 42
3, 8 64 64 99
4, 8 64 99 64
5, 8 29 120 29
2, 9 37 37 247
3, 9 93 93 219
4, 9 163 163 163

Table 5.2: Maximal number of regions from reorienting and reordering a positive matrix.

Example 5.4.2. Any totally positive 6× 3-matrix with the second and fourth rows negated
yields a Grasstope which includes all 16 regions counted by Equation (1.5.1). The resulting
hyperplane arrangement is cyclic, with just two orientations flipped. See Figure 5.4 to see all
of the regions labelled with sign patterns. ♦

Example 5.4.3. An example of a 6× 3-matrix whose Grasstope has 16 regions is any totally
positive matrix with the 2nd and 4th rows swapped. For examples of totally positive matrices,
one can take the Vandermonde matrix 1 1 1 1 1 1

d1 d2 d3 d4 d5 d6
d2

1 d2
2 d2

3 d2
4 d2

5 d2
6


T

with 0 < d1 < ... < d6. ♦

Note that the lower bound r(P) − β(k, n) for the number of regions in a Grasstope is
actually attained for all k and n, by the m = 1 amplituhedron [KW19, Proposition 6.14,
Theorem 6.16]. The upper bound is also attained by the m = 1 amplituhedron for the values
in Tables 5.1 and 5.2. One interesting question to study is to determine whether this holds in
general, and to describe all oriented matroids achieving this upper bound.

The dictionary between hyperplane arrangements and oriented matroids (Remark 1.5.13)
guides us to generalize our definition of a Grasstope to oriented matroids that are not
necessarily realizable, such that the definitions agree when M =MZ .
Definition 5.4.4 (Grasstope of an oriented matroid). Let M be an oriented matroid of rank r,
and < be a total order on the ground set E of M. Then we define the Grasstope G(M, <) to
be the subset of covectors {v : var(v) ≥ r− 1}, where r is the rank ofM and the variation is
with respect to <.
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Figure 5.4: The Grasstope of a totally positive matrix with two rows negated. The six
lines are cyclically ordered with orientations indicated by arrows. Every region has at
least two sign changes, so the Grasstope is all of RP2.

Note that by Topological Representation Theorem [FL78, Theorem 20], every oriented
matroid arises from a pseudoline arrangement, with covectors labelling the cells of this
arrangement. In particular, the Grasstope G(M, <) can be identified with the union of cells
of a pseudoline arrangement that satisfy the sign variation condition from Definition 5.4.4.
Therefore, Grasstopes of oriented matroids are meaningful geometric objects, and topological
concepts such as connectedness and contractibility generalize naturally to them. Studying
their topological properties is an interesting topic for future research.

Finally, we use our code to analyze a non-realizable example, which does not attain the
upper bound.
Example 5.4.5. Consider the non-realizable matroid FMR(8) of rank 4 on 8 elements, whose
signed cocircuits are given in [RS88, Table 1]. Reorientations and reorderings give at least 34
and at most 63 regions. Thus, unlike the amplituhedron, FMR(8) does not achieve the upper
bound of 64. ♦

The material presented in this chapter is, to the best of our knowledge, the first attempt
to study Grasstopes systematically. It therefore offers a plethora of ideas and questions for
future research. The most obvious way to proceed is to study Grasstopes for higher m, in
particular for m = 2 and m = 4, where abundant combinatorial results are already available
for the amplituhedron. However, even at m = 1, there are still many interesting questions.
What is the topology of m = 1 Grasstopes, how bad can it be? How to characterize the
boundary of open Grasstopes? What are the combinatorial and geometric properties of
oriented matroid Grasstopes when the matroid is realized by a pseudoline arrangement?



112 Bibliography

Bibliography

[AH23] Yulia Alexandr and Serkan Hoşten. Maximum Information Divergence from
Linear and Toric Models. arXiv:2308.15598, 2023.

[Alh23] Álvaro M Alhambra. Quantum Many-Body Systems in Thermal Equilibrium.
PRX Quantum, 4:040201, 2023.

[AHBHY18] Nima Arkani-Hamed, Yuntao Bai, Song He, and Gongwang Yan. Scattering
Forms and the Positive Geometry of Kinematics, Color and the Worldsheet.
Journal of High Energy Physics, 2018(5):1–78, 2018.

