
Designs, Codes and Cryptography (2024) 92:3085–3124
https://doi.org/10.1007/s10623-024-01429-3

TOPAS 2-pass key exchange with full perfect forward secrecy
and optimal communication complexity

Sven Schäge1

Received: 15 September 2022 / Revised: 7 December 2023 / Accepted: 17 May 2024 /
Published online: 27 July 2024
© The Author(s) 2024

Abstract
We present Transmission optimal protocol with active security (TOPAS), the first key agree-
ment protocol with optimal communication complexity (message size and number of rounds)
that provides security against fully active adversaries. The size of the protocol messages and
the computational costs to generate them are comparable to the basic Diffie-Hellman pro-
tocol over elliptic curves (which is well-known to only provide security against passive
adversaries). Session keys are indistinguishable from random keys—even under reflection
and key compromise impersonation attacks. What makes TOPAS stand out is that it also fea-
tures a security proof of full perfect forward secrecy (PFS), where the attacker can actively
modify messages sent to or from the test-session. The proof of full PFS relies on two new
extraction-based security assumptions. It is well-known that existing implicitly-authenticated
2-message protocols like HMQV cannot achieve this strong form of (full) security against
active attackers (Krawczyk, Crypto’05). This makes TOPAS the first key agreement protocol
with full security against active attackers that works in prime-order groups while having opti-
malmessage size.We also present a variant of our protocol, TOPAS+, which, under the Strong
Diffie-Hellman assumption, provides better computational efficiency in the key derivation
phase. Finally, we present a third protocol termed FACTAS (for factoring-based protocol with
active security) which has the same strong security properties as TOPAS and TOPAS+ but
whose security is solely based on the factoring assumption in groups of composite order
(except for the proof of full PFS).

Keywords Cryptography · Protocol · PFS · TOPAS

Mathematical subject classification 94A60

Communicated by R. Steinfeld.

An extended abstract of this work appeared at CCS 2015 https://dblp.uni-trier.de/rec/conf/ccs/Schage15.
html?view=bibtex. This version contains besides TOPAS and TOPAS+, (i) a description of the FACTAS
protocol that is based on the factoring assumption along with a security proof and (ii) a formal impossibility
result showing that the programmability of the random oracle model is necessary for the proofs provided.

B Sven Schäge
s.schage@tue.nl

1 Department of Mathematics & Computer Science, Eindhoven Technical University, Eindhoven,
Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-024-01429-3&domain=pdf
http://orcid.org/0000-0002-8698-4244
https://dblp.uni-trier.de/rec/conf/ccs/Schage15.html?view=bibtex
https://dblp.uni-trier.de/rec/conf/ccs/Schage15.html?view=bibtex

3086 S. Schäge

1 Introduction

Besides encryption systems and digital signatures, key exchange protocols are among the
most important building blocks of cryptography. It is well-known that the famous Diffie-
Hellman (DH) protocol [15] only provides security against passive attackers. This is why
since its introduction in 1976, many works focused on upgrading the DH protocol to also
shield it against active attackswhile trying to keep the overall efficiency as close as possible to
the original protocol.An important step in that direction are authenticatedDH-basedprotocols
like MQV [25] and its successor HMQV [24]. As in the basic unauthenticated DH protocol,
each message consists of only a single group element and messages can be sent in any order.
An important feature of theseDH-based protocols is that no long-term secret is requiredwhen
computing the protocol messages; it is only when the session key is derived that the long-
term secrets come into play. This generally makes the computation of protocol messages very
efficient. The class of protocols that compute messages in this way (without the use of the
long-termsecrets) are called “implicitly-authenticated”protocols [24].Unfortunately, in 2005
Krawczyk presented an attack that shows that implicitly-authenticated protocols inherently
cannot provide forward secrecy against active attackers [24] (seeAppendixE for a summary).
Only if the attacker remains passive with respect to the test-session, implicitly-authenticated
protocols can provide perfect forward secrecy. This passive form of PFS is commonly called
weak PFS. We stress that weak forward secrecy is not a satisfying definition of security in
practice (see Appendix A for a brief example for such a situation). Ultimately, there is no
reason to assume that an otherwise unrestricted adversary (with respect to network control)
may just refrain from using its full power. Arguably, weak forward-secrecy has rather been
defined to show what protocols like HMQV can achieve. This is why Krawczyk proposes
an extension of HMQV termed HMQV-C, which comprises three message flows (while the
second flow now also consists of more than 160 bits) and adds explicit key confirmation to
the protocol. This guarantees full-PFS security but decreases the protocol’s overall efficiency.

We stress that (full) perfect forward secrecy is an important security property for key
exchange protocols and that it is naturally well-supported by the original, unauthenticated
Diffie-Hellman protocol. As pointed out in [20], the support of PFS is an important advantage
over simple, public-key based session key transport and the main reason for the prevalence
of DH-like protocols in protocol suites like SSH, IPsec, and TLS.

The only two-message protocol we are aware of that provides truly satisfactory secu-
rity guarantees against active attackers while maintaining high efficiency is the modified
Okamoto–Tanaka (mOT) protocol by Gennaro, Krawczyk, and Rabin (GKR) [20] (depicted
in Fig. 4 of Appendix C). Basically, mOT is an enhanced variant of the classical Okamoto–
Tanaka protocol [26] from 1989 that introduces additional hashing operations to protect it
against several practical attacks and allows a rigorous proof of security.1 Like the original
Okamoto–Tanaka protocol, mOT is defined in groups of hidden order and its security relies
on the RSA assumption. Unfortunately, group elements consist of at least 1024 bits so that
the overall number of transmitted bits for the two messages is 2048 bits which is much more
than what is possible with the basic DH protocol and protocols likeHMQV when defined over
prime order elliptic curves. However, the protocol has very good computational efficiency.

It is considered an important openproblem todesign a protocolwith full security (including
full PFS) against active attackers and optimal communication complexity, i.e. where each

1 In contrast to the original Okamoto–Tanaka protocol, all identities are hashed before usage and the session
key is hashed in the final step.

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3087

Fig. 1 Overview of TOPAS. The key generation center maintains public parameters mpk containing
g1, g2, h2, g

z
2, h

z
2, prime p, a description of the pairing e, and descriptions of two hash functions H : {0, 1}∗ →

G1 and H ′ : {0, 1}∗ → {0, 1}∗. These parameters are available to all parties.We also assume that the identities
of all communication partners are publicly available. The master secret msk consists of z and is used by the
key generation center to derive the user secret keys as ski = (H(idi))

1/z . KA (resp. KB) is the session key
computed by Alice (Bob). The pairing operations in the denominator are message-independent and can be
pre-computed (in times of low workload) and stored for later use. If Alice also pre-computes a = gx1 skA ,
(gz2)

x , (hz2)
x and e(H(idB), g2)

−x , e(H(idB), h2)
−x the computation of k, k′ will require two pairing oper-

ations and two multiplications in GT per key exchange. Messages can be sent in any order. Without loss of
generality we assume that lexically idA ≤ idB . (This is helpful in case the chronological order of the messages
is otherwise unclear.)

message only consists of about 160 bits and we have only two messages in total.2 This is of
course optimal, since the birthday bound requires messages to be at least 160 bits for 80 bit
security.3

Contribution. As our main result, we present TOPAS (short for Transmission Optimal
Protocol with Active Security), the first two-message key exchange protocol that provides
full perfect forward secrecy and optimal communication complexity (Fig. 1). To achieve this,
the design of TOPAS relies on new ideas and techniques. Key indistinguishability, security
against key-compromise impersonation (KCI) attacks and reflection attacks are proven under
generalizations of the Computational Bilinear Diffie-Hellman Inversion assumption. At the
same time, TOPAS is weakly PFS secure under the Computational Bilinear Diffie-Hellman
assumption. In Appendix D, we show that all our assumptions are concrete instantiations of
the Uber-assumption introduced by Boyen in 2008 and therefore inherit its security in the
generic bilinear group model [8]. We stress that for none of our assumptions does the input
size grow with the number of adversarial queries (i.e. they do not constitute so-called q-type
assumptions). Full-PFS security is shown under two new knowledge-type (or extraction-

2 Explicit references of the importance of this problem can for example be found http://cyber.biu.ac.il/wp-
content/uploads/2017/08/KE2_Hugo_BIU_Feb2018.pdf (p. 31).
3 Of course, it is necessary that the protocol consists of at least two messages to provide security against
active attacks. In any one-message protocol the receiver’s computation of the session key can only depend on
its knowledge of the secret key (as it cannot feed any session-specific random nonce or ephemeral secrets into
the key derivation process). Therefore corrupting the receiver will always reveal the session key (even after
the session completes) and PFS is not achievable.

123

http://cyber.biu.ac.il/wp-content/uploads/2017/08/KE2_Hugo_BIU_Feb2018.pdf
http://cyber.biu.ac.il/wp-content/uploads/2017/08/KE2_Hugo_BIU_Feb2018.pdf

3088 S. Schäge

Fig. 2 Overview of TOPAS+. The key generation center maintains public parameters mpk containing
g1, g2, g

z
2, p, a description of the pairing e, and descriptions of two hash functions H : {0, 1}∗ → G1

and H ′ : {0, 1}∗ → {0, 1}∗. These parameters are available to all parties. The master secret msk consists of z
and is used by the key generation center to derive the user secret keys as ski = (H(idi))

1/z

type) assumptions that are related to the difficulty of inverting bilinear pairings. (Traditional
knowledge-type assumptions are usually related to the difficulty of inverting the modular
exponentiation function, i.e. computing discrete logarithms.) Our protocol is defined over
asymmetric (Type-3) bilinear groups and all our proofs rely on random oracles. In this work,
we assume that the bilinear group supports the ideal ratio of b bit group element size for 2b
security. Formore conservative choices, the parameters have to be increased correspondingly.
When instantiated with our aggressive parameter choices, each message thus consists of only
about 160 bits for 80 bit security, resulting in the first key exchange protocol achieving full-
PFS with an overall communication complexity of only 320 bits. Moreover, our protocol is
identity-based what allows two parties to securely agree on a common session key without
a prior exchange of their certificates.

With respect to computational efficiency, we note that all protocol messages can be com-
puted very efficiently, virtually as efficient as in the original DH key exchange. In particular,
each message consists of a single ephemeral DH public key that is additionally multiplied
by the user’s secret long-term key. No additional exponentiation is required. Thus the com-
putational overhead when compared to protocols like HMQV is minimal. However, session
key derivation in our scheme is comparably slow. This is due to the application of a bilinear
pairing in the key derivation process. We note that half of the required pairing operations
must only be performed once per communication partner as they only depend on the identity
of the communication partner. Finally, we remark that the size of the secret keys derived by
the key generation center (KGC) is also only 160 bits using aggressive parameter choices
and thus optimal as well.

We also present, TOPAS+ (Fig. 2), a slightlymodified version of TOPASwhere the security
proofs additionally rely on a variant of the Strong Diffie-Hellman assumption [1]. Basically,
we require that our generalizations of the Computational Bilinear Diffie-Hellman Inversion
assumption remain valid evenwhen the adversary is also given access to an oracle that checks,
given input k and k, whether kz

2 = k for z unknown to the adversary. The resulting protocol
requires less public parameters and only half the number of pairings required to compute

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3089

Fig. 3 Overview of FACTAS. The key generation center maintains public parameters mpk containing the safe
integer N = p1 p2, g ∈ SQRN , and descriptions of two hash functions H : {0, 1}∗ → SQRN and
H ′ : {0, 1}∗ → {0, 1}∗. These parameters are available to all parties. The master secret msk consists of
the factorization of N . The set of exponents can be set to S = [1 . . . (N − 1)/4]. It can be shown that this

distribution is indistinguishable from S =
[
1 . . .

⌊√
N/2

⌋]
under the factoring assumption [21]. In [20], the

authors recommend a more aggressive choice of S with S =
[
1 . . . 22κ

]
and additionally assume that this

distribution is indistinguishable from the previous ones. The master secret msk is used by the key generation
center to derive the user secret keys as ski = (H(idi))

1/2, where ga = ga mod |SQRN | = |gamodN | is the
absolute value of ga modN ∈ (−N/2, N/2) and elements in Z

∗
N are represented as signed integers in the

symmetric interval (−N/2, N/2)

the session key. When pre-computing message-independent values offline, key derivation
only requires a single pairing operation online. The cost for this modification is that we have
to rely on interactive security assumptions even when proving key indistinguishability and
security against KCI and reflection attacks.

As our last result, we provide a new protocol that provides full security against active
attackers in groups of hidden order (Fig. 3). FACTAS is a variant of themOT protocol where
computations are performed in the group of signed quadratic residues [22]. In contrast to
the RSA-basedmOT protocol, FACTAS features security reductions to the factoring problem
in all proofs (except for full PFS). At the same time, the computation of the session key is
slightly more efficient than in [20].

We note that due to the application of the bilinear pairing,mOT and FACTAS have a compu-
tationally more efficient key derivation than TOPAS and TOPAS+. Concrete numbers can for
example be obtained from [28] that compares the properties of a variety of signature schemes
on two platforms. (For more details on the exact setup we refer to [28]). The computational
costs of the key derivation of mOT are dominated by a variable-base exponentiation with
(large) exponents. This is equivalent to the costs incurred by RSA-1028 signing. In TOPAS
and TOPAS+, the dominant term in the key derivation is the application of the bilinear pairing.
The costs are thus comparable to that of BLS signature verification. The comparison given
in [28] suggests that TOPAS+ protocol has key derivation times roughly 3–4 times slower
than mOT.

As mentioned before, the identity-based properties of our protocols avoid that additional
information like certificates have to be exchanged between unknown communication part-

123

3090 S. Schäge

ners, in contrast to PKI-based protocols like for example HMQV. This guarantees that in
TOPAS and TOPAS+ the size of each message does indeed never exceed 160 bits. Also, the
time for key derivation is not slowed down by the additional verification of the received cer-
tificate. In general, identity-based protocols greatly pay off in highly dynamic settings where
the membership to some eligible group of parties is usually demonstrated via short-lived
certificates that are renewed on a regular basis (for example after some weekly or monthly
payment).

We also remark that although message computation involves the usage of the secret key,
all our protocols provide the strong form of deniability defined in [14]. This means that Bob
or any other party cannot convince any third party that it once talked to Alice (given that
there are no additional side information available to Bob that prove this fact in another way).
This is a valuable privacy feature of our protocols that make them suitable for implementing
“off-the-record” communication over (insecure) digital networks. We remark that, as with
forward secrecy, the basic unauthenticated Diffie-Hellman protocol naturally supports this
strong form of deniability (simply because the session key entirely relies only on ephemeral
parameters). On the other hand, protocols based on digital signatures (like signed Diffie-
Hellman) do not provide such deniability features.

Finally,wenote that our proofs ofTOPAS andTOPAS+heavily exploit the programmability
of the random oracle model. Using a separation technique that was introduced by Fischlin
and Fleischhacker [18] and applied to identity-based non-interactive key exchange by Chen,
Huang, and Zhang [11] we can show that, in some sense, the programmability of the random
oracle model is actually necessary for our reductions. More concretely, we show in Sect. 6
that under a one-more-type security assumption, the programmability of the random oracle
model is necessary for all security proofs that call the adversary once and in a black-box
manner, which is the most common type of reduction in cryptography. Unfortunately, the
results of [11] cannot directly by applied to TOPAS and TOPAS+ such that we have to rely
on new ideas.

