Third International Conference on

Spacecraft Propulsion

10-13 October 2000

Cannes, France

Organised by:

Le Centre National d’Etudes Spatiales (CNES)

and

The European Space Agency (ESA)
Contents

Opening Session

Welcoming Speech .. 3
A. Rolfo

Opening Speech .. 5
C. Stavrinidis

NASA Technology Investments in Electric Propulsion: New Directions 7
in the New Millennium
J. Sankovic et al.

Electric Propulsion Subsystem Development and Application in Russia 21
G. Popov et al.

An Overview of Electric and Advanced Propulsion Activities in Japan 27
K. Komurasaki et al.

Chemical Spacecraft Propulsion in ESA: Current Activities .. 41
I. Kälsch

European Activities in Electric Propulsion ... 49
G. Saccoccia

An Overview of the CNES Propulsion Program ... 65
A. Cadiou

Electric and Chemical Propulsion at Alcatel Space ... 73
P. Garnero et al.

Electric Propulsion Activities for Eurostar 3000 .. 81
J-M. Stephan

Session 1: Chemical Propulsion Systems

The Design, Development and In-orbit Performance of a Propulsion System 91
for The SNAP-1 Nanosatellite
D. Gibbon et al.

The Propulsion Subsystem of the CNES Microsatellite Product Line 99
R. Salomé

Suppression of Propellant Shift in the Cluster II Propulsion Subsystem 107
M. Griffiths
Spacecraft Propulsion Systems - An Overview of Fiat Avio Activities .. 117
L. De Rose et al.

MON and MMH Pressure Surges for a Simplified Propellant Feed System ... 125
C. Leca et al.

Propellant Gauging Method Applied on Astrium SAS Telecommunication Satellite 131
L. Brouard et al.

Hydrazine Propulsion Systems with a Micropump ... 139
F. Dugué et al.

A Generic Approach for Propulsion System Simulation.
Application to Astrium Projects ... 147
P. Chéoux-Damas et al.

ESA Online Propulsion System and Component Database ... 155
J. Herholz et al.

Session 2: Electric Propulsion Systems

Plasma Propulsion Subsystem Lifetest – Alcatel ... 167
X. Ragot and N. Mattei

Numerical Simulation of Xenon Mass Transfer ... 173
S. d’Halewyn et al.

Space Propulsion Activities at Centrospazio ... 179
M. Andrenucci

Researching of Electric Propulsion Quick Start Problem
for a Spacecraft Orientation System
A. Loyan et al.

Session 3: Advanced Propulsion Concepts

A Fusion Propulsion System for Rapid Deep Space Missions .. 191
T. Kammash

Single and Opposed-cavity Solar Thermal Thrusters Made of Single Crystal Tungsten 195
H. Sahara et al.

Low-Power Solid-State Microwave Thruster Systems ... 203
M. Micci

Numerical Computation of CW-laser Thruster Flows .. 211
P. Molina-Morales et al.
The Concept of a Rocket Engine Using CO$_2$/Metal Propellant for Mars Sample Return Missions
I. Gökalp and E. Shafirovich

New Generation of Silicon Based Microthrusters for Space Application
C. Rossi et al.

Space Propulsion by Laser for the Future
A. Lebêhot et al.

Session 4.1: Chemical Thrusters

Earth Storable Bipropellant Thrusters for Geostationary Spacecraft
G. Madhavan Nair et al.

Development of a Low-Cost 22N Thruster
U. Gotzig

Catalytic Decomposition of Different Monopropellants
R. Eloirdi et al.

Characterization in Endurance of the SNECMA IN Hydrazine Thruster
C. Pavoine et al.

Properties of Supersonic Cold Gas Jets for Space Probe Moving
A. Lebêhot et al.

Session 4.2: Hall Thrusters

An Overview of Plasma oscillations in Hall Thrusters
E. Choueiri

Investigations of Low Frequency Oscillation Phenomena in a Hall Thruster
T. Miyasaka et al.

Transients During Stationary Plasma Thruster Start-Up
B. Arkhipov et al.

