Contents

1. Positive matrices and graphs
1.1 Generalised permutation matrix, nonnegative matrix, positive and strictly positive matrices 1
1.2 Reducible and irreducible matrices 3
1.3 The Collatz – Wielandt function 8
1.4 Maximum eigenvalue of a nonnegative matrix 10
1.5 Bounds on the maximal eigenvalue and eigenvector of a positive matrix 13
1.6 Dominating positive matrices of complex matrices 18
1.7 Oscillatory and primitive matrices 19
1.8 The canonical Frobenius form of a cyclic matrix 23
1.9 Metzler matrix 26
1.10 M-matrices 27
1.11 Totally nonnegative (positive) matrices 30
1.12 Graphs of positive systems 34
1.13 Graphs of reducible, irreducible, cyclic and primitive systems 41
 Problems 45
 References 49

2. Continuous-time and discrete-time positive systems 51
2.1 Externally positive systems 51
2.1.1 Continuous-time systems 51
2.1.2 Discrete-time system 53
2.2 Internally positive systems 55
2.2.1 Continuous-time systems 55
2.2.2 Discrete-time systems 59
2.3 Compartmental systems 60
2.3.1 Continuous-time systems 60
2.3.2 Discrete-time systems 61
2.4 Stability of positive systems 63
2.4.1 Asymptotic stability of continuous-time systems 63
2.4.2 Asymptotic stability of discrete-time systems 68
2.5 Input-output stability 72
2.5.1 BIBO stability of positive continuous-time systems 72
2.5.2 BIBO stability of internally positive discrete-time systems 76
2.6 Weakly positive systems 79
2.6.1 Weakly positive continuous-time systems 79
2.6.2 Equivalent standard systems for singular systems 85
2.6.3 Reduction of weakly positive systems to their standard forms 87
2.6.4 Weakly positive discrete-time systems 92
3.7.2 Controllability 165
Problems 166
References 170

4. Realisation problem of positive 1D systems 173
4.1 Basic notions and formulation of realisation problem 173
4.1.1 Standard discrete-time systems 173
4.1.2 Standard continuous-time systems 174
4.2 Existence and computation of positive realisations 175
4.2.1 Computation of matrix D of a given proper rational matrix 175
4.2.2 Existence and computation of positive realisations of discrete-time single-input single-output systems 177
4.2.3 Existence and computation of positive realisations of continuous-time single-input single-output systems 186
4.2.4 Necessary and sufficient conditions for the existence of reachable positive realisations 189
4.2.5 Determination of an internally positive electrical circuit for a given internally nonpositive one 196
4.3 Existence and computation of positive realisations of multi-input multi-output systems 201
4.3.1 Discrete-time systems 201
4.4 Existence and computation of positive realisations of weakly positive multi-input multi-output systems 211
4.4.1 Problem formulation 211
4.4.2 Existence of WCF positive realisations 214
4.4.3 Computation of WCF positive realisations 218
4.4.4 Computation of positive realisations of complete singular systems 219
4.5 Positive realisations in canonical forms of singular linear systems 222
4.5.1 Problem formulation 222
4.5.2 Methods of determination of realisations 224
Problems 232
References 237

5. 2D models of positive linear systems 241
5.1 Internally positive Roesser model 241
5.2 Externally positive Roesser model 243
5.3 Internally positive general model 248
5.4 Externally positive general model 250
5.5 Positive Fornasini-Marchesini models and relationships between models 251
5.6 Positive models of continuous-discrete systems 254
5.6.1 Positive general continuous-discrete model 254
5.6.2 Positive Fornasini-Marchesini type models of continuous-discrete systems 257
5.6.3 Positive Roesser continuous-discrete type model 259
5.6.4 Derivation of solution to the Roesser continuous-discrete model 262
6. **Controllability and minimum energy control of positive 2D systems**

6.1 Reachability, controllability and observability of positive Roesser model

6.1.1 Reachability
6.1.2 Controllability
6.1.3 Observability

6.2 Reachability, controllability and observability of the positive general model

6.2.1 Reachability
6.2.2 Controllability
6.2.3 Observability

6.3 Minimum energy control of positive 2D systems

6.3.1 Positive Roesser model
6.3.2 Positive general model

6.4 Reachability and minimum energy control of positive 2D continuous-discrete systems

6.4.1 Positive 2D continuous-discrete systems
6.4.2 Positive 2D continuous-discrete Roesser model

7. **Realisation problem for positive 2D systems**

7.1 Formulation of realisation problem for positive Roesser model

7.2 Existence of positive realisations

7.2.1 Lemmas
7.2.2 Method 1.
7.2.3 Method 2.
7.2.4 Method 3.

7.3 Positive realisations in canonical form of the Roesser model

7.3.1 Problem formulation
7.3.2 Existence and computation of positive realisations in the Roesser canonical form

7.4 Determination of the positive Roesser model by the use of state variables diagram

7.5 Determination of a positive 2D general model for a given transfer matrix

7.6 Positive realisation problem for singular 2D Roesser model

7.6.2 Problem solution

7.7 Concluding remarks and open problems

References
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Determinantal Sylvester equality</td>
<td>367</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Computation of fundamental matrices of linear systems</td>
<td>387</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Solutions of 2D linear discrete models</td>
<td>403</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Transformations of matrices to their canonical forms and lemmas for 1D singular systems</td>
<td>411</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>429</td>
</tr>
</tbody>
</table>