Interpretation. From a more theoretical point of view, we continue the work of GKR who
analyzed how far the boundaries (in terms of strong security properties) of DH-like protocols
can be pushed further while maintaining the efficiency of the original DH protocol (as far as
possible). All our protocols add to this body of work as they provide higher efficiency or rely
on weaker security assumptions than mOT. In contrast to all other two-message protocols
with comparable efficiency that we are aware of—except for themOT protocol, our protocols
are the only ones that provide full security against active attackers. In particular, they show for
the first time that protocols in prime-order groups with full security against active adversaries
can have optimal message size and optimal round complexity and do not necessarily have to
rely on costly modifications of the protocol like the addition of key confirmation in HMQV-C.

From a rather orthogonal perspective, our work is strongly motivated by the problem
of finding the strongest security properties that two message key exchange protocols with
optimal communication complexity can achieve.We show for the first time that these protocols
can protect against fully active adversaries.

We admit that the feature of full PFS security comes at the cost of relying on (highly)
non-standard security assumptions. However, we stress that the existing two-message key
exchange protocols with 160 bit messages are implicitly-authenticated and therefore cannot
provide full PFS under any security assumption.

Application scenarios Our protocols are very interesting for all networks where the
transmission of data is very expensive. Important examples are satellite-based communi-
cation networks and communication over low-battery powered wireless (sensor) networks.
Satellite-based communication is expensive since all communication flows over a shared

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3091

medium with a fixed bandwidth. Using a higher proportion of that bandwidth because of
larger cryptographic values will cost more and restrict other useful applications. In wireless
sensor networks, node and network lifetimes are highly dependent on energy consumption.
This cost is dominated by radio transmission [27, 30, 31]. Besides that, our protocol is of
general interest since it is, due to its lowmessage size, less wasteful in terms of network load.
Message size has always been an important metric for designers of cryptographic protocols
[24] and an important criterion for the selection of modern cryptographic algorithms as new
standards. We note that since our protocols are identity-based they ensure that the optimal
bound of 160 bits per key exchange message is always met.

Security ModelToprove security of our protocolswe extend and strengthen the security
model of mOT [20]. Indistinguishability of session keys from random keys is shown in a
variant of the Canetti-Krawczyk (CK) model[9] that is restricted to two message protocols.
This variant was first introduced for the analysis of HMQV [24]. ThemOT model has further
adapted the HMQV model to the identity-based setting. Our model captures security against
reflection attacks, key compromise attacks, and forward secrecy. There are two noteworthy
ways in which our model differs from [20]. The first is that we provide an explicit Register
query to register new users. The second is that we introduce a strengthened definition of weak
PFS called enhanced weak PFS which allows the adversary to obtain the secret keys of all
parties and the KGC at protocol start-up, i.e. even before the session key is computed. We
note that like themOT protocol, our protocols require that intermediate values computed in the
generation of the protocol messages and the derivation of the session key cannot be revealed
by the adversary. Formally, we therefore do not consider state reveal attacks. Technically, this
is enforced by requiring that the intermediate values remain in the same protected memory as
the long-term key. This is for example similar to DSA signatures, where the random exponent
used in the signing procedure must not be revealed to the adversary. Although this seems like
a severe restriction, it is, in some sense, the best we can hope for when using two-message
protocols. For completeness, in Appendix F we generalize a result by Krawczyk and show
that any protocol which allows the adversary to reveal ephemeral keys, cannot provide full
PFS. This argument has already been given in [7].

Discussion In the literature, there is a well-known controversy that developed as a reac-
tion to Krawzcyk’s arguments[24] showing that implicitly-authenticated protocols inherently
cannot provide forward secrecy against active attackers. In particular, there is no consensus
on how this result should be interpreted [7]. First, as Cremers and Feltz [16] point out in
2014, the result is only applicable to stateless protocols. Second, beginning with Cremers
and Feltz [12], some authors argue for a different way to deal with the inherent technical
obstacles that are present in Krawczyk’s argument. In a nutshell, instead of giving up on
revealing ephemeral keys entirely, [12] propose to use another, more fine-grained notion of
full PFS instead. Intuitively, their notion only forbids certain combinations of queries which
guarantees to not run into the same technical obstacles. This means that although ephemeral
keys are generally allowed, the combinations of queries that are most useful for the attacker
(since they provide most of the information) are forbidden. Using their approach, the combi-
nation of queries used in Krawczyk’s impossibility result is one such particular combination.
Accordingly, the model by Cremers and Feltz is theoretically stronger in this sense.

In this paper, we take a more pragmatic approach that, like Krawczyk, largely favors a
model that entirely does without ephemeral key reveals. We point out, as Cremers and Feltz
have shown, that although revealing some ephemeral keys might not compromise security,
which ephemeral keys exactly are unproblematic is highly dependent on the dynamic behavior
of the attacker and cannot be planned in advancewhen setting up parties in real-world systems.
From a practical standpoint, it thus seems useful to simply protect all ephemeral keys of the

123

3092 S. Schäge

system sufficiently from being revealed. Now, if this protectionmechanism is reliable enough
to protect ephemeral keys from being revealed in any problematic combination of highly
dynamic attacks, we can as well assume that it rules out ephemeral key reveals entirely. As
a benefit, we end up with a simpler security model that unambiguously communicates to
developers that additional measures to protect ephemeral keys from being revealed need to
be taken.

Related Work It is well-known how to design 2-message protocols that are secure
against active adversaries. One way to do this is to add to each (Diffie-Hellman) message a
signature that authenticates the originator of that message and protects its integrity [29].4 This
approach has been generalized in [3, 12]. Another solution is to additionally exchange two
encrypted nonces that when combined give rise to a symmetric key that is used to protect the
integrity of the remaining messages (as used in SKEME [23]). However, all these methods
require to send, besides the Diffie-Hellman shares, additional information. For example,
consider the most efficient signature scheme that is due to Boneh, Lynn, and Shacham (BLS)
where each signature consists of roughly 160 bits. Using the signature-based method with
BLS signatures, each party has to exchange considerably more than the optimal amount
of bits, namely the key exchange messages plus the size of the signatures (which already
account for 160 bits). This does not even consider the costs for certificates that are required
when two parties communicate for the first time. At the same time, since these protocols use
digital signatures they cannot provide the strong form of deniability given in [14]. Moreover,
we remark that when using any two-message protocol that provides full PFS we also must
have that the corresponding security model does not allow to reveal the ephemeral secrets as
formally shown in Appendix F. So, as the protocols in [3, 12] allow the adversary to reveal
ephemeral keys, they cannot be shown to provide full PFS in the strong sense of [20].

Another interesting approach is to make practical 2-message protocols like MQV and
HMQV identity-based, while keeping their overall efficiency. Most noteworthy, Fiore and
Gennaro presented a protocol that features (computational) performance comparable toMQV
[17]. However, since it is identity-based there is no need for transmitting certificates as in
the original MQV protocol. There are two drawbacks of their protocol. First, each messages
consists of two values, thus exceeding the optimum of 160 bits. Second, their protocol does
only provide weak PFS, not full PFS. Thus it lacks protection against fully active adversaries.
As an advantage, their protocol offers very high computational efficiency.

Identity- based vs. PKI- based Protocols Finally, we would like to comment on
the fact that our protocol is identity-based. Our main target is to obtain as short messages as
possible while providing high security guarantees. It is interesting to note that when using
protocols that provide enhanced weak PFS, the introduction of a KGC does not increase the
vulnerability to long-term attacks as compared to relying on classical certification authorities
(CAs). As for authentication, any KGC can of course impersonate its users as it can compute
their secret keys. However, this is not different from classical CAs that can always create a
certificate that binds the identity of the user to a public key chosen by the CA (such that it
has access to the corresponding secret key). Now, when it comes to the secrecy of keys of
past sessions where the adversary did not actively intervene, our notion of enhanced weak
PFS guarantees that even with the help of all user secret keys and even that of the KGC no
adversary can obtain the session key. This is exactly what is guaranteed by weak PFS for
PKI-based protocols. Indeed we can show that similar to mOT our identity-based protocol
can easily be turned into a PKI-based one. Of course we then lose the advantage that users

4 Obviously, this solution does not preserve the strong deniability property of the original unauthenticated
Diffie-Hellman protocol.

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3093

need to exchange certificates before communicating for the first time. In Appendix B, we
briefly sketch this transformation.

Open problems As stated above, although message computation is quite fast in our first
protocol, the computation of the secret key involves costly pairing operations. We leave as
an open problem to design a security protocol with optimal communication complexity and
more efficient key derivation.We also find it very interesting to design a protocol with similar
efficiency while featuring a proof of full PFS that relies on standard assumptions. Finally,
we consider it very interesting to design a protocol that provides full PFS while being based
on post-quantum security assumptions. Given state-of-the-art techniques, such a protocol is,
however, highly likely to exceed the optimal message size that TOPAS and TOPAS+ achieve.

2 Preliminaries

Let κ be the security parameter. Let G1 and G2 be groups of prime order p with generators
g1 and g2 such that log2(p) is a polynomial in κ . Let e : G1 × G2 → GT be a non-
degenerate bilinear pairing. We call G = (p, g1, g2, e) a bilinear group. We will base our
protocol on asymmetric bilinear groups of prime order where no isomorphism is known
between G2 and G1 (Type-3 pairings) [19]. When using asymmetric bilinear groups, we
assume that log2(p) ≈ 160 (effectively having log2(p) = 2κ) and that elements of G1 can
be implemented with roughly 160 bits for a security level of approximately 80 bits [2, 4]. In
the following we may also refer to what we call an extended bilinear group.

2.1 Security assumptions

In the following, we will present the complexity assumptions that our security analysis of
our first protocol relies on. Our main proof will assume the hardness of a generalization of
the Computational Bilinear Diffie-Hellman Inversion problem. In Appendix D we will show
that all our assumptions are covered by the Uber-assumption introduced in [8] and thus hold
in the generic (bilinear) group model. The generic group model is a restricted computational
model that idealizes groups G to only allow group operations on the group elements. In such
a model it is more easy to derive lower bounds on certain computational tasks since only
group operations have to be considered. The underlying assumption is that having access
to the concrete representation of group elements in G does not provide additional benefits
when attempting to break the computational task. Moreover, a proof in the generic group
models is independent of the concrete group instantiation used in practice. The idea is that the
proof holds as long as the ultimately used group behaves like a generic group. Groups over
elliptic curves are often modeled as generic groups since typically the best-known attacks to
solve complexity problems in elliptic curves are generic and could be applied to any other
group as well. For the proof of full PFS security we will rely on two new “knowledge-type”
(extraction-type) assumptions. We will give a brief motivation for these new assumptions.

(k, l)-Computational Bilinear Diffie- Hellman Inversion ((k, l)-CBDHI)
Assumption Let k = k(κ) and l = l(κ) be polynomials. Assume G = (p, g1, g2, e) is
a bilinear group. The (k, l)-Computational Bilinear Diffie-Hellman Inversion problem is,

given G, the values gz1, g
z2
1 , . . . , gz

k

1 , and gz2, g
z2
2 , . . . , gz

l

2 for some random z ∈ Zp to com-
pute e(g1, g2)1/z . This is a generalization of the Computational Bilinear Diffie-Hellman
Inversion problem introduced by Boneh–Boyen in [6] where k is fixed to k = 2.

123

3094 S. Schäge

Definition 1 (CBDHI Assumption)We say that attackerA breaks the (k, l)-CBDHI assump-
tion if A succeeds in solving the (k, l)-Computational Bilinear Diffie-Hellman Inversion
problem (where the probability is over the random coins ofA and the random choices for G
and z). We say that the (k, l)-CBDHI assumption holds if no PPT attacker A can break the
(k, l)-CBDHI problem.

Looking ahead, in our proof of KCI security we reduce security to the (2, 3)-CBDHI assump-
tion while in our proof of full PFS security we rely on the (3, 3)-CBDHI assumption.

(k, l)-Generalized Computational Bilinear Diffie- Hell - man Inversion
((k, l)-GCBDHI) Assumption Let again k = k(κ) and l = l(κ) be polynomials in κ

and G = (p, g1, g2, e) be a bilinear group. The (k, l)-Generalized Computational Bilin-

ear Diffie-Hellman Inversion problem is, given G, random w ∈ Zp , g
z
1, g

z2
1 , . . . , gz

k

1 , and

gz2, g
z2
2 , . . . , gz

l

2 for some random z ∈ Zp to compute e(g1, g2)
z+w

z2 .

Definition 2 (GCBDHI Assumption) We say that attacker A breaks the (k, l)-GCBDHI
assumption if A succeeds in solving the (k, l)-Generalized Computational Bilinear Diffie-
Hellman Inversion problem (where the probability is over the random coins of A and the
random choices for G, z and w). We say that the (k, l)-GCBDHI assumption holds if no PPT
attacker A can break the (k, l)-GCBDHI problem.

Wewill rely on this assumption for k = 2 and l = 3 to prove security of our protocol under
reflection attacks [24] where the adversary is also allowed to make parties communicate
with themselves. We stress that since k, l are constant, the challenge size of both of our
assumptions does not grow with the security parameter (and so they do not constitute “q-
type” assumptions).

Computational Bilinear Diffie- Hellman (CBDH) Assumption in G1Assume
G = (p, g1, g2, e) is a bilinear group. The CBDH problem is, givenG and gx1 , gy1 to compute
e(g1, g2)xy .

Definition 3 (CBDH Assumption) We say that attacker A breaks the CBDH assumption if
A succeeds in solving the CBDH problem (where the probability is over the random coins
ofA and the random choices for G and x, y). We say that the CBDH assumption holds if no
PPT attacker A can break the CBDH problem.

Later wewill use this assumption to prove that our protocol guaranteesweak PFS.Observe
that the CBDH assumption implies that the classical Computational Diffie-Hellman assump-
tion holds in G1.

Knowledge of (Pairing) Pre- Image Assumption (KPA) Recall the knowledge of
exponent assumption for Diffie-Hellman pairs. It states that for any adversaryAwhich, given
group G (of prime-order p) and two generators X , Y ∈ G outputs X ′, Y ′ ∈ G such that there
is s ∈ Zp with X ′ = Xs and Y ′ = Y s , there exists another adversary A′ which given the
same inputs additionally outputs the exponent s. However, when working in the target group
GT of a bilinear group this assumption can be false. For example, assume X = e(A, g2) and
Y = e(B, g2) for some A, B ∈ G1. Then, an adversary that is given A, B ∈ G1 and g2 ∈ G2

can simply output X ′ = e(A, g′
2) and Y

′ = e(B, g′
2) for some g′

2 ∈ G2 without knowing the
discrete logarithm s between X ′ and Y ′.

