Grounding Stream Reasoning Research

Jean-Paul Calbimonte &4
University of Applied Sciences and Arts Western
Switzerland HES-SO, Sierre, Switzerland

Daniele Dell’Aglio S &
Aalborg University, Denmark
Thomas Eiter &

Technische Universitiat Wien, Austria
Fredrik Heintz &

Link6ping University, Sweden

Danh Le-Phuoc &8 4&

Technical University Berlin, Germany

Patrik Schneider =

Technische Universitat Wien, Austria

Pieter Bonte 24
Department of Computer Science, KU Leuven Cam-
pus Kulak, Belgium

Daniel de Leng &
Link6ping University, Sweden

Emanuele Della Valle =
DEIB - Politecnico di Milano, Italy

Federico Giannini &
DEIB - Politecnico di Milano, Italy

Konstantin Schekotihin &
Alpen-Adria-Universitdt Klagenfurt, Austria
Alessandra Mileo @&

Insight Centre for Data Analytics, Dublin City Uni-

versity, Ireland Siemens AG, Chemnitz, Germany

Jacopo Urbani &
Vrije Universiteit Amsterdam, The Netherlands

Riccardo Tommasini &4
INSA Lyon, CNRS LIRIS, France
University of Tartu, Estonia

Giacomo Ziffer &
DEIB - Politecnico di Milano, Italy

— Abstract

In the last decade, there has been a growing in-
terest in applying AI technologies to implement
complex data analytics over data streams. To this
end, researchers in various fields have been organ-
ising a yearly event called the “Stream Reasoning
Workshop” to share perspectives, challenges, and
experiences around this topic.

In this paper, the previous organisers of the
workshops and other community members provide
a summary of the main research results that have
been discussed during the first six editions of the
event. These results can be categorised into four
main research areas: The first is concerned with the
technological challenges related to handling large

data streams. The second area aims at adapting
and extending existing semantic technologies to
data streams. The third and fourth areas focus
on how to implement reasoning techniques, either
considering deductive or inductive techniques, to
extract new and valuable knowledge from the data
in the stream.

This summary is written not only to provide a
crystallisation of the field, but also to point out dis-
tinctive traits of the stream reasoning community.
Moreover, it also provides a foundation for future
research by enumerating a list of use cases and open
challenges, to stimulate others to join this exciting
research area.

2012 ACM Subject Classification Information systems — Data streams; Information systems — Stream
management; Information systems — Graph-based database models; Information systems — Query
languages for non-relational engines; Computing methodologies — Temporal reasoning; Computing
methodologies — Description logics; Information systems — Semantic web description languages

Keywords and phrases Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data,
Continuous query processing, Temporal Logics, High-performance computing, Databases

Digital Object Identifier 10.4230/TGDK.2.1.2

Category Position

Funding J.-P. Calbimonte acknowledges support from the Swiss National Science Foundation under

grant No. 213369 (StreamKG), and from the EU Horizon Europe program under grant No. 101092908
(SmartEdge). D. Le-Phuoc is supported by the Deutsche Forschungsgemeinschaft, German Research

© Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell’Aglio, Emanuele Della Valle, Thomas
B Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik
Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer;

licensed under Creative Commons License CC-BY 4.0
Transactions on Graph Data and Knowledge, Vol. 2, Issue 1, Article No. 2, pp. 2:1-2:47

\\v Transactions on Graph Data and Knowledge
TGDK

Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:pieter.bonte@kuleuven.be
https://pieterbonte.be
https://orcid.org/0000-0002-8931-8343
mailto:jean-paul.calbimonte@hevs.ch
https://jeanpi.org
https://orcid.org/0000-0002-0364-6945
mailto:daniel.de.leng@liu.se
https://orcid.org/0000-0001-6356-045X
mailto:dade@cs.aau.dk
https://dellaglio.org
https://orcid.org/0000-0003-4904-2511
mailto:emanuele.dellavalle@polimi.it
https://orcid.org/0000-0002-5176-5885
mailto:thomas.eiter@tuwien.ac.at
https://orcid.org/0000-0001-6003-6345
mailto:federico.giannini@polimi.it
https://orcid.org/0000-0002-4210-6271
mailto:fredrik.heintz@liu.se
https://orcid.org/0000-0002-9595-2471
mailto:konstantin.schekotihin@aau.at
https://orcid.org/0000-0002-0286-0958
mailto:danh.lephuoc@tu-berlin.de
https://danhlephuoc.info/
https://orcid.org/0000-0003-2480-9261
mailto:alessandra.mileo@insight-centre.org
https://www.insight-centre.org/our-team/dr-alessandra-mileo/
https://orcid.org/0000-0002-6614-6462
mailto:patrik@kr.tuwien.ac.at
https://orcid.org/0000-0003-2973-5097
mailto:riccardo.tommasini@insa-lyon.fr
https://riccardotommasini.com/
https://orcid.org/0000-0003-3404-5250
mailto:j.urbani@vu.nl
https://orcid.org/0000-0002-0717-3559
mailto:giacomo.ziffer@polimi.it
https://orcid.org/0000-0002-2768-3580
https://doi.org/10.4230/TGDK.2.1.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

2:2

Grounding Stream Reasoning Research

Foundation under grant number 453130567 (COSMO) and by the Horizon Europe Research and
Innovation Actions under grant number 101092908 (SmartEdge). A. Mileo acknowledges support from
Science Foundation Ireland (SFI) Grant Number SFI/12/RC/2289 P2, co-funded by the European
Regional Development Fund. T. Eiter acknowledges support from the Vienna Science and Technology
Fund (WWTF) project ICT22-023 (TAIGER) and the EU Horizon Europe program under grant
No. 820437 (Humane AI Net).

Received 2023-09-18 Accepted 2023-11-17 Published 2024-05-03

Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, and Lalana Kagal

Special Issue Trends in Graph Data and Knowledge — Part 2

1 Introduction

Stream Reasoning (SR) has emerged as a branch of artificial intelligence that draws attention
to the need to make decisions incrementally, as soon as possible, and before they are no longer
helpful. Such an ambitious and broad goal requires many competencies as it entails different
research problems. As a result, Stream Reasoning bridges several research communities, such as
Knowledge Representation, Robotics, Data Management, and Semantic Web, and it has found
applications in various application domains, including traffic management, social media analytics,
and robotics.

For more than a decade, the stream reasoning community has proceeded with a shared
vision and provided many independent contributions. In this paper, a few community members,
some active since the beginning and some recently welcomed provide an overview of the leading
research contributions within the Stream Reasoning field discussed during these events. Moreover,
this article aims to crystallise the notion of stream reasoning, examining how these different
communities contributed to various aspects of its research vision and highlighting the overlaps
and peculiarities. The inputs of this crystallisation process were the programs and discussions of
the past workshops and the results of a questionnaire prepared specifically for this article. Some
authors prepared the questionnaire, starting from one of the initial research questions [75], called
Q henceforth, that contributed to the fundamental vision of Stream Reasoning:

(Q) Can we make sense in near real-time of vast, rapidly evolving, constantly
varying, inevitability noisy, incomplete and heterogeneous data streams coming from
complex domains?

This question touches upon the various research dimensions related to SR: Near real-time
pertains to the urgency of obtaining an answer; it is essential to secure a response as swiftly as
possible and definitely before the information loses its value, a notion referred to as velocity. A
unique challenge is given by heterogeneous data, emphasising the variety of data, where data is
not uniformly formatted. The term noisy refers to the inherent uncertainty about and in the data.
When one mentions data being wvast, they point to the immense volume of data generated in a
given time frame, signifying scalability challenges. Incomplete data suggests an absence of specific
data or information in the stream. The description rapidly evolving underscores the unpredictable
nature of the stream’s ingestion rate, while constantly varying speaks to the unpredictability of
the content of the stream and its potential constituents. In conclusion, the term Complex domains,
which perhaps distinguishes Stream Reasoning from the related topic of Stream Processing, is
reserved for those application areas where merely validating data is not sufficient; these domains
necessitate capturing and integrating semantics, complex relations between parts, and context
through a more expressive language.

P. Bonte et al.

Question Q can also be used to define a macro-level perspective on decision-making. In social
sciences, macro-level questions correspond to the collective investigation of a research field, i.e.,
they are used to define the research context [131]. As such, they remain unanswered regardless
of individual contributions, and thus, they shall be reduced to simpler lower-level questions. In
particular, two additional levels are expected:

Meso level: adds requirements to limit the research context, but still unsolvable. Meso-level
questions roughly correspond to the investigation of several PhD theses.

Micro level: reduces the investigation to a measurable outcome that can assess the validity

of the contribution, e.g., a research paper.

Therefore, we used the answers to the questionnaire to reformulate Q into meso and micro
questions to characterise the different areas within Stream Reasoning research. Moreover, we
asked the participants to sustain their answers with a thorough analysis of the Stream Reasoning
state of the art. Our goal is indeed grounding the pillars of Stream Reasoning research to the
extent of guiding the future of this research community. The result redefines the aforementioned
terms into four partly overlapping areas of research:

Stream Processing, i.e., the area concerned with developing systems that can efficiently
process large data streams. Given the focus on data management, this research area is traditionally
embedded in the database and complex event processing communities.

Streaming Linked Data, i.e., the area that focuses on extending the Semantic Web stack to
deal with streaming data. Because of this, contributions in this area are primarily presented in
the Semantic Web community.

Deductive Stream Reasoning, i.e., the area that focuses on designing deductive reasoning
techniques that can infer implicit knowledge from the stream. Most techniques in this area are
based on logic-based methods and come from the Knowledge Representation community.

Inductive Stream Reasoning, i.e., the area that studies how we can infer new knowledge
using inductive reasoning techniques. To this end, the most recent contributions exploit the latest
developments in Machine Learning to learn new knowledge from the data.

While SLD encompasses several areas of research that are interested in data sharing and
integration for evolving data, inductive and deductive stream reasoning focus on efficiency and
expressiveness. To clarify the difference between deductive and inductive reasoning, in deductive
reasoning, one evaluates logical statements to make implicit knowledge explicit; prototypical
reasoning is making proofs in a logical calculus, applying rules, etc. For example, from a and
a — b we may conclude b. Notably, the reasoning is sound. In inductive reasoning, one infers rules

from data; e.g., from images showing white swans, one may infer that, as a rule, swans are white.

In contrast to deductive reasoning, inductive reasoning is not generally sound, and the result
may be incorrect. To address this, inferences may be drawn under uncertainty, often resorting to
probabilities. Notably, deductive reasoning may involve uncertainty, but all knowledge is already
implicit.

We will discuss each of the areas in the following four sections. The discussion will follow the
same structure in each section. First, we will formulate a meso question for that specific sub-area
of stream reasoning, and then we will dig into the following sections:

In the “Make Sense” section, we investigate the standard way to express a Stream Reasoning
problem in that sub-area, e.g., continuous querying or logical program.

In the section “Taming Volume”, we describe what research efforts in that particular sub-area
address the scalability problem, e.g., using distributed systems to scale out;

In the section “Taming Velocity”, we focus on those research efforts in that sub-area that relate
to the hurdle of processing data as soon as possible, e.g., adopting window-based processing;

2:3

TGDK

2:4

Grounding Stream Reasoning Research

In the section “Taming Variety”, we discuss how existing works in that sub-area approach the
challenge of information integration, e.g., using graph-based data models;

In the section “Domain Complexity”, we present the results for representing domain knowledge,
e.g., ontologies;

Finally, in the “Data Quality” section, we discuss what methods were adopted or assumptions
were made regarding data quality issues, e.g., missing data.

We will conclude in Section 6 with a discussion on how the various areas relate, primarily
pointing out when they overlap and how to move forward in this exciting field with a list of what
we view as critical open challenges.

2 Stream Processing

Stream Processing is a technological solution and a research field that first addressed the problem
of continuously analysing data in near-real-time. Stream Processing pre-dates Stream Reasoning
research. Indeed, Execution models for Stream Processing have been around for decades [159].
Therefore, it had a direct influence on Stream Reasoning research. At the same time, the push
towards a broad form of intelligence and decision support that does not neglect reactivity, which
is one common theme in Stream Reasoning research, had a return on Stream Processing as a field.

Thus, it makes sense to look at Stream Processing from a Stream Reasoning perspective, to
understand how it contributes to the latter vision. To this extent, we formulate the research
question below to capture the objectives of Stream Processing research that align with the one
captured by the macro question:

Meso (Stream Processing): Can we continuously query, using declarative SQL-like
languages, vast, rapidly evolving, constantly varying, potentially noisy data streams,
minimising latency and maximising throughput?

In the remainder of the section, we discuss how Stream Processing has answered such a
question.

Stream Processing covers the whole life-cycle of streaming data: from their ingress to manipu-
lation and eventual egress.

2.1 Make Sense

As motivated by Cugola and Margara [67] in their overview of what they call information flow
processing systems:

Many distributed applications require continuous and timely information processing as
they flow from the periphery to the system’s centre.

Such Stream Processing systems are designed to support large applications in which data are
generated from multiple sources and pushed asynchronously to servers responsible for analysing
them [115]. Traditionally, analytics is the main objective of the processing, with Stream Processing
systems focusing on low-latency, high-throughput online analytical processing (OLAP) workloads.

In terms of making sense of the data, Stream Processing introduced the notion of Continuous
Querying, i.e., queries that continuously run against streaming or real-time data to produce results
or output whenever new data meets the query’s conditions. Traditional database queries are
one-time operations: a query is executed and results are obtained based on the current state of
the database. In contrast, continuous queries persist and constantly check incoming data.

P. Bonte et al.

Table 1 Description of the taxi ride stream data. Table 2 Description of the taxi fare stream data.
field | description field | description
rideld | the unique ride id rideld | the unique ride id
taxild | the unique id for the taxi itself tazild | the unique id for the taxi itself
driverld| the unique id of the taxi driver driverld | the unique id of the taxi driver
isStart | has the ride has started or ended startTime| the time the ride started
eventTime | timestamp of the event paymentType | the type of payment(cash/card)
startLon | the longitude where the ride started tip | the tip amount for the ride
startLat | the latitude where the ride started tolls| the amount of tolls payed
endLon | the longitude where the ride ended totalFare | the total fare

endLat | the latitude where the ride ended
passengerCnt | the number of passengers

Continuous Queries are more specialised than general coding tasks, and thus, they are typically
supported by algebra or formal semantics. To our knowledge, the first appearance dates back
to the seminal work of Terry et al. [211]. Since then, continuous queries have been discussed
extensively [23, 16, 62]. Limiting our mention to fully-declarative languages, we can distinguish
two families of continuous queries, which differ on the expressivity of the languages they use:

SQL-Like Languages based on the foundational CQL models by Arasu et al [9]. Such languages

allow expression window-based continuous queries over relational data streams. Three types of

windows have been considered: time-based (sliding) window which discards all data beyond a

certain point in time; tuple-based window which dumps all data that has arrived prior to a

predefined number of tuples (e.g., keep only the last 10 facts); partition-based windows, which

partitions the stream in various substreams based on the attributes of the data in the stream.

Complex Event Recognition Languages focus on detecting regular expressions over streams

of typed events. Although operators like Sequence (follow by) and Allen Algebras are well-

accepted, a universally accepted foundational algebra is still missing.

» Example 1 (Taxi). To illustrate the difference between the research areas, we provide examples
of various queries typical for each research area. We will utilise the taxi dataset provided by the
ACM DEBS 2015 Grand Challenge! as an ongoing example. The DEBS challenge centers around
analysing taxi routes within the city of New York. The dataset encompasses two streams: the ride
stream, which describes taxi journeys including (i) taxi specifications, (ii) pick-up and drop-off
details (such as geographical coordinates and timestamps); and (iii) passenger count; and the
fare stream, which describes payment details for the rides (such as tip, payment method, and
total fare). Specifically, Table 1 outlines the attributes found in the ride stream, while Table 2
delineates the attributes in the fare stream. Note that rideld, tazild, and driverld are contained
in both streams.

Listing 1 shows an example of a CQL query that combines both streams, counting all the rides
over the last hour that had more than 2 passengers and cost more than 10 dollars. The Istream
operator in the Select clause describes that the result of the query will be a new stream containing
the new results within the window of 1 hour.

! http://www.debs2015.org/call-grand-challenge.html

2:5

TGDK

http://www.debs2015.org/call-grand-challenge.html

2:6

Grounding Stream Reasoning Research

Select Istream(Count(*))

From RideStream [Range 1 Hour Slide 1 Minute]

From FareStream [Range 1 Hour Slide 1 Minute]

Where RideStream.rideld = FareStream.rideID AND
RideStream.passengerCnt > 2 AND
FareStream.totalFare > 10

Listing 1 An example of an CQL query on the taxi stream.

Carbone et al. [59] studied the field’s maturity concerning processing. Initially, research focused
on languages and paradigms for continuous querying and designing Data Stream Management
Systems (which extend Data Base Management Systems to support continuous semantics). Later,
research moved towards Scalable Stream Processing, motivated by the advent of Big Data
challenges. More recently, the authors claim, Stream Processing is moving beyond analytical
workloads, welcoming concepts like database transactions, stateful functions, and model serving.
Moreover, Stream Processing has been applied beyond continuous queries, addressing tasks such
as conformance checking [185], continuous pattern-matching streaming graphs [169, 168], and
graph partitioning [1].

2.2 Taming Volume

As highlighted by Carbone et al., the first generation of streaming systems was centred around
proving the feasibility of continuous querying and paying little attention to scalability. Hence,
the first generation of streaming engines is limited to vertical scaling, e.g., IBM System S, Esper,
Oracle CQL/CEP and TIBCO.

Later, due to the introduction of MapReduce and the popularisation of cloud computing,
Stream Processing research and development started shifting to the scalability problem. Although
velocity (described below) was always the priority, data parallel and distributed solutions became
the de facto standard.

In particular, it is worth mentioning Apache Flink [60], which uses a streaming dataflow engine
that provides data distribution, communication, and fault tolerance for distributed computations.
Apache Flink features two relational APIs — the Table API and SQL-for unified stream and
batch processing. Flink’s Streaming SQL support is based on Apache Calcite, which implements
the SQL standard. Apache Spark [11] is a versatile distributed computing platform that offers
convenient programming interfaces in Java, Scala, Python, and R, along with a well-optimised
engine that is capable of handling various execution graphs. At the core of Spark’s abstractions
are resilient distributed datasets, which represent collections of elements distributed across nodes
within the cluster, enabling parallel data processing. Apache Kafka [231] works as a distributed
streaming platform, operating as a cluster on one or more servers called brokers. This cluster can
span across multiple data centres. Kafka’s primary role is to store continuous streams of records
in what are known as topics, which are essentially unbounded, append-only log structures. Each
record within these topics comprises three main components: a key, a value, and a timestamp. A
Stream Processing library called Kafka Streams is also built on Apache Kafka’s producer and
consumer APIs. It operates on a model known as Stream/Table duality [195].

2.3 Taming Variety

The support for data heterogeneity is limited in general streaming systems. Indeed, Data Stream
Management Systems (DSMS) and Complex Event Processing (CEP) engines inherit their data
model and query languages from the database community. The seminal work from Babu et
Widom [16] poses the basis for relational Stream Processing and influences various languages.

P. Bonte et al.

The data models are evolving, with stream processing systems supporting more complex data
types inspired by object-oriented programming languages. Indeed, Flink, Spark, Kafka Streams

and many more support nested data structures, allowing users to design hierarchies of event types.

Notably, the approach taken from existing DSMSs to address the data variety is rather practical
and lacks formal foundations. Data integration is performed through custom data pipelines rather
than following information integration principles [140]. Conversely, relational languages have
been extended to navigate simple nested structures like JSON. For example, Spark SQL has
included operators to manipulate CSV and JSON data since 2017. KSQL and Flink added the
opportunity to access nested fields in JSON data within the SQL dialect last year. Nonetheless,
data access is managed without source data mapping, making fraternisation somewhat arbitrary

and porting queries across systems nearly impossible when semistructured data are involved.

Although the notion of an event, as a typed notification of fact at a given time, can be seen as a
shared abstraction that can glue DSMS together, few attempts remain in the realm of Stream
Processing systems.

It is worth noticing, though, that there are emerging more specialised Stream Processing
systems capable of handling more sophisticated data structures such as interval-based events [15],
streaming graphs [169], and property graph streams [93].

Orthogonal to the data representation, the Stream Processing literature distinguishes two types
of streaming data, i.e., record streams and change data capture. The former indicates positive
tuples like sensor network observations, while the latter describes changes within a database
(additions and deletions). Although Stream Processing does not typically consider variety in the

data model, these two types of streams typically co-exist in the context of streaming systems [195].

Additionally, in the context of system observability, such a dichotomy has evolved into a trichotomy
including metrics, logs, and traces, which represents numerical observations, factors or changes, as
well as the propagation of information across systems, respectively [199].

2.4 Taming Velocity

Data velocity, i.e., the requirement for processing data as soon as possible and before they are no
longer valuable, is the first and foremost priority for Stream Processing research. The velocity
challenge has a direct impact on data storage. Indeed, putting data at rest and processing them
later is no longer possible, as it would require too much time. In practice, data velocity is treated
by operating in memory. Stream Processing Engines, i.e., systems capable of handling data
with high throughput and low latency, employ sophisticated mechanisms to reduce the memory
footprint without compromising performance.

Their performance is measured alongside two axes, each representing a key performance
indicator, i.e., end-to-end latency (the time passed from when a data point enters the system and
when it exits as part of the output) and maximum throughput, the amount of data processed
within a unit of time, e.g., a second. The two dimensions are in a clear trade-off, pulling the
Stream Processing envelope on from two sides, i.e., incremental vs batch computations.

Another substantial change happens in the query model. Queries are no longer issued online

but are instead registered and compiled into pipelines, which typically avoid loops for efficiency.
As a query can run indefinitely and until explicitly suspended, the result is a stream of answers.

The query evaluation occurs upon the arrival of individual data elements or in small (micro)
batches. Punctuation mechanisms, i.e., the presence of particular landmarks in the data or the
query, are used to progress the execution in a distributed setting. On the data side, punctuation
is the minimal informational unit that constitutes a single item in the stream. On the query side,
punctuation assumes the role of operators, commonly named windows, that allow the gathering of
multiple elements in the stream that should be processed simultaneously. Ultimately, windows can

2:7

TGDK

2:8

Grounding Stream Reasoning Research

introduce a delay in different parts of the framework. Modern engines that simultaneously address
the velocity and volume challenge may consume millions of events per second, guaranteeing an
end-to-end sub-millisecond latency.

2.5 Domain Complexity

In Stream Processing, the complexity of the domain is usually considered relatively limited.
Domain modelling is reduced to relational and document data when considering production-graph
Stream Processing systems like Flink, Spark Streaming and the Kafka suite. Notably, the presence
of a schema, be it relational or document-based, as in the case of binary formats like Avro or
JSON Schema, is essential to decouple the production and consumption of streaming data. In
terms of conceptual modelling, approaches for event data representation emerged, e.g., event
sourcing [35], but only as methods for system integration and without formal semantics [165].
Lastly, in Complex Event Processing, hierarchical data models are often adopted but limited to
taxonomical relations inspired by inheritance in object-oriented programming languages [104].

The adoption of Stream Processing systems into application domains that require strong
consistency guarantees, e.g., financial analysis or traffic management applications, called for more
sophisticated domain modelling techniques. While on the conceptual level, everything remains
unchanged, at lower levels of abstraction, the Stream Processing engines require awareness of
partitioning schemes, possible faults, and out of order. To this extent, researchers have focused
on consistency in terms of transactional behaviour [238, 2, 50]. The ACID properties, which are
standard in the database context, ensure that the (database) state is consistent to the degree
required by a given isolation level. In Stream Processing, the focus shifted to the interaction
across systems. Thus, the notion of consistency is discussed in terms of delivery guarantees:
At-least-once ensures that input data are not lost, at-most-once eliminates duplicate processing,
and ezactly-once combines both, ensuring the absence of input data losses and repeated delivery
of results [212]. The definition of such guarantees is expressed at the logical level: individual
data items are extended with metadata to be used downstream for controlling consumption.
Transactional Stream Processing is an ongoing research that is gaining traction at the industrial
level?.

Last but not least, the role of provenance in Stream Processing represents the most notable
attempt to manage additional domain complexity, i.e., reason about the why and the how of
continuous query answers [105]. Vijayakumar et Plale [224] first proposed a low-latency method
for generating coarse-grained provenance information that focuses on capturing dependencies
between different data streams instead of individual tuples. Wang et al. [232] spot the limita-
tions of techniques based on annotations and suggest a rule-based approach for provenance in
Stream Processing applied to the medical domain. However, this approach requires access to all
intermediate streams, making it less suitable for modern Stream Processing systems. Glavic et
al. [106] proposed a set of instrumented operators to track the provenance of select-project-join
queries in Stream Processing scenarios. More recently, the works of Palyvos-Giannas explore richer
provenance models, in particular: Ananke allows users to track richer provenance information,
not only specifying which source tuples contribute to which query results but also whether each
source tuple can potentially contribute to future results [171]. GeneaLog is similar to Ananke but
with a focus on the edge [170]. Finally, Erebus investigates the aspect of completeness, relying on
why-provenance [172] for identifying missing answers in the result by explaining the mismatch
between actual and expected answers for continuous queries. As such, explaining the inconsistency
of continuous queries is not applicable.

2 https://github.com/ververica/streaming-ledger

https://github.com/ververica/streaming-ledger

P. Bonte et al.

2.6 Data Quality

Several factors impact streaming data quality, e.g., noisiness, incompleteness, and timeliness.

Stream Processing systems must be able to handle situations where individual data points are
missing, entire data streams stop suddenly, or queries are changed. These situations can occur as
the result of for example data loss during transmission, changing streaming resources, or changing
user/agent needs. This can be regarded as an orchestration problem, where resources are carefully

managed to minimise latency and maximise throughput even in the face of changing circumstances.

3 Streaming Linked Data

Throughout the years, the Semantic Web has built and standardised a stack of technologies that

enable the vision of publishing, accessing, and processing data on the Web, as if in a database [34].