[AHBL17] Nima Arkani-Hamed, Yuntao Bai, and Thomas Lam. Positive Geometries and
Canonical Forms. Journal of High Energy Physics, 2017(11):1–124, 2017.

[AHHL21] Nima Arkani-Hamed, Song He, and Thomas Lam. Stringy Canonical Forms.
Journal of High Energy Physics, 2021(2):1–62, 2021.

[AHT14] Nima Arkani-Hamed and Jaroslav Trnka. The Amplituhedron. Journal of High
Energy Physics, 2014(10):1–33, 2014.

[Ax71] James Ax. On Schanuel’s Conjectures. Annals of Mathematics, 93(2):252–268,
1971.

[Bat17] Heather S Battey. Eigen Structure of a New Class of Structured Covariance
and Inverse Covariance Matrices. Bernoulli, 23:3166–3177, 2017.

[Bat23] Heather S Battey. Inducement of Population Sparsity. Canadian Journal of
Statistics, 51(3):760–768, 2023.

[BT97] Dimitris Bertsimas and John N Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, 1997.

[BGS93] Louis J Billera, Israel M Gelfand, and Bernd Sturmfels. Duality and Minors of
Secondary Polyhedra. Journal of Combinatorial Theory, Series B, 57(2):258–268,
1993.

[BLVS+99] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M
Ziegler. Oriented Matroids. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2 edition, 1999.

[BPT12] Grigoriy Blekherman, Pablo A Parrilo, and Rekha R Thomas. Semidefinite
Optimization and Convex Alegbraic Geometry, volume 13 of MOS-SIAM Series
on Optimization. SIAM, 2012.



Bibliography 113

[BCR13] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real Algebraic Geome-
try, volume 36. Springer Science & Business Media, 2013.

[BSST23] Michael Borinsky, Anna-Laura Sattelberger, Bernd Sturmfels, and Simon Telen.
Bayesian Integrals on Toric Varieties. SIAM Journal on Applied Algebra and
Geometry, 7(1):77–103, 2023.

[BKSW18] Paul Breiding, Sara Kališnik, Bernd Sturmfels, and Madeleine Weinstein. Learn-
ing Algebraic Varieties from Samples. Revista Matemática Complutense, 31:545–
593, 2018.

[BT18] Paul Breiding and Sascha Timme. HomotopyContinuation.jl: A package for
homotopy continuation in Julia. In Mathematical Software–ICMS 2018: 6th
International Conference, South Bend, IN, USA, July 24-27, 2018, Proceedings
6, pages 458–465. Springer, 2018.

[Bri04] Emmanuel Briand. When is the Algebra of Multisymmetric Polynomials
Generated by the Elementary Multisymmetric Polynomials? Beiträge zur
Algebra und Geometrie: Contributions to Algebra and Geometry, 45 (2), 353-
368., 2004.

[BP12] Winton Brown and David Poulin. Quantum Markov Networks and Commuting
Hamiltonians. arXiv:1206.0755, 2012.

[CHKS06] Fabrizio Catanese, Serkan Hoşten, Amit Khetan, and Bernd Sturmfels. The
Maximum Likelihood Degree. American Journal of Mathematics, 128(3):671–
697, 2006.

[CH71] Peter Clifford and John M Hammersley. Markov Fields on Finite Graphs and
Lattices. 1971.

[CEFŻ22] Sam Cole, Michał Eckstein, Shmuel Friedland, and Karol Życzkowski. Quantum
Monge-Kantorovich Problem and Transport Distance Between Density Matrices.
Physical Review Letters, 129(11):110402, 2022.

[CLS11] David A Cox, John B Little, and Henry K Schenck. Toric Varieties, volume
124. American Mathematical Soc., 2011.

[DS95] John Dalbec and Bernd Sturmfels. Introduction to Chow Forms. In Neil L
White, editor, Invariant Methods in Discrete and Computational Geometry,
pages 37–58. Springer Netherlands, Dordrecht, 1995.

[Dav57] Chandler Davis. All Convex Invariant Functions of Hermitian Matrices. Archiv
der Mathematik, 8(4):276–278, 1957.

[DLSV12] Jesús A De Loera, Bernd Sturmfels, and Cynthia Vinzant. The Central Curve in
Linear Programming. Foundations of Computational Mathematics, 12:509–540,
2012.