Transient Excitation and Behavior of a Closed Electron Drift Plasma Thrusters
M. Prioul et al.

1-D Performance Analysis of a Hall Thruster
E. Ahedo et al.

Recent Results on Plasma Thrusters In France
M. Lyszyk et al.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPS 1350 Plasma Thruster Subsystem Life Test</td>
<td>341</td>
</tr>
<tr>
<td>P. Dumazert and S Lagardère-Verdier</td>
<td></td>
</tr>
<tr>
<td>Operating Conditions and Plasma Study of an ATON-class Hall thruster</td>
<td>351</td>
</tr>
<tr>
<td>S. Roche et al.</td>
<td></td>
</tr>
<tr>
<td>Ion Energy Measurement of a D-55 Hall Thruster</td>
<td>359</td>
</tr>
<tr>
<td>V. Garkusha et al.</td>
<td></td>
</tr>
<tr>
<td>Effects of the Secondary Electronic Emission on the Sheath Phenomenon</td>
<td>367</td>
</tr>
<tr>
<td>in a Hall Thruster</td>
<td></td>
</tr>
<tr>
<td>L. Jolivet and J.F. Roussel</td>
<td></td>
</tr>
<tr>
<td>Influence of the Plasma-wall Interactions on the Operation of Hall Thrusters</td>
<td>377</td>
</tr>
<tr>
<td>K. Makowski et al.</td>
<td></td>
</tr>
<tr>
<td>Simulation of Plasma Dynamics in SPT</td>
<td>385</td>
</tr>
<tr>
<td>A. Bishaev et al.</td>
<td></td>
</tr>
<tr>
<td>Low-power Hall Thruster with Specific Impulse up to 2000 Seconds and Above</td>
<td>393</td>
</tr>
<tr>
<td>M. Belikov et al.</td>
<td></td>
</tr>
<tr>
<td>Small SPT Unit Development and Tests</td>
<td>399</td>
</tr>
<tr>
<td>B. Arkhipov et al.</td>
<td></td>
</tr>
</tbody>
</table>

Session 4.3: Ion Thrusters

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Potential Future Capabilities of Gridded Ion Thrusters</td>
<td>404</td>
</tr>
<tr>
<td>D. Fearn</td>
<td></td>
</tr>
<tr>
<td>Grid Lifetime Model of a 3-grid Ion Engine</td>
<td>413</td>
</tr>
<tr>
<td>M. Nakano and T. Tachibana</td>
<td></td>
</tr>
<tr>
<td>RF Ion Thruster Design Software Based on Numerical Modelling</td>
<td>419</td>
</tr>
<tr>
<td>M. Closs</td>
<td></td>
</tr>
<tr>
<td>The RIT15 Ion Engines - A Survey of the Present State of Radio Frequency</td>
<td>423</td>
</tr>
<tr>
<td>Ion Thruster Technology and its Future Potentiality</td>
<td></td>
</tr>
<tr>
<td>H. Leiter et al.</td>
<td></td>
</tr>
<tr>
<td>RITA Ion Propulsion for ARTEMIS - Lifetime Test Results</td>
<td>433</td>
</tr>
<tr>
<td>R. Killinger et al.</td>
<td></td>
</tr>
<tr>
<td>Status of the RIT-XT High Performance RF-ion Thruster Development</td>
<td>443</td>
</tr>
<tr>
<td>R. Killinger et al.</td>
<td></td>
</tr>
</tbody>
</table>
Jets and Sprays Emitted from Colloid Thrusters: Experiments and Modeling 451
P. Lozano and M. Martinez-Sanchez

The Results of Numerical and Experimental Investigation of .. 459
Low-Power Ion Thruster with Slit-Type Acceleration System
O. Gorshkov et al.

Design Status of Engineering Model of Microwave Discharge Electrostatic Thruster 467
S. Satori et al.

Micronewton Indium FEEP thrusters ... 475
W. Steiger et al.

Session 4.4: MPD, Arcjet, PPT

Numerical Analysis on Performance Improvement of Arcjet Thruster 485
Using Applied Field
T. Fujiwara et al.