The following assumption states that although the adversary may not know the discrete
logarithm s between X ′, Y ′ it must at least know a suitable g′

2. Observe, that if the adversary
does indeed know the discrete logarithm s it can easily compute g′

2 as g
′
2 = gs2. In some sense

our new assumption can be viewed as a variant of the knowledge of exponent assumption

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3095

(which in its original form is related to the problem of inverting modular exponentiations).
However, it is rather a “knowledge of group element” assumption that is related to the
difficulty of inverting bilinear pairings.

Formally, security is defined via the following security experiment played between chal-
lenger C and adversary A:

1. C sends a bilinear group G = (p, g1, g2, e) to A together with A, B ∈ G1. Let X =
e(A, g2) and Y = e(B, g2).

2. A outputs X ′, Y ′ 	= 1T .

We say that A wins if there is some t ∈ Zp with X ′ = Xt and Y ′ = Y t .

Definition 4 (Knowledge of Pairing Pre-Image Assumption) We say that the Knowledge of
PairingPre-Image assumption (KPA)holds, if for everyPPTalgorithmA in the above security
game there exists another PPT algorithm A’ that given the same inputs and random coins as
A behaves exactly like A (having the same input and output behaviour) while additionally
outputting g′

2 = gt2 besides X
′, Y ′ such that X ′ = e(A, g′

2) and Y ′ = e(B, g′
2) whenever A

wins.

Modified Knowledge of Co- CDH Assumption The next security assumption we
rely on is based on the following problem in bilinear group G = (p, g1, g2, e). Assume we
provide attacker A with A ∈ G1 (such that A = ga1 for some a ∈ Zp) and let X = e(A, g2).
Intuitively, the task ofA is to computeW such that X = e(A, g2) = e(g1,W) (i.e.W = ga2).
This is equivalent to solving the Co-CDH assumption [5] in G with challenge A, g2, g1.
However, in our security experiment we will also giveA access to a Co-CDH oracle. To this
end A may after receiving A specify Y ∈ GT . As a response A obtains U ∈ G2 such that
XY = e(g1,U). The attacker is successful if it can now compute W . We observe that by
appropriate choices of Y , A can easily compute W .

• One way to do this is to have Y = Xi for some i 	= −1.We then have that XY = Xi+1 =
e(g1,U). Therefore, W can simply be computed from U as W = U 1/i+1.

• Another way is to set Y = e(g1, T) for some T ∈ G2 known to A. We then get that
XY = X ·e(g1, T) = e(g1,U)which is equivalent to X = e(g1,U/T). ThusW = U/T
is a correct solution to the problem.

Basically, our new assumption states that every successful adversary must follow one of
these strategies—or a combination of both. Intuitively this should still hold if the adversary
is, besides U , also provided with A′ = A1/z ∈ G2 (such that e(A, g2) = e(A′, gz2)) since
knowing the z-th root of A for some otherwise unrelated z should not help to break the
Co-CDH assumption.

The entire security experiment consists of four steps:

1. C sends a bilinear group G = (p, g1, g2, e) and g
z
2, h2, h

z
2 for uniformly random z ∈ Zp

to A together with uniformly random A ∈ G1.
2. A outputs Y ∈ GT .
3. C outputs A1/z ∈ G1 and U ∈ G2 such that e(A, g2) · Y = e(g1,U).
4. A outputs W ∈ G2.

A wins if e(A, g2) = e(g1,W).

Definition 5 (MKCoCDH Assumption) We say that the Modified Knowledge of Co-CDH
Assumption (MKCoCDH) holds if for every PPT algorithmA there exists another algorithm
A’ that given the same inputs and random coins as A behaves exactly like A (having the

123

3096 S. Schäge

same input and output behaviour) while in the second step of the above security experiment
additionally outputting i ∈ Zp and T ∈ GT such that Y = e(A, g2)i · e(g1, T) whenever A
wins.

Now consider a simplified game where less setup parameters are produced by the chal-
lenger. (This will later be used in the proof of TOPAS+.)

1. C sends a bilinear group G = (p, g1, g2, e) and gz2 for uniformly random z ∈ Zp to A
together with uniformly random A ∈ G1.

2. A outputs Y ∈ GT .
3. C outputs A1/z ∈ G1 and U ∈ G2 such that e(A, g2) · Y = e(g1,U).
4. A outputs W ∈ G2.

A wins if e(A, g2) = e(g1,W).

Definition 6 (MKCoCDH’ Assumption) We say that the Simple Modified Knowledge of
Co-CDHAssumption (MKCoCDH’) holds if for every PPT algorithmA there exists another
algorithm A’ that given the same inputs and random coins as A behaves exactly like A
(having the same input and output behaviour) while in the second step of the above security
experiment additionally outputting i ∈ Zp and T ∈ GT such that Y = e(A, g2)i · e(g1, T)

whenever A wins.

2.2 Hash functions

Definition 7 (Hash Function) Consider a set H = {Ht }2κ

t=1 of hash functions indexed by
t where each Ht maps from {0, 1}∗ to the hash space T . We require that log2(|T |) is a
polynomial in κ . We say that H is collision-resistant if for uniformly random t no PPT
attacker can output two distinct string m1,m2, such that Ht (m1) = Ht (m2) except with
negligible probability.

In the following we will always implicitly assume that t is chosen uniformly at random
at the beginning of the setup phase. We will then drop t and simply write H (and H ′). In the
security proofs we model hash functions as random oracles.

2.3 Security model

Let us very briefly re-call the basic features of the security model we use. For a more detailed
exposition we refer to [20].

Protocol Framework We consider a set of up to n = n(κ) parties P1 to Pn , each
of which is identified via unique (identity) strings idi for i = 1, . . . , n, and a 2-pass key
exchange protocol � that can be run between two parties that we typically denote as idA and
idB—or Alice and Bob. Unless stated explicitly otherwise we always assume that idA 	= idB .
Each instance of the protocol run at party idi is called session while idi is also called the
holder of that session. A session can either complete, what involves processing incoming
messages and computing outgoingmessages until it computes a session key K , or it can abort
in which case no session key will be computed. Additionally we consider expired sessions
which are completed sessions where the session key and all ephemeral values to compute the
session key have been erased.

The party with which the session key is intended to be shared with after the protocol
run is called peer. (More technically, Bob is the the peer of one of Alice’s sessions if that

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3097

session uses idB to derive the session key). The session identifier (z1,z2,z3,z4) of a session is
a combination of the identity string of the holder z1, the identity of the peer z2, the message
sent by the session z3, and the message received by the session z4. We say that two sessions
match if it holds for their session identifiers (z1,z2,z3,z4) and (z′1,z′2,z′3,z′4) that z1 = z′2,
z2 = z′1, z3 = z′4, and z4 = z′3. There is also a special party called the key generation center
that holds a master secret key msk and publishes a corresponding master public key mpk.
The msk is used to derive secret keys ski for i = 1, . . . , n for each of the parties from their
corresponding identity strings. We assume that each party idi receives its ski from the KGC
(in an authentic and confidential way that is out of the scope of this paper). The master public
key contains all public information required by the parties to run the protocol. We assume
that each party knows all identity strings of the other parties.

Attacker We consider an attacker A that controls the entire network, being able to
intercept, modify, drop, replay, and insert messages on transit. To model this, all outgoing
messages are delivered to the adversary. If A only relays all the messages that are sent to
some session by its peer it is called passive with respect to that session, otherwise it is called
active. A can also activate sessions of parties to make them engage in a protocol run with
peers ofA’s choice. To model attack capabilities that grant the adversary access to the secret
information of sessions, parties, or the KGC, we allowA to sent different types of queries to
sessions. The following two queries can be used by the attacker to reveal secret values.

• A Reveal query reveals the session key of a complete session.
• A Corrupt query returns all information in the memory of the holder of a session. This

includes the secret keys of the party as well as the state information of all its sessions. If
a query has been asked to a session with holder idi we also say that idi is corrupted.

We say that a session is exposed if its holder has been corrupted or its session key been
revealed. Additionally sessions are considered exposed if there exists a matching session that
is exposed.

Additionally, the following two queries are granted to the attacker.

• A Test query can only be asked once and only to a complete session that is not exposed.
Depending on the outcome of a randomly tossed coin c ∈ {0, 1}, the output of this query
is either the session key K stored at that session (in this context also called the test-
session) in case c = 0 or a random key uniformly drawn from the space of session keys
in case c = 1.

• The adversary may also make (up to n) Register queries. On input the j-th identity id j

with id j /∈ {id1, . . . , id j−1} for 1 ≤ j ≤ n, this query creates5 party Pj and assigns
identity id j to it. Also the secret key sk j corresponding to identity id j is given to Pj . We
assume that parties are initially uncorrupted.

Observe that in contrast to [20]wehave formally introduced aRegister query.Thismodels that
the adversary may also adaptively choose the identities of the honest (uncorrupted) parties.
This is much stronger than in themOT model, where the identities of the uncorrupted parties
are fixed at start-up. (We consider it as an essential feature of identity-based cryptography
that the adversary may choose the identities of the honest parties. This is in fact not possible
in classical key exchange, where we cannot rule out that when an adversary registers a new
public key that it knows the corresponding secret key.) Also, via a combination of Register
and Corrupt queries the adversary may obtain secret keys on identities of his choice. The

5 Alternatively wemay think of all the Pi for 1 ≤ i ≤ n to exists before the security game without any identity
or secret key. Moreover, they cannot be corrupted. Then Register only assigns id j and sk j to Pj .

123

3098 S. Schäge

originalmodel in [24] also specifies queries that reveal the secret state information of sessions.
However, as stated before, like mOT, our protocol will not be secure against StateReveal
queries (even not when only revealing the ephemeral public keys gx1 and gy2). As in [20] we
instead require protection of these values to be at the same level as that of ski . As mentioned
before we can show in Appendix F that any protocol which allows the adversary to obtain
ephemeral secret keys, cannot provide full PFS. In general, we require that except for session
keys, all internal information of parties and sessions can only be revealed via full party
corruptions.

Security Definitions Let SG (short for security game) denote the following security
game between a challenger C and an attacker A.

1. C gives to A the master public key mpk.
2. A may activate sessions and issue Reveal, Corrupt, and Register queries to its liking.

Also, A may use its control of the network to modify messages on transit.
3. A may ask the Test query to some completed, unexposed session with holder idA and

peer idB such that idA 	= idB . Let K be the response and c the internal random coin
generated by the test session when answering the query.

4. Amay activate sessions, issue Reveal, Corrupt, and Register queries, and use its control
of the network to modify messages on transit.

5. A outputs c′ ∈ {0, 1}.
We say that an attackerA succeeds in a distinguishing attack if c′ = c, the test session is not
exposed and the peer of the test-session has not been corrupted.

Definition 8 (Security of Identity-based Key Agreement Protocol) An identity-based key
agreement protocol � is secure if for all PPT attackers A that are given the above attack
capabilities, it holds that i) if two matching sessions of uncorrupted parties complete the
probability that the corresponding session keys differ is negligibly close to zero and ii)A has
success probability in a distinguishing attack negligibly close to 1/2.

Definition 9 (Weak PFS) We say that � is secure with weak perfect forward secrecy if in
SG attacker A is also allowed to corrupt the peer and the holder of the test-session after the
test-session key expired and A has remained passive (only) with respect to the test-session
and its matching session(s).

We stress that in our security proof of weak forward secrecy, security even holds when the
attacker knows the secret long term keys (but no other session specific secret information)
of the peer and the holder and the KGC before the session key is computed. This can be
interesting when dealing with devices where long-term keys and session specific information
are stored separately in two different memories possibly at different locations, but both with
approximately the same level of protection against unauthenticated access. Thus corruptions
would not reveal session-specific information. In these scenarios the Corrupt query would
only allow to reveal the long-term secrets. Next, we present a formal definition that captures
this strengthened form of weak PFS. Essentially, it reflects the intuition that forward secrecy
should only rely on the secrecy of the ephemeral keys but not of any long-term secret.

Definition 10 (EnhancedWeak PFS)We say that� provides enhanced weak perfect forward
secrecy if � is secure with weak perfect forward secrecy even if A is additionally given the
secret keys of all parties and the secret key of the KGC at the beginning of the security game
and we allow that idA = idB for the test-session and its matching session.

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3099

Let us now define full PFS. In contrast to the previous definitions we do not require the
attacker to remain passive with respect to the test-session.

Definition 11 (Full PFS) We say that � is secure with full perfect forward secrecy if in SG
attacker A is additionally allowed to i) obtain the (long-term) secret key of the holder of the
test session at the beginning of the security experiment and ii) corrupt the peer of the test
session after the test-session key expired.

Key Compromise Impersonation Attacks We also cover key compromise impersonation
attacks[24]. In a KCI attack, A may after obtaining the secret key of party idA make idA
falsely believe that it is communicating with some other uncorrupted party idB although idA
actually isn’t. (Obviously impersonating Alice to other parties with the help of Alice’s secret
key is trivial.)

Definition 12 (KCI Security) We say that � is secure against KCI attacks if in SG attacker
A is additionally allowed to reveal the secret key of the holder of the test session at the
beginning of the security experiment (Step 2).

Obviously, KCI security implies security under Definition 8 (Security of Identity-based
Key Agreement Protocol) since the adversary is only given additional information to mount
its attack.

Reflection Attacks We additionally cover reflection attacks in which an attacker
makes two sessions of the same party communicate with each other. As pointed out by [20],
these attacks are relevant in real-life scenarios when Alice wants to establish a connection
between two of her computers (for example access to a home computer via her laptop).

Definition 13 (Security against Reflection Attacks)We say that� is secure against reflection
attacks if in SG attacker A may also choose a test-session whose peer is equal to its holder,
i.e. allowing idA = idB .

3 Main result

A detailed description of TOPAS is given in Fig. 1. We remark that the challenge in designing
a protocol which provides optimal message size and full PFS is that any such protocol
must provide two key properties. First, it must include an exchange of ephemeral public
keys as otherwise we cannot have any meaningful form of forward secrecy. (Otherwise
the session key can be derived by Alice solely from her long-term key and any adversary
that obtains this key in a PFS experiment can also compute the session key.) On the other
hand, the protocol must also somehowmake the parties ‘authenticate’ their ephemeral public
keys using their corresponding long-term secrets as otherwise, by the impossibility result of
Krawczyk (Appendix E), we cannot have full PFS. The difficulty when designing a protocol
with optimalmessage length now lies in the fact thatwe need to combine the two requirements
into a single short value.

In TOPAS, Alice and Bob exchange blinded versions of their long-term keys. In particular,
in each message, the long-term secret is multiplied by a fresh ephemeral Diffie-Hellman key.
Each long-term key in turn is a unique signature on the identity of its holder under the master
secret. The verification equation for this signature relies on the bilinear pairing and can be
re-written as

e(skA, gz2)/e(H(idA), g2)
?= 1.

123

3100 S. Schäge

The crucial feature of the key derivation of TOPAS is that, due to the bilinearity of the
pairing, Bob can remove the signature skA (and thus any identity-specific information) from
the message a = gx1 skA such that the shared key is independent of skA. However, the result
lies in the target group and has an additional exponent z:

e(a, gz2)/e(H(idA), g2) = e(gx1 , gz2)e(skA, gz2)/e(H(idA), g2)

= e(gx1 , gz2) = e(g1, g2)
xz .

