Analysen zur Umsetzung rationeller Energieanwendung in kleinen und mittleren Unternehmen des Kleinverbrauchersektors

Von der Fakultät Energietechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von
Hans Dieter Hermes
geboren in Flörsheim am Main

Hauptberichter: Prof. Dr.-Ing. A. Voß
Mitberichter: Prof. Dr. rer. pol. O. Renn

Tag der Einreichung: 18. Mai 1999
Tag der mündlichen Prüfung: 22. Mai 2000

Institut für Energiewirtschaft und Rationelle Energieanwendung (IER), Universität Stuttgart
Prof. Dr.-Ing. A. Voß
Abteilung Rationelle Energieanwendung (REA)
Dipl.-Ing. E. Thöne

ISSN 0938-1228
Wenn es nur eine einzige Wahrheit gäbe, könnte man nicht hundert Bilder über dasselbe Thema malen.

Pablo Picasso
Vorwort

Die Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Energiewirtschaft und Rationelle Energieanwendung der Universität Stuttgart. Für die Hilfestellungen des Instituts sei an dieser Stelle gedankt. Herrn Prof. Dr.-Ing. A. Voß und Herrn Prof. Dr. rer. pol. O. Renn danke ich für die Übernahme des Haupt- und des Mitberichts; bei Herrn Dipl.-Ing. E. Thöne bedanke ich mich für die Übernahme des Lektorats, die zahlreichen Anregungen und für allzeit gewährte Unterstützung.

Für wertvolle inhaltliche Diskussionen und Anregungen und die angenehme Zusammenarbeit möchte ich mich an dieser Stelle bei Hubert Despretz (Agence de l'Environnement et de la Maîtrise de l'Energie, Valbonne, Frankreich), Geert Weimann (Forschungszentrum Seibersdorf, Österreich) und Carles Ureta (Institut Català d'Energia, Barcelona, Spanien) herzlich bedanken.

Mein besonderer Dank gilt den Kolleginnen und Kollegen vom Institut für Energiewirtschaft und Rationelle Energieanwendung, insbesondere Dieter Herrmann, Martin Kayser und Jörg Haug, die durch ihre konstruktive Kritik wesentlich zur Erstellung dieser Arbeit beigetragen haben.

Meinen Eltern danke ich für die Ermöglichung des Studiums als Voraussetzung für diese Arbeit.

Sonja, der wichtigste Dank gilt dir: Danke für deinen beständigen und uneingeschränkten Rückhalt, dein Vertrauen und deinen Optimismus.
Inhaltsverzeichnis

Abbildungsverzeichnis .. V
Tabellenverzeichnis ... IX
Verzeichnis der Formelzeichen und Abkürzungen ... XI
Kurzfassung ... XIII
Abstract ... XIV

1 Einleitung ... 1
 1.1 Problemstellung ... 2
 1.2 Inhalt und Aufbau der Arbeit .. 2

2 Energieverbrauchsstrukturen in ausgewählten Branchen des Kleinverbrauchersektors 5
 2.1 Branchenstruktur im Kleinverbrauchersektor .. 6
 2.2 Aufteilung des Energieverbrauchs im Kleinverbrauch ... 8
 2.3 Energiemengenzahlen zur Darstellung von Energieverbrauchsstrukturen 9
 2.4 Branchenwahl und Vorgehen bei der Energieanalyse .. 11
 2.5 Hotelbranche ... 14
 2.6 Textilreinigung ... 20
 2.7 Bäckereien ... 26
 2.8 Lebensmitteleinzelhandel ... 33
 2.9 Vergleich der Energieverbrauchsstrukturen der vier Branchen 38

3 Maßnahmen zur rationellen Energieanwendung in Unternehmen 41
 3.1 Branchenübergreifende Maßnahmen ... 43
 3.1.1 Bereich Beleuchtung ... 43
 3.1.2 Bereich Gebäudehülle ... 45
 3.1.3 Bereich Heizungsanlage ... 46
 3.2 Branchenspezifische Maßnahmen .. 47
 3.2.1 Maßnahmen in Hotels ... 47
 3.2.2 Maßnahmen in Bäckereien .. 49
 3.2.3 Maßnahmen in Wäschereien .. 51
 3.2.4 Maßnahmen im Lebensmitteleinzelhandel .. 53
3.3 Potenziale der Energieverbrauchsminderung in den untersuchten Branchen des Kleinverbrauchersektors .. 55
3.4 Geschätzte Potenziale der Energieverbrauchsminderung in befragten Betrieben 57

4 Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung in Unternehmen ... 61
4.1 Vorgehen bei der Analyse von Hemmnissen in Branchen .. 62
4.2 Einbindung von Branchenvertretern in die Hemmnisanalyse 63
4.3 Umfrage zu Hemmnissen in der Hotelbranche und im Lebensmitteleinzelhandel 64
 4.3.1 Hemmnisliste und Pre-Test .. 65
 4.3.2 Befragung mit einer angepassten Delphi-Methode ... 67
 4.3.3 Auswertung der Umfrageergebnisse zur Hemmniserhebung 69
 4.3.4 Antwortquoten und Stichproben .. 72
4.4 Hemmnisse in der Hotelbranche ... 76
4.5 Hemmnisse im Lebensmitteleinzelhandel ... 78
4.6 Branchenübergreifende Ergebnisse .. 82

5 Instrumente zur Überwindung von Hemmnissen bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung in Unternehmen ... 85
5.1 Instrumente zur Überwindung von Hemmnissen in der Hotelbranche 87
5.2 Instrumente zur Überwindung von Hemmnissen im Lebensmitteleinzelhandel 89
5.3 Auswahlmethode für geeignete Instrumente zur Hemmnisüberwindung 90
5.4 Energie-Benchmarkingsoftware für Hotels .. 93
 5.4.1 Struktur des EDV-Programms ... 94
 5.4.2 Implementierung des EDV-Programms für den Branchentest 98
5.5 Seminar Rationelle Beleuchtung im Lebensmitteleinzelhandel 99
 5.5.1 Struktur des Seminars ... 100
 5.5.2 Implementierung des Seminars für den Branchentest 101

6 Bewertung der Instrumente zur Hemmnisüberwindung ... 103
6.1 Existierende Evaluierungsprojekte .. 103
6.2 Methode zur Bewertung der Eignung von Instrumenten zur Hemmnisüberwindung ... 105
6.3 Evaluierung der Energie-Benchmarkingsoftware ... 106
 6.3.1 Bewertung von Inhalt und Darstellungsform der Energie-Benchmarkingsoftware .. 106
 6.3.2 Bewertung der Energie-Benchmarkingsoftware im Hinblick auf die Ziele des Instruments .. 108
Inhaltsverzeichnis

6.4 Evaluierung des Seminars ... 110
 6.4.1 Bewertung von Inhalt und Darstellungsform des Seminars 111
 6.4.2 Bewertung des Seminars im Hinblick auf die Ziele des Instruments 112
6.5 Kosten für Entwicklung und Bereitstellung der beiden Instrumente zur
 Hemmnisüberwindung .. 115
 6.5.1 Entwicklungs- und Bereitstellungskosten der Energie-
 Benchmarkingsoftware ... 116
 6.5.2 Entwicklungs- und Bereitstellungskosten des Seminars 118
 6.5.3 Analyse der Kosten bezogen auf die Teilnehmerzahlen 119

7 Schlussbetrachtung ... 123

Literaturverzeichnis .. 127

Anhang A: Fragebogen zur Energiedatenerhebung (am Beispiel Textilreinigung) A-1

Anhang B: Fragebogen zu Hemmnissen in der Hotelbranche B-1

Anhang C: Instrumenten-Kriterien-Matrizen für die Auswahl geeigneter Instrumente für
 die Hotelbranche und für den Lebensmitteleinzelhandel C-1

Anhang D: Evaluierungs-Fragebogen am Beispiel des EDV-Programms "Energie-
 Benchmarking für Hotels" .. D-1
Abbildungsverzeichnis

Abb. 2-1: Struktur des Endenergieverbrauchs in Deutschland 1995, nach
/AG EnBill 1997, Tab. 5.1/... 5
Abb. 2-2: Beschäftigte in den Wirtschaftszweigen des Kleinverbrauchersektors in
Deutschland /StatBuA 1998/... 8
Abb. 2-3: Energieverbrauch der Kleinverbraucher nach Verbrauchergruppen 1992
/PROGNOS 1995/.. 8
Abb. 2-4: Verteilung der Endenergie auf die Verwendungszwecke für die
Gesamtheit des Kleinverbrauchersektors 1995 nach /VDI-
GET 1997, S. 436/ ... 9
Abb. 2-5: Verteilung des Energieverbrauchs von Betrieben in einer Branche nach
Klassen... 10
Abb. 2-6: Modellierung eines Gewerbebetriebes am Beispiel des Energieträgers
Erdgas in der Textilreinigung ... 13
Abb. 2-7: Aufteilung von Energieverbrauch und -kosten auf die Energieträger in
der Hotelbranche 1995... 15
Abb. 2-8: Stromverbrauch pro Fläche in der Hotelbranche nach Größenklassen
1995 ... 16
Abb. 2-9: Stromverbrauch pro Übernachtung in der Hotelbranche nach
Größenklassen 1995.. 17
Abb. 2-10: Aufteilung des Energieverbrauchs auf Verwendungszwecke in der
Hotelbranche 1995... 19
Abb. 2-11: Wasserverbrauch von Hotelbetrieben nach Größenklassen 1995.............. 19
Abb. 2-12: Aufteilung von Energieverbrauch und -kosten auf die Energieträger in
der Textilreinigungsbranche 1995 .. 21
Abb. 2-13: Gesamtenergieverbrauch in Textilreinigungsbetrieben nach
Größenklassen 1995.. 22
Abb. 2-14: Brennstoffverbrauch für Wäschereibetriebe nach Größenklassen 1995....... 23
Abb. 2-15: Brennstoffverbrauch für Reinigungsbetriebe nach Größenklassen 1995....... 23
Abb. 2-16: Aufteilung des Energieverbrauchs der Textilreinigungsbranche auf die
Verwendungszwecke 1995 .. 25
Abb. 2-17: Wasserverbrauch in Wäschereien je kg Trockenwäschere nach
Größenklassen 1995.. 26
Abb. 2-18: Aufteilung von Energieverbrauch und -kosten auf die Energieträger in
Bäckereien 1995... 27
Abb. 2-19: Gesamtenergieverbrauch bezogen auf die Betriebsfläche in der
Bäckereibranche nach Größenklassen 1995 .. 28
Abb. 2-20: Gesamtenergieverbrauch bezogen auf verarbeitete Mehlmenge und
Teiglinge nach Größenklassen 1995 ... 29
Abb. 2-21: Gesamtenergiekosten in Bäckereien bezogen auf die Betriebsfläche nach
Größenklassen 1995 ... 30
Abb. 2-22: Aufteilung des Gesamtenergieverbrauchs in Bäckereien auf die
Verwendungszwecke 1995 ... 31
Abb. 2-23: Wasserverbrauch bezogen auf die verarbeitete Rohstoffmenge im
Bäckereihandwerk nach Größenklassen 1995 32
Abb. 2-24: Aufteilung von Energieverbrauch und -kosten auf die Energieträger im
Lebensmitteleinzelhandel 1995 ... 34
Abb. 2-25: Verteilung des Stromverbrauchs bezogen auf die Verkaufsfläche in
Lebensmittelmarkäten nach Größenklassen 1995 35
Abb. 2-26: Verteilung der Stromkosten bezogen auf die Verkaufsfläche in
Lebensmittelmarkäten nach Größenklassen 1995 36
Abb. 2-27: Aufteilung von Energieverbrauch und Energiekosten auf die
Verwendungszwecke in Supermärkten unter 1000 m² Verkaufsfläche 1995
/KEA 1996, S. 2/ .. 37
Abb. 2-28: Prozentielle Zusammensetzung des Stromverbrauchs in verschiedenen
Supermarkttypen nach /BEWAG 1996, S. 2/ ... 38
Abb. 3-1: Strombedarf und Lichtbedarf für den Verwendungszweck "beleuchteter
Raum" .. 41
Abb. 3-2: Energieverbrauch von Backöfen in Abhängigkeit von der
Backflächenbelegung; Messung an 43 Backöfen, Meßzeitraum drei
Wochen /ZVDB 1995, S. 6/ ... 50
Abb. 3-3: Schaltbild zur Darstellung der Wärmebilanz einer Wäscherei
/Sigl 1994, S. 6/ .. 52
Abb. 3-4: Energieflußdiagramm Kühlmöbel und Kältetechnik
/Kauffmann u.a. 1994, S. 12/ ... 54
Abb. 3-5: Maßnahmen zur rationellen Energieanwendung in Hotels,
Textilreinigung und Bäckereien ... 56
Abb. 3-6: Potenziale der Energieverbrauchsminderung in den vier Branchen nach
Meinung befragter Betriebe ... 58
Abb. 4-1: Einteilung der Hemmnisse bei der Umsetzung von Maßnahmen zur
rationellen Energieanwendung nach Arten ... 61
Abb. 4-2: Einordnung der im Bereich rationelle Energieanwendung einer Branche
agierenden Personen .. 63
Abb. 4-3: Vorgehensweise bei der Umfrage zur Hemmnisanalyse und Einbindung des Ausschusses ... 65
Abb. 4-4: Hemmnisse bei Maßnahmen zur rationellen Energieanwendung in kleinen und mittleren Unternehmen aus Gewerbe und Handel gemäß Gewerbeberatern von Energieversorgern... 66
Abb. 4-5: Gliederung der Stichprobe Hotelbranche nach Unternehmensart 73
Abb. 4-6: Gliederung der Stichprobe Hotelbranche nach Tätigkeitsbereich 74
Abb. 4-7: Gliederung der Stichprobe Lebensmitteleinzelhandel nach Unternehmensart ... 75
Abb. 4-8: Gliederung der Stichprobe den Lebensmitteleinzelhandel nach Tätigkeitsbereich ... 75
Abb. 4-9: Bedeutung der einzelnen Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung gemäß befragten Experten aus Unternehmen der Hotelbranche ... 77
Abb. 4-10: Bedeutung der einzelnen Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung gemäß befragten externen Experten zu Hotels ... 78
Abb. 4-11: Bedeutung der einzelnen Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung gemäß befragten Experten aus Lebensmitteleinzelhandelsketten ... 80
Abb. 4-12: Bedeutung der einzelnen Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung gemäß befragten selbständigen Lebensmitteleinzelhändlern ... 81
Abb. 4-13: Bedeutung der einzelnen Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung gemäß befragten externen Experten zum Lebensmitteleinzelhandel ... 82
Abb. 5-1: Einteilung der Möglichkeiten für eine verbesserte Umsetzung von Maßnahmen zur rationellen Energieanwendung ... 85
Abb. 5-2: Rangfolge geeigneter Instrumente zur Hemmnisüberwindung in Hotels und im Lebensmitteleinzelhandel ... 92
Abb. 5-3: Verteilung von Computern in verschiedenen Hotelgrößenklassen 1995 92
Abb. 5-4: Programmstruktur des Programms "EnBenO" (Energie-Benchmarking für Hotels) .. 94
Abb. 5-5: Dateneingabefenster für Energiedaten der Energie-Benchmarking Software für Hotels ... 96
Abb. 5-6: Graphische Ausgabe des Benchmarking-Ergebnisses 97
Abb. 5-7: An verschiedenen Untersuchungsschritten teilnehmende Hotels nach Bettengrößenklassen ... 99
Abb. 6-8: Anteile der nach Betten-Größenklassen geordneten Hotels in der Stichprobe ... 106
Abb. 6-9: Bewertung der fachlichen Inhalte des Energie-Benchmarkingprogramms 107
Abb. 6-10: Bewertung der Darstellungsform des Energie-Benchmarkingprogramms 108
Abb. 6-11: Bewertung der Motivation zur inhaltlichen Umsetzung des Energie- Benchmarkingprogramms durch die Benutzer, erste Befragung 109
Abb. 6-12: Bewertung der Motivation zur inhaltlichen Umsetzung des Energie- Benchmarkingprogramms durch die Benutzer, zweite Befragung 109
Abb. 6-13: Anteile der nach Größenklassen geordneten Supermärkte in der Stichprobe gemäß der Verkaufsflächen ... 111
Abb. 6-14: Bewertung des fachlichen Inhalts des Seminars ... 111
Abb. 6-15: Bewertung der Darstellungsform des Seminars ... 112
Abb. 6-16: Bewertung der Motivation zur inhaltlichen Umsetzung des Seminars
 durch die Teilnehmer, erste Befragung ... 113
Abb. 6-17: Bewertung der Motivation zur inhaltlichen Umsetzung des Seminars
 durch die Teilnehmer, zweite Befragung ... 114
Abb. 6-18: Verteilung der Antworten auf die Frage "Bis zu welchem Preis würden
 Sie das Programm einem Kollegen oder Bekannten empfehlen?" nach
 Größenklassen ... 117
Abb. 6-19: Verteilung der Antworten auf die Frage "Bis zu welchem Preis würden
 Sie das Seminar einem Kollegen oder Bekannten empfehlen?" nach
 Größenklassen ... 119
Abb. 6-20: Absolute Entwicklungs- und Bereitstellungskosten in Abhängigkeit von
der Teilnehmerzahl für beide Instrumente zur Hemmnisüberwindung 120
Abb. 6-21: Entwicklungs- und Bereitstellungskosten pro Teilnehmer in
Abhängigkeit von der Teilnehmerzahl für beide Instrumente zur
Hemmnisüberwindung ... 121
Tabellenverzeichnis

Tab. 2-1:	Auswahl aus den im Kleinverbrauch vertretenen Branchen gemäß der Klassifikation der Wirtschaftszweige /StatBuA 1990/	7
Tab. 2-2:	Typische Energieverbraucher in Hotels	14
Tab. 2-3:	Energiekennwerte für die Hotelbranche 1995	18
Tab. 2-4:	Typische Energieverbraucher in Wäschereien/Reinigungen	20
Tab. 2-5:	Energiekennwerte für die Textilreinigungsbranche 1995	24
Tab. 2-6:	Typische Energieverbraucher in Bäckereien/Konditoreien	27
Tab. 2-7:	Energiekennwerte für das Bäckereihandwerk 1995	31
Tab. 2-8:	Typische Energieverbraucher in Supermärkten	33
Tab. 2-9:	Energiekennwerte für Lebensmitteleinzelhandelsmärkte bis zu 1000 m² Verkaufsfläche 1995	36
Tab. 2-10:	Energiekennwerte von vier Branchen des Kleinverbrauchersektors und für verschiedene Gebäude	39
Tab. 3-1:	Normenergieverbrauch von Kompressions- und Absorptionskühlschränken /Beer; Krebs 1992, S. 16/	48
Tab. 3-2:	Potenzielle der Energieverbrauchsminderung in vier Branchen /ANALYSIS 1997/, /ESV 1996/	57
Tab. 4-1:	Struktur des Ausschusses mit Branchenvertretern	64
Tab. 4-2:	Liste möglicher Hemmnisse als Basis für die Untersuchung	66
Tab. 4-3:	Anzahlen verteilter Fragebögen und Rücklauf bei der Umfrage zu Hemmnissen für die Umsetzung von Maßnahmen zur rationellen Energieanwendung	72
Tab. 4-4:	Durchschnittswerte der Umfrageergebnisse in den befragten Gruppen der Hotelbranche	76
Tab. 4-5:	Durchschnittswerte der Umfrageergebnisse in den befragten Gruppen des Lebensmitteleinzelhandel	79
Tab. 5-1:	Auswahl bestehender und möglicher Instrumente zur Hemmnisüberwindung in der Hotelbranche	87
Tab. 5-2:	Auswahl bestehender und möglicher Instrumente zur Hemmnisüberwindung im Lebensmitteleinzelhandel	89
Tab. 5-3:	Zulässige Preisunter- und Preisobergrenzen für die Plausibilitätskontrolle der Energieverbrauchs- und Energiekostendaten von Hotels im Programm EnBenO	96
Tab. 5-4:	An den verschiedenen Untersuchungsschritten teilnehmende Hotels	98
Tab. 5-5:	Struktur des Seminars zu rationeller Beleuchtung im Lebensmitteleinzelhandel	100
Tab. 5-6:	An verschiedenen Untersuchungsschritten teilnehmende Lebensmitteleinzelhandelsunternehmen	102
Tab. 6-1:	Auswertung einer Broschüre zur rationellen Energieanwendung für den Lebensmitteleinzelhandel in Baden-Württemberg	104
Tab. 6-2:	Gesamtbewertung des Softwareprogramms	110
Tab. 6-3:	Gesamtbewertung des Seminars für Lebensmitteleinzelhändler	115
Tab. 6-4:	Entwicklungs- und Bereitstellungskosten des Instruments zur Hemmnisüberwindung in der Hotelbranche	116
Tab. 6-5:	Entwicklungs- und Bereitstellungskosten des Instruments zur Hemmnisüberwindung im Lebensmitteleinzelhandel	118
Verzeichnis der Formelzeichen und Abkürzungen

Formelzeichen

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Antwort</td>
</tr>
<tr>
<td>F</td>
<td>Fachkenntnis</td>
</tr>
<tr>
<td>k</td>
<td>teilnehmerbezogene Kosten</td>
</tr>
<tr>
<td>K</td>
<td>Kosten</td>
</tr>
<tr>
<td>Q</td>
<td>Wärme-, Kältebedarf</td>
</tr>
<tr>
<td>Q*</td>
<td>Quantil</td>
</tr>
<tr>
<td>T</td>
<td>Amortisationszeit</td>
</tr>
<tr>
<td>TN</td>
<td>Teilnehmer</td>
</tr>
<tr>
<td>w</td>
<td>gewichtete ermittelte Bedeutung je Antwort je Hemmnis</td>
</tr>
<tr>
<td>W</td>
<td>gewichtete ermittelte Bedeutung je Hemmnis</td>
</tr>
<tr>
<td>U</td>
<td>Unsicherheit der ermittelten Bedeutung</td>
</tr>
</tbody>
</table>

Indizes

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>fix</td>
<td>fix</td>
</tr>
<tr>
<td>Instr</td>
<td>Instrument</td>
</tr>
<tr>
<td>max</td>
<td>Maximum</td>
</tr>
<tr>
<td>min</td>
<td>Minimum</td>
</tr>
<tr>
<td>Mehl</td>
<td>Mehlverbrauch</td>
</tr>
<tr>
<td>q</td>
<td>Laufvariable für Hemmnisse</td>
</tr>
<tr>
<td>RS</td>
<td>Rohstoffverbrauch</td>
</tr>
<tr>
<td>Tex</td>
<td>Textil</td>
</tr>
<tr>
<td>TN</td>
<td>Teilnehmer</td>
</tr>
<tr>
<td>TW</td>
<td>Trockenwäsche</td>
</tr>
<tr>
<td>var</td>
<td>variabel</td>
</tr>
<tr>
<td>VF</td>
<td>Verkaufsfläche</td>
</tr>
<tr>
<td>x</td>
<td>Laufvariable für Antworten</td>
</tr>
</tbody>
</table>
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAW</td>
<td>Energieanwendung</td>
</tr>
<tr>
<td>EDV</td>
<td>Elektronische Datenverarbeitung</td>
</tr>
<tr>
<td>EnBenO</td>
<td>Energie-Benchmarking für Hotels</td>
</tr>
<tr>
<td>EUW</td>
<td>Energieumwandlung</td>
</tr>
<tr>
<td>EVU</td>
<td>Energieversorgungsunternehmen</td>
</tr>
<tr>
<td>KMU</td>
<td>kleine und mittlere Unternehmen</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>VF</td>
<td>Verkaufsfläche</td>
</tr>
<tr>
<td>VDEW</td>
<td>Vereinigung deutscher Elektrizitätswerke - VDEW - e. V.</td>
</tr>
<tr>
<td>VDI</td>
<td>Verein Deutscher Ingenieure e. V.</td>
</tr>
</tbody>
</table>
Kurzfassung

Gegenstand der Arbeit ist die Ermittlung der Energiebedarfsstrukturen und denkbaren Möglichkeiten der rationellen Energieanwendung zur Senkung des Energieverbrauchs in ausgewählten Branchen des Kleinverbrauchersektors, die Analyse der Hemmnisse, die eine Umsetzung von Maßnahmen in Unternehmen verhindern, sowie die Konzeption und Überprüfung geeigneter Instrumente zur Hemmnisüberwindung.

In den Energiebedarfsstrukturen der untersuchten Branchen Hotels, Textilreinigung, Bäckereien und Lebensmitteleinzelhandel zeigen sich wesentliche Unterschiede mit branchentypischen Schwerpunkten bei Raumwärme, bei Prozesswärme für Dampferzeugung und Backen sowie bei Kühlung und Beleuchtung.

Für zwei Branchen wurde beispielhaft eine Hemmnisanalyse in Bezug auf die Umsetzung von Maßnahmen zur rationellen Energieanwendung zur Senkung des Energieverbrauchs durchgeführt: Für die Hotelbranche ergaben sich fehlende Energiekennzahlen und Hilfsmittel zur Ermittlung und Bewertung solcher Kennwerte als wichtiges Hemmnis. Im Lebensmitteleinzelhandel wurden fehlende spezifische Informationen über mögliche Energieeffizienzmaßnahmen und fehlende Ansprechpartner als wichtigste Hemmnisse identifiziert.

Beide Instrumente wurden im Feldversuch eingesetzt und durch Befragung der Nutzer beziehungsweise Teilnehmer auf ihre Eignung zur Lösung der Problemstellung untersucht und bewertet.
Abstract

Considerable unused energy (cost) saving potentials exist in the commercial and tertiary sector with its small and medium sized enterprises. Small enterprises mostly need external assistance to improve their energy efficiency, which presents options for services like energy consulting. However those industrial sectors consisting of small and medium sized enterprises have as yet rarely been investigated in regard to opportunities and problems in realizing energy saving measures so that necessary fundamental information is often missing.

The objective of the presented thesis is an analysis of energy consumption patterns and measures for reducing energy demand in selected industrial tertiary sectors. Moreover, the objective is an analysis of existing barriers for the realization of energy saving measures in enterprises and a development and examination of tools to overcome identified barriers.

Results for the examined sectors Hotels, Laundries, Bakeries and Food Retail show considerable differences in the typical energy usage patterns with industry-specific focus ranging from room heating to process heat for steam- and baking processes to cooling and lighting.

The analysis of barriers for the realization of energy saving measures was conducted for two exemplary sectors. Hence, in Hotels exists an important demand for indicators for specific energy consumption and for tools to ascertain and evaluate such energy ratios. The main barriers in the Food Retail sector are the lack of specific information about energy saving options as well as lacking contacts to get assistance.

Based on these requirements, for the Hotel sector, a computer program performing energy ratios and carrying out an individual Benchmarking in regard to the sector's average was designed and tested. A seminar including practical training was developed and organized as a tool to overcome barriers in Food Retail enterprises.

Both tools, being developed to overcome identified barriers, were implemented in enterprises on a test basis and were examined and evaluated in regard to their qualification concerning the problem by interviewing the users and participants.
1 Einleitung

Um dies zu erreichen, müssen unter anderem vorhandene Potenziale zur Senkung des Energieverbrauchs ausgeschöpft werden. Ein geeignetes Mittel hierfür ist die rationelle Energieanwendung, insbesondere Maßnahmen zur Senkung des Energieverbrauchs, in den verschiedenen Wirtschaftssektoren.

Im Bereich der privaten Haushalte haben sich bereits Programme zur Energieberatung und Motivation zum sorgfältigen Umgang mit Energie etabliert. Diese werden durch Kommunen, Behörden und Energieagenturen getragen. Im Industriesektor sind Anstrengungen im Rahmen der Selbstverpflichtung der Industrie, getragen von den Verbänden, organisiert und eingeleitet worden.

den Kleinverbrauchern und die Einbeziehung militärischer Dienststellen.
/Zögerer; Ziesing 1996/. /Ziesing 1999/

Da Firmen und Institutionen aus dem Sektor Kleinverbrauch bezüglich einer effizienten Verwendung von Endenergie häufig externe Hilfe benötigen, eröffnet sich hier ein breites Arbeitsfeld für Energieberater (selbständige, sowie Berater von Energieversorgungsunternehmen und Berufsverbänden), Energieagenturen, Wärme lieferer und Finanziers. Um die Dienstleistungen Energieberatung, Projektplanung und Finanzierung von Energieeffizienzmaßnahmen erbringen zu können, werden Informationen über Energieverbrauchstrukturen, Potenziale zur Energieverbrauchsminderung, bestehende Hemmnisse für die Umsetzung rationeller Energieanwendung und Instrumente zur Überwindung dieser Hemmnisse in den Branchen des Kleinverbrauchersektors benötigt.

1.1 Problemstellung

Die Strukturen des Energiebedarfs einzelner Branchen des Kleinverbrauchersektors sind bisher wenig untersucht worden. Das bedeutet, dass weder bekannt ist, wie hoch der durchschnittliche Energieeinsatz in den meist kleinen und mittleren Unternehmen einer Branche ist, noch welche Anteile und welche Energieträger für welche Verwendungszwecke eingesetzt werden.

1.2 Inhalt und Aufbau der Arbeit

Ziel der Arbeit ist die Analyse der Energieverbrauchsstrukturen und bestehender Möglichkeiten der Energieverbrauchsminderung in ausgewählten Branchen des Kleinverbraucher-
sektors sowie die Analyse bestehender Hemmnisse und die Entwicklung geeigneter Instrumente zur Hemmnisüberwindung.

In Kapitel 2 wird die Höhe und die Aufteilung des Energieverbrauchs in vier ausgewählten Branchen des Kleinverbrauchersektors ermittelt und detailliert dargestellt. Dazu werden geeignete Energiekennzahlen abgeleitet und ihre Bedeutung diskutiert.

Geeignete Maßnahmen zur rationellen Energieanwendung werden in Kapitel 3 zusammengestellt, beschrieben, und die Potenziale zur Energieverbrauchsminderung dargestellt, die sich aus der Anwendung der Maßnahmen in den Branchen theoretisch ergeben.

Die Hemmnisse, die einer Umsetzung von Maßnahmen zur rationellen Energieanwendung entgegenstehen, werden in Kapitel 4 untersucht. Da ein wesentlicher Teil der Hemmnisse branchentypisch ist, werden Hemmnisse beispielhaft für zwei Branchen des Kleinverbrauchersektors, Hotels (Dienstleistung) und Lebensmitteleinzelhandel (Handel), durch Befragung ermittelt und ausgewertet.

