Heinrich Zollinger

Diazó Chemistry I

Aromatic and Heteroaromatic Compounds
Contents

1 Introduction 1
 1.1 History of Aromatic and Heteroaromatic Diazo Compounds 1
 1.2 Nomenclature 3
 1.3 General References 9

2 Methods for the Preparation of Aromatic and Heteroaromatic Diazo Compounds 11
 2.1 Diazotization of Amines with Alkali Nitrite in Dilute Aqueous Mineral Acids 11
 2.2 Diazotization in Concentrated Mineral Acid 20
 2.3 Isolation of Diazonium Salts 24
 2.4 Diazotization of 2- and 4-Aminophenols 25
 2.5 Formation of Diazonium Salts under Anhydrous Conditions 30
 2.6 Other Reactions Involving Formation of Aromatic Diazonium Ions 32

3 Kinetics and Mechanism of Diazotization 39
 3.1 Historical Development 39
 3.2 Influence of Acidity on the Rate and Mechanism of Diazotization in Aqueous Sulfuric and Perchloric Acids 44
 3.3 Nucleophilic Catalysis of Diazotization 54
 3.4 Transformation of the N-Nitrosoamine Intermediate into the Diazonium Ion 58

4 The Structure of Diazonium Compounds 65
 4.1 Introductory Remarks 65
 4.2 Structure of Arenediazonium Salts 66
 4.3 Theoretical Investigations 82

5 Acid–Base and Isomerization Reactions of Diazo Compounds in Water 89
 5.1 The Aromatic Diazonium Ion as a Dibasic Acid 89
 5.2 The Combined System of Acid–Base Addition, (Z)/(E)- and Prototropic Isomerization Reactions of Arenediazonium Ions 96
 5.3 Kinetics and Equilibria of Arenediazonium Ions in Water 98

6 Additions of Other Nucleophiles to Arenediazonium Ions 107
 6.1 Introduction 107
 6.2 O-Coupling 108
6.3 S-Coupling 116
6.4 N-Coupling 120
6.5 P-Coupling 126
6.6 C-Coupling 127
6.7 Intramolecular Coupling 131
 6.7.1 Introduction 131
 6.7.2 N-Coupling 131
 6.7.3 O-Coupling 136
 6.7.4 S-Coupling 136
 6.7.5 C-Coupling 137

7 Structural and Mechanistic Aspects of Additions of Nucleophiles to Diazonium Ions 143
 7.1 (Z)/(E)-Isomerism 143
 7.2 Investigations on Reactivities by the Interpretation of Substituent Effects: The Hammett and Related Equations 148
 7.3 The Electronic Influence of the Diazonio Group as a Substituent 151
 7.4 Influence of Substituents on the Addition of Nucleophiles to Arenediazonium Ions 153

8 Dediazoniation of Arenediazonium Ions 161
 8.1 Introduction to Dediazoniation in General 161
 8.2 Multiplicity of Pathways and Products 162
 8.3 The $D_N + A_N$ Mechanism of Dediazoniation 166
 8.4 Molecular Orbital Investigations on Heterolytic Dediazoniations and on Aryl Cations 177
 8.5 Dediazoniations via Aryne Intermediates 183
 8.6 Dediazoniation Initiated by an Electron Transfer 188
 8.7 Solvent Effects in Competitive Homolytic and Heterolytic Dediazoniation 197
 8.8 Dediazoniation in Alkaline Aqueous Solutions 200
 8.9 Dediazoniation in Highly Nucleophilic Solvents and in the Presence of Good Nucleophiles 205
 8.10 Dediazoniation in Alcohols 208

9 Logic, Psychology, and Serendipity of Scientific Discoveries—An Interlude 213

10 Applications of Heterolytic and Homolytic Dediazoniations in Organic Syntheses 221
 10.1 Introductory Remarks 221
 10.2 Hydro-de-diazoniation 222
 10.3 Hydroxy- and Mercapto-de-diazoniations and Related Reactions 225
 10.4 Fluoro-de-diazoniation 228
10.5 Chloro-, Bromo-, and Cyano-de-diazoniations: The Sandmeyer Reaction 230
10.6 Iodo-de-diazoniation and Related Reactions 235
10.7 Dediazoniation in the Presence of Carbonyl, Sulfonyl, and Related Compounds 240
10.9 Replacement of the Diazonio Group by Alkenes and Alkynes: The Meerwein Reaction 243
10.10 Arylation of Aromatic Compounds: The Gomberg–Bachmann and Related Reactions 253
10.11 Intramolecular Arylation of Aromatic and Alkene sp²-Hybridized Carbon Atoms 261
10.12 Metallo-de-diazoniations and Arylation of Transition Elements 273
10.13 Photolytic Dediazoniations and their Applications in Synthesis and in Image Technology 277

11 Host–Guest Complexation of Arenediazonium Salts 289
11.1 Formation and Structure 289
11.2 Complexation Equilibria and Complex Properties 296

12 Azo Coupling Reactions 305
12.1 Introduction 305
12.2 Aromatic and Heteroaromatic Diazocomponents 308
12.3 Quinone Diazides as Diazocomponents 312
12.4 Various Potential Diazocomponents 313
12.5 Aromatic and Heteroaromatic Coupling Components 315
12.6 Coupling Components Containing Activated Methyl, Methylene, and Methine Groups 332
12.7 Acid–Base Pre-equilibria 346
12.8 The Substitution Proper of C-Coupling Reactions 354
12.9 Mixing and Diffusion Effects 372
12.10 Influence of the Reaction Medium 375
12.11 Inorganic Coupling Components: Polyhedral Boron Hydrides 380

13 Formation and Reactions of Triazenes 385
13.1 Introduction to Properties 385
13.2 N-Azo Coupling Reactions 391
13.3 Competitive N- and C-Azo Coupling Reactions 395
13.4 Reactions of Triazenes 401

References 405

Index 445