By symmetry, Alice computes e(g1, g2)yz . Together with their own secret ephemeral key,
each party can now compute e(g1, g2)xyz . In the same way, we can obtain

e(a, hz2)/e(H(idA), h2) = e(gx1 , hz2)e(skA, hz2)/e(H(idA), h2)

= e(gx1 , hz2) = e(g1, h2)
xz

in TOPAS.
In the rest of this section, we present a security analysis of our new protocol. We start by

showing that TOPAS provides security against KCI and reflection attacks, as well as enhanced
weak PFS under non-interactive security assumptions. Next, we provide a proof of full PFS
security.

3.1 Proof of security against KCI and reflection attacks

Before we begin with the formal security proof, let us provide some intuition for the overall
strategy. We present a general exposition that is valid for all the protocols presented in this
paper and depicted in Figs. 1, 2, and 3. To this end, we introduce some new variables k∗
and k that will be initialized differently for each of our protocols. As a consequence of this
notation, in each protocol, session keys are derived by querying k̂ = (k∗, idA, idB , a, b) to
the random oracle H ′. For TOPAS, we define k∗ = (k, k′) and k = kz

2
. In TOPAS+, we use

k∗ = k and k = kz
2
while in FACTAS we will define k∗ = k and k = k4. We note that k is

always part of k∗.
First, as we use H ′ to compute the final session key, and since H ′ is modeled as a random

oracle, any successful attacker needs to query k̂ = (k∗, idA, idB , a, b) to the random oracle
H ′ such that H ′(k̂) = K (where K is the real session key computed by the test-session)
before outputting its guess b′.6 Informally, the attacker has no information on the session
key of a particular session unless it has either asked a Reveal query to that session (or its
matching session) or asked k̂ to the random oracle H ′.

Our overall simulation strategy can be outlined as follows. The simulator chooses setup
parameters such that it

1. can compute k for any session solely from the session-id (idA, idB , a, b), even for the
test-session.

2. cannot compute k for the test-session. (Actually, for the proof to go through it is even not
necessary that the simulator can compute k for any session at all.)

3. can check whether for any H ′ query k̂ = (k∗, idA, idB , a, b), k∗ is indeed the unique
intermediate value that occurs in the computation of the session key for session-
id (idA, idB , a, b). In this context we also say that k∗ is correct (with respect to

6 This is because any adversary not querying the random oracle at k̂ has no information on the pre-image of K .
This simply follows from the fact that the outputs of a random oracle are chosen at random and independently
of the input values—except that they have to be consistent with previous queries. Also, the output space of the
hash function is exponential in the security parameter, such that with overwhelming probability no collisions
occur after a polynomial number of queries.

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3101

(idA, idB , a, b)). In particular, the simulator (but not necessarily the attacker) can eval-
uate an efficient algorithm that given k and k̂, outputs 1 if k∗ is correct with respect to
(idA, idB , a, b) and 0 otherwise.

4. can extract a solution to the complexity challenge when given the H ′ query k̂ =
(k∗, idA, idB , a, b) of the test-session, in particular k.

We remark that the condition in 3.1 is very crucial and the main challenge in the security
proofs. The simulator must always be able to recognize that a given value k (as part of k∗) is
exactly the value that a real session would compute. On the other hand, it must not (at least
in the test-session) be able to compute the intermediate value k on its own. We need this to
recognize if and when the adversary queries a correct k∗ to the random oracle. If k∗ is correct
with respect to the test-session the simulator can use k to extract a solution to the complexity
challenge. However it is also important to check if a H ′ query k∗ is correct with respect to
some other session as we then have to put additional effort into ensuring that the outputs of the
Reveal and H ′ queries remain consistent. (This is exemplified in Appendix H.3.) Otherwise
the adversary could tell the real security game (in which each session always can compute
k) from the simulated one (that in contrast sometimes cannot compute k) apart. In essence,
we need the underlying problem to behave like a gap-problem, where computing a solution
is hard even when given access to a corresponding decision oracle.

In each of our protocols we use a different approach to check whether k∗ is correct with
respect to some session. In TOPAS, this is ensured via a trapdoor test that was used by Cash,
Kiltz, Shoup to reduce the strong twin Diffie-Hellman problem to the ordinary decisional
Diffie-Hellman problem [10]. To this end, we require the adversary (and the honest user) to
compute, besides k an additional value k′ when deriving the session key. Using the trapdoor
test and k′, the simulator can check whether kz

2 = k. As a result, we can base all security
proofs of our first protocol, except for the proof of full PFS, on non-interactive security
assumptions. In TOPAS+, we dowithout the additional value k′ at the cost of stronger security
assumptions. Here we rely on variants of the Strong Diffie-Hellman assumption. We modify
two of the security assumptions that we rely on, the CBDHI assumption and the GCBDHI
assumption, to also give the adversary access an oracle Oz2(·, ·) that checks whether for a
given pair (k̃, k̃∗) it holds that k̃∗ = k̃z

2
. In this way the simulator can directly use its access

to the Strong Diffie-Hellman oracle to check if k∗ is correct. As a result, our second protocol
has a more efficient key derivation procedure than our first. However, the downside of this
approach is that our second protocol relies on interactive security assumptions in all security
proofs of security (except for the proof of enhanced weak PFS). In FACTAS, the simulator
will simply check whether (k∗)4 = k. We stress that for all of our protocols we need that
there is no other value k̃∗ 	= k∗ which, besides the correct intermediate value k∗, can pass
the check. Observe that for all of our protocols this is guaranteed since exponentiation by z2

constitutes a permutation in prime-order group GT while exponentiation by 4 represents a
permutation in the group of signed quadratic residues SQRN .

3.2 Basic security properties

Theorem 1 In the random oracle model, TOPAS is secure against KCI attacks under the
(2, 3)-CBDHI assumption, and secure against reflection attacks under the (2, 3)-GCBDHI
assumption.

Proof It is straight-forward to show that two matching sessions compute the same key. Since
they are matching, they compute the same session identifier. Also, as shown above they

123

3102 S. Schäge

compute the same values k, k′. Thus all inputs to H ′ are identical for each session and the
session key is equal too.

In the next step, we show that real session keys are indistinguishable from random keys.
Assume we are given the random input G = (p, ĝ1, ĝ2, e) and (ĝt1, ĝ

t2
1, ĝ

t
2, ĝ

t2
2, ĝ

t3
2) to the

CBDHI/GCBDHI challenge. First, we let the simulator set g1 = ĝt1 and gz
i

2 = ĝt
i

2 for
i = 1, 2, 3. This implicitly sets msk = z = t . Next, the simulator draws random r , s ∈ Zp

and sets h2 = gs2/(g
z2
2)r = gv

2 and hz2 = (gz2)
s/(gz

3

2)r = gvz
2 for some v ∈ Zp . This

implicitly sets v = s − r z2. Observe that all values are distributed exactly as in the original
security game.

The simulator will randomly choose one party, Bob, to be the peer of the test-session.
Since there is only a polynomial number of peers, the simulator’s guess is correct with
non-negligible probability. Throughout the following, we therefore assume that Bob will
not be corrupted by the adversary. Similarly, the simulator will guess the test-session with
non-negligible probability.

We will consider two different types of attack strategies. Either the attacker tries to launch
a KCI attack or a reflection attack.We exploit that security under KCI attacks implies security
in the sense of Definition 8 (Security of Identity-based Key Agreement Protocol). (The only
difference is that the attacker may in a KCI attack additionally request the secret key of
Alice.) The proofs for both attack types are slightly distinct in the extraction phase. For ease
of exposition, we describe a simulation strategywhich is for themost part valid for both attack
types. We clearly mark when and how the simulation strategies differ in the extraction phase.
For better overview, in both cases we always ensure that the peer (Bob) of the test-session
which is either held by Alice 	=Bob (in case of KCI attacks) or Bob himself (when dealing
with reflection attacks) remains uncorrupted. Let us now present the general setup.

Setup and simulation of queries We will first show how the simulator will setup
all parameters to be able to answer Corrupt queries for any party except Bob. To this end,
the simulator programs the outputs of the random oracle H for all inputs except for idB as
follows: given input idi it chooses a random value ri ∈ Zp and outputs H(idi) := gri1 = ĝzri1 .
In this way, the simulator can always compute a corresponding secret key as ski = ĝri1 and
simulate the Register and Corrupt queries. However, for idB it sets H(idB) = ĝ−rB

1 for some
random rB ∈ Zp . Observe that the simulator does not know the corresponding secret key of
Bob. In almost all protocol runs the simulator makes sessions (except for those whose holder
is Bob) compute their messages and keys as specified in the protocol description. In this way
it can also answer all Reveal queries (because the simulator knows the secret key of any party
except for Bob).

To compute messages in sessions where Bob is the session holder (we denote the message
produced by this session b), the simulator does the following. It chooses a random b′ ∈ Zp

and computes b = ĝb
′

1 . It then holds that bz/H(idB) = ĝzb
′+rB

1 = gb
′+rB/z

1 . Observe that
now the secret exponent y in b = gy1 (H(idB))1/z is not known to Bob (i.e. the simulator that
simulates Bob) as

y = b′/z + rB/z2

and z is unknown. Observe that, as a consequence, the simulator cannot compute k on behalf
of Bob anymore when only given message a in case a is produced by the adversary in an
active attack.

Simulating Reveal Queries for Bob Let us show now how the simulator can
successfully simulate sessions (and in particular Reveal queries) involving Bob (and the

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3103

adversary). To this end we first show that, although the simulator cannot compute k, it can
nevertheless always compute k = kz

2
even when the adversary A makes Bob engage in a

communication with Bob himself. Recall that

kB =
⎛
⎝ e

(
a, gz

3

2

)

e
(
H(idA), gz

2

2

)
⎞
⎠

y

.

Now, independent of whether a has been computed by Bob (when considering reflection
attacks), a session of any other party, or the adversary, the simulator can compute kB for
y = b′/z + rB/z2 as

kB =
e
(
a , gyz

3

2

)

e
(
H(idA) , gyz

2

2

) =
e

(
a ,

(
gz

2

2

)b′
·(gz2

)rB
)

e
(
H(idA) ,

(
gz2

)b′·(g2)rB
) .

In the next step, we show that the simulator which knows k can check, given k, k′, if
indeed k = kz

2
and k′ = kv . To this end we apply a variant of the trapdoor test that was

introduced in [10]. Recall that we have h2 = gv
2 = gs2/(g

z2
2)r and hz2 = gvz

2 = (gz2)
s/(gz

3

2)r

for v = s − r z2 unknown to the simulator. We will now show that with overwhelming
probability kz

2 = k ∧ kv = k′ iff kr k′ = ks . First assume that kz
2 = k ∧ kv = k′. Then

k
r
k′ =

(
kz

2
)r

kv =
(
kz

2
)r

ks−r z2 = ks which shows the first direction. Next assume that

k
r
k′ = ks . Observe that since s = v + r z2 we get that

ks = kv+r z2 = kv
(
kz

2
)r = k′kr

and thus (
k/kz

2
)r = kv/k′ (1)

while r is information-theoretically hidden from the adversary. Now if k = kz
2
this must

imply kv = k′. In case k 	= kz
2
,
(
k/kz

2
)r

is uniformly distributed in GT (for random r)

while kv/k′ is fixed. Thus the success probability of an adversary to produce k, k′ such that
Eq. 1 is fulfilled is upper bounded by 1/p which is negligible.

So we have now showed that the simulator can always compute k and always checks
whether a given pair k, k′ happens to be “correct” (with respect to some session) in the sense
of kz

2 = k∧kv = k′. Let us next describe the strategy of the simulator to program the second
random oracle, H ′, and answer Reveal queries to sessions involving idB . Themain problem is
to keep the outputs of the random oracle and the outputs to the Reveal queries consistent. The
simulator maintains two lists R and S which are initially both empty. In R we store queries
to the random oracle H ′ and the corresponding answers. In S we simply store session-ids.
Let us first describe the basic strategy. Whenever, the attacker queries the random oracle with
input xi we look up if there is some entry (xi , yi) already in R. In case it is not, we generate
and output a new random string yi and add (xi , yi) to R. If (xi , yi) is already in R we output
yi . To compute session-keys for session-id idA, idB , a, b we proceed as follows. We look up
if there is some entry (ui , vi) with ui = (idA, idB , a, b) already in S. In case it is not, we
generate and output a new random string vi and store (ui , vi) in S. If (ui , vi) is already in
S we output vi . The challenge now is that we have to make sure that the answers stored in
S and R remain consistent. In particular, sometimes the outputs stored in S and R must be

123

3104 S. Schäge

identical. (For example, imagine an adversary that successfully computes the values k, k of
some session with session-id idA, idB , a, b. Obviously, querying x j = (k, k′, idA, idB , a, b)
to the random oracle must produce the same output as when asking the Reveal query to
session idA, idB , a, b.) To cope with such situations we need to perform additional checks.
So whenever we receive a query xi = (k, k′, idA, idB , a, b) we additionally check whether
there is a corresponding query in S with u j = (idA, idB , a, b) such that kz

2 = k ∧ kv = k′
for the corresponding k value of that session. On success we output yi = v j as stored in S.
Otherwise we output a random yi . On the other hand, whenever we encounter a Reveal query
for some session held by Bob we can always compute ui = (idA, idB , a, b) and k. Next we
also check whether there is some entry (x j , y j) with x j = (k, k′, idA, idB , a, b) such that

again kz
2 = k ∧ kv = k′. On success, we output vi = y j as stored in R, otherwise we output

a random vi .
Extraction Now that we have showed how to simulate all attack queries, let us proceed

to showing how the simulator extracts a solution to the CBDHI challenge. From this point
on, we cover KCI attacks and reflection attacks separately. Either the test session is held by
Alice	=Bob or Bob.

First we show how the simulator can extract a solution if the test-session is held by Alice.
For this session we deviate in the simulation of the test-session from the general simulation
strategy that is described above. Instead of generating a honestly as a = gx1H(idA)1/z the

simulator computes a as a = ĝa
′

1 H(idA)1/z for some random a′ ∈ Zp . Observe that now the
discrete logarithm x in a = gx1H(idA)1/z is implicitly set to x = a′/z.

Assume the adversary has non-negligible success probability when querying the Test
query to this sessions. In particular, it can decide whether the key provided by the Test query
is the real session key or a random key from the same key space. We know that the attacker
must ask the correct k, k′ values with respect to the test-session to H ′. With y = b′/z+rB/z2

and x = a′/z the simulator in this way obtains k such that

k = e(g1, g2)
xyz = e(ĝ1, ĝ2)

xyz2 = e(ĝ1, ĝ2)
a′/z·(b′/z+rB/z2)·z2

= e(ĝ1, ĝ2)
a′b′+a′rB/z .

From this we can easily compute a solution d to the CBDHI assumption as

d =
(
ke(ĝ1, ĝ2)

−a′b′)1/a′rB = e(ĝ1, ĝ2)
1/z .