Among these technologies and standards, IRIs [88] are used to identify resources, RDF provides a
data model to describe such resources and their relations in graph-based data structures, ontologies
such as RDFS/OWL offer languages to specify schemas (consisting of concepts and the relations
between these concepts), and SPARQL provides a declarative query language to execute CRUD
operations on RDF graphs (to Create, Read, Update, and Delete resources).

These technologies were built without including time as an intrinsic part of their data model.

While it is easy to understand this choice — many systems do not deal with time or delegate

its management to the application layer — data evolves, and it is often necessary to address it.
Therefore, the community started to build time-aware solutions on top of the Semantic Web stack.

For instance, there have been initiatives at the modelling level, such as OWL-Time [65] that
allow defining temporal concepts, or the Semantic Sensor Network ontology [64], which provides a
vocabulary to describe sensor observations over time. The Semantic Web standards themselves
evolved, accounting for time. For example, the RDF 1.1 recommendation [69] states:

The RDF data model is atemporal: RDF graphs are static snapshots of information. [...]
RDF graphs can express information about events and temporal aspects of other entities,
given appropriate vocabulary terms.

In practice, this implies that time information can be included within an RDF graph, without
time-specific semantics. In addition to use cases where it is necessary to account for time, a second
need emerged: responsiveness. An increasing number of applications require not only managing
temporal data, but also timely processing of results. These requirements are frequent in a large
number of domains including social media analytics on the Web, or data management for the Web
of Things (WoT). In these applications, it is vital to provide instantaneous query and analysis
results, for which time order and recency play a crucial role.

These needs led to a novel research area within the Semantic Web community, under the
denominations of RDF Stream Processing (RSP) or Streaming Linked Data (SLD) [217]. RSP
research has focused more on the temporal extensions for RDF data and query modelling, while
SLD has centred on the implications of Stream Processing for graphs that comply with the Linked
Data principles [41, 46]. Beyond these minor differences, this line of research has delineated an
agenda that has studied the following aspects:

Modelling data streams and complex events using RDF graphs, including syntactic, semantic,

and operational implications.

Extending RDF query languages with streaming data operators.

Building RDF stream Continuous Query processors, including different reasoning and processing

variants.

2:9

TGDK

2:10

Grounding Stream Reasoning Research

Evaluating and benchmarking Stream Processing engines, including performance, and correct-
ness, among other metrics.
Interconnecting RDF stream processors through Web interfaces.

This allows us to reformulate the macro-level research question to the following specific
meso-level research question for RSP/SLD:

Meso (Streaming Linked Data): Can we evaluate Continuous Queries, expressed
as a dialect of the SPARQL language, over RDF streams with limited latency while
incorporating domain knowledge through RDF'S ontologies?

This and other subsequent research questions have been explored and discussed, many of which
converged around the RDF Stream Processing Community Group (RSP CG), within the context
of the W3C3. This group served as a central discussion square that led to different formalisation,
implementation, and benchmarking initiatives in this area.

RSP/SLD has been successfully used in a variety of use cases, ranging from social media
analytics [20], traffic monitoring in Smart Cities [139], large-scale streaming data retrieval in Smart
Farming [124], to monitoring the performance of athletes [158] and the health of patients [71].

We will now explain how RSP/SLD research has targeted different aspects of the original
Stream Reasoning macro-level research question.

3.1 Make Sense

In order to process RDF streams, it was observed that Semantic Web technologies and Stream
Processing technologies are complementary for solving the problems that Stream Reasoning tries
to tackle. In terms of making sense of the data, RSP and SLD are fundamentally based on
continuous querying and data integration approaches. The former, takes the idea from SP, where
queries are registered only once and continuously produce results as they are evaluated over
streams of data. Moreover, RSP and SLD inherit the data integration capabilities from the
Semantic Web, as they seamlessly integrate Stream Processing and Semantic Web technologies.
Through the use of ontology models to represent the stream data elements, these query languages
were able to integrate different data sources, including both static and streaming data.

Over the years, several languages have been proposed. Most of them aim to process extensions
of RDF where triples or graphs are annotated with temporal information, such as individual
timestamps or time intervals. Examples of these languages include C-SPARQL [24], Streaming
SPARQL [43], CQELS-QL [134], or SPARQL-Stream [55]. Most of these languages extend the
SPARQL syntax with time-based sliding window operators, as found in Stream Processing; and
in some cases, additional query functions. The semantics of how these windows work, however,
were not uniform and were shown to have different operational behaviours. In consequence, these
languages disagreed on the correctness of query results in certain cases [81], as they had different
properties that made them difficult to compare,

To address this issue, a unifying formalisation of continuous query processing over RDF streams
was proposed in [78], named RSP-QL. This model was able to include streaming query evaluation
semantics, as well as operational semantics of windows, thus allowing to characterise existing
extensions of SPARQL for continuous querying. The ability to represent different types of queries
using RSP-QL is a first step towards the standardisation of continuous querying extensions for

3 W3C RSP Community Group: https://www.w3.org/community/rsp/.

https://www.w3.org/community/rsp/

P. Bonte et al.

RDF streams. However, RSP-QL still inherits practical inconveniences from SPARQL, such as
the difficulty of generating and re-consume RDF stream results (e.g., through using the SPARQL
CONSTRUCT clause).

There are more operators beyond the sliding window operator. Examples include basic CEP
sequence matching, which was integrated into RSP-QL through RSEP-QL [82], and monotonicity
conditions, which were proposed in STARQL [166]. Nevertheless, these elements add substantial
complexity to the formalisation and eventually to the implementation of querying engines, as we
will see next.

3.2 Taming Volume

Although most of the contributions in the SLD research area have focused on addressing the
inherent velocity of data streams, taming volume has not been thoroughly investigated. There
have been some efforts, such as CQELS-Cloud [135] and Strider [189] that build upon the elasticity
of existing Stream Processing frameworks, respectively Apache Storm and Apache Spark. However,
the focus of taming huge volumes of data has been rather limited.

Nevertheless, this dimension has indirectly been addressed through the analysis of query
execution efficiency and response time constraints. Velocity can be analysed in terms of volume
over time, which was analysed in RSP benchmarking efforts [239, 133]. Among the works specifically
targeting stream data volume we can mention efforts for reducing the actual size of serialised
RDF streams, using the compressed ERI interchange format [94]. The usage of reduced formats
for RDF stream data exchange are of primary importance for IoT environments where message
volume is critical [122], such as constrained devices, limited network bandwidth, and reduced
storage sensors.

Other approaches addressed volume from the processing perspective, for instance proposing
load-shedding techniques to limit the number of stream data items to be processed [33], or data
eviction strategies to reduce the cardinality in join operations over RDF streams [100].

3.3 Taming Variety

RDF graphs allow modelling all sorts of information on the Web, enabling wide exchange and
interoperability. However, these graphs are atemporal, and RSP needs an adequate data model
to publish and exchange data streams while handling data variety. RDF streams address this
challenge by extending the RDF model with notions of time-based order. The initial attempts to
define RDF streams were crystallised by the RSP CG, which proposed the following requirements
for the abstract model of RDF streams [7]:

R1 It should be possible to represent RDF streams with an abstract RDF-based model,
whose semantics should provide the basis for producing and consuming streams.

R2 It should be possible to identify an RDF stream usingIRIs.

R3 It should be possible to serialise the RDF stream abstract model into RDF formats
derived from existing standards, extending them only when necessary.

R4 Tt should be possible for RDF Stream to have timestamps based on different notions of
time (time instants, intervals) with different semantics (application, validity, transac-
tional).

R5 In case no timestamp is associated with an RDF stream data element, the system should
be responsible for managing the time-based ordering of stream elements.

R6 It should be possible to restrict the RDF stream model to facilitate implementation and
support efficient representation.

2:11

TGDK

2:12 Grounding Stream Reasoning Research

prefixes:
taxi: "http://linkeddata.stream/ontologies/taxi#"

mappings:
rides:
s: taxi:ride/$(rideld)
po:
- [a, taxi:RideEvent]
- [taxi:hasEndLon, $(endLon)]
- [taxi:hasEndLat, $(endLat)]

Listing 2 An example RML Mapping on the taxi dataset.

The above requirements call for reusing existing Semantic Web technologies and account
for different types of temporal information. One can consider an RDF stream as a sequence
of RDF graphs, each identified by an IRI and optionally associated with temporal annotations,
such as creation time or validity interval. The generality of the RDF streams definition aims at
opening the door to different kinds of streams, which may occur in different application scenarios.
However, it also implies the challenge of dealing with the complexity of covering modelling
variations. This specification led to the implementation of systems capable of producing streams
of RDF data [24, 136, 216]. At the simplest level, plain RDF can be used to represent streaming
information without specific semantics for time annotations. For example, the Linked Sensor
Data [175] initiative proposed the publication of meteorological sensor data using stored RDF.
Although these RDF graphs represent observations that were originally streamed by sensors, with
explicitly recorded time annotations, the system only provided static access to the data. RDF
libraries such as Jena, RDF4J°, or RDFLib® provide I0 methods to read and write plain RDF
graphs in a streaming fashion, but they do not support producing and consuming RDF streams.

TripleWave [150] is one of the systems that addressed this limitation, proposing a full pipeline
for the generation of RDF streams. It included the production of live RDF streams consisting of
time-annotated graphs, which could be fed from non-RDF data sources.

More recently, RMLStreamer was introduced, focusing on the generation of RDF streams
in a low latency and high throughput fashion. RMLStreamer is a parallel and scalable Stream
Processing engine built on Apache Flink that is able to generate RDF streams from heterogeneous
data streams of any format (e.g., JSON, CSV, XML, etc.), using RML mappings [83].

» Example 2 (Taxi cont'd). SLD allows to integrate the taxi streams with additional static
information, e.g., a dataset that describes Points of Interest (POI) within the city. The use of
SLD enables this integration, even though the underlying data representation of the POI dataset
is not compatible with the raw taxi streams. Mapping the taxi streams and POI dataset to RDF
allows to smoothly integrate both datasets, allowing to make more informed decisions regarding
the available data. The taxi streams can be mapped to RDF in a streaming fashion through the
RMLStreamer. Listing 2 shows how this mapping can be defined in YARRML [114], i.e., a more
concise RML syntax. The mapping defines how various fields of the taxi dataset, e.g., rideld,
endLon and endLat, can be converted to RDF triples. A similar mapping can be conducted for
the POI dataset, regardless of its underlying data format.

The example RSP-QL query in Listing 3 counts all taxi drop offs near a hospital in the last
hour, which has been mode possible through the integration of the POI dataset. Joins in RSP-QL
can be applied to a combination of both windows and stored graphs as seen in the example.

4 https://jena.apache.org/
5 https://rdf4j.org/
6 https://rdflib.dev/

https://jena.apache.org/
https://rdf4j.org/
https://rdflib.dev/

1

2

3

4

5

6

9

10

P. Bonte et al.

RSP and SLD are thus able to tame data stream variety by reusing and extending Semantic
Web technologies, by introducing fundamental temporal semantics into the data model, and by
providing tools that implement them.

3.4 Taming Velocity

Each query language designed to process RDF streams was accompanied by working prototypes,
also called RSP engines. The first contributions investigated how Semantic Web technologies can
be combined with DSMS and CEP engines in order to incorporate Stream Processing capabilities
that could target velocity. These systems propose different approaches to continuous query
answering over data streams, shifting from the query-response paradigm of conventional SPARQL
engines. In addition, these systems have a special focus on reactive question answering, proposing
methods that allow for delivering results as soon as possible. Each of these systems incorporates
variations of windowing implementations, in order to limit the possibly unbounded stream in
processable chunks.

Among the first generation of RSP engines, C-SPARQL [24] adapts a black box approach by
pipelining a DSMS with a SPARQL engine. The DSMS is used for handling the Stream Processing
capabilities of the engine, e.g., windowing the stream into processable chunks. Each window is
then fed to the SPARQL engine for evaluation of the query. In contrast, the CQELS engine [134]
employs a white box approach; instead of pipelining existing systems, it integrates the Stream
Processing operators in the evaluation of the SPARQL query, opening up various opportunities
for optimisation. Morph-streams [56] takes a different approach and uses Ontology Based Data
Access (OBDA, or Virtual Knowledge Graphs) to virtually process RDF streams, while their
underlying representation is still the raw data (e.g., a relational data stream, or a streaming CSV).
It uses a mapping language, i.e., R2RML’, to define the relation between the underlying relational
data and RDF. Morph-streams uses query rewriting to virtually answer SPARQL-like queries over
relational data streams, giving the illusion data is available in RDF.

Other approaches focused on extending existing infrastructures for distributed data processing,
such as the aforementioned Strider (see Section 3.2). Regarding the integration and interoperability
of RSP engines, RSP4J [216] proposed an API for the development of RSP engines under RSP-QL
semantics, providing many of the needed abstractions and interfaces that can be used for building
blocks when creating new RSP engines or testing out algorithms and optimisations. RSP4J

" https://www.w3.org/TR/r2rml/

PREFIX taxi: <http://linkeddata.stream/ontologies/taxi#>
PREFIX : <http://linkeddata.stream/resource/>
SELECT (COUNT(?d) AS ?num_hospitalDropOff)
FROM NAMED <citymap.rdf>
FROM NAMED WINDOW <w> ON :taxiStream [RANGE PT1H STEP PT5M]
WHERE {

Graph <citymap.rdf> {?place :hasLat 7lat; :hasLon ?lon; :hasPOI ?poi.

?poi a Hospital. }
WINDOW <w> { ?d a taxi:DropOffEvent; taxi:hasEndLon ?lon; taxi:hasEndLat 7lat. }

Listing 3 An example of an RSP-QL query on the taxi stream.

2:13

TGDK

https://www.w3.org/TR/r2rml/

2:14

Grounding Stream Reasoning Research

also provides two implementations, Yasper and CSPARQL2.0, that follow the RSP4J interfaces.
Following the principles of RSP4J, but written in Rust, RoXi [44] brings RSP engines to the
browser through WebAssembly support.

There have been a number of contributions centred on the evaluation of RSP engines. As
for Stream Processing solutions, the principal metrics are latency (the time required to process
a stream) and throughput (the amount of data processed in a given amount of time). Further
metrics include memory footprints, expressiveness (which query operators are supported), and
correctness (compliance of a system to its evaluation semantics). Among the proposed benchmarks,
LSBench [239] and SRBench [133] proposed re-playable data streams, evaluation queries and a
set of metrics to assess the performance and expressiveness of the engines. The YABench [128]
framework proposed a more comprehensive coverage of RSP features, while Citybench [4] proposed
more realistic and configurable testing datasets. Finally, RSPLab [219] focused on the provision
of an open-source environment for RSP reproducibility.

3.5 Domain Complexity

In RSP and SLD, the incorporation of complex domain modelling is usually satisfied by using
RDF and RDFS ontologies. In general, the domain complexity in RSP is kept low in order to
realise highly reactive systems, given the potential latency that reasoning can add to the query
processing stack. Nevertheless, there are some hybrid approaches where RSP and reasoning overlap,
for instance, incorporating query rewriting through ontology-based data access or materialising
window content and enabling Datalog reasoning. Some of these hybrid approaches are further
described in Section 6. When increased domain complexity and expressivity are needed, a sacrifice
in latency and throughput is acceptable. To the opposite extreme of this trade-off, we enter
the realm of Deductive Stream Reasoning (Section 4), which privileges domain complexity in a
dynamic environment.

3.6 Data Quality

Handling veracity and incompleteness has so far not received much attention within RSP, given that
in many cases, the RDF streams are previously pre-processed or fed through streaming pipelines
that already perform minimal data cleansing (e.g., through Kafka pipelines [126]). Otherwise,
stream data quality control is seldom incorporated into RSP engines. In some cases, Continuous
Queries filter out anomalous data, or external data mining and outlier detection modules are
employed before the RSP engine receives the stream. When dealing with constantly-varying data,
Strider and CQELS provide optimisations to reorder the execution of their query execution plans
based on the rates of the various streams that are being processed. When the rates of the streams
change, the execution plans are reordered to maintain reactivity. The quality of Continuous Query
results may sometimes degrade when the stream rate rises. In consequence, it can be helpful in
use load-shedding and similar techniques to limit the number of stream items to be consumed [33].

Finally, quality can also be considered regarding the correctness of the Continuous Query
processor. In the case of RSP engines, this topic was addressed in [81], which verified that
seemingly similar queries resulted in different answers, in some cases not entirely predictable.
Based on these results, the operational semantics of RSP query languages have been further
studied [78], and other benchmarking frameworks have adopted correctness criteria for their test
suites [219].

P. Bonte et al.

4 Deductive Stream Reasoning

The contributions presented in the previous sections assume that all the knowledge is stated
explicitly in the data streams. In some cases, however, there is a wealth of implicit knowledge that
can be inferred with some non-trivial computation.

We refer to systems that do this by evaluating logic-based statements in a deductive manner
as Deductive Stream Reasoners (DSRs). Inductive Stream Reasoning, which aims at inferring new
knowledge from data, will be considered in the next section.

PLAN LINE
L | From | To | Dur ID| L
€1 S1 S3 8 tr1 El
0 S2 83 3 tra | £2 waiting
tram(try, s1) time
f f ARweay -t

36 40 43 44
tram(tra, $2)

Figure 1 Transportation example.

» Example 3 (Vienna tram connection). Staying in the transport sector, let us exemplify the
general notions of DSRs on the following navigation problem, this time considering public transport
instead of taxis: Samantha is travelling in Vienna with her baby and a stroller on a tram ¢5 from
S2 to s4, which is served by the line ¢;. Thus, Samantha needs to change the line on the stop ss.

According to the plan, shown in Figure 1, a vehicle ¢ry that serves the line £5 requires 3 minutes
to reach s3 from sy and a vehicle tr; needs 8 minutes to get from s; to s3. A transportation
application that Samantha is using must solve at least the following two problems: (i) get
information about the current schedule and delays of trams running on ¢; and (ii) find expected
good connections between s; to sy with less than 5 minutes waiting time at s;.

An application based on a DSR gets its knowledge about the transportation problem explicitly,
i.e., an expert provides it as a knowledge base KB, such as an ontology or a logic program. DSR
then uses KB to solve various problems, e.g., to find suitable routes or inform users about expected
arrivals. A data stream comprising information about the current state of the transportation
system is pushed to the DSR from sensors and other systems. DSR systems can represent these
streams in two possible ways: point-wise or interval-wise. In the point-wise representation DSR
discretises the time into a set of time point, e.g., a second or a minute, depending on the system
architecture. The encoding of data might also vary. Thus, many rule-based DSR systems require
incoming data to be encoded as facts, which are associated with time points when they were
received, e.g., 36 — {tram(try, s1)}. Other popular representations include database tables, RDF
triples, and labelled values in a similar way as the atoms above. The interval-wise representation
appears to be more natural since time discretisation is not required as in the point-wise case.
Hence, a DSR system might associate a set of intervals with every data value appearing in the
stream. The main caveat of this representation is that it requires DSR systems to determine the
end of each interval. Thus, if a movement sensor reports only changes in tram velocity between
the stations, the system cannot determine if the tram is still moving at a constant speed or if the
sensor is malfunctioning.

2:15

TGDK

2:16

Grounding Stream Reasoning Research

Given the background knowledge about timetables and a stream comprising facts about the
positions of trams on their lines, the application needs to retrieve data relevant to Samantha’s
situation. Most DSR systems use various kinds of window functions to retrieve relevant parts of
the stream, similar to the windowing introduced in Stream Processing. In our transportation
example, a time-based window for the interval [35,45] will return {tram(try, s1), tram(t¢ra, s2)},
and a tuple-based window of size 1 from ¢ = 45 will return only {tram(trs, s2)}.

In general, DSRs are useful in complex domains where applications should be able to con-
tinuously make decisions using knowledge explicitly provided by experts. That is, in contrast to
the inductive systems, it is not realistic to expect that knowledge required for decision-making
is provided in the stream data, like observations and/or labels. Such domains include Cyber-
Physical Systems (CPS), Digitalization of Industry, Internet of Things (IoT), and Social Networks.
Examples of such applications are

monitoring and surveillance, e.g., of gas turbines [52], maritime vessels [194], or healthcare [111];

decision making, e.g., for video streaming and games [28, 6];

planning, e.g., trajectory planning for UAVs [112];

analysis and query answering, e.g., in social networks [25], smart infrastructures [178], and in

intelligent transportation systems [89, 197].

The macro-level SR research question can be reformulated to the following generic meso question
for DSR:

Meso (Deductive Stream Reasoning): How can we make knowledge about complex
domains, represented in expressive Knowledge Representation languages, available for
Stream Reasoning in the realm of vast, rapidly evolving, constantly varying, inevitability
noisy, incomplete and heterogeneous data streams?

This generic question gives rise to several concrete meso-level questions that need attention:

1. How can we reuse previously inferred knowledge to minimise the reasoning time upon receiving
updates respectively changes in data?

2. How can we extend existing Knowledge Representation languages suitably with temporal
operators?

3. How can we achieve a balance between the expressiveness of the Knowledge Representation
and the efficiency of reasoning in particular for maintaining a high throughput?

4. How to deal with noise and uncertainty appropriately in expressive Knowledge Representation
formalisms, both regarding the quality of results and performance?

Solutions to these questions will be instrumental for achieving the macro goal of Stream
Reasoning from above, as rich Knowledge Representation formalisms allow us to express and
reason about properties and relationships between data at a deeper level. They enable us to
obtain more insight transparently, and provide a basis for developing explanation and justification
facilities that will aid in analytics and increase transparency, and hence, trustworthiness.

The first question is at the heart of Stream Reasoning, and requires to face the challenge
that conclusions may be obtained by reasoning processes that involve several steps of inferences,
depending on the complexity of the underlying Knowledge Representation. Materialisation, i.e.,
computing and storing the valuation of predicates/relations that are defined from given data,
and related techniques play an essential role here [156, 225, 157, 221, 177, 118, 222]. Data
parallelisation, i.e., enabling parallelism in reasoning by data partitioning, has also been considered
and investigated as a possible way to tackle this issue [180, 179]. However, for expressive Knowledge
Representation languages, incremental evaluation under frequently changing data is not at a level
of performance as one would desire in real-time applications like traffic monitoring.

P. Bonte et al.

The second question has led to several works in which (static) Knowledge Representation
formalisms have been extended with operators and constructs from temporal logics and reasoning,
e.g., [86, 112, 52, 29, 226, 58]. However, they are quite diverse and it is at this point open whether
the requirements of Stream Reasoning are well covered and which selection and combination of
operators would be beneficial, and whether novel operators should be introduced.

The third question is important as, intuitively, constructs in a language that allows for expressing
more involving relationships (e.g., joins with negation, nested relations, or recursion) require more
computational resources for evaluation [102]. However, even comparatively high resources may not
empower one to compute answers over varying inputs, as well-known from descriptive complexity
theory [121] and researched extensively in databases and knowledge representation. In DSR, this
question—in particular with an eye on high throughput—has been not been much explored yet.

The fourth question arises as commonly declarative languages based on logic assume a well-
behaved environment in which data is consistent and uncertainty, if at all, is limited to missing or
indefinite information. In the streaming context, this calls for extensions of DSR formalisms that
can deal with inconsistent data, outliers, and quantitative uncertainty, especially with probabilistic
information. This has been addressed in several works, e.g., [161, 214, 51, 90, 181, 74, 215], but
there is no gence nor uniform approach to serve this need, and performance guarantees are an
issue. In general, blending uncertainty with logic is a popular topic of interest in Al, with many
ongoing works in several communities. In a streaming context, we identify two main research
avenues. The first is studying whether existing techniques, in particular those that use deep
learning architectures in static contexts, can be successfully adapted so that they can work in
a streaming context. The second avenue consists of designing novel techniques specifically for
streaming scenarios. This type of combination will be discussed in more detail in Section 5
dedicated on inductive Stream Reasoning.

We conclude by emphasising the critical importance of establishing comprehensive metrics and
clear evaluation criteria for assessing contributions to the aforementioned research questions. This
is a problem that has been receiving considerable attention in the community (see, e.g., [196]),
especially for the following reasons:

If two solutions implement two different formalisms, then it can be that it is precisely the
differences between the two which are responsible for a certain increase/decrease of performance.
Thus, it is hard to distinguish the value of a certain solution;

If we adopt absolute metrics, like runtime or memory consumption, then it becomes arguable
when a solution is “good enough” since small variations in the use case can lead to a completely
different outcome;

It is also difficult (or even impossible) to determine which are the most important without
resorting to concrete use cases.

As previously mentioned, several RSP benchmarking efforts were developed [239, 133]. These
platforms require a graph-based data model and are tailored towards benchmarking query answer-
ing, hence are well suited for OWL-based languages. For instance in [57], the authors showed that
queries with an OWL2 QL-based engine could be answered up to a throughput of 200K triples/s.
Since the mentioned efforts do not cover more challenging reasoning tasks and program sizes,
some researchers rely on artificial micro-benchmarks to conduct the experiments and to report
empirical evaluations. For instance in [27], LARS-based implementations were compared among
themselves and against RSP engines featuring that a response time below 100ms can be achieved
for multi-rule programs with a throughput of 800 triples/s. It is likely that a more widespread
adoption of DSRs in the real world will guide the research community in choosing more meaningful
evaluation criteria.

2:17

TGDK

2:18

Grounding Stream Reasoning Research

4.1 Make Sense

A central problem for DSR systems is to promptly answer the question “ What is true now?”,
which has been a widely-studied problem in Knowledge Representation since the inception of the
field [96]. The number of contributions made in this area is so high that it is not possible to present
a concise summary without running the risk of missing out on some important work. Therefore,
we will limit ourselves to pointing the reader to some encyclopedic texts [153, 95, 85, 116, 96] and
focus instead on the most recent works that are closely connected to the ones in the other sections.

