Contents

PREFACE

INTRODUCTION Role of Dynamic Analysis of Enzyme Systems in Biochemical Research 1

CHAPTER 1 Derivation of Rate Equations for Enzymatic Reactions 15

1.1 Representation in Ordinary Differential Equations 16
1. Basic Reactions 16
2. Relatively Complex Reactions 20

1.2 Representation in Partial Differential Equations 27
1. Reaction-Diffusion System 27
2. Bimolecular Reaction 29
3. Enzyme System 30
4. Flow System 32

CHAPTER 2 Approximation Methods for Analysis of Rate Equations 35

2.1 Quasi-Steady-State Approximation 36
1. Derivation of Steady-State Expression 36
2. Steady-State Expressions for Relatively Complex
 Systems .. 39

2.2 Rapid-Equilibrium and Linear Approximations 43
 1. Rapid-Equilibrium Approximation 43
 2. Linear Approximation ... 49

2.3 Approximate Solution of Partial Differential Equation 54
 1. Analytic Solution for First-Order Reaction 54
 2. Approximate Solution for Bimolecular Reaction 55
 3. Steady-State Approximation 56

CHAPTER 3 Numerical Methods for Solution of Rate
 Equations .. 59

3.1 Principle of Numerical Solution of Ordinary Differential
 Equations ... 60
 1. Euler Method .. 62
 2. One-Step Methods .. 66
 3. Linear Multi-Step Methods .. 68

3.2 Numerical Method for Rate Equations 70
 1. Treatment of System of Nonlinear Differential Equations
 2. Stiff Stability .. 71
 3. Gear Method .. 73

3.3 Application to Enzymatic Reactions—Examples and
 Remarks ... 75

3.4 Numerical Method for Partial Differential Equations 81
 1. Difference Expression of Derivative 81
 2. Explicit Method ... 82
 3. Implicit Method ... 83
 4. Gauss Elimination Method 84
 5. Over-Relaxation Method .. 85
 6. Boundary Conditions of Gradient Form 86
 7. Steady-State Approximation of Reaction-Diffusion
 System ... 87
CHAPTER 4 Analysis of Enzymatic Reactions in Closed System ... 89

4.1 Reactions of Michaelis-Menten-Type Enzymes ... 90
 1. Standard Reaction ... 90
 2. Reaction with Inhibitor ... 97
 3. Reaction with Activator ... 106
 4. Reaction of Enzyme with Subsites .. 110

4.2 Reactions of Allosteric Enzymes ... 120
 1. Allosteric Models ... 120
 2. MWC Dimeric Model—Time Course and S-v Relationship 121
 3. MWC Dimeric Model—Interaction with Effectors 132
 4. KNF Dimeric Model .. 144
 5. MWC Tetrameric Model ... 147
 6. Cooperativity and Transient State of Monomeric Enzyme 150

CHAPTER 5 Microscopic Analysis of Enzyme Systems ... 165

5.1 Allosteric Enzymes in Open System ... 166
 1. One-Step Systems ... 167
 2. Two-Step Systems ... 181

5.2 Branched Biosynthetic Pathways ... 193
 1. Regulatory Mechanisms in Branched Reaction Systems 193
 2. Dynamic Behavior of Basic Regulatory Mechanisms 195

5.3 Coupled Reaction Systems ... 207
 1. Two Substrates-Two Products Reactions 208
 2. Coupled Enzyme Assay ... 217
 3. Enzymatic Cycling Method .. 222

CHAPTER 6 Macroscopic Analysis of Enzyme Systems ... 229

6.1 Cyclic Reaction System ... 230

6.2 Reaction System with Induction Period ... 236
 1. Induction Period ... 237
 2. Enzyme System with Induction Period 240
6.3 Oscillatory Reaction System ... 242
 1. Oscillatory Mechanism ... 242
 2. Frequency Conversion ... 249

6.4 Feedback System with Constant Output 252
 1. Response of Feedback System to Disturbance 253
 2. Optimal Structure of Enzymatic Feedback System 258

6.5 Two-Factor System .. 263
 1. Coupled Reaction System ... 264
 2. Regulation of Lactose Synthetase System 265
 3. Feedback Control System ... 267

6.6 System with Threshold ... 272

CHAPTER 7 Analysis of Reaction-Diffusion Systems 281

7.1 Reaction-Diffusion System with Feedback Loop 282
 1. Rate Equation ... 282
 2. Difference Equation .. 285
 3. Time Course from Simulation 286

7.2 Chromatography of Reaction-Diffusion System 288
 1. Rate Equation ... 288
 2. Difference Equation .. 289

CHAPTER 8 Determination of Reaction Scheme and Kinetic
Parameters ... 293

8.1 Procedure for Estimation of Reaction Scheme 294
 1. Algorithm for Estimation of Reaction Scheme 294
 2. Estimation of Activation Mechanism of Pepsinogen 297
 3. Estimation of a Basic Scheme for Generation of Spike-
 Type Oscillation .. 303
 4. Reaction Scheme of p-Hydroxybenzoate Hydroxylase 312

8.2 Procedure for Evaluation of Kinetic Parameters 323
 1. Optimization Problem ... 323
 2. Optimization by Gradient Method 325
3. Examples of Optimization by Gradient Method 329
4. Optimization by Direct Search Method.................... 332
5. Evaluation of Binding Free Energy in Lysozyme.............. 335

CHAPTER 9 Related Topics in Dynamic Analysis 341

9.1 Chemical Reaction as Stochastic Process 341
1. Stochastic Process .. 341
2. Unimolecular Reaction 343
3. Bimolecular Reaction 345
4. Application to Enzymatic Reactions 346

9.2 Control Processes in Enzyme Systems.................... 347
1. Control Modes of Enzyme Systems in vivo 347
2. Elementary Subsystems Participating in Control of Enzyme Systems ... 348
3. Techniques for Solution of Control Problems 349

9.3 Analysis of Large-Scale Systems 354
1. Hierarchical Structure in a Large-Scale System 355
2. Analysis of Hierarchical Model 356

9.4 Thermodynamics in Biological Processes 358
1. Limitation of Equilibrium Thermodynamics 359
2. Dissipative Structures 360

INDEX .. 365