Let us now show how to extract a solution to the GCBDHI challenge in case the test-
session is held by Bob. Recall that the GCBDHI challenge also containsw ∈ Zp and the task

is to compute the value e(ĝ1, ĝ2)
z+w

z2 . In this case we already have that each message output
by Bob is constructed as b = ĝb

′
1 for random b′. Now for the test-session we slightly deviate

and set a as a = ĝa
′

1 ĝrB1 for a′ ∈ Zp with a′ = rBw − b′ (i.e. such that rB/(a′ + b′) = w).
Recall that H(idB) = ĝ−rB

1 . This sets x in a = gx1H(idB)1/z = gx1 · ĝ−rB
1 to x = a′ + rB/z.

Also assume that b = ĝb
′

1 for random b′, implying y = b′/z+rB/z2. This time the simulator
obtains the value k from the queries to the random oracle such that

k = e(g1, g2)
xyz = e(ĝ1, ĝ2)

xyz2

= e(ĝ1, ĝ2)
(a′+rB/z)·(b′/z+rB/z2)·z2

= e(ĝ1, ĝ2)
a′b′+(a′+b′)rB/z+(rB)2/z2 .

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3105

We now easily get a solution to the GCBDHI assumption as

(
ke(ĝ1, ĝ2)

−a′b′)1/(a′+b′)rB = e(ĝ1, ĝ2)
z+rB /(a′+b′)

z2

= e(ĝ1, ĝ2)
z+w

z2 .

This concludes the proof of security. ��
Enhanced Weak PFS Let us now show that TOPAS provides enhanced weak PFS. The

proof is relatively straight-forward.

Theorem 2 TOPAS provides enhanced weak perfect forward secrecy under the CBDH
assumption.

Proof Except for the generation of two messages a and b, the simulator can setup everything
as specified in the protocol description. As before, with non-negligible success probability a
is the message sent by the test-session and b is the message received by the test-session. (In
contrast to the previous proof the simulator will now also know the secret key of Bob and the
master secret z.) Since almost everything is computed as specified in the protocol description
and since the session key is expired the simulator can answer all queries of the attacker. We
exploit that for enhanced weak PFS security we can assume that a and bmay not be produced
or modified by the adversary. Let gx1 , gy1 be the CBDH challenge. The simulator computes

a = gx1H(idA)1/z and b = gy1H(idB)1/z .

We now have that k = e(g1, g2)xyz . As before, any successful adversary must query this
value to the random oracle H ′ before answering the test-query. The simulator can guess with
non-negligible success probability which of the values queried to H ′ is equal to k. Then it
can simply compute the answer to the CBDH challenge as k1/z = e(g1, g2)xy . ��

3.3 Proof of full PFS security

Theorem 3 TOPAS provides full PFS under the (3, 3)-CBDHI, theKPA, and theMKCoCDH
assumption.

In contrast to the previous security proof of enhanced weak PFS, the adversary can also
modify the messages sent and received by the test-session in the security experiment for full
PFS.

Proof Assume there exists an adversaryA0 that breaks the full PFS security of the protocol.
In the following we will step-wisely construct a chain of adversaries A0 to A6 such that A6

breaks the (3, 3)-CBDHI assumption. Each adversary Ai for i = 1, 2, 3, 4, 5, 6 is based on
the existence of the previous one Ai−1.

Let us first recall the essence of the security experiment when proving full PFS security.
Besides the setup parameters, the adversaryA0 is also given a = gx1H(idA)1/z, skA, H(idB)

(but not (H(idB))1/z). In response, the adversary computes b ∈ G1. Let Y ∈ G1 be the
value such that b = Y (H(idB))1/z . Next, the challenger provides the adversary with skB =
(H(idB))1/z . Now since the adversary can distinguish K from a random key it must query
the corresponding

k = (
e(b, gz2)/e(H(idB), g2)

)x = (
e(a, gz2)/e(H(idA), g2)

)y

123

3106 S. Schäge

to the random oracle H . In the following we always assume, for simplicity, that k is directly
given to the challenger.

AttackerA6 will simulate the real security game toA5 using a similar setup as in the proofs
before. Assume we are given the random CBDHI challenge consisting of G = (p, ĝ1, ĝ2, e)
and (ĝt1, ĝ

t2
1 , ĝt

3

1 , ĝt2, ĝ
t2
2 , ĝt

3

2). Let us first show how the simulator will construct the first part
of the public parameters in mpk that are to be given toA5. Again we let the simulator output

gz2 = ĝt2 as part of mpk. Internally, it will also set g
zi
2 = ĝt

i

2 for i = 2, 3. This implicitly sets

msk = z = t . The simulator draws random r , s ∈ Zp and sets sets h2 = gs2/(g
z2
2)r = gv

2 and

hz2 = (gz2)
s/(gz

3

2)r = gvz
2 for some v ∈ Zp . This implicitly sets v = s − r z2. Observe that

all values are distributed exactly as in the original security game.
Next, the simulator draws a random coin q ∈ {0, 1} and a uniformly random rB ∈ Zp .

Depending on q , the remaining setup values will slightly differ. That is, the simulator sets

H(idB) = (ĝt
q

1)rB = (ĝz
q

1)rB and g1 = ĝt
q+1

1 = ĝz
q+1

1 .

Observe that the simulator does not know skB in case q = 0. However, in case q = 1 the
simulator knows skB = (H(idB))1/z = ĝrB1

For q = 0 and q = 1, the simulator programs the outputs of the random oracle H for
all inputs except for idB as follows: given input idi (regardless of it being chosen by the
adversary as part of a Register query or not) it chooses a random value ri ∈ Zp and outputs

H(idi) := gri1 = ĝz
q+1ri

1 . In this way, the simulator can always compute a corresponding

secret key as ski = ĝz
qri

1 and answer the Corrupt query. As in the previous proofs, all sessions
can be simulated with this setup except for the test-session.

Our next goal is to step-wisely construct attackerA5. It behaves likeA0 but outputs some
additional values in case the simulator correctly guesses the test-session (and its peer). We
stress thatA5 is an attacker against the full PFS security just likeA0. Let us begin our formal
analysis. Assume we have a successful adversary A0.

Attacker A1 Attacker A1 will work exactly like A0 except that it outputs k1/x =
e(b, gz2)/e(H(idB), g2) together with b and g1, X = a/skA = gx1 at the end of the security
game. Observe that these values can easily be computed from the public values alone. In this
way, A1 can easily be computed from A0.

Attacker A2 Now, sinceA1 outputs k, X , k1/x , g1, by the security of the Knowledge of
Pairing Pre-Image assumption there also exists an adversary A2 that works exactly like A1

except that it also outputs g∗
2 together with k such that k = e(X , g∗

2) and k1/x = e(g1, g∗
2).

Since k = e(g1, g2)xyz , we must have g∗
2 = gyz2 .

Attacker A3 Next, we show that ifA2 wins the security game against a PFS challenger
we can construct an attacker A3 that can win in the security of the MKCoCDH assumption.

Let us recall the security game of the Modified Knowledge of Co-CDHAssumption. First
A3 receives G, gz2, h2, h

z
2 and B ′ ∈ G1. Next, A3 outputs Y ′ ∈ GT . As a response, the

challenger outputs B ′1/z and U ′ ∈ G2 with e(B ′, g2) · Y ′ = e(g1,U ′). Finally, A3 outputs
W ′. It wins if e(B ′, g2) = e(g1,W ′).

Wewill now describe howA3 works by usingA2 as a black-box. FirstA3 uses the first part
of its inputG = (p, g1, g2, e), g

z
2, h2, h

z
2 as the public keympk used in the PFS security game

when simulating the challenger to A2. Next, it programs the random oracle H as described
before such that all the secret keys H(idA) for all the identities idA are known to A3 except
for idA = idB . Moreover,A3 sets H(idB) := B ′. In this way,A3 can construct all the values
G, gz2, h2, h

z
2, a = gx1H(idA)1/z, skA, H(idB) and simulate the full PFS challenger to A2.

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3107

When A2 outputs b, k1/x . Attacker A3 sends Y ′ = k1/x to its challenger. In response A3

receives (H(idB))1/z and U ′ from its challenger. The value (H(idB))1/z is used as input to
A2. The final output of A2 is k and g∗

2 = gyz2 . A3 can now compute W ′ = U ′/gyz2 . Observe
that W ′ is correct since

e(B ′, g2) = e(g1,U
′)/Y ′ = e(g1,U

′)/e(g1, g∗
2)

= e(g1,U
′/g∗

2) = e(g1,W
′).

So whenever A2 succeeds in a security game with the PFS challenger so will A3 in the
security game of the Modified Knowledge of Co-CDH Assumption.

Attacker A4 Now by the security of the MKCoCDH assumption, as A3 succeeds
there exists another adversary A4 that works exactly like A3 except that it also outputs
i ∈ Zp, T ∈ GT together with Y ′ such that

Y ′ = e(B ′, g2)i · e(g1, T).

We stress again that in the above series of attackers we have that if A0 wins so will A4.
Attacker A5 By the previous arguments, we are guaranteed that attackers A4 and A2

exist. Moreover, A4 can use A2 as a black-box to win in the MKCoCDH security game
whenever A2 wins.

We will now show an attacker A5 that uses A4 and A2 as a black-box to win against
a PFS challenger while outputting additional values besides what is required by definition.
In the following, A5 will play the role of the MKCoCDH challenger against A4 and play
the role of the PFS challenger against A2. A5 receives the setup parameters G, gz2, h2, h

z
2,

skA, H(idB), and a as input. It relays G, gz2, and B ′ := H(idB) to A4. In response, A4,
outputs k1/x together with i, T to A5. At the same time A5 sends all values G, gz2, h

z
2, h

z
2,

skA, H(idB), a to A2. In response, A2 outputs b and k1/x to A5.
The attacker A5 will output b and i, T , i.e. a mix of the outputs by A4 and A2. Next, A5

receives (H(idB))1/z from its PFS challenger. AttackerA5 simply relays this value toA2. As
a response A2 outputs k and g∗

2 = gyz2 . These two values are finally output by A5. Observe
that we have not completed the run for A4. However, we know by our previous analysis that
if A2 is successful, so will A4 (if we complete the run of A4). However, at this point it is
hidden fromA4’s view that we abort, as all values given toA4 are distributed exactly as in the
real security game. Nevertheless, already at this point we must have that the values i, T are
such that Y ′ = e(B ′, g2)i · e(g1, T) (otherwise A4 could not win in case we completed the
run with a winningA2). In all of this,A5 will deal with any attack queries made byA2 to its
PFS environment by simply relaying them to its own PFS challenger and the corresponding
answers back to A2.

Attacker A6 We will now present an attackerA6 that can break the CBDHI assumption
by using attacker A5. A6 will, using the CBDHI challenge, simulate all sessions (except for
the test-session) as described before. Let us now turn our attention to the test-session. We
have to consider two cases: either it holds for the value i output byA5 that i 	= −1 or i = −1.

Let us first consider the case where i 	= −1. With probability at least 1/2 we have that
q = 0. In this case, it holds that H(idB) = ĝrB1 . We also have that

e(b, gz2)

e(H(idB), g2)
= e(Y , gz2) = e(H(idB), g2)

i · e(g1, T).

This directly gives
(
e(b, gz2)

e(g1, T)

)1/rB (i+1)

= e(ĝ1, ĝ2)
1/z .

123

3108 S. Schäge

It is important to observe that in case i 	= −1 the simulator does not need to know H(idB)1/z .
It can already break the CBDHI assumption just after receiving b and (i, T).

Now let us turn our attention to the case where i = −1. In this case, with probability
at least 1/2 we have that q = 1 and H(idB) = (ĝt)rB and A6 knows skB = ĝr1 . It can
thus successfully send skB to the adversary A5 and receive back gzy2 . Since i = −1 we have
e(b, gz2) = e(g1, T). It holds that

e(b, gz2) = e(YgrB/z2

1 , gz2) = e(g1, g
zy+rB/z
2) = e(g1, T).

This immediately shows that T /gzy2 = grB/z
2 . We finally get a solution to the complexity

challenge as

e(ĝ1, T /gzy2)1/rB = e(ĝ1, ĝ2)
1/z .

This completes the proof of security. ��

4 Higher efficiency

TOPAS+ is a variant of our protocol that features higher efficiency in the key derivation
process (Fig. 2). Essentially, it is equivalent to our first protocol except that now only one
intermediate value k is computed and fed into the hash function H ′. As a consequence we can
have a shorter master public key.More importantly, when computing K each party only needs
to apply two pairings one of which is message-independent and only needs to be computed
once for every communication partner. The security proof of this variant will additionally rely
on a variant of the so-called Strong Diffie-Hellman (SDH) assumption. Basically, it states
that the assumptions used in the proofs of key indistinguishability, security against reflection,
KCI, and full PFS attacks remain valid even if the adversary has access to an oracle Oz2(·, ·)
with the following property: given k̃ ∈ GT , k̃∗ ∈ GT , Oz2(·, ·) outputs 1 iff k̃z

2 = k̃∗ and 0
otherwise.

Definition 14 (CBDHI Assumption) We say that the (k, l)-CBDHI’ assumption holds if the
(k, l)-CBDHI assumption holds evenwhen the adversary is additionally given access to oracle
Oz2(·, ·) in the CBDHI security game. Likewise we say that the (k, l)-GCBDHI’ assumption
holds if the (k, l)-GCBDHI assumption holds even when the adversary is additionally given
access to oracle Oz2(·, ·) in the GCBDHI security game.

We are now ready to state our result on the security of TOPAS+.

Theorem 4 TOPAS+ (Fig. 2) has the same security properties under the same security
assumptions as TOPAS (Fig. 1), except that it relies on the (2, 3)-CBDHI’, (3, 3)-CBDHI’,
(2, 3)-GCBDHI’, and MKCoCDH’ assumptions instead of the (2, 3)-CBDHI, (3, 3)-
CBDHI, (2, 3)-GCBDHI, and MKCoCDH assumptions.

The security proof remains virtually untouched. The only difference is now that we do
not need a trapdoor test to maintain consistency when simulating the random oracle. Instead
we can directly use the oracle Oz2 to check whether a query k

∗ = k of the adversary (as part
of the H ′ query k̂) actually equals the intermediate value computed by some session in the
real security game. Again, the simulator is only able to compute k = kz

2
for all sessions but

using Oz2(·, ·) it can check if Oz2(k
∗, k) is equal to 1. These modifications affect all proofs

except for the proof of enhanced weak PFS.

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3109

5 Deniability

Deniable key exchange protocols protects Alice against the unwanted disclosure of her par-
ticipation in a protocol run via Bob. This can be used to implement a digital variant of
“off-the-record” communication over insecure networks. Intuitively, a key exchange proto-
col provides deniability, if Bob cannot convince a judge, Judy, that Alice once talked to him.
To show deniability, it suffices to show that every transcript and corresponding session key
that Bob presents to Judy can equally have been produced by a public simulation algorithm
that has no access to Alice. More formally, for every PPT Bob that communicates with
the PPT Alice, there exists a PPT simulator which when given the same inputs (including
the same random coins) as Bob produces transcripts and corresponding session keys which
are indistinguishable from those produced by Bob. For a formal treatment of deniability in
key exchange protocols see [14]. Implicitly authenticated DH-based protocols like HMQV
trivially fulfill this strong form of deniability.