Kapitel 5 gibt eine Übersicht über Möglichkeiten zur Hemmnisüberwindung in den untersuchten Branchen und beschreibt zwei im Rahmen der Arbeit entwickelte Instrumente zum Abbau der in den Branchen Hotels und Lebensmitteleinzelhandel identifizierten Hemmnisse.

In Bezug auf Definitionen wird für den Einsatz von Energie in kleinen und mittleren Unternehmen im Rahmen der Arbeit der Begriff Energieverbrauch verwendet. Der Begriff Energieverbrauch ist physikalisch nicht korrekt, da Energie nach dem ersten Hauptsatz der Thermodynamik nicht verbraucht werden kann. So können nur Energieträger wie z. B. Heizöl, Erdgas oder Strom verbraucht werden, indem sie in andere Energieformen (Wärme, mechanische Energie etc.) überführt werden. Daher sind allein die Bezeichnungen Stromverbrauch, Heizölverbrauch, Erdgasverbrauch oder Dampfverbrauch thermodynamisch korrekt. Der Begriff Energieverbrauch hat sich aber in der energiewirtschaftlichen Literatur durchgesetzt, so dass er hier durchgehend verwendet wird. Weiterhin befasst sich die Arbeit mit dem Einsatz an Bezugssenergie in Unternehmen, also dem Energieinhalt der Energieträger, die Unternehmen als Endverbraucher von einem Energiesversorger kaufen /Voß 1996, Band 1, S. 2-63/. Somit bezeichnet der Begriff Energieverbrauch immer die Bezugssenergie eines oder mehrerer Unternehmen. Innerbetriebliche Eigenerzeugung von Strom und Gas spielt in den untersuchten Branchen fast keine Rolle, so dass keine Unter-
scheidung zwischen Bezugsenergie (Energieeinkauf) und Endenergie gemacht wird. Innerbetriebliche Energieumwandlungen in Gebrauchsenergie (z. B. Dampf) und Nutzenergie (Kraft, Licht, Nutzwärme etc.) werden entsprechend bezeichnet.

2 Energieverbrauchsstrukturen in ausgewählten Branchen des Kleinverbrauchersektors

Ziel dieses Kapitels ist die Darstellung von Energieverbrauchs- und Energiekostenstrukturen in ausgewählten Kleinverbraucherbranchen als Voraussetzung für die Identifikation von Maßnahmen zur Reduzierung des Energieverbrauchs und der Energiekosten und der daran anschließenden Fragestellung, welche Hemmnisse die Umsetzung behindern und wie die Umsetzung solcher Maßnahmen gefördert werden kann.

Abb. 2-1: Struktur des Endenergieverbrauchs in Deutschland 1995, nach /AG EnBil 1997, Tab. 5.1/

Die Aufteilung des Energieverbrauchs nach Wirtschaftssektoren lehnt sich an die statistische Einteilung an, wobei die größten Bereiche als Wirtschaftssektoren (z. B. Kleinverbrauch), die darin enthaltenen Bereiche als Wirtschaftszweige (z. B. gesamter Handel) und die kleinste Einheit als Branche (z. B. Lebensmitteleinzelhandel) bezeichnet werden. Der Kleinverbrauchersektor beinhaltet somit eine Vielzahl an Branchen unterschiedlicher Größe.

Da im Kleinverbrauchersektor alle Endverbraucher und -verbraucherguppen zusammengefasst sind, die keine Zuordnung zum Industrie-, zum Verkehrs- oder zum privaten Haushaltssektor erlauben, sind die Strukturen der im Kleinverbrauchersektor enthaltenen
Branchen, bedingt durch die unterschiedlichen Arten der wirtschaftlichen Tätigkeiten, sehr heterogen. Diese Heterogenität führt zu der Schwierigkeit, in diesem Bereich übertragbare Energieanalysen durchzuführen und damit für den gesamten Sektor gültige Ergebnisse zu erzielen. Das bedeutet, dass eine Energieanalyse für eine einzelne Branche des Kleinverbrauchersektors eine eigenständige Energiedatenerhebung voraussetzt.

2.1 Branchenstruktur im Kleinverbrauchersektor

Tab. 2-1: Auswahl aus den im Kleinverbrauch vertretenen Branchen gemäß der Klassifikation der Wirtschaftszweige /StatBuA 1990/

<table>
<thead>
<tr>
<th>Übergeordneter Wirtschaftszweig</th>
<th>Auswahl aus den vertretenen Branchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>HANDWERK</td>
<td>• Metallerzeugung und Bearbeitung</td>
</tr>
<tr>
<td>(verarbeitendes Gewerbe mit weniger als 20 Beschäftigten)</td>
<td>• Holz-, Papier- und Druckgewerbe</td>
</tr>
<tr>
<td></td>
<td>• Leder-, Textil- und Bekleidungsgewerbe</td>
</tr>
<tr>
<td></td>
<td>• Herstellung von Backwaren</td>
</tr>
<tr>
<td></td>
<td>• Milchverwertung</td>
</tr>
<tr>
<td>BAUGEWERBE</td>
<td>• Bauhauptgewerbe</td>
</tr>
<tr>
<td></td>
<td>• Ausbaugewerbe</td>
</tr>
<tr>
<td>HANDEL</td>
<td>• Großhandel</td>
</tr>
<tr>
<td></td>
<td>• Einzelhandel</td>
</tr>
<tr>
<td>VERKEHR UND NACHRICHTENÜBERMittlung</td>
<td>• Eisenbahnen</td>
</tr>
<tr>
<td>(davon nur der für Gebäude und ortsfeste Anlagen verwendete Endenergieverbrauch)</td>
<td>• Straßenverkehr, Parkplätze und -häuser</td>
</tr>
<tr>
<td></td>
<td>• Schiffahrt, -wasserstraßen und -häfen</td>
</tr>
<tr>
<td></td>
<td>• Luftfahrt und Flugplätze</td>
</tr>
<tr>
<td></td>
<td>• Deutsche Post</td>
</tr>
<tr>
<td></td>
<td>• Spedition, Lagerei</td>
</tr>
<tr>
<td>KREDITINSTITUTE, VERSICHERUNGSGEWERBE</td>
<td>• Banken</td>
</tr>
<tr>
<td></td>
<td>• Versicherungen</td>
</tr>
<tr>
<td>DIENSTLEISTUNGEN VON Unternehmen UND FREIEN BERUFEN</td>
<td>• Beherbergungsgewerbe</td>
</tr>
<tr>
<td></td>
<td>• Gaststätengewerbe</td>
</tr>
<tr>
<td></td>
<td>• Wäschereien, Friseurgewerbe</td>
</tr>
<tr>
<td></td>
<td>• Private Bildungseinrichtungen</td>
</tr>
<tr>
<td></td>
<td>• Privates Gesundheitswesen</td>
</tr>
<tr>
<td>ORGANISATIONEN OHNE ERWERBSZWECK</td>
<td>• Vereine, Verbände, Gewerkschaften</td>
</tr>
<tr>
<td></td>
<td>• Religiose Gemeinschaften</td>
</tr>
<tr>
<td>GEBIETSKÖRPERSCHAFTEN UND SOZIALVERSICHERUNGEN</td>
<td>• Kantinen</td>
</tr>
<tr>
<td></td>
<td>• Kommunale Einrichtungen</td>
</tr>
<tr>
<td></td>
<td>• Krankenhäuser</td>
</tr>
<tr>
<td></td>
<td>• Schlachthöfe</td>
</tr>
<tr>
<td></td>
<td>• Schulen, Hochschulen</td>
</tr>
<tr>
<td></td>
<td>• Schwimmbäder</td>
</tr>
</tbody>
</table>

Die Energieverbrauchsstruktur von Handwerksbetrieben lässt sich keiner Kategorie zuordnen. Aus diesen Unterschieden ergibt sich, dass es notwendig ist, Möglichkeiten für eine rationelle Energieanwendung branchenspezifisch zu behandeln.

2.2 Aufteilung des Energieverbrauchs im Kleinverbrauch

Die Bereiche Gastgewerbe und Dienstleistung verbrauchen zusammen 17 % der Energie. Weitere Branchen sind wegen der starken Verzweigung der Branchen im Kleinverbrauchersektor als "andere Gewerbezweige" zusammengefasst.

Abb. 2-4: Verteilung der Endenergie auf die Verwendungszwecke für die Gesamtheit des Kleinverbrauchersektors 1995 nach /VDI-GET 1997, S. 436/

2.3 Energiekennzahlen zur Darstellung von Energieverbrauchsstrukturen

Energiekosten in den Branchen bezeichnen im Rahmen der Arbeit grundsätzlich die laufenden Kosten für die Energieträger Strom, Brennstoffe und Fernwärme. Die Energiekosten (Energieträgerkosten) beinhalten somit nicht Instandhaltungs- und Kapitalkosten von Energieumwandlungsanlagen für die Bereitstellung von Nutzenergie.

Wenn eine ausreichende Anzahl an Kennzahlen vorliegt, lassen sich durchschnittliche Energieverbräuche für typische Betriebe einer Branche (z. B. pro m² Betriebsfläche) sowie durchschnittliche Energiekosten darstellen. Zur Bestimmung des durchschnittlichen Energieverbrauchs einer Branche ist die Verwendung des arithmetischen Mittelwertes ungünstig, da dieser von einigen wenigen Betrieben mit sehr hohem Verbrauch bestimmt sein kann. Die statistische Verteilung, die sich aus solchen Daten ergibt, wird als linksschief bezeichnet. Abb. 2-5 stellt solch eine linksschiefe Verteilung graphisch dar.

![Diagramm zur Energieverbrauchsverteilung](image_url)

2.4 Branchenauswahl und Vorgehen bei der Energieanalyse

Wegen der Heterogenität des Kleinverbrauchersektors und der damit fehlenden Übertragbarkeit der Energieverbrauchsstrukturen von Branchen werden einzelne ausgewählte Branchen des Sektors Kleinverbrauch analysiert. Die im folgenden vorgestellten Branchenanalysen basieren auf einer im Rahmen der Arbeit durchgeführten Energiedatenerhebung. In der Auswahl der Branchen zur Analyse wurden folgende Kriterien berücksichtigt:
• Energieintensität der Branche,
• zu erwartende Potenziale zur Minderung des Energieverbrauchs,
• Berücksichtigung von Branchen mit verschiedenen Unternehmenstypen wie Dienstleistungsbetriebe, Handwerk, Handel etc.,
• Möglichkeiten der Zusammenarbeit mit Berufsverbänden oder ähnlichen Interessenvertretungen einer Branche.

Eine Auswertung der Kriterien anhand vorliegender statistischer Wirtschaftsdaten und Informationen von Berufsverbänden für alle Branchen des Kleinverbrauchersektors ergab die Auswahl von vier Branchen mit folgenden Schwerpunkten:

• Hotels als raumwärmeintensive Dienstleistungsbranche,
• Textilreinigungsbetriebe als prozesswärmeintensive Dienstleistungsbranche,
• Bäckereien als produzierende Handwerksbetriebe sowie
• Lebensmitteleinzelhandel als Branche aus dem Handelssектор.

Bei der Umfrage wurden insgesamt über 5.000 Fragebögen an Unternehmen versandt. Die Auswahl der Stichproben orientierte sich dabei an vorhandenen Statistiken über die Größenverteilung der Betriebe in einer Branche. Da die Struktur der ausgewählten Stichprobe jedoch von zwei Komponenten abhängig ist, nämlich sowohl von vorhandenem Adressenmaterial bei Verbänden, als auch von dem Rücklauf der Antworten durch die Unternehmen, ist das Ergebnis immer nur eine Annäherung an die Größenverteilung der Betriebe innerhalb der gesamten Branche.

Die Daten aus dem Rücklauf der Fragebögen mussten im Rahmen einer Nachbearbeitung auf Vollständigkeit und Plausibilität überprüft werden. Dies bedeutet, dass bei unvollständigen oder widersprüchlichen Angaben telefonisch Daten ergänzt oder korrigiert wurden. Im Rahmen der Plausibilitätstests wurde zum Beispiel eine Überprüfung der resultierenden Energiepreise aus den Angaben des Verbrauches und der Kosten eines

Zum einen können so die durchschnittlichen Energieverbräuche und -kosten in den Unternehmen, bezogen auf eine sinnvolle Einheit (z. B. auf die Betriebsfläche), ermittelt werden. Hieraus ergeben sich Branchenergiekennzahlen, die einen Anhaltswert für die Einschätzung einzelner Betriebe geben können. Das Vorgehen zur Bestimmung solcher Kennwerte wurde in Kapitel 2.3 erläutert. Zum anderen können, aufbauend auf den vorhandenen Verbrauchs- und Gerätedaten, Berechnungen über die Verteilung des Energieverbrauchs auf die Verwendungszwecke durchgeführt werden. Dazu wurden Energiebilanzen für die verwendeten Energieträger nach dem Schema in Abb. 2-6 aufgestellt.

Abb. 2-6: Modellierung eines Gewerbebetriebes am Beispiel des Energieträgers Erdgas in der Textilreinigung

2.5 Hotelbranche

Die Struktur der Hotelbranche in Deutschland (mit 294.000 Beschäftigten /DEHOGA 1998/) ist heterogen, da die Branche sowohl große Luxushotels als auch kleine Landgasthöfe und Pensionen, Hotels mit ausgedehntem Restaurantangebot und ausgesprochene Frühstückshotels, sogenannte "Hotel garni" umfasst. Die Betriebe unterscheiden sich in ihrer Geräte- und Anlagenausstattung, so dass sich unterschiedliche Energieverbrauchsstrukturen ergeben, die bei einer Auswertung zu berücksichtigen sind. Tab. 2-2 verdeutlicht dies mit einer Übersicht über Energieverbraucher, die in verschiedenen Bereichen von Hotels vorkommen.

Tab. 2-2: Typische Energieverbraucher in Hotels

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Geräte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gästezimmer</td>
<td>• Beleuchtung</td>
</tr>
<tr>
<td></td>
<td>• evtl. dezentrale Warmwassererhitzer</td>
</tr>
<tr>
<td></td>
<td>• Minibar</td>
</tr>
<tr>
<td></td>
<td>• Fernseher</td>
</tr>
<tr>
<td>Foyer / Gänge</td>
<td>• Beleuchtung</td>
</tr>
<tr>
<td></td>
<td>• Aufzüge</td>
</tr>
<tr>
<td>Küche / Restaurant</td>
<td>• Beleuchtung</td>
</tr>
<tr>
<td></td>
<td>• Kessel</td>
</tr>
<tr>
<td></td>
<td>• Friteuse</td>
</tr>
<tr>
<td></td>
<td>• Mikrowelle</td>
</tr>
<tr>
<td></td>
<td>• Kühlenschrank</td>
</tr>
<tr>
<td></td>
<td>• Kühlraum</td>
</tr>
<tr>
<td></td>
<td>• Herd</td>
</tr>
<tr>
<td></td>
<td>• Kippbratpfanne</td>
</tr>
<tr>
<td></td>
<td>• Heißluftdämpfer</td>
</tr>
<tr>
<td></td>
<td>• Spülmaschine</td>
</tr>
<tr>
<td></td>
<td>• Tiefeinrichtung</td>
</tr>
<tr>
<td></td>
<td>• Brat-/Backofen</td>
</tr>
<tr>
<td></td>
<td>• Grillplatte</td>
</tr>
<tr>
<td></td>
<td>• Bain maries (Wasserbad)</td>
</tr>
<tr>
<td></td>
<td>• Rechauds</td>
</tr>
<tr>
<td></td>
<td>• Dunstabzugshauben</td>
</tr>
<tr>
<td>Haustechnik</td>
<td>• Heizkessel</td>
</tr>
<tr>
<td></td>
<td>• Abluftventilatoren</td>
</tr>
<tr>
<td></td>
<td>• Kältemaschinen (Klimaanlagen)</td>
</tr>
<tr>
<td>Schwimmbad etc.</td>
<td>• Pumpen</td>
</tr>
<tr>
<td></td>
<td>• Beleuchtung</td>
</tr>
<tr>
<td></td>
<td>• Heizanlagen</td>
</tr>
<tr>
<td></td>
<td>• Saunaofen</td>
</tr>
<tr>
<td>Büro</td>
<td>• Kopier</td>
</tr>
<tr>
<td></td>
<td>• Beleuchtung</td>
</tr>
<tr>
<td></td>
<td>• Computer</td>
</tr>
<tr>
<td></td>
<td>• Faxgerät, Telefonanlage</td>
</tr>
</tbody>
</table>

Abb. 2-7 zeigt die durchschnittliche Aufteilung des Energieverbrauchs und der Energiekosten, die sich aus den Daten der Umfrage in der Hotelbranche ergeben. Die
Schwerpunkte des Energieverbrauchs und die Schwerpunkte der Energiekosten liegen in der Branche bei unterschiedlichen Energieträgern. Während der Anteil des Stromverbrauchs nur zirka ein Drittel des Energieverbrauchs ausmacht, verursacht der Stromverbrauch 73 % der Energiekosten. Der Verbrauch an Erdgas liegt bei 42 %, verursacht aber nur 11 % der Kosten.

Abb. 2-7: Aufteilung von Energieverbrauch und -kosten auf die Energieträger in der Hotelbranche 1995

Der Anteil der Heizölkosten liegt bei nur 4 % während der Verbrauchsanteil des Heizöls 12 % des Endenergieverbrauchs einnimmt. Der Grund hierfür sind die unterschiedlichen Preise der einzelnen Energieträger, bezogen auf den Verbrauch in Kilowattstunden. Der durchschnittliche Strompreis liegt in der Hotelbranche bei 0,29 DM/kWh, während Erdgas und Heizöl durchschnittlich 0,04 DM/kWh kosten.

Es wird deutlich, dass bei elektrischen Anwendungen kostenseitig attraktive Möglichkeiten zur Minderung des Energieverbrauchs bestehen. Maßnahmen zur rationellen Verwendung von Energie, die die Brennstoffe Erdgas und Heizöl betreffen, werden trotz zum Teil beachtlicher Verminderung des Energieverbrauchs bei der Umsetzung in den Unternehmen wegen zu langer Amortisationszeiten eine niedrige Priorität erhalten. (Vergleiche hierzu Kapitel 3.1.2, 3.1.3 und Kapitel 4.4.) Bezüglich der Fernwärme ist zu beachten, dass der durchschnittliche Anteil der Fernwärme von 12 % am Energieverbrauch der Branche durch 13 % der Unternehmen bedingt ist, die jeweils einen hohen Anteil dieses Energieträgers aufweisen. Der durchschnittlichen Preis für Fernwärme liegt in der Branche bei 0,12 DM/kWh.

Der auf die Betriebsfläche bezogene Stromverbrauch ist als Verteilung über verschiedene Größenklassen im Häufigkeitsdiagramm in Abb. 2-8 dargestellt.
Abb. 2-8: Stromverbrauch pro Fläche in der Hotelbranche nach Größenklassen 1995

Die Gruppe der Hotels (mit Restaurant) zeigt eine breite Streuung der Ergebnisse von unter 30 kWh/(m² a) bis über 210 kWh/(m² a). Bei der Gruppe der "Hotel garni" ist die Streuung geringer als bei Hotels mit Restaurant und der jährliche flächenbezogene Stromverbrauch liegt grundsätzlich niedriger als bei Hotels. Die bei Hotel garni fehlenden umfassenden Küchen- und Restaurantbetriebe machen sich hier bemerkbar. Bei Hotels, die einen hohen Stromverbrauchs aufweisen, ist entweder eine Vielzahl von elektrischen Geräten vorhanden, die den insgesamt hohen Verbrauch verursachen, oder es existieren Schwachstellen, wie zum Beispiel alte Geräte, die mit einem schlechten Wirkungsgrad arbeiten und deshalb hohe Verluste aufweisen.

Wird der Stromverbrauch je Betriebsfläche zum Vergleich zwischen Hotels herangezogen, bleibt die Auslastung der Kapazitäten unberücksichtigt. So hat z. B. ein Hotel, das im Bezugsjahr der Erhebung eine geringe Auslastung der Bettenkapazität aufweist, durch den niedrigeren Energieverbrauch eine Kennzahl, die auf eine effiziente Energieverwendung schließen ließe. Bei normaler Auslastung kann aber die Kennzahl dieses Betriebes im Bereich hohen Verbrauchs liegen. Um diese Unsicherheit zu berücksichtigen, wird der Stromverbrauch auf die Anzahl der Übernachtungen bezogen. Damit wird ein Bezug hergestellt zwischen dem Energieaufwand und der Dienstleistung "Übernachtung". Bei Übernachtungen werden Einzel- und Doppelzimmer nicht unterschieden, da angenommen wird, dass der Energieverbrauch von Geräten, die sich außerhalb der Gästezimmer befinden, einen
erheblichen Anteil am Energieverbrauch je Übernachtung haben (vgl. Tab. 2-2). Die Verteilung des Stromverbrauchs in Größenklassen bezogen auf die Anzahl der Übernachtungen zeigt Abb. 2-9.

Abb. 2-9: Stromverbrauch pro Übernachtung in der Hotelbranche nach Größenklassen 1995

Beim Vergleich der Verteilung des Stromverbrauchs in Hotel garni bezogen auf die Fläche (Abb. 2-8) mit dem Stromverbrauch bezogen auf die Übernachtung (Abb. 2-9) zeigt sich eine geringere Streuung. Es wird deutlich, dass sich die Betriebe in ihrem spezifischen Stromverbrauch weniger unterscheiden, wenn dieser um die Auslastung bereinigt ist. Für Hotels (mit Restaurant) ist die Streuung auch dann groß, wenn der Stromverbrauch auf die Übernachtung bezogen wird (Abb. 2-9). Bei den Betrieben, die mehr als 56 kWh je Übernachtung aufweisen, handelt es sich um kleine Hotels mit extrem niedriger Bettenauslastung (weniger als 5 %) und um Hotels, die ausschließlich Strom als Endenergie nutzen, also auch Raumwärme elektrisch bereitstellen.

Für die Bildung der Energiekennzahlen für jeden Unternehmensotyp (Hotel, Hotel garni) wird die in Kapitel 2.2 erläuterte Methode angewendet, so dass ein Richtwert und ein durchschnittlicher Wert (Median) als Kennwerte ausgewiesen werden. Tab. 2-3 zeigt die ermittelten Kennwerte auf Basis der vorliegenden Betriebsdaten. Die Energiekennzahlen sind dabei auf die Betriebfläche und auf die Anzahl der jährlichen Übernachtungen (für den auslastungsunabhängigen Vergleich zwischen Hotels) bezogen. Bei den Gesamtenergiekosten
liegt der Richtwert bei 3,80 DM pro Übernachtung für Hotels, während im Branchenmittel 7,80 DM je Übernachtung an Energiekosten aufgewendet werden.

Tab. 2-3: Energiekennwerte für die Hotelbranche 1995

<table>
<thead>
<tr>
<th>Energiekennwert</th>
<th>Einheit</th>
<th>Bezugsgruppe</th>
<th>gut (Richtwert)</th>
<th>mittel (Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtenergieverbrauch je Betriebsfläche</td>
<td>kWh/m²a</td>
<td>Hotel</td>
<td>174,0</td>
<td>289,0</td>
</tr>
<tr>
<td>Gesamtenergiekosten je Betriebsfläche</td>
<td>DM/m²a</td>
<td>Hotel</td>
<td>17,3</td>
<td>32,1</td>
</tr>
<tr>
<td>Gesamtenergieverbrauch je Übernachtung</td>
<td>kWh</td>
<td>Hotel</td>
<td>35,0</td>
<td>81,0</td>
</tr>
<tr>
<td>Gesamtenergiekosten je Übernachtung</td>
<td>DM</td>
<td>Hotel</td>
<td>3,8</td>
<td>7,8</td>
</tr>
<tr>
<td>Stromverbrauch je Betriebsfläche</td>
<td>kWh/m²a</td>
<td>Hotel</td>
<td>36,0</td>
<td>83,0</td>
</tr>
<tr>
<td>Stromverbrauch je Übernachtung</td>
<td>kWh</td>
<td>Hotel</td>
<td>8,3</td>
<td>20,7</td>
</tr>
<tr>
<td>Stromkosten je Übernachtung</td>
<td>DM</td>
<td>Hotel</td>
<td>2,4</td>
<td>4,6</td>
</tr>
</tbody>
</table>

Aus der Analyse der Daten ergibt sich, dass nicht nur einfach ausgestattete Hotels mit geringen Energiekosten auskommen, sondern auch Hotels mit hohem Komfort, so dass sich die Unterschiede nicht nur auf unterschiedlichen Umfang und Qualität der Dienstleistung "Beherbergung" zurückführen lassen. Das bedeutet, dass für viele Unternehmen Potenziale zur Energiekostensenkung vorliegen müssen.

Um Kosteneinsparpotenziale im gesamtbetrieblichen Zusammenhang bewerten zu können, muss der Anteil der Energiekosten an den Gesamtkosten der Hotelunternehmen betrachtet werden. Der Mittelwert aller Energiekostenanteile liegt für Hotels bei 9,1 % und für Hotel garni bei ca. 13 %. Der erhobene Energiekostenanteil ist, verglichen mit anderen Dienstleistungsbranchen, als hoch anzusehen /StatBuA 1992/. In nicht-produzierenden Branchen des Kleinverbrauchersektors sind gemäß der vorliegenden Statistik Energiekostenanteile unter 10 % üblich.

Abb. 2-10: Aufteilung des Energieverbrauchs auf Verwendungswecke in der Hotelbranche 1995

Der Verbrauch an Trinkwasser in Hotelbetrieben wird ermittelt, da er über das Brauchwarmwasser den Energieverbrauch beeinflusst. Der Wasserverbrauch lässt sich auf die Anzahl der Übernachtungen beziehen und wird entsprechend in Litern pro Übernachtung ausgewiesen. Abb. 2-11 stellt die Verteilung des erhobenen Trinkwasserriegs in der Hotelbranche dar. Auffällig ist das hohe Niveau des Wasserverbrauchs je Übernachtung, wobei bei Hotels mit Restaurant eine sehr breite Streuung vorhanden ist. Der Wasserverbrauch in Hotels reicht von unter 75 Litern je Übernachtung bis über 750 Litern und unterscheidet sich damit um mehr als das Zehnfache.

Abb. 2-11: Wasserverbrauch von Hotelbetrieben nach Größenklassen 1995

2.6 Textilreinigung

Die in der Branche vertretenen Betriebe "Wäschereien", "Reinigungen" und Mischbetriebe mit Anteilen beider Betriebsarten besitzen bedingt durch ihr Dienstleistungsangebot verschiedenartige Geräte- und Anlagenausstattung. In Tab. 2-4 sind die Energieverbraucher zusammengestellt, die in den Betriebsbereichen vorkommen.

| Tab. 2-4: Typische Energieverbraucher in Wäschereien/Reinigungen |
|-------------------|-------------------|
| **Bereich** | **Geräte** |
| Waschen und Reinigen |
| • Waschschleudermaschinen |
| • Waschstränen |
| • Reinigungsmaschinen KWL |
| • Waschschleuderstraßen |
| • Reinigungsmaschinen PER |
| • Detachiergeräte |
| Trocknen |
| • Zentrifugen |
| • Transfertakttrockner |
| • Trockenschränke für Textilien |
| • Trockner allgemein |
| Bügeln und Formen |
| • Bügelisier |
| • Bügelmaschinen |
| • Dämpfschränke |
| • Dämpfpuppen |
| • Topfer |
| • Mangel, 3 Walzen |
| • Bügelgeräte |
| • Bügelpressen |
| • Dämpftunnel |
| • Pressen |
| • Mangel, 2 Walzen |
| Hilfsgeräte |
| • Wäschetransportsysteme |
| Haustechnik, zentrale Energieumwandlung |
| • Dampferzeuger |
| • Kältemaschinen (Klimaanlagen) |
| • Heizkessel |
| • Abluftventilatoren |
| Büro |
| • Kopierer |
| • elektrische Kassen |
| • Computer |
| • Ventilatoren |
| Alle Bereiche |
| • Beleuchtung |

In der Regel werden die Maschinen für das Waschen, Bügeln, Dämpfen und Mangeln mit Hilfe eines zentralen Dampferzeugers zur innerbetrieblichen Energieversorgung betrieben. Im Rahmen der Datenerhebung sind 131 Unternehmen aus der Branche untersucht worden.

Abb. 2-12: Aufteilung von Energieverbrauch und -kosten auf die Energieträger in der Textilreinigungsbranche 1995

Die Höhe des jährlichen Energieverbrauchs je Betriebsfläche für die untersuchten Betriebe der Textilreinigungsbranche ist in Abb. 2-13 dargestellt. Die entsprechenden Energiekennzahlen auf Basis dieser Betriebsdaten ergeben einen Durchschnittswert für Textilreinigungsbetriebe von 1.443 kWh/(m² a) und einen Richtwert von 572 kWh/(m² a). Die Bandbreite des Energieverbrauchs reicht von weniger als 500 kWh/(m² a) bis über 5.000 kWh/(m² a). Diese Streuung ist auch bedingt durch unterschiedliche Betriebsstrukturen in der Branche. Beispielsweise gibt es Betriebe in Innenstadtbereichen, die auf sehr kleiner Fläche einen großen Durchsatz an Wäsche aufweisen und damit einen entsprechend hohen flächenbezogenen Energieverbrauch haben. Aus diesem Grunde wird der Verbrauch auch auf die verarbeitete Textilmenge bezogen.

Eine Aufteilung der Branche in Wäschereien und Reinigungen ist wegen der unterschiedlichen Energieanwendungen sinnvoll, da sich der typische Wäschereibetrieb durch hohen Wärme- und Wasserbedarf für Waschmaschinen und Waschstraßen auszeichnet, während im Reinigungsbetrieb (elektrische) Reinigungsmaschinen und Detachiergeräte (Fleckentfernungsgeräte) zum Einsatz kommen (vgl. Tab. 2-4).

Abb. 2-14 stellt den Verbrauch der Energieträger Erdgas und Heizöl für die Gruppe der Wäschereibetriebe dar. Der aus den erhobenen Verbräuchen berechnete Energiekennwert ergibt einen durchschnittlichen Brennstoffverbrauch für Wäschereien von 1,44 kWh/kg_{TW}.