Numerical Simulation of Coaxial Applied Field .. 493
Magnetoplasmadynamic Thruster Configurations
P. Nikrityuk and M. Auweter-Kurtz

Numerical Tools for the Simulation of the APPT behaviour: ... 501
Arc Generation and Plasma Flow
S. Elaskar et al.

High Efficiency Ablative Pulsed Plasma Thruster Characteristics .. 509
N. Antropov et al.

Session 5: Propulsion Components

Pyrovalves “Evolution” ... 519
E. Le Floch et al.

Industrialisation of ATV Latch Valves ... 527
(Low Pressure High Flow & Low Pressure Low Flow)
E. Benoit and F. Lagier

The PEPT-230 Micro-satellite Propellant Tank Development .. 535
D. Hasan et al.

New High Pressure Tank for Xenon Storage ... 543
C. Le Floch et al.
Correlations Between Neutral Buoyancy Tests and CFD .. 547
C. Figus and L. Ounougha

Update of Cold Gas Propulsion at MOOG ... 553
R. Bzibziak

Power Supply and Control Equipment for Russian Stationary Plasma Thrusters 561
for Propulsion Systems of Geostationary Communication Satellites
V. Kim et al.

Development and Testing of Electronic Pressure Regulator (EPR) Assembly 565
E. Freidl and W. Müller

Development and Testing of the GOCE Proportional Xenon Feed System 571
C. Edwards and D. Mundy

Proportional Flow Control Valve (PFCV) for Electric Propulsion Systems 579
E. Bushway and R. Perini

The Hollow Cathode - A Versatile Component of Electric Thrusters 587
D. Fearn and S. Patterson

Oxide Hollow Cathode Assembly for PPS1350 ... 595
J.P. Bugeat et al.

High Power Processing Unit for Stationary Plasma Thruster .. 601
H. Declercq et al.

Session 6: Spacecraft/thruster Interactions

Spacecraft/thrusters Interaction: New Models for Chemical Propulsion 609
C. Theroude et al.

Numerical and Experimental Investigation of Plumes Interacting with Satellite Walls 619
J. Allègre et al.

Heat Transfer Measurements on a Plate Adjacent to a Bipropellant Thruster 627
G. Dettleff

Dynamic Action of Hall Thruster’s Jet on Spacecraft’s Solar Arrays 635
B. Arkhipov et al.

Spacecraft Contamination by Sputtered Products of the SPT Ceramic Isolator 639
S. Khartov et al.

“Escape” Software Modeling Package for Forecasting the Electrostatic Charging 645
of a Satellite with Electric Propulsion in the Ionosphere of Earth
A. Plokhikh et al.
Electric Propulsion Systems as Contributors of Microwave Interference Radiation 653
K. Kirdyashev

The SMART-1 Electric Propulsion Diagnostic Package .. 661
G. Matticari et al.

The Estimation of the Torque and Forces Arising due to Interaction of the Exhaust Plume with S/C Body 669
A.G. Korsun

Plasma Plume/Spacecraft Interaction. State of the Art in Investigation Methodology 675
E. Tverdokhlebova and A.G. Korsun

Modelling and Experimental Verification of Hall and Ion Thrusters at ESTEC .. 683
M. Tajmar et al.

Plume Effects in Plasma Propulsion, an Overview of CNES Activities .. 693
F. Darnon

Session 7: Applications to New Missions

Electric Propulsion for ESA Scientific and Earth Observation Missions ... 703
J. Gonzalez et al.

Toward a Unified System Design for Future Missions with Electric Propulsion 711
S. Geffroy et al.

Advanced Hall Electric Propulsion for Future In-Space Transportation .. 717
S. Oleson and J. Sankovic

Preliminary Design of a Multi-purpose Space Platform for Missions to the Sun, Internal Planets of Solar System ... 727
A. Glukhov

Control Strategies for Orbit Maintenance of Leo Small Satellites with FEEP .. 733
S. Marcuccio et al.

