Contents

Preface vii
Conventions and Symbols xvii

1 **Unconstrained Optimization** 1

1.1 **Optimality Conditions** 1
1.1.1 First- and Second-Order Necessary Conditions 3
1.1.2 Sufficient Conditions 11
1.1.3 The Convex Case 13

1.2 **Algorithm Models and Convergence Conditions I** 15
1.2.1 Geometry of Descent Methods 16
1.2.2 Basic Algorithm Models 18
1.2.3 The Wolfe and Polak-Sargent-Sebastian Theorems 28
1.2.4 A Trust Region Model 35
1.2.5 Algorithm Implementation Theory 40
1.2.6 Rate of Convergence of Sequences 47
1.2.7 Algorithm Efficiency 53
1.2.8 Notes 54

1.3 **Gradient Methods** 56
1.3.1 Method of Steepest Descent 56
1.3.2 Armijo Gradient Method 58
1.3.3 Projected Gradient Method 66
1.3.4 Notes 70

1.4 **Newton's Method** 70
1.4.1 The Local Newton Method 70
1.4.2 Global Newton Method for Convex Functions 76
1.4.3 Discrete Newton Method 79
1.4.4 Global Newton Method for General Functions 82
1.4.5 The Iterated Newton Method 83
1.4.6 Notes 87
1.5 Methods of Conjugate Directions
1.5.1 Decomposition of Quadratic Functions 88
1.5.2 Methods of Conjugate Gradients 91
1.5.3 Formal Extension to General Functions 94
1.5.4 The Polak-Ribiére Conjugate Gradient Algorithm 95
1.5.5 The Fletcher-Reeves Conjugate Gradient Method 99
1.5.6 Partial Conjugate Gradient Methods 102
1.5.7 Notes 103

1.6 Quasi-Newton Methods
1.6.1 The Variable Metric Concept 105
1.6.2 Secant Methods 107
1.6.3 Symmetric Rank-One Updates 111
1.6.4 Symmetric Rank-Two Updates 115
1.6.5 Finite Convergence on Quadratic Functions 117
1.6.6 Global Convergence on Convex Functions 124
1.6.7 Notes 137

2 Finite Min-Max and Constrained Optimization
2.1 Optimality Conditions for Min-Max
2.1.1 First-Order Conditions 169
2.1.2 Optimality Functions 172
2.1.3 Second-Order Conditions 178
2.1.4 Notes 185
2.2 Optimality Conditions for Constrained Optimization
2.2.1 First-Order Optimality Conditions for ICP 185
2.2.2 An Optimality Function for ICP 190
2.2.3 Second-Order Conditions for ICP 193
2.2.4 First-Order Optimality Conditions for IECP 197
2.2.5 Second-Order Optimality Conditions for IECP 204
2.2.6 Notes 214
2.3 Algorithm Models and Convergence Conditions II 215
3.1.3 Second-Order Conditions for SMMP 374
3.1.4 Notes 378

3.2 Optimality Conditions for Constrained Semi-Infinite Optimization 378
3.2.1 First-Order Optimality Conditions for SICP 379
3.2.2 An Optimality Function for SICP 381
3.2.3 Second-Order Conditions for SICP 382
3.2.4 First-Order Optimality Conditions for SIECP 385
3.2.5 Second-Order Conditions for SIECP 387
3.2.6 Notes 389

3.3 Theory of Consistent Approximations 389
3.3.1 Epi-convergence and Optimality Functions 390
3.3.2 Penalty Functions 400
3.3.3 Master Algorithm Models 401
3.3.4 Notes 418

3.4 Semi-Infinite Min-Max Algorithms 418
3.4.1 Consistent Approximations 419
3.4.2 Algorithms Based on Algorithm Models 3.3.12 and 3.3.17 423
3.4.3 PPP Rate-Preserving Min-Max Algorithm 426
3.4.4 Newton Rate-Preserving Min-Max Algorithm 431
3.4.5 Method of Outer Approximations 436
3.4.6 Notes 444

3.5 Algorithms for Inequality-Constrained Semi-Infinite Optimization 445
3.5.1 Consistent Approximations 446
3.5.2 Algorithms Based on Algorithm Models 3.3.14 and 3.3.20 449
3.5.3 Method of Outer Approximations 460
3.5.4 Notes 465

