Reliability of Electronic Components

A Practical Guide to Electronic Systems Manufacturing

With 212 Figures and 105 Tables
Contents

1 INTRODUCTION
1.1 Definition of reliability
1.2 Historical development perspective
1.3 Quality and reliability
1.4 Economics and optimisation
1.5 Probability; basic laws
1.5.1 Probability distributions
1.5.2 Basic reliability distribution theory
1.6 Specific terms
1.6.1 The generalised definition of λ and MTBF
1.7 Failures types
1.7.1 Failures classification
1.8 Reliability estimates
1.9 „Bath–tub“ failure curve
1.10 Reliability of electronic systems
1.10.1 Can the batch reliability be increased?
1.10.2 What is the utility of screening tests?
1.10.3 Derating technique
1.10.4 About the testability of electronic and telecommunication systems
1.10.5 Accelerated ageing methods for equipped boards
1.10.6 Operational failures
1.10.7 FMEA/FMECA method
1.10.8 Fault tree analysis (FTA)
1.10.8.1 Monte Carlo techniques
1.10.9 Practical recommendations
1.10.10 Component reliability and market economy
STATE OF THE ART IN RELIABILITY

2.1 Cultural features
- Quality and reliability assurance 44
- Total quality management (TQM) 46
- Building-in reliability (BIR) 48
- Concurrent engineering (CE) 49
- Acquisition reform 50

2.2 Reliability building
- Design for reliability 51
- Process reliability 52
- Technological synergies 53
- Screening and burn-in 54
- Burn-in 56
- Economic aspects of burn-in 59
- Other screening tests 60
- Monitoring the screening 61

2.3 Reliability evaluation
- Environmental reliability testing 65
- Synergy of environmental factors 68
- Temperature cycling 70
- Behavior in a radiation field 72
- Life testing with noncontinuous inspection 73
- Accelerated testing 75
- Activation energy depends on the stress level 77
- Physics of failure 78
- Drift, drift failures and drift behaviour 81
- Prediction methods 83
- Prediction methods based on failure physics 84
- Laboratory versus operational reliability 86

2.4 Standardisation
- Quality systems 87
- Dependability 87

References 87
3 RELIABILITY OF PASSIVE ELECTRONIC PARTS 93

3.1 How parts fail 93

3.2 Resistors 94
3.2.1 Some important parameters 97
3.2.2 Characteristics 98
3.2.3 Reasons for inconstant resistors [3.8]...[3.10] 100
3.2.3.1 Carbon film resistors (Fig. 3.4) 101
3.2.3.2 Metal film resistors 101
3.2.3.3 Composite resistors (on inorganic basis) 101
3.2.4 Some design rules 101
3.2.5 Some typical defects of resistors 102
3.2.5.1 Carbon film resistors 104
3.2.5.2 Metal film resistors 104
3.2.5.3 Film resistors 105
3.2.5.4 Fixed wirewound resistors 105
3.2.5.5 Variable wirewound resistors 105
3.2.5.6 Noise behaviour 105

3.3 Reliability of capacitors 105
3.3.1 Introduction 105
3.3.2 Aluminium electrolytic capacitors 107
3.3.2.1 Characteristics 108
3.3.2.2 Results of reliability research studies 110
3.3.2.3 Reliability data 111
3.3.2.4 Main failures types 111
3.3.2.5 Causes of failures 112
3.3.3 Tantalum capacitors 112
3.3.3.1 Introduction 112
3.3.3.2 Structure and properties 113
3.3.3.3 Reliability considerations 115
3.3.3.4 DC/C₀ variation with temperature 116
3.3.3.5 The failure rate and the product CU 117
3.3.3.6 Loss factor 117
3.3.3.7 Impedance at 100 Hz 117
3.3.3.8 Investigating the stability of 35 V tantalum capacitor 117
3.3.3.9 The failure rate model 121
3.3.4 Reliability comparison 121
3.3.5 Another reliability comparison 123
3.3.6 Polyester film / foil capacitors 124
3.3.6.1 Introduction 124
3.3.6.2 Life testing 125
3.3.6.3 I as a function of temperature and load 126
3.3.6.4 Reliability conclusions 127
3.3.7 Wound capacitors 129
3.3.8 Reliability and screening methods [3.37] [3.38] 131
3.4 Zinc oxide (ZnO) varistors [3.39][3.45] 132
3.4.1 Pulse behaviour of ZnO varistors 134
3.4.2 Reliability results 138

