Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to First Edition</td>
<td>v</td>
</tr>
<tr>
<td>Preface to Second Edition</td>
<td>vii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>ix</td>
</tr>
<tr>
<td>Introduction</td>
<td>xvii</td>
</tr>
<tr>
<td>Notes to the Reader</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER 1

Introduction to Lie Groups 1

1.1. Manifolds 2
 - Change of Coordinates 6
 - Maps Between Manifolds 7
 - The Maximal Rank Condition 7
 - Submanifolds 8
 - Regular Submanifolds 11
 - Implicit Submanifolds 11
 - Curves and Connectedness 12

1.2. Lie Groups 13
 - Lie Subgroups 17
 - Local Lie Groups 18
 - Local Transformation Groups 20
 - Orbits 22

1.3. Vector Fields 24
 - Flows 27
 - Action on Functions 30
 - Differentials 32
 - Lie Brackets 33
 - Tangent Spaces and Vectors Fields on Submanifolds 37
 - Frobenius' Theorem 38
1.4. Lie Algebras
One-Parameter Subgroups
Subalgebras
The Exponential Map
Lie Algebras of Local Lie Groups
Structure Constants
Commutator Tables
Infinitesimal Group Actions
1.5. Differential Forms
Pull-Back and Change of Coordinates
Interior Products
The Differential
The de Rham Complex
Lie Derivatives
Homotopy Operators
Integration and Stokes' Theorem
Notes
Exercises

CHAPTER 2
Symmetry Groups of Differential Equations
2.1. Symmetries of Algebraic Equations
Invariant Subsets
Invariant Functions
Infinitesimal Invariance
Local Invariance
Invariants and Functional Dependence
Methods for Constructing Invariants
2.2. Groups and Differential Equations
2.3. Prolongation
Systems of Differential Equations
Prolongation of Group Actions
Invariance of Differential Equations
Prolongation of Vector Fields
Infinitesimal Invariance
The Prolongation Formula
Total Derivatives
The General Prolongation Formula
Properties of Prolonged Vector Fields
Characteristics of Symmetries
2.4. Calculation of Symmetry Groups
2.5. Integration of Ordinary Differential Equations
First Order Equations
Higher Order Equations
Differential Invariants
Multi-parameter Symmetry Groups
Solvable Groups
Systems of Ordinary Differential Equations
Table of Contents

2.6. Nondegeneracy Conditions for Differential Equations 157
 Local Solvability 157
 Invariance Criteria 161
 The Cauchy–Kovalevskaya Theorem 162
 Characteristics 163
 Normal Systems 166
 Prolongation of Differential Equations 166
Notes 172
Exercises 176

CHAPTER 3
Group-Invariant Solutions 183
3.1. Construction of Group-Invariant Solutions 185
3.2. Examples of Group-Invariant Solutions 190
3.3. Classification of Group-Invariant Solutions 199
 The Adjoint Representation 199
 Classification of Subgroups and Subalgebras 203
 Classification of Group-Invariant Solutions 207
3.4. Quotient Manifolds 209
 Dimensional Analysis 214
3.5. Group-Invariant Prolongations and Reduction 217
 Extended Jet Bundles 218
 Differential Equations 222
 Group Actions 223
 The Invariant Jet Space 224
 Connection with the Quotient Manifold 225
 The Reduced Equation 227
 Local Coordinates 228
Notes 235
Exercises 238

CHAPTER 4
Symmetry Groups and Conservation Laws 242
4.1. The Calculus of Variations 243
 The Variational Derivative 244
 Null Lagrangians and Divergences 247
 Invariance of the Euler Operator 249
4.2. Variational Symmetries 252
 Infinitesimal Criterion of Invariance 253
 Symmetries of the Euler–Lagrange Equations 255
 Reduction of Order 257
4.3. Conservation Laws 261
 Trivial Conservation Laws 264
 Characteristics of Conservation Laws 266
4.4. Noether's Theorem 272
 Divergence Symmetries 278
Notes 281
Exercises 283
CHAPTER 5
Generalized Symmetries 286

5.1. Generalized Symmetries of Differential Equations 288
 Differential Functions 288
 Generalized Vector Fields 289
 Evolutionary Vector Fields 291
 Equivalence and Trivial Symmetries 292
 Computation of Generalized Symmetries 293
 Group Transformations 297
 Symmetries and Prolongations 300
 The Lie Bracket 301
 Evolution Equations 303