[DLRS10] Jesús A De Loera, Jörg Rambau, and Francisco Santos. Triangulations. Springer
Berlin, Heidelberg, 2010.

[DGM21] Serena Di Giorgio and Paulo Mateus. On the Complexity of Finding the
Maximum Entropy Compatible Quantum State. Mathematics, 9(2), 2021.



114 Bibliography

[DGMM20] Serena Di Giorgio, Paulo Mateus, and Bruno Mera. Recoverability from Direct
Quantum Correlations. Journal of Physics A: Mathematical and Theoretical,
53(18):185301, 2020.

[DS98] Persi Diaconis and Bernd Sturmfels. Algebraic Algorithms for Sampling from
Conditional Distributions. The Annals of Statistics, 26(1):363–397, 1998.

[DSS08] Mathias Drton, Bernd Sturmfels, and Seth Sullivant. Lectures on Algebraic
Statistics, volume 39. Springer Science & Business Media, 2008.

[DPW23] Eliana Duarte, Dmitrii Pavlov, and Maximilian Wiesmann. Algebraic Geometry
of Quantum Graphical Models. arXiv:2308.11538, 2023.

[DHJ+19] Timothy Duff, Cvetelina Hill, Anders Jensen, Kisun Lee, Anton Leykin, and
Jeff Sommars. Solving Polynomial Systems via Homotopy Continuation and
Monodromy. IMA Journal of Numerical Analysis, 39(3):1421–1446, 2019.

[EGP+23] Nick Early, Alheydis Geiger, Marta Panizzut, Bernd Sturmfels, and Claudia He
Yun. Positive del Pezzo Geometry. arXiv:2306.13604, 2023.

[Efr22] Bradley Efron. Exponential Families in Theory and Practice. Institute of
Mathematical Statistics Textbooks. Cambridge University Press, 2022.

[Eis87] David Eisenbud. On the Resiliency of Determinantal Ideals. In Commutative
Algebra and Combinatorics, volume 11, pages 29–39. Mathematical Society of
Japan, 1987.

[Eis88] David Eisenbud. Linear Sections of Determinantal Varieties. American Journal
of Mathematics, 110(3):541–575, 1988.

[Eva20] Robin J Evans. Model Selection and Local Geometry. The Annals of Statistics,
48(6):3513 – 3544, 2020.

[EZLT21] Chaim Even-Zohar, Tsviqa Lakrec, and Ran J Tessler. The Amplituhedron
BCFW Triangulation. arXiv:2112.02703, 2021.

[FMS21] Claudia Fevola, Yelena Mandelshtam, and Bernd Sturmfels. Pencils of Quadrics:
Old and New. Le Matematiche, 76(2), 2021.

[Fin] Lukas Finschi. Homepage of Oriented Matroids. https://finschi.com/math/
om/?p=home.

[Fin01] Lukas Finschi. A Graph Theoretical Approach for Reconstruction and Generation
of Oriented Matroids. PhD Dissertation, Swiss Federal Institute of Technology
Zürich, 2001.

[FL78] Jon Folkman and Jim Lawrence. Oriented Matroids. Journal of Combinatorial
Theory, Series B, 25(2):199–236, 1978.

[FdW22] Jens Forsgård and Timo de Wolff. The Algebraic Boundary of the Sonc-cone.
SIAM Journal on Applied Algebra and Geometry, 6(3):468–502, 2022.

[FMM13] Komei Fukuda, Hiroyuki Miyata, and Sonoko Moriyama. Complete Enumeration
of Small Realizable Oriented Matroids. Discrete & Computational Geometry,
49:359–381, 2013.

https://finschi.com/math/om/?p=home
https://finschi.com/math/om/?p=home


Bibliography 115

[Ful98] William Fulton. Intersection Theory. Springer Science+Business Media, New
York, 1998.

[Gae20] Christian Gaetz. Positive Geometries Learning Seminar, Canonical Forms
of Polytopes from Adjoints. Unpublished lecture notes, available at https:
// sites. google. com/ view/ crgaetz/ research , 2020.

[GL20] Pavel Galashin and Thomas Lam. Parity Duality for the Amplituhedron.
Compositio Mathematica, 156(11):2207–2262, 2020.