3.5 Connectors 138
3.5.1 Specifications profile 139
3.5.2 Elements of a test plan 140

References 141

4 RELIABILITY OF DIODES 145

4.1 Introduction 145

4.2 Semiconductor diodes 146
4.2.1 Structure and properties 146
4.2.2 Reliability tests and results 146
4.2.3 Failure mechanisms 148
 a. Mechanical failure mechanisms 148
 b. Electrical failure mechanisms 148
4.2.4 New technologies 149
4.2.5 Correlation between technology and reliability 150
4.2.6 Intermittent short-circuits 153

4.3 Z diodes 154
4.3.1 Characteristics 154
4.3.2 Reliability investigations and results 155
4.3.3 Failure mechanisms 158
 4.3.3.1 Failure mechanisms of Z diodes 159
 4.3.3.2 Design for reliability 160
 4.3.3.3 Some general remarks 161
 4.3.3.4 Catastrophic failures 162
 4.3.3.5 Degradation failures 162

4.4 Trans-Zorb diodes 163
4.4.1 Introduction 163
4.4.2 Structure and characteristics 163

4.5 Impatt (IMPact Avalanche and Transit-Time) diodes 163
4.5.1 Reliability test results for HP silicon single drift Impatt diodes 165
4.5.2 Reliability test results for HP silicon double drift Impatt diodes 166
4.5.3 Factors affecting the reliability and safe operation 166

References 169
Contents

6.2.5 Thyristor failure rates 206
6.3 Derating 207
6.4 Reliability screens by General Electric 209
6.5 New technology in preparation: SITH 210

References 213

7 RELIABILITY OF INTEGRATED CIRCUITS 215

7.1 Introduction 215

7.2 Reliability evaluation 219
7.2.1 Some reliability problems 219
7.2.2 Evaluation of integrated circuit reliability 219
7.2.3 Accelerated thermal test 221
7.2.4 Humidity environment 222
7.2.5 Dynamic life testing 223

7.3 Failure analysis 224
7.3.1 Failure mechanisms 224
7.3.1.1 Gate oxide breakdown 225
7.3.1.2 Surface charges 226
7.3.1.3 Hot carrier effects 226
7.3.1.4 Metal diffusion 226
7.3.1.5 Electromigration 227
7.3.1.6 Fatigue 228
7.3.1.7 Aluminium-gold system 229
7.3.1.8 Brittle fracture 229
7.3.1.9 Electrostatic Discharge (ESD) 229
7.3.2 Early failures 230
7.3.3 Modeling IC reliability 231

7.4 Screening and burn-in 233
7.4.1 The necessity of screening 233
7.4.2 Efficiency and necessity of burn-in 235
7.4.3 Failures at screening and burn-in 237

7.5 Comparison between the IC families TTL Standard and TTL-LS 240

7.6 Application Specific Integrated Circuits (ASIC) 240

References 241
9.6 Causes of hardware failures
9.6.1 Read only memories (ROMs) 294
9.6.2 Small geometry devices 296

9.7 Characterisation testing
9.7.1 Timing and its influence on characterisation and test 298
9.7.2 Test and characterisation of refresh 298
9.7.2.1 Screening tests and test strategies 299
9.7.3 Test–programmes and –categories 301
9.7.3.1 Test categories 301
9.7.3.2 RAM failure modes 302
9.7.3.3 Radiation environment in space; hardening approaches 303

9.8 Design trends in microprocessor domain 305

9.9 Failure mechanisms of microprocessors 306

References 310

10 RELIABILITY OF OPTOELECTRONICS 313

10.1 Introduction 313

10.2 LED reliability 316

10.3 Optocouplers
10.3.1 Introduction 318
10.3.2 Optocouplers ageing problem 318
10.3.3 CTR degradation and its cause 320
10.3.4 Reliability of optocouplers 321
10.3.5 Some basic rules for circuit designers 323