First of all, let us define a DSR as a system that receives as input a data stream and possibly
some background knowledge, either in the form of facts or more complex expressions like rules.
The system aims to process the data stream to infer new conclusions using a deductive logic-based
process. The computation is specified in a declarative manner, that is, we tell the system what to
compute and let it decide how to do it. Typically, it is expected to yield the answers to a given
query. For instance, a DSR may receive as input a query in the form of a set of rules and use
those to compute the answers.

Since the deductive process is based on logic, DSRs require that the input (stream, query,
background knowledge, etc.) is expressed with a formal language. Different such languages have
been proposed, based on temporal logic as in the DyKnow framework [112], on extensions of
description logics as in SPARQLstream [57] and STARQL [167], or on logical rules as in the
popular LARS [29] and DatalogMTL [52, 227] formalisms. The first is grounded on Answer Set
Programming (ASP) [53], one of the most well-known languages in the Knowledge Representation
community while the other is grounded on Datalog [61], another established formalism in the
community. These two languages define the semantics (what does it mean to answer a query?) and
the supportive expressive power (what kind of queries can we write?) in a formal and unambiguous
way. In general, we observe here a trade-off that is common with logic-based reasoning: the higher
the expressive power is, the more challenging the computation becomes, to the point it is no longer
feasible. This trade-off has motivated the design of formalisms, like LARS and DatalogMTL, that
have computational bounds that meet the demands of streaming scenarios.

4.2 Taming Volume

First of all, it is essential to mention that while some approaches assume that the stream is infinite
(e.g., DatalogMTL [227]), others (e.g., LARS [29]) assume that there is a time point in the future
when the stream ends, respectively data beyond it will be ignored. Of course, from a practical
point of view, we can set the time when the stream ends to a point which is very far in the
future to simulate the case of an infinite stream. From a more formal point of view, however, the
assumption that the stream is finite has essential consequences related to the decidability of some
critical operations like query answering.

In this context, a data stream is often viewed as an ordered collection of timestamped facts,
e.g., in Example 3 it consists of tram(36, tr1, s1) and tram(40, tra, s2). The facts become available
as time passes by, which means that the system does not have immediate access to all the data.
The data stream is augmented with timestamped atoms that are derived, which in Example 3 may
be exp(44, try, s3) and exp(43, tra, s3) for the projection of the expected arrival times of tram try
and tro, respectively, at stop s3. Since we are often interested in obtaining answers immediately,
the system must continuously re-evaluate the input queries as new data becomes available. Clearly,
to support large volumes of data, it is more efficient to reuse all the inferences previously derived
instead of re-computing them from scratch. In a static setting, this problem has been widely
studied and is commonly referred to as “incremental reasoning” or “knowledge base maintenance”.
Indeed, some of the techniques used for incremental reasoning can be adapted to work on data

P. Bonte et al.

streams. For instance, a well-known technique developed for Datalog is semi-naive evaluation
[21], which prevents a rule instantiation being evaluated more than once. This technique has
been adapted, with some modifications, to work with data streams [27]. Other techniques include
multi-shot solving [164], overgrounding of rules [119], and truth-maintenance methods [30] for
ASP based stream reasoners.

4.3 Taming Variety

Streams may originate from various sources, such as sensors with different modalities, but also as
output of processing components in a system. This naturally leads to a variety of data formats
that would need to be accommodated. However, DSR has so far not put much emphasis on
heterogeneous data streams, and the systems and approaches available focus on a specific data
format. Specifically, as mentioned above symbolic streams are commonly represented as collections
of ground atoms that represent any input; the proper treatment and reconstruction of the meaning
of the data lies with the stream queries using them. While plain, this approach akin to data
models in relational databases still allows for embracing a number of data domains. In some
cases like e.g., for RDF, mapping data into logical atoms while preserving the meaning is rather
easy, while for richer data formats, such as (part of) a knowledge graph or graph data generated
by a camera describing a scene and how it is evolving may be more demanding; flattening, i.e.,
converting structured to plain relation data may serve here as a key technique and predefined data
schemes of fixed structure can be used to ease the meaning reconstruction for query answering.

4.4 Taming Velocity

In order to provide responses that are still valuable and not outdated, limiting the data to
snapshots is a common approach, in which merely data available at some specific time point is
considered. By doing so, one is taking into account that the answer may possibly diverge from
the one when the evaluation would happen over the whole stream. Windowing is an essential
notion in this context, shared among the various approaches, which can be defined as input or
dynamically computed. In the first case, the user decides for how long in the past (or in the
future) the system is allowed to consider input data. This can be done through time-, tuple- or
partition-based windows, similar to the windowing functionality in Stream Processing and SLD. In
the second case, a reasoner may infer automatically when some data in the past (or in the future)
should be ignored. An important aspect in both cases is whether forgetting respectively ignoring
data will affect the reasoning outcome; clearly one desires (or may even request) that this is not
the case. Unfortunately, the deductive setting comes with computational obstacles: for temporal
Datalog, which is a core rule language for temporal reasoning, it is in general undecidable whether
forgetting data using finite sliding windows is possible without loss of inferences, as well as to
recognize suitable sizes of such windows [191]. Thus, either a (deliberate) loss of inferences is
accepted or restrictions on the programs and/or assumptions on the data have to be adopted. In

frameworks like LARS, windows can be nested, which seems to occur less frequently in practice.

In addition, time points may be abstracted in a window, such that data occurrence somewhere
(i.e., at some specific point in time) or, dually, everywhere (i.e., at all time points) in the window
is considered; e.g., DatalogMTL [52, 227] and LARS [29] offer this feature. The language of the
i-dlv-sr stream reasoner [58], which leverages on Apache Flink and the incremental ASP solver
i2-dlv [119], supports moreover non-contiguous windows that may be time- or tuple-based; however,
the rules of a program must use stratified negation, i.e., negation can be evaluated in a layered
fashion.

2:19

TGDK

2:20

Grounding Stream Reasoning Research

4.5 Domain Complexity

This research dimension is inherently tied to a selected domain language family and the reasoning
task at hand, which leads to a wide range of approaches, mainly covered by the fields of Semantic
Web technologies and Logic Programming, which adhere to different views of how the world of
interest is modelled; this in particular concerns incompleteness of data, which will be addressed in
Section 4.6 below.

Temporal Logic. As stream reasoning involves time, temporal logic is a natural basis for DSR.
Linear time logic (LTL) [182] is perhaps the most prominent temporal logic. Besides Boolean
connectives, temporal operators are available that allow for expressing statements X ¢ and ¢ U 1,
which informally mean that ¢ holds in the next stage resp. that ¢ holds always until ¢ holds at
some stage; F ¢ and G ¢ are shortcuts where ¢ = T (truth) and ¢ = L (falsity). respectively,
meaning that v holds at some stage resp. that ¢ always holds. Formulas are evaluated over infinite
paths sg, s1,...,58;,... in a Kripke structure, which intuitively is a transition graph over truth
assignments to a set of propositional atoms; this provides a natural link to (infinite) streams. For
example, the formula ¢ = Gg — Fr intuitively expresses that whenever a request () is made, it
will be granted (g) instantly or at some later stage, while ¢; = Gg — Xr expresses that whenever a
request (r) is made, it will be granted (g) in the next stage; the formula ¢35 = —g U r intuitively says
that no grant occurs prior to the first request. On the infinite path 0,0, {r}, 0, {g}, {r}, {9}, 0%,
where each set are the atoms assigned true at the respective state, formula ¢, evaluates to true,
while ¢ ,evaluates to false: r is true at stage 2, while g is false at stage 3. The formula ¢3 evaluates
to true on this path, since r is true at stage 2 and g is false at stages 0 and 1.

Beyond a simple ordinal timeline of consecutive stages 0,1,2, ..., metric temporal logic (MTL)
[130] and variants are considered in DSR in which G and F are relative to an interval I = [a, b],
written B; resp. ¥, such that B¢ (resp. 1) is true at time ¢ in a path, if ¢ is true at every
(some) time t' where t+a < ¢’ < t+b. This in particular allows for modelling data snapshots
respectively windows as described above, where only part of the stream data is considered for
evaluation.

Relational Domains. In a plain relational setting, a domain is similar as with relational databases
more or less given by a list of elementary predicates, and any relationships among them have to
be expressed by statements in the program or theory for Stream Reasoning.

MTL is used for Stream Reasoning in planning and execution monitoring is [86], which is
part of the DyKnow framework [112]. The latter streams data to a monitor which continuously
evaluates formulas over them. E.g.,

B((—onroad(carl) V slow(carl)) — $o,30)(Bjo,10900nr0ad(carl) A travel _speed(carl))

may express that if carl is off-road or at slow speed, it will within 30secs be for at least 10secs
on the road at travel speed. The stream is incrementally incorporated into the formulas by means
of the progression syntactic rewriting process [17]; this also enables runtime verification.

Rule-based languages can be used to capture complex domains where we distinguish between
Prolog-, Datalog-, and ASP-based languages that share rules of the form:

ag <= a1, ...,0n, N0t Ap41,...,N0L Ay,

where the a;’s are first-order atoms and not is negation-as-failure (aka default negation).

Pure Prolog was used for implementing real-time complex event detection, such as shown
in ETALIS [8] and RTEC [14], as one if its strength is efficient list processing. Prolog was also
more tailored for “native” Stream Processing by lazy evaluation techniques [173] and stream

P. Bonte et al.

transducers [174]. The first “streamed Datalog” language is Streamlog [236], which uses the
notion of progressive closing world assumption (PCWA) to deal with stream data, considered
in Section 4.6 below. Recursive queries further extended the initial language and aggregates in
[70]. A different approach was pursued with DatalogMTL extensions [52, 226, 227] allowing for
MTL operators in rules that are evaluated over a dense timeline. DatalogMTL was subsequently
extended with stratified negation in rules [66] and recently with stable semantics for unstratified
rules [229, 228].

Answer Set Programming is well-suited for reasoning tasks that require to model and solve
NP-hard search problems. ASP evolved for Stream Reasoning on the level of modelling/language
features with StreamRule [152], C-ASP [178] and LARS [29], where all languages introduce various
window operators and the latter lifted answer sets to answer streams inheriting their properties
(e.g., minimality) and allowing for LTL operators (without next nor until) to be evaluated over
a window. LARS was later extended to model quantitative extensions in stream reasoning [90],
while StreamRule was later extended to cater for uncertainty [162, 163]. On the level of processing
features, the multi-shot solving feature of Clingo facilitated the continuous evaluation of changing
logic programs [101]. Fragments of the LARS language were implemented in Ticker [30] and Laser
[27], where the later is geared for high throughput on large data volumes with the restriction to
stratified programs. Distributed evaluation of LARS programs was introduced in [92], where a
program can be decomposed and evaluated by several engines using an interval-based semantics.

Ontologies. Different from the rule-based formalisms above, other DSR languages leverage an
ontology of the domain that is given in a customary language, such as the RDF(S) and the
OWL2 standard. A basis for temporal reasoning in Description Logics (DL), on which several
languages of OWL2 are based, was given in [12], which extended DL with LTL, allowing for
temporal operators in DL axioms, with two-sorted semantics for objects and the temporal domain.
Furthermore, temporal query answering was investigated, e.g., in [13, 49], where query rewriting
over DL-Lite ontologies was extended for LTL operators in queries. A direct extension for
RDF(S) ontologies as used in RDF Stream Processing are OWL-based ontology languages such
as OWL2 RL, OWL2 QL or OWL2 DL [110]. In particular, OWL2 QL is well-suited for Stream
Reasoning since it is first-order-rewritable and can be evaluated on a streaming database system
(DBS), i.e., a data management system geared to store and process an incoming data stream in
real time. SPARQLstream [57], STARQL framework [167], and the work of [89] allow for query
rewriting over a streaming DBS, where the ontology is rewritten into the query that supports
window operators. OWL2 RL reasoning that comprises also recursive rules is supported by RDFox
[160], where the combination of a main-memory DBS and incremental update enable the use in a
stream reasoning setting. An approach that supports more expressive ontologies is TrOWL [213]
where the combination of incremental reasoning and with semantic and syntactic approximation of
OWL2-DL by OWL2-QL and of OWL2 by OWL2-EL allows for query answering and classification,
respectively, over streams of ontologies.

Stochastic Domains. In real-world domains, dealing with quantified uncertainty is an important
aspect, which has been addressed in several extensions of DSR languages. PrASP [161] is a
probabilistic extension of ASP, which offers probabilistic annotations of formulas, including
facts and rules, which induce a possible worlds semantics. LARS has been extended to model
quantitative extensions in stream reasoning [90]. Among them is probabilistic reasoning, which has
been demonstrated for object tracking in [181]. P-MTL [214] and ProbSTL [215] are probabilistic
extensions of MTL and STL respectively, which allow for incremental runtime verification with
explicit constraints over deterministic observations and uncertain predictions inside the logic itself.
Notably, ProbSTL can express confidence in predictive capabilities by comparing past predictions
of the present state with estimations of the current state.

2:21

TGDK

2:22

Grounding Stream Reasoning Research

In conclusion, various domain complexities are supported in Deductive Stream Reasoning,
ranging from low language complexity as with OWL2 QL and positive Datalog programs, to
ASP-related languages, DatalogMTL, and TrOWL, which offer the highest degree of language ex-
pressiveness on the level of program structure, temporal operators, and ontology model, respectively.
Furthermore, some support of probabilistic reasoning is available.

4.6 Data Quality

Veracity. In approaches based on a crisp 2-valued logical semantics, the data in a stream is
expected to be pre-processed and is assumed to be verified in a credible manner. However, facts
might still be checked for inconsistencies with respect to the domain knowledge using constraints
in rule-based languages, or disjointness in ontology-based languages. In [51], the authors suggested
temporal query answering in OWL2 QL over inconsistent data streams with three inconsistency-
tolerant semantics designed to automatically repair inconsistencies, e.g., a brave semantics in
respect to rigid concepts/roles. If veracity is caused by a sense-reasoning gap between a lower-level
probabilistic inference and a higher-level logical reasoning, probabilistic reasoning methods are
applied to bridge this gap [113]. Notably, the DyKnow extensions [86] of P-MTL [214] and
ProbSTL [215] allow Stream Reasoning with probabilistic temporal logics, where complex formulas
can be embedded in probability conditions such as Pr(a < b) < 1. In [181], the authors followed
a different approach by designing a neuro-symbolic stream fusion framework, which includes
the learning of rule weights that are mutually independent probabilities. The LARS language
was generalised to quantitative extensions in [90] using weighted logic over semirings, which are
algebraic structures with multiplication and addition, e.g., the natural numbers, the integers, etc.,
obeying specific reasonable axioms. Weighted LARS allows lifting several quantitative extensions
of logic programming to the streaming setting, among them Problog [184], P-Log [22], and LPMLN
[233]. In particular, weighted rules of the form 0.8 : a <— b are supported that induce a probability
distribution over the possible answer sets (models) of a program.

Incompleteness. Incompleteness occurs on the level of missing facts in a stream but might also
include missing domain knowledge. In rule-based languages, it is handled by non-monotonic and
default reasoning approaches that work under the Closed World Assumption (CWA)[188], thus
stating that a lack of knowledge evidence that a statement is true entails its falsity. Tightly
connected to CWA is weak negation, also called negation as failure (NAF) in logic programs,
which allow the use of NAF literals, i.e., literals of the form not a, to express that the atomic
formula a is not derivable by the program. The already mentioned approaches of the Datalog,
DatalogMTL, and ASP-families support CWA (and possible extensions such as PCWA) as well as
NAF, whereas certain restrictions are imposed regarding the usage of NAF literals in programs,
e.g., stratified programs. In particular, the PCWA addresses the issue of stream data that is not
(yet) available at the time when a literal not ¢ in a rule is evaluated. For example, Datalog rules
last(T, E) < occurs(T, E), notlater(T, E) and later(T, E) + occurs(T1, E), T < T1 where the
first argument encodes time, informally capture the last occurrence of an event E; however, when
the event F occurs at time T, evaluation of the first rule is blocked since later(T, E) has to be
evaluated, which by the second rule may be postponed indefinitely. To avoid such blocking of the
evaluation, only references to past or current data is permitted. The PCWA principle may then be
applied: “If stream(T,...) is observed in the input stream, conclude not stream(T1,...), provided
that T1 < T and stream(T1,...) is not entailed by the fact base augmented with the stream facts
having some timestamp 70 < T'.” Syntactically, PCWA can be enforced using local stratification
on time. For ontology-based languages, handling incompleteness needs to be addressed differently
as they work under the Open World Assumption (OWA), which means that a lack of current

P. Bonte et al.

knowledge leaves both possibilities for a statement, being true or false, open. This indicates that
missing facts for these approaches either could be settled in a pre-processing step or be asserted
by the use of existential quantifiers as available in OWL2 languages. Incompleteness may be also
described using quantitative methods, where e.g., the weight of a fact expresses the certainty
or probability that an observation is made, whereas the latter values 1 and 0 recover complete
knowledge. Other work [73, 74] considered the handling of incomplete information in state streams
for runtime verification with MTL. Here, vertices in a progression graph represent formulas, with
directed labelled edges between vertices indicating that a formula can be obtained from progressing
another (input) formula with a state indicated in the edge’s label. A probability mass — representing
the ratio of progression paths having reached a formula so far — is pushed between nodes, with
terminal nodes representing verdicts (i.e., T, L) and their associated probabilities, allowing for
the tracking of verdict probability during progression with incomplete state information.

Constantly-varying. The aspect of constantly changing streams is less of a focus in current
research due to three reasons. First, the availability of new data might not trigger the re-evaluation
of the conclusions as some approaches are pull-based, whereas in push-based approaches a re-
evaluation is triggered. Second, a central processing feature of these approaches is incremental
updates, where the variation in the number of updated terms and not the size of updated data
matters. For instance, a single ground fact deletion can trigger the re-evaluation of the full
knowledge base. Note that not all mentioned approaches in this section support incremental
updates. Third, variability can be considered from the semantic point of view, when the meaning
of categories, concepts, or relationships changes over time. This concept drift [99] requires a DSR
to include monitoring and learning components that can detect and address the drift, respectively.
Automatic addressing the drift might be especially complicated since it might require updating
the knowledge of a DSR, e.g., add, delete, or update rules in the case of a relational DSR. For
instance, in [181], the authors equip their system with a learning algorithm to learn weights of
rules and thus counteract the concept drift. The authors of [63] go even further and directly
address concept drifts by applying semantic embeddings, i.e., vectors capturing KB consistency,
and supervised learning to detect concept drifts in ontology streams. Nevertheless, the problem of
concept drift remains largely unaddressed by modern DSR.

5 Inductive Stream Reasoning

Inductive Stream Reasoning (ISR) aims to support reasoning with new knowledge that is generated
bottom-up from the data itself, which then may be used to augment deductive reasoning. In
particular, this includes integrating knowledge generated by Deep Neural Networks (DNNs) from
sub-symbolic inputs using machine learning algorithms, e.g., object or activity classification, but
also extracting rules from stream data. In this context, dealing with uncertainty is a key issue.
Applications are widespread and include critical areas such as social media analytics [25], robotics,
traffic surveillance [87, 76], and autonomous driving [197]. From a sub-symbolic method perspective,
a data stream can be seen as an unbounded ordered sequence of data points S : dy,ds, ..., d;, diy1, ...
with ¢ € N. Each data point is represented by a feature vector X; [242]. The different data points
are generated over time, and the method cannot access the entire data stream simultaneously.
Usually, most of the methodologies in this context focus on the data stream classification problem,
where the goal is to predict the target label y; associated with each data point d; whenever d; is
generated. Since existing Machine Learning solutions are not intended for use in a pure streaming
scenario where the learning algorithm continuously learns from an ongoing data stream, two main
areas emerged: Streaming Machine Learning (SML) [38] and Continual Learning (CL) [141].

2:23

TGDK

2:24

Grounding Stream Reasoning Research

The macro-level Stream Reasoning research question can be reformulated to the following
generic meso question for ISR:

Meso (Inductive Stream Reasoning): How can we continuously make up-to-date
predictions over raw data formats, e.g. sensory observations, that are constantly changing
and inevitably noisy?

5.1 Make Sense

By quantifying uncertainty and creating probabilistic models, ISR systems can make more nuanced
decisions based on available data streams. One of the most generic formalisations so far towards
probabilistic reasoning is proposed in [91]. In another significant development, neuro-symbolic
approaches [181] have been formulated to combine the generalisation ability of neural networks
with the structural rigour of symbolic logic. By accommodating semantic streams embedded
with probabilistic [215] and temporal dimensions [72], the ISR models become highly capable of
adapting to dynamic, real-world conditions.

More concretely, given a data stream S of data points, each represented by a vector X;, a
sub-symbolic method produces a data stream of insights generated by implementing a specific
learning algorithm. The potential integration of sub-symbolic methods with deductive reasoning
offers various architectural possibilities. One approach involves the integration of deductive
reasoning with insights generated by sub-symbolic methods. In a notable example, Kirkpatrick et
al. [125] leverage sub-symbolic methods across heterogeneous data streams. The varied insights
derived are then unified and employed by a deductive reasoner. Belcao et al. [32] use a similar
approach to propose a bridge between Big Data Analytics and Semantic Technologies. Conversely,
an alternate solution follows a different path. Here, a deductive reasoner is directly applied
to a data stream, leading to continuous deduction and transformation. The transformed data
becomes the canvas for sub-symbolic methods to apply inductive reasoning and yield outputs, as
demonstrated by Barbieri et al.[26]. To make this integration between deductive and inductive
reasoning more concrete, let’s introduce a practical problem.

» Example 4 (Taxi cont’d). Suppose a taxi driver must answer questions like “What museum can
I reach in less than 25 minutes leaving at this exact moment?” To solve this problem, Della Valle
et al. [76] use different types of information. Firstly, the work retrieves monuments, attractions,
exhibitions, and events in the city of Milan from different open data in RDF format. It also
adds the topology of the city’s streets, detections of traffic sensors and weather information. For
each traffic sensor, a specific sub-symbolic method is applied. Particularly, the authors train
Recurrent Neural Networks to forecast traffic. The different sensors’ predictions are propagated to
generalise beyond the sensors’ locations by exploiting the street graph topology. Ultimately, a
deductive stream reasoner comes into play, addressing user queries through deductive reasoning.
This reasoner seamlessly integrates RDF data and traffic predictions obtained from sub-symbolic
methods.

5.2 Taming Volume

The massive volume of streaming data in real-time from various sources is another issue that
ISR aims to tackle. A robust sub-symbolic streaming method should be easily embeddable in a
stream processing pipeline capable of running multiple concurrent queries on big data volumes
while dealing with high update loads. In terms of data volume, it could range from megabytes in

P. Bonte et al.

nanoseconds to terabytes in minutes, depending on the specific requirements of an application.

For example, autonomous cars generate around 25 Gigabytes of data per hour including 4-6
radars (0.1-15Mbit/s), 1-5 LIDARs(20-100/Mbit/s), 6-12 cameras (500-3500Mbit/s) and under
0.01Mbit/s sensors such as Ultrasonic, Vehicle motion, GNSA and IMU. Moreover, most of the
systems have to deal with multiple concurrent queries on big data volume paired with high update
loads generated continually from multiple streams from multiple sources. On top of that, it
depends on the reactiveness constraint. It can be MB in nanoseconds, GB in seconds, TB in
minutes. As mentioned above, it should be impossible to tame that volume, ignoring the streaming
nature of the data.

5.3 Taming Variety

Streaming sub-symbolic methods can support different natures of data. SML is usually applied
to structured data streams containing data points with tens of features. Classical real-world
benchmarks include Airline [120], containing flight arrival and departure details; Forest Cover
Type [42], representing forest cover types of specific geographical areas based on different attributes
determined by the US Forest Service; and KDDCup99 [210], including data for intrusion detection
in a network. On the contrary, CL usually deals with unstructured data like images. Each data
point can contain hundreds of thousands of features. Standard benchmarks include streaming
versions of the most known computer vision benchmarks (MNIST [237, 108] or CIFAR [147]). An
interesting case is represented by the OpenLORIS [201] benchmark, which provides a comprehensive
set of visual, inertial, and odometry data captured with real robots in authentic scenes. The goal
of the learning model can be scene understanding or evaluating Simultaneous Localisation and
Mapping.

Moreover, more complex multi-model data streams can be supported, such as in autonomous
driving applications, where data originates from various sensors, each providing a unique lens
through which to view the environment. For instance, as shown in [197], an autonomous vehicle
may use radar, lidar, and cameras to understand its surroundings, requiring the reasoning system
to integrate and make sense of this disparate data using deep neural networks and other signal

processing components to lift these raw data into symbolic forms to symbolic solvers or reasoners.

In essence, DSRs above can then be used as an underlying component to make logical decisions
regarding the observed data.

5.4 Taming Velocity

One of the most critical aspects of ISR is its near real-time decision-making capabilities. For
instance, in traffic surveillance applications, the system must make immediate decisions based

on incoming data. It cannot afford to wait for the entire data set before beginning the analysis.

This is especially true for trajectory predictions, where potential paths or actions are inferred
even before complete data is received. Additionally, as soon as data becomes available, immediate
insights are formulated and communicated, ensuring minimal delay. However, this challenges
existing machine learning and reasoning systems, which may not have been designed to handle
the high-speed, ever-changing nature of data streams.

Regarding the sub-symbolic methods, an SML learning model aims to predict the label ¢;
whenever a new data point is generated. It assumes that the actual label y; arrives after casting the
prediction. The model is updated incrementally whenever a new y; is available. SML models can
use each data point only once. In Batch Incremental Learning (BIL), data points are accumulated
in fixed-size batches containing tens of them [186]. The model is updated once the mini-batch
fills up. SML prioritizes computational efficiency in time and memory. Following BIL’s direction,

2:25

TGDK

2:26

Grounding Stream Reasoning Research

CL assumes the data points will be grouped into large batches called experiences. However, each
experience e; can contain thousands of data points (rather than tens), randomly accessible as
many times as the model requires. A CL strategy can process each e; for as long as necessary
before accepting a new experience.