5.2. Recursion Operators, Master Symmetries and Formal Symmetries 304
 Fréchet Derivatives 307
 Lie Derivatives of Differential Operators 308
 Criteria for Recursion Operators 310
 The Korteweg–de Vries Equation 312
 Master Symmetries 315
 Pseudo-differential Operators 318
 Formal Symmetries 322

5.3. Generalized Symmetries and Conservation Laws 328
 Adjoins of Differential Operators 328
 Characteristics of Conservation Laws 330
 Variational Symmetries 331
 Group Transformations 333
 Noether’s Theorem 334
 Self-adjoint Linear Systems 336
 Action of Symmetries on Conservation Laws 341
 Abnormal Systems and Noether’s Second Theorem 342
 Formal Symmetries and Conservation Laws 346

5.4. The Variational Complex 350
 The D-Complex 351
 Vertical Forms 353
 Total Derivatives of Vertical Forms 355
 Functionals and Functional Forms 356
 The Variational Differential 361
 Higher Euler Operators 365
 The Total Homotopy Operator 368

Notes 374
Exercises 379

CHAPTER 6
Finite-Dimensional Hamiltonian Systems 389

6.1. Poisson Brackets 390
 Hamiltonian Vector Fields 392
 The Structure Functions 393
 The Lie–Poisson Structure 396
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2. Symplectic Structures and Foliations</td>
<td></td>
</tr>
<tr>
<td>The Correspondence Between One-Forms and Vector Fields</td>
<td>398</td>
</tr>
<tr>
<td>Rank of a Poisson Structure</td>
<td>399</td>
</tr>
<tr>
<td>Symplectic Manifolds</td>
<td>400</td>
</tr>
<tr>
<td>Maps Between Poisson Manifolds</td>
<td>401</td>
</tr>
<tr>
<td>Poisson Submanifolds</td>
<td>402</td>
</tr>
<tr>
<td>Darboux' Theorem</td>
<td>404</td>
</tr>
<tr>
<td>The Co-adjoint Representation</td>
<td>406</td>
</tr>
<tr>
<td>6.3. Symmetries, First Integrals and Reduction of Order</td>
<td></td>
</tr>
<tr>
<td>First Integrals</td>
<td>408</td>
</tr>
<tr>
<td>Hamiltonian Symmetry Groups</td>
<td>409</td>
</tr>
<tr>
<td>Reduction of Order in Hamiltonian Systems</td>
<td>412</td>
</tr>
<tr>
<td>Reduction Using Multi-parameter Groups</td>
<td>416</td>
</tr>
<tr>
<td>Hamiltonian Transformation Groups</td>
<td>418</td>
</tr>
<tr>
<td>The Momentum Map</td>
<td>420</td>
</tr>
<tr>
<td>Notes</td>
<td>427</td>
</tr>
<tr>
<td>Exercises</td>
<td>428</td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian Methods for Evolution Equations</td>
<td></td>
</tr>
<tr>
<td>7.1. Poisson Brackets</td>
<td></td>
</tr>
<tr>
<td>The Jacobi Identity</td>
<td>434</td>
</tr>
<tr>
<td>Functional Multi-vectors</td>
<td>436</td>
</tr>
<tr>
<td>7.2. Symmetries and Conservation Laws</td>
<td></td>
</tr>
<tr>
<td>Distinguished Functionals</td>
<td>446</td>
</tr>
<tr>
<td>Lie Brackets</td>
<td>446</td>
</tr>
<tr>
<td>Conservation Laws</td>
<td>447</td>
</tr>
<tr>
<td>7.3. Bi-Hamiltonian Systems</td>
<td></td>
</tr>
<tr>
<td>Recursion Operators</td>
<td>452</td>
</tr>
<tr>
<td>Notes</td>
<td>461</td>
</tr>
<tr>
<td>Exercises</td>
<td>463</td>
</tr>
<tr>
<td>References</td>
<td>467</td>
</tr>
<tr>
<td>Symbol Index</td>
<td>489</td>
</tr>
<tr>
<td>Author Index</td>
<td>497</td>
</tr>
<tr>
<td>Subject Index</td>
<td>501</td>
</tr>
</tbody>
</table>