Lemma 1 Any implicitly authenticated 2-pass protocol meets the strong notion of deniability
of [14].

Proof To see this, observe that Alice’s message a = gx can be computed using public
information only (Alice does not use her secret key when computing a). Therefore Bob can
compute it in particular. Together with his own message b and his secret key Bob can now
easily derive the secret session key. ��

In 2-message key exchange protocols where the computation of the exchanged messages
involve the secret keys, it may be impossible to achieve deniability. As an example consider
exchanging signed DH shares where the signature involves the identities of both parties. Of
course,whenBob receives such a signature fromAlice andpresents it to Judy this immediately
proves that Alice once talked to Bob. Fortunately, TOPAS and TOPAS+ provide a very strong
form of deniability, although the computation of a involves Alice’s secret key.

Theorem 5 TOPAS, TOPAS+, and FACTAS meet the strong notion of deniability of [14].

Proof Observe that a is uniformly distributed in the underlying group since x is uniform.
Therefore the simulator can simulate Alice’s message a by just choosing a random group
element. Recall that by definition the simulator is also given the same random coins as Bob.
Thus and because the simulator also knows Bob’s secret key, it can compute y, b and the
corresponding session key K in the exact same way as Bob. ��

6 On the necessity of the programmable random oracle model

Our proofs of TOPAS and TOPAS+ heavily exploit the programmability of the random oracle
model. Using a separation technique that was introduced by Fischlin and Fleischhacker [18]
and transferred to the identity-based setting to analyze the Sakai–Ohgishi–Kasahara non-
interactive key exchange by Chen, Huang, and Zhang [11] we can show that, in some sense,
the programmability of the random oracle model is actually necessary for our reductions.

For preciseness, let us first introduce the notion of simple reductions.

Definition 15 (Simple Reduction) Let R be an efficient security reduction that uses a suc-
cessful adversary (which is successful in some security game) to break a security assumption.

123

3110 S. Schäge

We say that R is simple if it i) only calls the adversary once, ii) only uses the adversary in a
black-box way, and iii) does not rewind the adversary to a point before R has output its first
values to the adversary.

Although this restricts the class of possible security reductions, we remark that most
reductions in cryptography are simple in the above sense.

Before we can present our impossibility result, we first need to introduce a new security
assumption, the CBDHI-2 assumption, that is based on the CBDHI assumption. Consider
a discrete logarithm oracle ODL (·, ·) which given two group elements G, H in GT returns
the discrete logarithm x ∈ Zp such that Gx = H . Basically, our new assumption states that
it is hard to break two instances of the CBDHI assumption when given one-time access to
ODL (·, ·). Similarly, we define CBDHI-2’ to be the corresponding assumption for CBDHI’.

Assume G = (p, g1, g2, e) is a bilinear group. The (k, l)-CBDHI-2 (respectively (k, l)-
CBDHI-2’) problem is to solve two random instances (both defined over G) of the (k, l)-
CBDHI ((k, l)-CBDHI’) problem when additionally given one-time access to ODL (·, ·).

Definition 16 (CBDHI-2 and CBDHI’-2 Assumption) We say that attacker A breaks the
(k, l)-CBDHI-2 (respectively the (k, l)-CBDHI-2’) assumption if A succeeds in solving the
(k, l)-CBDHI-2 ((k, l)-CBDHI-2’) problem (where the probability is over the random coins
of A and the random choices for the bilinear group G and the problem instances z). We say
that the (k, l)-CBDHI-2 ((k, l)-CBDHI-2’) assumption holds if no PPT attackerA can break
the (k, l)-CBDHI-2 ((k, l)-CBDHI-2’) problem.

We remark that these assumptions do not constitute a classical one-more assumption. In
particular, the adversary is not provided with an oracle that solves the (k, l)-CBDHI-2 (or
(k, l)-CBDHI-2’) problem but rather with a full-fledged discrete logarithm oracle. Observe
that it is very easy to break a single instance of the CBDHI (CBDHI’) problem when given
one-time access to ODL (·, ·). However, even with one-time access to such an oracle there
seems to be no way to solve two instances of the (k, l)-CBDHI-2 ((k, l)-CBDHI-2’) problem.
We are now able to state our impossibility result.

Theorem 6 Assume the (k, l)−CBDHI-2 (respectively (k, l)−CBDHI-2′) assumption holds
in the bilinear group G. Then there exists no simple reduction R that reduces the security
of TOPAS (TOPAS+) to the (k, l) − CBDHI ((k, l) − CBDHI′) assumption in the non-
programmable random oracle model.

The proof of this theorem is similar to the proof of [11]. The main difference is that we
cannot combine two master public keys to form an input for the discrete logarithm oracle
such that the output value can be used to efficiently compute secret long-term keys. We can
solve this problem by instead combining two long-term secrets that are computed on some
random identity. The result is then used as an input to the discrete logarithm oracle.

Proof The idea is to use a so-calledmeta-reduction that runs the reduction R twice.We denote
the specific runs of R as R1 and R2. The meta-reduction will simulate theattacker against

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3111

R1 and R2. The goal of the meta-reduction is to break the (k, l) − CBDHI-2 assumption.
Moreover, for the reduction, the simulations must be indistinguishable from real adversaries
A1 andA2. R1 is given the first and R2 the second instance of the CBDHI (CBDHI’) problem.

In the following, we assume that in the two runs, reduction Ri for i ∈ {1, 2} computes
the master secret zi . We can now describe two (inefficient) adversariesA1 andA2, such that
Ai communicates with the reduction Ri in the security game. Essentially Ai only accesses
the Register and Corrupt queries that are simulated by Ri a few times, modifies message
b, and then directly breaks the key indistinguishability of TOPAS (TOPAS+). In particular,
after being provided with the master public key, each adversary Ai calls the Register query
and the random oracle on the same five random identities id0, id1, id2, id3, and id4. Next,
Ai calls Corrupt on id0, id2i−1, and id2i and obtains back sk(i)

0 , sk(i)
2i−1, and sk(i)

2i . Using
the public parameters Ai tests whether these secret keys are indeed correct by checking if
e(sk(i)

j , gz2) = e(H(id j), g2), for all j ∈ {0, 2i −1, 2i}. On failureAi simply aborts. Finally,

Ai computes the secret keys sk(i)
A := sk(i)

5−2i and sk
(i)
B := sk(i)

6−2i of the remaining uncorrupted

parties id(i)
A := id(i)

5−2i and id(i)
B := id(i)

6−2i by brute-force search. After that, Ai makes the
uncorrupted parties idA and idB run the protocol. We assume that the oracle of idA sends
the first message a. Next, Ai intercepts the message b of the oracle of idB and modifies it to
b′ = gyi sk(i)

B for some random but known yi ∈ Zp . In the next step, Ai calls the Test query
on the oracle of idA to obtain a key candidate. Finally,Ai breaks the key indistinguishability
of the session key by checking if this candidate equals the session key that is derived from
a and yi and the public parameters as given in the key derivation equation. This ends the
description of our inefficient adversaries. For contradiction, we now assume that the random
oracle H is not programmable, such that the queries to it are always answered in the same
way for both adversaries. By definition, the reduction must break the security of the CBDHI
(CBDHI’) assumption in both runs.

We can then show how we can exploit the reduction to break the CBDHI-2 (CBDHI-2’)
assumption. To this end, the two instances of the CBDHI-2 (CBDHI-2’) assumption are
distributed among the two instances of the reduction. Next we show that we can describe a
meta-reductionM thatmanages to efficiently simulate the two adversaries using the ODL(·, ·)
oracle. M essentially implements two adversaries A′

1 and A′
2 that proceeds exactly as the

Ai—except that they do not compute sk(i)
A and sk(i)

B via brute-force search. Instead M calls
the discrete logarithm oracle on H(id0) and computes

sk(2)
0 /sk(1)

0 = H(id0)
1/z2/H(id0)

1/z1 .

As a result, M obtains c = 1/z2 − 1/z1. With this value, M can now compute the missing
secret keys efficiently as

sk(i)
A = sk(i)

5−2i = sk(3−i)
5−2i · H(id5−2i)

(−1)i c,

sk(i)
B = sk(i)

6−2i = sk(3−i)
6−2i · H(id6−2i)

(−1)i c.

Essentially M uses the answers to the Corrupt query obtained by A′
i and the value c to

compute the missing secret keys. Observe that the distributions produced by theA′
i are

123

3112 S. Schäge

identical to those of the Ai . In conclusion, M obtains the two solutions for two instances of
the CBDHI-2 (CBDHI-2’) instance from R1 and R2. At the same time M has only used the
discrete logarithm oracle once. This contradicts the security of the CBDHI-2 (CBDHI-2’)
assumption. Therefore, H cannot be modeled as a non-programmable random oracle. This
ends the security proof. ��

A On the importance of full PFS in practice

Assume a two-message protocol executed between Alice and Bob where Alice sends a to
Bob and Bob sends b to Alice. Now assume that after deriving the secret session key from
b and her secret key, Alice immediately sends a sensitive message to Bob that is encrypted
as ciphertext c with a key derived from the secret session key. In particular, this message
is produced without Alice knowing whether Bob actually has computed the same key. Now
assume an adversarywho is interested in the contents of the firstmessages ofAlice.Whenever
it observes that Alice sends a message a over the network, it drop Bob’s b, computes its own
value b′, and sends it to Alice. Next it intercepts Alice’s ciphertext c and records a, b′, c
in a list. Assume that later on, the adversary learns the secret key of Bob and Alice. Weak
perfect forward secrecy does not guarantee the secrecy of the message c because the attacker
changed b to b′ but full perfect forward secrecy would.

B Sketch of PKI-based protocol variant

TOPAS and TOPAS+ can easily be turned into PKI-based protocols. Due to space limitation
we only sketch this here. The global parameters are the public key of the KGC together
with gz1 (this value is not required in our identity-based protocol). The certification authority
creates a signature key pair and publishes the public key. User keys are generated as follows.
Each user chooses a random r ∈ Zp and computes sk = gr1 and pk = (

gz1
)r . The CA

provides a certificate for each user by signing the user’s public key together with its identity.
The rest of the protocol works exactly as in the identity-based protocol instead that the public
key of the communication partner is used to derive the session key. For example, Alice can
compute her message a and the intermediate key k as a = gx1 skA for random x ∈ Zp and
k = (e(b, gz2)/e(pkB , g2))x .

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3113

C mOT—themodified Okamoto—Tanaka protocol

Fig. 4 Overview ofmOT. The key generation center maintains public parameters mpk containing N = p1 p2
(for safe primes p1, p2), g ∈ QR, public exponent e with gcd(e, φ(N)) = 1, and descriptions of two
hash functions H : {0, 1}∗ → QR and H ′ : {0, 1}∗ → {0, 1}∗. These parameters are available to all
parties. The master secret msk consists of d with ed = 1 mod φ(N). The set of exponents can be set to

S = [1 . . . (N − 1)/4]. It can be shown that this distribution is indistinguishable from S =
[
1 . . .

⌊√
N/2

⌋]

under the factoring assumption [21]. In [20], the authors recommend a more aggressive choice of S with

S =
[
1 . . . 22κ

]
and additionally assume that this distribution is indistinguishable from the previous ones. The

master secret msk is used by the key generation center to derive the user secret keys as ski = (H(idi))
d

D The uber-assumption

The non-interactive (k, l)-CBDHI and (k, l)-GCBDHI assumptions, can be viewed as spe-
cial instantiations of Boyen’s Uber-assumption (and its extensions) restricted to univariate
polynomials. Following Boyen, our assumptions differ from the “classical” Uber-assumption
in two ways. First, we consider computational assumptions (which are however implied by
their decisional variants) and second we use rational exponents. However, in [8] Boyen also
presents several extensions to the classical Uber-assumption that also cover these classes of
assumptions. To applyBoyen’smaster theoremand showsecurity in the generic bilinear group
model we have to show independence of the polynomial 1/z (respectively (z + w)/z2) over
Zp from 1, z, z2, . . . , zk and 1, z, z2, . . . , zl . This means that there do not exist (k+1)(l+1)
constants {ai, j } for i ∈ [0, k] and j ∈ [0; l] such that for all z 	= 0 we always have

1/z =
k∑

i=0

l∑
j=0

ai, j z
i+ j

or

(z + w)/z2 =
k∑

i=0

l∑
j=0

ai, j z
i+ j

123

3114 S. Schäge

over Zp . This is simple. These two equations are equivalent to

k∑
i=0

l∑
j=0

ai, j z
i+ j+1 − 1 = 0

and

k∑
i=0

l∑
j=0

ai, j z
i+ j+2 − z − w = 0.

Now for any choice of the ai, j , the polynomials on the left-hand side have at least degree 1
(respectively 2). The maximal degree is k + l + 1 << p (respectively k + l + 2 << p). This
means they have at most k + l + 1 (respectively k + l + 2) roots. Thus the equations cannot
be fulfilled for all z 	= 0. As a consequence we can apply the master theorem of Boyen to
show that our assumptions are secure in the generic bilinear group model. Similarly, we can
show that the CBDH assumption is secure in the generic bilinear group model. This time,
we have to show that there do not exist constants a0, a1, a2 with

xy = a0 + a1x + a2y

for all x, y ∈ Zp . This is again very simple, as for any x 	= a2 ∈ Zp there is only a
single y ∈ Zp fulfilling the above equation, namely y = (a0 + a1x)/(x − a2). Thus we
can apply the master theorem and obtain security of this assumption in the generic bilinear
group model. We stress that a successful adversary against the CBDH assumption can easily
be used to break the DDH assumption in G1: assume we are given the DDH challenge
g1, ga1 , g

b
1 , h = gab+c

1 and we have to decide whether c = 0. We can now use the CBDH
attacker to compute T = (g1, g2)ab. Next we compute e(h, g2) and check whether the result
equals T . On success, we output that c = 0 otherwise c = 1.

E Krawczyk’s impossibility result

In [24], Krawczyk presented a simple attack against the full PFS security of implicitly authen-
ticated protocols. To illustrate it, assume a protocol in which Alice and Bob only exchange
ephemeral Diffie-Hellman shares gx (sent by Alice) and gy (sent by Bob). Let us consider
the situation where Alice acts as the initiator. To this end, she generates the ephemeral key gx

and sends it to Bob who responds with gy . The adversary intercepts this value, and generates
its own share by choosing random y and computing gy . Then it sends gy to Alice. Alice
assumes this value was sent by Bob and generates the session key K from her secret key, x ,
and gy . Now, assume that the adversary learns the secret key skB of Bob after Alice’s session
expired. Since the computation of the session key (from Bob’s perspective) only depends on
gx and the knowledge of y and skB , the adversary is able to re-compute the session key K .
Therefore it can always distinguish K from a random value. Observe that this impossibility
result holds even in the case the two oracles have a common KGC that produces their secret
keys or if they share a secret key. Essentially, the problem is that the adversary can always
compute an ephemeral public key together with the corresponding ephemeral secret key that
seems to come from Bob.

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3115

F Generalized impossibility result

Lemma 2 Any two-message protocol which provides full PFS cannot allow the adversary to
reveal ephemeral secret keys.