Concept drift. Concept drift is a critical aspect associated with the evolving environment of data
streams. The traditional Machine Learning assumption that data is independent and identically
distributed does not hold in this context, where data can change its distribution. A concept is
the unobservable random process producing data points [97]. Concept drift is a phenomenon in
which the statistical properties of a domain change over time in an arbitrary way [148]. We can
categorise concept drift into two primary types: virtual and real. Virtual concept drifts occur
when the probabilities P(X|y) or P(y) change. Real concept drifts happen, instead, when there is
a change in the P(y|X) probability. Therefore, a virtual concept drift does not affect the class
boundary, while a real concept drift introduces a change. Additionally, in cases of abrupt drifts,
the new concept instantaneously replaces the old one. Conversely, the new concept gradually
or incrementally replaces the old in gradual and incremental drifts. Lastly, it’s also possible for
concepts to re-occur over time. SML assumes the distribution within a concept to be fixed. SML
literature puts a strong effort into automatically detecting concept drifts. These solutions can deal
with all concept drifts. Conversely, CL assumes that each new experience introduces an abrupt
concept drift. For this reason, it does not use concept drift detectors.

Temporal dependence. Numerous data streams exhibit dependencies on their past values [40,
242]. For instance, an attribute value may result from an auto-regressive transformation applied
to preceding instances, such as the fluctuation in commodity prices like electricity [36] or the
evolution of weather conditions [84]. Modelling the evolving temporal patterns, e.g., trends
or seasonalities, can be challenging, and traditional methods assuming independence between
observations are unsuitable [241]. Consequently, addressing this intricate issue requires the
development of specialised methods capable of capturing the dependencies inherent in the data.
While there has been significant emphasis on detecting concept drifts and developing techniques
to adapt to such changes, the issue of independence has received comparatively less attention.
Approaching this matter from a SML standpoint, the filtering task within a sequential-state space
model, such as Kalman Filters, emerges as a promising avenue for managing concept drift and
temporal dependence [240]. Similarly, applying CL methods on Recurrent Neural Networks to learn
sequences within a data stream presents another encouraging approach to address this complex
problem, as evidenced by the introduction of Continuous Progressive Neural Networks [103].

The challenge of temporal evolution extends to the integration between ISR and DSR. Envision-
ing an inductive reasoner, such as SML or CL models, processing data and recognizing the entities
for input to a deductive reasoner introduces potential issues when entities undergo evolution over
time, necessitating adaptive responses from inductive reasoners. In such instances, the challenge
may not be adapting to a concept drift but learning the entity’s natural evolution. Consequently,
accounting for temporal coherence within the data streams becomes crucial. Notably, intriguing
benchmarking datasets are showcasing temporal dependencies within the Continual Learning (CL)
field. Recent studies [143, 235] introducing datasets with inherent temporal aspects and concepts
like temporal distribution shift and coherence, underscore a growing community interest in this
direction.

Learning goals and evaluation. Despite both SML and CL learning from data streams and
managing concept drifts, they have different objectives. The main goal of SML is to detect concept
drifts automatically and quickly adapt to new concepts. An SML model must learn fast, react

P. Bonte et al.

quickly to concept drift, and perform well on the current concept. It is also subjected to strict
constraints on time and memory consumption. Conversely, CL addresses the stability-plasticity
dilemma [151]. When learning new experiences, the model may forget what it has learned during
the previous ones. The ability to remember past knowledge is called stability, while learning
new knowledge is called plasticity. Too much stability could lead to difficulties in learning new
knowledge. Conversely, too much plasticity may lead to forgetting past knowledge and raising
the problem known as catastrophic forgetting [132]. The goal is to achieve a trade-off between
stability and plasticity. A CL strategy must perform well on all the seen experiences from the
first to the current one. This difference in objectives is reflected in different evaluation procedures.
SML does not distinguish between training and test data, and each data point is used for both
purposes. The evaluation protocols usually include a prequential evaluation [98]. Each time a new
data point is generated, the SML model predicts its label ¢;. When the actual label y; is available,
the protocol updates the evaluation metric (usually accuracy or Cohen’s Kappa Score) and then
trains the model on d;. Conversely, CL evaluates the model’s ability to mitigate forgetting and
learning new experiences [141]. Each experience e; is split into a training set D! and a test set
Dtest. All the D! are always available, while the D" are provided over time. Different types
of metrics exist [141]. Accuracy is usually evaluated, after each experience’s training, how the
model performs on the current experience’s test set and all the previous experiences’ test sets.
Average accuracy evaluates the model’s overall performance after the last experience’s training by
considering the average accuracy on all the D!**. The Backward Transfer Metric measures the
stability of the model and, more in general, how the final version of the model has improved or
decreased the performance of the previous versions. After training on the last experience, for each
previous experience e;, it subtracts the accuracy of the model trained on the experience e; from
the one of the current model tested on D!***. A negative value indicates forgetting. Finally, the
Forward Transfer Metric measures how the training on the current experience is useful also for
learning the next experience. For each experience e;, it subtracts the accuracy of a random model
tested on D!*s* from the one achieved by the model after the training on e;_1. A positive value
indicates that the current training positively affects the performance for the next experience.

5.5 Domain Complexity

The main focus of inductive reasoning is on the data and the signals it carries. When extracted,
such signals can be used to construct the domain. In this context, the domain complexity is usually
a tuned parameter: it is up to the scientist or engineer to determine the adequate complexity of
the model that will fit the data. Existing solutions try to build models of various complexities.
Lecue and Pan [138] propose an approach that extracts association rules from streaming data.
Balduini et al. [19] study how to extend inductive reasoning methods to a streaming scenario. The
resulting system uses RDF streams to create matrices, which are fed to an inductive reasoner,
SUNS, to recommend items.

Learning algorithms. For the sub-symbolic part, different choices are possible. SML usually
applies simple models, often based on Statistical Machine Learning. Frequency-based methods track
feature frequencies and calculate posterior probabilities using Bayes’s theorem. Neighbourhood-
based techniques identify neighbours for new samples based on distance, often using a sliding
window to manage recent instances. Tree-based classification algorithms are streaming versions of
decision trees that use the Hoeffding bound [117] for incremental split node decisions. Techniques
like Hoeffding Adaptive Trees (HAT) [37] address concept drift, incorporating concept drift
detectors. Ensemble-based methods combine predictions from individual models to enhance
generalisation with well-known techniques like Online Bagging, Leveraging Bagging, and Adaptive

2:27

TGDK

2:28

Grounding Stream Reasoning Research

Random Forests [107]. Conversely, CL usually applies more complex models based on Deep
Learning. It employs three main categories of strategies [141]. Replay approaches (e.g., [176, 183, 5])
store a subset of examples encountered during training in external memory to combat forgetting.
They blend this memory with the current data during each iteration to update the model. In
this context, Generative Replay methods (e.g., [202]) employ generative models to recreate
past examples as needed, eliminating the need for external memory. Regularisation strategies
(e.g., [142, 127]) bolster the loss function with additional terms to enhance model stability and
mitigate forgetting. They can, for instance, restrict changes in parameters crucial for previous data
or enforce consistent network activation over time. Architectural strategies (e.g., [145, 193, 200])
adapt the model’s architecture to incorporate new knowledge while minimising forgetting. Popular
techniques include expanding the number of layers or units over time and compressing or freezing
previous model components. Hybrid approaches (e.g., [147, 187, 198]) that combine elements from
more strategy families are often highly effective.

Frameworks. Various frameworks facilitate the application of SML and CL algorithms. Notably,
almost all existing frameworks are mainly used for research, as they still have significant limitations
for industrial applications. The Massive Online Analysis (MOA) framework [39] presents a broad
spectrum of algorithms designed for multiple tasks related to data stream analysis. MOA’s
tasks encompass classification, regression, multi-label, multi-target, clustering, outlier detection,
concept drift detection, active learning, and more. In addition to learning algorithms, MOA offers
data generators (e.g., AGRAWAL, Random Tree Generator, and SEA), evaluation methods (e.g.,
periodic holdout, test-then train, prequential), and statistics (CPU time, RAM-hours, Kappa).
The Scalable Advanced Massive Online Analysis (SAMOA)[155] is both a framework and a library
that combines stream mining and distributed computing (i.e., MapReduce). SAMOA allows users
to abstract the underlying stream processing execution engine and concentrate on the learning
problem. It provides adapted versions of stream learners for distributed processing, including
the Vertical Hoeffding Tree algorithm[129], bagging, and boosting. Vowpal Wabbit (VW) is an
open-source machine learning library featuring an efficient and scalable implementation with
several learning algorithms. VW has demonstrated its capability by learning from a tera feature
dataset using 1000 nodes in approximately an hour [3]. StreamDM, an open-source framework for
big data stream mining, utilizes the Spark Streaming extension of the core Spark API. One notable
advantage of StreamDM over existing frameworks is its direct integration with the Spark Streaming
API, which efficiently handles complex issues arising from the underlying data sources, such as
out-of-order data and recovery from failures. There has been a significant recent development in
SML algorithms for Python, with the River package [154] being particularly noteworthy. River
supports various ML tasks, including regression, classification, and clustering. Moreover, River is
versatile enough for ad hoc tasks, such as computing online metrics and detecting concept drift.
Finally, Avalanche [146] deserves mention as the first experiment of an end-to-end Library for
reproducible CL research and development. It encompasses implementing state-of-the-art CL
strategies, standard benchmarks, evaluation metrics, and evaluation scenarios.

5.6 Data Quality

ISR has the potential, to address data imperfections, such as incompleteness and noise, that can
have a disruptive effect on Deductive Stream Reasoning. Data incompleteness arises in sensor
networks due to factors like sensor battery depletion or network link interruptions. In social media,
instead, it arises due to limited sampling rates in social stream APIs or — in a certain sense luckily
— because conversations also occur outside social networks. Noise issues encompass sensor network
imperfections or operational deviations. In processing unstructured data such as text, sounds,

P. Bonte et al.

images and videos, it occurs due to low accuracy in tools used for analysing them such as the
inability to catch irony, difficulties in transcribing phonetically ambiguous words, or in evaluating
occlusions in object detection and tracking.

DSMS and CEP have traditionally handled noise [68]. Two main types of noise have been
identified, affecting content and temporal annotations. Content noise pertains to inaccuracies in
data from sensors or human interactions, potentially leading to incorrect conclusions. Statistical
methods can manage noise in simple schemas, but more complex schemas require advanced
techniques such as [137]. Researchers can explore streaming machine learning approaches to
process noisy data, coupled with deductive reasoning techniques like inconsistency repair [10, 51],
and belief revision [192, 190]. Temporal annotation noise involves out-of-order data items,
particularly when multiple streams with different time annotations are involved. Solutions exist for
handling temporal noise, with room for semantic enhancements [203, 144]. Addressing temporal
noise may involve aligning diverse temporal annotations from different sources. Existing solutions
can be adapted, with semantic enhancements offering promising opportunities [51].

In summary, ISR must increase efforts in tackling imperfections like incompleteness and noise,
necessitating innovative solutions and approaches for both content and temporal issues.

6 Discussion

This paper grounds the Stream Reasoning research, by providing a clear overview of its different
constituent research areas, and explaining how each of these areas target its different dimensions.
For over a decade, practitioners from different research communities have contributed to Stream
Reasoning research, each from within their perspective and background. Since 2015, researchers
in these different communities have organised the Stream Reasoning Workshops, a recurring event
with the purpose of sharing perspectives, challenges, and experiences around Stream Reasoning
topics.

This paper provides an overview of the main research contributions discussed during the Stream
Reasoning Workshops. Moreover, this paper provides a crystallisation of how each of the different
research areas within Stream Reasoning perceive and tackle the Stream Reasoning research
dimensions. By understanding how the different areas differ and relate and how they perceive the
various Stream Reasoning research dimensions, this paper grounds the Stream Reasoning research.
We conclude with a discussion of the take-away messages and open challenges for the next years.

6.1 Discussion of the Research Dimensions

We will now discuss how the different areas differ or relate in tackling the dimensions introduced
by the original SR research questions. Table 3 summarises the discussion by providing an overview
of how the different areas target the research dimensions.

Making Sense: Even though each area has a different focus when making sense of the data
streams, e.g., Stream Processing focuses on Continuous Querying, RSP/SLD on Continuous
Data Integration and Querying, DSR on incremental materialisation, model checking and
planning, each area has a continuous component when making sense and is typically done
through some kind of query. In Stream Processing this is an SQL-like language, in RSP /SLD
a dialect of SPARQL, while in DSR this is mostly done through rules.

Taming Volume: Volume has not been the main point of focus for any of the approaches,
except for Stream Processing which incorporates techniques to scale horizontally. The mechan-
isms to tame variety, as in RSP/SDL, or to incorporate rich domain complexity, as in DSR,
have a negative impact on the volume of data that can be processed.

2:29

TGDK

2:30

Grounding Stream Reasoning Research

Table 3 Continuous Querying (CQ); Consistency (C); Data Integration (DI); Model Checking (MC);

Materialisation (MAT); Planning (P); Clustering (CLU); Classification (CLA); Temporal Logic (TL);
Incompleteness (I); Noise (N); Volatility (V).

Dimension SP SLD DSR ISR

Making Sense CcQ C, DI MAT/MC/P CLU/CLA

Velocity Sub-millisecond Milliseconds Seconds Milliseconds

Variety Litellifomell RDF Relational Multimodal
Document

Volume ..

(Scale Up/Out) Yes/Yes Yes/Limited Yes/No Yes/Edge

Domain OWL2, .

Clopslasty Data Schema RDFS+ ASP, TL Variable

Data Quality ILN I I, C IV, N

Taming Variety: Stream Processing requires a manual mapping to the used relational schema,
which is not a flexible approach and is typically not well-suited for data integration purposes.
RSP/SLD are able to solve a data integration problem in a continuous fashion by relying on
RDF and the extension of the Semantic Web stack and is thus the best-suited approach for
handling variety. DSR and ISR typically map to RDF to increase the support of data variety,
but do not directly build upon the Semantic Web stack. ISR tames variety in a different way
by supporting multi-modal streams, e.g. integrating video with numerical sensor readings.

Taming Velocity: All approaches use some form of windowing to deal with data streams,
however, the requirements in terms of responsiveness differ, Stream Processing focuses on
sub-milliseconds latency, RSP/SLD and ISR focus on milliseconds latency, while DSR is
satisfied with latency in terms of seconds. Stream Processing is the fastest, as it does not
require any overhead to perform data integration such as RSP/SLD, checking models and
incorporating complex domains as in DSR, or performing predictions as in ISR.

Domain Complexity: DSR allows the incorporation of the most complex domain knowledge,
at the cost of performance. RSP/SLD supports little domain complexity in order to prioritise
responsiveness. Although the focus is growing, Stream Processing has limited support for
domain complexity, rather than focusing on volume and velocity.

Data Quality has not been properly addressed by the different approaches. ISR has valuable
solutions for veracity through predictions, while DSR can handle incompleteness very well by
inferring missing facts in a deductive manner through the incorporation of domain knowledge.
Stream Processing solutions to deal with constantly varying data, which have been adopted to
some extent by SLD and RSP. Different areas have focused to some extent on the different
aspects of data quality, however, none of the approaches has targeted them simultaneously.

It is clear that each area has tackled different aspects of the original SR research dimensions.

Some dimensions have been tackled by all of them, e.g. Velocity, while others have received
more attention in one of the areas, e.g. Variety in RSP/SLD, Domain Complexity in DSR, and
incompleteness in ISR. In order to realise the SR vision, cross-pollination between different areas
is needed to cover all the dimensions simultaneously.

P. Bonte et al.

6.2 Overlapping Approaches

Even though the large body has been done in the distinct areas of the SR research, there has been
research conducted that combines ideas from multiple areas:

Streaming Linked Data & Deductive Stream Reasoning

From within RSP/SLD, there has been a quest to increase the expressiveness of the reasoning
capabilities and thus increase the domain complexity. This has led to an investigation into how
more expressive reasoners can be combined or integrated with RSP engines.

Morph-Streams [56] and OntopStream [32], which employ an OBDA approach can support
OWL2 QL ontologies through their rewriting regimes. RoXi [44] is a recent effort to increase
the domain complexity of RSP engines to OWL2 RL, through various optimisations to enable
Datalog reasoning over RDF streams in an efficient fashion, e.g., through efficient maintenance of
the materialisation in the window [79] or pruning of the reasoning rules [47].

However, in general, there is a mismatch between the complexity of more expressive reasoning
algorithms and the change frequency of the data streams that RSP engines try to tackle. To
solve this mismatch, the vision of Cascading Reasoning [204] emerged, which suggests a layered
approach of processing and reasoning engines where the lower layers process the high-velocity data
with techniques of limited complexity, going up in the layers, the amount of data decreases while
the complexity of data increasing, ultimately resulting in support for expressive reasoning over
high-velocity streams. There have been first realisations in this area, such as StreamRule [152],
which combines the CQELS engine for RSP with ASP reasoning, and Streaming Massif [48],
which combines C-SPARQL with the HermiT reasoner for Description Logic and features complex
event processing capabilities. However, these initial approaches still require manually defining the
processing at each layer and thus do not constitute a generic approach to define the reasoning and
processing across various layers. Some interesting early developments in that area aim to rewrite
registered continuous queries and to prune datalog rules in order to push the processing to lower
layers in the hierarchy [45].

Streaming Linked Data & Inductive Stream Reasoning

In the early days of Stream Reasoning, there were several attempts to combine Inductive and
RSP for the analysis of social media streams. The first seminal work [25] introduced a pipeline
combining the deduction of a C-SPARQL engine [24] with a long and with a short window,
whose contents is transformed into a matrix factorisation system, in order to recommend links
in a bipartite graph that pairs users to movies. The combination of a long and short window
allows to capture both long lasting knowledge and hype effects. A similar approach was further
developed in [19]. Follow-up work led to demonstration of the applicability of this schema to
venue recommendation [18].

CQELS 2.0 [136] extends the CQELS engine with more powerful inductive capabilities such
as Deep Neural Networks, and it allows for the fusion of various multi-modal data streams. For
example, by fusing object detection on video streams with sensor readings of location and velocity
and by converting the results to the RDF model, the streams can be queried continuously in order
to solve multi-object tracking in a declarative fashion.

Interestingly, the approaches in this overlap augment the data itself and extend the query
language in order to support query answering over certain predictions as a result of the inductive
part.

2:31

TGDK

2:32

Grounding Stream Reasoning Research

Deductive Stream Reasoning & Inductive Stream Reasoning

Above we presented ISR as a method to generate new knowledge that can be used in combination
with deductive reasoning. A natural question is then a fruitful combination of symbolic deductive
reasoning techniques with inductive techniques. Induction may further be interrelated with
abductive reasoning for learning, by generating hypothetical facts from which new complex
knowledge may be inferred, possibly in a cycle [123]. For such learning, dealing with uncertainty
is an important aspect. Specifically, in the PrASP [161] approach programs may inductively learn
from data streams and can be incrementally evaluated. For Stream Reasoning programs in [181],
merely the weights of rules as independent probabilities can be learned; that work showed how the
potential of combining DSR and ISR in the realm of object tracking under uncertainty in traffic
monitoring, demonstrated in [205], can be pushed to real-time performance with proper Stream
Reasoning infrastructure. These hybrid approaches are also particularly important in applications
like robotics, where generalisation and structured knowledge are vital [214].

6.3 Open Challenges

In terms of open challenges, we discuss the open opportunities for each research area that should
be solved in the next years in order to push the field closer to the true realisation of the Stream
Reasoning vision.

6.3.1 Stream Processing

With the availability of several large-scale technological infrastructures for stream processing,
which have been successfully deployed in multiple industries, it may be tempting to consider
stream processing as a solved problem. We warn the reader to make such a conclusion as we
believe that there are still several important challenges that need to be addressed.

First of all, current solutions, e.g., Apache Flink, are designed to be general-purpose solutions.
Such solutions sacrifice some performance to support a wider range of applications. Since
approaches for RSP, SLD, DSR, and ISR can be computationally demanding, we argue that an
important challenge is:

How can we optimise current general-purpose solutions for stream processing to support more

efficient reasoning applications?

An alternative approach consists of improving current reasoning solutions exploiting what has
been learned while developing the current state-of-the-art for generic stream processing. Hence
another important challenge is:

How can we improve the state-of-the-art for stream reasoning adopting the best practices in

large-scale stream processing?

In both cases, the challenges call for a deeper collaboration between members of various
communities. This collaboration has a huge potential, not only to solve the problem at hand but
also to discover new research avenues that can benefit both sides.

6.3.2 Streaming Linked Data

There are still various open challenges in the realm of RSP and SLD. We summarise the most
important ones in the form of micro questions:
How can we increase the expressivity of the ontologies when supporting reasoning in SLD?
Most approaches provided limited to no reasoning capabilities or simple regimes such as RDFS.
The reason is that there is a mismatch between the complexity of the algorithms to perform
more expressive reasoning and the responsiveness and low latency requirements of many of the

P. Bonte et al.

use cases targeted in RSP. One vision to mitigate this is the idea of Cascading Reasoning [204],
which suggests a layered approach of processing and reasoning engines where the lower layers
process the high-velocity data with techniques with limited complexity, going up in the layers,
the amount of data decreases and the complexity of data increasing, ultimately resulting in
supporting expressive reasoning over high-velocity streams. There have been first realisations
in this area, such as Streaming Massif [48], however, it is still required to manually define the
processing at each layer.

How can virtual processing of RDF Streams be integrated with techniques that process “real”
RDF Streams? Both techniques have their benefits, but they have not been combined in order
to reap the benefits of both approaches. Doing so would allow various optimisations as the
conversion from virtual to “real” RDF Streams could be done in an optimal fashion, while
integrating different sources of data. This could lead to more flexible RSP engines, able to
adapt to RDF and non-RDF streams through virtualisation. The question of seamless mapping
of these sources to WoT or IoT ontologies can also be beneficial, especially for environments
where native RDF is not necessarily the most efficient option.

How can we use SLD as the basis for autonomous computing on the Web in rapidly changing
environments? The linked nature of SLD has only been exploited to a limited extent [54].
However, the potential for autonomous agency in stream processors [218] is high in terms
of distribution of query processing load, and local processing capabilities — e.g., for WoT
environments. For this to be properly implemented, it would be necessary to specify agent-
based primitives such as goals, intentions, or beliefs, related to the capabilities of RSP engines.
Moreover, it would be necessary to include scheduling and coordination mechanisms for enabling
efficient interactions among the autonomous RDF stream engines [209]. Moreover, when data
streams are managed using the web as the processing platform, new problems may emerge,
in particular when publishing personal data which may contain sensitive information. It is
therefore important to account for the privacy issues that may arise [77].

How can agents on the web collaborate to answer continuous queries? Although the vision of
interconnected RSP engines has been discussed in the past [80], its realisation is yet to become
a reality. It will be necessary to further investigate decentralised query processing for stream
environments, as well as explore how to formalise the semantics of cascading stream processing,
including how temporal aspects are affected by distributed query answering.

How can we continuously query RDF streams that have a much higher change frequency than the
milliseconds change frequency that SLD solution can currently handle? To cope with streaming
loads under high demand as it is currently done in non-RDF systems, hybrid approaches
that combine RSP and native stream data processing can lead to promising solutions. This
would require further exploring optimisation opportunities, as well as exploiting OBDA-based
approaches using underlying high-performance native engines.

How can we perform data integration continuously over data streams of different formats?
Although this topic has been addressed through virtualisation and materialisation to some
extent, most streams on the Web are not RDF nor follow RDF-like formats. Moreover, in
many cases there is no interest in necessarily transforming all of the contents into RDF. Hence,
there is a challenge to manage hybrid RDF streams, which could be processed by engines that
can handle different stream models.

6.3.3 Deductive Stream Reasoning

There are numerous challenges related to the development of DSRs. Among the most important
ones are undoubtedly those concerning the efficiency of the reasoning process so that it can meet
the requirements of a typical streaming scenario. In this context, we can distinguish two main
challenges:

2:33

TGDK

2:34

Grounding Stream Reasoning Research

How can we shorten the response time of query answering with current formalisms such as
LARS and DatalogMTL? Examples of works in this category are the ones that focus on
maintaining the materialisation after updates [27], or the ones that combine materialisation
with other techniques [230].

Can we find a good balance between the expressivity of the reasoning while still maintaining
a high throughput? For instance, works in this category are the ones that restrict existing
formalisms to allow a faster execution [27] or the ones that provide extensions to support
higher expressivity without compromising performance [223]. Another type of approaches
falling into this category is focused on formal analysis of the input stream for data and/or
reasoning parallelisation [179, 92].

Another important challenge consists of improving the usability of DSRs. Currently, the
usage of a DSR requires a good understanding of the underlying technology and a proper way to
represent the domain using a formal language. It may be challenging to meet these requirements
in practice. Hence, two important research directions are:

How can we automatically capture knowledge in a formal language so that DSRs can use it to
reason over the data streams? Although inductive logic programming systems are available for
popular languages like Prolog or ASP, as far as we know, this research question has not been
properly investigated yet.
How can we communicate to users that are not familiar with formal languages why a reasoner
has returned some particular information? This topic has become particularly important since
Al is being adopted in an increasing number of domains. Like the previous question, this topic
of research on streaming scenarios has not yet been studied, although in this case there are
numerous works in static contexts that can be used as a starting point. Furthermore, recent
developments in large language models open an interesting perspective for user-friendly com-
munication between formal-language based systems and humans with little formal background
and training. Current attempts to exploit such models in fields like planning, argumentation,
and temporal logic may be lifted to the DSR setting.

Finally, another important topic of research consists of combining the power of logic-based
reasoning with techniques that can deal with uncertain data. This combination will allow us
to counter more effectively all the challenges related to data quality. Moreover, uncertainty is
inherently present in many domains and dealing with it is becoming increasingly important as
more and more machine learning techniques are being introduced in key decision processes.

