John L. Troutman

Variational Calculus and Optimal Control

Optimization with Elementary Convexity

Second Edition

With 87 Illustrations

Springer
Contents

Preface vii

CHAPTER 0
Review of Optimization in \mathbb{R}^d 1
Problems 7

PART ONE
BASIC THEORY 11

CHAPTER 1
Standard Optimization Problems 13
1.1. Geodesic Problems 13
 (a) Geodesics in \mathbb{R}^d 14
 (b) Geodesics on a Sphere 15
 (c) Other Geodesic Problems 17
1.2. Time-of-Transit Problems 17
 (a) The Brachistochrone 17
 (b) Steering and Control Problems 20
1.3. Isoperimetric Problems 21
1.4. Surface Area Problems 24
 (a) Minimal Surface of Revolution 24
 (b) Minimal Area Problem 25
 (c) Plateau's Problem 26
1.5. Summary: Plan of the Text 26
 Notation: Uses and Abuses 29
Problems 31

Contents

CHAPTER 2
Linear Spaces and Gâteaux Variations

2.1. Real Linear Spaces 36
2.2. Functions from Linear Spaces 38
2.3. Fundamentals of Optimization
 - Constraints 41
 - Rotating Fluid Column 42
2.4. The Gâteaux Variations 45
Problems 50

CHAPTER 3
Minimization of Convex Functions

3.1. Convex Functions 54
3.2. Convex Integral Functions
 - Free End-Point Problems 60
3.3. [Strongly] Convex Functions 61
3.4. Applications
 - (a) Geodesics on a Cylinder 65
 - (b) A Brachistochrone 66
 - (c) A Profile of Minimum Drag 69
 - (d) An Economics Problem 72
 - (e) Minimal Area Problem 74
3.5. Minimization with Convex Constraints
 - The Hanging Cable 78
 - Optimal Performance 81
3.6. Summary: Minimizing Procedures
Problems 83

CHAPTER 4
The Lemmas of Lagrange and Du Bois-Reymond
Problems 101

CHAPTER 5
Local Extrema in Normed Linear Spaces

5.1. Norms for Linear Spaces 103
5.2. Normed Linear Spaces: Convergence and Compactness 106
5.3. Continuity 108
5.4. (Local) Extremal Points 114
5.5. Necessary Conditions: Admissible Directions 115
5.6*. Affine Approximation: The Fréchet Derivative
 - Tangency 127
5.7. Extrema with Constraints: Lagrangian Multipliers
Problems 139

CHAPTER 6
The Euler–Lagrange Equations

6.1. The First Equation: Stationary Functions 147
6.2. Special Cases of the First Equation 148
Contents

(a) When \(f = f(z) \)
(b) When \(f = f(x, z) \)
(c) When \(f = f(y, z) \)

6.3. The Second Equation
6.4. Variable End Point Problems: Natural Boundary Conditions
 - Jakob Bernoulli's Brachistochrone
 - Transversal Conditions*
6.5. Integral Constraints: Lagrangian Multipliers
6.6. Integrals Involving Higher Derivatives
 - Buckling of a Column under Compressive Load
6.7. Vector Valued Stationary Functions
 - The Isoperimetric Problem
 - Lagrangian Constraints*
 - Geodesics on a Surface
6.8*. Invariance of Stationarity
6.9. Multidimensional Integrals
 - Minimal Area Problem
 - Natural Boundary Conditions
 - Problems

PART TWO

ADVANCED TOPICS

195

CHAPTER 7

Piecewise \(C^1 \) Extremal Functions
7.1. Piecewise \(C^1 \) Functions
 (a) Smoothing
 (b) Norms for \(\hat{C}^1 \)
7.2. Integral Functions on \(\hat{C}^1 \)
7.3. Extremals in \(\hat{C}^1 [a, b] \): The Weierstrass–Erdmann Corner Conditions
 - A Sturm–Liouville Problem
7.4. Minimization Through Convexity
 - Internal Constraints
7.5. Piecewise \(C^1 \) Vector-Valued Extremals
 - Minimal Surface of Revolution
 - Hilbert's Differentiability Criterion*
7.6*. Conditions Necessary for a Local Minimum
 (a) The Weierstrass Condition
 (b) The Legendre Condition
 - Bolza's Problem
 - Problems

CHAPTER 8

Variational Principles in Mechanics
8.1. The Action Integral
8.2. Hamilton's Principle: Generalized Coordinates
 - Bernoulli's Principle of Static Equilibrium
8.3. The Total Energy 240
 Spring–Mass–Pendulum System 241
8.4. The Canonical Equations 243
8.5. Integrals of Motion in Special Cases 247
 Jacobi's Principle of Least Action 248
 Symmetry and Invariance 250
8.6. Parametric Equations of Motion 250
8.7*. The Hamilton–Jacobi Equation 251
8.8. Saddle Functions and Convexity; Complementary Inequalities 254
 The Cycloid Is the Brachistochrone 257
 Dido's Problem 258
8.9. Continuous Media 260
 (a) Taut String 260
 (b) Stretched Membrane 266
8.10. Continuous Media (nonplanar) Membrane 269
 Problems 270

CHAPTER 9*
Sufficient Conditions for a Minimum 282
9.1. The Weierstrass Method 283
9.2. [Strict] Convexity of \(f(x, Y, Z) \) 286
9.3. Fields 288
 Exact Fields and the Hamilton–Jacobi Equation* 293
9.4. Hilbert's Invariant Integral 294
 The Brachistochrone* 296
 Variable End-Point Problems 297
9.5. Minimization with Constraints 300
 The Wirtinger Inequality 304
9.6*. Central Fields 308
 Smooth Minimal Surface of Revolution 312
9.7. Construction of Central Fields with Given Trajectory:
 The Jacobi Condition 314
9.8. Sufficient Conditions for a Local Minimum 319
 (a) Pointwise Results 320
 Hamilton's Principle 320
 (b) Trajectory Results 321
9.9*. Necessity of the Jacobi Condition 322
9.10. Concluding Remarks 327
 Problems 329

PART THREE
OPTIMAL CONTROL 339

CHAPTER 10*
Control Problems and Sufficiency Considerations 341
10.1. Mathematical Formulation and Terminology 342