[GS21] Francesco Galuppi and Mima Stanojkovski. Toric Varieties from Cyclic Matrix
Semigroups. Rendiconti dell’Istituto di Matematica dell’Università di Trieste:
an International Journal of Mathematics, 53(17), 2021.

[GK50] Feliks R Gantmaher and Mark G Krein. Oscillyacionye Matricy i Yadra i Malye
Kolebaniya Mehaniceskih Sistem (in Russian). Gosudarstv. Isdat. Tehn.-Teor.
Lit., 1950.

[GPS10] Luis David Garcia-Puente and Frank Sottile. Linear Precision for Parametric
Patches. Advances in Computational Mathematics, 33:191–214, 2010.

[GMS06] Dan Geiger, Christopher Meek, and Bernd Sturmfels. On the Toric Algebra of
Graphical Models. The Annals of Statistics, 34(3):1463 – 1492, 2006.

[Gir82] Kurt Girstmair. Linear Dependence of Zeros of Polynomials and Construction
of Primitive Elements. Manuscripta mathematica, 39(1):81–97, 1982.

[Gir99] Kurt Girstmair. Linear Relations between Roots of Polynomials. Acta Arith-
metica, 89(1):53–96, 1999.

[GS] Daniel R Grayson and Michael E Stillman. Macaulay2, a Software System for
Research in Algebraic Geometry. Available at http://www2.macaulay2.com.

[Gül96] Osman Güler. Barrier Functions in Interior Point Methods. Mathematics of
Operations Research, 21(4):860–885, 1996.

[Har13] Robin Hartshorne. Algebraic Geometry, volume 52. Springer Science & Business
Media, 2013.

[HRS18] Jonathan D Hauenstein, Jose Israel Rodriguez, and Frank Sottile. Numerical
Computation of Galois Groups. Foundations of Computational Mathematics,
18(4):867–890, 2018.

[HJPW04] Patrick Hayden, Richard Jozsa, Dénes Petz, and Andreas Winter. Structure of
States which Satisfy Strong Subadditivity of Quantum Entropy with Equality.
Communications in Mathematical Physics, 246:359–374, 2004.

[HEB04] Marc Hein, Jens Eisert, and Hans J Briegel. Multiparty Entanglement in Graph
States. Physical Review A, 69(6):062311, 2004.

[HL08] Søren Højsgaard and Steffen L Lauritzen. Graphical Gaussian Models with Edge
and Vertex Symmetries. Journal of the Royal Statistical Society, 70:1005–1027,
2008.

[HJ85] Roger Horn and Charles R Johnson. Matrix Analysis. Cambridge University
Press, Cambridge, 1985.

https://sites.google.com/view/crgaetz/research
https://sites.google.com/view/crgaetz/research
http://www2.macaulay2.com


116 Bibliography

[HJ94] Roger Horn and Charles R Johnson. Topics in Matrix Analysis. Cambridge
University Press Cambridge, UK, 1994.

[HKS05] Serkan Hosten, Amit Khetan, and Bernd Sturmfels. Solving the Likelihood
Equations. Foundations of Computational Mathematics, 5:389–407, 2005.

[Huh13] June Huh. The Maximum Likelihood Degree of a Very Affine Variety. Compo-
sitio Mathematica, 149(8):1245–1266, 2013.

[HS14] June Huh and Bernd Sturmfels. Likelihood Geometry. Combinatorial algebraic
geometry, 2108:63–117, 2014.

[IS14] Corey Irving and Hal Schenck. Geometry of Wachspress Surfaces. Algebra &
Number Theory, 8(2):369–396, 2014.

[JS21] Yuhan Jiang and Bernd Sturmfels. Bad Projections of the PSD Cone. Col-
lectanea mathematica, 72(2):261–280, 2021.

[Jos21] Michael Joswig. Essentials of Tropical Combinatorics, volume 219. American
Mathematical Society, 2021.

[Kar17] Steven N Karp. Sign Variation, the Grassmannian, and Total Positivity. Journal
of Combinatorial Theory, Series A, 145:308–339, 2017.

[KM23] Steven N Karp and John Machacek. Shelling the m = 1 Amplituhedron.
Combinatorial Theory, 3(1), 2023.