Also in this case we identify two main research directions:
How can we include uncertainty, either aleatoric or epistemic, into the query answering process?
This question can be investigated by trying to adopt existing approaches to uncertainty such
as the possible world semantics [207] into a DSR or by the development of completely new
frameworks tailored to the needs of streaming scenarios. The PrASP system [161] discussed in
Section 4.5 represents a preliminary attempt to rely on possible world semantics to handle
uncertainty in an ASP-based stream reasoner, but the limited scalability makes it unsuitable
for real-world scenarios. This calls for the investigation of better sampling strategies and
uncertainty reasoning that does not necessarily rely on external solvers, but specifically tailored
to work with data streams.
How can we exploit stream reasoning with uncertainty to formulate what-if scenarios? This
problem is particularly important when a DSR is used to help decision processes when errors
can be very costly. Reasoning to determine not only what is true now, but also what can/cannot
be true in the near future can be invaluable as it could help to prevent malfunctioning in power
plants or disasters in crowd management. Unfortunately, as far as we know this topic has not
been investigated yet in a streaming setting.

P. Bonte et al.

The aforementioned list is by no means a complete enumeration of all issues. There are also
several other problems which are equally valuable and deserve much attention by the community.
For instance, currently we lack solid and fair evaluation frameworks to compare the performance
of DSRs. In other more mature fields, the community has agreed on establishing an independent
team, which include many representatives from industry and academia, to define comprehensive
benchmarks. Examples of such initiatives are the TPC-H benchmark suite [220] and the LDBC
consortium [208]. Doing so also for DSR systems or, more in general, for stream reasoning in
general is a natural next step. Another important problem relates to the development of tools
that are beyond proof-of-concepts and which are robust enough to be used outside the community.

6.3.4 Inductive Stream Reasoning

By addressing challenges related to real-time decision-making, data variety, veracity, and massive
volumes, an ISR system aims to offer a robust framework for reasoning in dynamic environments.
Meso-level questions, like how to ground multi-modal data into high-level reasoning, still require
further exploration and implementation to be used in killer applications such as autonomous
vehicles and robotics. Likewise, the application of model checking under conditions of uncertainty
and incompleteness remains a vital area for future research. Therefore, as we move towards
an increasingly connected and data-intensive world, the role of inductive stream reasoning as a
harmonising factor between traditional models and complex reality is set to become even more
crucial. In this context, we identify the following research challenges:
How to ground multimodal sub-symbolic data streams into high-level reasoning? The neural-
symbolic field proposes several solutions to connect sub-symbolic data and high-level reasoning
facts and rules, such as DeepProblog [149] and NeurASP [234]. However, there are only a
few works, such as [206] and [181] considering streaming aspects of data. Most of them only
address this problem in very narrow domains or specific types of data and rules. Hence, this
calls for a systematic investigation of stream-first approaches, including learning to inference
phases of grounding multimodal stream data into high-level stream reasoning.
How to implement performant and scalable ISR systems for real world applications? Most of the
motivated applications for ISR have very critical requirements for low-latency in conjunction
with data volume like pointed out in Section 5. However, so far, there is no implementation that
can deal with the data scale of the targeted applications, e.g., autonomous driving, robotics,
and automation. To make ISR usable for such targeted applications, there is an urgent need
for more systems taking operational requirements seriously to make real-life impact to relevant
industries.
Can we perform model checking under uncertainty applied to signals modelled as streams
representing the physical world, when that incomplete and rapidly-available information is
assumed to evolve over time as the result of external processes? Model checking has the
potential to introduce formal verification in stream processing pipelines [31], thus contributing
to verifying correctness of processing results, identifying problematic stream processes, or
providing resource allocation information. Run time verification of observations and events in
data streams can also benefit from these works [109], although current approaches do not fully
incorporate uncertainty and domain knowledge as it is the case in ISR.

6.4 Summary

For more than a decade, researchers and practitioners from different communities have contributed
to advance Stream Reasoning, each from within their area and perspective. Since 2015, members
of these communities have organised the Stream Reasoning Workshop, an annually recurring event

2:35

TGDK

2:36

Grounding Stream Reasoning Research

with the purpose of sharing perspectives, challenges, and experiences around the Stream Reasoning
topic. This paper not only reviews the main research contributions discussed at these workshops,
but provides a clear overview of the different areas that constitute the research field. Furthermore,
it crystallises how each of these areas perceives and tackles the various dimensions of Stream
Reasoning research. By understanding the views of these areas and how they relate and differ,
the Stream Reasoning research is grounded in sense. Future research efforts in the areas may be
aligned and benefit from each other based on our analysis, leading to powerful stream reasoning
technology and systems that are urgently needed in an ever streaming world.

— References

1 Zainab Abbas, Vasiliki Kalavri, Paris Carbone,
and Vladimir Vlassov. Streaming graph partition-
ing: An experimental study. Proc. VLDB Endow.,
11(11):1590-1603, 2018. doi:10.14778/3236187.
3236208.

2 Lorenzo Affetti, Alessandro Margara, and Gian-
paolo Cugola. Tspoon: Transactions on a stream
processor. J. Parallel Distributed Comput., 140:65—
79, 2020. doi:10.1016/3.jpdc.2020.03.003.

3 Alekh Agarwal, Olivier Chapelle, Miroslav Dudik,
and John Langford. A reliable effective terascale
linear learning system. J. Mach. Learn. Res.,
15(1):1111-1133, 2014. doi:10.5555/2627435.
2638571.

4 Muhammad Intizar Ali, Feng Gao, and Aless-
andra Mileo. Citybench: A configurable bench-
mark to evaluate rsp engines using smart city
datasets. In International semantic web con-
ference, pages 374-389. Springer, 2015. doi:
10.1007/978-3-319-25010-6_25.

5 Rahaf Aljundi, Eugene Belilovsky, Tinne Tuyte-
laars, Laurent Charlin, Massimo Caccia, Min
Lin, and Lucas Page-Caccia. Online Continual
Learning with Maximal Interfered Retrieval. In
NeurIPS, pages 11849-11860, 2019. URL: https:
//proceedings.neurips.cc/paper/2019/hash/
15825aee15eb335cc13f9b559f166ee8-Abstract.
html.

6 Denise Angilica, Giovambattista Ianni, Francesco
Pacenza, and Jessica Zangari. Integrating asp-
based incremental reasoning in the videogame de-
velopment workflow (application paper). In Mi-
chael Hanus and Daniela Inclezan, editors, Prac-
tical Aspects of Declarative Languages - 25th
International Symposium, PADL 2023, Boston,
MA, USA, January 16-17, 2023, Proceedings,
volume 13880 of Lecture Notes in Computer Sci-
ence, pages 96-106. Springer, 2023. doi:10.1007/
978-3-031-24841-2_7.

7 Darko Anicic, Jean-Paul Calbimonte, Oscar
Corcho, Daniele Dell’Aglio, Emanuele Della Valle,
Shen Gao, Alasdair J.G. Gray, Danh Le Phuoc,
Robin Keskisarkkéd, Alejandro Llaves, Aless-
andra Mileo, Bernhard Ortner, Adrian Paschke,
Monika Solanki, Roland Stihmer, Kia Tey-
mourian, and Peter Wetz. RDF Stream Pro-
cessing: Requirements and Design Principles.
Technical report, W3C RSP Community Group,
2015. URL: https://streamreasoning.org/
RSP-QL/RSP_Requirements_Design_Document/.

8 Darko Anicic, Sebastian Rudolph, Paul Fodor, and
Nenad Stojanovic. Stream reasoning and com-

9

10

11

12

13

14

15

16

17

plex event processing in ETALIS. Semantic Web,
3(4):397-407, 2012. doi:10.3233/SW-2011-0053.

Arvind Arasu, Shivnath Babu, and Jennifer
Widom. The CQL continuous query lan-
guage: semantic foundations and query execu-
tion. VLDB J., 15(2):121-142, 2006. doi:10.1007/
s00778-004-0147-z.

Marcelo Arenas, Leopoldo E. Bertossi, and Jan
Chomicki. Consistent query answers in inconsistent
databases. In Victor Vianu and Christos H. Papadi-
mitriou, editors, Proceedings of the FEighteenth
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, May 31 - June
2, 1999, Philadelphia, Pennsylvania, USA, pages
68-79. ACM Press, 1999. doi:10.1145/303976.
303983.

Michael Armbrust, Tathagata Das, Joseph Torres,
Burak Yavuz, Shixiong Zhu, Reynold Xin, Ali
Ghodsi, Ion Stoica, and Matei Zaharia. Struc-
tured streaming: A declarative api for real-time
applications in apache spark. In SIGMOD, 2018.
doi:10.1145/3183713.3190664.

Alessandro Artale and Enrico Franconi. Tem-
poral description logics. In Handbook of Temporal
Reasoning in Al pages 375-388. Elsevier, 2005.
doi:10.1016/S1574-6526(05)80014-8.

Alessandro Artale, Roman Kontchakov, Alisa Kov-
tunova, Vladislav Ryzhikov, Frank Wolter, and
Michael Zakharyaschev. First-order rewritabil-
ity of ontology-mediated queries in linear tem-
poral logic. CoRR, abs/2004.07221, 2020. doi:
10.48550/arXiv.2004.07221.

Alexander Artikis, Marek J. Sergot, and Georgios
Paliouras. An event calculus for event recognition.
IEEE Trans. Knowl. Data Eng., 27(4):895-908,
2015. doi:10.1109/TKDE.2014.2356476.

Ahmed Awad, Riccardo Tommasini, Samuele
Langhi, Mahmoud Kamel, Emanuele Della Valle,
and Sherif Sakr. D2ia: User-defined interval analyt-
ics on distributed streams. Inf. Syst., 104:101679,
2022. doi:10.1016/j.1is.2020.101679.

Shivnath Babu and Jennifer Widom. Con-
tinuous queries over data streams. SIGMOD
Rec., 30(3):109-120, 2001. doi:10.1145/603867.
603884.

Fahiem Bacchus and Froduald Kabanza. Planning
for temporally extended goals. In Proceedings of
the 13th AAAI conference of Artificial Intelligence,
pages 1215-1222, 1996. URL: http://www.aaai.
org/Library/AAAI/1996/aaai96-180.php.

https://doi.org/10.14778/3236187.3236208
https://doi.org/10.14778/3236187.3236208
https://doi.org/10.1016/j.jpdc.2020.03.003
https://doi.org/10.5555/2627435.2638571
https://doi.org/10.5555/2627435.2638571
https://doi.org/10.1007/978-3-319-25010-6_25
https://doi.org/10.1007/978-3-319-25010-6_25
https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html
https://doi.org/10.1007/978-3-031-24841-2_7
https://doi.org/10.1007/978-3-031-24841-2_7
https://streamreasoning.org/RSP-QL/RSP_Requirements_Design_Document/
https://streamreasoning.org/RSP-QL/RSP_Requirements_Design_Document/
https://doi.org/10.3233/SW-2011-0053
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1145/303976.303983
https://doi.org/10.1145/303976.303983
https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1016/S1574-6526(05)80014-8
https://doi.org/10.48550/arXiv.2004.07221
https://doi.org/10.48550/arXiv.2004.07221
https://doi.org/10.1109/TKDE.2014.2356476
https://doi.org/10.1016/j.is.2020.101679
https://doi.org/10.1145/603867.603884
https://doi.org/10.1145/603867.603884
http://www.aaai.org/Library/AAAI/1996/aaai96-180.php
http://www.aaai.org/Library/AAAI/1996/aaai96-180.php

P. Bonte et al.

18 Marco Balduini, Alessandro Bozzon,
Emanuele Della Valle, Yi Huang, and Geert-
Jan Houben. Recommending venues using
continuous predictive social media analytics.
IEEE Internet Comput., 18(5):28-35, 2014.
doi:10.1109/MIC.2014.84.

19 Marco Balduini, Irene Celino, Daniele Dell’Aglio,
Emanuele Della Valle, Yi Huang, Tony Kyung-il
Lee, Seon-Ho Kim, and Volker Tresp. Reality min-
ing on micropost streams - deductive and induct-
ive reasoning for personalized and location-based
recommendations. Semantic Web, 5(5):341-356,
2014. doi:10.3233/SW-130107.

20 Marco Balduini, Irene Celino, Daniele Dell’Aglio,
Emanuele Della Valle, Yi Huang, Tony Lee, Seon-
Ho Kim, and Volker Tresp. Bottari: An aug-
mented reality mobile application to deliver per-
sonalized and location-based recommendations
by continuous analysis of social media streams.
Journal of Web Semantics, 16:33—41, 2012. doi:
10.1016/j .websem.2012.06.004.

21 Frangois Bancilhon. Naive evaluation of recurs-
ively defined relations. In Michael L. Brodie and
John Mylopoulos, editors, On Knowledge Base
Management Systems: Integrating Artificial Intel-
ligence and Database Technologies, Book resulting
from the Islamorada Workshop 1985 (Islamorada,
FL, USA), Topics in Information Systems, pages
165-178. Springer, 1985.

22 Chitta Baral, Michael Gelfond, and J. Nelson
Rushton. Probabilistic reasoning with answer sets.
Theory Pract. Log. Program., 9(1):57-144, 2009.
doi:10.1017/S1471068408003645.

23 Daniel Barbara. The characterization of continu-
ous queries. Int. J. Cooperative Inf. Syst., 8(4):295,
1999. doi:10.1142/50218843099000150.

24 Davide Francesco Barbieri, Daniele Braga, Stefano
Ceri, Emanuele Della Valle, and Michael Gross-
niklaus. C-sparql: a continuous query language
for rdf data streams. International Journal of
Semantic Computing, 4(01):3-25, 2010. doi:10.
1142/S1793351X10000936.

25 Davide Francesco Barbieri, Daniele Braga, Stefano
Ceri, Emanuele Della Valle, Yi Huang, Volker
Tresp, Achim Rettinger, and Hendrik Wermser.
Deductive and inductive stream reasoning for se-
mantic social media analytics. IEEE Intell. Syst.,
25(6):32-41, 2010. doi:10.1109/MIS.2010.142.

26 Davide Francesco Barbieri, Daniele Braga, Stefano
Ceri, Emanuele Della Valle, Yi Huang, Volker
Tresp, Achim Rettinger, and Hendrik Wermser.
Deductive and inductive stream reasoning for se-
mantic social media analytics. IEEFE Intell. Syst.,
25(6):32-41, 2010. doi:10.1109/MIS.2010.142.

27 Hamid R. Bazoobandi, Harald Beck, and Jac-
opo Urbani. Expressive stream reasoning with
laser. In ISWC, pages 87-103, 2017. doi:10.1007/
978-3-319-68288-4_6.

28 Harald Beck, Bruno Bierbaumer, Minh Dao-Tran,
Thomas Eiter, Hermann Hellwagner, and Kon-
stantin Schekotihin. Stream reasoning-based con-
trol of caching strategies in CCN routers. In IEEE
International Conference on Communications,
ICC 2017, Paris, France, May 21-25, 2017, pages
1-6. IEEE, 2017. doi:10.1109/ICC.2017.7996762.

29 Harald Beck, Minh Dao-Tran, and Thomas Eiter.
LARS: A logic-based framework for analytic reas-
oning over streams. Artif. Intell., 261:16—70, 2018.
do0i:10.1016/j.artint.2018.04.003.

30 Harald Beck, Thomas Eiter, and Christian Folie.
Ticker: A system for incremental asp-based stream
reasoning. TPLP, 17(5-6):744-763, 2017. doi:
10.1017/51471068417000370.

31 Alexis Bédard and Sylvain Hallé. Model check-
ing of stream processing pipelines. In 28th Inter-
national Symposium on Temporal Representation
and Reasoning (TIME 2021). Schloss Dagstuhl-
Leibniz-Zentrum fir Informatik, 2021. doi:10.
4230/LIPIcs.TIME.2021.5.

32 Matteo Belcao, Emanuele Falzone, Enea Bionda,
and Emanuele Della Valle. Chimera: A bridge
between big data analytics and semantic techno-
logies. In The Semantic Web—ISWC 2021: 20th
International Semantic Web Conference, ISWC
2021, Virtual FEvent, October 24-28, 2021, Pro-
ceedings 20, pages 463-479. Springer, 2021. doi:
10.1007/978-3-030-88361-4_27.

33 Fethi Belghaouti, Amel Bouzeghoub, Zakia Kazi-
Aoul, and Raja Chiky. Pol: A pattern oriented
load-shedding for semantic data stream processing.
In Web Information Systems Engineering—WISE
2016: 17th International Conference, Shanghai,
China, November 8-10, 2016, Proceedings, Part I1
17, pages 157-171. Springer, 2016. doi:10.1007/
978-3-319-48743-4_13.

34 Tim Berners-Lee, James Hendler, and Ora Lassila.
The semantic web: A new form of web con-
tent that is meaningful to computers will un-
leash a revolution of new possibilities. In Osh-
ani Seneviratne and James A. Hendler, editors,
Linking the World’s Information: Essays on Tim
Berners-Lee’s Invention of the World Wide Web,
volume 52 of ACM Books, pages 91-103. ACM,
2023. doi:10.1145/3591366.3591376.

35 Dominic Betts, Julian Dominguez, Grigori Melnik,
Fernando Simonazzi, and Mani Subramanian. Ex-
ploring cqrs and event sourcing: A journey into
high scalability, availability, and maintainability
with windows azure, 2013. doi:10.5555/2509680.

36 Albert Bifet. Classifier concept drift detection and
the illusion of progress. In ICAISC (2), volume
10246 of LNCS, pages 715—725. Springer, 2017.
doi:10.1007/978-3-319-59060-8_64.

37 Albert Bifet and Ricard Gavalda. Adaptive Learn-
ing from Evolving Data Streams. In IDA, volume
5772 of LNCS, pages 249-260. Springer, 2009.
doi:10.1007/978-3-642-03915-7_22.

38 Albert Bifet, Ricard Gavalda, Geoff Holmes, and
Bernhard Pfahringer. Machine learning for data
streams: with practical examples in MOA. MIT
press, 2018.

39 Albert Bifet, Geoff Holmes, Richard Kirkby, and
Bernhard Pfahringer. MOA: massive online ana-
lysis. J. Mach. Learn. Res., 11:1601-1604, 2010.
doi:10.5555/1756006.1859903.

40 Albert Bifet, Jesse Read, Indre Zliobaite, Bernhard
Pfahringer, and Geoff Holmes. Pitfalls in bench-
marking data stream classification and how to
avoid them. In ECML/PKDD (1), volume
8188 of Lecture Notes in Computer Science,

2:37

TGDK

https://doi.org/10.1109/MIC.2014.84
https://doi.org/10.3233/SW-130107
https://doi.org/10.1016/j.websem.2012.06.004
https://doi.org/10.1016/j.websem.2012.06.004
https://doi.org/10.1017/S1471068408003645
https://doi.org/10.1142/S0218843099000150
https://doi.org/10.1142/S1793351X10000936
https://doi.org/10.1142/S1793351X10000936
https://doi.org/10.1109/MIS.2010.142
https://doi.org/10.1109/MIS.2010.142
https://doi.org/10.1007/978-3-319-68288-4_6
https://doi.org/10.1007/978-3-319-68288-4_6
https://doi.org/10.1109/ICC.2017.7996762
https://doi.org/10.1016/j.artint.2018.04.003
https://doi.org/10.1017/S1471068417000370
https://doi.org/10.1017/S1471068417000370
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.1007/978-3-030-88361-4_27
https://doi.org/10.1007/978-3-030-88361-4_27
https://doi.org/10.1007/978-3-319-48743-4_13
https://doi.org/10.1007/978-3-319-48743-4_13
https://doi.org/10.1145/3591366.3591376
https://doi.org/10.5555/2509680
https://doi.org/10.1007/978-3-319-59060-8_64
https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.5555/1756006.1859903

2:38

Grounding Stream Reasoning Research

pages 465—479. Springer, 2013.
978-3-642-40988-2_30.

41 Christian Bizer, Tom Heath, Kingsley Idehen,
and Tim Berners-Lee. Linked data on the web
(1dow2008). In Proceedings of the 17th interna-
tional conference on World Wide Web, pages 1265—

1266, 2008. doi:10.1145/1367497.1367760.

42 Jock A Blackard and Denis J Dean. Compar-
ative accuracies of artificial neural networks and
discriminant analysis in predicting forest cover

Computers

and electronics in agriculture, 24(3):131-151, 1999.

types from cartographic variables.

doi:10.5555/928509.

43 Andre Bolles, Marco Grawunder, and Jonas Jac-
obi. Streaming sparql-extending sparql to pro-
cess data streams. In The Semantic Web: Re-
search and Applications: 5th FEuropean Semantic
Web Conference, ESWC 2008, Tenerife, Canary
Islands, Spain, June 1-5, 2008 Proceedings 5,

doi:10.1007/

pages 448-462. Springer, 2008.
978-3-540-68234-9_34.

44 Pieter Bonte and Femke Ongenae. Roxi: a frame-
work for reactive reasoning. In The Semantic
Web: ESWC 2023 Satellite Events, pages 159—

doi:

163. Springer Nature Switzerland, 2023.
10.1007/978-3-031-43458-7_30.

45 Pieter Bonte and Femke Ongenae. Towards cas-
cading reasoning for generic edge processing. In
ESWC2023, the First International Workshop on
Semantic Web on Constrained Things, 2023. URL:

https://ceur-ws.org/Vol-3412/paper4.pdf.

46 Pieter Bonte and Riccardo Tommasini. Stream-
ing linked data: A survey on life cycle compli-
ance. Journal of Web Semantics, 77:100785, 2023.

do0i:10.1016/j.websem.2023.100785.

47 Pieter Bonte, Riccardo Tommasini, Filip De Turck,
Femke Ongenae, and Emanuele Della Valle. C-
sprite: efficient hierarchical reasoning for rapid
rdf stream processing. In Proceedings of the 13th
ACM International Conference on Distributed
and FEvent-based Systems, pages 103—114, 2019.

doi:10.1145/3328905.3329502.

48 Pieter Bonte, Riccardo Tommasini, Emanuele
Della Valle, Filip De Turck, and Femke Ongenae.
Streaming MASSIF: Cascading reasoning for ef-
ficient processing of iot data streams. Sensors,

18(11):3832, 2018. doi:10.3390/s18113832.

49 Stefan Borgwardt, Marcel Lippmann, and Ver-
onika Thost. Temporalizing rewritable query lan-
guages over knowledge bases. J. Web Semant.,

33:50-70, 2015. doi:10.2139/ssrn.3199188.

50 Irina Botan, Peter M. Fischer, Donald Kossmann,
and Nesime Tatbul. Transactional stream pro-
cessing. In Elke A. Rundensteiner, Volker Markl,
Toana Manolescu, Sihem Amer-Yahia, Felix Nau-
mann, and Ismail Ari, editors, 15th Interna-
tional Conference on FExtending Database Tech-
nology, EDBT ’12, Berlin, Germany, March 27-
30, 2012, Proceedings, pages 204—215. ACM, 2012.

doi:10.1145/2247596.2247622.

51 Camille Bourgaux, Patrick Koopmann, and Anni-
Ontology-mediated query an-
swering over temporal and inconsistent data. Se-
mantic Web, 10(3):475-521, 2019. doi:10.3233/

Yasmin Turhan.

SW-180337.

doi:10.1007/

52

53

54

55

56

57

58

59

60

61

62

63

Sebastian Brandt, Elem Giizel Kalayci, Vladis-
lav. Ryzhikov, Guohui Xiao, and Michael Za-
kharyaschev. Querying log data with metric tem-
poral logic. J. Artif. Intell. Res., 62:829-877, 2018.
doi:10.1613/jair.1.11229.

Gerhard Brewka, Thomas Eiter, and Miroslaw
Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92-103, 2011.
doi:10.1145/2043174.2043195.

Jean-Paul Calbimonte, Davide Calvaresi, and Mi-
chael Schumacher. Multi-agent interactions on
the web through linked data notifications. In
Multi-Agent Systems and Agreement Technolo-
gies: 15th European Conference, EUMAS 2017,
and 5th International Conference, AT 2017, Evry,
France, December 14-15, 2017, Revised Selected
Papers 15, pages 44-53. Springer, 2018. doi:
10.1007/978-3-030-01713-2_4.

Jean-Paul Calbimonte, Oscar Corcho, and Alas-
dair JG Gray. Enabling ontology-based access
to streaming data sources. In The Semantic Web—
ISWC 2010: 9th International Semantic Web Con-
ference, ISWC 2010, Shanghai, China, Novem-
ber 7-11, 2010, Revised Selected Papers, Part I
9, pages 96-111. Springer, 2010. doi:10.1007/
978-3-642-17746-0_7.

Jean-Paul Calbimonte, Hoyoung Jeung, Oscar
Corcho, and Karl Aberer. Enabling query tech-
nologies for the semantic sensor web. Interna-
tional Journal On Semantic Web and Informa-
tion Systems (IJSWIS), 8(1):43-63, 2012. doi:
10.4018/jswis.2012010103.

Jean-Paul Calbimonte, José Mora, and Oscar
Corcho. Query rewriting in RDF stream pro-
cessing. In ESWC, pages 486-502, 2016. doi:
10.1007/978-3-319-34129-3_30.

Francesco Calimeri, Marco Manna, Elena Mastria,
Maria Concetta Morelli, Simona Perri, and Jes-
sica Zangari. I-DLV-sr: A stream reasoning
system based on I-DLV. Theory Pract. Log.
Program., 21(5):610-628, 2021. doi:10.1017/
S147106842100034X.

Paris Carbone, Marios Fragkoulis, Vasiliki Ka-
lavri, and Asterios Katsifodimos. Beyond ana-
lytics: The evolution of stream processing systems.
In SIGMOD. ACM, 2020. doi:10.1145/3318464.
3383131.

Paris Carbone, Asterios Katsifodimos, Stephan
Ewen, Volker Markl, Seif Haridi, and Kostas Tzou-
mas. Apache flink: Stream and batch processing
in a single engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering,
36(4), 2015. URL: http://sites.computer.org/
debull/A15dec/p28.pdf.

Stefano Ceri, Georg Gottlob, and Letizia Tanca.
Logic Programming and Databases. Surveys in
computer science. Springer, 1990. URL: https:
//www.worldcat.org/oclc/20595273.