3.6 Algorithms for Semi-Infinite Optimization with Mixed Constraints 466
3.6.1 Consistent Approximations 467
3.6.2 Method of Outer Approximations 469
3.6.3 An Exact Penalty Function Algorithm 471
3.6.4 Notes 481

4 Optimal Control 482

4.1 Canonical Forms of Optimal Control Problems 482
4.1.1 Properties of Defining Functions 486
4.1.2 Transcription into Canonical Form 493
4.1.3 Numerical Integration 494
Contents

4.2 Optimality Conditions for Optimal Control
- 4.2.1 Unconstrained Optimal Control 497
- 4.2.2 Min-Max Optimal Control 502
- 4.2.3 Optimal Control with Inequality Constraints 511
- 4.2.4 Optimal Control with Equality Constraints 515
- 4.2.5 Optimal Control with Equality and Inequality Constraints 529
- 4.2.6 Notes 532

4.3 Algorithms for Unconstrained Optimal Control
- 4.3.1 Consistent Approximations 535
- 4.3.2 Problem Reformulation on $\mathbb{R}^n \times \mathbb{R}^{mN}$ 541
- 4.3.3 Algorithms Based on Master Algorithm Model 3.3.12 544
- 4.3.4 Algorithms Based on Master Algorithm Model 3.3.17 546
- 4.3.5 Algorithms Based on Master Algorithm Model 3.3.20 548
- 4.3.6 Implementation of Newton’s Method 556
- 4.3.7 Notes 560

4.4 Min-Max Algorithms for Optimal Control
- 4.4.1 Consistent Approximations 563
- 4.4.2 Problem Reformulation on $\mathbb{R}^n \times \mathbb{R}^{mN}$ 573
- 4.4.3 Algorithms Based on Master Algorithm Model 3.3.12 575
- 4.4.4 Algorithms Based on Master Algorithm Model 3.3.17 579
- 4.4.5 Algorithms Based on Master Algorithm Model 3.3.20 583
- 4.4.6 Method of Outer Approximations 587
- 4.4.7 Notes 589

4.5 Algorithms for Problems with State Constraints I: Inequality Constraints
- 4.5.1 Consistent Approximations 589
- 4.5.2 Problem Reformulation on $\mathbb{R}^n \times \mathbb{R}^m$ 594
- 4.5.3 Algorithms Based on Master Algorithm Model 3.3.14 596
- 4.5.4 Algorithms Based on Master Algorithm Model 3.3.27 602
- 4.5.5 Method of Outer Approximations 606
- 4.5.6 Notes 608

4.6 Algorithms for Problems with State Constraints II: Equality Constraints
- 4.6.1 Consistent Approximations 609
- 4.6.2 An Exact Penalty Function Algorithm 621
- 4.6.3 Notes 630

4.7 Algorithms for Problems with State Constraints III: Equality and Inequality Constraints
- 4.7.1 Consistent Approximations 630
- 4.7.2 An Exact Penalty Function Algorithm 637
- 4.7.3 Notes 643
5 Mathematical Background

5.1 Results from Functional Analysis
 5.1.1 Real Normed Spaces
 5.1.2 Properties of Continuous Functions
 5.1.3 Derivatives and Expansion Formulas
 5.1.4 Directional Derivatives and Subgradients
 5.1.5 The Implicit Function Theorem
 5.1.6 Notes

5.2 Convex Sets and Convex Functions
 5.2.1 Convex Sets
 5.2.2 Convex Functions

5.3 Properties of Set-Valued Functions
 5.3.1 Outer and Inner Semicontinuity
 5.3.2 Notes

5.4 Properties of Max Functions
 5.4.1 Maximum Theorems
 5.4.2 Directional Derivatives and Subgradients
 5.4.3 A Mean-Value Theorem

5.5 Minimax Theorems
 5.5.1 Duality and Discrete Minimax Theorems
 5.5.2 The von Neumann Theorem
 5.5.3 Notes

5.6 Differential Equations
 5.6.1 Existence, Uniqueness, and Boundedness of Solutions
 5.6.2 Lipschitz Continuity and Differentiability of Solutions
 5.6.3 Discrete-Time Approximations
 5.6.4 Bounds on Approximation Errors
 5.6.5 Notes

Bibliography

Index