Symposium on Scale Effects in Modelling Hydraulic Structures

September 3–6, 1984

Scientific Organization
International Association for Hydraulic Research
– Section on Experimental Techniques –
Deutscher Verband für Wasserwirtschaft und Kulturbau e. V. (DVWK)

Editor: H. Kobus
Contents

PREFACE

GENERAL LECTURES

0.1 R. A. ELDER
Scaling Is Vital to the Practicing Engineer

0.2 A. M. PROUDOVSKY
General Principles of Approximate Hydraulic Modelling

0.3 P. NOVAK
Scaling Factors and Scale Effects in Modelling Hydraulic Structures

1 HYDRODYNAMIC FORCES

1.1 E. NAUDASCHER
Scale Effects in Gate Model Tests

1.2 B. CHEN and H. LUO
Model Test and Prototype Observation on Pressure Fluctuation in a Double-Deck Type Outlet

1.4 J. MUSKATIROVIC
Analysis of Dynamic Pressures Acting on Overflow Gates

1.5 J. SARAIVA and M. RAMOS
Wind-Tunnel Studies in Hydrodynamic-Action Modelling

1.6 Q. W. XU and C. P. ZHENG
Some Problems Concerning Similarity of Lock Hydraulic Models

1.7 T. LIU and D. WANG
Analysis of Similarity of Dumped Blocks in Model Test on River Closure and the Determination of Model Scale

1.8 M. B. de GROOT and J. L. M. KONTER
Prediction of Mattress Stability in Turbulent Flow

1.10 E. E. M. ELSAYED and W. R. JENKNER
Modelling of Pressures Generated by the Impact of a Solid Body on a Water Surface

1.12 R. NARAYANAN
The Role of Pressure Fluctuations in Hydraulic Modelling
1.13 Y. LIU
Scale Effect on Cavitation in Modelling

1.14 A. P. KELLER
Scale Effects at Beginning Cavitation Applied to Submerged Bodies

1.15 M. J. KENN
Flow Visualization Aids Cavitation Studies

1.16 A. CHERVET
Model-Prototype Comparisons of the Defective Behaviour of an Inflatable Dam

1.17 M. H. A. KHADER
Modelling of Floating Hydraulic Structure

1.18 H. J. DALLWIG and R. C. M. SCHRÖDER
Hydrodynamic Forces Acting on a Floating Tunnel Tube in a River - A Model-Prototype Comparison

1.19 J. MARCHAL
Use of the Polymer Polyox WSR 301 in Model Trials of Inland Navigation

2 DISCHARGE CHARACTERISTICS

2.1 P. A. KOLKMAN
Considerations about the Accuracy of Discharge Relations of Hydraulic Structures and the Use of Scale Models for their Calibration

2.2 R. RAJU
Scale Effects in Analysis of Discharge Characteristics of Weirs and Sluice Gates

2.3 E. J. SARGINSON
Scale Effects in Model Tests on Weirs

2.4 J. KNAUSS
Scale Effects in Modelling Free Falling Jets Emerging Horizontally from a Slot-Orifice (Model-Family Study)

2.5 L. d'ALPAOS and A. GHETTI
Some New Experiments on Surface Tension and Viscosity Effects on the Trajectory of a Falling Jet

2.6 G. D. RANSFORD
Are Abnormally High Contraction Coefficients under Partly-raised Model Spillway Gates really the Result of Bad Workmanship?

2.7 H. BERNHART and F. BAKOWIES
Discrepancies in Test Results of Two- and Three-Dimensional Model Investigations for a Weir Structure

2.8 C. KATOPODIS and N. RAJARATNAM
Similarity of Scale Models of Denil Fishways

2.9 W. H. HAGER
Some Scale Effects in Distribution Channels

IV
2.10 R. J. KELLER
Boundary Layer Scale Effects in Hydraulic Model Studies of Discharge Measuring Flumes

2.11 B. BARCZEWSKI and M. JURASCHEK
Comparison of Rating Curves of Geometrically Similar Venturi Flumes of Different Size

2.12 G. C. NOUTSOPoulos and G. C. CHRISTODOULOU
The Influence of Experimental Conditions on the Brink Depth of an Overfall

2.13 O. N. WAKHLU
Scale Effects in Hydraulic Model Studies

2.14 R. H. J. SELLIN and P. G. McCRAE
Scale Effects with Model Lift Gate - Diffuser Passage Systems for Tidal Power Barrages