Sirish Chandrasekaran and Michael J. Franklin.
Streaming queries over streaming data. In VLDB,
pages 203-214. Morgan Kaufmann, 2002. doi:
10.1016/B978-155860869-6/50026-3.

Jiaoyan Chen, Freddy Lecue, Jeff Z. Pan, and
Huajun Chen. Learning from ontology streams
with semantic concept drift. In Proceedings of the
Twenty-Sizth International Joint Conference on

https://doi.org/10.1007/978-3-642-40988-2_30
https://doi.org/10.1007/978-3-642-40988-2_30
https://doi.org/10.1145/1367497.1367760
https://doi.org/10.5555/928509
https://doi.org/10.1007/978-3-540-68234-9_34
https://doi.org/10.1007/978-3-540-68234-9_34
https://doi.org/10.1007/978-3-031-43458-7_30
https://doi.org/10.1007/978-3-031-43458-7_30
https://ceur-ws.org/Vol-3412/paper4.pdf
https://doi.org/10.1016/j.websem.2023.100785
https://doi.org/10.1145/3328905.3329502
https://doi.org/10.3390/s18113832
https://doi.org/10.2139/ssrn.3199188
https://doi.org/10.1145/2247596.2247622
https://doi.org/10.3233/SW-180337
https://doi.org/10.3233/SW-180337
https://doi.org/10.1613/jair.1.11229
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1007/978-3-030-01713-2_4
https://doi.org/10.1007/978-3-030-01713-2_4
https://doi.org/10.1007/978-3-642-17746-0_7
https://doi.org/10.1007/978-3-642-17746-0_7
https://doi.org/10.4018/jswis.2012010103
https://doi.org/10.4018/jswis.2012010103
https://doi.org/10.1007/978-3-319-34129-3_30
https://doi.org/10.1007/978-3-319-34129-3_30
https://doi.org/10.1017/S147106842100034X
https://doi.org/10.1017/S147106842100034X
https://doi.org/10.1145/3318464.3383131
https://doi.org/10.1145/3318464.3383131
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://www.worldcat.org/oclc/20595273
https://www.worldcat.org/oclc/20595273
https://doi.org/10.1016/B978-155860869-6/50026-3
https://doi.org/10.1016/B978-155860869-6/50026-3

P. Bonte et al.

Artificial Intelligence, IJCAI-17, pages 957963,
2017. doi:10.24963/ijcai.2017/133.

64 Michael Compton, Payam Barnaghi, Luis Ber-
mudez, Raul Garcia-Castro, Oscar Corcho, Si-
mon Cox, John Graybeal, Manfred Hauswirth,
Cory Henson, Arthur Herzog, et al. The ssn onto-
logy of the w3c semantic sensor network incubator
group. Journal of Web Semantics, 17:25-32, 2012.
doi:10.1016/j.websem.2012.05.003.

65 Simon Cox and Chris Little. Time ontology
in OWL. Technical report, W3C, Spatial Data
on the Web Working Group, 2022. W3C Can-
didate Recommendation Draft, Nov 25, 2022,
https://www.w3.org/TR/owl-time/. URL: https:
//www.w3.org/TR/owl-time/.

66 David J. Tena Cucala, Przemyslaw Andrzej
Walega, Bernardo Cuenca Grau, and Egor V. Ko-
stylev. Stratified negation in datalog with metric
temporal operators. In Thirty-Fifth AAAI Confer-
ence on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021, pages 6488-6495. AAAI Press, 2021.
doi:10.1609/AAAT.V35I7.16804.

67 Gianpaolo Cugola and Alessandro Margara. Pro-
cessing flows of information: From data stream to
complex event processing. ACM Comput. Surv.,
44(3):15:1-15:62, 2012. doi:10.1145/2187671.
2187677.

68 Gianpaolo Cugola, Alessandro Margara, Mat-
teo Matteucci, and Giordano Tamburrelli. In-
troducing uncertainty in complex event pro-
cessing: model, implementation, and validation.
Computing, 97(2):103-144, 2015. doi:10.1007/
s00607-014-0404-y.

69 Richard Cyganiak, David Wood, and Markus
Lanthaler. RDF 1.1 Concepts and Abstract Syn-
tax. W3C Recommendation, W3C, 2014. URL:
https://www.w3.org/TR/rdf11-concepts/.

70 Ariyam Das, Sahil M. Gandhi, and Carlo Zani-
olo. ASTRO: A datalog system for advanced
stream reasoning. In CIKM, pages 1863—1866,
2018. doi:10.1145/3269206.3269223.

71 Mathias De Brouwer, Pieter Bonte, Dérthe Arndt,
Miel Vander Sande, Pieter Heyvaert, Anastasia
Dimou, Ruben Verborgh, Filip De Turck, and
Femke Ongenae. Distributed continuous home
care provisioning through personalized monitoring
& treatment planning. In Companion Proceedings
of the Web Conference 2020, pages 143-147, 2020.
doi:10.1145/3366424.3383528.

72 Daniel de Leng and Fredrik Heintz. DyKnow:
A dynamically reconfigurable stream reasoning
framework as an extension to the robot operating
system. In SIMPAR, pages 55-60. IEEE, 2016.
doi:10.1109/SIMPAR.2016.7862375.

73 Daniel de Leng and Fredrik Heintz. Partial-state
progression for stream reasoning with metric tem-
poral logic. In Sizteenth International Conference
on Principles of Knowledge Representation and
Reasoning, 2018. URL: https://aaai.org/ocs/
index.php/KR/KR18/paper/view/17988.

74 Daniel de Leng and Fredrik Heintz. Approximate
stream reasoning with metric temporal logic un-

der uncertainty. In AAAI pages 2760-2767, 2019.
doi:10.1609/aaai.v33i01.33012760.

75 Emanuele Della Valle. On Stream Reason-
ing. PhD Thesis, Vrije Universiteit Amster-
dam, 2015. URL: https://research.vu.nl/en/
publications/on-stream-reasoning.

76 Emanuele Della Valle, Irene Celino, Daniele
Dell’Aglio, Ralph Grothmann, Florian Steinke,
and Volker Tresp. Semantic traffic-aware routing
using the larkc platform. IEEE Internet Comput.,
15(6):15—23, 2011. doi:10.1109/MIC.2011.107.

77 Daniele Dell’Aglio and Abraham Bernstein. Differ-
entially private stream processing for the semantic
web. In WWW, pages 1977-1987. ACM / TW3C2,
2020. doi:10.1145/3366423.3380265.

78 Daniele Dell’Aglio, Emanuele Della Valle, Jean-
Paul Calbimonte, and Oscar Corcho. RSP-QL
semantics: A unifying query model to explain het-
erogeneity of RDF stream processing systems. Int.
J. Semantic Web Inf. Syst., 10(4):17-44, 2014.
do0i:10.4018/ijswis.2014100102.

79 Daniele Dell’Aglio, Emanuele Della Valle, et al.
Incremental reasoning on rdf streams, 2014. doi:
10.1201/B16859-22.

80 Daniele Dell’Aglio, Danh Le Phuoc, Anh Le-Tuan,
Muhammad Intizar Ali, and Jean-Paul Calbi-
monte. On a web of data streams. In Proceed-
ings of the workshop on decentralizing the se-
mantic Web 2017 co-located with 16th Interna-
tional Semantic Web Conference (ISWC 2017). 22
october 2017, 2017. URL: https://ceur-ws.org/
Vol-1934/contribution-11.pdf.

81 Daniele Dell’Aglio, Jean-Paul Calbimonte, Marco
Balduini, Oscar Corcho, and Emanuele Della Valle.
On correctness in rdf stream processor benchmark-
ing. In The Semantic Web-ISWC 2013: 12th
International Semantic Web Conference, Sydney,
NSW, Australia, October 21-25, 20183, Proceed-
ings, Part II 12, pages 326-342. Springer, 2013.
doi:10.1007/978-3-642-41338-4_21.

82 Daniele Dell’Aglio, Minh Dao-Tran, Jean-Paul
Calbimonte, Danh Le Phuoc, and Emanuele
Della Valle. A query model to capture event
pattern matching in rdf stream processing query
languages. In Furopean Knowledge Acquisition
Workshop, pages 145-162. Springer, 2016. doi:
10.1007/978-3-319-49004-5_10.

83 Anastasia Dimou, Miel Vander Sande, Pieter
Colpaert, Ruben Verborgh, Erik Mannens, and
Rik Van de Walle. Rml: A generic language for
integrated rdf mappings of heterogeneous data.
Ldow, 1184, 2014. URL: https://ceur-ws.org/
Vol-1184/1dow2014_paper_01.pdf.

84 Gregory Ditzler and Robi Polikar. Incremental
Learning of Concept Drift from Streaming Im-
balanced Data. IEEE Trans. Knowl. Data Eng.,
25(10):2283-2301, 2013. doi:10.1109/TKDE.2012.
136.

85 Patrick Doherty and Jonas Kvarnstrom. Temporal
action logics. In Frank van Harmelen, Vladimir
Lifschitz, and Bruce W. Porter, editors, Hand-
book of Knowledge Representation, volume 3 of
Foundations of Artificial Intelligence, pages 709—
757. Elsevier, 2008. doi:10.1016/S1574-6526(07)
03018-0.

2:39

TGDK

https://doi.org/10.24963/ijcai.2017/133
https://doi.org/10.1016/j.websem.2012.05.003
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/owl-time/
https://doi.org/10.1609/AAAI.V35I7.16804
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1007/s00607-014-0404-y
https://doi.org/10.1007/s00607-014-0404-y
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1145/3269206.3269223
https://doi.org/10.1145/3366424.3383528
https://doi.org/10.1109/SIMPAR.2016.7862375
https://aaai.org/ocs/index.php/KR/KR18/paper/view/17988
https://aaai.org/ocs/index.php/KR/KR18/paper/view/17988
https://doi.org/10.1609/aaai.v33i01.33012760
https://research.vu.nl/en/publications/on-stream-reasoning
https://research.vu.nl/en/publications/on-stream-reasoning
https://doi.org/10.1109/MIC.2011.107
https://doi.org/10.1145/3366423.3380265
https://doi.org/10.4018/ijswis.2014100102
https://doi.org/10.1201/B16859-22
https://doi.org/10.1201/B16859-22
https://ceur-ws.org/Vol-1934/contribution-11.pdf
https://ceur-ws.org/Vol-1934/contribution-11.pdf
https://doi.org/10.1007/978-3-642-41338-4_21
https://doi.org/10.1007/978-3-319-49004-5_10
https://doi.org/10.1007/978-3-319-49004-5_10
https://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
https://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
https://doi.org/10.1109/TKDE.2012.136
https://doi.org/10.1109/TKDE.2012.136
https://doi.org/10.1016/S1574-6526(07)03018-0
https://doi.org/10.1016/S1574-6526(07)03018-0

2:40

Grounding Stream Reasoning Research

86

87

88

89

90

91

92

93

94

95

96

97

Patrick Doherty, Jonas Kvarnstrom, and Fredrik
Heintz. A temporal logic-based planning and execu-
tion monitoring framework for unmanned aircraft
systems. Auton. Agent Multi-Ag., 19(3):332-377,
2009. doi:10.1007/s10458-009-9079-8.

Manh Nguyen Duc, Anh Lé Tudn, Manfred
Hauswirth, and Danh Le Phuoc. Towards autonom-
ous semantic stream fusion for distributed video
streams. In Alessandro Margara, Emanuele Della
Valle, Alexander Artikis, Nesime Tatbul, and
Helge Parzyjegla, editors, 15th ACM International
Conference on Distributed and Event-based Sys-
tems, DEBS 2021, Virtual Event, Italy, June
28 - July 2, 2021, pages 172-175. ACM, 2021.
doi:10.1145/3465480.3467837.

Martin Diirst and Michel Suignard. International-
ized resource identifiers (IRIs). Technical report,
W3C, Internationalization Working Group, 2005.
doi:10.17487/RFC3987.

Thomas Eiter, Ryutaro Ichise, Josiane Xavier Par-
reira, Patrik Schneider, and Lihua Zhao. Deploy-
ing spatial-stream query answering in C-ITS scen-
arios. Semantic Web, 12(1):41-77, 2021. doi:
10.3233/SW-200408.

Thomas Eiter and Rafael Kiesel. Weighted LARS
for quantitative stream reasoning. In ECAI, pages
729-736, 2020. doi:10.3233/FAIA200160.
Thomas Eiter and Rafael Kiesel. Semiring reas-
oning frameworks in Al and their computational
complexity. J. Artif. Intell. Res., 77:207-293, 2023.
doi:10.1613/jair.1.13970.

Thomas Eiter, Paul Ogris, and Kon-
stantin Schekotihin. A distributed ap-
proach to LARS stream reasoning (sys-
tem paper). TPLP, 19(5-6):974-989, 2019.

d0i:10.1017/S1471068419000309.

Emanuele Falzone, Riccardo Tommasini,
Emanuele Della Valle, Petra Selmer, Stefan
Plantikow, Hannes Voigt, Keith Hare, Ljubica
Lazarevic, and Tobias Lindaaker. Semantic
foundations of seraph continuous graph query
language. arXiv preprint arXiv:2111.09228, 2021.
doi:10.48550/arXiv.2111.09228.

Javier D Fernandez, Alejandro Llaves, and Oscar
Corcho. Efficient rdf interchange (eri) format for
rdf data streams. In The Semantic Web—ISWC
2014: 13th International Semantic Web Confer-
ence, Riva del Garda, Italy, October 19-23, 2014.
Proceedings, Part II 13, pages 244—259. Springer,
2014. doi:10.1007/978-3-319-11915-1_16.
Michael Fisher. Temporal representation and reas-
oning. In Frank van Harmelen, Vladimir Lifschitz,
and Bruce W. Porter, editors, Handbook of Know-
ledge Representation, volume 3 of Foundations
of Artificial Intelligence, pages 513-550. Elsevier,
2008. doi:10.1016/S1574-6526(07)03012-X.
Michael Fisher, Dov M. Gabbay, and Lluis Vila,
editors. Handbook of Temporal Reasoning in
Artificial Intelligence, volume 1 of Foundations
of Artificial Intelligence. Elsevier, 2005. doi:
10.5555/2974992.

Jodo Gama, Pedro Medas, Gladys Castillo, and
Pedro Pereira Rodrigues. Learning with Drift
Detection. In SBIA, volume 3171 of LNCS,
pages 286—295. Springer, 2004. doi:10.1007/
978-3-540-28645-5_29.

98

99

100

101

102

103

104

105

106

107

Jodo Gama, Raquel Sebastido, and Pedro Pereira
Rodrigues. Issues in evaluation of stream learning
algorithms. In KDD, pages 329-338. ACM, 2009.
doi:10.1145/1557019.1557060.

Jing Gao, Wei Fan, Jiawei Han, and Philip Yu.
A general framework for mining concept-drifting
data streams with skewed distributions. In Pro-
ceedings of the 2007 SIAM international con-
ference on data mining, pages 3—14, apr 2007.
doi:10.1137/1.9781611972771.1.

Shen Gao, Thomas Scharrenbach, and Abraham
Bernstein. The clock data-aware eviction ap-
proach: Towards processing linked data streams
with limited resources. In FEuropean Semantic
Web Conference, pages 6-20. Springer, 2014. doi:
10.1007/978-3-319-07443-6_2.

Martin Gebser, Roland Kaminski, Benjamin
Kaufmann, and Torsten Schaub. Multi-shot ASP
solving with clingo. TPLP, 19(1):27-82, 2019.
doi:10.1017/S1471068418000054.

Stefano Germano, Thu-Le Pham, and Alessandra
Mileo. Web stream reasoning in practice: On the
expressivity vs. scalability tradeoff. In Balder ten
Cate and Alessandra Mileo, editors, Web Reas-
oning and Rule Systems - 9th International Con-
ference, RR 2015, Berlin, Germany, August 4-5,
2015, Proceedings, volume 9209 of Lecture Notes in
Computer Science, pages 105—112. Springer, 2015.
doi:10.1007/978-3-319-22002-4_9.

Federico Giannini, Giacomo Ziffer, and Emanuele
Della Valle. cpnn: Continuous progressive
neural networks for evolving streaming time
series. In Hisashi Kashima, Tsuyoshi Idé, and
Wen-Chih Peng, editors, Advances in Know-
ledge Discovery and Data Mining - 27th Pacific-
Asia Conference on Knowledge Discovery and
Data Mining, PAKDD 20238, Osaka, Japan,
May 25-28, 2023, Proceedings, Part IV, volume
13938 of Lecture Notes in Computer Science,
pages 328-340. Springer, 2023. doi:10.1007/
978-3-031-33383-5_26.

Nikos Giatrakos, Alexander Artikis, Antonios De-
ligiannakis, and Minos N. Garofalakis. Complex
event recognition in the big data era. Proc. VLDB
Endow., 10(12):1996-1999, 2017. doi:10.14778/
3137765.3137829.

Boris Glavic, Kyumars Sheykh Esmaili, Peter M.
Fischer, and Nesime Tatbul. Efficient stream
provenance via operator instrumentation. ACM
Trans. Internet Techn., 14(1):7:1-7:26, 2014. doi:
10.1145/2633689.

Boris Glavic, Kyumars Sheykh Esmaili, Peter Mi-
chael Fischer, and Nesime Tatbul. Ariadne: man-
aging fine-grained provenance on data streams.
In Sharma Chakravarthy, Susan Darling Urban,
Peter R. Pietzuch, and Elke A. Rundensteiner,
editors, The 7th ACM International Conference
on Distributed Event-Based Systems, DEBS 13,
Arlington, TX, USA - June 29 - July 03, 2013,
pages 39-50. ACM, 2013. doi:10.1145/2488222.
2488256.

Heitor Murilo Gomes, Albert Bifet, Jesse Read,
Jean Paul Barddal, Fabricio Enembreck, Bernhard
Pfahringer, Geoff Holmes, and Talel Abdessalem.
Adaptive random forests for evolving data stream

https://doi.org/10.1007/s10458-009-9079-8
https://doi.org/10.1145/3465480.3467837
https://doi.org/10.17487/RFC3987
https://doi.org/10.3233/SW-200408
https://doi.org/10.3233/SW-200408
https://doi.org/10.3233/FAIA200160
https://doi.org/10.1613/jair.1.13970
https://doi.org/10.1017/S1471068419000309
https://doi.org/10.48550/arXiv.2111.09228
https://doi.org/10.1007/978-3-319-11915-1_16
https://doi.org/10.1016/S1574-6526(07)03012-X
https://doi.org/10.5555/2974992
https://doi.org/10.5555/2974992
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1145/1557019.1557060
https://doi.org/10.1137/1.9781611972771.1
https://doi.org/10.1007/978-3-319-07443-6_2
https://doi.org/10.1007/978-3-319-07443-6_2
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1007/978-3-319-22002-4_9
https://doi.org/10.1007/978-3-031-33383-5_26
https://doi.org/10.1007/978-3-031-33383-5_26
https://doi.org/10.14778/3137765.3137829
https://doi.org/10.14778/3137765.3137829
https://doi.org/10.1145/2633689
https://doi.org/10.1145/2633689
https://doi.org/10.1145/2488222.2488256
https://doi.org/10.1145/2488222.2488256

P. Bonte et al.

classification. Mach. Learn., 106(9-10):1469-1495,
2017. doi:10.1007/s10994-017-5642-8.

108 Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron
Courville, and Yoshua Bengio. An Empirical In-
vestigation of Catastrophic Forgetting in Gradient-
Based Neural Networks. In 2nd International Con-
ference on Learning Representations, 2015-03-03.
doi:10.48550/arXiv.1312.6211.

109 Felipe Gorostiaga and César Sanchez. Hstriver: a
very functional extensible tool for the runtime
verification of real-time event streams. In
International Symposium on Formal Methods,
pages 563-580. Springer, 2021. doi:10.1007/
978-3-030-90870-6_30.

110 OWL Working group. OWL 2 web onto-
logy language overview (second edition). Tech-
nical report, W3C, dec 2012. W3C recom-
mendation. URL: http://www.w3.org/TR/2012/
REC-owl2-overview-20121211/.

111 Aakansha Gupta and Rahul Katarya. Social me-
dia based surveillance systems for healthcare using
machine learning: A systematic review. J. Bio-
med. Inform., 108:103500, 2020. doi:10.1016/j.
jbi.2020.103500.

112 Fredrik Heintz, Jonas Kvarnstrém, and Patrick
Doherty. Bridging the sense-reasoning gap: Dy-
know - stream-based middleware for knowledge
processing. Adv. Eng. Inform., 24(1):14-26, 2010.
doi:10.1016/j.aei.2009.08.007.

113 Fredrik Heintz, Jonas Kvarnstrom, and Patrick
Doherty. Stream-based reasoning support for
autonomous systems. In Helder Coelho, Rudi
Studer, and Michael J. Wooldridge, editors, ECAI
2010 - 19th FEuropean Conference on Artifi-
cial Intelligence, Lisbon, Portugal, August 16-
20, 2010, Proceedings, volume 215 of Fronti-
ers in Artificial Intelligence and Applications,
pages 183-188. IOS Press, 2010. doi:10.3233/
978-1-60750-606-5-183.

114 Pieter Heyvaert, Ben De Meester, Anastasia
Dimou, and Ruben Verborgh. Declarative
rules for linked data generation at your finger-
tips! In European Semantic Web Conference,
pages 213-217. Springer, 2018. doi:10.1007/
978-3-319-98192-5_40.

115 Martin Hirzel, Guillaume Baudart, Angela Bon-
ifati, Emanuele Della Valle, Sherif Sakr, and Akrivi
Vlachou. Stream processing languages in the big
data era. SIGMOD Record, 47(2):29-40, 2018.
doi:10.1145/3299887.3299892.

116 Ian M. Hodkinson and Mark Reynolds. Temporal
logic. In Patrick Blackburn, J. F. A. K. van Ben-
them, and Frank Wolter, editors, Handbook of
Modal Logic, volume 3 of Studies in logic and
practical reasoning, pages 655-720. North-Holland,
2007. doi:10.1016/s1570-2464(07)80014-0.

117 Wassily Hoeffding. Probability inequalities for
sums of bounded random variables. The collected
works of Wassily Hoeffding, pages 409-426, 1994.
doi:10.1007/978-1-4612-0865-5_26.

118 Pan Hu, Boris Motik, and Ian Horrocks. Mod-
ular materialisation of Datalog programs. Artif.
Intell., 308:103726, 2022. doi:10.1016/j.artint.
2022.103726.

119 Giovambattista Ianni, Francesco Pacenza, and Jes-
sica Zangari. Incremental maintenance of over-
grounded logic programs with tailored simplifica-
tions. Theory Pract. Log. Program., 20(5):719-734,
2020. doi:10.1017/S147106842000040X.

120 Elena Ikonomovska, Joao Gama, and Saso Dzer-
oski. Learning model trees from evolving data
streams. Data Min. Knowl. Discov., 23(1):128—
168, 2011. doi:10.1007/s10618-010-0201~y.

121 Neil Immerman. Descriptive complexity. Gradu-
ate texts in computer science. Springer, 1999.
doi:10.1007/978-1-4612-0539-5.

122 Sebastian Kéabisch, Daniel Peintner, and Darko
Anicic. Standardized and efficient rdf encoding for
constrained embedded networks. In European Se-
mantic Web Conference, pages 437-452. Springer,
2015. doi:10.1007/978-3-319-18818-8_27.

123 Antonis C. Kakas. Abduction. In Claude Sam-
mut and Geoffrey I. Webb, editors, Encyclopedia
of Machine Learning, pages 3—9. Springer, 2010.
doi:10.1007/978-0-387-30164-8_1.

124 Andreas Kamilaris, Feng Gao, Francesc X.
Prenafeta-Boldu, and Muhammad Intizar Ali.
Agri-iot: A semantic framework for internet of
things-enabled smart farming applications. In
3rd IEEE World Forum on Internet of Things,
WF-IoT 2016, Reston, VA, USA, December 12-
14, 2016, pages 442-447. IEEE Computer Society,
2016. doi:10.1109/WF-I0T.2016.7845467.

125 Evgeny Kharlamov, Yannis Kotidis, Theo-
filos Mailis, Christian Neuenstadt, Charalampos
Nikolaou, Ozgiir L. Ozcep, Christoforos Svingos,
Dmitriy Zheleznyakov, Sebastian Brandt, Ian Hor-
rocks, Yannis E. Ioannidis, Steffen Lamparter,
and Ralf Moller. Towards analytics aware onto-
logy based access to static and streaming data.
In ISWC (2), volume 9982 of Lecture Notes in
Computer Science, pages 344-362, 2016. doi:
10.1007/978-3-319-46547-0_31.

126 Houda Khrouf, Badre Belabbess, Laurent Bih-
anic, Gabriel Kepeklian, and Olivier Curé. Waves:
Big data platform for real-time rdf stream pro-
cessing. In Daniele Dell’Aglio, Emanuele Della
Valle, Markus Kroétzsch, Thomas Eiter, Maria
Maleshkova, Ruben Verborgh, Federico M. Facca,
and Michael Mrissa, editors, Joint Proceedings of
the 3rd Stream Reasoning (SR 2016) and the 1st
Semantic Web Technologies for the Internet of
Thing (SWIT 2016) workshops (SR+SWIT), num-
ber 1783 in CEUR Workshop Proceedings, pages
37-48, Aachen, 2016. URL: https://ceur-ws.
org/Vol-1783/paper-04.pdf.

127 James Kirkpatrick, Razvan Pascanu, Neil C. Ra-
binowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran,
and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the
National Academy of Sciences, 114(13), 2017.
doi:10.1073/pnas.1611835114.