Abb. 2-13: Gesamtenergieverbrauch in Textilreinigungsbetrieben nach Größenklassen 1995
Abb. 2-14: Brennstoffverbrauch für Wäschereibetriebe nach Größenklassen 1995

Der Richtwert als Anhaltswert für haushaltsen Brennstoffverbrauch liegt bei 0,97 kWh/kg_{TW}. Der Verbrauch an Erdgas und Heizöl für die Gruppe der Reinigungsbetriebe ist in Abb. 2-15 dargestellt.

Abb. 2-15: Brennstoffverbrauch für Reinigungsbetriebe nach Größenklassen 1995
Ein Vergleich des Brennstoffverbrauchs mit dem Wäschereibetrieb ist, bedingt durch die unterschiedlichen in der Branche üblichen Bezugsgrößen "Anzahl Textilstücke" für Reinigungen und "kg Trockenwäsche" für Wäschereien, nicht möglich.

Der Energiekennwert für Reinigungen liegt für durchschnittlichen Brennstoffverbrauch bei 1,90 kWh/Stk_{Tex}. Der Richtwert für haushälterischen Brennstoffverbrauch liegt bei 1,14 kWh/Stk_{Tex}. Die Verteilungen in Abb. 2-14 und Abb. 2-15 zeigen, dass sich der Energieeinsatz bezüglich der bearbeiteten Wäsche jeweils um das Dreiein Vielfache unterscheidet. Es ist daher zu erwarten, dass für Betriebe im oberen Verbrauchsbereich Potenziale zur Energieverbrauchsersenkung bestehen.

In Tab. 2-5 sind die Energiekennwerte für Textilreinigungsbetriebe zusammengestellt. Die Gesamtenergiekosten von 122 DM pro m² Betriebsfläche und Jahr stellen gemäß Umfragedaten durchschnittlich 9,4 % der gesamtbetrieblichen Kosten dar. Beim Stromverbrauch je Wäschemenge ergeben sich für Wäschereibetriebe als Durchschnittswert 0,12 kWh/kg_{TW} und 0,08 kWh/kg_{TW} für den Richtwert.

Tab. 2-5: Energiekennwerte für die Textilreinigungsbranche 1995

<table>
<thead>
<tr>
<th>Energiekennwert</th>
<th>Einheit</th>
<th>Bezugsgruppe</th>
<th>gut (Richtwert)</th>
<th>mittel (Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtenergieverbrauch je Betriebsfläche</td>
<td>kWh/m²*a</td>
<td>alle</td>
<td>572,0</td>
<td>1443,0</td>
</tr>
<tr>
<td>Gesamtenergiekosten je Betriebsfläche</td>
<td>DM/m²*a</td>
<td>alle</td>
<td>60,0</td>
<td>122,0</td>
</tr>
<tr>
<td>Brennstoffverbrauch je Trockenwäsche</td>
<td>kWh/kg_{TW}</td>
<td>Wäscherei</td>
<td>0,97</td>
<td>1,44</td>
</tr>
<tr>
<td>Stromverbrauch je Trockenwäsche</td>
<td>kWh/kg_{Tw}</td>
<td>Wäscherei</td>
<td>0,08</td>
<td>0,12</td>
</tr>
<tr>
<td>Brennstoffverbrauch je Textilstück</td>
<td>kWh/Stk_{Tex}</td>
<td>Reinigung</td>
<td>1,14</td>
<td>1,90</td>
</tr>
<tr>
<td>Stromverbrauch je Textilstück</td>
<td>kWh/Stk_{Tex}</td>
<td>Reinigung</td>
<td>0,26</td>
<td>0,43</td>
</tr>
<tr>
<td>Stromverbrauch je Betriebsfläche</td>
<td>kWh/m²*a</td>
<td>Wäscherei</td>
<td>65,0</td>
<td>169,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reinigung</td>
<td>111,0</td>
<td>293,0</td>
</tr>
</tbody>
</table>

Für Reinigungen liegt der Durchschnittswert bei 0,43 kWh/Stk_{Tex}. Der Richtwert beträgt 0,26 kWh/Stk_{Tex}. Einen Quervergleich beider Betriebsarten ermöglicht der flächenbezogene Stromverbrauch. Wäschereien weisen einen durchschnittlichen Stromverbrauch von 169 kWh/(m²·a) auf, während Reinigungen bei 293 kWh/(m²·a) liegen. Die in Reinigungen bestehende Vielfalt an elektrisch betriebenen Geräten zur Fleckentfernung und für das Finishing der Textilien kann ebenso wie Lüftungsanlagen dafür verantwortlich sein.

Die Aufteilung des Energieverbrauchs auf Verwendungszwecke ist (für alle Betriebstypen) in Abb. 2-16 dargestellt. Da 92 % aller Textilreinigungsbetriebe einen zentralen Dampferzeuger
besitzen und Dampf als internen Energieträger verwenden, wird dieser Anteil separat ausgewiesen.

\[\text{Verluste} \quad 27,8\% \quad \text{ohne Zuordnung} \quad 13,2\%\]

Abb. 2-16: Aufteilung des Energieverbrauchs der Textilreinigungsbranche auf die Verwendungszwecke 1995

Der Energieverbrauch wird stark durch den Wärmbedarf bestimmt. So werden insgesamt 27% der Energie direkt oder mittels Dampf für Prozesswärme verwendet. Einen annähernd gleich großen Anteil hat die Raumwärme mit insgesamt 25,1% (direkt und mittels Dampf).

Der Wasserverbrauch stellt in Textilreinigungsbetrieben einen wesentlichen Verbrauchs- und Kostenfaktor dar. Der Wasserverbrauch der Wäschereibetriebe bezogen auf die Wäschemenge ist in Abb. 2-17 dargestellt. Für den auf die Betriebsfläche bezogenen Wasserverbrauch in m³ ergibt sich ein Branchenmittel für alle Betriebsarten von 8,4 m³/m². Reinigungsbetriebe weisen dabei einen wesentlich niedrigeren durchschnittlichen Wasserverbrauch auf, was auf die Unterschiede in der Dienstleistungsart zurückzuführen ist. Die Wasserkosten liegen, bezogen auf die Betriebsfläche, bei 54,90 DM/(m² a) für Wäschereien und bei 14,50 DM/(m² a) für Reinigungen. Aus der Verteilung ergibt sich ein durchschnittlicher Wasserverbrauch von 10,7 Liter/kg_{TW}. Der Richtwert liegt bei 6,9 Liter/kg_{TW}. Bei Reinigungen beträgt der Durchschnittswert 7,3 Liter/Stk_{Tex} und der Richtwert 2,7 Liter/Stk_{Tex}.
2.7 Bäckereien

Die Stichprobe aus der Datenerhebung umfasst 148 Bäckereien und Mischbetriebe Bäckereien/Konditoreien in Deutschland (Rücklaufquote verschickter Fragebögen von ca. 18 %) mit zwei bis 200 Beschäftigten. Es sind Betriebe enthalten mit einem Mehlerbrauch von weniger als 100 kg täglich bis zu Betrieben mit mehreren Tonnen Mehl pro Tag. Da Bäckereien abgesehen von Mehl als Grundstoff auch Tiefkühlteiglinge verarbeiten bzw. fertig backen und dies getrennt erhoben wurde, wird die Summe als "Rohstoffmenge" bezeichnet und neben der Betriebsfläche als Bezugsgröße verwendet.
Tab. 2-6: Typische Energieverbraucher in Bäckereien/Konditoreien

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Geräte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmegeräte</td>
<td>• Etagen-, Stikken-, Wagenbacköfen</td>
</tr>
<tr>
<td></td>
<td>• Gärautomaten</td>
</tr>
<tr>
<td></td>
<td>• Gas-Hockerkocher</td>
</tr>
<tr>
<td></td>
<td>• Spülmaschine</td>
</tr>
<tr>
<td></td>
<td>• Klimagärraum</td>
</tr>
<tr>
<td></td>
<td>• Feinbackgerät</td>
</tr>
<tr>
<td></td>
<td>• Kuvertüre-, Temperiergerät</td>
</tr>
<tr>
<td></td>
<td>• Korbspülmaschine</td>
</tr>
<tr>
<td>Kühlgeräte</td>
<td>• Schockzelle / Frosterzelle</td>
</tr>
<tr>
<td></td>
<td>• Gärverzögerer, -unterbrecher / Lagerzelle</td>
</tr>
<tr>
<td></td>
<td>• Kühlsschrank</td>
</tr>
<tr>
<td>Teigbereitungsmaschinen</td>
<td>• Mehlisol</td>
</tr>
<tr>
<td></td>
<td>• Sauerteiganlage</td>
</tr>
<tr>
<td></td>
<td>• Teigteil- und Wirkmaschine</td>
</tr>
<tr>
<td></td>
<td>• Brotteigteilmaschine</td>
</tr>
<tr>
<td></td>
<td>• Ausrollmaschine</td>
</tr>
<tr>
<td></td>
<td>• Brötchenanlage</td>
</tr>
<tr>
<td></td>
<td>• Verpackungsmaschine</td>
</tr>
<tr>
<td></td>
<td>• Hörnchenwickelmaschine</td>
</tr>
<tr>
<td></td>
<td>• Knetmaschinen</td>
</tr>
<tr>
<td></td>
<td>• Eiswasserbereiter</td>
</tr>
<tr>
<td></td>
<td>• Hebekipper</td>
</tr>
<tr>
<td></td>
<td>• Rund- und Langwirker</td>
</tr>
<tr>
<td></td>
<td>• Schneidetisch</td>
</tr>
<tr>
<td></td>
<td>• Brotschneidemaschine</td>
</tr>
<tr>
<td></td>
<td>• Blechputzmaschine</td>
</tr>
<tr>
<td></td>
<td>• Rühr- und Anschlagmaschine</td>
</tr>
<tr>
<td>Verkaufsbereich</td>
<td>• Beleuchtung</td>
</tr>
<tr>
<td></td>
<td>• Laden-Kühltheke</td>
</tr>
<tr>
<td></td>
<td>• Ladenbacköfen</td>
</tr>
<tr>
<td></td>
<td>• elektrische Kassen</td>
</tr>
<tr>
<td>Haustechnik</td>
<td>• Heizkessel</td>
</tr>
<tr>
<td></td>
<td>• Wärmepumpe</td>
</tr>
<tr>
<td></td>
<td>• Wärmetauscher (Abwärme Backöfen, Kühlgeräte)</td>
</tr>
<tr>
<td></td>
<td>• Abluftanlage</td>
</tr>
<tr>
<td></td>
<td>• Klimaanlage</td>
</tr>
</tbody>
</table>

Eine Aufteilung der Branche in Untergruppen (Bäckereien und Konditoreien) wurde für die Untersuchung nicht vorgenommen, da keine eindeutige Zuordnungsmöglichkeit der häufig vorkommenden Mischbetriebe zu einer Gruppe besteht. Die Anteile der Energieträger am Energieverbrauch und an den Energiekosten sind in Abb. 2-18 dargestellt. Die Verteilung zeigt, dass in dieser Branche der größte Teil des Energiebedarfs (40 %) mit Erdgas gedeckt wird.

31 % der Energie werden elektrisch bereitgestellt, Heizöl trägt zu 29 % des Energieverbrauchs bei. Fernwärme und Flüssiggas spielen in der Bäckereibranche keine Rolle. Der große Anteil von Strom ist auf die Verbreitung elektrischer Backöfen zurückzuführen. Dadurch bedingt werden die Energiekosten eindeutig von den Stromkosten bestimmt.

Abb. 2-18: Aufteilung von Energieverbrauch und -kosten auf die Energieträger in Bäckereien 1995
Abb. 2-19 stellt die Höhe des Gesamtenergieverbrauchs bezogen auf die Betriebsfläche der Bäckereibetriebe dar. Die meisten Bäckereien haben einen Verbrauch zwischen 600 und 900 kWh/(m² a). Die Bandbreite des Energieverbrauchs reicht von unter 300 kWh/(m² a) bis zu Betrieben mit mehr als 2.400 kWh/(m² a), was den achtfachen Verbrauch bedeutet. Der Median als Branchendurchschnitt beträgt 847 kWh/(m² a). Der Richtwert liegt bei 409 kWh/(m² a), also bei weniger als der Hälfte des Durchschnittswerts.

![Bar Chart]

Abb. 2-19: Gesamtenergieverbrauch bezogen auf die Betriebsfläche in der Bäckereibranche nach Größenklassen 1995

Der große Abstand zwischen dem Durchschnitt und den Werten der Betriebe im oberen Bereich deutet auf unterschiedliche Flächennutzung in Bäckereien oder auf vorhandene Potenziale zur Energieverbrauchsminderung hin.

Um den Energieverbrauch der Betriebe um die Auslastung bereinigt zu betrachten, ist der Gesamtenergieverbrauch auf die verarbeitete Rohstoffmengen bezogen (Mehl und Fertigteiglinge) in Abb. 2-20 dargestellt. Die Verteilung der Häufigkeiten der Betriebe über die Größenklassen entspricht in der Tendenz der Verteilung bezogen auf die Betriebsfläche (Abb. 2-19). Der Durchschnittswert der Branche für den Energieverbrauch bezogen auf die Rohstoffmenge beträgt 1.678 kWh/t\(_{RS}\). Der entsprechende Richtwert als Zielwert für effiziente Energienutzung beträgt 790 kWh/t\(_{RS}\).

Eine kostenseitige Betrachtung des betrieblichen Energiebezugs im Branchenvergleich zusammen mit der Kennzahl für den Energieverbrauch ermöglicht es, für einen individuellen Bäckereibetrieb eine Aussage über den Bezugspreis der Endenergie zu machen. Abb. 2-21 zeigt dazu die Verteilung der jährlichen Gesamtkosten bezogen auf die Betriebsfläche. Danach fallen bei zwei Drittel der Bäckereibetriebe (66 %) jährliche Energiekosten zwischen 40 und 120 DM/(m² a) an. Der Durchschnittswert liegt bei 94 DM/(m² a), der Richtwert für kostengünstigen Verbrauch beträgt 51 DM/(m² a).

Wenn ein individueller Betrieb beispielsweise einen im Vergleich mit dem Branchendurchschnitt von 94 DM/(m² a) hohen Energiekostenkennwert von 240 DM/(m² a) aufweist und gleichzeitig einen im Vergleich mit dem Branchendurchschnitt von 847 kWh/(m² a) günstigen Energieverbrauchskennwert von 500 kWh/(m² a), so lässt sich für dieses Beispiel ableiten, dass bei dem betrachteten Betrieb Kosteneinsparungen zuerst bei den Stromtarifen und bei den Bezugspreisen von Brennstoffen zu suchen sind und erst danach
Kosteneinsparungen durch Maßnahmen zur Reduzierung des Energieverbrauchs untersucht werden sollten.

Die Diagramm Abb. 2-21 zeigt die Gesamtenergiekosten pro Betriebsfläche von Bäckereien in DM/ (m² a) aufgeteilt nach Größenklassen 1995.

Eine Zusammenfassung der Kennwerte für Energieverbrauch und Energiekosten ist in der Tab. 2-7 gegeben. Bei Kennzahlen des Stromverbrauchs und des Brennstoffverbrauchs ist zu beachten, dass die Energiearten nicht isoliert betrachtet werden können, da die Art des Energieträgers, mit dem der Backofen betrieben wird, beide Kennzahlen wesentlich beeinflusst.

So ergibt sich für einen Bäckereibetrieb eine günstige Kennzahl für den Brennstoffverbrauch pro verarbeitete Rohstoffmenge, wenn in diesem Betrieb der Backofen elektrisch betrieben wird. Demzufolge ist der Stromverbrauchskennwert hoch und der Brennstoffkennwert entsprechend günstiger. Daher ist der Gesamtenergieverbrauch zu betrachten, um die Gesamteffizienz abschätzen zu können. Im betrieblichen Zusammenhang liegt der Energiekostenanteil in Bäckereien, d.h. die Energiekosten bezogen auf die Gesamtkosten, durchschnittlich bei 7,4 %. Nach den Ergebnissen für die Stichprobe haben ca. 80 % der Betriebe einen Energiekostenanteil zwischen 3 und 10 %. Der Mittelwert der Strompreise liegt bei 0,30 DM/kWh.
Tab. 2-7: Energiekennwerte für das Bäckereihandwerk 1995

<table>
<thead>
<tr>
<th>Energiekennwert</th>
<th>Einheit</th>
<th>gut (Richtwert)</th>
<th>mittel (Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtenergieverbrauch je Betriebsfläche</td>
<td>kWh/m²a</td>
<td>409,0</td>
<td>847,0</td>
</tr>
<tr>
<td>Stromverbrauch je Betriebsfläche</td>
<td>kWh/m²a</td>
<td>109,0</td>
<td>231,0</td>
</tr>
<tr>
<td>Brennstoffverbrauch je Betriebsfläche</td>
<td>kWh/m²a</td>
<td>229,0</td>
<td>648,0</td>
</tr>
<tr>
<td>Gesamtennergiekosten je Betriebsfläche</td>
<td>DM/m²a</td>
<td>51,0</td>
<td>94,0</td>
</tr>
<tr>
<td>Stromkosten je Betriebsfläche</td>
<td>DM/m²a</td>
<td>33,0</td>
<td>67,0</td>
</tr>
<tr>
<td>Brennstoffkosten je Betriebsfläche</td>
<td>DM/m²a</td>
<td>11,0</td>
<td>28,0</td>
</tr>
<tr>
<td>Gesamtenergieverbrauch je verarb. Rohstoff</td>
<td>kWh/t.rs</td>
<td>790,0</td>
<td>1678,0</td>
</tr>
<tr>
<td>Brennstoffverbrauch je verarb. Rohstoff</td>
<td>kWh/t.rs</td>
<td>467,0</td>
<td>1256,0</td>
</tr>
<tr>
<td>Stromverbrauch je verarb. Rohstoff</td>
<td>kWh/t.rs</td>
<td>194,0</td>
<td>454,0</td>
</tr>
<tr>
<td>Gesamtennergiekosten je verarb. Rohstoff</td>
<td>DM/t.rs</td>
<td>85,0</td>
<td>193,0</td>
</tr>
</tbody>
</table>

Abb. 2-22 verdeutlicht, wie sich der Energieverbrauch in Bäckereien durchschnittlich auf die Verwendungszwecke aufteilt. 77,6 % des Energieverbrauchs ist Wärmeanwendungen zuzuordnen, davon allein 51,1 % der Prozesswärme. 12,5 % werden für elektrische Antriebe aufgewendet. Es zeigt sich, dass die Energieverbrauchsstruktur in der Bäckereibranche sehr stark vom Wärmeverbrauch dominiert wird.

Abb. 2-22: Aufteilung des Gesamtenergieverbrauchs in Bäckereien auf die Verwendungszwecke 1995
Aus den Erhebungen ergibt sich, dass 1,4 % der Bäckereien den Raumwärmebedarf ausschließlich mittels Abwärme von Backöfen decken. Der Raumwärme- und Warmwasserbedarf wird bei 95 % der Betriebe mit Brennstoffen und bei 3,6 % mit Strom und Fernwärme gedeckt.

Der Wasserverbrauch in Bäckereien beeinflusst die allgemeinen Betriebskosten über die Beschaffungskosten und die Energiekosten über den Warmwasserverbrauch. 27 % der Bäckereien nutzen Abwärme von Backöfen oder Kühleräumen zur Deckung des Wärmebedarfs für das Brauchwarmwasser, in 58 % der Betriebe wird dieser Wärmebedarf durch Kombikessel zusammen mit dem Raumwärmebedarf gedeckt. Die restlichen Betriebe besitzen separate Geräte zur Aufheizung des Brauchwarmwassers, die dann überwiegend elektrisch betrieben werden (80 %). In Abb. 2-23 sind die Häufigkeiten der Größenklassen des gesamten Wasserverbrauchs der Betriebe dargestellt, wobei der Verbrauch auf die verarbeitete Rohstoffmenge bezogen ist. Auffallend ist die Streuung der Werte in den verschiedenen Betrieben. Der durchschnittliche Wasserverbrauch liegt bei 3,4 Litern je kg und der Richtwert bei 1,4 Litern je kg Mehl und Teiglingen.

Abb. 2-23: Wasserverbrauch bezogen auf die verarbeitete Rohstoffmenge im Bäckereihandwerk nach Größenklassen 1995
2.8 Lebensmitteleinzelhandel

Der Lebensmitteleinzelhandel wurde aufgrund seiner weiten Verbreitung mit über 145.000 Supermärkten und insgesamt 852.000 Beschäftigten in Deutschland /StatBuA 1998/ und wegen seiner Energieintensität für eine eingehende Untersuchung ausgewählt. Betriebe der Branche (Supermärkte) nutzen eine Vielzahl an Geräten zur Kühlung und zur Aufbereitung (z. B. Wurstschneiden, Kaffeemahlen) der angebotenen Lebensmittel. Tab. 2-8 stellt die wesentlichen Energieverbraucher in Supermärkten zusammen.

Aus der Energiedatenerhebung für den Lebensmitteleinzelhandel sind nur Umfragedaten von 21 Betrieben verfügbar. Diese enthalten die Energiedaten zur Bestimmung von Kennzahlen, wie den jährlichen Energieverbrauch, die Energiekosten und die Verkaufsflächen. Gerätedaten sind so unvollständig vorhanden, dass damit keine Aufteilung des Energieverbrauchs auf die Verwendungszwecke bestimmt werden kann. Deshalb müssen die Daten mit Daten aus anderen Untersuchungen ergänzt werden, um die Energieanalyse, die in Kapitel 2.5 bis 2.7 für die anderen Branchen angewendet wurde, auch für den Lebensmittel- einzelhandel durchführen zu können. Für die Branche liegt eine Untersuchung vor, die sich auf eine regionale Auswahl von Lebensmitteleinzelhandelsmärkten bezieht und aus der die Aufteilung des Energieverbrauchs auf die Verwendungszwecke abgeleitet werden kann. So sind sieben Franchising-Märkte in Baden-Württemberg ausführlich besichtigt und analysiert worden /Winkler 1995/, /KEA 1996/.

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Geräte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Bereiche</td>
<td>Beleuchtung</td>
</tr>
<tr>
<td>Arbeitsgeräte</td>
<td>Akkuladestation</td>
</tr>
<tr>
<td></td>
<td>Bandsäge</td>
</tr>
<tr>
<td></td>
<td>Fleischwolf</td>
</tr>
<tr>
<td></td>
<td>Elektrische Kassen mit Förderband</td>
</tr>
<tr>
<td></td>
<td>Rolltor</td>
</tr>
<tr>
<td></td>
<td>Schnitzler</td>
</tr>
<tr>
<td></td>
<td>Vakuum-Verpacker</td>
</tr>
<tr>
<td></td>
<td>Aufzug</td>
</tr>
<tr>
<td></td>
<td>Cutter</td>
</tr>
<tr>
<td></td>
<td>Kaffeemühle</td>
</tr>
<tr>
<td></td>
<td>Kopiergerät</td>
</tr>
<tr>
<td></td>
<td>Schneidemaschine</td>
</tr>
<tr>
<td></td>
<td>Steaker</td>
</tr>
<tr>
<td>Kälte</td>
<td>Bedientheke Fleisch/Wurst</td>
</tr>
<tr>
<td></td>
<td>Bedientheke Käse</td>
</tr>
<tr>
<td></td>
<td>Getränkekühlschrank</td>
</tr>
<tr>
<td></td>
<td>Kühlregal</td>
</tr>
<tr>
<td></td>
<td>Kühltürine</td>
</tr>
<tr>
<td></td>
<td>Speiseeis-Truhe</td>
</tr>
<tr>
<td></td>
<td>Tiefkühltürhe</td>
</tr>
<tr>
<td></td>
<td>Bedientheke Fisch</td>
</tr>
<tr>
<td></td>
<td>Eisbereiter</td>
</tr>
<tr>
<td></td>
<td>Kühlraum</td>
</tr>
<tr>
<td></td>
<td>Kühltruhe</td>
</tr>
<tr>
<td></td>
<td>Salatbuffet</td>
</tr>
<tr>
<td></td>
<td>Tiefkühlinsel</td>
</tr>
<tr>
<td></td>
<td>Tortenkühltrine</td>
</tr>
<tr>
<td>Wärme</td>
<td>Backofen, Ladenbackofen</td>
</tr>
<tr>
<td></td>
<td>Grill</td>
</tr>
<tr>
<td></td>
<td>Herd</td>
</tr>
<tr>
<td></td>
<td>Combi-Dämpfer</td>
</tr>
<tr>
<td></td>
<td>Heizbodenmatten an Kassen</td>
</tr>
<tr>
<td></td>
<td>Mikrowelle</td>
</tr>
<tr>
<td>Haustechnik</td>
<td>Heizkessel, Warmwassererzeugung</td>
</tr>
<tr>
<td></td>
<td>Lüftungs-, Klimaanlage</td>
</tr>
</tbody>
</table>

Die Daten der sieben Märkte aus Baden-Württemberg /KEA 1996/ zusammen mit den Antworten der Umfrage ergeben eine Datenbasis mit 28 Betrieben, die eine Verkaufsfläche bis 1.000 m² aufweisen, und als Grundlage zur Ermittlung der Aufteilung von Energieverbrauch und Energiekosten auf die Energieträger sowie für Energiekennzahlen der Branche in diesem Kapitel dienen. Die Anteile der Energieträger im Lebensmitteleinzelhandel am Energieverbrauch und an den Energiekosten, wie sie sich aus diesen Daten ergeben, sind in Abb. 2-24 dargestellt.

![Energieverbrauch und Energiekosten](image)

Abb. 2-24: Aufteilung von Energieverbrauch und -kosten auf die Energieträger im Lebensmittel-Handel 1995

Die Aufteilung verdeutlicht die dominante Rolle des Energieträggers Strom im Lebensmitteleinzelhandel. So sind 63 % des Energieverbrauchs elektrischer Energie zuzuordnen. Bei den Energiekosten hat der Strom sogar einen Anteil von 91 %.

Um eine Vergleichbarkeit zwischen verschiedenen Betrieben zu ermöglichen, wird der Stromverbrauch auf die Verkaufsfläche (VF) als gängige Größe in der Branche bezogen. Der Verbrauch liegt hier zwischen 170 kWh/(m²_VF a) und 720 kWh/(m²_VF a). Eine Analyse monatlicher Abrechnungen zeigt, dass der Stromverbrauch im Gegensatz zum Brennstoffverbrauch keiner deutlichen jahreszeitlichen Schwankung unterliegt /Schymonski 1995, S. 60/.

Abb. 2-25 zeigt die Verteilung des jährlichen Stromverbrauchs bezogen auf die Verkaufsfläche. Die überwiegende Anzahl der Märkte weist einen jährlichen Stromverbrauch zwischen 200 und 400 kWh/(m²_VF a) auf. Der Durchschnittswert als mittlere Stromkennzahl, für Supermärkte mit weniger als 1.000 m² Verkaufsfläche, liegt bei 332 kWh/(m²_VF a), der Richtwert als Kennzahl für haushälterischen Stromverbrauch bei 227 kWh/(m²_VF a).
Abb. 2-25: Verteilung des Stromverbrauchs bezogen auf die Verkaufsfläche in Lebensmittelmarkten nach Größenklassen 1995

In einer österreichischen Untersuchung, in der 105 Märkte verschiedener Größe in Oberösterreich und in der Steiermark untersucht wurden /ESV 1996/, ist ein Mittelwert für den Stromverbrauch von Märkten bis 1.000 m² Verkaufsfläche von 238 kWh/(m²°F a) ausgewiesen. Dieser Wert liegt nahe an dem ermittelten Richtwert für Lebensmitteleinzelhandelsmärkte in Deutschland von 227 kWh/(m²°F a). In Abb. 2-26 ist die Verteilung der Stromkosten je Verkaufsfläche in der Stichprobe der 28 untersuchten Märkte dargestellt. Bezogen auf die Verkaufsfläche ergeben sich Stromkosten von 43 DM/(m²°F a) bis über 400 DM/(m²°F a).

Die durchschnittlichen Stromkosten liegen bei 96 DM/(m²°F a). Aus den Angaben der Märkte ergibt sich ein durchschnittlicher Strompreis von 0,28 DM/kWh.

Die Energiekennwerte für den Strom- und den Gesamtenergieverbrauch dieser Branche sind in Tab. 2-9 zusammengestellt. Die Energiekennwerte sind bezogen auf die Betriebsfläche und bezogen auf die Verkaufsfläche dargestellt.
Abb. 2-26: Verteilung der Stromkosten bezogen auf die Verkaufsfläche in Lebensmittelmärkten nach Größenklassen 1995

Tab. 2-9: Energiekennwerte für Lebensmitteleinzelhandelsmärkte bis zu 1000 m² Verkaufsfläche 1995

<table>
<thead>
<tr>
<th>Energiekennwert</th>
<th>Einheit</th>
<th>gut (Richtwert)</th>
<th>mittel (Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtenergieverbrauch je Betriebsfläche</td>
<td>kWh/m²a</td>
<td>231,0</td>
<td>262,0</td>
</tr>
<tr>
<td>Stromverbrauch je Betriebsfläche</td>
<td>kWh/m²a</td>
<td>153,0</td>
<td>190,0</td>
</tr>
<tr>
<td>Gesamtenergieverbrauch je Verkaufsfläche</td>
<td>kWh/m²vF a</td>
<td>310,0</td>
<td>465,0</td>
</tr>
<tr>
<td>Stromverbrauch je Verkaufsfläche</td>
<td>kWh/m²vF a</td>
<td>227,0</td>
<td>332,0</td>
</tr>
<tr>
<td>Gesamtenergiekosten je Verkaufsfläche</td>
<td>DM/m²vF a</td>
<td>59,0</td>
<td>97,0</td>
</tr>
<tr>
<td>Stromkosten je Verkaufsfläche</td>
<td>DM/m²vF a</td>
<td>53,0</td>
<td>96,0</td>
</tr>
</tbody>
</table>
In Abb. 2-27 ist die Aufteilung des Gesamtenergieverbrauchs als Durchschnitt der sieben untersuchten Märkten in Baden-Württemberg unterteilt nach den Verwendungsbereichen dargestellt /KEA 1996, S. 2/. Zwar hat die Raumwärme mit 41 % am Energieverbrauch den größten Anteil (in Abb. 2-27 links); da aber zur Raumheizung die Brennstoffe Erdgas und Heizöl eingesetzt werden, hat die Raumwärme aufgrund der niedrigen Brennstoffpreise bei den Energiekosten nur einen Anteil von 11 % (in Abb. 2-27 rechts).