2.15 H. NAGO
Scale Effects in Free Efflux from an Underflow Gate

2.17 G. C. ZHU and C. Y KUO
Modelling of the Three Gorges Reach of the Yangtze River (China)

2.18 G. V. VASILCHENKO
Investigation of Currents on Geometrically Distorted Models

2.19 D. DEMMERLE
Discharge Capacity of Low Head Barrages

3 SIMILARITY CONSIDERATIONS ON VARIOUS TOPICS

3.1 F. VASCO COSTA
The Modelling of Non-Uniform and of Unsteady Flow

3.2 I. A. SHERENKOV
Optimization of Model Scale in Hydraulic Modelling

3.3 G. GLAZIK
Influence of River Model Distortion on Hydraulic Similarity of Structures arranged at the Channel

3.5 L. J. AINOLA and U. LIIV
Modelling of Unsteady Hydrodynamic Processes in Pipes

3.6 Q. LIU and H. CHEN
Modelling of Hydraulic Transient Phenomena in Water Power Engineering

3.7 G. GARCREHT and W. MERTENS
Simulation of the Formation of Ice Jams in Alluvial Rivers

3.8 R. CHEN
Similarity of Remote-Controlled Ship-Team Model used in Hydraulic Research of Navigation Route at Gezhouba Project

3.9 T. JIN
Similarity between Hydraulic Model Test and Prototype Observation of an Overflow Arch Dam
4 AIR ENTRAINMENT

4.1 I. R. WOOD
Air Entrainment in High Speed Flows

4.2 N. L. des S. PINTO
Model Evaluation of Aerator in Shooting Flow

4.3 J. BRUSCHIN
Aeration Off-Sets for Spillway Chutes and Bottom Outlets

4.4 H.-P. KOSCHITZKY, B. WESTRICH and H. KOBUS
Effects of Model Configuration, Flow Conditions and Scale in Modelling Spillway Aeration Grooves

4.5 P. VOLKART and P. RUTSCHMANN
Rapid Flow in Spillway Chutes with and without Deflectors - a Model-Prototype Comparison