Proof Without loss of generality assume Bob sends his message b first. Since the protocol
provides (full) PFS by definition, anymessage b of Bobmust contain an ephemeral public key
epk. For contradiction assume the adversary can for one b reveal the corresponding ephemeral
secret esk. The adversary can now easily break the security of the full PFS game by replaying
b to the test-session (held by some party). It obtains back Bob’s long-term secret skB . With
esk, skB , and the message output by the test-session, the adversary can always derive the
same session key as the test-session and thus win in the full PFS game. ��

G FACTAS –factoring-based protocol with active security

The FACTAS protocol is defined in the group of signed quadratic residues [22]. It is a close
variant ofmOT with two major differences. The first one is that it is more efficient since there
are no exponentiations by arbitrary exponents e‘in the key derivation phase. Instead, FACTAS
only considers squarings. The second difference is that the underlying security assumptions,
though very close to those used in mOT, are more directly related to the factoring assumption
insteadof the (stronger)RSAassumption. In particular,KCI security andweakPFSare proven
secure directly under the factoring assumption.

G.1 The group of signed quadratic residues

Let N be a safe integer, i.e. the product of two safe primes p1 and p2, each of bit-size κ . It
is well-known that any safe prime larger than 5 always equals 3 modulo 4. Therefore, the
product of two safe primes that are both larger than 5 is always a Blum integer. Let JN be
the multiplicative group of residues modulo N that have Jacobi symbol 1. Let x modN ∈
(−N/2, N/2) be the representation of elements in Z

∗
N as signed integers in the symmetric

interval (−N/2, N/2). We define |x | to be the absolute value of x modN . In the following,
we consider the group of signed quadratic residues SQRN = JN ∩ (0, N/2) with group
operation ◦: x ◦ y = |xy| for x, y ∈ SQRN . Unless stated otherwise, all computations take
place in this group.When it is clear from the context, we may write xy short for x ◦ y and x/y
for x ◦ y−1 = x ◦ y−1 mod |SQRN | = ∣∣xy−1modN

∣∣ with |SQRN | = |Z∗
N |/4. Similarly, we

define ga = ga mod |SQRN | = |gamodN | for integer a. We stress that in SQRN squaring is
a permutation. We will also make use of the following fact.

Lemma 3 Assume N is a safe integer. Assume g is a random generator of SQRN . Assume x
is a uniformly random odd integer in [0, (N −1)/2]. Then gx is statistically close to uniform
in SQRN .

Proof Let N = p1 p2 = (2p′
1 + 1)(2p′

2 + 1) = 4p′
1 p

′
2 + 2(p′

1 + p′
2) + 1. First observe that

|SQRN | = φ(N)/4 = (p − 1)(q − 1)/4 = p′
1 p

′
2 is odd. At the same time drawing odd

integers uniformly from [0; (N − 1)/2] = [0; 2p′
1 p

′
2 + (p′

1 + p′
2)] is statistically close to

drawing them from [0; 2|SQRN |] = [0; 2p′
1 p

′
2]. Furthermore, since p′

1 p
′
2 is odd, the odd

integers in [p′
1 p

′
2; 2p′

1 p
′
2] are equivalent to the even integers in [0; p′

1 p
′
2]modulo |SQRN | =

p′
1 p

′
2. Also, given |gx |, it is information-theoretically hidden whether x has been drawn as

an even integer from [0; p′
1 p

′
2] or as an odd integer from [p′

1 p
′
2; 2p′

1 p
′
2]. ��

123

3116 S. Schäge

Also we will use the following well-known fact.

Lemma 4 (Shamir’s Trick) Assume we are given N, g, h ∈ Z
∗
n, and two integers a, b with

gcd(a, b) = 1 such that ga = hb mod N. Then we can easily compute g1/b mod N and
h1/a mod N.

Definition 17 (FAC) Let N be a safe integer such that N = pq . The factoring assumption
(FAC) states that no PPT A can output p and q when given N .

G.2 Security assumptions for the proof of full PFS security of FACTAS.

In our security proof for full PFS we will rely on the knowledge of exponent assumption for
Diffie-Hellman in SQRN . This assumption was first introduced by Damgård in [13].

Definition 18 (KEA1) Let N be a safe integer and SQRN the group of signed quadratic
residues modulo N . Let A be a PPT that when given X , Y ∈ SQRN outputs two group
elements X ′, Y ′ ∈ SQRN . Then there exists another PPT algorithm A’ which given the
same input and random coins as A outputs X ′, Y ′ and an integer s such that X ′ = Xs and
Y ′ = Y s if such an integer s exists.

Let us present the second security assumptions our security proof of full PFS security
relies on. It is very similar to the Modified Knowledge of Exponent assumption for Discrete
Logarithm introduced in [20].

Let N be a safe integer and SQRN the group of signed quadratic residues modulo N .
Consider the following security game between challenger C and PPT attacker A.

1. The challenger C sends N , g and U = gu to A where g and U are uniformly random in
SQRN .

2. The attacker A sends V ∈ SQRN .
3. The challenger C outputs U 1/2 and z ∈ Z|SQRN | such that gz = UV .
4. A wins if it outputs an integer u′.
We say that A wins if u′ = u.

Definition 19 (Modified Knowledge of Exponent Assumption for Discrete Log in SQRN

(MKEA-DLSQR)) For every PPT algorithmA in the above security game there exists another
algorithmA’ which given the same inputs and random coins asA’ behaves exactly likeA in
the above security game but besides u′ also outputs integers i, j with V = giU j whenever
A wins.

In contrast to our assumption, the original Modified Knowledge of Exponent Assumption
for Discrete Log introduced in [20] considers elements inQR. AlsoA outputsU 1/e mod N
in the third step of the security game, where e is a public RSA exponent. However, the
motivation behind our assumption and that of [20] are essentially equal.

H Security of FACTAS

The security proof follows the one of themOT protocol.

Theorem 7 In the random oracle model, FACTAS (Fig. 3) provides security against KCI and
reflection attacks under the factoring assumption.

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3117

Proof It is again easy to verify that two matching sessions compute the same key. Since they
are matching they compute the same session identifier. Also they compute the same values
k. Thus all inputs to H ′ are identical for each session and the session key is equal too.

Let us now show indistinguishability of real session keys from random keys. Assume we
are given a factoring challenge consisting of the safe integer N ′. The simulator sets N = N ′,
which implicitly sets msk to be the factorization of N . Additionally, the simulator chooses
a random element h′ from [1, . . . , (N − 1)/2] \ SQRN and sets h = h′2 and g = h2.
Observe that we have with overwhelming probability that h generates SQRN . As before, the
simulator guesses the test-session among the set of all sessions with non-negligible success
probability. Similarly, the simulator guesses, with non-negligible success probability, Bob
to be the peer of the test session among the set of all parties. As in the previous proof, we
ensure that the peer (Bob) of the test-session which is held by either Alice	=Bob (in case of
KCI attacks) or Bob (when dealing with reflection attacks) always remains uncorrupted.

Setup and simulation of corrupt, register, reveal queries To be able to answer Corrupt
queries for any party except Bob the simulator programs the outputs of the random oracle
H for all inputs except for idB as follows: given input idi as input to a Register query it
chooses a random value ri ∈ SQRN and outputs H(idi) := |ri 2|. In this way, the simulator
can always compute a corresponding secret key as ski = ri , simulate Register queries, and
answer Corrupt queries. However, for idB it chooses random odd rB ∈ [0; N/2] and sets
H(idB) = h−rB . Observe that by Lemma 3, H(idB) is statistically close to uniform in
SQRN .

In this way the simulator does not know the corresponding secret key of Bob which must
be in SQRN . As in the previous proof, in almost all protocol runs the simulator makes the
sessions (except for those whose holder is Bob) compute their messages and keys as specified
in the protocol description. In this way it can also answer all Reveal queries (because the
simulator knows the secret key of any party except for Bob).

To compute messages in sessions where Bob is session holder (we use b to denote the
messages produced by these sessions), it does the following. The simulator chooses a random
odd b′ ∈ [0; N/2] and computes b = hb

′
(which again is statistically close to uniform in

SQRN by Lemma 3). It then holds that

b2/H(idB) = h2b
′+rB = gb

′
hrB = gb

′+rB/2.

Observe that now the secret exponent y in

b = hb
′ = gb

′/2 = gy (H(idB))
1/2 = gyh−rB/2 = gyg−rB/4

is not known to Bob (i.e. the simulator) as

y = b′/2 + rB/4.

As a consequence, the simulator cannot compute k on behalf of Bob anymore when only
given message a in case a is produced by the adversary in an active attack.

Simulating reveal queries for bob Let us show now how the simulator can successfully
simulate sessions (and in particular Reveal queries) involving Bob (and the adversary). To
this end, we first show that, although the simulator cannot compute k∗ = k, it can nevertheless
always compute k = k4 even when the adversary A makes Bob engage in a communication
with Bob himself. Recall that

k =
(

a2

H(idB)

)y

.

123

3118 S. Schäge

Now, independent of whether a has been computed by Bob (when considering reflection
attacks), a session of any other party, or the adversary, the simulator can easily compute

k4 =
((

a2

H(idA)

)y
)4

=
((

a2

H(idA)

)b′/2+rB/4
)4

=
(

a2

H(idA)

)2b′+rB

.

Let us next describe the strategy of the simulator to program the second random oracle,
H ′, and answer Reveal queries (including sessions whose holder or peer is idB). Again we
manage two sets R, S which are initially both empty. We first present our basic strategies.
Then we show how we apply additional checks to maintain consistency. As in the previous
proofs, our basic strategy is the following: whenever the attacker queries the random oracle
with input xi = (k, idA, idB , a, b), we look up if there is some entry (xi , yi) already in R. In
case it is not, we compute and output a new uniformly random string yi and add (xi , yi) to
R. If, on the other hand, (xi , yi) is already in R we simply output yi .

To compute a session key (and answer a Reveal query) we proceed similarly. We look up
if there is some entry (ui , vi) with ui = (idA, idB , a, b) already in S. In case it is not, we
generate and output a new random string vi and store (ui , vi) in S. If (ui , vi) is already in S
we output vi .

To make sure that the answers stored in S and R remain consistent we need to perform
additional checks. We first recall that in some cases the simulator cannot compute k as
pointed out before. Instead, the simulator computes k = k4 for each session as shown
above. (We remark that since it knows the corresponding secret keys, the simulator can
actually compute k for the sessions of all parties except for Bob. However, our simulation
strategy does not require that.) Now, whenever we receive a query xi = (k, idA, idB , a, b)
we additionally check if k ∈ SQRN and whether there is a corresponding element (u j , v j)

in S with u j = (idA, idB , a, b) such that k4 = k for the k value of that session. On success
we output yi = v j as stored in S. Otherwise we output a random yi .

On the other hand, whenever we encounter a Reveal query ui = (idA, idB , a, b) for some
session we can always compute k corresponding to ui . Next we also check whether there
is some entry (x j , y j) in R with x j = (k, idA, idB , a, b) and k4 = k and k ∈ SQRN . On
success, we output vi = y j as stored in R. Otherwise we output a random vi .

We remark that checking if k ∈ SQRN is crucial: we show below that without this check,
there exists an attacker that can tell the real security experiment and the simulation apart.
This is one of the main reasons why we need to work in SQRN .

Extraction Now that we have showed how to simulate all attack queries, let us proceed
to showing how the simulator extracts a solution to the factoring challenge. Either the test
session is held by Alice	=Bob or Bob.

First we show how the simulator can extract a solution if the test-session is held by Alice.
For this session we deviate from the general simulation strategy as described above. Instead
of generating a honestly as a = gx H(idA)1/2 the simulator computes a as

a = ha
′
H(idA)1/2 = ha

′+rA

for some random odd a′ ∈ [0; N/2]. Observe that now the discrete logarithm x in a =
gx H(idA)1/2 = gxhrA is implicitly set to x = a′/2.

Assume the adversary has non-negligible success probability when querying the Test
query to this session. In particular, it can decide whether the key provided by the Test query
is the real session key or a random key from the same key space. We know that, since H ′ is
modeled as a random oracle, the attackermust ask the real value k that is also computed by the
test session to H ′ to have any probability significantly better than 1/2. With y = b′/2+ rB/4

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3119

and x = a′/2, the simulator in this way obtains k such that

k = (
a2/H(idA)

)y

= g2xy

= g2(a
′/2)(b′/2+rB/4)

= ga
′(b′/2+rB/4)

= ha
′(b′+rB/2).

Also note that k ∈ SQRN . From this we can easily compute ha
′rB/2 = kh−a′b′

. This is

equivalent to ha
′rB =

(
kh−a′b′)2

. Now since gcd(2, a′rB) = 1, we can use Shamir’s trick

to compute h1/2. We now have, besides h′ another, distinct root of h and gcd(h′ − h1/2, N)

gives a factor of N .
Let us now show how to extract a solution to the factoring challenge in case the test-session

is held by Bob. In this case we have that a = ha
′
and b = hb

′
for some random odd a′, b′

such that x = a′/2 + rB/4 and y = b′/2 + rB/4. This time the simulator obtains the value
k from the queries to the random oracle such that

k = g2xy (2)

= g2(a
′/2+rB/4)(b′/2+rB/4) (3)

= h(a′+rB/2)(b′+rB/2) (4)

= ha
′b′+(a′+b′)rB/2+(rB)2/4. (5)

From this we can easily compute h(rB)2/2 =
(
kh−a′b′−(a′+b′)rB/2

)2 ∈ SQRN which is

equivalent to h(rB)2 =
(
kh−a′b′−(a′+b′)rB/2

)4
. Since gcd(4, (rB)2) = 1, Shamir’s trick again

gives h1/2 and similarly to before, gcd(h′ − h1/2, N) gives a factor of N . This concludes the
proof. ��

H.1 Weak PFS

We will now show that FACTAS provides weak PFS under the factoring assumption. Next
we show that it also provides enhanced weak PFS under a variant of the Computational
Diffie-Hellman assumption.

Lemma 5 FACTAS provides weak PFS under the factoring assumption.

Proof The setup is similar to the previous proof except that the simulator will know the secret
key of Bob as well. The simulator uses the modulus N ′ from the factoring challenge as the
modulus N of the scheme. It will program the random oracle such that it knows the secret
keys of all users. To this end, it programs H for all inputs as follows: given input idi as input
to a Register query it chooses a random value ri ∈ SQRN and outputs H(idi) := |ri 2|. In
this way, the simulator can always compute a corresponding secret key as ski = ri , simulate
Register queries, and answer Corrupt queries. Additionally, the simulator chooses a random
element h′ from [1, . . . , (N − 1)/2] \SQRN and sets h = h′2 and g = h4. Observe that we
have with overwhelming probability that h generates SQRN . Now for all sessions, except for
the test-session and its matching session (which must exist by the definition of weak PFS),
the simulator computes the protocol messages and session keys as specified by the protocol

123

3120 S. Schäge

description. However for Alice’s test-session and the corresponding, matching session of
Bob it computes the protocol messages differently as

a = ha
′
skA

b = hb
′
skB

for random, odd integers a′ and b′ in [0, (N − 1)/2]. This implicitly sets

x = a′/4
y = b′/4.