![Energieverbrauch und Energiekosten](image)

Die Abbildung zeigt die Aufteilung des Stromverbrauchs (und damit der Stromkosten) für Märkte mit und ohne Klimaanlage. In beiden Fällen bilden Kühlung und Beleuchtung die eindeutigen Schwerpunkte mit zusammen 92 % bzw. 73 % Anteil am Stromverbrauch.

2.9 Vergleich der Energieverbrauchsstrukturen der vier Branchen

Tab. 2-10: Energiekennwerte von vier Branchen des Kleinverbrauchersektors und für verschiedene Gebäude

<table>
<thead>
<tr>
<th>Branche</th>
<th>Energiekennwert (alle Angaben beziehen sich auf den Median als Durchschnittswert)</th>
<th>Energieverbrauch Betriebsfläche [kWh/(m² a)]</th>
<th>Stromverbrauch Betriebsfläche [kWh/(m² a)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwaltungsgebäude /VDI 3807, Blatt 2, S. 9/</td>
<td></td>
<td>127</td>
<td>17</td>
</tr>
<tr>
<td>Mehrfamilienhäuser /VDI 3807, Blatt 2, S. 9/</td>
<td></td>
<td>175</td>
<td>24-35</td>
</tr>
<tr>
<td>Ein-/Zweifamilienhäuser /VDI 3807, Blatt 2, S. 9/</td>
<td></td>
<td>195</td>
<td>24-35</td>
</tr>
<tr>
<td>Lebensmitteleinzelhandel</td>
<td></td>
<td>262</td>
<td>190</td>
</tr>
<tr>
<td>Hotels garni</td>
<td></td>
<td>265</td>
<td>40</td>
</tr>
<tr>
<td>Hotels (ohne garnis)</td>
<td></td>
<td>289</td>
<td>83</td>
</tr>
<tr>
<td>Bäckereien</td>
<td></td>
<td>847</td>
<td>231</td>
</tr>
<tr>
<td>Reinigungen</td>
<td></td>
<td>1.096</td>
<td>293</td>
</tr>
<tr>
<td>Wäschereien</td>
<td></td>
<td>2.126</td>
<td>169</td>
</tr>
</tbody>
</table>
3 Maßnahmen zur rationellen Energieanwendung in Unternehmen

Ziel dieses Kapitels ist es, zu zeigen, wie Energieverbräuche in den untersuchten Branchen rationell reduziert werden können. Es werden dazu Maßnahmen zur rationellen Energieanwendung zusammengestellt, die den betrieblichen Energieverbrauch und die Energiekosten senken (vgl. Kapitel 1.2) und die von den Unternehmen der Branchen durchgeführt werden können. Diese Maßnahmen lassen in vier verschiedene Arten einteilen:

1. Vermeiden unnötigen Verbrauchs (z. B. Leerlauf von Maschinen und Anlagen),
2. Verringerung der benötigten Nutzenergie (z. B. Wärmedämmung),
3. Verbesserung der Wirkungs- und Nutzungsgrade (Effizienzverbesserung, z. B. durch Vermeidung von Verteilungsverlusten, Wahl energetisch günstiger Techniken),

Ob alle Möglichkeiten, Energie rationell anzuwenden, ausgeschöpft werden, kann anhand der einzelnen Stufen der Energieverwendungskette wie Energiezug, Gebrauchs- und Nutzenergie (vgl. Abb. 2-6) untersucht werden. Abb. 3-1 stellt dies beispielhaft anhand des Energiebedarfs für einen beleuchteten Raum dar.

![Diagramm Energiebedarf und Lichtbedarf]

Abb. 3-1: Strombedarf und Lichtbedarf für den Verwendungszweck "beleuchteter Raum"

Um festzustellen, ob der hier ermittelte Strombedarf gesenkt werden kann, ist es notwendig, zuerst den Lichtbedarf zu überprüfen. Im Beispiel wäre demnach zunächst zu prüfen, ob der Raum 24 Stunden täglich beleuchtet sein muss. Weiterhin ist zu kontrollieren, ob die Beleuchtungsstärke richtig angesetzt ist, was anhand der entsprechenden Richtlinien /ASR 1979/, /DIN 5035/ erfolgt. Anschließend ist zu überprüfen, ob der Verlust, bedingt durch verschmutzte Reflektoren, gesenkt werden kann. Schließlich kann der Stromverbrauch durch eine effizientere Energieanwendungstechnik mit geringerer Stromaufnahme bei
gleichem Lichtstrom reduziert werden. Im entsprechenden Beispiel kann durch Verwendung eines elektronischen Vorschaltgerätes der Verlust des Vorschaltgerätes von 13 Watt auf 5 Watt begrenzt und damit die Leistungsaufnahme der Lampe um 11\% gesenkt werden.

Wird eine Investition in Erwägung gezogen, so bestimmt die Amortisationszeit den Zeitraum, in dem die Investitionskosten über verminderte Brennstoff- oder Stromkosten zurückfließen. Dieser Zeitraum wird verglichen mit einem als zulässig definierten Zeitraum. (Dabei gilt, dass die Amortisationszeit immer kleiner als die Nutzungsdauer des anzuschaffenden Gerätes bzw. der anzuschaffenden Maschine oder Anlage sein muss.) Ist die Amortisationszeit länger als der zulässige Zeitraum, wird die Investitionsidee verworfen. Die Amortisation von Maßnahmen zur rationellen Energieanwendung wird für überschlägige Betrachtungen am effizientesten statisch berechnet, da die statische Amortisation besonders einfach und gebräuchlich ist. Für eine Investition berechnet sich die Amortisationszeit T in Jahren zu:

$$ T \ [a] = \frac{Investition \ [DM]}{eingesparte \ Energiekosten \ [\frac{DM}{a}]} \quad (3-1) $$

Erbringt der Vergleich des Zeitraums T mit dem als zulässig definierten Zeitraum, dass sich die Maßnahme schneller als mindestens gefordert amortisiert, so wird die Idee der Durchführung der Maßnahme nicht verworfen und als sinnvoll im vorgegebenen Zeitraum angesehen.

3.1 Branchenübergreifende Maßnahmen

3.1.1 Bereich Beleuchtung

Bedarfsanpassung von Einschalzeiten

sich eine statische Amortisationszeit von 10,5 Monaten ergibt. In allen Branchen eignen sich besonders Abstell-, Lager- und Sozialräume für zeitweilig reduzierte Beleuchtung.

Ersatz von Glühlampen durch Kompaktleuchtstofflampen

Insbesondere lohnt sich der Einsatz von Kompaktleuchtstofflampen dort, wo lange Einschaltdauern notwendig sind, wie beispielsweise bei Notbeleuchttungen, da bei diesem Lampentyp die Lebensdauer durch häufiges Ein- und Ausschalten verkürzt wird. Kompaktleuchtstofflampen haben eine durchschnittliche Lebensdauer von 8.000 Stunden, wogegen Glühlampen eine Lebensdauer von nur 1.000 Stunden aufweisen. /KEA 1996/

Ersatz von Standardleuchtstofflampen durch Dreibandleuchtstofflampen

Ersatz konventioneller durch elektronische Vorschaltgeräte

3.1.2 Bereich Gebäudehülle

Anbringen von Wärmedämmung

Eine Verbesserung der Wärmedämmung bedeutet eine Reduktion des Wärmebedarfs eines Gebäudes, so dass der Energieverbrauch der Heizung sinkt und sich verringerte Heizkosten ergeben. Die Wärmedämmung betrifft die Außenwände und das Dach. Über die Reduktion des Wärmebedarfs hinaus gibt es günstige Nebeneffekte bei einer besseren Isolierung der Außenflächen von Gebäuden:

- Bei einem anstehenden Austausch der Heizungsanlage kann in der Regel eine kleinere und somit billigere Anlage installiert werden.
- Durch die Wärmedämmung steigt die Wandinnentemperatur, wodurch eine größere Behaglichkeit in den Räumen entsteht.
- Durch die insgesamt höhere Wandtemperatur trägt die Wand mit ihrer Speicherfähigkeit zur thermischen Trägheit des Gebäudes bei und verhindert zu große Temperaturschwankungen in den Räumen.

Für die Dämmung von einem Quadratmeter Wandfläche mit Polystyrolplatten von 8 cm Dicke ist mit Investitionskosten in Höhe von 100 bis 120 DM zu rechnen. Dabei betragen die Materialkosten nur etwa 18 % der Gesamtkosten, der restliche Betrag ist für Gerüstbau und Montage zu veranschlagen /Höher 1996/. Deshalb ist diese Maßnahme besonders dann zu empfehlen, wenn ohnehin Renovierungsarbeiten an der Fassade anstehen.

Einsatz von Wärmeschutzverglasung

3.1.3 Bereich Heizungsanlage

Optimierung der Warmwasserzirkulation

Nachtabsenkung der Raumtemperatur

Ersatz von Standardheizkesseln durch Brennwertkessel

3.2 Branchenspezifische Maßnahmen

Neben den branchenübergreifenden Maßnahmen existieren Maßnahmen, die sich auf die Maschinen, Geräte und Organisationsstrukturen der einzelnen Branchen beziehen. Nachfolgend sind für die vier Branchen Hotels, Textilreinigung, Bäckereihandwerk und Lebensmitteleinzelhandel typische Maßnahmen dargestellt.

3.2.1 Maßnahmen in Hotels

Warmwasseranschluss für Geschirrspülmaschinen

Bei dieser Maßnahme werden Spülmaschinen an eine zentrale Warmwasserversorgung angeschlossen. Bei einer angenommenen Wasserzulauf temperatur von 40 °C anstelle der 12 °C bei Kaltwasseranschluss reduziert sich der Stromverbrauch zur Erwärmung des Wassers für einen Spülgang in der Maschine auf 60 % des ursprünglichen Wertes /ANALYSIS 1997/. Neben den für die Neuanschaffung erforderlichen Investitionskosten sind die zusätzlichen Kosten für die Installation der Warmwasserversorgung der Spülmaschinen zu berücksichtigen. Bei einer Wassererwärmung auf Basis fossiler Energieträger, in einem Kombiheizkessel beziehungsweise in einem separaten Wärmeerzeuger, oder mit Fernwärme liegt die Amortisationszeit nicht unter sieben Jahren. /ANALYSIS 1997/

Einsatz von energieeffizienten Kühlshäusern und Gefriertruhen

Der Energieverbrauch für Kältetechnik, der in Hotels ungefähr einen Anteil von 6 % am Gesamtenergieverbrauch einnimmt, lässt sich durch den Einsatz von energieeffizienten

Ersatz von Minibars

Tab. 3-1: Normenergieverbrauch von Kompressions- und Absorptionskühlschränken /Beer; Krebs 1992, S. 16/

<table>
<thead>
<tr>
<th></th>
<th>kleiner Absorber (23 Liter Nutzinhalt)</th>
<th>kleiner Kompressor (92 Liter Nutzinhalt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normenergieverbrauch</td>
<td>0,96 kWh/24h</td>
<td>0,60 kWh/24h</td>
</tr>
<tr>
<td>bezogen auf 100 Liter Nutzinhalt</td>
<td>4,17 kWh/(24h 100L)</td>
<td>0,65 kWh/(24h 100L)</td>
</tr>
</tbody>
</table>

Aus Gründen der Handhabung und der Sicherheit wird bei den Absorptionskältemaschinen in Hotel-Minibars die dem thermischen Verdichtungskreislauf zugeführte Wärmeenergie nicht mit einem erdgas- oder ölbetriebenen Brenner, sondern elektrisch bereitgestellt, was zu höheren Energiekosten je kWh Normenergieverbrauch führt.

3.2.2 Maßnahmen in Bäckereien

Optimierte Backofenauslastung

Der Energieverbrauch lässt sich erheblich senken, wenn die zur Verfügung stehende und durchgängig beheizte Backfläche optimal ausgelastet ist und Zeiten ohne oder mit geringer Auslastung vermieden werden. Elektrisch betriebene Öfen haben konstruktiv bedingt und aufgrund besserer Regelbarkeit des Heizsystems grundsätzlich einen niedrigeren Endenergieverbrauch als Erdgas- oder Heizölbacköfen. Zwischen bestehenden Erdgas- und Heizölbacköfen lassen sich keine konstruktiv oder thermodynamisch bedingten Unterschiede beim Energieverbrauch feststellen /Ruhrgas 1999/, weshalb diese in Abb. 3-2 durch eine Kurve repräsentiert sind.
Abb. 3-2: Energieverbrauch von Backöfen in Abhängigkeit von der Backflächenbelegung; Messung an 43 Backöfen, Messzeitraum drei Wochen /ZVDB 1995, S. 6/

Ebenso lässt sich die Spreizung des spezifischen Energieverbrauchs zwischen Strom- und Heizöl- / Erdgasbacköfen bei 6,0 kg_{Mehl}/(m² h) nur durch die Stichprobe bei den Messungen und nicht mit der Technik der verschiedenen Backofentypen erklären. /ZVDB 1995/, /Ruhrgas 1999/

Unter der Annahme, dass in einer Bäckerei mit einem Elektrobackofen durch Organisation der Arbeitsabläufe die Backofenbelegung von 3,0 auf 5,0 (kg_{Mehl})/(m² h) verbessert werden kann, ergibt sich eine Senkung des Energieverbrauchs des Backofens um zirka 30 kWh/(100 kg_{Mehl}). Bei einer Mehlmenge von 500 (kg_{Mehl})/d und einem durchschnittlichen Strompreis von 0,30 DM/kWh in der Bäckereibranche (vgl. S. 30) ergibt sich daraus eine Stromkosteneinsparung von 16.425 DM/a. Diese Einsparung ist eventuellen Kosten für die Neu-Organisation der Arbeitsabläufe (externe Beratung, Arbeitszeit zur Einweisung der Mitarbeiter etc.) gegenüberzustellen. Setzt man als einmalige Beratungskosten 1.000 DM an sowie eine zusätzliche Arbeitszeit zur Einweisung zwischen acht und 40 Stunden bei Arbeitskosten von 75 DM/Std., so ergeben sich Kosten für die Maßnahme zwischen 1.600 DM und 4.000 DM, was zu Amortisationszeiten zwischen einem und drei Monaten führt.

Abwärmenutzung

Bei dieser Maßnahme werden anfallende Wärmeströme von Backöfen in Bäckereien betriebsintern zur Erwärmung von Wasser genutzt, da ein großer Warmwasserbedarf bei der Teigherstellung und zum Reinigen besteht. Durch die Maßnahme verringert sich der Energie-

3.2.3 Maßnahmen in Wäschereien

Abb. 3-3 stellt das Wärmeschaltbild einer typischen Großwäscherei mit den Größenverhältnissen des Energieverbrauchs in den verschiedenen Textilreinigungsmaschinen dar.

Der Einsatz einer Absorptionswärmpumpe zur Wärmerückgewinnung aus dem Abwasser von Waschstraßen kann zu einer Verringerung des Prozesswärmebedarfs und damit zur Verringerung des Energieverbrauchs des zentralen Dampfkessels einer Wäscherei um 10 % führen /Sigl 1994/. In Abb. 3-3 verringert sich dadurch der Anteil des Energiebedarfs der Waschstraßen, der direkt vom Kessel gedeckt wird (745 MWh/a in Abb. 3-3 rechts oben) auf 199 MWh/a. Die Wärme des Abwassers (1.473 MWh/a in Abb. 3-3 rechts unten) dient dabei als Wärmequelle für die Wärmepumpe, die mit Hilfe des verbleibenden Dampfes (199 MWh/a) angetrieben wird.
Wärmerückgewinnung aus Abwasser mit Absorptionswärmepumpe

Eine Wirtschaftlichkeitsbetrachtung ergibt für das Beispiel eine Energiekosteneinsparung von 23.000 DM/a. Trotz dieser hohen Einsparungen liegt die Amortisationszeit bei über vier Jahren, bedingt durch den hohen Investitionsaufwand von 96.400 DM.

Abwärmenutzung der Mangelabluft für Trockner

Durch den Betrieb von Wä schemangeln fällt warme Abluft auf einem Temperaturniveau von etwa 100 °C an. In Abb. 3-3 beträgt der Anteil des Energieinhalts der Ablufts von den Mangeln an der gesamten Ablufts 1.917 MWh/a. Eine Abwärmenutzung der Mangelabluft kann für die Trockner erfolgen, indem der Abluftstrom durch einen Wärmetauscher geführt und damit die Zulufts für die Wäschetrockner vorgewärmt wird. Damit wird eine Erhöhung der Zulufttemperatur und schließlich ein Dampfmindeverbrauch der Trockner erreicht. Für die Anlage nach Abb. 3-3 reduziert sich durch diese Maßnahme der Dampfverbrauch der Trockner um insgesamt 240 MWh/a, beziehungsweise um 13 % /Sigl 1994, S. 10/, was zu einer Verringerung des gesamten Prozesswärmebedarfs führt. Die Amortisationsdauer der

Waschen von Kochwä sche bei reduzierter Temperatur

Bei der Behandlung leicht verschmutzter Kochwä sche lässt sich der Energiebedarf zum Aufheizen des Waschwassers der Waschstraßen reduzieren, wenn die Kochwä sche teilweise bei 60 °C statt bei 90 °C gewaschen wird. Dies führt zu einer Reduzierung des Dampfbedarfs der Waschstraßen und somit zu einer Verringerung des Prozesswärmebedarfs. In einer Untersuchung wurde festgestellt, dass sich der Energieeinsatz für die Wassererwärmung um 30 % reduziert, wenn die Klarwä sche bei einem Kochwaschgang statt mit einer Temperatur von 90 °C mit 60 °C durchgeführt wird. /Henkel 1980/ Für die Maßnahme müssen keine technischen Veränderungen an den Waschmaschinen vorgenommen werden, so dass dadurch keine Investitionskosten entstehen. Unter der Annahme, dass keine höheren Kosten für Waschmittel entstehen, amortisiert sich die Maßnahme dann sofort. /ANALYSIS 1997/

Wärmedämmung von Waschmaschinen

Beim Betrieb von Waschmaschinen wird durch Wärmeabstrahlung der aufgeheizten Gehäuseoberfläche Wärme an die Umgebung abgegeben. Diese Abstrahlverluste betragen zirka 10 % der Gesamtverluste. /Henkel 1980/ Durch das Anbringen einer Wärmedämmung am Waschmaschinengehäuse lässt sich die Temperatur der Gehäuseoberfläche und damit der Wärmeverlust reduzieren, was zu einem geringeren Prozesswärmebedarf führt. Der nachträgliche Einbau ist technisch und finanziell aufwendig, weshalb diese Maßnahme nur im Zusammenhang mit einer Neuanschaffung in Frage kommt. Für diesen Fall sind für die Maßnahme Amortisationszeiten von zirka fünf Jahren berechnet worden. /ANALYSIS 1997/

3.2.4 **Maßnahmen im Lebensmitteleinzelhandel**

Der Kältebedarf Q_0 eines Kühlmöbels kann demnach in die sieben Anteile Wärmeleitung durch das Kühlmölbel Q_1, Wärmeeintrag aus der Umgebungsluft Q_2, Wärmestrahlung durch Öffnungen und transparente Flächen (Infrarotstrahlung) Q_3, Beleuchtungsabwärme Q_4, Ventilatorabwärme Q_5, Wärmeeintrag von Rahmenheizungen Q_6 und Wärmeeintrag durch die Abtäubung Q_7 unterteilt werden.

Taupunktgeregelte Rahmenheizung in Kühlmöbeln

Rahmenheizungen in Kühlmöbeln haben die Aufgabe, ein Beschlagen der Scheiben durch Kondensation aus der Umgebungsluft zu verhindern. Wie in Abb. 3-4 dargestellt, wirken Rahmenheizungen als innere Wärmequelle (Q_0) und erhöhen den Kältebedarf durch den

Da Scheiben von Kühlmobeln nur dann beheizt werden müssen, wenn die Oberfläche die Taupunkttemperatur der umgebenden Luft unterschreitet, lässt sich mit Hilfe von taupunktgesteuerten Regelungen der Rahmenheizungen der Kältebedarf und damit der Stromverbrauch der Kälteanlage senken. Der Einbau solcher Regelungen amortisiert sich ab einer Heizleistung von 1.000 Watt bei Investitionskosten von zirka 1.500 DM inklusive Montage in zwei Jahren; bei kleineren Heizleistungen liegt die Amortisationszeit zwischen sechs und zehn Jahren /KEA 1996/.

Nachtabdeckung von Gefriertruhen

Verkaufsgefrirtruhen müssen während der Öffnungszeiten für die Warenentnahme durch die Kunden oder die Beschickung durch das Personal offen gehalten werden. In der restlichen Zeit können sogenannte Nachtabdeckungen verwendet werden, um Kälteverluste zu reduzieren. Die Abdeckungen bestehen aus beschichteten Schaumstoffplatten, die auf die Kühlmöbelöffnungen gelegt werden. Durch die Nachtabdeckung lässt sich der Stromverbrauch der Kühlmöbel um etwa 30 % senken /Kaufmann u.a. 1994/.. Bei Investitionskosten für die Abdeckung von zirka 50 DM, einer durchschnittlichen Geräteleistung von 1.000 W, einer Einschaltdauer von 8.500 h/a und einem Strompreis von 0,28 DM/kWh amortisiert sich die Maßnahme in weniger als einem Monat, sofern der Zeitaufwand zum Abdecken nicht als Personalaufwand gesondert berücksichtigt werden muss.

3.3 Potenziale der Energieverbrauchsminderung in den untersuchten Branchen des Kleinverbrauchersektors

Basierend auf der Berechnung einer Liste von Maßnahmen zu den Bereichen Gebäudehülle, Heizung, Wärmerückgewinnung, Beleuchtung, Kühlung, Wäscherei, Bäckerei und Küchenbetrieb sind Potenziale der Energieverbrauchsminderung für die Branchen Hotels, Textilreinigungsbetriebe und Bäckereien ermittelt worden /ANALYSIS 1997/. In Abb. 3-5 sind die untersuchten Maßnahmen für die verschiedenen Bereiche zusammengestellt.
Für die Maßnahmen wurden, bezogen auf die Branche, die absolute und die relative Reduzierung von Energieverbrauch und Energiekosten, Investitionskosten sowie die Amortisationszeit berechnet. Organisatorische Maßnahmen, wie die optimale Beladung von Kühltruhen, die bessere Auslastung von aufgeheizten Backöfen oder nutzerabhängige Beleuchtung wurden nicht berücksichtigt.

Potenziale der Energieverbrauchsminderung für die Branche Lebensmitteleinzelhandel wurden im Rahmen eines Branchenergiekonzepts ermittelt /ESV 1996/. In Tab. 3-2 sind die Potenziale für alle vier Branchen dargestellt. Die Berechnungen berücksichtigen zur Bestimmung des Einsparpotenzials für eine Branche alle untersuchten Maßnahmen ohne Begrenzung der Amortisationszeit und in der zweiten Zeile nur Maßnahmen, die sich innerhalb von zehn Jahren amortisieren. Die Minderungspotenziale der untersuchten Maßnahmen liegen bei Annahme unbegrenzter Amortisationszeiten für die Hotelbranche und für die Branche Textilreinigung bei zirka einem Drittel des Energieverbrauchs. Für Maßnahmen mit einer Amortisationszeit von weniger als zehn Jahren ergeben sich für beide Branchen Minderungspotenziale von zirka 13 %.

Abb. 3-5: Maßnahmen zur rationellen Energieanwendung in Hotels, Textilreinigung und Bäckereien

Beleuchtung
- Dreibanden-Leuchtstoffröhren
- Elektronische Vorschaltgeräte

Kühlung
- Energie-effiziente Kühl- und Gefriermöbel

Heizung
- Brennwertkessel
- Nachtabsenkung
- Kombinierte Heizung-Warmwassererzeugung

Gebäudehülle
- Wärmedämmung: Wand, Dach, Wärmeschutzverglasung

Küchenbetrieb
- Warmwasseranschluß für Geschirrspüler

Bäckerei
- Nutzung der Abwärme von Backöfen

Wäscherei
- Kochwäsche bei 60°
- Wärmedämmung der Waschmaschinen
- Wärmerückgewinnung von Mangel für Trockner

3.4 Geschätzte Potenziale der Energieverbrauchsminderung in befragten Betrieben

In Kapitel 3.3 sind Potenziale der Energieverbrauchsreduktion für Branchen des Kleinverbrauchersektors, die sich aus vorliegenden Betriebsdaten und aus dem Ersatz von alten Geräten und Investition in effizientere Technologien ergeben, dargestellt worden. Wie zu Beginn dieses Kapitels diskutiert, ist die ökonomische Bewertung von Maßnahmen, z. B. mittels der Amortisationszeit, nur eine notwendige Voraussetzung in Bezug auf eine mögliche Umsetzung der Maßnahmen zur Ausschöpfung der Potenziale. Im folgenden wird zusammengestellt, welche Potenziale der Energieverbrauchsminderung von den Betrieben in den Branchen für realistisch gehalten werden. Es werden dazu subjektiv geschätzte Energieeinsparpotenziale dargestellt, die im Rahmen der Energiedatenerhebung mit erfasst wurden. Auf die Frage im Fragebogen "Sehen Sie in Ihrem Betrieb Möglichkeiten, den Energieverbrauch zu reduzieren?" waren vier Antworten möglich: "Nein", "Ja, geringfügig", "Ja, mehr als 10 %", "Ja, mehr als 30 %". Abb. 3-6 zeigt das Umfrageergebnis als Meinungsbild
befragter Unternehmen der vier Branchen Hotels, Textilreinigung, Bäckereien und Lebensmitteleinzelhandel bezüglich bestehender Potenziale der Energieverbrauchsminderung in ihrem Betrieb.

Abb. 3-6: Potenziale der Energieverbrauchsminderung in den vier Branchen nach Meinung befragter Betriebe

Demzufolge sehen nur zirka 6 % der in der Hotelbranche Befragten grundsätzlich keine Möglichkeit, eine Reduktion des Energieverbrauchs zu erreichen; 7 % machten hierzu keine Angabe. In 87 % der Hotels werden Reduktionspotenziale verschiedener Größenordnung erwartet. Daraus lässt sich ableiten, dass bezüglich der Möglichkeiten von Energiekostensenkung und rationeller Energieanwendung im Hotelgewerbe eine große Erwartungshaltung besteht. In der Branche Textilreinigung werden im Gegensatz zu Hotels in den meisten Betrieben eher geringfügige Möglichkeiten zur Energieverbrauchssenkung erwartet (53 %). Insgesamt wird in 85 % der Betriebe eine Reduktion des Energieverbrauchs für möglich gehalten. Bei Bäckereien weisen die Antworten der Betriebe bezüglich der geschätzten Reduktionspotenziale im Hinblick auf Möglichkeiten der Minderungen des Energieverbrauchs einen ähnlichen Umfang wie für die Hotelbranche auf. Aufgrund der vielfältigen Wärmeanwendungen und angesichts einer großen Zahl unterschiedlicher Verbrauchsgeräte sind die technischen und organisatorischen Möglichkeiten zur rationellen Energieanwendung auch in Bäckereibetrieben offensichtlich. Im Lebensmitteleinzelhandel werden in Unternehmen nach Abb. 3-6 die geringsten Potenziale zur Minderung des Energieverbrauchs
erwartet. Auch hier werden aber bei der großen Mehrheit, in zusammen 83 % der Lebensmitteleinzelhandelsunternehmen, Energieverbrauchssenkungen für grundsätzlich möglich gehalten. In allen vier Branchen liegt die Summe der Betriebe, in denen Energieverbrauchssenkungen für grundsätzlich möglich gehalten werden, zwischen 83 % und 87 %.

Aus den berechneten Potenzialen zur Minderung des Energieverbrauchs sowie aus den von der Mehrheit der Betriebe aller Branchen für sinnvoll erachteten und bisher ungenutzten Möglichkeiten zur Energieverbrauchssenkung ergibt sich, dass Hemmnisse für die Umsetzung von entsprechenden Maßnahmen zur rationellen Energieanwendung bestehen. Um den Unternehmen in den Branchen eine adäquate Unterstützung zur Umsetzung von Maßnahmen zu ermöglichen, z. B. in Form von spezifischer Information, müssen zunächst die Hemmnisse ermittelt werden, die die Realisierung verhindern. Diese Arbeitsschritte sind in Kapitel 4 für die zwei Branchen Hotels und Lebensmitteleinzelhandel erläutert.
4 Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung in Unternehmen

Die in Kapitel 3.3 dargestellten Maßnahmen zur rationellen Energieanwendung sowie die dargestellten Potenziale der Energieverbrauchsminderung in Unternehmen des Kleinverbrauchersektors stellen keine hinreichende Bedingung für die Ausschöpfung der Potenziale und für eine Verbesserung der Energieeffizienz in den Unternehmen dar, wie in Kapitel 3.4 diskutiert. Es bestehen verschiedene Hemmnisse, die der Realisierung solcher Maßnahmen entgegenstehen und die je nach Branche einen unterschiedlich großen Einfluss haben. Ziel dieses Kapitels ist die Identifikation, Einordnung und Beurteilung der Hemmnisse, die einer Umsetzung von Maßnahmen zur rationellen Energieanwendung in Unternehmen entgegenstehen. Dazu werden zwei Branchen untersucht, die Hotelbranche als Beispiel für den Dienstleistungssektor und die Branche Lebensmitteleinzelhandel als Beispiel für den Handelssektor.

![Diagramm der Arten von Hemmnissen](image-url)

Abb. 4-1: Einteilung der Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung nach Arten

4.1 Vorgehen bei der Analyse von Hemmnissen in Branchen

Zur Bearbeitung der Fragestellung wurde daher neben einer umfassenden Literaturauswertung eine Umfrage zur Analyse der Hemmnisse für die Umsetzung von Maßnahmen zur rationellen Energieanwendung durchgeführt. Zweck der Umfrage ist die Datenerhebung zur Identifikation branchenspezifischer Hemmnisse, um daraus branchenweit anwendbare Instrumente zur Überwindung der Hemmnisse ableiten zu können. Deshalb wurde die Umfrage in den beiden Beispielbranchen für Dienstleistung und Handel, Hotels und Lebens-

4.2 Einbindung von Branchenvertretern in die Hemmnisanalyse

![Diagramm]

Abb. 4-2: Einordnung der im Bereich rationelle Energieanwendung einer Branche agierenden Personen

Zuständige Personen bei den Unternehmen sind bei kleinen Unternehmen die Inhaber und bei mittleren bis größeren Unternehmen Mitarbeiter der zentralen Technikabteilungen. Dies resultiert aus der Struktur der Handels- und Dienstleistungsbranchen des Kleinverbrauchersektors, die sich aus den zwei Gruppen (kleine) selbständige Einzelunternehmen und größere Filialbetriebe bzw. Ketten zusammensetzen. Obwohl sich die untersuchten Branchen in der
Art der Energieanwendungen unterscheiden, wurde nur ein Ausschuss mit zirka 20 Mitgliedern für beide Branchen organisiert, um Synergieeffekte aus den unterschiedlichen branchenbedingten Erfahrungen der Unternehmen und den übergreifenden Erfahrungen der externen Experten zu nutzen. Die Struktur des Ausschusses ist in Tab. 4-1 wiedergegeben.