4.6 A. MARCANO and N. CASTILLEJO
Model-Prototype Comparison of Aeration Devices of Guri Dam Spillway

4.7 S. PAN and Y. SHAO
Scale Effects in Modelling Air Demand by a Ramp Slot

4.8 V. S. SAKHUJA, T. C. PAUL and S. SINGH
Air Entrainment Distortion in Free Surface Flows

4.9 S. L. RABBEN and G. ROUVE
Air Demand of High-Head Gates - Model-Family Studies to Quantify Scale Effects

4.10 H. KOBUS
Local Air Entrainment and Detrainment

4.11 B. WESTRICH and B. BARCZEWSKI
Model and Field Measurements of the Air Demand of a Cone Valve in a Closed Conduit

4.12 D. OUAZAR and A. LEJEUNE
Theoretical and Experimental Study of Cavitation Prevention by Ventilation

4.13 A. A. AHMED, D. A. ERVINE and E. J. MCKEOGH
The Process of Aeration in Closed Conduit Hydraulic Structures
<table>
<thead>
<tr>
<th>Page</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>R. FUENTES and J. J. GARCIA</td>
<td>Influence of the Tunnel Length on the Hydraulic Modelling of the Air Entrainment in the Flow Downstream of a High Head Gate</td>
</tr>
<tr>
<td>4.15</td>
<td>D. A. ERVINE and S. K. HIMMO</td>
<td>Modelling the Behaviour of Air Pockets in Closed Conduit Hydraulic Systems</td>
</tr>
<tr>
<td>4.16</td>
<td>K. A. SELANGER</td>
<td>Physical Modelling of Air-Water Flow in Rough Tunnels</td>
</tr>
<tr>
<td>5.1</td>
<td>S. VIGANDER</td>
<td>Bubbles, Drops and Friction on the Judgment Scale: Case Histories from TVA Engineering Laboratory's Model Tests</td>
</tr>
<tr>
<td>5.2</td>
<td>D.-Y. WANG and L.-S. LI</td>
<td>A Preliminary Study on the Cause of Formation of Boil-Vortex Flow in Streams and its Similarity in Modelling</td>
</tr>
<tr>
<td>5.3</td>
<td>E. PLATE, J. MAIER-ERBACHER and R. FRIEDRICH</td>
<td>Modelling of Water Droplet Generation by Wind</td>
</tr>
<tr>
<td>5.5</td>
<td>A. K. BIN</td>
<td>Air Entrainment by Plunging Liquid Jets</td>
</tr>
<tr>
<td>5.6</td>
<td>K. HAINDL</td>
<td>Modelling of Two Phase Liquid-Gas Flow Phenomena</td>
</tr>
<tr>
<td>5.7</td>
<td>H. T. FALVEY</td>
<td>Cavitation Studies in Tunnel Spillways</td>
</tr>
<tr>
<td>5.8</td>
<td>V. D. KERNITSKY</td>
<td>Estimation of the Scale Effect in Modelling Siphon Conduits</td>
</tr>
<tr>
<td>5.9</td>
<td>B. T. GOLODRING</td>
<td>Model and Prototype Tests on a Low-Head Siphon</td>
</tr>
<tr>
<td>5.10</td>
<td>F. NESTMANN</td>
<td>Development of a Mechanical Bubble Aeration System and the Scale-Up of the Results to the Prototype</td>
</tr>
<tr>
<td>5.11</td>
<td>I. HORVATH and F. NESTMANN</td>
<td>Applications of Similitude in Activated Sludge Treatment</td>
</tr>
<tr>
<td>5.12</td>
<td>C. IAMANDI and R. DAMIAN</td>
<td>Observations on Scale Effects of Bubble Plumes Dynamics</td>
</tr>
<tr>
<td>6.1</td>
<td>G. E. HECKER</td>
<td>Scale Effects in Modelling Vortices</td>
</tr>
<tr>
<td>6.2</td>
<td>A. F. BABB and W. C. MIH</td>
<td>Selection of Model Test Programs with Reference to Viscous and Gravity Force Similitude</td>
</tr>
</tbody>
</table>

VII
6.3 T. TOYOKURA and K. KAMEMOTO
Introduction of the JSME Standard to Establish a Set of Basic Rules for Model Testing of Pump Sump Performance

6.4 J. WIJDIEKS
Practice and Criteria of Pump Sump Model Investigation

6.5 D. SCHULTHESS
Model Tests with Vortices - El Cajon Project (Honduras)

6.6 J. L. BOILLAT, J. BRUSCHIN and D. ROLEWICZ
A Boundary Layer Suction Vortex Suppressor

6.7 S. C. JAIN and J. F. KENNEDY
Vortex-Flow Drop Structures

6.8 S. VENKATARAMANA and P. J. DINAKAR
On the Conflicting Modelling Criteria, Causative Scale Effects and the (in) Compatibility of Scale Modelling of Vortices - A Case Study

6.9 R. MARTINS
Vortex Similitude in Hydraulic Models

6.10 A. J. ODGAARD
Fluid Properties and their Scale Effects in Froude-Scaled Hydraulic Models

7 ENERGY DISSIPATION

7.1 D. VISCHER
Modelling Energy Dissipation with Hydraulic Structures: a Phenomenon with Insignificant Scale Effects?

7.2 R. A. LOPARDO, F. C de LIO and G. F. VERNET
Model-Prototype Comparisons on Pressure Fluctuations in Hydraulic Jump Energy Dissipators

7.3 P. K. NAGARKAR, V. C. SHAHANE, J. M. SONAWANE, B. G. GOWARDHANE and N. R. BHAVSAR
Case Studies of Energy Dissipation Structures on Dams in Maharashtra

7.4 M. SAS
Model Investigations of the Sakhahuaya Power Plant with Emphasis on the Simulation of the Head Losses

7.5 J. GANOULIS and J. KRESTENITIS
Hydraulic Modelling of a Vortex Drop in Sewer System

7.6 F. OLIVEIRA LEMOS and C. MATIAS RAMOS
Hydraulic Modelling of Free Jet Energy Dissipation

7.7 D N. BHARGAVA, A. S. RAJPUT and S. S. TIAGI
Energy Dissipation through Diffusion of Jets and Air Entrainment - Model Simulation

7.8 P. K. NAGARKAR, V. C. SHAHANE and J. M. SONAWANE
A Case Study of Air Vent Design
7.10 H. OUMERACI
Scale Effects in Coastal Hydraulic Models

7.11 R. J. H. STIVE
Wave Impact on Uniform Steep Slopes at Approximately Prototype Scale

7.12 J. J. SHARP and M. H. A. KHADER
Scale Effects in Harbour Models Involving Permeable Rubble Mound Structures

7.14 J. K. KOSTENSE and K. den BOER
Effect of Model Scale on the Stability of Concrete-Block Slope Revetments

7.15 K. den BOER
A Model Technique for Determining Damage to Armour Units