10.4 Liquid crystal displays 324
10.4.1 Quality and reliability of LCDs 325

References 327

11 NOISE AND RELIABILITY 329

11.1 Introduction 329
11.2 Excess noise and reliability 330
11.3 Popcorn noise 331
11.4 Flicker noise 333
11.4.1 Measuring noise 333
11.4.2 Low noise, long life 333
11.5 Noise figure 334
11.6 Improvements in signal quality of digital networks 336

References 336

12 PLASTIC PACKAGE AND RELIABILITY 339
12.1 Historical development 339
12.2 Package problems 341
12.2.1 Package functions 342
12.3 Some reliability aspects of the plastic encapsulation 343
12.4 Reliability tests 344
12.4.1 Passive tests 345
12.4.2 Active tests 346
12.4.3 Life tests 347
12.4.4 Reliability of intermittent functioning plastic encapsulated ICs 349
12.5 Reliability predictions 352
12.6 Failure analysis 353
12.7 Technological improvements 354
12.7.1 Reliability testing of PCB equipped with PEM 356
12.7.2 Chip-Scale packaging 356
12.8 Can we use plastic encapsulated microcircuits (PEM) in high reliability applications? 357

References 359
13 TEST AND TESTABILITY OF LOGIC ICS

13.1 Introduction

13.2 Test and test systems

- **13.2.1 Indirect tests**

13.3 Input control tests of electronic components

- **13.3.1 Electrical tests**
- **13.3.2 Some economic considerations**
- **13.3.3 What is the cost of the tests absence?**

13.4 LIC selection and connected problems

- **13.4.1 Operational tests of memories**
- **13.4.2 Microprocessor test methods**
 - **13.4.2.1 Selftesting**
 - **13.4.2.2 Comparison method**
 - **13.4.2.3 Real time algorithmic method**
 - **13.4.2.4 Registered patterns method**
 - **13.4.2.5 Random test of microprocessors**

13.5 Testability of LICs

- **13.5.1 Constraints**
- **13.5.2 Testability of sequential circuits**
- **13.5.3 Independent and neutral test laboratories**

13.6 On the testability of electronic and telecommunications systems

References

14 FAILURE ANALYSIS

14.1 Introduction [14.1][14.25]

14.2 The purpose of failure analysis

- **14.2.1 Where are discovered the failures?**
- **14.2.2 Types of failures**

14.3 Methods of analysis

- **14.3.1 Electrical analysis**
- **14.3.2 X-ray analysis**
- **14.3.3 Hermeticity testing methods**
- **14.3.4 Conditioning tests**
- **14.3.5 Chemical means**
14.3.6 Mechanical means 389
14.3.7 Microscope analysis 389
14.3.8 Plasma etcher 389
14.3.9 Electron microscope 389
14.3.10 Special means 390

14.4 Failure causes 392

14.5 Some examples 393

References 410

15 APPENDIX 413

15.1 Software-package RAMTOOL++ [15.1] 413
15.1.1 Core and basic module R³ Trecker 413
15.1.2 RM analyst 414
15.1.3 Mechanicus (Maintainability analysis) 414
15.1.4 Logistics 414
15.1.5 RM FFT-module 415
15.1.6 PPoF-module 415

15.2 Failure rates for components used in telecommunications 415

15.3 Failure types for electronic components [15.2] 418

15.4 Detailed failure modes for some components 419

15.5 Storage reliability data [15.3] 420

15.6 Failure criteria. Some examples 420

15.7 Typical costs for the screening of plastic encapsulated ICs 421

15.8 Results of 1000 h HTB life tests for CMOS microprocessors 421

15.9 Results of 1000 h HTB life tests for linear circuits 422

15.10 Average values of the failure rates for some IC families 422

15.11 Activation energy values for various technologies 423

15.12 Failures at burn-in 424

References 424
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL BIBLIOGRAPHY</td>
<td>425</td>
</tr>
<tr>
<td>RELIABILITY GLOSSARY</td>
<td>455</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>473</td>
</tr>
<tr>
<td>POLYGLOT DICTIONARY OF RELIABILITY TERMS</td>
<td>481</td>
</tr>
<tr>
<td>INDEX</td>
<td>501</td>
</tr>
</tbody>
</table>