Tab. 4-1: Struktur des Ausschusses mit Branchenvertretern

<table>
<thead>
<tr>
<th>Teilnehmerart</th>
<th>in beiden Branchen tätig</th>
<th>nur Hotelbranche</th>
<th>nur Lebensmittel-einzelhandel</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geräteaurüstere</td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Energieberater</td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Institution</td>
<td>2</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Unternehmen</td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Gesamt</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>21</td>
</tr>
</tbody>
</table>

Die Arbeit des Ausschusses wurde mit Hilfe von Rundbriefen mit Rückantworten und Ausschusstreffen in regelmäßigen Abständen organisiert. So wurde die Arbeitsform des Rundbriefs zur Anpassung des Fragebogenentwurfs für die Hemmnisumfrage an die Anforderungen der Befragten genutzt (vgl. Kap. 4.3). Entscheidungen und Empfehlungen bezüglich der Auswahl sinnvoller Instrumente zur Unterstützung der rationellen Energieanwendung wurden in gemeinsamen Besprechungen diskutiert und abgestimmt (vgl. Kap. 5.1 und 5.2).

4.3 Umfrage zu Hemmnissen in der Hotelbranche und im Lebensmitteleinzelhandel

Abb. 4-3: Vorgehensweise bei der Umfrage zur Hemmnisanalyse und Einbindung des Ausschusses

4.3.1 Hemmnisliste und Pre-Test

Tab. 4-2: Liste möglicher Hemmnisse als Basis für die Untersuchung

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Hemmnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisatorische Hemmnisse</td>
<td>• Informationsdefizit</td>
</tr>
<tr>
<td></td>
<td>• Informationsüberangebot</td>
</tr>
<tr>
<td></td>
<td>• Zeitmangel, hohe Arbeitsbelastung</td>
</tr>
<tr>
<td></td>
<td>• Fehlender Auslöser, fehlende Motivation</td>
</tr>
<tr>
<td></td>
<td>• Zielkonflikt: Sparsame Geräte <-> Ästhetik, Komfort der Geräte</td>
</tr>
<tr>
<td></td>
<td>• Fehlende Zuständigkeit für Energiefragen</td>
</tr>
<tr>
<td></td>
<td>• Bedenken bezüglich Betriebsablauf</td>
</tr>
<tr>
<td>Technologische Hemmnisse</td>
<td>• Bedenken bezüglich der Qualität des Produktes bzw. der Dienstleistung</td>
</tr>
<tr>
<td></td>
<td>• Bedenken bezüglich veränderten Betriebszuständen von Geräten</td>
</tr>
<tr>
<td>Finanzielle Hemmnisse</td>
<td>• Geringer Energiekostenanteil</td>
</tr>
<tr>
<td></td>
<td>• Fehlendes Kapital für investive Maßnahmen</td>
</tr>
<tr>
<td></td>
<td>• Lange Amortisationszeiten bei investiven Maßnahmen</td>
</tr>
<tr>
<td></td>
<td>• Fehlende Finanzierungsangebote für investive Maßnahmen</td>
</tr>
<tr>
<td>Weitere Hemmnisse</td>
<td>• Geringe Innovations- und Risikobereitschaft</td>
</tr>
<tr>
<td></td>
<td>• sonst:</td>
</tr>
</tbody>
</table>

Ein wichtiger Teil der Befragung war die Überprüfung der vorgegebenen Hemmnisliste auf Vollständigkeit. Abb. 4-4 zeigt das Ergebnis, bei dem 14 der 15 Befragten zu lange Amortisationszeiten als wichtiges Hemmnis nennen, ebenso wie das Informationsdefizit bezüglich der Möglichkeiten der rationellen Energieanwendung in den Betrieben. Als bedeutend wird seiten der befragten Energieberater ebenfalls häufig der Zeitmangel der zuständigen Personen in den Unternehmen eingeschätzt.

Abb. 4-4: Hemmnisse bei Maßnahmen zur rationellen Energieanwendung in kleinen und mittleren Unternehmen aus Gewerbe und Handel gemäß Gewerbeberatern von Energieversorgern

4.3.2 Befragung mit einer angepassten Delphi-Methode

Eine Befragungsmethode, die die Fachkenntnis als Messgröße für die Qualität einer Antwort verwendet, ist die Delphi-Methode /Häder 1996/. Mit der Delphi-Methode werden die "Einsichten und Zukunftseinschätzungen ausgewählter Fachleute" zu Themen wie die Entwicklung von bestimmten Forschungsbereichen oder zu gesellschaftlichen Situationen

In der vorliegenden Arbeit wurde eine an die Delphi-Methode angelehnte Befragungsmethode für die Hemmnisanalyse entwickelt, die an die Anforderungen und Besonderheiten in den untersuchten Branchen angepasst wurde. Die Zielgruppe für die Befragung bestand aus Personen aus Technikabteilungen von Lebensmitteleinzelhandelsketten, Inhabern selbständiger ("Franchising-") Märkte, Personen aus Technikabteilungen von Hotelketten, Inhabern selbständiger Hotels sowie aus "externen Experten" beider Branchen. Die Fachkenntnis jedes Befragten wurde zu jedem Hemmnis erhoben und bei der Auswertung berücksichtigt. Dabei war die Fachkenntnis vom Befragten selbst einzuschätzen.

Bei der Erstellung von Fragebögen für die Hemmnisumfrage stellt sich das Problem, dass einerseits neben der Einschätzung der Bedeutung verschiedener Hemmnisse für Maßnahmen zur rationellen Energieanwendung auch eine Einschätzung der eigenen Fachkenntnis zu diesem Thema vom Befragten vorzunehmen ist. In der Regel sind besonders Wissenschaftler Zielgruppe einer Delphi-Befragung, die Wissenseinschätzungen und -überprüfungen theoretisch gewohnt sind. Im vorliegenden Fall musste ein Fragebogen für Experten in Technikabteilungen von Unternehmen entworfen werden, der an Denkenweise und Arbeitsalltag dieser Gruppe angepasst ist. Nach Erfahrungen mit Berufsverbänden und befragten Betrieben bei Datenerhebungen ist keine Motivation zur Mitarbeit vorhanden, wenn
Absicht und Nutzen der Umfrage für den Befragten nicht unmittelbar ersichtlich ist /Einzelhandelsverband 1996/. Folglich musste ein Fragebogen entwickelt werden, der die Anforderungen der "Delphi-Fragen" und die Anforderungen an einen Fragebogen, der leicht verständlich und schnell zu bearbeiten ist, vereinigt.

4.3.3 Auswertung der Umfrageergebnisse zur Hemmniserhebung

Die Methode zur Auswertung der Antworten besteht in der Bewertung der Antworten zu den Hemmnissen sowie in der Berücksichtigung der von den Befragten angegebenen Fachkenntnis (1-4 Punkte) zu jedem Hemmnis. Dies wird im Rahmen einer Gewichtung durchgeführt, wobei die Gewichtung ein Indikator für die Qualität jeder Antwort darstellt. Um die Bedeutung jedes Hemmnisses bestimmen und mit anderen Hemmnissen vergleichen zu können, wird folgende Vorgehensweise gewählt: Für jedes Hemmnis "q" im Fragebogen und jede Antwort "x" (Befragter bzw. Datensatz) gilt, dass die Antwort A für die Bedeutung des Hemmnisses Werte zwischen eins und vier annehmen kann, also

\[A_{qx} = [1,4]. \]

Die geschätzte eigene Fachkenntnis F für ein Hemmnis q kann im Fragebogen ebenfalls Werte zwischen eins und vier annehmen:

\[F_{qx} = [1,4]. \]
Zusätzlich wird der Wert für A bzw. für \(F = 0 \) gesetzt, wenn keine Angabe für das Feld vorhanden ist. Eine einfach Multiplikation beider Werte würde Antworten mit hoher Fachkenntnis und niedriger Bedeutung einerseits und Antworten mit niedriger Fachkenntnis und hoher Bedeutung andererseits gleichsetzen. Dies würde zu falschen Ergebnissen führen, da beide Antworten eine grundsätzlich andere Bewertung erfordern. Deshalb wird der Wert A für die Bedeutung für alle Antworten so verschoben, dass der Wertebereich negative und positive Werte annimmt (\(A_{qx} \cdot 2.5 \)). Hierdurch werden Ergebnisse von Antworten mit hoher Fachkenntnis verstärkt. Das Produkt aus beiden Daten führt zu einer gewichteten Antwort \(w \) jedes Befragten \(x \) für jedes Hemmnis \(q \). Für die Berechnung von \(w \) gilt:

\[
A = 0 \lor F = 0 \Rightarrow \text{keine Angabe für } w \\
\text{sonst} \quad w_{qx} = \left(A_{qx} \cdot 2.5 \right) \cdot F_{qx}
\] (4-1)

Die gewichteten Antworten \(w_{qx} \) können damit Werte im Intervall \([-6, 6]\) annehmen. Die Mittelwerte \(w_q \) über alle Antworten \(x \) ergeben sich zu:

\[
w_q = \frac{\sum_{x} w_{qx}}{n}
\] (4-2)

wobei: \(n = \text{Anzahl der Antworten mit } A_{qx} \neq 0 \text{ und } F_{qx} \neq 0 \).

Um das Befragungsergebnis anschaulich darzustellen, wird der Mittelwert skaliert und verschoben, und zwar entsprechend:

\[
W_q = \left[w_q \cdot \frac{50}{6} \right] + 50
\] (4-3)

Mit Hilfe von Gleichung 4-3 wird \(W_q \) als gewichtete Bedeutung des Hemmnis \(q \) normiert in einem Intervall \([0, 100]\) angegeben.

Die Fachkenntnis ist bei der Ermittlung jeder Angabe \(A_{qx} \) als Gewichtung berücksichtigt, allerdings ist nicht erkennbar, wie groß die Fachkenntnis im Durchschnitt bei einem Hemmnis ist. Es wird angenommen, dass, je höher die Fachkenntnis \(F_q \) im Durchschnitt ist, um so sicherer die Aussage über die Bedeutung des Hemmnis ist. Es existiert demnach eine Unsicherheit für jede Bedeutung \(W_q \), denn je mehr Befragte für ihre
Fachkenntnis "\(F_{q_k} = 1 \)" angeben, um so unsicherer ist das Ergebnis für die Bedeutung des Hemmnis q. Diese Unsicherheit wird als Toleranz U für den Wert \(W_q \) ausgewiesen:

\[
W_q \pm U_q
\]

(4-4)

Um den Wert U_q zu bestimmen, wird angenommen, dass

\[
\forall x: \quad F_{qx} = 4 \Rightarrow U_q = 0
\]

(4-5)

\[
\forall x: \quad F_{qx} = 1 \Rightarrow U_q = U_{q,\text{max}}
\]

(4-6)

Der Wert für \(U_{q,\text{max}} \) lässt sich wie folgt bestimmen: Es wird angenommen, dass alle Befragten für das Hemmnis q maximale Bedeutung angeben, \(A_{qx} = 4 \). Gleichzeitig geben alle die Fachkenntnis mit \(F_{qx} = 1 \) an, also maximale Unsicherheit. Nach Gleichung 4-3 ergibt sich \(W_q = 62,5 \) für dieses Hemmnis auf der Skala von Null bis 100. Da sich aus diesen Antworten maximale Unsicherheit ergibt, könnte die Bedeutung des Hemmnisses auch \(W_q = 100 \) betragen. Die Differenz entspricht dem Wert für die maximale Unsicherheit, also

\[
U_{q,\text{max}} = 37,5
\]

(4-7)

Für den Fall, dass alle Antworten minimale Bedeutung (\(A_{qx} = 1 \)) und minimale Fachkenntnis (maximale Unsicherheit, \(F_{qx} = 1 \)) aufweisen, ergibt sich \(W_q = 37,5 \). Da sich aus diesen Antworten ebenfalls maximale Unsicherheit ergibt, könnte die Bedeutung des Hemmnisses auch \(W_q = 0 \) betragen. Die Differenz entspricht auch hier dem Wert für die maximale Unsicherheit, \(U_{q,\text{max}} = 37,5 \).

Für die Berechnung von \(U_q \) für jedes Hemmnis wird ein linearer Zusammenhang mit

\(0 \leq U_q \leq 37,5 \) für \(4 \leq F_q \leq 1 \) angenommen, so dass der Wert für \(U_q \) sich berechnet zu:

\[
U_q(F_q) = \frac{37,5}{3} \left(4 - F_q \right)
\]

(4-8)

wobei \(F_q \) = Mittelwert \((F_{qx}) \),
\[
F_q = [1:4]
\]

Mit Hilfe der Gleichungen 4-1 bis 4-8 kann nun für jedes Hemmnis in jeder Branche die Bedeutung bestimmt werden, sowie die Unsicherheit, mit der die Aussage behaftet ist.
4.3.4 Antwortquoten und Stichproben

Für die beiden Branchen Hotels und Lebensmitteleinzelhandel wurden nach Abb. 4-2 zwei Gruppen von Befragten unterschieden: Personen aus den Unternehmen der Branchen und "externe Experten", so dass für vier Gruppen eine repräsentative Anzahl von Befragungen durchzuführen war. In früheren Umfragen gab es bei Antworten von Supermärkten einen sehr schwachen Rücklauf (vgl. Kapitel 2.8), so dass in diesem Bereich mehr Fragebögen aufgewendet wurden, um die erforderliche Anzahl an Datensätzen zu erreichen.

Die Adressen von zu befragenden Unternehmen wurden aus den Listen von Unternehmen aus der Umfrage zur Erhebung von Energiedaten zusammengestellt. Daneben wurden Fragebögen über die Ausschussmitglieder verteilt. Da so zwei Vertriebswege für Fragebögen parallel genutzt wurden, wurde eine Kontrolle der Struktur der Stichprobe durchgeführt, um sicherzustellen, dass sowohl sehr kleine als auch größere Unternehmen in der Befragung berücksichtigt werden. Tab. 4-3 gibt einen Überblick über die Anzahl verteilter Fragebögen und die Antwortquoten der Umfrage in beiden Branchen.

Tab. 4-3: Anzahlen verteilter Fragebögen und Rücklauf bei der Umfrage zu Hemmnissen für die Umsetzung von Maßnahmen zur rationellen Energieanwendung

<table>
<thead>
<tr>
<th>HOTELS:</th>
<th>verteilt</th>
<th>Rücklauf</th>
<th>in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotel-Unternehmen</td>
<td>508</td>
<td>82</td>
<td>16%</td>
</tr>
<tr>
<td>Externe Experten</td>
<td>56</td>
<td>17</td>
<td>30%</td>
</tr>
<tr>
<td>Summe Hotelbranche</td>
<td>564</td>
<td>99</td>
<td>18%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEBENSMITTELEINZELHANDEL:</th>
<th>verteilt</th>
<th>Rücklauf</th>
<th>in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einzelhandels-Unternehmen</td>
<td>950</td>
<td>168</td>
<td>18%</td>
</tr>
<tr>
<td>Externe Experten</td>
<td>51</td>
<td>17</td>
<td>33%</td>
</tr>
<tr>
<td>Summe Lebensmitteleinzelhandel</td>
<td>1001</td>
<td>185</td>
<td>18%</td>
</tr>
</tbody>
</table>

Mit dem in Tab. 4-3 dargestellten Rücklauf stehen 99 Datensätze aus der Hotelbranche und 185 Datensätze aus dem Lebensmitteleinzelhandel für die Auswertung zur Verfügung. Die erzielten hohen Antwortquoten (vgl. Kapitel 2.8) resultieren aus dem Vorteil, bestehende Kontakte zwischen Unternehmen und externen Experten mit Hilfe des

Die Antworten zu Bedeutung und Fachkenntnis zu jedem Hemmnis sind vollständiger als bei solch einer komplexen Fragestellung erwartet werden könnte. So liegt die höchste Antwortquote bei der Bedeutung eines Hemmnisses bei 95 %. Die niedrigste Antwortquote liegt bei 85 %. Auch die Einträge zur Fachkenntnis, die als schwierigste Angaben im Fragebogen anzusehen sind, liegen für kein Hemmnis unter 75 %.

Struktur der Daten aus der Hotelbranche

Aus den Fragebögen kann zur Gruppierung der Daten zunächst die Art des Unternehmens bzw. der Institution ermittelt werden. Die Antworten von Unternehmen werden getrennt von den Antworten externer Experten behandelt, da bezüglich einzelner Hemmnisse aufgrund der unterschiedlichen Sichtweise durch die beruflichen Funktionen Unterschiede zu erwarten sind. Wie Abb. 4-5 zeigt, sind bei der Stichprobe für die Hotelbranche zirka 82 % der Aussagen Mitarbeitern von Hotelunternehmen zuzuordnen und insgesamt zirka 18 % den externen Experten.

Abb. 4-5: Gliederung der Stichprobe Hotelbranche nach Unternehmensart

Da die Gesamtstichprobe zirka 100 Datensätze enthält, ist eine Einteilung der Daten unter Berücksichtigung einer Mindestanzahl von 15 Antworten je Gruppe in zwei Gruppen möglich. Die Struktur der Stichprobe, bezogen auf die Tätigkeit der Befragten, ist in Abb. 4-6 dargestellt.
Abb. 4-6: Gliederung der Stichprobe Hotelbranche nach Tätigkeitsbereich

Die Mehrzahl der Antworten stammt von Geschäftsleitern und technischen Leitern in Hotels. 18 % der Antworten weisen Mehrfachnennungen bei der Tätigkeit auf. Mehrfachnennungen kommen dort vor, wo mehrere Arbeitsbereiche von einer Person abgedeckt werden. Aus diesem Grunde wird nicht der Tätigkeitsbereich als Indikator für die Einteilung in Gruppen verwendet, sondern die Einteilung nach Abb. 4-5.

Struktur der Daten aus dem Lebensmitteleinzelhandel

Im Lebensmitteleinzelhandel sind 83,4 % der Antworten Personen aus den Unternehmen der Branche zuzuordnen. Die Struktur der Stichprobe bezüglich der Unternehmensart ist in Abb. 4-7 dargestellt.

In der Datenbasis sind auch Antworten von Non-Food-Märkten und Großhandelsmärkten vorhanden; diese sind in Abb. 4-7 als "sonst" zusammengefasst. Die Daten der Lebensmitteleinzelhandel-Stichprobe sollten analog der Hotelbranche in die zwei Gruppen "Unternehmen" und "externe Experten" eingeteilt werden.
Abb. 4-7: Gliederung der Stichprobe Lebensmitteleinzelhandel nach Unternehmen satt

Um der unterschiedlichen Unternehmensstruktur der selbständigen Märkte gegenüber der Handelsketten gerecht zu werden, wird eine weitere Unterteilung der in Abb. 4-7 dargestellten Gruppe "Einzelhandel" in (133) Lebensmitteleinzelhandelsketten und (23) selbständige Märkte vorgenommen.

Insgesamt können vier Gruppen identifiziert werden: Die Handelsketten, selbständige Lebensmittelmarkte, die externen Experten und Sonstige. Da die sonstigen Märkte in der Arbeit nicht weiter betrachtet werden, verringert sich die verwertbare Datenanzahl um zirka 10%. Abb. 4-8 stellt die Struktur der Stichprobe bezüglich der Tätigkeiten der Befragten dar.

Abb. 4-8: Gliederung der Stichprobe den Lebensmitteleinzelhandel nach Tätigkeitsbereich

Wie in den Daten zur Hotelbranche sind auch hier Doppeleinträge vorhanden, die eine eindeutige Zuordnung jedes Datensatzes zu einer Gruppe erschweren. Deshalb werden auch
für den Lebensmitteleinzelhandel ausschließlich die eindeutigen Angaben zur Unternehmensart für die Gruppierung der Daten verwendet.

4.4 Hemmnisse in der Hotelbranche

Die Auswertung der zwei Teilgruppen aus der Hotelbranche zeigt, dass externe Experten Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung grundsätzlich bedeutender eingestuft haben als die Befragten der Hotelunternehmen. Tab. 4-4 stellt die Angaben aus der Umfrage als Durchschnittswerte über alle Hemmnisse getrennt nach den beiden Gruppen der Befragten dar.

Tab. 4-4: Durchschnittswerte der Umfrageergebnisse in den befragten Gruppen der Hotelbranche

<table>
<thead>
<tr>
<th></th>
<th>Mittelwert der Bedeutung W über alle Hemmnisse [0; ... ; 100]</th>
<th>Mittelwert der Unsicherheit U über alle Hemmnisse [0; ... ; 37,5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotelunternehmen</td>
<td>53,9</td>
<td>12,2</td>
</tr>
<tr>
<td>externe Experten</td>
<td>67,9</td>
<td>8,8</td>
</tr>
</tbody>
</table>

Die externen Experten haben ihre eigene Fachkenntnis im Durchschnitt höher bewertet als die Befragten in den Hotels. Der Durchschnitt der sich daraus ergebenden Unsicherheit für die Aussagen zur Bedeutung der Hemmnisse liegt für die externen Experten bei 8,8 bzw. 23 % der maximale Unsicherheit. Bei den Hotels liegt die Unsicherheit der Aussagen bei durchschnittlich 12,2 bzw. 32,5 % bezogen auf die maximale Unsicherheit. Dies bedeutet, dass sich externe Experten in der Frage der Umsetzungsproblematik rationeller Energieanwendung tendenziell als kompetenter ansehen und die Probleme stärker gewichten als Technische Leiter beziehungsweise Geschäftsleiter von Hotels.

Das Ergebnis der Auswertung der einzelnen Hemmnisse aus Sicht der Befragten aus Hotelunternehmen ist in Abb. 4-9 dargestellt. Aufgetragen ist die ermittelte gewichtete Bedeutung (Wichtigkeit W) für jedes Hemmnis.

Die Unsicherheit jeder Aussage ist als Bandbreite des Wertes der Bedeutung in Form eines schattierten Balken angegeben. Je schmaler die Bandbreite der Unsicherheit um den Wert der Bedeutung ist, um so sicherer ist die Aussage. Die Hemmnisse sind nach der Größe ihrer Bedeutung sortiert dargestellt, wobei bei gleicher Bedeutung zweier Hemmnisse das Hemmnis mit der größeren Unsicherheit nachrangig eingeordnet wird.
Abb. 4-10: Bedeutung der einzelnen Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung gemäß befragten externen Experten zu Hotels

Die Abb. 4-10 zeigt, dass finanzielle Hemmnisse tendenziell als wichtig angesehen werden, aber keine der organisatorischen, technologischen oder sonstigen Hemmnisgruppen als dominant angesehen werden kann. Das Hemmnis "spezifischer Verbrauch wird nicht ermittelt" ist sowohl von Mitarbeitern in Hotels als auch von externen Experten als das bedeutendste nicht-finanzielle Hemmnis eingestuft worden. Ausführliche Diskussionen im Rahmen des Ausschusses bestätigen diese Problematik. Es fehlen den Unternehmen Vergleichsmöglichkeiten, um Ziele für eine Minderung des Energieverbrauchs und der Energiekosten effizient und plausibel definieren zu können.

4.5 Hemmnisse im Lebensmitteleinzelhandel

Die Ergebnisse der befragten Unternehmen im Lebensmitteleinzelhandel zeigen grundsätzlich eine hohe Unsicherheit der Aussagen bei den Befragten aus den Handelsketten und bei selbständigen Händlern. Tab. 4-5 verdeutlicht dies mit einer Übersicht der durchschnittlichen
Angaben und Unsicherheiten für die verschiedenen Gruppen. Die durchschnittliche Unsicherheit der Einschätzungen zur Bedeutung der Hemmnisse liegt bei 18,8, bzw. 50 % der maximalen Unsicherheit.

Tab. 4-5: Durchschnittswerte der Umfrageergebnisse in den befragten Gruppen des Lebensmitteleinzelhandel

<table>
<thead>
<tr>
<th>Lebensmitteleinzelhandelketten</th>
<th>Mittelwert der Bedeutung W über alle Hemmnisse [0; ... ; 100]</th>
<th>Mittelwert der Unsicherheit U über alle Hemmnisse [0; ... ; 37,5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebensmitteleinzelhandelketten</td>
<td>54,1</td>
<td>18,8</td>
</tr>
<tr>
<td>Selbständige Lebensmitteleinzelhändler</td>
<td>55,5</td>
<td>15,7</td>
</tr>
<tr>
<td>externe Experten</td>
<td>60,1</td>
<td>12,0</td>
</tr>
</tbody>
</table>

Bei selbständigen Einzelhändlern liegt dieser Wert bei 15,7, bzw. 42 % der maximalen Unsicherheit. Wie in der Hotelbranche sind auch im Lebensmitteleinzelhandel die Aussagen der Unternehmen mit größeren Unsicherheiten behaftet als die externen Experten, da diese ihre Fachkenntnis höher einschätzen (12,0 bzw. 32 % bezogen auf die maximale Unsicherheit). Die durchschnittlich angegebene Fachkenntnis der externen Experten im Lebensmitteleinzelhandel ist im Vergleich mit denen der Hotelbranche geringer. Der Grund hierfür ist, dass in der Hotelbranche die Gruppe fast ausschließlich aus Energieberatern und Geräteherstellern besteht, während im Lebensmitteleinzelhandel neben Energieberatern allgemeine Betriebsberater als externe Experten geantwortet haben.

Eine stärkere Betonung technischer und finanzieller Hemmnisse ergibt sich nach Abb. 4-12 aus den Antworten von Personen aus selbständigen Lebensmitteleinzelhandelsunternehmen. Besonders die Überdimensionierung von Anlagen wird im Bereich der technischen Hemmnisse angeführt. Fehlende Energiekennzahlen werden wie bei der Teilbefragung der Lebensmitteleinzelhandelsketten als wesentlich angesehen ("Spezifischer Verbrauch wird nicht ermittelt"), ein allgemeines Informationsdefizit bezüglich Maßnahmen zur rationellen Energieanwendung erscheint jedoch erst an sechster Stelle.

Abb. 4-11: Bedeutung der einzelnen Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung gemäß befragten Experten aus Lebensmitteleinzelhandelsketten
Abb. 4-12: Bedeutung der einzelnen Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung gemäß befragten selbständigen Lebensmittel-Einzelhändlern

Von den externen Experten für den Lebensmitteleinzelhandel wird nach Abb. 4-13 der Zeitmangel der betroffenen Personen in den Unternehmen als bedeutendes Hemmnis eingeschätzt und nimmt in der Liste den zweiten Rang ein.

Bei selbständigen Märkten und Ketten liegt die Bedeutung des Zeitmangels nur an siebter beziehungsweise elfter Stelle. Auch die finanziellen Hemmnisse werden von Personen aus Unternehmen des Lebensmitteleinzelhandels nicht so dominant eingestuft wie von externen Experten. Die Hemmnisse, die in allen drei befragten Gruppen übereinstimmend unter den wichtigsten zehn rangieren, sind das Informationsdefizit, eine im Durchschnitt als zu lang angesehen Amortisationszeit sowie die fehlende Bestimmung des spezifischen Energieverbrauchs.
Abb. 4-13: Bedeutung der einzelnen Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung gemäß befragten externen Experten zum Lebensmittel- einzelhandel

4.6 Branchenübergreifende Ergebnisse

Vorteilen rationeller Energieanwendung (Energieverbrauchs-, Energiekostensenkung, Umwelt) überzeugt werden müssen und Vertrauen in die technischen und organisatorischen Lösungen bereits besteht.
4 Hemmnisse für die rationelle Energieanwendung in Unternehmen
5 Instrumente zur Überwindung von Hemmnissen bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung in Unternehmen

Nach der Ermittlung der wichtigen Hemmnisse für die Umsetzung von Maßnahmen zur rationellen Energieanwendung in den Branchen Hotels und Lebensmitteleinzelhandel in Kapitel 4 ist zu analysieren, wie diese Hemmnisse überwunden werden können. Abb. 5-1 zeigt hierzu die Einteilung der Lösungsmöglichkeiten für die verschiedenen Hemmnisarten, die in Abb. 4-1 aufgezeigt wurden. Die Lösungsmöglichkeiten werden im Rahmen der Arbeit als Instrumente bezeichnet, mit denen die durch Hemmnisse behinderte Umsetzung von Maßnahmen zur rationellen Energieanwendung gefördert werden kann. Ziel dieses Kapitels ist daher, Instrumente zur Überwindung von Hemmnissen zu identifizieren und Kriterien für die Eignung von Instrumenten zur Hemmnisüberwindung zu definieren, um geeignete Instrumente auszuwählen, zu entwickeln und in einem praktischen Test auf ihre Eignung zu überprüfen.

![Diagramm zur Einteilung von Hemmnissen und Lösungsmöglichkeiten](image)

Abb. 5-1: Einteilung der Möglichkeiten für eine verbesserte Umsetzung von Maßnahmen zur rationellen Energieanwendung
Bei der Analyse werden wirtschaftliche und gesellschaftliche Rahmenbedingungen (z. B. die wirtschaftliche Situation der Unternehmen einer Branche, die Werteverstelungen der Entscheidungsträger in den Unternehmen sowie die legislative und ordnungsrechtliche Sachlage, vgl. Kapitel 4) als gegeben angenommen. Deshalb werden Instrumente zur Überwindung bestehender Hemmnisse untersucht, die unabhängig von diesen Rahmenbedingungen einsetzbar sind.