FEEP Propulsion System for Microsatellites ... 741
P. Bianco

RITA for Drag Compensation on GOCE ... 749
H. Bassner et al.

Application of Pulsed Plasma Thrusters for Small Satellites ... 757
N. Antropov et al.

Development of Propulsion Units for Small Spacecraft .. 763
B. A. Arkhipov et al.
The GRACE Cold Gas Attitude and Orbit Control System .. 769
M. Schelkle

Session 8: In-flight Experience

TDF2 Satellite Propulsion System Passivation ... 779
N. Pillet et al.

Session 9: Ground Testing

Ion Energy, Ion Velocity and Thrust Vector Measurements for the SPT-140 Hall Thruster
J. Pollard and E. Beiting
Laser Induced Fluorescence Measurements in Xenon Plasma Thrusters 797
N. Dorval et al.
A High Power Electric Propulsion Test Facility .. 799
M. Andrenucci et al.
Development of a Thrust Balance in the Micronewton Range 807
J.P. Marque et al.

Poster session

Numerical Modeling of the Behaviour of High Pressure Vessel Under an Hypervelocity Impact
C. Maveyraud et al.
The Advanced Propulsion Concept of Minimal Cost Flights in Both Close and Deep Space
V. Vinogradov and V. Murashko
Impact of Near Wall Processes on Performance of Hall Thruster 825
A. Zhakupov et al.
Hall Thruster with a Sectioned Conducting Channel ... 827
A. Zhakupov et al.
Predicting Life of Kapton Coating Impinged by SPT Plasma Jet 829
V. Arbatsky
Experimental Investigation of the Alternative Propellants for Stationary Plasma Thruster 833
S. Khartov et al.
Reactivity in Phase Vapor of Methylhydrazine in Synthetic Air ... 837
H. Delalu et al.

Theoretical Design of Arcjet Nozzle for Effective Gas Acceleration ... 841
A. Rybakov and S. Nesterenko

Distribution of Liquid Droplet Phase in Low-thrust Rocket Engine Plumes ... 845
A. Nadiradze

Microwave Diagnostics of Plasma-wall Interaction in SPT Accelerating Chamber 849
K. Kirdyashev and V. Brukhyt

Analysis of Factors Influencing the SPT Starting Discharge Process .. 855
S. Oghienko and A. Rybakov

Particle Simulation of the Main Chamber of a Kaufman-type Ion Thruster .. 861
M. Jugroot and J. Harvey

Investigation of Local Plasma Parameter Distributions Along the SPT ... 865
Accelerating Channel Under Different External Electric Circuit Parameters
V. Kim et al.

Use of Electric Propulsion for Compensation of Atmospheric Drag .. 869
Acceleration During Experiments on Space Materials Science
A. Feonychev et al.

Measurements of Ion Velocity at the Exit of a Plasma Thruster by “Large” Probe 873
A. Bugrova et al.

Spectral Characteristics of SPT-ATON Plasma Radiation ... 877
A. Bishaev et al.

Investigation of Plasma Local Parameters in Near-Wall Field of .. 881
Channel of Stationary Plasma Thruster of ATON Type (SPT-ATON)
A. Bugrova et al.

Simplified Two-dimensional Model of Hall Thrusters ... 885
L. Garrigues et al.

Modeling of the Plume of a Stationary Plasma Thruster ... 889
J. Bareilles et al.

Effect of the Plasma Inhomogeneity on Ion Thruster Grid Performance ... 893
M. Tartz et al.

Measurements of Xenon Ion Velocities of the SPT-140 .. 897
Using Laser Induced Fluorescence
E. Beiting and J. Pollard
UPS and PPS Effects on Satellites ... 901
V. Perrin et al.

Semi-empirical Method for Evaluation of a Xenon Operating Hall Thruster .. 909
Erosion Rate Through Analysis of its Emission Spectra
G. Karabadjak et al.

Miniaturized Flow Control Valves .. 913
J. Benoit

Demonstration

A Software Tool for the Performance Evaluation of Spacecraft Propulsion Systems 921
P. Erichsen

Participants List .. 931