128 Maxim Kolchin, Peter Wetz, Elmar Kiesling,
and A Min Tjoa. Yabench: A comprehensive
framework for rdf stream processor correctness
and performance assessment. In Web Engineer-
ing: 16th International Conference, ICWE 2016,

2:41

TGDK

https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.48550/arXiv.1312.6211
https://doi.org/10.1007/978-3-030-90870-6_30
https://doi.org/10.1007/978-3-030-90870-6_30
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://doi.org/10.1016/j.jbi.2020.103500
https://doi.org/10.1016/j.jbi.2020.103500
https://doi.org/10.1016/j.aei.2009.08.007
https://doi.org/10.3233/978-1-60750-606-5-183
https://doi.org/10.3233/978-1-60750-606-5-183
https://doi.org/10.1007/978-3-319-98192-5_40
https://doi.org/10.1007/978-3-319-98192-5_40
https://doi.org/10.1145/3299887.3299892
https://doi.org/10.1016/s1570-2464(07)80014-0
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1016/j.artint.2022.103726
https://doi.org/10.1016/j.artint.2022.103726
https://doi.org/10.1017/S147106842000040X
https://doi.org/10.1007/s10618-010-0201-y
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-3-319-18818-8_27
https://doi.org/10.1007/978-0-387-30164-8_1
https://doi.org/10.1109/WF-IoT.2016.7845467
https://doi.org/10.1007/978-3-319-46547-0_31
https://doi.org/10.1007/978-3-319-46547-0_31
https://ceur-ws.org/Vol-1783/paper-04.pdf
https://ceur-ws.org/Vol-1783/paper-04.pdf
https://doi.org/10.1073/pnas.1611835114

2:42

Grounding Stream Reasoning Research

129

130

131

132

133

134

135

136

137

138

Lugano, Switzerland, June 6-9, 2016. Proceed-
ings 16, pages 280-298. Springer, 2016. doi:
10.1007/978-3-319-38791-8_16.

Nicolas Kourtellis, Gianmarco De Francisci Mor-
ales, Albert Bifet, and Arinto Murdopo. VHT:
vertical hoeffding tree. In James Joshi, George
Karypis, Ling Liu, Xiaohua Hu, Ronay Ak, Yin-
glong Xia, Weijia Xu, Aki-Hiro Sato, Sudarsan
Rachuri, Lyle H. Ungar, Philip S. Yu, Rama
Govindaraju, and Toyotaro Suzumura, editors,
2016 IEEE International Conference on Big Data
(IEEE BigData 2016), Washington DC, USA,
December 5-8, 2016, pages 915-922. IEEE Com-
puter Society, 2016. doi:10.1109/BIGDATA.2016.
7840687.

Ron Koymans. Specifying real-time properties with
metric temporal logic. Real-Time Syst, 2(4):255—
299, 1990. doi:10.1007/BF01995674.

Jeffrey R Lacasse and Eileen Gambrill. Making
assessment decisions: Macro, mezzo, and micro
perspectives. Critical thinking in clinical assess-
ment and diagnosis, pages 69-84, 2015. doi:
10.1007/978-3-319-17774-8_4.

Matthias De Lange, Rahaf Aljundi, Marc Masana,
Sarah Parisot, Xu Jia, Ales Leonardis, Gregory G.
Slabaugh, and Tinne Tuytelaars. A Continual
Learning Survey: Defying Forgetting in Classifica-
tion Tasks. IEEE Trans. Pattern Anal. Mach. In-
tell., 44(7):3366—-3385, 2022. doi:10.1109/TPAMI.
2021.3057446.

Danh Le-Phuoc, Minh Dao-Tran, Minh-Duc Pham,
Peter Boncz, Thomas Eiter, and Michael Fink.
Linked stream data processing engines: Facts and
figures. In International Semantic Web Confer-
ence, pages 300-312. Springer, 2012. doi:10.1007/
978-3-642-35173-0_20.

Danh Le-Phuoc, Minh Dao-Tran, Josiane
Xavier Parreira, and Manfred Hauswirth. A
native and adaptive approach for unified pro-
cessing of linked streams and linked data.
In International Semantic Web Conference,
pages 370-388. Springer, 2011. doi:10.1007/
978-3-642-25073-6_24.

Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Chan
Le Van, and Manfred Hauswirth. Elastic and
scalable processing of linked stream data in the
cloud. In International Semantic Web Confer-
ence, pages 280-297. Springer, 2013. doi:10.1007/
978-3-642-41335-3_18.

Anh Le-Tuan, Manh Nguyen-Duc, Chien-Quang
Le, Trung-Kien Tran, Manfred Hauswirth, Thomas
Eiter, and Danh Le-Phuoc. Cqels 2.0: To-
wards a unified framework for semantic stream
fusion. arXiv preprint arXiv:2202.13958, 2022.
doi:10.48550/arXiv.2202.13958.

Freddy Lécué. Towards scalable exploration of
diagnoses in an ontology stream. In Carla E.
Brodley and Peter Stone, editors, Proceedings of
the Twenty-Eighth AAAI Conference on Artifi-
ctal Intelligence, July 27 -31, 2014, Québec City,
Québec, Canada, pages 87-93. AAAT Press, 2014.
doi:10.1609/aaai.v28i1.8708.

Freddy Lécué and Jeff Z. Pan. Predicting know-
ledge in an ontology stream. In IJCAI, pages 2662—
2669. IJCAI/AAAI, 2013. doi:10.5555/2540128.
2540512.

139

140

141

142

143

144

145

146

Freddy Lécué, Simone Tallevi-Diotallevi, Jer
Hayes, Robert Tucker, Veli Bicer, Marco Luca
Sbodio, and Pierpaolo Tommasi. Smart traffic
analytics in the semantic web with STAR-CITY:
scenarios, system and lessons learned in dublin
city. J. Web Semant., 27-28:26-33, 2014. doi:
10.1016/j.websem.2014.07.002.

Maurizio Lenzerini. Data integration: A theor-
etical perspective. In Lucian Popa, Serge Abite-
boul, and Phokion G. Kolaitis, editors, Proceed-
ings of the Twenty-first ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database
Systems, June 3-5, Madison, Wisconsin, USA,
pages 233-246. ACM, 2002. doi:10.1145/543613.
543644.

Timothée Lesort, Vincenzo Lomonaco, Andrei
Stoian, Davide Maltoni, David Filliat, and Nat-
alia Diaz Rodriguez. Continual learning for ro-
botics: Definition, framework, learning strategies,
opportunities and challenges. Inf. Fusion, 58:52—
68, 2020. doi:10.1016/j.inffus.2019.12.004.
Zhizhong Li and Derek Hoiem. Learning
Without Forgetting. In ECCV (4), volume
9908 of Lecture Notes in Computer Science,
pages 614-629. Springer, 2016. doi:10.1007/
978-3-319-46493-0_37.

Zhiqiu Lin, Jia Shi, Deepak Pathak, and Deva
Ramanan. The CLEAR benchmark: Con-
tinual learning on real-world imagery. In
Joaquin Vanschoren and Sai-Kit Yeung, edit-
ors, Proceedings of the Neural Information Pro-
cessing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks
2021, December 2021, wvirtual, 2021. URL:
https://datasets-benchmarks-proceedings.
neurips.cc/paper/2021/hash/
2838023a778dfaecdc212708f721b788-Abstract-
round2.html.

Mo Liu, Ming Li, Denis Golovnya, Elke A. Runden-
steiner, and Kajal T. Claypool. Sequence pattern
query processing over out-of-order event streams.
In Yannis E. loannidis, Dik Lun Lee, and Ray-
mond T. Ng, editors, Proceedings of the 25th Inter-
national Conference on Data Engineering, I[CDE
2009, March 29 2009 - April 2 2009, Shanghas,
China, pages 784—795. IEEE Computer Society,
2009. doi:10.1109/ICDE.2009.95.

Vincenzo Lomonaco, Davide Maltoni, and Lorenzo
Pellegrini. Rehearsal-Free Continual Learning
over Small Non-I.I1.D. Batches. In CVPR Work-
shops, pages 989-998. Computer Vision Found-
ation / IEEE, 2020. doi:10.1109/CVPRW50498.
2020.00131.

Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea
Cossu, Antonio Carta, Gabriele Graffieti, Tyler L.
Hayes, Matthias De Lange, Marc Masana, Jary
Pomponi, Gido van de Ven, Martin Mundt, Qi She,
Keiland Cooper, Jeremy Forest, Eden Belouadah,
Simone Calderara, German I. Parisi, Fabio Cuzzo-
lin, Andreas Tolias, Simone Scardapane, Luca
Antiga, Subutai Amhad, Adrian Popescu, Chris-
topher Kanan, Joost van de Weijer, Tinne Tuyte-
laars, Davide Bacciu, and Davide Maltoni. Ava-
lanche: an end-to-end library for continual learn-
ing. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, 2nd Con-

https://doi.org/10.1007/978-3-319-38791-8_16
https://doi.org/10.1007/978-3-319-38791-8_16
https://doi.org/10.1109/BIGDATA.2016.7840687
https://doi.org/10.1109/BIGDATA.2016.7840687
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-3-319-17774-8_4
https://doi.org/10.1007/978-3-319-17774-8_4
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1007/978-3-642-35173-0_20
https://doi.org/10.1007/978-3-642-35173-0_20
https://doi.org/10.1007/978-3-642-25073-6_24
https://doi.org/10.1007/978-3-642-25073-6_24
https://doi.org/10.1007/978-3-642-41335-3_18
https://doi.org/10.1007/978-3-642-41335-3_18
https://doi.org/10.48550/arXiv.2202.13958
https://doi.org/10.1609/aaai.v28i1.8708
https://doi.org/10.5555/2540128.2540512
https://doi.org/10.5555/2540128.2540512
https://doi.org/10.1016/j.websem.2014.07.002
https://doi.org/10.1016/j.websem.2014.07.002
https://doi.org/10.1145/543613.543644
https://doi.org/10.1145/543613.543644
https://doi.org/10.1016/j.inffus.2019.12.004
https://doi.org/10.1007/978-3-319-46493-0_37
https://doi.org/10.1007/978-3-319-46493-0_37
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/2838023a778dfaecdc212708f721b788-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/2838023a778dfaecdc212708f721b788-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/2838023a778dfaecdc212708f721b788-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/2838023a778dfaecdc212708f721b788-Abstract-round2.html
https://doi.org/10.1109/ICDE.2009.95
https://doi.org/10.1109/CVPRW50498.2020.00131
https://doi.org/10.1109/CVPRW50498.2020.00131

P. Bonte et al.

147

148

149

150

151

152

153

154

155

156

157

158

tinual Learning in Computer Vision Workshop,
2021. doi:10.1109/CVPRW53098.2021.00399.
David Lopez-Paz and Marc’Aurelio Ranzato.
Gradient Episodic Memory for Continual Learn-
ing. In NIPS, pages 6467-6476, 2017. doi:
10.5555/3295222.3295393.

Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Jodo Gama,
and Guangquan Zhang. Learning under Concept
Drift: A Review. IEEE Trans. Knowl. Data Eng.,
31(12):2346-2363, 2019. doi:10.1109/TKDE.2018.
2876857.

Robin Manhaeve, Sebastijan Dumancic, Angelika
Kimmig, Thomas Demeester, and Luc De Raedt.
Neural probabilistic logic programming in deep-
problog. Artif. Intell., 298:103504, 2021. doi:
10.1016/j.artint.2021.103504.

Andrea Mauri, Jean-Paul Calbimonte, Daniele
Dell’Aglio, Marco Balduini, Marco Brambilla,
Emanuele Della Valle, and Karl Aberer. Triple-
Wave: Spreading RDF Streams on the Web.
In International Semantic Web Conference (2),
volume 9982 of Lecture Notes in Computer Sci-
ence, pages 140-149. Springer, 2016. doi:10.1007/
978-3-319-46547-0_15.

Michael McCloskey and Neal J Cohen. Cata-
strophic interference in connectionist networks:
The sequential learning problem. In Psychology
of learning and motivation, volume 24, pages 109—
165. Elsevier, 1989. doi:10.1016/S0079-7421(08)
60536-8.

Alessandra Mileo, Ahmed Abdelrahman, Sean Pol-
icarpio, and Manfred Hauswirth. Streamrule: A
nonmonotonic stream reasoning system for the se-
mantic web. In RR, pages 247-252, 2013. doi:
10.1007/978-3-642-39666-3_23.

Alessandra Mileo, Minh Dao-Tran, Thomas Eiter,
and Michael Fink. Stream reasoning. In Ling
Liu and M. Tamer Ozsu, editors, Encyclopedia of
Database Systems, Second Edition. Springer, 2018.
doi:10.1007/978-1-4614-8265-9_80715.

Jacob Montiel, Max Halford, Saulo Martiello Mas-
telini, Geoffrey Bolmier, Raphaél Sourty, Robin
Vaysse, Adil Zouitine, Heitor Murilo Gomes, Jesse
Read, Talel Abdessalem, and Albert Bifet. River:
machine learning for streaming data in python. J.
Mach. Learn. Res., 22:110:1-110:8, 2021. URL:
http://jmlr.org/papers/v22/20-1380.html.
Gianmarco De Francisci Morales and Albert Bifet.
SAMOA: scalable advanced massive online ana-
lysis. J. Mach. Learn. Res., 16:149-153, 2015.
doi:10.5555/2789272.2789277.

Boris Motik, Yavor Nenov, Robert Piro, and Ian
Horrocks. Maintenance of datalog materialisa-
tions revisited. Artif. Intell., 269:76-136, 2019.
doi:10.1016/j.artint.2018.12.004.

Boris Motik, Yavor Nenov, Robert Piro, Ian Hor-
rocks, and Dan Olteanu. Parallel Materialisa-
tion of Datalog Programs in Centralised, Main-
Memory RDF Systems. In Carla E. Brodley and
Peter Stone, editors, Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelli-
gence, July 27 -81, 2014, Québec City, Québec,
Canada, pages 129-137. AAAI Press, 2014. doi:
10.1609/aaai.v28i1.8730.

Esteban Municio, Glenn Daneels, Mathias
De Brouwer, Femke Ongenae, Filip De Turck, Bart

159

160

161

162

163

164

165

166

Braem, Jeroen Famaey, and Steven Latré. Con-
tinuous athlete monitoring in challenging cycling
environments using iot technologies. IEEE In-
ternet of Things Journal, 6(6):10875-10887, 2019.
doi:10.1109/JI0T.2019.2942761.

S. Muthukrishnan. Data streams: Algorithms and
applications. Found. Trends Theor. Comput. Sci.,
1(2), 2005. doi:10.1561/0400000002.

Yavor Nenov, Robert Piro, Boris Motik, Ian
Horrocks, Zhe Wu, and Jay Banerjee. RD-
Fox: A Highly-Scalable RDF Store. In Marcelo
Arenas, Oscar Corcho, Elena Simperl, Markus
Strohmaier, Mathieu d’Aquin, Kavitha Srinivas,
Paul Groth, Michel Dumontier, Jeff Heflin, Krish-
naprasad Thirunarayan, and Steffen Staab, ed-
itors, The Semantic Web - ISWC 2015 - 14th
International Semantic Web Conference, Bethle-
hem, PA, USA, October 11-15, 2015, Proceed-
ings, Part II, volume 9367 of Lecture Notes in
Computer Science, pages 3-20. Springer, 2015.
doi:10.1007/978-3-319-25010-6_1.

Matthias Nickles and Alessandra Mileo. Web
stream reasoning using probabilistic answer set
programming. In Roman Kontchakov and Marie-
Laure Mugnier, editors, Web Reasoning and Rule
Systems - 8th International Conference, RR 2014,
Athens, Greece, September 15-17, 201/. Proceed-
ings, volume 8741 of Lecture Notes in Computer

Science, pages 197-205. Springer, 2014. doi:
10.1007/978-3-319-11113-1_16.
Matthias Nickles and Alessandra Mileo. A hy-

brid approach to inference in probabilistic non-
monotonic logic programming. In Fabrizio Riguzzi
and Joost Vennekens, editors, Proceedings of the
2nd International Workshop on Probabilistic Lo-
gic Programming co-located with 31st Interna-
tional Conference on Logic Programming (ICLP
2015), Cork, Ireland, August 31st, 2015, volume
1413 of CEUR Workshop Proceedings, pages 57—
68. CEUR-WS.org, 2015. URL: https://ceur-ws.
org/Vol-1413/paper-05.pdf.

Matthias Nickles and Alessandra Mileo. A sys-
tem for probabilistic inductive answer set pro-
gramming. In Christoph Beierle and Alex Dekht-
yar, editors, Scalable Uncertainty Management -
9th International Conference, SUM 2015, Québec
City, QC, Canada, September 16-18, 2015. Pro-
ceedings, volume 9310 of Lecture Notes in Com-
puter Science, pages 99—105. Springer, 2015. doi:
10.1007/978-3-319-23540-0_7.

Philipp Obermeier, Javier Romero, and Torsten
Schaub. Multi-shot stream reasoning in answer
set programming: A preliminary report. OJDB,
6(1):33-38, 2019. URL: https://www.ronpub.com/
0jdb/0JDB_2019v6i1n04_Obermeier.html.
Michiel Overeem, Marten Spoor, and Slinger
Jansen. The dark side of event sourcing: Man-
aging data conversion. In 2017 IEEE 2/th inter-
national conference on software analysis, evolution
and reengineering (SANER), pages 193-204. IEEE,
2017. doi:10.1109/SANER.2017.7884621.

Ogzgiir Liitfii Ozcep, Ralf Méller, and Christian
Neuenstadt. A stream-temporal query language
for ontology based data access. In KI 2014:
Advances in Artificial Intelligence: 37th An-
nual German Conference on Al, Stuttgart, Ger-

2:43

TGDK

https://doi.org/10.1109/CVPRW53098.2021.00399
https://doi.org/10.5555/3295222.3295393
https://doi.org/10.5555/3295222.3295393
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1007/978-3-319-46547-0_15
https://doi.org/10.1007/978-3-319-46547-0_15
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1007/978-3-642-39666-3_23
https://doi.org/10.1007/978-3-642-39666-3_23
https://doi.org/10.1007/978-1-4614-8265-9_80715
http://jmlr.org/papers/v22/20-1380.html
https://doi.org/10.5555/2789272.2789277
https://doi.org/10.1016/j.artint.2018.12.004
https://doi.org/10.1609/aaai.v28i1.8730
https://doi.org/10.1609/aaai.v28i1.8730
https://doi.org/10.1109/JIOT.2019.2942761
https://doi.org/10.1561/0400000002
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.1007/978-3-319-11113-1_16
https://doi.org/10.1007/978-3-319-11113-1_16
https://ceur-ws.org/Vol-1413/paper-05.pdf
https://ceur-ws.org/Vol-1413/paper-05.pdf
https://doi.org/10.1007/978-3-319-23540-0_7
https://doi.org/10.1007/978-3-319-23540-0_7
https://www.ronpub.com/ojdb/OJDB_2019v6i1n04_Obermeier.html
https://www.ronpub.com/ojdb/OJDB_2019v6i1n04_Obermeier.html
https://doi.org/10.1109/SANER.2017.7884621

2:44

Grounding Stream Reasoning Research

167

168

169

170

171

172

173

174

175

176

177

many, September 22-26, 2014. Proceedings 37,
pages 183-194. Springer, 2014. doi:10.1007/
978-3-319-11206-0_18.

Ozgiir Liitfii Ozgep, Ralf Moller, and Christian
Neuenstadt. Stream-query compilation with onto-
logies. In Bernhard Pfahringer and Jochen Renz,
editors, Al 2015: Advances in Artificial Intelli-
gence - 28th Australasian Joint Conference, Can-
berra, ACT, Australia, November 30 - December 4,
2015, Proceedings, volume 9457 of Lecture Notes in
Computer Science, pages 457—463. Springer, 2015.
doi:10.1007/978-3-319-26350-2_40.

Anil Pacaci, Angela Bonifati, and M. Tamer
Ozsu. Regular path query evaluation on streaming
graphs. In David Maier, Rachel Pottinger, An-
Hai Doan, Wang-Chiew Tan, Abdussalam Alawini,
and Hung Q. Ngo, editors, Proceedings of the 2020
International Conference on Management of Data,
SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, pages
1415-1430. ACM, 2020. doi:10.1145/3318464.
3389733.

Anil Pacaci, Angela Bonifati, and M. Tamer Ozsu.
Evaluating complex queries on streaming graphs.
In 38th IEEE International Conference on Data
Engineering, ICDE 2022, Kuala Lumpur, Malay-
sia, May 9-12, 2022, pages 272-285. IEEE, 2022.
doi:10.1109/ICDE53745.2022.00025.

Dimitris Palyvos-Giannas, Vincenzo Gulisano, and
Marina Papatriantafilou. Genealog: Fine-grained
data streaming provenance at the edge. In Proceed-
ings of the 19th International Middleware Confer-
ence, pages 227-238, 2018. doi:10.1145/3274808.
3274826.

Dimitris Palyvos-Giannas, Bastian Havers, Marina
Papatriantafilou, and Vincenzo Gulisano. Ananke:
A streaming framework for live forward proven-
ance. Proc. VLDB Endow., 14(3):391-403, 2020.
doi:10.5555/3430915.3442437.

Dimitris Palyvos-Giannas, Katerina Tzompanaki,
Marina Papatriantafilou, and Vincenzo Gulisano.
Erebus: Explaining the outputs of data streaming
queries. Proc. VLDB Endow., 16(2):230-242, 2022.
doi:10.14778/3565816.3565825.

Douglas S. Parker. Integrating AI and DBMS
through stream processing. In ICDE, pages 259—
260, 1989. doi:10.1109/ICDE.1989.47224.

Stott D. Parker. Stream data analysis in prolog.
In The Practice of Prolog, pages 249-301. MIT
Press, 2003.

Harshal Patni, Cory Henson, and Amit Sheth.
Linked sensor data. In 2010 International Sym-
posium on Collaborative Technologies and Sys-
tems, pages 362-370. IEEE, 2010. doi:10.1109/
CTS.2010.5478492.

Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo
Lomonaco, and Davide Maltoni. Latent Replay
for Real-Time Continual Learning. In IROS,
pages 10203-10209. IEEE, 2020. doi:10.1109/
IR0S45743.2020.9341460.

Romana Pernisch, Daniele Dell’Aglio, and Abra-
ham Bernstein. Beware of the hierarchy — An
analysis of ontology evolution and the materialisa-
tion impact for biomedical ontologies. Journal
of Web Semantics, 70:100658, jul 2021. doi:
10.1016/j.websem.2021.100658.

178

179

180

181

182

183

184

185

186

187

Thu-Le Pham, Muhammad Intizar Ali, and Aless-
andra Mileo. C-ASP: Continuous ASP-based reas-
oning over RDF streams. In LPNMR, pages 45-50,
2019. doi:10.1007/978-3-030-20528-7_4.
Thu-Le Pham, Muhammad Intizar Ali, and Aless-
andra Mileo. Enhancing the scalability of ex-
pressive stream reasoning via input-driven par-
allelization. Semantic Web, 10(3):457-474, 2019.
doi:10.3233/SW-180330.
Thu-Le Pham, Alessandra
Muhammad Intizar Ali.
non-monotonic stream reasoning via input
dependency analysis. In 33rd IEEE Interna-
tional Conference on Data Engineering, ICDE
2017, San Diego, CA, USA, April 19-22, 2017,
pages 1553-1558. IEEE Computer Society, 2017.
doi:10.1109/ICDE.2017.226.

Danh Le Phuoc, Thomas Eiter, and Anh Lé
Tuan. A scalable reasoning and learning ap-
proach for neural-symbolic stream fusion. In
Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on
Innovative Applications of Artificial Intelligence,
TAAI 2021, The Eleventh Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021, pages
4996-5005. AAAI Press, 2021. doi:10.1609/aaai.
v3516.16633.

Amir Pnueli. The temporal logic of programs.
In FOCS, pages 46-57, 1977. doi:10.1109/SFCS.
1977.32.

Ameya Prabhu, Philip H. S. Torr, and Puneet K.
Dokania. GDumb: A Simple Approach that Ques-
tions Our Progress in Continual Learning. In
ECCV (2), volume 12347 of Lecture Notes in
Computer Science, pages 524—540. Springer, 2020.
doi:10.1007/978-3-030-58536-5_31.

Luc De Raedt, Angelika Kimmig, and Hannu
Toivonen. Problog: A probabilistic prolog and
its application in link discovery. In Manuela M.
Veloso, editor, IJCAI 2007, Proceedings of the
20th International Joint Conference on Artifi-
cial Intelligence, Hyderabad, India, January 6-
12, 2007, pages 2462-2467, 2007. URL: http:
//ijcai.org/Proceedings/07/Papers/396.pdf.

Mileo, and
Towards scalable

Kristo Raun, Riccardo Tommasini, and Ahmed
Awad. I will survive: An event-driven conformance
checking approach over process streams. In Valerio
Schiavoni, Marcelo Pasin, Bettina Kemme, and
Etienne Riviere, editors, Proceedings of the 17th
ACM International Conference on Distributed
and Event-based Systems, DEBS 2023, Neuchatel,
Switzerland, June 27-30, 2023, pages 49-60. ACM,
2023. doi:10.1145/3583678.3596887.