[KW19] Steven N Karp and Lauren K Williams. The m = 1 Amplituhedron and
Cyclic Hyperplane Arrangements. International Mathematics Research Notices,
2019(5):1401–1462, 2019.

[Kit17] Yoshiyuki Kitaoka. Notes on the Distribution of Roots Modulo a Prime of a
Polynomial. Uniform distribution theory, 12(2):91–117, 2017.

[KPR+21] Kathlén Kohn, Ragni Piene, Kristian Ranestad, Felix Rydell, Boris Shapiro,
Rainer Sinn, Miruna-Stefana Sorea, and Simon Telen. Adjoints and Canonical
Forms of Polypols. arXiv:2108.11747, 2021.

[KR20] Kathlén Kohn and Kristian Ranestad. Projective geometry of Wachspress
coordinates. Foundations of Computational Mathematics, 20:1135–1173, 2020.

[KSS20] Kathlén Kohn, Boris Shapiro, and Bernd Sturmfels. Moment Varieties of
Measures on Polytopes. Annali della Scuola Normale Superiore di Pisa (Classe
Scienze), Serie V, 21:739–770, 2020.

[KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT press, 2009.

[Lam16] Thomas Lam. Totally Nonnegative Grassmannian and Grassmann Polytopes.
In Current Developments in Mathematics 2014, pages 51–152. Int. Press,
Somerville, MA, 2016.

[Lam22] Thomas Lam. An Invitation to Positive Geometries. arXiv:2208.05407, 2022.

[Lam23] Thomas Lam. Personal communication, 2023.



Bibliography 117

[Lan19] Joseph M Landsberg. A Very Brief Introduction to Quantum Computing
and Quantum Information Theory for Mathematicians. In Edoardo Ballico,
Alessandra Bernardi, Iacopo Carusotto, Sonia Mazzucchi, and Valter Moretti,
editors, Quantum Physics and Geometry, pages 5–41. Springer, 2019.

[Lau96] Steffen L Lauritzen. Graphical Models, volume 17. Clarendon Press, 1996.

[LP08] Matthew S Leifer and David Poulin. Quantum Graphical Models and Belief
Propagation. Annals of Physics, 323(8):1899–1946, 2008.

[LR73] Elliott H Lieb and Mary Beth Ruskai. Proof of the Strong Subadditivity of
Quantum-Mechanical Entropy. Les rencontres physiciens-mathématiciens de
Strasbourg-RCP25, 19:36–55, 1973.

[LUSB14] Shaowei Lin, Caroline Uhler, Bernd Sturmfels, and Peter Bühlmann. Hyper-
surfaces and Their Singularities in Partial Correlation Testing. Foundations of
Computational Mathematics, 14(5):1079–1116, 2014.

[LPW23] Tomasz Lukowski, Matteo Parisi, and Lauren K Williams. The Positive Tropical
Grassmannian, the Hypersimplex, and the m = 2 Amplituhedron. International
Mathematics Research Notices, 03 2023. rnad010.

[MDLW18] Marloes Maathuis, Mathias Drton, Steffen Lauritzen, and Martin Wainwright.
Handbook of Graphical Models. CRC Press, 2018.

[MPP23] Yelena Mandelshtam, Dmitrii Pavlov, and Elizabeth Pratt. Combinatorics of
m = 1 Grasstopes. arXiv:2307.09603, 2023.

[MM23] Léo Mathis and Chiara Meroni. Fiber Convex Bodies. Discrete & Computational
Geometry, 70(4):1451–1475, 2023.

[MHMT23] Saiei-Jaeyeong Matsubara-Heo, Sebastian Mizera, and Simon Telen. Four
Lectures on Euler Integrals. SciPost Phys. Lect. Notes, page 75, 2023.

[MW98] Mathieu Meyer and Elisabeth Werner. The Santaló-Regions of a Convex Body.
Transactions of the American Mathematical Society, 350(11):4569–4591, 1998.

[MS21a] Mateusz Michałek and Bernd Sturmfels. Invitation to Nonlinear Algebra, volume
211 of Graduate Studies in Mathematics. American Mathematical Society,
Providence, 2021.

[MS21b] Joaquín Moraga and Hendrik Süß. Bounding Toric Singularities with Normalized
Volume. arXiv:2111.01738, 2021.