Untersucht werden Instrumente zur Hemmnisüberwindung in den Betrieben der analysierten Branchen zur Überwindung bestehender Hemmnisse bei Information und Organisation. Als Instrumente werden alle Hilfsmittel, Aktionen oder schriftliche Materialien angesehen, welche die zuständigen Personen in den Betrieben bei einer effizienteren Nutzung

5.1 Instrumente zur Überwindung von Hemmnissen in der Hotelbranche

Tab. 5-1: Auswahl bestehender und möglicher Instrumente zur Hemmnisüberwindung in der Hotelbranche

<table>
<thead>
<tr>
<th>Zielgruppe</th>
<th>Broschüren, Falzlätter</th>
<th>Rechen-/ Lehr- Software</th>
<th>Checklisten für Mitarbeiter</th>
<th>Verleih energieeffizienter Geräte</th>
<th>Ausstellung effizienter Geräte</th>
<th>Handbuch, Leitfaden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschäftsführung Hotel</td>
<td>1)</td>
<td>2)</td>
<td>4)</td>
<td></td>
<td>5)</td>
<td></td>
</tr>
<tr>
<td>Hotel-Techniker</td>
<td>1)</td>
<td>2)</td>
<td>3)</td>
<td>4)</td>
<td>5)</td>
<td></td>
</tr>
<tr>
<td>Küchentechnik</td>
<td></td>
<td></td>
<td>3)</td>
<td>4)</td>
<td>5)</td>
<td></td>
</tr>
<tr>
<td>Gesamtes Hotel-Personal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energieberater</td>
<td></td>
<td></td>
<td>3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Broschüren, Faltblätter zur rationellen Energieanwendung:
Beschreibung: Es existieren Broschüren der Berufsverbände auf Landes- und Bundes-
ebene /HOGA 1993/, /DEHOGA 1997/, die eine Zusammenstellung von Maßnahmen
zur Reduzierung von Energieverbrauch und Energiekosten für Hotels enthalten.
Wirkung bei der Überwindung von Hemmnissen: Mit Hilfe der Broschüren wird ein
Informationsdefizit abgebaut und Zusammenhänge zwischen Energieverbrauch und
-kosten sowie Maßnahmen zur rationellen Energieanwendung dargestellt und erläutert.

2) Software für Hoteltechniker und -inhaber zur Bestimmung von Energiekennzahlen:
Beschreibung: Ein EDV-Programm sollte eine Energiekurzanalyse mit Energie-
kennzahlen und Maßnahmen zur rationellen Energieanwendung enthalten.
Wirkung bei der Überwindung von Hemmnissen: Wenn allgemeine und technische
Informationen zu Maßnahmen enthalten sind, kann ein Informationsdefizit abgebaut
werden. Kenntnisse über spezifische Energieverbräuche können mit Hilfe von Kenn-
zahlen und einem Branchenvergleich erreicht werden.

3) Checklisten mit Maßnahmen zur rationellen Energieanwendung:
Beschreibung: Checklisten sollten Richtlinien für Techniker und allgemeines Personal
bezüglich der Möglichkeiten der rationellen Energieanwendung mit "Energiespar-
pfaden" enthalten.
Wirkung bei der Überwindung von Hemmnissen: Das Instrument unterstützt die
organisatorische Einplanung der rationellen Energieanwendung in den Arbeitsalltag und
cann Informationsdefizite reduzieren.

4) Verleih energieeffizienter Geräte:
Beschreibung: Geräte, wie z. B. Induktionsherde für gewerbliche Küchen werden im
Rahmen der Kundenbetreuung von Energieversorgern über einen Zeitraum von z. B.
einer Woche kostenlos zum Testen bereitgestellt /EAM 1997/.
Wirkung bei der Überwindung von Hemmnissen: Das Instrument kann Bedenken
bezüglich veränderten Betriebsablauf bzw. bezüglich Qualität der Dienstleistung
("Fertiges Gericht") abbauen.

5) Ausstellung energieeffizienter Geräte:
Beschreibung: Es existiert z. B. eine Ausstellung für den Hotelsektor "Küche, Köche,
Kilowatt" der Stadtwerke Zürich zur Vorstellung neuer energieeffizienter Geräte und
Anlagen für den Gastronomiebereich zusammen mit Geräteherstellern.
Wirkung bei der Überwindung von Hemmnissen: Informationsdefizite können reduziert
werden, indem der Zusammenhang zwischen effizienten Geräten und Energieverbrauch
dargestellt wird. Das Instrument kann auch Hemmnisse bezüglich Bedenken der Erhaltung der Qualität der Dienstleistung abbauen.

6) Leitfaden für Energieberater:
Beschreibung: Ein Leitfaden für Energieberater sollte eine umfassende Darstellung von investiven und organisatorischen Maßnahmen zur rationellen Energieanwendung in Hotels enthalten.
Wirkung bei der Überwindung von Hemmnissen: Das Instrument erhöht Qualität und Effizienz der Energieberatung und senkt die Kosten der Energieberatung.

5.2 Instrumente zur Überwindung von Hemmnissen im Lebensmitteleinzelhandel

In Tab. 5-2 ist analog zu Tab. 5-1 als Ergebnis der Umfrage innerhalb des Ausschusses eine Auswahl bestehender und möglicher Instrumente zur Überwindung bestehender Hemmnisse bei Information und Organisation im Lebensmitteleinzelhandel zusammengestellt. Schattierte Felder zeigen an, dass bereits Instrumente existieren. Die Ziffern entsprechen den anschließenden Erläuterungen zur Art des jeweiligen Instruments und zur Wirkungsweise hinsichtlich der Überwindung von Hemmnissen.

Tab. 5-2: Auswahl bestehender und möglicher Instrumente zur Hemmnisüberwindung im Lebensmitteleinzelhandel

<table>
<thead>
<tr>
<th>Zielgruppe</th>
<th>Broschüren, Faltblätter</th>
<th>Checklisten für Mitarbeiter</th>
<th>Seminare, Workshops</th>
<th>Handbücher, Leitfaden</th>
</tr>
</thead>
<tbody>
<tr>
<td>selbständige Märkte, Filialleiter</td>
<td>1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Leitung</td>
<td>1)</td>
<td>2)</td>
<td>3)</td>
<td></td>
</tr>
<tr>
<td>Geschäftsleitung</td>
<td>1)</td>
<td>2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtes Personal</td>
<td>1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energieberater</td>
<td></td>
<td></td>
<td></td>
<td>4)</td>
</tr>
</tbody>
</table>
1) Broschüre für Lebensmitteleinzelhandelsmärkte:
Wirkung bei der Überwindung von Hemmnissen: Mit dem Instrument erfolgt ein Abbau des Informationsdefizits.

2) Checklisten für Mitarbeiter mit Ansprechpartnern zur rationellen Energieanwendung:
Wirkung bei der Überwindung von Hemmnissen: Die Checklisten ermöglichen ein leichteres Finden von Ansprechpartnern und Kontakten (vgl. Abb. 4-11, Abb. 4-12).

3) Seminare, Workshops:

4) Leitfaden für Energieberater:
Beschreibung: Ein Leitfaden sollte eine Darstellung der Schwerpunkte der Potenziale zur Reduzierung des Energieverbrauchs in Supermärkten mit investiven und organisatorischen Maßnahmen zur rationellen Energieanwendung enthalten.
Wirkung bei der Überwindung von Hemmnissen: Das Instrument erhöht die Qualität und die Effizienz der Energieberatung und senkt damit Beratungskosten.

5.3 Auswahlmethode für geeignete Instrumente zur Hemmnis überwindung

Aus der Menge existierender und möglicher Instrumente für beide Branchen sollen diejenigen identifiziert werden, die geeignet sind, bedeutende Hemmnisse in den Branchen Hotels und Lebensmitteleinzelhandel zu überwinden. Die Auswahl erfolgt anhand verschiedener

1. Festlegung der Gewichtung für quantitativ bestimmbare Kriterien,
2. Festlegung von Ausschlusskriterien (Machbarkeit),
3. Auswertung qualitiver Merkmale und

Die Auswertung der Matrizen aus Anhang C ist als Rangfolge von Instrumenten in Abb. 5-2 dargestellt. Für die Hotelbranche ist für die Akzeptanz die Nutzung "neuer Medien" wichtig, während im Lebensmitteleinzelhandel der persönliche Kontakt als unabdingbar angesehen wird.

Beim vorgeschlagenen Instrument Energieanalyse-Software mit Branchenvergleich für technische Leiter in Hotels ist für die Anwendung eine vorhandene Ausstattung mit Computern Voraussetzung.
Abb. 5-2: Rangfolge geeigneter Instrumente zur Hemmnisüberwindung in Hotels und im Lebensmitteleinzelhandel

Um zu überprüfen, inwieweit die notwendige Hardware vorhanden ist, werden die Umfrage-daten ausgewertet, die im Rahmen der Energiedatenerhebung (vgl. Kap. 2.4) gewonnen wurden, und zwar im Hinblick auf das Vorhandensein von Personal Computern in Hotels. So gaben 67 % der befragten Unternehmen dabei an, dass sie mit Computern ausgestattet sind. Daraus lässt sich ableiten, dass *mindestens* zwei Drittel der Hotelbetriebe in der Branche PC besitzen, da unter den 33 % der Hotels, die hierzu keine Angabe machten, weitere mit Computern sein können. Für eine Verbreitung in der Branche ist nicht nur die Anzahl der Betriebe mit der notwendigen Ausstattung entscheidend, sondern auch, in welchen Größenklassen Computer vorkommen. Abb. 5-3 stellt hierzu die Verteilung von Personal Computern in Hotels verschiedener Größe anhand der Bettenzahl der Hotels dar.

Abb. 5-3: Verteilung von Computern in verschiedenen Hotelgrößenklassen 1995

Aus der Auswertung der Instrumenten-Kriterien-Matrix ergibt sich zusammen mit der Analyse vorhandener Hardware somit die nachstehende Auswahl für jeweils ein geeignetes Instrument zur Überwindung der Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung für die Hotelbranche und für den Lebensmitteleinzelhandel, und zwar

- für die Hotelbranche das Instrument Energieanalyse-Software mit Benchmarking und
- für den Lebensmitteleinzelhandel ein Seminar mit Training für Filialleiter und Inhaber.

Diese beiden Instrumente wurden entwickelt, in den Branchen eingesetzt und werden im folgenden ausführlich beschrieben und untersucht.

5.4 **Energie-Benchmarkingsoftware für Hotels**

1. Programme für die Prozessdatenerfassung, Korrektur von Messwerten und Visualisierung,
2. Programme zur Generierung von Energiekennzahlen für die Energiediagnose,
3. Datenbankanwendungen / Betriebsführungs-Systeme für Dokumentation, Auswertung, Statistik und Kontrolle,
4. Systeme für die Simulation von Anlagen und
5. Systeme für die Energieeinsatzoptimierung.

Als Ziel des Programms wurde vorgegeben, dass es die Ermittlung und den Vergleich spezifischer Energieverbräuche ermöglicht. Die für die Hotelbranche erzielten Ergebnisse der Hemmnisanalyse zeigen, dass für die Zielgruppe Hoteltechniker und -besitzer neben einem Branchenvergleich spezifischer Energieverbräuche ein Überblick über mögliche Maßnahmen zur rationellen Energieanwendung in Hotels möglich sein soll. Mittel- und langfristig sollen sie motiviert werden, die individuellen Energiekennzahlen im Vergleich mit der Branche zu
verfolgen und individuelle Zielwerte für das eigene Hotel zu definieren. Daraus folgt, dass die Software zur zweiten Gruppe, der Programme zur Generierung von Energiekennzahlen für die Energiediagnose, gehört mit Möglichkeiten zur Dokumentation, analog der Gruppe drei.

5.4.1 Struktur des EDV-Programms

![Diagramm](image_url)

Abb. 5-4: Programmstruktur des Programms "EnBenO" (Energie-Benchmarking für Hotels)
Die Referenz-Energiekennzahlen für die Hotelbranche basieren auf den Daten der Energie-
datenerhebung (vgl. Kapitel 2.5). Als Referenzdaten werden, unterteilt nach den Klassen
"Hotels" (Vollpension) und "Hotels garni" folgende Kennwerte verwendet:

- der Gesamtenergieverbrauch je Übernachtung,
- die Gesamtenergiekosten je Übernachtung,
- der Stromverbrauch je Übernachtung und
- die Stromkosten je Übernachtung.

Dabei wird je Kennwert der Median als Branchendurchschnittswert und der Richtwert als Zielwert angegeben, um die Bandbreite der Branche darzustellen (vgl. Kapitel 2.3, Tab. 2-3).

Jede Eingabe wird durch aktive Hilfe-Fenster unterstützt, die bei der Bearbeitung eines Feldes angezeigt werden und erläutern, welche Daten benötigt und aus welchen Unterlagen des Unternehmens sie entnommen werden können. Die eingegebenen Energiendaten werden im Programm auf Plausibilität überprüft.

Realisiert wird dies durch den Vergleich des Quotienten aus eingegebenen Energieverbrauchs- und Energiekostendaten mit in der Datenbank hinterlegten in Tab. 5-3 dargestellten zulässigen Preisober- und Preisuntergrenzen für jeden Energieträger. Werden diese Preisgrenzen über- oder unterschritten, so erhält der Benutzer eine Fehlermeldung und die Möglichkeit, den Wert zu editieren. Mit den zulässigen Preisgrenzen sollen offensichtliche Eingabefehler, wie z.B. Tippfehler und Dezimalstellenfehler, vermieden werden.
Abb. 5-5: Dateneingabefenster für Energiedaten der Energie-Benchmarking Software für Hotels

Der erste Teil der Programmausgabe führt zu einem Bericht mit dem Ergebnis des Vergleichs der Energiekennzahlen zwischen dem individuellen Hotel und dem Branchendurchschnitt.

Tab. 5-3: Zulässige Preisunter- und Preisobergrenzen für die Plausibilitätskontrolle der Energieverbrauchs- und Energiekostendaten von Hotels im Programm EnBenO

<table>
<thead>
<tr>
<th>Energieträger</th>
<th>zulässige Preisuntergrenze</th>
<th>Zulässige Preisobergrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strom</td>
<td>0,20 DM/kWh</td>
<td>0,50 DM/kWh</td>
</tr>
<tr>
<td>Erdgas</td>
<td>0,20 DM/m³</td>
<td>2,00 DM/m³</td>
</tr>
<tr>
<td>Heizöl</td>
<td>0,20 DM/Liter</td>
<td>1,00 DM/Liter</td>
</tr>
</tbody>
</table>

Das Ergebnis wird im Bericht als Tabelle und graphisch in Form eines Histogramms visualisiert, wie in Abb. 5-6 gezeigt. Der erste Bericht enthält zusätzlich Informationen über die durch die individuellen Energieverbräuche verursachten Emissionen. Durch die Gegenüberstellung von Verbrauch, Kosten und Emissionen bei der Darstellung wird die Beziehung zwischen Energieeffizienz, Kosteneffizienz und Umwelteinfluss deutlich.
Die Darstellung der Auswirkung des Energieverbrauchs auf Energiekosten und Emissionen wirkt als zusätzliche Motivation, Überlegungen und Aktionen zur effizienten Verwendung von Endenergie anzustellen.

5.4.2 Implementierung des EDV-Programms für den Branchentest

Tab. 5-4: An den verschiedenen Untersuchungsschritten teilnehmende Hotels

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verschickte Fragebögen zur Hemmnisumfrage (ohne externe Experten)</td>
<td>645</td>
</tr>
<tr>
<td>Antworten in der Hemmnisumfrage</td>
<td>80</td>
</tr>
<tr>
<td>Angeschriebene Hotels für "EnBenO"</td>
<td>80</td>
</tr>
<tr>
<td>davon Hotels, die EnBenO bestellt haben</td>
<td>51</td>
</tr>
<tr>
<td>Hotels, die EnBenO später bestellt haben (durch Zeitschriftenartikel)</td>
<td>24</td>
</tr>
<tr>
<td>Hotels, die nach Benutzung von EnBenO den Fragebogen zurückgeschickt haben</td>
<td>20</td>
</tr>
</tbody>
</table>

Für den Test des Programms sollten alle Größenklassen von Betrieben vertreten sein, um ein repräsentatives Evaluierungsergebnis für die Branche zu erhalten. In der Stichprobe der Hemmnisumfrage waren mittlere Hotels mit 30 bis 100 Betten bereits stark vertreten. Es war daher zu prüfen, ob die Bereiche sehr großer Hotelbetriebe (> 250 Betten) und sehr kleiner Betriebe mit unter 20 Betten vertreten waren. Abb. 5-7 stellt die Häufigkeit der Teilnehmer nach Hotel-Größenklassen in den verschiedenen Untersuchungsschritten dar und zeigt, dass für den Test von EnBenO alle Größenklassen einbezogen wurden.
Abb. 5-7: An verschiedenen Untersuchungsschritten teilnehmende Hotels nach Betten-Größenklassen

Das EDV-Programm wurde den Hotelbetrieben in Form von Disketten kostenlos zur Verfügung gestellt. Mit den Disketten wurde eine kurze Anleitung zur Installation, zur Vorbereitung und zur Benutzung verschickt, in der auch erläutert wird, welche Unterlagen (Energierechnungen, Übernachtungszahlen) bei Start des Programms vorliegen sollen.

5.5 Seminar Rationale Beleuchtung im Lebensmitteleinzelhandel

5.5.1 Struktur des Seminars

Tab. 5-5: Struktur des Seminars zu rationeller Beleuchtung im Lebensmitteleinzelhandel

<table>
<thead>
<tr>
<th>Block</th>
<th>Thema</th>
<th>Referent</th>
<th>Ziel</th>
<th>Medien</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Begrüßung und Einführung Vorstellung des Ablaufes</td>
<td>R 1</td>
<td>Einstieg der Teilnehmer in das Seminar, Erwartungen auf Seminar abstimmen</td>
<td>Folien</td>
<td>15 min</td>
</tr>
<tr>
<td>2</td>
<td>Energie im Supermarkt</td>
<td>R 1</td>
<td>Verdeutlichung d. Zusammenhänge "Energie => Kosten => Umwelt"; Anteile, Schwerpunkte</td>
<td>Folien</td>
<td>25 min</td>
</tr>
<tr>
<td>3</td>
<td>Rationelle Energieanwendung bei Beleuchtung</td>
<td>R 2</td>
<td>Verstehen der Energieverluste in Beleuchtungsanlagen, Verstehen der Beispiele</td>
<td>Folien Arbeitsheft</td>
<td>45 min</td>
</tr>
<tr>
<td></td>
<td>PAUSE</td>
<td></td>
<td></td>
<td></td>
<td>20 min</td>
</tr>
<tr>
<td>4</td>
<td>Der Energieeffizienzplan für den ABC-Markt</td>
<td>Teilnehmer</td>
<td>Überprüfung des Gelernten und Umsetzung in Gruppenarbeit</td>
<td>Arbeitsheft</td>
<td>45 min</td>
</tr>
<tr>
<td>5</td>
<td>Fördermöglichkeiten für Maßnahmen zur rationellen Energieanwendung</td>
<td>R 3</td>
<td>Motivation für investive Maßnahmen zur rationellen Energieanwendung</td>
<td>Folien</td>
<td>15 min</td>
</tr>
<tr>
<td>6</td>
<td>ZusammenfassungSeminauswertung, Verabschiedung</td>
<td>R 1</td>
<td>Bewertung des Seminars, Vervollständigung der Unterlagen der Teilnehmer, Abschließen des Seminars</td>
<td>Fragebogen</td>
<td>15 min</td>
</tr>
</tbody>
</table>

gesamt: 180 min

Die Darstellung und Erläuterung von Energiekennzahlen sowie typische Kennwerte und Vergleichbarkeit von Supermärkten ergänzen den allgemeinen Teil. Im dritten Block des Seminars wird auf Möglichkeiten der rationellen Energieanwendung bei der Beleuchtung

5.5.2 Implementierung des Seminars für den Branchentest

Um sowohl das Seminar mit den Teilnehmern aus dem Lebensmitteleinzelhandel und als auch den Einsatz des EDV-Programms EnBenO mit den Teilnehmern in der Hotelbranche bezüglich der als bedeutend identifizierten Hemmnisse in der jeweiligen Branche bewerten zu können, ist eine Überprüfung ihrer Wirkung im Hinblick auf das vorgegebene Ziel notwendig, die in Kapitel 6 durchgeführt wird.
Tab. 5-6: An verschiedenen Untersuchungsschritten teilnehmende Lebensmitteleinzelhandelsunternehmen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verschickte Fragebögen zur Hemmnisumfrage (ohne externe Experten)</td>
<td>772</td>
</tr>
<tr>
<td>Antworten in der Hemmnisumfrage</td>
<td>156</td>
</tr>
<tr>
<td>Angeschriebene Verbandsmitglieder des Einzelhandels in Württemberg für das Seminar</td>
<td>730</td>
</tr>
<tr>
<td>Seminarteilnehmer</td>
<td>12</td>
</tr>
</tbody>
</table>
6 Bewertung der Instrumente zur Hemmnisüberwindung

Das Ziel des Kapitels ist, die beiden eingesetzten Instrumente im Hinblick auf die Überwindung von Hemmnissen für Maßnahmen der rationellen Energieanwendung in Hotels und im Lebensmitteleinzelhandel zu bewerten. Da für Überlegungen eines Einsatzes solcher Instrumente nicht nur die Zielerreichung, sondern auch die dadurch entstehenden Kosten von Bedeutung sind, wird darüber hinaus ein Ausblick auf die Kosten eines breiten Einsatzes der Instrumente in den Branchen gegeben.

6.1 Existierende Evaluierungsprojekte

Eine Evaluierung von Trainingskursen im Bereich Energiemanagement und Einsatz energieeffizienter Technologien für Entscheidungsträger aus Industrie und Kommunen in Rumänien wird in /ICAEN u. a. 1997/ behandelt. Dabei wird die Bewertung der Qualität der Kurse durch die Teilnehmern dargestellt, und zwar anhand der Indikatoren Qualität der Referenten, Genauigkeit der behandelten Themen, Logistik und Übersetzung der Sprache. Im Hinblick auf die Wirksamkeit des Instruments des Trainingskurses wurde auch eine Einschätzung der "Usefulness for Energy Efficiency Project Design" (Nützlichkeit für die
Planung von Energieeffizienzmaßnahmen) des Trainingskurses durch die Teilnehmer vorgenommen, wobei zwischen "sehr gut", "gut", "mittel" und "schwach" gewählt werden konnte. 36,5 % der Teilnehmer bewerteten die Nützlichkeit des Kurses mit "sehr gut", 46 % mit "gut", 16,5 % mit "mittel" und 1 % mit schwach.

![Image](image-url)

Tab. 6-1: Auswertung einer Broschüre zur rationellen Energieanwendung für den Lebensmittelhandel in Baden-Württemberg

<table>
<thead>
<tr>
<th>Frage</th>
<th>Anzahl der Antworten (k. A. = keine Angabe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>War der Zeitaufwand zum Lesen akzeptabel?</td>
<td>Akzeptabel 27 za lang 1 k. A. 0</td>
</tr>
<tr>
<td>Sind die Zusammenhänge in der Broschüre verständlich erklärt?</td>
<td>Ja 27 nein 0 k. A. 1</td>
</tr>
<tr>
<td>Waren die Informationen genau genug dargelegt?</td>
<td>Ja 25 nein 0 k. A. 3</td>
</tr>
<tr>
<td>Fühlen Sie sich über Möglichkeiten der rationellen Energieanwendung in Ihrem Markt besser informiert als vorher?</td>
<td>Ja 21 nein 5 k. A. 2</td>
</tr>
<tr>
<td>Haben Sie Ihre Einstellung zur rationellen Energieanwendung im Betrieb geändert?</td>
<td>Ja 6 teilweise 14 nein 8 k. A. 0</td>
</tr>
<tr>
<td>Halten Sie die aufgezeigten Einsparmöglichkeiten für umsetzbar?</td>
<td>Ja 8 teilweise 19 nein 1 k. A. 0</td>
</tr>
<tr>
<td>Werden Sie einzelne Anregungen umsetzen?</td>
<td>Ja 24 nein 3 k. A. 1</td>
</tr>
</tbody>
</table>

Das Energieberatungsprogramm eines regionalen Energieversorgungsunternehmens für Kommunen wurde im Hinblick auf die Möglichkeiten der Drittfinanzierung untersucht /Haug u. a. 1997b/. Als Bewertungskriterium für die Wirksamkeit wurde dabei die Anzahl umgesetzter Maßnahmen zur rationellen Energieanwendung in öffentlichen Liegenschaften
bestimmt, die kleineren Kommunen vorgeschlagen wurden. Jede vorgeschlagene Maßnahme wurde dazu für jede Gemeinde getrennt berechnet und ausgewiesen, so dass ein direkter Bezug zwischen Maßnahme und Befragten bestand. Damit wird z. B. ausgeschlossen, dass Maßnahmen aus einer Liste nicht umgesetzt werden, weil sie im jeweiligen Objekt nicht umsetzbar sind. Aus den Antworten ergab sich, dass 34 % der den Kommunen vorgeschlagenen und als wirtschaftlich erachteten Maßnahmen zur rationellen Energieanwendung umgesetzt, 32 % in Planung, 8 % noch nicht entschieden, 19 % verschoben und 4 % abgelehnt wurden (keine Angabe: 5 %) /Haug u. a. 1997b, S. 33/. Bezogen auf ein Instrument wie ein EDV-Programm, eine Broschüre oder ein Seminar ist diese Bewertungsart nur bedingt anwendbar, da der Inhalt hier nicht aus einer ausgearbeiteten Individuallösung besteht.

6.2 Methode zur Bewertung der Eignung von Instrumenten zur Hemmnisüberwindung

wurden bei Fragen mit der Aufforderung zur Bewertung Suggestivfragen vermieden, um eine Beeinflussung der Antworten gering zu halten. Die Fragen sind neutral formuliert und ermöglichen positive und negative Angaben.

In der zweiten Befragung nach vier Monaten wurde der Fragenteil zur Umsetzung sowie die Gesamtbewertung wiederholt, um eine zeitliche Entwicklung festhalten zu können. Darüber hinaus wurden die Befragten gebeten, einen Preis bzw. eine Teilnehmergebühr anzugeben, bis zu dem Sie das Programm/Seminar an Kollegen weiter empfehlen würden, um den monetären Wert des Instruments abzuschätzen; dies wird als Zahlungsbereitschaft definiert /Gabler 1995, S. 2837/.

6.3 Evaluierung der Energie-Benchmarkingsoftware

Die Struktur der Größenklassen der 20 Hotels, die das EDV-Programm EnBenO genutzt und einen Fragebogen zurückgesendet haben, lässt sich anhand der Anzahl der Betten der entsprechenden Hotels darstellen. Wie in Abb. 6-8 gezeigt, sind mittlere Hotels mit mehr als 30 und weniger als 250 Betten stärker vertreten als kleine und große Hotelbetriebe, was in etwa der Verteilung in der Branche entspricht.

Abb. 6-8: Anteile der nach Betten-Größenklassen geordneten Hotels in der Stichprobe

6.3.1 Bewertung von Inhalt und Darstellungsform der Energie-Benchmarkingsoftware

Die Auswertung zum fachlichen Inhalt des EDV-Programms als Qualitätsmerkmal zeigt nach Abb. 6-9 zusammen mit ergänzenden Kommentaren der Benutzer, dass die Idee des Energie-Benchmarking mit dem "Branchenvergleich als Basis" als hilfreich und wichtig angesehen wird.
Abb. 6-9: Bewertung der fachlichen Inhalte des Energie-Benchmarkingprogramms

Eine Gesamtauswertung der in Abb. 6-9 und Abb. 6-10 dargestellten Antworten zeigt, dass die Teilnehmer die fachliche Inhalte und für die Darstellungsform des Instruments zur Hemmnisüberwindung in der Hotelbranche die Qualität des Instruments mit gut bis zufriedenstellend bewerten.
6.3.2 Bewertung der Energie-Benchmarkingsoftware im Hinblick auf die Ziele des Instruments

Nach der Bewertung von Inhalt und Darstellungsform der Energie-Benchmarkingsoftware, wird die Bewertung im Hinblick auf die Ziele des Instruments anhand der Auswertung der Antworten der Teilnehmer zum Verständnis, zur Motivation und zu Vorhaben bezüglich der Umsetzung von Maßnahmen zur rationellen Energieanwendung vorgenommen. Abb. 6-11 stellt die Antworten aus dem entsprechenden Teil des Fragebogens dar.

Die Frage, ob die Idee des "Benchmarking verstanden" wurde, beantworteten 13 von 20 Teilnehmer mit "ja" bzw. "ja sehr". 17 von 20 Teilnehmern beantworteten die Frage zur "Motivation, Kennzahlen zu verfolgen" mit "ja" bzw. "ja sehr". Die "Motivation, Energieverluste zu suchen" ist demnach bei zwölf von 20 Teilnehmern eindeutig gegeben. Bei der Auswertung zeigen sich zwei grundsätzliche Tendenzen: Erstens wird durch das Programm das Motivationsziel, Kennzahlen zu beobachten und zu verfolgen, erreicht; Zweitens wird die durchschnittliche Bewertung durch die Benutzer etwas niedriger, wenn die Fragen konkreter auf die Umsetzung von Maßnahmen eingehen (vom Verstehen des Benchmarking bis zum Vorhaben der Durchführung von Maßnahmen im eigenen Unternehmen).
Abb. 6-11: Bewertung der Motivation zur inhaltlichen Umsetzung des Energie-Benchmarking-Programms durch die Benutzer, erste Befragung

Die zweite Befragung für die Evaluierung mit telefonischer Nachfrage wurde vier Monate nach dem Versand des EDV-Programms durchgeführt, wobei elf Hotelbetriebe befragt wurden. Abb. 6-12 stellt das Ergebnis der zweiten Befragung dar.

Abb. 6-12: Bewertung der Motivation zur inhaltlichen Umsetzung des Energie-Benchmarking-Programms durch die Benutzer, zweite Befragung
Die Antworten der zweiten Runde streuen stärker als unmittelbar nach der Benutzung des Programms. So teilt sich die befragte Gruppe bezüglich des Vorhabens, Maßnahmen durchzuführen, in den Teil jener, die nach vier Monaten definitiv Maßnahmen planen oder durchführen und jene, die dies nur kurz nach der Benutzung von EnBenO vorhatten und nach vier Monaten "weniger" oder "gar nicht" angaben. Die Motivation, Kennzahlen weiterhin zu verfolgen, ist allerdings immer noch vorhanden.

In beiden Befragungsrunden wurde eine Bewertung als Gesamteindruck des Benutzers ohne Berücksichtigung der Details erbeten. Der Durchschnitt der Gesamtbewertung des EDV-Programms ergibt mit 2,2 ein "gut". In Tab. 6-2 sind die durchschnittliche Gesamtbewertung aus den Antworten der Befragten zu den Bereichen Inhalt, Darstellung und Umsetzung gegenübergestellt.