By Lemma 3 the resulting messages are statistically close to uniform elements in SQRN .
The corresponding session key is thus derived from

k = g2xy = ga
′b′/8 = ha

′b′/2.

Since the adversary can by assumption distinguish the session key from a random key, k must
have been asked to the random oracle H ′ and thus be available to the simulator. Now we can
easily find two distinct roots of ha

′b′
—k ∈ SQRN and h′a′b′

/∈ SQRN—and compute the
factorisation of N ′. ��

H.2 Enhanced weak perfect forward secrecy

We can also show that FACTAS provides enhanced weak PFS albeit not under the factoring
assumption. The problem is that in the security game the adversary is also given the master
secret of the KGC—the factorisation of N and thus security cannot rely on the secrecy of
this factorisation. We will now present a variant of the well-known Computational Diffie-
Hellman assumption that allows us to nevertheless prove that FACTAS provides enhanced
weak PFS. The main difference to the traditional Computational Diffie-Hellman assumption
is that the challenge also consists of a safe prime p (such that p = 2p′ + 1 for prime p′) and
all computations have to be performed in the subgroup of Zp of order p − 1/2.

Computational Diffie-Hellman (CDHSP) Assumption in Groups of Safe Prime Order The
CDHSP problem is, given safe prime p = 2p′ + 1 an element g′ of order p′ and g′x ′

, g′y′

for random x ′, y′ ∈ [0; p′ − 1] to compute g′x ′y′
mod p.

Definition 20 (CDHSP Assumption) We say that attacker A breaks the CDHSP assumption
ifA succeeds in solving the CDHSP problem (where the probability is over the random coins
ofA and the random choices for p, g′ and x ′, y′). We say that the CDHSP assumption holds
if no PPT attacker A can break the CDHSP problem.

Lemma 6 FACTAS provides enhanced weak PFS under the CDHSP assumption.

Proof The idea is to make the simulator compute another safe prime q , set N = pq and work
in SQRN . Since the simulator knows the factorisation of N it can use the Chinese Remainder
Theorem to compose and decompose elements in SQRN into its components modulo p and
modulo q . It chooses a random generator g of SQRN such that the mod p-component is a
known power of g′. Again the overall strategy of the simulator in the simulation phase is to set
up everything honestly except for the ephemeral secrets of the test-session and its matching
session. For these sessions it will embed g′x ′

and g′y′
in the mod p-components of gxand gy .

The value k = g2xy that the adversary queries to the random oracle H ′ must contain g′2x ′y′

123

TOPAS 2-pass key exchange with full perfect forward secrecy... 3121

in the mod p-component. The simulator can now use its knowledge of p to compute g′x ′y′

and break the CDHSP assumption. ��

H.3 On the necessity ofSQRN.

We would like to give a brief explanation on why it is not enough to work over the quadratic
residues QR in Z

∗
n , i.e. why we really need to work in the efficiently recognizable group

SQRN . To this end let us describe a hypothetical, successful, and unbounded attacker A
which recognizes our simulation in case we work over QR and always aborts, thus making
our extraction strategy fail. Attacker A behaves as follows:

• After receiving the public parameters, it factors N .
• NextAmakes every party idi engage in t = t(κ) communications withA, i.e. each party

holds t sessions with A (i.e. some party controlled by A). For each of these sessions A
computes the corresponding intermediate value k. Among theses parties there must also
be Bob for whom the simulator does not know the corresponding secret key. This means
that the simulator is not able to compute the intermediate key k on its own. Instead, in
the above security proof, the simulator computes k4 and entirely relies on recognizing k
when k is queried to the random oracle.

• Now, A does use its knowledge of the factorization of N to compute for every session
another value k′ ∈ Z

∗
n such that k′ 	= k but (k′)4 = k4 mod N .

• For each session, the adversary asks a Reveal query and receives output y.
• Now,A draws a random coin c ∈ {0, 1} for each session. In case c = 0,A queries k and

the corresponding identities and messages (as specified by the protocol) to the random
oracle H ′. However if c = 1, A queries k′ to H ′.

• The adversary aborts if i) at some point the random oracle outputs y (i.e. the response
computed by the Reveal query) although c = 1 or ii) if the random oracle does not output
y in case c = 0.

• The adversary makes two parties engage in a communication and correctly answers the
Test query.

Basically, the attacker exploits, that the simulator which is not able to compute the inter-
mediate values k for Bob cannot distinguish between the real intermediate value k and k′.
However, in the real security game Bob is able to compute k and tell it apart from k′. Since
the choices of the c values are hidden from the simulator, the probability that the simulator
can correctly guess them all is 2t and thus negligible. So in the real security game where
the parties know their secret keys, the simulator never aborts. However, in the simulation it
aborts with overwhelming probability.

A second reason why we use SQRN instead of QR is that H must map identities to
squares x2 mod N . SinceQR is not efficiently recognizable it is not clear how to accomplish
that when mapping identities to QR (without revealing x in the process). However, as it is
efficiently recognizable, mapping to SQRN is simple. Intuitively, the hash function H can
for example repeatedly generate “random-looking” strings r and check whether they belong
to SQRN when interpreted as a signed integers in [−(N − 1)/2, . . . , (N − 1)/2].

H.4 Efficiency of FACTAS

In our factoring-based protocol, message generation speed and message size are comparable
to the mOT protocol. Computing the intermediate value k is more efficient since we only

123

3122 S. Schäge

need a single squaring in contrast to an exponentiation with the public RSA exponent e and
a squaring. This makes the computation of the session key more efficient.

H.5 Full PFS security

Theorem 8 Under the factoring assumption, theKEA1 assumption and theMKEA-DLSQR
assumption the protocol depicted in Fig. 3 provides full PFS if we model H , H ′ as a random
oracle.

The proof of full PFS security very closely follows the proof of full PFS security in [20]
and is therefore omitted. The main difference is that we now need to receive secret keys from
the challenger of the MKEA-DLSQR assumption which are of the form H(idA)1/2 instead
of H(idA)1/e in [20]. This is exactly the main reason why we introduce our new variant of
the modified knowledge of exponent assumption for discrete log.

Acknowledgements The author has been supported by the CONFIDENTIAL6G project that is co-funded by
the European Union (grant agreement ID: 101096435).

Declarations

Competing interest The author does not have competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES.
Topics in Cryptology-CT-RSA 2001: The Cryptographers’ Track at RSAConference 2001 San Francisco,
CA, USA, April 8—12, 2001 Proceedings. Springer, Berlin (2001).

2. Barreto P.S.L.M., Naehrig M.: Pairing-friendly elliptic curves of prime order. In: Preneel B., Tavares S.E.
(eds.) Selected Areas in Cryptography, pp. 319–331. Lecture Notes in Computer Science. Springer, New
York (2005).

3. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchangewith strong security: An efficient and generic
construction in the standard model. Public-Key Cryptography–PKC 2015: 18th IACR International Con-
ference on Practice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30–April
1, 2015, Proceedings 18. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-46447-2_21

4. Boneh D., Lynn B., Shacham H.: Short signatures from the Weil pairing. In: International conference on
the theory and application of cryptology and information security. Berlin: Springer 17(4), pp. 297–319
(2004).

5. Boneh,D., Gentry, C., Lynn, B., Shacham,H.: Aggregate and verifiably encrypted signatures frombilinear
maps. In: Advances in Cryptology—EUROCRYPT 2003: International Conference on the Theory and
Applications of Cryptographic Techniques, Warsaw, Poland, May 4—8, 2003 Proceedings 22. Springer
Berlin (2003).

6. Boneh D., Boyen X.: J. Cryptol. Efficient selective identity-based encryption without random oracles
24(4), 659–693 (2011).

7. Boyd, C., Nieto, J.G.: On forward secrecy in one-round key exchange. In: Chen, L. (ed.) Cryptography
and Coding-13th IMA International Conference, IMACC 2011, Oxford, UK, December 12–15, 2011.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-662-46447-2_21

TOPAS 2-pass key exchange with full perfect forward secrecy... 3123

Proceedings. Lecture Notes in Computer Science, vol. 7089, pp. 451–468. Springer, New York (2011).
https://doi.org/10.1007/978-3-642-25516-8_27 . https://doi.org/10.1007/978-3-642-25516-8_27

8. Boyen, X.: The uber-assumption family (invited talk). In: 2nd International Conference on Pairing-based
Cryptography (PAIRING 2008), volume 5209 of Lecture Notes in Computer Science, pp. 39–56(2008).

9. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels.
In: International conference on the theory and applications of cryptographic techniques. Berlin: pp. 453–
474. (2001).

10. Cash D., Kiltz E., Shoup V.: The twin Diffie-Hellman problem and applications. J. Cryptol. 8, 470–504
(2008).

11. Chen Y., Huang Q., Zhang Z.: Sakai–Ohgishi–Kasahara identity-based non-interactive key exchange
revisited and more. Int. J. Inform. Secur. 15, 15–33 (2014). https://doi.org/10.1007/978-3-319-08344-
5_18.

12. Cremers, C.J.F., Feltz, M.: Beyond eCK: Perfect forward secrecy under actor compromise and ephemeral-
key reveal. Computer Security–ESORICS 2012: 17th European Symposium on Research in Computer
Security, Pisa, Italy, September 10–12, 2012. Proceedings 17. Springer Berlin (2012).

13. Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. Advances in
Cryptology—CRYPTO’91: Proceedings 11. Springer, Berlin (1992).

14. Di Raimondo,M., Gennaro, R., Krawczyk,H.: Deniable authentication and key exchange, In: Proceedings
of the 13th ACM conference on Computer and communications security. pp. 400–409 (2006).

15. DiffieW., HellmanM.E.: New directions in cryptography. IEEE Trans. Inform. Theory IT 22(6), 644–654
(1976).

16. Feltz, M., Cremers, C.: On the limits of authenticated key exchange security with an application to bad
randomness. IACR Cryptology ePrint Archive, 369 (2014).

17. Fiore, D., Gennaro, R.: Making the Diffie–Hellman protocol identity-based. Topics in Cryptology-CT-
RSA 2010: The Cryptographers’ Track at the RSA Conference 2010, San Francisco, CA, USA, March
1–5, 2010. Proceedings (2010).

18. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: The case of schnorr sig-
natures. Annual International Conference on the Theory and Applications of Cryptographic Techniques.
Berlin, Heidelberg, pp. 444–460. (2013). https://doi.org/10.1007/978-3-642-38348-9_27

19. Galbraith S.D., Paterson K.G., Smart N.P.: Pairings for cryptographers. Discret, Appl. Math. 156(16),
3113–3121 (2008).

20. Gennaro, R., Krawczyk, H., Rabin, T.: Okamoto–Tanaka revisited: Fully authenticated Diffie–Hellman
with minimal overhead. Applied Cryptography and Network Security: 8th International Conference,
ACNS 2010, Beijing, China, June 22–25. Proceedings 8. Springer Berlin (2010).

21. Goldreich O., Rosen V.: On the security of modular exponentiation with application to the construction
of pseudorandom generators. Cryptology 16(2), 71–93 (2003).

22. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. Annual International
Cryptology Conference. Berlin, Heidelberg, pp. 637–653. (2009).

23. Krawczyk, H.: SKEME: a versatile secure key exchange mechanism for internet. In: 1996 Symposium
on Network and Distributed System Security, (S)NDSS ’96, San Diego, CA, February 22–23, 1996,
pp. 114–127 (1996).https://doi.org/10.1109/NDSS.1996.492418. http://doi.ieeecomputersociety.org/10.
1109/NDSS.1996.492418

24. Krawczyk H.: HMQV: A High-performance Secure Diffie–Hellman Protocol, pp. 546–566. Springer,
Berlin (2005).

25. Law L., Menezes A., Qu M., Solinas J.A., Vanstone S.A.: An efficient protocol for authenticated key
agreement. Des. Codes Cryptogr. 28(2), 119–134 (2003).

26. Okamoto E., Tanaka K.: Key distribution system based on identification information. IEEE J. Select.
Areas Commun. 7(4), 481–485 (1989). https://doi.org/10.1109/49.17711.

27. Ratnam K., Gurusamy M., Zhou L.: Differentiated survivability with improved fairness in ip/mpls-over-
wdm optical networks. Comput. Netw. 53(5), 634–649 (2009). https://doi.org/10.1016/j.comnet.2008.
11.001.

28. Rifá-Pous H., Herrera-Joancomartí J.: Computational and energy costs of cryptographic algorithms on
handheld devices. Future Internet 3(1), 31–48 (2011). https://doi.org/10.3390/fi3010031.

29. Shoup, V.: On Formal models for secure key exchange. Cryptology ePrint Archive, Report 1999/012.
http://eprint.iacr.org/ (1999).

30. Sivakumar N.R., Nagarajan S.M., Devarajan G.G., Pullagura L., Mahapatra R.P.: Enhancing network
lifespan in wireless sensor networks using deep learning based graph neural network. Phys. Commun.
59, 102076 (2023). https://doi.org/10.1016/j.phycom.2023.102076.

123

https://doi.org/10.1007/978-3-642-25516-8_27
https://doi.org/10.1007/978-3-642-25516-8_27
https://doi.org/10.1007/978-3-319-08344-5_18
https://doi.org/10.1007/978-3-319-08344-5_18
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1109/NDSS.1996.492418
http://doi.ieeecomputersociety.org/10.1109/NDSS.1996.492418
http://doi.ieeecomputersociety.org/10.1109/NDSS.1996.492418
https://doi.org/10.1109/49.17711
https://doi.org/10.1016/j.comnet.2008.11.001
https://doi.org/10.1016/j.comnet.2008.11.001
https://doi.org/10.3390/fi3010031
http://eprint.iacr.org/
https://doi.org/10.1016/j.phycom.2023.102076

3124 S. Schäge

31. Song K., Wang Q., Peng L., Li C., Wu X.: Secrecy energy efficiency optimization for df relaying iot
systems with passive eavesdropping terminal. Phys. Commun. 44, 101254 (2021). https://doi.org/10.
1016/j.phycom.2020.101254.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.phycom.2020.101254
https://doi.org/10.1016/j.phycom.2020.101254

	TOPAS 2-pass key exchange with full perfect forward secrecy and optimal communication complexity
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Security assumptions
	2.2 Hash functions
	2.3 Security model

	3 Main result
	3.1 Proof of security against KCI and reflection attacks
	3.2 Basic security properties
	3.3 Proof of full PFS security

	4 Higher efficiency
	5 Deniability
	6 On the necessity of the programmable random oracle model
	A On the importance of full PFS in practice
	B Sketch of PKI-based protocol variant
	C mOT—the modified Okamoto—Tanaka protocol
	D The uber-assumption
	E Krawczyk's impossibility result
	F Generalized impossibility result

	G FACTAS–factoring-based protocol with active security
	G.1 The group of signed quadratic residues
	G.2 Security assumptions for the proof of full PFS security of FACTAS.

	H Security of FACTAS
	H.1 Weak PFS
	H.2 Enhanced weak perfect forward secrecy
	H.3 On the necessity of mathcalSQRN.
	H.4 Efficiency of FACTAS
	H.5 Full PFS security

	Acknowledgements
	References