[Nem06] Arkadi Nemirovski. Advances in Convex Optimization: Conic Programming.
In International Congress of Mathematicians, volume 1, pages 413–444, 2006.

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms
in Convex Programming. SIAM, 1994.

[NRS10] Jiawang Nie, Kristian Ranestad, and Bernd Sturmfels. The Algebraic Degree
of Semidefinite Programming. Mathematical Programming, 122:379–405, 2010.

[NGKG13] Sönke Niekamp, Tobias Galla, Matthias Kleinmann, and Otfried Gühne. Com-
puting Complexity Measures for Quantum States Based on Exponential Families.
Journal of Physics A: Mathematical and Theoretical, 46(12):125301, 2013.



118 Bibliography

[NC02] Michael A Nielsen and Isaac Chuang. Quantum Computation and Quantum
Information. American Association of Physics Teachers, 2002.

[Oja90] Manuel Ojanguren. The Witt group and the problem of Lüroth. 1990.

[OSC24] OSCAR – Open Source Computer Algebra Research system, Version 0.14.0,
2024.

[PS05] Lior Pachter and Bernd Sturmfels. Algebraic Statistics for Computational
Biology, volume 13. Cambridge university press, 2005.

[PSBW23] Matteo Parisi, Melissa Sherman-Bennett, and Lauren K Williams. The m =
2 Amplituhedron and the Hypersimplex: Signs, Clusters, Tilings, Eulerian
Numbers. Communications of the American Mathematical Society, 3(07):329–
399, 2023.

[Pav23] Dmitrii Pavlov. Logarithmically Sparse Symmetric Matrices. arXiv:2301.10042,
2023.

[PST23] Dmitrii Pavlov, Bernd Sturmfels, and Simon Telen. Gibbs Manifolds. Informa-
tion Geometry, pages 1–27, 2023.

[PT24] Dmitrii Pavlov and Simon Telen. Santaló Geometry of Convex Polytopes.
arXiv:2402.18955, 2024.

[Pet86] Dénes Petz. Sufficient Subalgebras and the Relative Entropy of States of a von
Neumann Algebra. Communications in Mathematical Physics, 105:123–131,
1986.

[Pos06] Alexander Postnikov. Total Positivity, Grassmannians, and Networks. arXiv
math/0609764, 2006.

[PH11] David Poulin and Matthew B Hastings. Markov Entropy Decomposition: a
Variational Dual for Quantum Belief Propagation. Physical Review Letters,
106(8):080403, 2011.

[RST24] Kristian Ranestad, Rainer Sinn, and Simon Telen. Adjoints and Canonical
Forms of Tree Amplituhedra. arXiv:2402.06527, 2024.

[RS88] Jean-Pierre Roudneff and Bernd Sturmfels. Simplicial Cells in Arrangements
and Mutations of Oriented Matroids. Geometriae Dedicata, 27(2), August 1988.

[Sch22] Claus Scheiderer. Extreme Points of Gram Spectrahedra of Binary Forms.
Discrete & Computational Geometry, 67(4):1174–1190, 2022.

[Sha13] Igor R Shafarevich. Basic Algebraic Geometry. Springer, Berlin, 2013.

[SW+05] Andrew J Sommese, Charles W Wampler, et al. The Numerical Solution of
Systems of Polynomials Arising in Engineering and Science. World Scientific,
2005.

[Stu88] Bernd Sturmfels. Totally Positive Matrices and Cyclic Polytopes. Linear
Algebra and its Applications, 107:275–281, 1988.



Bibliography 119

[STVvR24] Bernd Sturmfels, Simon Telen, François-Xavier Vialard, and Max von Renesse.
Toric Geometry of Entropic Regularization. Journal of Symbolic Computation,
120:102221, 2024.

[SU10] Bernd Sturmfels and Caroline Uhler. Multivariate Gaussians, Semidefinite
Matrix Completion, and Convex Algebraic Geometry. Annals of the Institute
of Statistical Mathematics, 62(4):603–638, 2010.

[Sul18] Seth Sullivant. Algebraic Statistics, volume 194. American Mathematical Soc.,
2018.

[Syl83] James Joseph Sylvester. XXXIX. On the Equation to the Secular Inequalities
in the Planetary Theory. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 16(100):267–269, 1883.