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Benotung (1 ... 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachliche Inhalte</td>
<td>2,6</td>
</tr>
<tr>
<td>Darstellungsform</td>
<td>2,4</td>
</tr>
<tr>
<td>Motivation zur Umsetzung</td>
<td>2,3</td>
</tr>
<tr>
<td>Gesamtbewertung</td>
<td>2,2</td>
</tr>
<tr>
<td>Motivation zur Umsetzung, 2. Befragung</td>
<td>2,8</td>
</tr>
<tr>
<td>Gesamtbewertung, 2. Befragung</td>
<td>2,8</td>
</tr>
</tbody>
</table>

Der Vergleich der Gesamtbewertung mit der Bewertung der Inhalte und der Darstellung zeigt, dass die Gesamtbewertung besser ausfällt als die Bewertung einzelner Teile. Eine mögliche Erklärung hierfür ist, dass je mehr ein Benutzer zu Details befragt wird, um so mehr steigt die Erwartung, was noch in einem Instrument wie dem EDV-Programm realisiert werden könnte. Aus der zweiten Befragungsrunde ergibt sich deutlich, dass die Gesamteinschätzung des Instruments und die Motivation zur Umsetzung nach einiger Zeit nachlassen.

6.4 Evaluierung des Seminars

Abb. 6-13: Anteile der nach Größenklassen geordneten Supermärkte in der Stichprobe gemäß der Verkaufsflächen

Teilnehmer von Märkten mit großer Verkaufsfläche sowie Teilnehmer von Märkten mit unter 400 m² Verkaufsfläche waren im Seminar entsprechend der statistisch weniger häufig vorhandenen Märkte vertreten.

6.4.1 Bewertung von Inhalt und Darstellungsform des Seminars

Die Auswertung der Antworten zum Seminarinhalt unmittelbar nach Beendigung des Seminars in Abb. 6-14 zeigt, dass die Bewertung der gewählten Themen, der Beispiele und der Übungen durchschnittlich zwischen gut und zufriedenstellend ausfällt.

Abb. 6-14: Bewertung des fachlichen Inhalts des Seminars
Die Bewertung des Arbeithefts als begleitendes Seminarmaterial ("Materialien") wurde von fast allen Teilnehmern als gut bewertet. Insgesamt ist eine geringe Streuung der Antworten festzustellen.

![Bewertung der Darstellungsform des Seminars](image)

Abb. 6-15: Bewertung der Darstellungsform des Seminars

6.4.2 Bewertung des Seminars im Hinblick auf die Ziele des Instruments

Die Bewertung des Seminars im Hinblick auf die Ziele des Instruments wird anhand der Auswertung der Antworten der Teilnehmer zu Verständnis, Motivation und zu Vorhaben bezüglich der Umsetzung von Maßnahmen zur rationellen Energieanwendung vorgenommen.
Abb. 6-16: Bewertung der Motivation zur inhaltlichen Umsetzung des Seminars durch die Teilnehmer, erste Befragung

Die zweite Runde der Bewertung mittels telefonischer Nachfrage wurde vier Monate nach dem Seminar realisiert. Das Ergebnis zeigt Abb. 6-17. Der Vergleich der Abb. 6-17 mit Abb. 6-16 verdeutlicht, dass die Antworten in der zweiten Befragung stärker streuen. Demnach haben die Teilnehmer mit zeitlichem Abstand ein deutlicheres Bild von der Nützlichkeit des Instruments als zu Beginn. Beispielsweise reichen die Antworten zur Motivation, Verbesserungen zu suchen, von "ja sehr" bis "gar nicht". Das Vorgehen zur Vermeidung von Energieverlusten wird im Durchschnitt später besser verstanden.
Eine Erklärung hierfür wäre, dass die Teilnehmer nach dem Seminar im beruflichen Alltag, Möglichkeiten der rationellen Energieanwendung besser verstanden haben, verstärkt wahrnehmen und neue identifizieren.

Abb. 6-17: Bewertung der Motivation zur inhaltlichen Umsetzung des Seminars durch die Teilnehmer, zweite Befragung

Die durchschnittlichen Angaben aller Befragten und die Gesamtbewertungen zum Seminar sind in Tab. 6-3 zusammengestellt. Bei der ersten Befragung ergibt die Gesamtbewertung des Seminars durch die Teilnehmer eine 2,5 auf der Notenskala von "1" für sehr gut bis "5" für schlecht.

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Benotung (1 ... 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachliche Inhalte</td>
<td>2,4</td>
</tr>
<tr>
<td>Darstellungsform</td>
<td>2,3</td>
</tr>
<tr>
<td>Motivation zur Umsetzung</td>
<td>2,5</td>
</tr>
<tr>
<td>Gesamtbewertung</td>
<td>2,5</td>
</tr>
<tr>
<td>Motivation zur Umsetzung, 2. Befragung</td>
<td>2,4</td>
</tr>
<tr>
<td>Gesamtbewertung, 2. Befragung</td>
<td>2,7</td>
</tr>
</tbody>
</table>

6.5 Kosten für Entwicklung und Bereitstellung der beiden Instrumente zur Hemmnisüberwindung

Die Kosten für die Instrumente zur Überwindung identifizierter Hemmnisse, die einem Träger bzw. Anbieter entstehen, lassen sich aus den aufgewendeten Material- und Personalkosten während der Entwicklungsphase und aus den Ausgaben für die Bereitstellung ermitteln. Die Entwicklungskosten gehen als Fixkosten in die Gesamtkosten ein. Ausgaben
für die Bereitstellung der Instrumente, wie z. B. die Ankündigung des Seminars, werden als variable Kosten berücksichtigt. Die Kosten, deren Höhe direkt von der Anzahl der Teilnehmer abhängt, wie z. B. Kosten für Disketten für das EDV-Programm, werden in den variablen Kosten ebenfalls berücksichtigt. Die Kosten "K" für ein Instrument ergeben sich zu:

\[K_{\text{Instr}} = K_{\text{fix, Instr}} + K_{\text{var, Instr}} \] \hspace{1cm} (6-1)

Werden die Gesamtkosten auf die Anzahl der Teilnehmer bezogen, so ergeben sich die Kosten je Teilnehmer "k" nach Umformung der Beziehung:

\[k_{\text{Instr}} = \frac{K_{\text{fix, Instr}}}{T_{N_{\text{Instr}}}} + k_{\text{var, Instr}} \] \hspace{1cm} (6-2)

In den Kosten sind Aufwendungen, die den Teilnehmern entstehen, wie z. B. Zeitaufwand, Anfahrtskosten etc., nicht berücksichtigt. Gleichung 6-1 gibt nur die Kosten des Trägers bzw. Anbieters eines Instruments als absolute Kosten wieder, während Gleichung 6-2 die Kosten auf den Teilnehmer bezieht.

6.5.1 Entwicklungs- und Bereitstellungskosten der Energie-Benchmarkingsoftware

Die Kosten, die für das Instrument Energie-Benchmarking Programm für Hotels entstanden, umfassen die Aufwendungen nach Tab. 6-4 aufgeteilt nach Fixkosten und variablen Kosten. Enthalten sind die Kosten zur Verbreitung des Instruments. Dazu gehört das Anschreiben von Hotels als potentielle Teilnehmer und der Aufwand für Korrespondenz sowie für technischen Nachfragen zum EDV-Programm.

Tab. 6-4: Entwicklungs- und Bereitstellungskosten des Instruments zur Hemmnisüberwindung in der Hotelbranche

<table>
<thead>
<tr>
<th>Fixkosten</th>
<th>variable Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erstellung Pflichtenheft</td>
<td>Disketten kopieren</td>
</tr>
<tr>
<td>Zusammentragen Maßnahmenkatalog</td>
<td>Korrespondenz</td>
</tr>
<tr>
<td>Aufbereiten Kennzahlen</td>
<td>Versand (Kuvertieren, Frankieren)</td>
</tr>
<tr>
<td>Programmierung Quellcode</td>
<td>Telefon, Nachfrage</td>
</tr>
<tr>
<td>Programmtests auf versch. Computern</td>
<td>Disketten</td>
</tr>
<tr>
<td>Erstellung Installationsprogramm</td>
<td>Versandkosten (Porto inkl. Rückumschlag)</td>
</tr>
<tr>
<td>Installationstests auf versch. Computern</td>
<td></td>
</tr>
</tbody>
</table>

Zur Ermittlung der Personalkosten wurde unter anteiliger Berücksichtigung verschiedener Mitarbeiterarten ein Stundensatz von 60,- DM/Std. zugrunde gelegt, womit sich folgende Kosten ergaben:

\[K_{\text{fix, EnBenO}} = 24.700,- \text{ DM} \]
\[K_{\text{var, EnBenO}} = 13,50 \text{ DM/Teilnehmer} \]

Die Gesamtkosten ergeben sich gemäß Gleichung 6-1 zu:

\[K_{\text{EnBenO}} = 24.700 \text{ DM} + 13,50 \text{ DM/Teilnehmer} \times 70 \text{ Teilnehmer} \]
\[K_{\text{EnBenO}} = 25.645 \text{ DM} \]

Nach Gleichung 6-2 betragen die Gesamtkosten je Teilnehmer bei 70 Teilnehmern 366,- DM.

Um im Vergleich die Zahlungsbereitschaft der Teilnehmer bezüglich des Programms "EnBenO" zu ermitteln, wurden die Teilnehmer in der zweiten Befragung gebeten, einen Preis bzw. eine Teilnehmergebühr anzugeben, bis zu dem sie das EDV-Programm an Kollegen weiter empfehlen würden. Dazu wurden Preisbereiche vorgegeben. Abb. 6-18 zeigt das Ergebnis der Einschätzung durch die Benutzer, woraus sich ableiten lässt, dass die Benutzer mehrheitlich einen Preis über 500,- DM nicht für gerechtfertigt halten.

Abb. 6-18: Verteilung der Antworten auf die Frage "Bis zu welchem Preis würden Sie das Programm einem Kollegen oder Bekannten empfehlen?" nach Größenklassen
Der Vergleich der ermittelten Kosten mit den Angaben der Teilnehmer in Abb. 6-18 verdeutlicht, dass die Kosten noch im Bereich der von den Teilnehmern angegebenen Zahlungsbereitschaft liegt.

6.5.2 Entwicklungs- und Bereitstellungskosten des Seminars

<table>
<thead>
<tr>
<th>Fixkosten</th>
<th>variable Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erstellung Arbeitsprogramm</td>
<td>Organisation Räumlichkeiten</td>
</tr>
<tr>
<td>Zusammenstellung Unterlagen</td>
<td>Terminabsprache Referenten</td>
</tr>
<tr>
<td>Erstellung Arbeitsmappe</td>
<td>Ankündigung, Einladungen</td>
</tr>
<tr>
<td>Vorbereitung Übungsaufgaben</td>
<td>Fotokopieren Arbeitsunterlagen</td>
</tr>
<tr>
<td>Organisation Referenten</td>
<td>Arbeitszeit für Seminar (3 Pers. a 4 Std.)</td>
</tr>
<tr>
<td>Erstellung Vorträge</td>
<td>Fotokopien und Hefte, Overheadfolien</td>
</tr>
</tbody>
</table>

Analog dem Instrument für die Hotelbranche ergeben sich für das Seminar somit folgende Kosten:

\[
\begin{align*}
\text{Fixkosten:} \quad & K_{\text{fix, Seminar}} = 7.318,- \text{ DM} \\
\text{variable Kosten:} \quad & K_{\text{var, Seminar}} = 242,22 \text{ DM/Teilnehmer}
\end{align*}
\]

Die Gesamtkosten für das Instrument ergeben sich nach Gleichung 6-1 zu:

\[
K_{\text{Seminar}} = 7.318,- \text{ DM} + 242,22 \text{ DM/Teilnehmer} \times 12 \text{ Teilnehmer} \\
K_{\text{Seminar}} = 10.225,- \text{ DM}
\]

Die Kosten je Teilnehmer betrugen bei 12 Teilnehmern 852,- DM (Gln 6-2). Diese Kosten liegen weit über der von den Teilnehmern angegebenen Zahlungsbereitschaft. Dafür sind die

Abb. 6-19: Verteilung der Antworten auf die Frage "Bis zu welchem Preis würden Sie das Seminar einem Kollegen oder Bekannten empfehlen?" nach Größenklassen

6.5.3 Analyse der Kosten bezogen auf die Teilnehmerzahlen

Die einem Träger bzw. Anbieter entstehenden Kosten sind bei beiden Instrumenten für die (jeweils kleine) Testgruppe sehr hoch, da sie hohe Fixkosten bei geringen Teilnehmerzahlen aufweisen. Die zugrunde gelegten Fixkosten und variablen Kosten lassen sich unter den in den Kapiteln 6.5.1 und 6.5.2 dargestellten Rahmenbedingungen wie Personalkosten und Materialkosten nicht senken. Erhöhen lassen sich die Teilnehmerzahlen, wenn ein Instrument branchenweit angeboten beziehungsweise regional flächendeckend eingesetzt wird oder in einen größeren Rahmen, wie z.B. ein Beratungsprogramm, eingebunden ist. Dadurch verringern sich die bestehenden Fixkostenanteile je Teilnehmer wesentlich. Abb. 6-20 zeigt die absoluten Kosten für die beiden untersuchten Instrumente zur Hemmnisüberwindung in Abhängigkeit von der Anzahl der Teilnehmer bei gleichen Rahmenbedingungen für Vorbereitung und Bereitstellung.
Der Schnittpunkt der beiden Geraden mit der Vertikalachse (EnBenO bei ca. 25.000 DM und Seminar bei ca. 7.000 DM) zeigt den ermittelten hohen Anteil der Fixkosten des EDV-Programms für die Hotelbranche im Vergleich mit dem Seminar für den Lebensmitteleinzelhandel. Die beim EDV-Programm niedrigeren variablen Kosten sind durch die geringere Steigung abgebildet. So liegen die Gesamtkosten für das EDV-Programm bei mehr als 76 Teilnehmern unter denen des Seminars.

Abb. 6-21 stellt die spezifischen Kosten je Teilnehmer in Abhängigkeit von der Anzahl der Teilnehmer dar. Die spezifischen Kosten sinken bei Erhöhung der Anzahl der Teilnehmer beim Seminar bis ca. 50 Teilnehmer und beim EDV-Programm bis ca. 80 Teilnehmer stark. Beide Kurven nähern sich bei hohen Teilnehmerzahlen asymptotisch den Werten für die variablen Kosten je Teilnehmer an.

Wegen des Unterschieds der variablen Kosten ist besonders für das Energie-Benchmarkingprogramm eine große Zahl an Teilnehmern attraktiv. So lassen sich die Kosten je Teilnehmer bei einer Verdopplung der Teilnehmerzahl von 200 auf 400 für das EDV-Programm um 62 DM je Teilnehmer (bzw. 45 %) und für das Seminar nur um 18 DM je Teilnehmer (bzw. 6 %) senken.
Abb. 6-21: Entwicklungs- und Bereitstellungskosten pro Teilnehmer in Abhängigkeit von der Teilnehmerzahl für beide Instrumente zur Hemmnisüberwindung
6 Bewertung der Instrumente zur Hemmnisüberwindung
7 Schlussbetrachtung

Ziel der Arbeit ist die Ermittlung der Energieverbrauchsstrukturen und bestehender Möglichkeiten der Energieverbrauchsminderung in ausgewählten Branchen des Kleinverbrauchersektors sowie eine Analyse bestehender Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung in Unternehmen und geeigneter Instrumente zu ihrer Überwindung.

Für eine Untersuchung der Möglichkeiten und Probleme einer rationellener Energieanwendung in Branchen des Kleinverbrauchersektors ist die Kenntnis der entsprechenden Energiedaten und Energiekennzahlen eine unabdingbare Voraussetzung. So zeigen sich wesentliche Unterschiede in den Energieverbrauchsstrukturen der vier untersuchten Branchen:

- Der Energieverbrauch von Hotels ist geprägt durch einen hohen Anteil an Raumwärme von über 60 %. Energiekennwerte für die Branche liegen bezogen auf den Gesamtenergieverbrauch je Übernachtung bei 81 kWh für Hotels (mit Restaurant) und bei 36 kWh für Hotel garnis (Frühstückshotels). Die Energiekosten werden, trotz des hohen in der Regel mit Brennstoffenergie gedeckten Raumwärmeanteils, von den Stromkosten mit 73 % dominiert. Die mit den untersuchten Maßnahmen zur rationellen Energieanwendung (Kap. 3.5) erreichbare Reduktion des Energieverbrauchs in der Branche beträgt 32,5 %.

- Der Energieverbrauch in der Textilreinigungsbranche ist geprägt durch einen hohen Prozesswärmebedarf für die Textilbehandlung und wird zu 88 % mit Erdgas und Heizöl gedeckt. Der durchschnittliche Brennstoffverbrauch beträgt in Wäschereien bezogen auf die bearbeitete Trockenwäsche 1,44 kWh/kgTW und in Reinigungs bezogen auf die bearbeiteten Textilstücke 1,90 kWh/StkTex. In der gesamten Branche haben die Brennstoffkosten einen Anteil von 54 % und die Stromkosten einen Anteil von 42 % an den Energiekosten. Die mit den analysierten Maßnahmen zur rationellen Energieanwendung erreichbare Energieverbrauchsminderung beträgt für die Branche 27,6 %.

- Bäckereien weisen einen durch den Backprozess bestimmten Energieverbrauch auf. Die Energiekennzahl für den Gesamtenergieverbrauch bezogen auf die eingesetzte Menge an Mehl und Teighalbwaren beträgt im Bäckereihandwerk im Durchschnitt 1.678 kWh/Tr. Die Stromkosten verursachen 73 % der Energiekosten. Als Energieverbrauchsminderung auf Basis der betrachteten Maßnahmen ergeben sich für die Branche 19,5 %.

- Im Lebensmitteleinzelhandel ist der Energieverbrauch geprägt durch Raumwärme, Kühlung und Beleuchtung. Der durchschnittliche jährliche auf die Verkaufsfläche bezogene Energieverbrauch (gültig für Supermärkte unter 1.000 m²VF) beträgt 465 kWh/m²VF. Die Energiekosten werden zu 91 % von den Stromkosten bestimmt. Die
Energieverbrauchsminderung beträgt bei Anwendung der zugrunde gelegten Maßnahmen zur rationellen Energieanwendung für den Lebensmitteleinzelhandel 18,6 \%.

Wegen der fehlenden Ausschöpfung bestehender Potenziale zur Minderung des Energieverbrauchs wurde für die Branchen Hotels und Lebensmitteleinzelhandel analysiert, welche Hemmnisse die Umsetzung von Maßnahmen zur rationellen Energieanwendung behindern. Die Hemmnisse wurden mittels Befragungen verschiedener im Bereich der rationellen Energieanwendung einer Branche agierenden Personengruppen ermittelt und ausgewertet. Für die Hotelbranche ergibt sich als Hemmnis, dass der spezifische Energieverbrauch in der Regel nicht bekannt ist. Im Lebensmitteleinzelhandel sind fehlende spezifische Informationen über Energieeffizienzmaßnahmen und fehlende Ansprechpartner die wichtigsten Hemmnisse.

Zum Abbau der spezifischen Hemmnisse in den Branchen Hotels und Lebensmitteleinzelhandel wurde im Rahmen der Arbeit für jede Branche aus einer Menge denkbarer Instrumente für den Hemmnisabbau ein geeignetes ausgewählt, entwickelt und eingesetzt.

Die Untersuchung der Kosten für Entwicklung und Bereitstellung beider Instrumente ergibt, dass sich die Kosten pro Teilnehmer für beide Instrumente erheblich senken lassen und die Effizienz erheblich steigern lässt, wenn größere Teilnehmerzahlen erreicht werden können. Durch den geringen Anteil an teilnehmerbedingten variablen Kosten bei dem Instrument EDV-Programm im Vergleich mit dem Seminar wirkt sich der kostensenkende Effekt für dieses Instrument stärker aus als für das Seminar, so dass auch bei einer
Vergrößerung der Teilnehmeranzahl über 500 Teilnehmer hinaus noch eine Senkung der Kosten pro Teilnehmer möglich ist.

Die vorliegende Arbeit stellt ein Verfahren bereit, um branchentypische Hemmnisse bei der Umsetzung von Maßnahmen zur rationellen Energieanwendung zu identifizieren, ihre Bedeutung zu bewerten und sie hierarchisch zu klassifizieren. Es werden Methoden entwickelt, um Instrumente zur Überwindung identifizierter Hemmnisse auszuwählen und einer branchentypischen komplexen Problematik zuzuordnen. Die Darstellung der Wirksamkeit und Effizienz der Instrumente zur Hemmnisüberwindung ermöglicht eine schnellere Identifikation und Anwendung von Instrumenten zur Überwindung von Hemmnissen für die rationelle Energieanwendung in anderen Branchen oder Sektoren.
Literaturverzeichnis

/AG EnBil 1997/

/ages 1998/

/AGU 1996/

/ANALYSIS 1997/
Analysis of Measures to Save Energy in Small and Medium Sized Enterprises (SMEs) in France and Germany, Endbericht an die Europäische Kommission (SAVE-Projekt SA-147-94-D), Stuttgart, Valbonne, Januar 1997

/ASR 1979/
Arbeitsstättenrichtlinie ASR 7/3 "Künstliche Beleuchtung". BArbBl. 7/8 1979

/ASUE 1989/

/Balzereit 1997/
Balzereit, B.: Wirtschaftliche Steuerung durch Benchmarking. In: Elektrizitätswirtschaft, Jg. 96 (1997), Heft 14, S. 707-710

/Beer; Krebs 1992/

/BEWAG 1996/
Berliner Kraft- und Licht (BEWAG)-Aktiengesellschaft (Hrsg.): Lebensmitteleinzelhandel, Kostensenkung durch effizienten Energieeinsatz. Berlin 1996
/BINE 1995/
Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-Technische Information mbH; Forum für Zukunftsenergien e.V. (Hrsg.): Förderbibel Energie: Öffentliche Finanzhilfen für den Einsatz erneuerbarer Energiequellen und die rationelle Energieverwendung, Deutscher Wirtschaftsdienst Köln 1995

/BMFT 1993/
Bundesministerium für Forschung und Technologie (Hrsg.): Deutscher Delphi-Bericht zur Entwicklung von Wissenschaft und Technik, Bonn 1993

/BMU; UBA 1997/
Bundesumweltministerium; Umweltbundesamt (Hrsg.): Leitfaden Betriebliche Umweltkennzahlen. Bonn/Berlin 1997

/BMWI 1994/
Bundesministerium für Wirtschaft (Hrsg.): Energiesparen im Betrieb, Broschüre, Bonn 1994

/BMWI 1995/
Bundesministerium für Wirtschaft (Hrsg.): Heizkosten sparen - Umwelt schonen, Broschüre, Bonn 1995

/Camphausen 1997/

/Conti u. a. 1990/

/Cook 1995/

/Dagenais 1978/

/DEHOGA 1997/
Deutscher Hotel- und Gaststättenverband (Hrsg.): So führen Sie einen umweltorientierten Betrieb. Bonn-Bad Godesberg 1997

/DEHOGA 1998/
/DIN 5035/
Deutsches Institut für Normung e. V. (Hrsg.): DIN 5035 Beleuchtung mit künstlichem Licht, Beuth Verlag GmbH, Berlin 1990

/DIW 1982/
Deutsches Institut für Wirtschaftsforschung u.a.: Disaggregierung des Energieverbrauchs in der Bundesrepublik Deutschland im Sektor Haushalte und Kleinverbrauch. Berlin, Essen, Köln 1985

/DtA 1997/
Umweltprogramm der Deutsche Ausgleichsbank (DtA), Anstalt des öffentlichen Rechts. Bonn: Darlehen für Unternehmen bis 500 Mio. DM Umsatz, bis zehn Jahre Laufzeit, 75 %-Förderung mit einem Zinssatz von 4,5 %.

/DTV 1998/

/EAM 1997/
Persönliche Mitteilung von Herrn D. Füllgraf, Gewerbeenergieberatung Hotel, Gastronomie und Gewerbliche Küchen, Energie-Aktiengesellschaft Mitteldeutschland, Kassel 1996

/Einzelhandelsverband 1996/
Persönliche Mitteilung von Frau Umpfenbach, Umweltberaterin des Einzelhandelsverbandes Baden-Württemberg e.V., Stuttgart 1996

/Energie Spektrum 1992/

/Enquete 1990/

/ESV 1993/
Energiesparverein Vorarlberg (Hrsg.): Stromsparpotenziale von Gebäuden, Phase 1, Objektbericht Untersuchungsobjekt 3 ADEG Markt Götzis, Dornbirn 1993

/ESV 1994/
Energiesparverein Vorarlberg (Hrsg.): Stromsparpotenziale von Gebäuden, Phase 2, Objektbericht Untersuchungsobjekt 7 Sporthotel Bachmann, Dornbirn 1995
/ESV 1996/
Energiesparverein Vorarlberg (Hrsg.): Branchenkonzept Energie, Lebensmitteleinzelhandel. Linz 1996

/E&M 1998/
CO₂-Ziele im Detail. In: Energie & Management 1-2 / 98, S. 3

/FORUM 1997/

/Gabler 1995/

/Görgen; Ziesing 1996/

/Goldmann; Schellens 1995/

/Gruber; Brand 1990/

/Grupp 1992/

/Häder 1996/

/Haug u. a. 1997a/
/Haug u. a. 1997b/

/Heintz 1997/
Persönliche Mitteilung von Herrn Dr. W. Heintz, ÖKON Institut für Umweltschutz, Heidelberg 1997

/Henkel 1980/
Henkel AG (Hrsg.): Möglichkeiten der Energieeinsparung beim Waschprozess. Düsseldorf 1980

/Hermes; Fleißner 1995/

/Hermes u. a. 1997/

/Hermes; Thöne 1998/

/Hermes u. a. 1998/

/HMWT 1992/
Hessisches Ministerium für Wirtschaft und Technik (Hrsg.): Wärmeschutz von Fensterflächen; Energiesparinformation. Wiesbaden 1992

/Hofer 1993/
Hofer; Schnitzer 1993/

HOGA 1993/
Bayrischer Hotel- und Gaststättenverband (Hrsg.): Der umweltbewusste Hotel- und Gaststättenbetrieb. Ein Leitfaden für das Gastgewerbe, München 1993

Höher 1996/

Hloch 1980/
Hloch, H. G.; Henkel KGaA (Hrsg.): Möglichkeiten der Energieeinsparung beim Waschprozess. Schneider + Hense Düsseldorf, 1980

ICAEN u. a. 1997/

IEA 1987/

IEA 1997/

Jochem; Bradke 1996/

Kaufmann u.a. 1994/

KEA 1996/
Krug u. a. 1994/

Kubessa 1998/

Kruse 1997/

Lamprecht 1998/

Lehwald 1997/
Persönliche Mitteilung von Herrn Lehwald, Techn. Leiter des Arabella Westpark Hotels München, München 1997

LGA 1992/

Liebherr 1995/

Loewer 1987/

Lutsch 1995/

Lyberg 1987/

Männel 1992/

Mühlstein; Schumann 1995/

Müller u. a. 1991/

MWBW 1994/
Wirtschaftsministerium des Landes Baden-Württemberg (Hrsg.): Energiesparendes Bauen und gesundes Wohnen; Planungshilfe für Bauherren, Architekten und Ingenieure. Stuttgart 1995

MWMT 1994/
/Perincioli 1994/

/PROGNOS 1995/
Prognos AG (Hrsg.): Die Energiemärkte Deutschlands im zusammenwachsenden Europa - Perspektiven bis zum Jahr 2020, Basel 1995

/Ruhrgas 1999/
Persönliche Mitteilung von Herrn Roosen, Ruhrgas AG, bezüglich der Messungen an 43 Backöfen, Essen 1999

/Sachse; Bach 1996/

/Schymonski 1995/

/Sigl 1994/

/SRC 1995/

/StatBuA 1990/

/StatBuA 1992/
Statistisches Bundesamt (Hrsg.): Kostenstruktur der Wirtschaft, Fachserie 4, verschiedene Reihen, Verlag Metzler-Poeschel Stuttgart 1992

/StatBuA 1995/
/StatBuA 1996/
Statistisches Bundesamt (Hrsg.): Klassifikation der Wirtschaftszweige mit
Erläuterungen, Ausgabe 1993, Verlag Metzler-Poeschel Stuttgart 1996

/StatBuA 1998/
Statistisches Bundesamt (Hrsg.): Statistisches Jahrbuch, Ausgabe 1998, Verlag Metzler-
Poeschel Stuttgart 1998

/StatLaA 1998/
Statistisches Landesamt Baden-Württemberg: Aufteilung der Arbeitsstätten und
Beschäftigten des Lebensmitteleinzelhandels nach Regierungsbezirken in Baden-
Württemberg. aus: Arbeitsstättenzählung vom 25. Mai 1987 des Statistischen
Bundesamtes, schriftl. Auskunft vom 2.2.1998

/SWM 1994/
Stadtwerke München: Energiesparen im Gewerbe, Feldversuch - Stromsparen in
Bäckereibetrieben. Informationsschrift der Stromsparberatung Gewerbe, München 1994

/Thompson 1997/
Thompson, Philip B.: Evaluating energy efficiency investments: accounting for risk in
the discounting process. In: Energy Policy, Vol. 25, No. 12, Elsevier Science Ltd. 1997,
S. 989-996

/UBA 1997/
Umweltbundesamt (Hrsg.): Nachhaltiges Deutschland: Wege zu einer dauerhaft
umweltgerechten Entwicklung, Verlag Erich Schmidt, Berlin 1997

/VDEW 1995/
VDEW (Hrsg.): VDEW-Publikationen: Contracting Grundlagenpapier VWEW-Verlag,
Frankfurt am Main 1995

/VDEW 1997a/
VDEW (Hrsg.): VDEW-Publikationen: Contracting Fallbeispielsammlung VWEW-
Verlag, Frankfurt am Main 1997

/VDEW 1997b/
VDEW (Hrsg.): Dienstleistungen und DSM-Projekte der deutschen Stromversorger,
VWEW-Verlag, Frankfurt am Main 1997

/VDI-GET 1997/
VDI-Verlag GmbH, Düsseldorf 1997

/VDI 3807/
Verein Deutscher Ingenieure (Hrsg.): VDI-Richtlinie 3807: Energieverbrauchs-
kennwerte für Gebäude, Beuth-Verlag GmbH, Berlin 1994
/VDI 3922/
 Verein Deutscher Ingenieure (Hrsg.): VDI-Richtlinie 3922: Energieberatung für Industrie und Gewerbe, Beuth-Verlag GmbH, Berlin März 1996 (Entwurf)

/Visual 1995/
 Microsoft-Visual Basic, Professional Edition 4.0, © 1995

/Voß 1996/

/Weber 1997/

/Weber u. a. 1997/

/Winkler 1995/

/Winn 1996/

/Woll 1993/
 Woll, Artur (Hrsg.): Wirtschafts-Lexikon. 7. Auflage, R. Oldenbourg Verlag, München, Wien, Oldenbourg 1993

/Ziesing 1999/
 persönlich Mitteilung von Herrn Dr. Hans-Joachim Ziesing, Deutsches Institut für Wirtschaftsforschung, Berlin, Januar 1999

/ZVDB 1995/
Anhang A

Fragebogen zur Energiedatenerhebung (am Beispiel Textilreinigung)
A Betrieb

A1 Welche Tätigkeiten führt Ihr Betrieb selbst aus?
(Mehrfachnennungen möglich)
☐ Wäscherei ☐ Wäscheleasing ☐ Reinigung
☐ Spezialreinigung, und zwar

A2 Wie viele Beschäftigte arbeiten in Ihrem Betrieb? (Voll- und Teilzeitkräfte, Azubis und tätige Inhaber zusammen)

A3 Wieviel Mengen bearbeiten Sie durchschnittlich pro Tag?
ca. _______ kg Trockenwäsche pro Tag (Wäscherei)
ca. _______ Textilstück pro Tag (Reinigung)

A4 Sind Sie Eigentümer des Gebäudes, in dem sich der Betrieb befindet?
Ja ☐ Nein ☐
Sind Sie Eigentümer der Maschinen- und Geräteausstattung?
Ja ☐ Nein ☐

A5 Wie groß ist die Gesamtfläche Ihres Betriebes?