Jesse Read, Albert Bifet, Bernhard Pfahringer, and
Geoff Holmes. Batch-incremental versus instance-
incremental learning in dynamic and evolving
data. In IDA, volume 7619 of Lecture Notes in
Computer Science, pages 313-323. Springer, 2012.
doi:10.1007/978-3-642-34156-4_29.
Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H. Lampert. iCaRL:
Incremental Classifier and Representation Learn-
ing. In CVPR, pages 5533-5542. IEEE Computer
Society, 2017. doi:10.1109/CVPR.2017.587.

https://doi.org/10.1007/978-3-319-11206-0_18
https://doi.org/10.1007/978-3-319-11206-0_18
https://doi.org/10.1007/978-3-319-26350-2_40
https://doi.org/10.1145/3318464.3389733
https://doi.org/10.1145/3318464.3389733
https://doi.org/10.1109/ICDE53745.2022.00025
https://doi.org/10.1145/3274808.3274826
https://doi.org/10.1145/3274808.3274826
https://doi.org/10.5555/3430915.3442437
https://doi.org/10.14778/3565816.3565825
https://doi.org/10.1109/ICDE.1989.47224
https://doi.org/10.1109/CTS.2010.5478492
https://doi.org/10.1109/CTS.2010.5478492
https://doi.org/10.1109/IROS45743.2020.9341460
https://doi.org/10.1109/IROS45743.2020.9341460
https://doi.org/10.1016/j.websem.2021.100658
https://doi.org/10.1016/j.websem.2021.100658
https://doi.org/10.1007/978-3-030-20528-7_4
https://doi.org/10.3233/SW-180330
https://doi.org/10.1109/ICDE.2017.226
https://doi.org/10.1609/aaai.v35i6.16633
https://doi.org/10.1609/aaai.v35i6.16633
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-030-58536-5_31
http://ijcai.org/Proceedings/07/Papers/396.pdf
http://ijcai.org/Proceedings/07/Papers/396.pdf
https://doi.org/10.1145/3583678.3596887
https://doi.org/10.1007/978-3-642-34156-4_29
https://doi.org/10.1109/CVPR.2017.587

P. Bonte et al.

188

189

190

191

192

193

194

195

196

197

Raymond Reiter. On closed world data bases. In
Hervé Gallaire and Jack Minker, editors, Logic
and Data Bases, pages 55—76. Plenum Press, New
York, 1978. doi:10.1007/978-1-4684-3384-5_3.
Xiangnan Ren and Olivier Curé. Strider: A hy-
brid adaptive distributed rdf stream processing
engine. In The Semantic Web-ISWC 2017: 16th
International Semantic Web Conference, Vienna,
Austria, October 21-25, 2017, Proceedings, Part I
16, pages 559-576. Springer, 2017. doi:10.1007/
978-3-319-68288-4_33.

Marcio Moretto Ribeiro. Belief Revision in
Non-Classical Logics. Springer Briefs in Com-
puter Science. Springer, 2013. doi:10.1007/
978-1-4471-4186-0.

Alessandro Ronca, Mark Kaminski, Bern-
ardo Cuenca Grau, and lan Horrocks. The delay
and window size problems in rule-based stream
reasoning. Artif. Intell., 306:103668, 2022. doi:
10.1016/J.ARTINT.2022.103668.

Hans Rott. Change, choice and inference: A study
of belief revision and nonmonotonic reasoning,
volume 42 of Ozford logic guides. Oxford Uni-
versity Press, 2001.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume
Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia
Hadsell. Progressive Neural Networks. CoRR,
abs/1606.04671, 2016. doi:10.48550/arXiv.1606.
04671.

Georgios M. Santipantakis, Akrivi Vlachou, Chris-
tos Doulkeridis, Alexander Artikis, Ioannis Konto-
poulos, and George A. Vouros. A Stream Reason-
ing System for Maritime Monitoring. In Natasha
Alechina, Kjetil Ngrviag, and Wojciech Penczek,
editors, 25th International Symposium on Tem-
poral Representation and Reasoning (TIME 2018),
volume 120 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 20:1-20:17, Dagstuhl,
Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.TIME.2018.
20.

Matthias J. Sax, Guozhang Wang, Matthias Weid-
lich, and Johann-Christoph Freytag. Streams and
tables: Two sides of the same coin. In Malta Cas-
tellanos, Panos K. Chrysanthis, Badrish Chan-
dramouli, and Shimin Chen, editors, Proceedings
of the International Workshop on Real-Time Busi-
ness Intelligence and Analytics, BIRTE 2018, Rio
de Janeiro, Brazil, August 27, 2018, pages 1:1—
1:10. ACM, 2018. doi:10.1145/3242153.3242155.
Thomas Scharrenbach, Jacopo Urbani, Alessandro
Margara, Emanuele Della Valle, and Abraham
Bernstein. Seven commandments for benchmark-
ing semantic flow processing systems. In Phil-
ipp Cimiano, Oscar Corcho, Valentina Presutti,
Laura Hollink, and Sebastian Rudolph, editors,
The Semantic Web: Semantics and Big Data,
10th International Conference, ESWC 20183, Mont-
pellier, France, May 26-30, 2013. Proceedings,
volume 7882 of Lecture Notes in Computer Sci-
ence, pages 305-319. Springer, 2013. doi:10.1007/
978-3-642-38288-8_21.

Patrik Schneider, Daniel Alvarez-Coello, Anh
Le-Tuan, Manh Nguyen Duc, and Danh Le
Phuoc. Stream reasoning playground. In Paul

198

199

200

201

202

203

204

205

206

Groth, Maria-Esther Vidal, Fabian M. Suchanek,
Pedro A. Szekely, Pavan Kapanipathi, Catia
Pesquita, Hala Skaf-Molli, and Minna Tamper, ed-
itors, The Semantic Web - 19th International Con-
ference, ESWC 2022, Hersonissos, Crete, Greece,
May 29 - June 2, 2022, Proceedings, volume
13261 of Lecture Notes in Computer Science,
pages 406—424. Springer, 2022. doi:10.1007/
978-3-031-06981-9_24.

Jonathan Schwarz, Wojciech Czarnecki, Jelena
Luketina, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell.
Progress & Compress: A scalable framework
for continual learning. In ICML, volume 80
of Proceedings of Machine Learning Research,
pages 4535—-4544. PMLR, 2018. URL: http://
proceedings.mlr.press/v80/schwarz18a.html.
Mario Scrocca, Riccardo Tommasini, Alessandro
Margara, Emanuele Della Valle, and Sherif Sakr.
The kaiju project: enabling event-driven observab-
ility. In Julien Gascon-Samson, Kaiwen Zhang,
Khuzaima Daudjee, and Bettina Kemme, edit-
ors, 14th ACM International Conference on Dis-
tributed and Fvent-based Systems, DEBS 2020,
Montreal, Quebec, Canada, July 13-17, 2020,
pages 85-96. ACM, 2020. doi:10.1145/3401025.
3401740.

Joan Serra, Didac Suris, Marius Miron, and Alex-
andros Karatzoglou. Overcoming Catastrophic For-
getting with Hard Attention to the Task. In ICML,
volume 80 of Proceedings of Machine Learning Re-
search, pages 4555-4564. PMLR, 2018. URL: http:
//proceedings.mlr.press/v80/serral8a.html.
Qi She, Fan Feng, Xinyue Hao, Qihan Yang,
Chuanlin Lan, Vincenzo Lomonaco, Xuesong Shi,
Zhengwei Wang, Yao Guo, Yimin Zhang, Fei
Qiao, and Rosa H M Chan. OpenLORIS-Object:
A Robotic Vision Dataset and Benchmark for
Lifelong Deep Learning. arXiv, pages 1-8, 2019-11.
doi:10.48550/arXiv.1911.06487.

Hanul Shin, Jung Kwon Lee, Jaechong Kim, and
Jiwon Kim. Continual Learning with Deep Gen-
erative Replay. In NIPS, pages 2990-2999, 2017.
doi:10.5555/3294996.3295059.

Utkarsh Srivastava and Jennifer Widom. Flex-
ible time management in data stream systems. In
PODS, pages 263—274. ACM, 2004. doi:10.1145/
1055558.1055596.

Heiner Stuckenschmidt, Stefano Ceri, Emanuele
Della Valle, and Frank Van Harmelen. Towards
expressive stream reasoning. In Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2010. doi:10.4230/DagSemProc.

10042.4.

Jakob Suchan, Mehul Bhatt, and Srikrishna
Varadarajan. Out of sight but not out of mind: An
answer set programming based online abduction
framework for visual sensemaking in autonomous
driving. In Sarit Kraus, editor, Proceedings of the
Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, pages 1879—-1885. ijcai.org,
2019. doi:10.24963/IJCAI.2019/260.

Jakob Suchan, Mehul Bhatt, and Srikrishna
Varadarajan. Commonsense visual sensemaking

2:45

TGDK

https://doi.org/10.1007/978-1-4684-3384-5_3
https://doi.org/10.1007/978-3-319-68288-4_33
https://doi.org/10.1007/978-3-319-68288-4_33
https://doi.org/10.1007/978-1-4471-4186-0
https://doi.org/10.1007/978-1-4471-4186-0
https://doi.org/10.1016/J.ARTINT.2022.103668
https://doi.org/10.1016/J.ARTINT.2022.103668
https://doi.org/10.48550/arXiv.1606.04671
https://doi.org/10.48550/arXiv.1606.04671
https://doi.org/10.4230/LIPIcs.TIME.2018.20
https://doi.org/10.4230/LIPIcs.TIME.2018.20
https://doi.org/10.1145/3242153.3242155
https://doi.org/10.1007/978-3-642-38288-8_21
https://doi.org/10.1007/978-3-642-38288-8_21
https://doi.org/10.1007/978-3-031-06981-9_24
https://doi.org/10.1007/978-3-031-06981-9_24
http://proceedings.mlr.press/v80/schwarz18a.html
http://proceedings.mlr.press/v80/schwarz18a.html
https://doi.org/10.1145/3401025.3401740
https://doi.org/10.1145/3401025.3401740
http://proceedings.mlr.press/v80/serra18a.html
http://proceedings.mlr.press/v80/serra18a.html
https://doi.org/10.48550/arXiv.1911.06487
https://doi.org/10.5555/3294996.3295059
https://doi.org/10.1145/1055558.1055596
https://doi.org/10.1145/1055558.1055596
https://doi.org/10.4230/DagSemProc.10042.4
https://doi.org/10.4230/DagSemProc.10042.4
https://doi.org/10.24963/IJCAI.2019/260

2:46

Grounding Stream Reasoning Research

for autonomous driving - on generalised neurosym-
bolic online abduction integrating vision and se-
mantics. Artif. Intell., 299:103522, 2021. doi:
10.1016/j.artint.2021.103522.

207 Dan Suciu, Dan Olteanu, Christopher Ré, and
Christoph Koch. Probabilistic databases. Springer
Nature, 2022. doi:10.1007/978-3-031-01879-4.

208 Gébor Szarnyas, Brad Bebee, Altan Birler, Alin
Deutsch, George Fletcher, Henry A. Gabb, Denise
Gosnell, Alastair Green, Zhihui Guo, Keith W.
Hare, Jan Hidders, Alexandru Iosup, Atanas
Kiryakov, Tomas Kovatchev, Xinsheng Li, Le-
onid Libkin, Heng Lin, Xiaojian Luo, Arnau Prat-
Pérez, David Piiroja, Shipeng Qi, Oskar van Rest,
Benjamin A. Steer, D4vid Szakallas, Bing Tong,
Jack Waudby, Mingxi Wu, Bin Yang, Wenyuan
Yu, Chen Zhang, Jason Zhang, Yan Zhou, and
Peter Boncz. The linked data benchmark council
(1dbc): Driving competition and collaboration in
the graph data management space. In TPCTC,
2023. doi:10.48550/arXiv.2307.04350.

209 Gozde Ayse Tataroglu Ozbulak. Decentralized
stream reasoning agents. In Proceedings of the
17th ACM International Conference on Distrib-
uted and FEvent-based Systems, pages 203—-206,
2023. doi:10.1145/3583678.3603286.

210 Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and
Ali A. Ghorbani. A detailed analysis of the KDD
CUP 99 data set. In CISDA, pages 1-6. IEEE,
2009. doi:10.1109/CISDA.2009.5356528.

211 Douglas B. Terry, David Goldberg, David A. Nich-
ols, and Brian M. Oki. Continuous queries over
append-only databases. In Michael Stonebraker,
editor, Proceedings of the 1992 ACM SIGMOD
International Conference on Management of Data,
San Diego, California, USA, June 2-5, 1992, pages

321-330. ACM Press, 1992. doi:10.1145/130283.

130333.

212 Artem Thofimov, Igor E. Kuralenok, Nikiga Mar-
shalkin, and Boris Novikov. Delivery, consistency,
and determinism: rethinking guarantees in distrib-
uted stream processing. CoRR, abs/1907.06250,
2019. doi:10.48550/arXiv.1907.06250.

213 Edward Thomas, Jeff Z. Pan, and Yuan Ren.
Trowl: Tractable OWL 2 reasoning infrastructure.
In Lora Aroyo, Grigoris Antoniou, Eero Hyvonen,
Annette ten Teije, Heiner Stuckenschmidt, Lili-
ana Cabral, and Tania Tudorache, editors, The
Semantic Web: Research and Applications, 7Tth
Eztended Semantic Web Conference, ESWC 2010,
Heraklion, Crete, Greece, May 30 - June 3, 2010,
Proceedings, Part I, volume 6089 of Lecture Notes
in Computer Science, pages 431-435. Springer,
2010. doi:10.1007/978-3-642-13489-0_38.

214 Mattias Tiger and Fredrik Heintz. Stream reason-
ing using temporal logic and predictive probabil-
istic state models. In TIME, pages 196-205, 2016.
doi:10.1109/TIME.2016.28.

215 Mattias Tiger and Fredrik Heintz. Incremental
reasoning in probabilistic signal temporal logic.
Int. J. Approx. Reason., 119:325-352, 2020. doi:
10.1016/j.1ijar.2020.01.009.

216 Riccardo Tommasini, Pieter Bonte, Femke On-
genae, and Emanuele Della Valle. Rsp4j: an
api for rdf stream processing. In The Semantic
Web: 18th International Conference, ESWC 2021,

Virtual Event, June 6—10, 2021, Proceedings 18,
pages 565-581. Springer, 2021. doi:10.1007/
978-3-030-77385-4_34.

217 Riccardo Tommasini, Pieter Bonte, Fabiano Spiga,
and Emanuele Della Valle. Streaming Linked Data:
From Vision to Practice. Springer Nature, 2023.
doi:10.1007/978-3-031-15371-6.

218 Riccardo Tommasini, Davide Calvaresi, and Jean-
Paul Calbimonte. Stream reasoning agents: Blue
sky ideas track. In Proceedings of the 18th In-
ternational Conference on Autonomous Agents
and MultiAgent Systems, pages 1664—1680, 2019.
doi:10.5555/3306127.3331894.

219 Riccardo Tommasini, Emanuele Della Valle, An-
drea Mauri, and Marco Brambilla. Rsplab: Rdf
stream processing benchmarking made easy. In
The Semantic Web-ISWC 2017: 16th Interna-
tional Semantic Web Conference, Vienna, Aus-
tria, October 21-25, 2017, Proceedings, Part II
16, pages 202-209. Springer, 2017. doi:10.1007/
978-3-319-68204-4_21.

220 Transaction Processing Performance Council
(TPC). TPC-H Benchmark Specification, 2023.
URL: http://wuw.tpc.org/tpch/.

221 Georgia Troullinou, Haridimos Kondylakis, Matteo
Lissandrini, and Davide Mottin. SOFOS: Demon-
strating the Challenges of Materialized View Selec-
tion on Knowledge Graphs. In Proceedings of the
2021 International Conference on Management of
Data, SIGMOD/PODS 21, pages 27892793, New
York, NY, USA, 2021. Association for Comput-
ing Machinery. event-place: Virtual Event, China.
doi:10.1145/3448016.3452765.

222 Efthymia Tsamoura, David Carral, Enrico Mal-
izia, and Jacopo Urbani. Materializing Know-
ledge Bases via Trigger Graphs. Proc. VLDB En-
dow., 14(6):943-956, 2021. doi:10.14778/3447689.
3447699.

223 Jacopo Urbani, Markus Krotzsch, and Thomas
Eiter. Chasing streams with existential rules.
In Gabriele Kern-Isberner, Gerhrd Lakemeyer,
and Thomas Meyer, editors, Proceedings of the
19th International Conference on Principles of
Knowledge Representation and Reasoning (KR
2022), pages 416-421. IJCAI, 2022. URL: https:
//proceedings.kr.org/2022/43/.

224 Nithya N Vijayakumar and Beth Plale. Towards
low overhead provenance tracking in near real-time
stream filtering. In International provenance and
annotation workshop, pages 46-54. Springer, 2006.
doi:10.1007/11890850_6.

225 Raphael Volz, Steffen Staab, and Boris Motik. In-
crementally Maintaining Materializations of Onto-
logies Stored in Logic Databases. J. Data Semant.,
2:1-34, 2005. doi:10.1007/978-3-540-30567-5_
1.

226 Przemyslaw A. Walega, Mark Kaminski, and Bern-
ardo Cuenca Grau. Reasoning over streaming data
in metric temporal datalog. In AAAI pages 3092—
3099, 2019. doi:10.1609/aaai.v33101.33013092.

227 Przemystaw A Walega, Mark Kaminski, Ding-
min Wang, and Bernardo Cuenca Grau. Stream
reasoning with DatalogMTL. Journal of Web Se-
mantics, 76:100776, 2023. doi:10.1016/j.websem.
2023.100776.

https://doi.org/10.1016/j.artint.2021.103522
https://doi.org/10.1016/j.artint.2021.103522
https://doi.org/10.1007/978-3-031-01879-4
https://doi.org/10.48550/arXiv.2307.04350
https://doi.org/10.1145/3583678.3603286
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1145/130283.130333
https://doi.org/10.1145/130283.130333
https://doi.org/10.48550/arXiv.1907.06250
https://doi.org/10.1007/978-3-642-13489-0_38
https://doi.org/10.1109/TIME.2016.28
https://doi.org/10.1016/j.ijar.2020.01.009
https://doi.org/10.1016/j.ijar.2020.01.009
https://doi.org/10.1007/978-3-030-77385-4_34
https://doi.org/10.1007/978-3-030-77385-4_34
https://doi.org/10.1007/978-3-031-15371-6
https://doi.org/10.5555/3306127.3331894
https://doi.org/10.1007/978-3-319-68204-4_21
https://doi.org/10.1007/978-3-319-68204-4_21
http://www.tpc.org/tpch/
https://doi.org/10.1145/3448016.3452765
https://doi.org/10.14778/3447689.3447699
https://doi.org/10.14778/3447689.3447699
https://proceedings.kr.org/2022/43/
https://proceedings.kr.org/2022/43/
https://doi.org/10.1007/11890850_6
https://doi.org/10.1007/978-3-540-30567-5_1
https://doi.org/10.1007/978-3-540-30567-5_1
https://doi.org/10.1609/aaai.v33i01.33013092
https://doi.org/10.1016/j.websem.2023.100776
https://doi.org/10.1016/j.websem.2023.100776

P. Bonte et al.

228 Przemyslaw Andrzej Walega, David J. Tena Cu-
cala, Bernardo Cuenca Grau, and Egor V. Ko-
stylev. The stable model semantics of datalog
with metric temporal operators. Theory and
Practice of Logic Programming, pages 1-35, 2023.
doi:10.1017/S1471068423000315.

229 Przemyslaw Andrzej Walega, David J. Tena Cu-
cala, Egor V. Kostylev, and Bernardo Cuenca Grau.
Datalogmtl with negation under stable models se-
mantics. In Meghyn Bienvenu, Gerhard Lakemeyer,
and Esra Erdem, editors, Proceedings of the 18th
International Conference on Principles of Know-
ledge Representation and Reasoning, KR 2021,
Online event, November 3-12, 2021, pages 609—
618, 2021. doi:10.24963/kr.2021/58.

230 Dingmin Wang, Pan Hu, Przemyslaw Andrzej
Walega, and Bernardo Cuenca Grau. MeTeoR:
Practical reasoning in datalog with metric tem-
poral operators. In Thirty-Sizth AAAI Confer-
ence on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of
Artificial Intelligence, ITAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February
22 - March 1, 2022, pages 5906-5913. AAAI Press,
2022. doi:10.1609/AAAT.V36I5.20535.

231 Guozhang Wang, Lei Chen, Ayusman Dikshit,
Jason Gustafson, Boyang Chen, Matthias J.
Sax, John Roesler, Sophie Blee-Goldman, Bruno
Cadonna, Apurva Mehta, Varun Madan, and Jun
Rao. Consistency and completeness: Rethinking
distributed stream processing in apache kafka. In
Guoliang Li, Zhanhuai Li, Stratos Idreos, and Di-
vesh Srivastava, editors, SIGMOD ’21: Interna-
tional Conference on Management of Data, Vir-
tual Event, China, June 20-25, 2021, pages 2602—
2613. ACM, 2021. doi:10.1145/3448016.3457556.

232 Min Wang, Marion Blount, John Davis, Archan
Misra, and Daby Sow. A time-and-value centric
provenance model and architecture for medical
event streams. In Proceedings of the 1st ACM
SIGMOBILE international workshop on Systems
and networking support for healthcare and as-
sisted living environments, pages 95-100, 2007.
doi:10.1145/1248054.1248082.

233 Yi Wang and Joohyung Lee. Handling uncertainty
in answer set programming. In Blai Bonet and
Sven Koenig, editors, Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA, pages
4218-4219. AAAI Press, 2015. doi:10.1609/aaai.
v29i1.9726.

234 Zhun Yang, Adam Ishay, and Joohyung Lee. Neur-
asp: Embracing neural networks into answer set
programming. In Christian Bessiere, editor, Pro-
ceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020,

pages 1755-1762. ijcai.org, 2020. doi:10.24963/
ijcai.2020/243.

235 Huaxiu Yao, Caroline Choi, Bochuan Cao, Yoonho
Lee, Pang Wei Koh, and Chelsea Finn. Wild-
time: A benchmark of in-the-wild distribution
shift over time. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Informa-
tion Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022. URL:
http://papers.nips.cc/paper_files/paper/
2022/hash/43119db5d59f07cc08fca7ba6820179a~
Abstract-Datasets_and_Benchmarks.html.

236 Carlo Zaniolo. Logical foundations of con-
tinuous query languages for data streams. In
Datalog, pages 177-189, 2012. doi:10.1007/
978-3-642-32925-8_18.

237 Friedemann Zenke, Ben Poole, and Surya Gan-
guli. Continual Learning Through Synaptic In-
telligence. In International Conference on Ma-
chine Learning, pages 3987-3995, 2017-07-17. doi:
10.5555/3305890.3306093.

238 Shuhao Zhang, Juan Soto, and Volker Markl. A
survey on transactional stream processing. CoRR,
abs/2208.09827, 2022. doi:10.48550/arXiv.2208.
09827.

239 Ying Zhang, Pham Minh Duc, Oscar Corcho, and
Jean-Paul Calbimonte. Srbench: a streaming rd-
f/sparql benchmark. In The Semantic Web-ISWC
2012: 11th International Semantic Web Confer-
ence, Boston, MA, USA, November 11-15, 2012,
Proceedings, Part I 11, pages 641-657. Springer,
2012. doi:10.1007/978-3-642-35176-1_40.

240 Giacomo Ziffer, Alessio Bernardo, Emanuele Della
Valle, and Albert Bifet. Kalman filtering for learn-
ing with evolving data streams. In Yixin Chen,
Heiko Ludwig, Yicheng Tu, Usama M. Fayyad,
Xingquan Zhu, Xiaohua Hu, Suren Byna, Xiong
Liu, Jianping Zhang, Shirui Pan, Vagelis Papal-
exakis, Jianwu Wang, Alfredo Cuzzocrea, and Car-
los Ordonez, editors, 2021 IEEE International
Conference on Big Data (Big Data), Orlando,
FL, USA, December 15-18, 2021, pages 5337—
5346. IEEE, 2021. doi:10.1109/BIGDATA52589.
2021.9671365.

241 Giacomo Ziffer, Alessio Bernardo, Emanuele Della
Valle, Vitor Cerqueira, and Albert Bifet. Towards
time-evolving analytics: Online learning for time-
dependent evolving data streams. Data Science,
6(1-2):1-16, 2022.

242 Indre Zliobaite, Albert Bifet, Jesse Read, Bernhard
Pfahringer, and Geoff Holmes. Evaluation
methods and decision theory for classification
of streaming data with temporal dependence.
Mach. Learn., 98(3):455-482, 2015. doi:10.1007/
s10994-014-5441-4.

2:47

TGDK

https://doi.org/10.1017/S1471068423000315
https://doi.org/10.24963/kr.2021/58
https://doi.org/10.1609/AAAI.V36I5.20535
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1145/1248054.1248082
https://doi.org/10.1609/aaai.v29i1.9726
https://doi.org/10.1609/aaai.v29i1.9726
https://doi.org/10.24963/ijcai.2020/243
https://doi.org/10.24963/ijcai.2020/243
http://papers.nips.cc/paper_files/paper/2022/hash/43119db5d59f07cc08fca7ba6820179a-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/43119db5d59f07cc08fca7ba6820179a-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/43119db5d59f07cc08fca7ba6820179a-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1007/978-3-642-32925-8_18
https://doi.org/10.1007/978-3-642-32925-8_18
https://doi.org/10.5555/3305890.3306093
https://doi.org/10.5555/3305890.3306093
https://doi.org/10.48550/arXiv.2208.09827
https://doi.org/10.48550/arXiv.2208.09827
https://doi.org/10.1007/978-3-642-35176-1_40
https://doi.org/10.1109/BIGDATA52589.2021.9671365
https://doi.org/10.1109/BIGDATA52589.2021.9671365
https://doi.org/10.1007/s10994-014-5441-4
https://doi.org/10.1007/s10994-014-5441-4

	1 Introduction
	2 Stream Processing
	2.1 Make Sense
	2.2 Taming Volume
	2.3 Taming Variety
	2.4 Taming Velocity
	2.5 Domain Complexity
	2.6 Data Quality

	3 Streaming Linked Data
	3.1 Make Sense
	3.2 Taming Volume
	3.3 Taming Variety
	3.4 Taming Velocity
	3.5 Domain Complexity
	3.6 Data Quality

	4 Deductive Stream Reasoning
	4.1 Make Sense
	4.2 Taming Volume
	4.3 Taming Variety
	4.4 Taming Velocity
	4.5 Domain Complexity
	4.6 Data Quality

	5 Inductive Stream Reasoning
	5.1 Make Sense
	5.2 Taming Volume
	5.3 Taming Variety
	5.4 Taming Velocity
	5.5 Domain Complexity
	5.6 Data Quality

	6 Discussion
	6.1 Discussion of the Research Dimensions
	6.2 Overlapping Approaches
	6.3 Open Challenges
	6.3.1 Stream Processing
	6.3.2 Streaming Linked Data
	6.3.3 Deductive Stream Reasoning
	6.3.4 Inductive Stream Reasoning

	6.4 Summary