[Tel22] Simon Telen. Introduction to Toric Geometry. arXiv:2203.01690, 2022.

[TV15] Tomáš Tyc and Jan Vlach. Quantum Marginal Problems. The European
Physical Journal D, 69:1–6, 2015.

[URBY13] Caroline Uhler, Garvesh Raskutti, Peter Bühlmann, and Bin Yu. Geometry
of the Faithfulness Assumption in Causal Inference. The Annals of Statistics,
41(2):436–463, 2013.

[Vig99] Eric Vigoda. Sampling from Gibbs Distributions. PhD Dissertation, Computer
Science Dept., UC Berkeley, 1999.

[War96] Joe Warren. Barycentric Coordinates for Convex Polytopes. Advances in
Computational Mathematics, 6:97–108, 1996.

[WG23] Stephan Weis and João Gouveia. The Face Lattice of the Set of Reduced Density
Matrices and its Coatoms. Information Geometry, pages 1–34, 2023.

[Wil13] Mark M Wilde. Quantum Information Theory. Cambridge University Press,
2013.

[Wil21] Lauren K Williams. The Positive Grassmannian, the Amplituhedron, and
Cluster Algebras. In International Congress of Mathematicians, 10 2021.

[Zas75] Thomas Zaslavsky. Facing up to Arrangements: Face-Count Formulas for
Partitions of Space by Hyperplanes, volume 154 of Memoirs of the American
Mathematical Society. 1975.

[Zho08] Duanlu Zhou. Irreducible Multiparty Correlations in Quantum States without
Maximal Rank. Physical Review Letters, 101:180505, Oct 2008.

[Zie12] Günter M Ziegler. Lectures on Polytopes, volume 152. Springer Science &
Business Media, 2012.



Bibliographische Daten

Real Algebraic Geometry for Physics and Optimization
(Reele Algebraische Geometrie für Physik und Optimierung)
Pavlov, Dmitrii
Universität Leipzig, Dissertation, 2024
120 Seiten, 14 Abbildungen, 129 Referenzen



Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige fremde
Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten Quellen und Hilfsmittel
benutzt und sämtliche Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder
unveröffentlichten Schriften entnommen wurden, und alle Angaben, die auf mündlichen
Auskünften beruhen, als solche kenntlich gemacht. Ebenfalls sind alle von anderen Personen
bereitgestellten Materialien oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, den 16. August 2024

. . . . . . . . . . . . . . . . . . . . . . . . . . .
(Dmitrii Pavlov)



Daten zum Autor

Name: Dmitrii Pavlov
Geburtsdatum: 05.08.1998 in Chabarowsk (Russland)

09/2016 - 06/2022 Spezialist (M.Sc.) in Mathematik
Staatliche Lomonossow-Universität Moskau

seit 08/2022 Doktorand der Mathematik


	Introduction
	Background
	Algebraic geometry
	Varieties and ideals
	Semi-algebraic sets

	Quantum information theory
	Discrete geometry
	Polyhedra, polytopes, and cones
	Subdivisions, triangulations, and chambers

	Convex optimization
	Algebraic combinatorics
	Hyperplane arrangements
	Oriented matroids


	Gibbs Manifolds
	What are Gibbs manifolds and varieties?
	Implicitization of Gibbs varieties
	Pencils of quadrics
	Role in convex optimization
	Quantum optimal transport
	Logarithmic sparsity

	Quantum Graphical Models
	Quantum graphical models on trees
	Quantum conditional mutual information varieties
	Petz varieties

	Quantum graphical models from Gibbs manifolds
	Gibbs varieties of linear systems of Hamiltonians
	Gibbs varieties of unirational varieties of Hamiltonians

	Toric varieties from quantum exponential families associated to graphs
	Commuting Hamiltonians from graphs
	Quantum information projections

	Stabilizer formalism

	Minimizing Dual Volumes of Polytopes
	The Santaló point
	Dual volumes of polytopes
	The Santaló patchwork
	Patch varieties
	Wachspress models
	Computing Santaló points
	From likelihood equations to dual volume
	Tracking paths on Santaló patches


	Grasstopes
	What is a Grasstope?
	Grasstopes for  : tame, wild, and rational
	Examples
	Extremal counts and oriented matroid Grasstopes

	Bibliography