Die Gesamtfläche ist die Fläche der Arbeits- und Kundenräume zuzüglich der Fläche für Büoräume sowie für Technik- und Lagerräume. Außenflächen werden nicht berücksichtigt.

B Energie- und Wasserverbrauch

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beispiel: Strom</td>
<td>115.000 kWh</td>
<td>27.900,- DM</td>
<td>32,0 kW</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beispiel: Heizöl</td>
<td>6.300 Liter</td>
<td>2.835,- DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strom</td>
<td>kWh</td>
<td>DM</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heizöl</td>
<td>Liter</td>
<td>DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erdgas</td>
<td>m³</td>
<td>DM</td>
<td>m³/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fernwärme</td>
<td>kWh</td>
<td>DM</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solarwärme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonst:_________</td>
<td>________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wasser</td>
<td>m³</td>
<td>DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wenn Sie Schwierigkeiten beim Ausfüllen der Tabelle haben sollten, legen Sie einfach Kopien der Rechnungen bei.

B2 Welchen Anteil haben die Energiekosten durchschnittlich an Ihren Gesamtkosten?
ca. _______ %
C Ausstattung

Bitte sehen Sie sich das folgende Beispiel an. Füllen Sie dann die Tabelle für Ihren Betrieb so vollständig wie möglich aus. (Wenn Sie die Leistung eines Gerätes nicht ermitteln können, lassen Sie das Feld für Leistung offen.)

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Anzahl</th>
<th>Energieart</th>
<th>Leistung ([Kilo- watt (kW)])</th>
<th>Benutzung [Std. täglich]</th>
<th>Alter [Jahre]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beispiel: Trockenschrank für Textilien</td>
<td>1</td>
<td>X</td>
<td>8</td>
<td>X</td>
<td>6</td>
</tr>
<tr>
<td>Beispiel: Bügelpressen</td>
<td>2</td>
<td>X</td>
<td>3,5</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>Waschen und Reinigen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waschlegermaschinen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waschlegerstraßen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waschstraßen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinigungsmaschinen PIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinigungsmaschinen KWL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detachiergeräte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trocknen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zentrifugen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trockenschränke für Textilien</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfertakttrockner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trocker allgemein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sonst.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finishgeräte:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bügelhaken</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bügelgeräte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bügelmaschinen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bügelpressen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dämpftschränke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dämpftunnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dämpftupfen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangel, 2 Walzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangel, 3 Walzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sonst.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hilfgeräte:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wäschetransportsysteme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Druckluftkompressor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sonst.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bürggeräte:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopierer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kasse, elektrisch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sonst.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weitere Geräte:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dampferzeugung und Heizung

(bei mehreren Betriebsgebäuden kopieren Sie bitte diese Seite und füllen Abschnitt D für jedes Gebäude gesondert aus.)

Kreuzen Sie bitte die zutreffende Angabe an, und folgen Sie, falls vorhanden, dem Pfeil zum nächsten Kasten.

D1
<table>
<thead>
<tr>
<th>Haben Sie einen Dampfkessel in Ihrem Betrieb?</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Ja Wenn ja...</td>
</tr>
</tbody>
</table>

a
Mit welcher Energieart wird der Dampfkessel betrieben?
- ☐ Heizöl
- ☐ Erdgas
- ☐ Strom
- ☐

b
- Leistung: ca. _____ kg Dampf pro Stunde
- Alter: ca. _____ Jahre

D2
<table>
<thead>
<tr>
<th>Mit welcher Energieart wird Ihre Heizung betrieben?</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Mit dem Dampfkessel Wenn ja...</td>
</tr>
<tr>
<td>☐ Heizöl Wenn ja...</td>
</tr>
<tr>
<td>☐ Erdgas Wenn ja...</td>
</tr>
<tr>
<td>☐ Fernwärme</td>
</tr>
<tr>
<td>☐ Strom</td>
</tr>
</tbody>
</table>

a
Welche Heizungsart liegt vor?
- ☐ Zentralheizung Heizkessel an zentralem Ort (z.B. Keller)
- ☐ Etagenheizung Heizgerät heizt eine Etage
- ☐ Einzelheizung Heizgerät (Ofen) heizt einen Raum

b
Geben Sie bitte die Daten der Heizungsanlage/Einzelgeräte an. (z.B. „, Buderus G134LP“, Leistung 14 kW, Alter 10 Jahre):
- Marke und Modell:
- Leistung: ca. _____ kW
- Alter: ca. _____ Jahre

D3
<table>
<thead>
<tr>
<th>Wie wird das Warmwasser in Ihrem Betrieb erzeugt?</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Mit Dampfkessel</td>
</tr>
<tr>
<td>☐ Mit der Heizung</td>
</tr>
<tr>
<td>☐ Mit einem/mehreren separaten Warmwassergeräten/</td>
</tr>
</tbody>
</table>

a
Mit welcher Energieart werden die separaten Warmwassergeräte betrieben?
- ☐ Heizöl
- ☐ Erdgas
- ☐ Strom Wenn ja... |
- ☐ Solarkollektoren |
- ☐ ☐

b
Wo wird das Wasser elektrisch geheizt?
- ☐ zentral in einem Gerät
- ☐ an jeder Zapfstelle

c
Wieviel Liter faßt der Warmwasserspeicher? Volumen: _______ Liter

D4
<table>
<thead>
<tr>
<th>Ist im Betrieb eine Lüftungsanlage installiert?</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Ja ☐ Nein</td>
</tr>
</tbody>
</table>

D5
<table>
<thead>
<tr>
<th>Ist im Betrieb eine Klimaanlage installiert?</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Ja ☐ Nein</td>
</tr>
</tbody>
</table>
E Gebäude

(Bei mehreren Betriebsgebäuden kopieren Sie bitte diese Seite und füllen Abschnitt E für jedes Gebäude gesondert aus.)

E1 Welche Form hat das Gebäude, in dem Ihr Betrieb untergebracht ist?
☐ Quadratische Grundfläche ☐ Längliche Grundfläche ☐ Verwinkelte Grundfläche

E2 Wann wurde dieses Gebäude erbaut?

E3 Wie viele Stockwerke (ohne Keller) werden durch Ihren Betrieb belegt? Anzahl: __________ Stockwerke gehört zusätzlich ein Keller zum Betrieb?
☐ Ja ☐ Nein

E4 Gibt es über dem Betrieb weitere Stockwerke, die nicht zum Betrieb gehören? ☐ Ja ☐ Nein
Gibt es unter dem Betrieb weitere Stockwerke oder Keller, die nicht zum Betrieb gehören? ☐ Ja ☐ Nein

E5 Hat der Gebäudeteil, in dem Ihr Betrieb untergebracht ist, wenige kleine Fenster? ☐ viele kleine Fenster?
☐ wenige große Fenster? ☐ viele große Fenster?

F Beleuchtung

Bitte schätzen Sie Lampenart und Lampenzahl und füllen Sie folgende Tabelle entsprechend dem Beispiel aus. (Wenn Ihnen die Leistung einer Lampe nicht bekannt ist, lassen Sie das Feld für Leistung offen.)

Beispiel: Im Betrieb von Herrn Müller befinden sich 10 Neonröhren in Arbeitsbereich und Kundenbereich. Diese sind ständig eingeschaltet, also mehr als 7 Stunden täglich. Im Büro hat Herr Müller nur eine Glühlampe mit 75 Watt. Sie brennt ca. 3 bis 5 Stunden täglich. Im Lager gibt es 2 Neonlampen mit je 58 Watt, die weniger als eine Stunde pro Tag eingeschaltet werden. Im Sanitärbereich befinden sich 4 Glühlampen mit je 75 Watt. Diese brennen weniger als eine Stunde täglich.

<table>
<thead>
<tr>
<th>Lampenart</th>
<th>Anzahl</th>
<th>Leistung</th>
<th>Benutzung [Std. täglich]</th>
<th>Bereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>G Glühlampe N: Neonröhre E: Energiesparlampe S: Stahler (Halogen)</td>
<td>Watt (W)</td>
<td>< 1</td>
<td>1 - 3</td>
<td>3 - 5</td>
</tr>
<tr>
<td>Beispiel: N</td>
<td>10</td>
<td>58 W</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Beispiel: G</td>
<td>1</td>
<td>75 W</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Beispiel: N</td>
<td>2</td>
<td>58 W</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Beispiel: G</td>
<td>4</td>
<td>75 W</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

G Allgemeines

G1 Haben Sie in Ihrem Betrieb schon einmal Energiesparmaßnahmen durchgeführt?
☐ Ja ☐ Nein

G1 Sehen Sie in Ihrem Betrieb Möglichkeiten, den Energieverbrauch zu reduzieren?
☐ Ja, um mehr als 30%
☐ Ja, um mehr als 10%
☐ Ja, geringfügig
☐ Nein, überhaupt nicht

G3 Hier können Sie Anregungen und Kritik zu unserer Umfrage äußern:
Anhang B

Fragebogen zu Hemmnissen in der Hotelbranche
Umfrage zu Hemmnissen bei der Umsetzung von Energiesparmaßnahmen in der Hotelbranche

Beispiel:
Herr Sommer ist technischer Leiter in einem Hotel. Die Bedeutung "zu niedriger Energiepreise" als Hemmnis bei der Umsetzung von Energiesparmaßnahmen in Hotels schätzt er "gering" ein und trägt für "Bedeutung" eine "2" ein. Er ist im Hotel für die Kontrolle der Energiekosten verantwortlich und hat schon Energiesparmaßnahmen vorgeschlagen. Deshalb gibt er seine "Fachkenntnis" zur Frage der zu niedrigen Energiepreise als "groß" an und trägt in diesem Feld eine "4" ein.

Beschreibung:
Ihre Einschätzung der Bedeutung jedes Hemmnisses:
groß: Das Hemmnis ist sehr wichtig. Der Einfluß auf das Energiesparen in den Unternehmen ist sehr groß.
mittel: Das Hemmnis ist wichtig. Der Einfluß auf das Energiesparen in den Unternehmen ist groß.
gering: Das Hemmnis ist nicht so wichtig. Der Einfluß auf das Energiesparen ist nicht so groß.
unbedeutend: Das Hemmnis ist unwichtig. Es hat keinen Einfluß auf das Energiesparen in den Unternehmen.

Ihre Fachkenntnis:
groß: Sie beschäftigen sich mit der Zeit im Rahmen Ihrer Tätigkeit mit diesem Problem.
mittel: Sie haben sich einmal im Rahmen Ihrer Tätigkeit mit diesem Problem beschäftigt.
gering: Sie haben erstmal das Thema gelesen oder sich darüber (z. B. mit Kollegen) unterhalten.
fachfremd: Sie besitzen keine speziellen Fachkenntnisse bezüglich dieser Frage.

Füllen Sie nun bitte den Fragebogen auf der Rückseite aus.
<table>
<thead>
<tr>
<th>Organisatorische Hemmnisse</th>
<th>Fachkenntnis</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Informationsdefizit</td>
<td></td>
<td>Zu wenig Information über Möglichkeiten des Energieeinsparens ist für die Hotels verfügbar.</td>
</tr>
<tr>
<td>4. Fehlende Zuständigkeit für Energiefragen</td>
<td></td>
<td>Maßnahmen können nicht umgesetzt werden, weil die Durchführung nicht an verantwortliche Personen gebunden ist, die sich vor Ort darum kümmern.</td>
</tr>
<tr>
<td>6. Fehlender Auslöser, fehlende Motivation</td>
<td></td>
<td>Es fehlt der Anstoß (z. B. in Form eines Wettbewerbes um das energieeffizienteste Unternehmen), um Aktivitäten zum Energieeinsparen vorzuziehen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technologische Hemmnisse</th>
<th>Fachkenntnis</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Bedenken bezüglich der Qualität der Diensleistung</td>
<td></td>
<td>Maßnahmen werden nicht durchgeführt, weil Bedenken bestehen, daß z. B. bei geringerer Belastung sich die Qualität nicht verbessert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finanzielle Hemmnisse</th>
<th>Fachkenntnis</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fehlendes Kapital für investive Maßnahmen</td>
<td></td>
<td>Es ist kein Kapital verfügbar, mit dem Investitionen in energieeffiziente Geräte getätigt werden könnten.</td>
</tr>
<tr>
<td>2. Lange Amortisationszeiten bei investiven Maßnahmen</td>
<td></td>
<td>Es werden grundsätzlich sehr kurze Amortisationszeiten bei investiven Maßnahmen erwartet. Die Akzeptanz für längerfristige Maßnahmen ist nicht vorhanden.</td>
</tr>
<tr>
<td>3. Fehlende Finanzierungsangebote für investive Maßnahmen</td>
<td></td>
<td>Investive Maßnahmen würden getätigt, wenn es attraktive Finanzierungsangebote gäbe (z. B. günstige Darlehen oder Direktfinanzierung "Contracting").</td>
</tr>
<tr>
<td>5. Zu niedrige Energiepreise</td>
<td></td>
<td>Die Energiepreise werden als zu niedrig angesehen, als daß es sich lohnen würde, Energieeinsparmaßnahmen umzusetzen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Hemmnisse</th>
<th>Fachkenntnis</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Geringe Innovations- und Risikobereitschaft in der Branche</td>
<td></td>
<td>Fehlende Bereitschaft der Unternehmen, in neue energieeffiziente Lösungen zu investieren, die noch nicht etabliert sind.</td>
</tr>
<tr>
<td>2. Fehlende Kenntnisse über den eigenen "Maschinenpark"</td>
<td></td>
<td>Den zuständigen Mitarbeitern fehlt der Überblick über die Geräte und Anlagen im Hotel, die Energie verbrauchen.</td>
</tr>
<tr>
<td>4. Spezifischer Energieverbrauch wird oft nicht ermittelt</td>
<td></td>
<td>Es werden keine Kennzahlen gebildet (z. B. Stromverbrauch je Übernachtung) zum Vergleich der Effizienz mit dem Vorjahr oder mit anderen Filialen.</td>
</tr>
</tbody>
</table>

| Ihre Ergänzungen und Anmerkungen: | | |
Anhang C

Instrumenten-Kriterien-Matrizen für die Auswahl geeigneter Instrumente
für die Hotelbranche und für den Lebensmitteleinzelhandel
Instrumenten-Matrix Hotelbranche

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Gewichtung (1 ... 5)</th>
<th>Akzeptanz in der Branche</th>
<th>Hemmnisse</th>
<th>Seiten-effekte (Spin off)</th>
<th>Verbreitung in der Branche</th>
<th>Einsatzort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software mit Branchenvergleich</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>9</td>
<td>45</td>
<td>9</td>
<td>10</td>
<td>Hotels</td>
</tr>
<tr>
<td>Trainings-, Lernen im Energieallgemein</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>8</td>
<td>40</td>
<td>7</td>
<td>3</td>
<td>Bildungsinrichtung</td>
</tr>
<tr>
<td>Training für Techniker</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>6</td>
<td>25</td>
<td>5</td>
<td>3</td>
<td>Bildungseinrichtung</td>
</tr>
<tr>
<td>"Energiesparbroschüre"</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>4</td>
<td>20</td>
<td>7</td>
<td>9</td>
<td>Hotel, Teambuilding</td>
</tr>
<tr>
<td>Video für Mitarbeiter</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>10</td>
<td>50</td>
<td>6</td>
<td>8</td>
<td>Bildungseinrichtung</td>
</tr>
<tr>
<td>Seminar zu Finanzierung</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>5</td>
<td>25</td>
<td>7</td>
<td>9</td>
<td>Zentral</td>
</tr>
<tr>
<td>Seminar</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>5</td>
<td>25</td>
<td>3</td>
<td>3</td>
<td>Bildungseinrichtung</td>
</tr>
<tr>
<td>Simulationspro. zu Finanzierung</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>5</td>
<td>25</td>
<td>3</td>
<td>3</td>
<td>Zentral</td>
</tr>
<tr>
<td>Workshop</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>Software-Vertrieb</td>
</tr>
<tr>
<td>Vor-Ort-Betreuung</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>6</td>
<td>30</td>
<td>7</td>
<td>2</td>
<td>Zentral</td>
</tr>
<tr>
<td>Training für Köche</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>7</td>
<td>35</td>
<td>4</td>
<td>2</td>
<td>Bildungseinrichtung</td>
</tr>
<tr>
<td>Broschüre mit finanz. Informationen</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>4</td>
<td>20</td>
<td>7</td>
<td>21</td>
<td>Hotel, Hotel, Postkarte</td>
</tr>
<tr>
<td>Checklisten</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>4</td>
<td>20</td>
<td>10</td>
<td>21</td>
<td>Hotel, Postkarte</td>
</tr>
<tr>
<td>Fallbrett zu Energietarifen</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>5</td>
<td>25</td>
<td>2</td>
<td>24</td>
<td>Hotel, Postkarte</td>
</tr>
<tr>
<td>Software „Energietarife“</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>4</td>
<td>20</td>
<td>2</td>
<td>18</td>
<td>als Shareware</td>
</tr>
<tr>
<td>Netzwerk zum Austausch von Informationen</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>5</td>
<td>25</td>
<td>4</td>
<td>1</td>
<td>Zentral</td>
</tr>
<tr>
<td>Leitfaden für Energieberater</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>4</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td>Energiesparen</td>
</tr>
<tr>
<td>Poster</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>4</td>
<td>20</td>
<td>3</td>
<td>4</td>
<td>Hotel, Sozialkunde</td>
</tr>
<tr>
<td>Ausstellung</td>
<td>Punkte gewichtete Punkte Anmerkungen</td>
<td>5</td>
<td>25</td>
<td>4</td>
<td>15</td>
<td>Zentral</td>
</tr>
<tr>
<td>Einbeziehung der Teilnehmer</td>
<td>Nutzen für Teilnehmer</td>
<td>Zeiträumen für Anwendung</td>
<td>Langzeiteffekte</td>
<td>Machbarkeit (Punkte bzw. "NEIN")</td>
<td>Bewertbarkeit der Wirkung</td>
<td>Summe gewichteter Punkte</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>q</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>12</td>
<td>40</td>
<td>18</td>
<td>NEIN</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Erfahrungsaustausch</td>
<td>langfristig</td>
<td>Zeitrahmen</td>
<td>kaum nachvollziehbar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>4</td>
<td>4</td>
<td>18</td>
<td>NEIN</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>über Beratung</td>
<td>sehr feststehend</td>
<td>langfristig</td>
<td>kaum nachvollziehbar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>NEIN</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>sehr begrenzt</td>
<td>sehr begrenzt</td>
<td>langfristig</td>
<td>kaum nachvollziehbar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>NEIN</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Instrumenten-Matrix Lebensmitteleinzelhandel

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Akzeptanz in der Branche</th>
<th>Hemmnisse</th>
<th>Seiten-effekte (Spin off)</th>
<th>Verbreitung in der Branche</th>
<th>Einsatzort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>9</td>
<td>5</td>
<td>q</td>
<td>5</td>
<td>Bildungszentrum, LEK</td>
</tr>
<tr>
<td>Training für Mitarbeiter (spez. Thema)</td>
<td>9</td>
<td>9</td>
<td>q</td>
<td>9</td>
<td>Bildungszentrum, LEK</td>
</tr>
<tr>
<td>"Energiesparbroschüre"</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>Vertriebswege, Weitergabe, Supergroßmärkte (postalisch)</td>
</tr>
<tr>
<td>Fallblatt, Checklisten</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>Vertriebswege, Weitergabe, Supermarkte (postalisch)</td>
</tr>
<tr>
<td>Netzwerk</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>techn. Zentralen</td>
</tr>
<tr>
<td>Software</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>21</td>
<td>techn. Zentralen</td>
</tr>
<tr>
<td>Workshop</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>techn. Zentralen</td>
</tr>
<tr>
<td>Trainingskurse (als Teil der Ausbildung)</td>
<td>35</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>Bildungszentrum</td>
</tr>
<tr>
<td>Leitfaden für Energieberater</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Energieberater</td>
</tr>
<tr>
<td>Vor-Ort-Besichtigung</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>Energieberater</td>
</tr>
<tr>
<td>Poster</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>spezial. Supermarkt</td>
</tr>
<tr>
<td>Ausstellung</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>Supermarkt, Sozialräume</td>
</tr>
<tr>
<td>Video</td>
<td>10</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>Techniker</td>
</tr>
<tr>
<td>Geräteverleih</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>Supergroßmärkte</td>
</tr>
</tbody>
</table>

Gewichtung (1 ... 5)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>9</td>
</tr>
<tr>
<td>Training für Mitarbeiter (spez. Thema)</td>
<td>9</td>
</tr>
<tr>
<td>"Energiesparbroschüre"</td>
<td>10</td>
</tr>
<tr>
<td>Fallblatt, Checklisten</td>
<td>2</td>
</tr>
<tr>
<td>Netzwerk</td>
<td>6</td>
</tr>
<tr>
<td>Software</td>
<td>1</td>
</tr>
<tr>
<td>Workshop</td>
<td>5</td>
</tr>
<tr>
<td>Trainingskurse (als Teil der Ausbildung)</td>
<td>35</td>
</tr>
<tr>
<td>Leitfaden für Energieberater</td>
<td>4</td>
</tr>
<tr>
<td>Vor-Ort-Besichtigung</td>
<td>7</td>
</tr>
<tr>
<td>Poster</td>
<td>2</td>
</tr>
<tr>
<td>Ausstellung</td>
<td>4</td>
</tr>
<tr>
<td>Video</td>
<td>10</td>
</tr>
<tr>
<td>Geräteverleih</td>
<td>4</td>
</tr>
</tbody>
</table>

Anhang
<table>
<thead>
<tr>
<th>Einbeziehung der Teilnehmer</th>
<th>Nutzen für Teilnehmer</th>
<th>Zeiträume für Anwendung</th>
<th>Langzeiteffekte</th>
<th>Machbarkeit (Punkte bzw. "NEIN")</th>
<th>Bewertbarkeit der Wirkung</th>
<th>Summe gewichteter Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>40</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>243</td>
</tr>
<tr>
<td>wenn mit Übungen</td>
<td>wenn Tips für den Alltag</td>
<td>kurz</td>
<td>Ausschuß Inputs</td>
<td>Ausschuß Inputs</td>
<td>Problem Implementierung</td>
<td>241</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>14</td>
<td>35</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>begrenzt</td>
<td>begrenzt</td>
<td></td>
<td>Problem Implementierung</td>
<td>Problem Implementierung</td>
<td>Problem Implementierung</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>8</td>
<td>45</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>8</td>
<td>50</td>
<td>21</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>informationsaustausch</td>
<td>informationsaustausch</td>
<td>langfristig</td>
<td>Informationen</td>
<td>Informationen</td>
<td>Informationen</td>
<td></td>
</tr>
<tr>
<td>nur Techniker</td>
<td>nur Techniker</td>
<td>Controlling</td>
<td>mittel</td>
<td>Problem d. Datenbasis</td>
<td>Problem d. Datenbasis</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>50</td>
<td>20</td>
<td>25</td>
<td>9</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>informationsaustausch</td>
<td>informationsaustausch</td>
<td>kurz</td>
<td>organisat. Aufwand</td>
<td>organisat. Aufwand</td>
<td>organisat. Aufwand</td>
<td></td>
</tr>
<tr>
<td>nur für Berater</td>
<td>nur für Berater</td>
<td>langfristig</td>
<td>sehr indirekte Wirkung</td>
<td>sehr indirekte Wirkung</td>
<td>sehr indirekte Wirkung</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>informationsaustausch</td>
<td>informationsaustausch</td>
<td>kurz</td>
<td>organisat. Aufwand</td>
<td>organisat. Aufwand</td>
<td>organisat. Aufwand</td>
<td></td>
</tr>
<tr>
<td>sehr gering</td>
<td>sehr gering</td>
<td>langfristig</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>12</td>
<td>40</td>
<td>9</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>informationsaustausch</td>
<td>informationsaustausch</td>
<td>mittel</td>
<td>8</td>
<td>NEIN</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10</td>
<td>16</td>
<td>9</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>NEIN</td>
<td>Aufwand/Kosten</td>
<td>Aufwand/Kosten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
Anhang D

Evaluierungs-Fragebogen am Beispiel des EDV-Programms
"Energie-Benchmarking für Hotels"
EDV-Programm “EnBenO” Energie-Benchmarking für Hotels

Benutzer-Fragebogen

Den Fragebogen bitte nach Benutzung des Programms ausfüllen und im beiliegenden Antwort-Umschlag zurückschicken.

<table>
<thead>
<tr>
<th>Inhalt / Thema:</th>
<th>sehr gut</th>
<th>gut</th>
<th>zufriedenstellend</th>
<th>weniger gut</th>
<th>schlecht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Den Branchenvergleich mit anderen Hotels als</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basis für die Energieanalyse ist...............</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die Energiekennzahlen / Neue Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Der Energiebericht als Ergebnis ist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausführung:</th>
<th>sehr gut</th>
<th>gut</th>
<th>zufriedenstellend</th>
<th>weniger gut</th>
<th>schlecht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitaufwand zur Nutzung von EnBenO.........</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branchenvergleich ist verständlich dargestellt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maßnahmen sind detailliert genug dargestellt........</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablauf des Programms (Reihenfolge)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmausführung (Darstellung, Graphik) ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Das Programm EnBenO insgesamt finde ich....</th>
<th>sehr gut</th>
<th>gut</th>
<th>zufriedenstellend</th>
<th>weniger gut</th>
<th>schlecht</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Was mir EnBenO gebracht hat:</th>
<th>ja sehr</th>
<th>ja</th>
<th>eher ja</th>
<th>weniger</th>
<th>gar nicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mir ist klar geworden, ob der Energieverbrauch und die Energiekosten im Vergleich zu anderen Hotels gut oder schlecht sind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ich bin jetzt motivierter zu suchen, wo bei uns am meisten Energie verloren geht</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ich werde die Energie- und Stromverbrauchskennzahlen weiter verfolgen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ich versuche, einige der im Programm vorgeschlagenen Maßnahmen bei uns durchzuführen........</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ich habe schon konkrete Energiesparmaßnahmen im Kopf, die ich umsetzen möchte, und zwar:__________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bitte wenden!
Anmerkungen und Ergänzungen:

Was finden Sie besonders gut?

Was sollte unbedingt verbessert werden?

Zu Ihrer Person

Ihr Name: ______________________________
Ihre Tätigkeit: ___________________________
Name des Hotels: _________________________
Straße: _________________________________
Ort: _____________________________________
Telefondurchwahl: __________________________

Unternehmensart

- [] selbständig
- [] Teil einer Hotelkette

Art des Hotels

- [] Hotel garni
- [] Hotel
- [] sonst.

Anzahl der Betten

- [] weniger als 20
- [] 20-29
- [] 30-99
- [] 100-249
- [] 250 und mehr

Noch eine Bitte:

Wir möchten Sie in ein bis zwei Monaten nochmals schriftlich oder telefonisch fragen, was Ihnen das Programm EnBenO gebracht hat. Dazu benötigen wir Ihre Mitarbeit. Selbstverständlich werden alle Antworten vertraulich behandelt und nur getrennt von den Namen und Adressen ausgewertet, so daß keine Rückschlüsse auf Personen möglich sind.

Vielen Dank für Ihre Mitarbeit!
Lebenslauf

Persönliche Daten

Hans Dieter Hermes
Vilbeler Str. 18a, 61118 Bad Vilbel
Geboren am 03.03.1966 in Flörsheim am Main

Schulische Ausbildung

1972-1976 Grundschule in Hattersheim am Main
1976-1982 Leibniz-Gymnasium, Frankfurt-Höchst
1982-1985 Gymnasiale Oberstufe, Hofheim/Taunus
1985 Abitur

Hochschulausbildung

1986-1987 Studium der Informatik an der Johann Wolfgang von Goethe Universität, Frankfurt
1987-1994 Studium des Maschinenwesens an der Universität Stuttgart mit Abschluss Diplom
1994-2000 Promotion am Institut für Energiewirtschaft und Rationelle Energieanwendung der Universität Stuttgart

Berufliche Tätigkeiten

1994-1997 Stipendiat am Institut für Energiewirtschaft und Rationelle Energieanwendung der Universität Stuttgart
1998-1999 Wissenschaftlicher Mitarbeiter am Institut für Energiewirtschaft und Rationelle Energieanwendung der Universität Stuttgart
seit 1999 Energiewirtschaftlicher Berater bei Lahneyer International GmbH, Wirtschaft und Projektentwicklung
Lebenslauf