A. Editorials

A.1 Preface

A.2 Contents

A.3 Conventions

B. General Linear Fluid Acoustics

B.1 Fundamental differential equations

B.2 Material constants of air

B.3 General relation for field admittance and intensity

B.4 Integral relations

B.5 Green’s functions and formalism

B.6 Orthogonality of modes in a duct with locally reacting walls

B.7 Orthogonality of modes in a duct with laterally reacting walls

B.8 Source conditions

B.9 Sommerfeld’s condition

B.10 Principles of superposition

B.11 Hamilton’s principle

B.12 Adjoined wave equation

B.13 Vector and tensor formulation of fundamentals

B.14 Boundary condition at a moving boundary

B.15 Boundary conditions at liquids and solids
Formulas of Acoustics VIII

Contents

B.16 Corner conditions ... 39
B.17 Surface wave at locally reacting plane ... 39
B.18 Surface wave along a locally reacting cylinder 41
B.19 Periodic structures, admittance grid .. 42
B.20 Plane wall with wide grooves ... 47
B.21 Thin grid on half-infinite porous layer ... 49
B.22 Grid of finite thickness with narrow slits on half-infinite porous layer ... 52
B.23 Grid of finite thickness with wide slits on half-infinite porous layer ... 54

C. Equivalent Networks

C.1 Fundamentals of equivalent networks .. 59
C.2 Distributed network elements .. 65
C.3 Elements with constrictions ... 70
C.4 Superposition of multiple sources in a network 71
C.5 Chain circuit ... 71

D. Reflection of Sound

D.1 Plane wave reflection at a locally reacting plane 74
D.2 Plane wave reflection at an infinitely thick porous layer 75
D.3 Plane wave reflection at a porous layer of finite thickness 76
D.4 Plane wave reflection at a multiple layer absorber 78
D.5 Diffuse sound reflection at a locally reacting plane 79
D.6 Diffuse sound reflection at a bulk reacting porous layer 81
D.7 Sound reflection and scattering at finite-size absorbers 82
D.8 Uneven, local absorber surface ... 86
D.9 Scattering at the border of an absorbent half-plane 88
D.10 Absorbent strip in a hard baffle wall, with far field distribution ... 89

D.11 Absorbent strip in a hard baffle wall, as variational problem .. 91

D.12 Absorbent strip in a hard baffle wall, with Mathieu functions ... 94

D.13 Absorption of finite-size absorbers as a problem of radiation ... 98

D.14 A monopole line source above an infinite, plane absorber; integration method 99

D.15 A monopole line source above an infinite, plane absorber; with principle of superposition 107

D.16 A monopole point source above a bulk reacting plane, exact forms ... 109

D.17 A monopole point source above a locally reacting plane, exact forms ... 112

D.18 A monopole point source above a locally reacting plane, exact saddle point integration 114

D.19 A monopole point source above a locally reacting plane, approximations 117

D.20 A monopole point source above a bulk reacting plane, approximations ... 124

E. Scattering of Sound

E.1 Plane wave scattering at cylinders ... 129

E.2 Plane wave scattering at cylinders and spheres ... 132

E.3 Multiple scattering at cylinders and spheres .. 142

E.4 Cylindrical wave scattering at cylinders ... 143

E.5 Cylindrical or plane wave scattering at a corner surrounded by a cylinder .. 145

E.6 Plane wave scattering at a hard screen .. 152

E.7 Cylindrical or plane wave scattering at a screen with an elliptical cylinder atop 153

E.8 Uniform scattering at screens and dams ... 158

E.9 Scattering at a flat dam ... 167

E.10 Scattering at a semicircular absorbing dam on absorbing ground .. 169

E.11 Scattering in random media, general ... 173
E.12 Function tables for monotype scattering .. 180
E.13 Sound attenuation in a forest ... 184
E.14 Mixed monotype scattering in random media .. 186
E.15 Multiple triple-type scattering in random media ... 191
E.16 Plane wave scattering at elastic cylindrical shell ... 202
E.17 Plane wave backscattering by a liquid sphere .. 205
E.18 Spherical wave scattering at a perfectly absorbing wedge 206
E.19 Impulsive spherical wave scattering at a hard wedge 208
E.20 Spherical wave scattering at a hard screen .. 210

F. Radiation of Sound

F.1 Definition of radiation impedance and end corrections .. 214
F.2 Some methods to evaluate the radiation impedance .. 216
F.3 Spherical radiators .. 218
F.4 Cylindrical radiators ... 222
F.5 Piston radiator on a sphere ... 224
F.6 Strip-shaped radiator on cylinder ... 226
F.7 Plane piston radiators ... 227
F.8 Uniform end correction of plane piston radiators ... 236
F.9 Narrow strip-shaped, field excited radiator .. 236
F.10 Wide strip-shaped, field excited radiator ... 238
F.11 Wide rectangular, field excited radiator .. 240
F.12 End corrections .. 243
F.13 Piston radiating into a hard tube .. 253
F.14 Oscillating mass of a fence in a hard tube .. 253
F.15 A ring-shaped piston in a baffle wall ... 254
Contents

F.16 Measures of radiation directivity.. 255
F.17 Directivity of radiator arrays ... 256
F.18 Radiation of finite length cylinder ... 260
F.19 Monopole and multipole radiators.. 261
F.20 Plane radiator in a baffle wall ... 264
F.21 Ratio of radiation and excitation efficiencies of plates............................ 269
F.22 Radiation of plates with special excitations.. 269

G. Porous Absorbers

G.1 Structure parameters of porous materials ... 272
G.2 Theory of the quasi-homogeneous material .. 276
G.3 RAYLEIGH model with round capillaries ... 277
G.4 Model with flat capillaries .. 280
G.5 Longitudinal flow resistivity in parallel fibres 281
G.6 Longitudinal sound in parallel fibres ... 283
G.7 Transversal flow resistivity in parallel fibres .. 286
G.8 Transversal sound in parallel fibres ... 293
G.9 Effective wave multiple scattering in transversal fibre bundle 304
G.10 BIOT's theory of porous absorbers ... 309
G.11 Empirical relations for characteristic values of fibre absorbers 319
G.12 Characteristic values from theoretical models fitted to experimental data 324

H. Compound Absorbers

H.1 Absorber of flat capillaries ... 330
H.2 Plate with narrow slits .. 333
H.3 Plate with wide slits ... 336
I. Sound Transmission

I.1 “Noise barriers” .. 431
I.2 Sound transmission through a slit in a wall 434
I.3 Sound transmission through a hole in a wall 439
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.4 Hole transmission with equivalent network</td>
<td>444</td>
</tr>
<tr>
<td>I.5 Sound transmission through lined slits in a wall</td>
<td>445</td>
</tr>
<tr>
<td>I.6 Chambered joint</td>
<td>449</td>
</tr>
<tr>
<td>I.7 "Noise sluice"</td>
<td>450</td>
</tr>
<tr>
<td>I.8 Sound transmission through plates, some fundamentals</td>
<td>454</td>
</tr>
<tr>
<td>I.9 Sound transmission through a simple plate</td>
<td>462</td>
</tr>
<tr>
<td>I.10 Infinite double-shell wall with absorber fill</td>
<td>466</td>
</tr>
<tr>
<td>I.11 Double-shell wall with thin air gap</td>
<td>468</td>
</tr>
<tr>
<td>I.12 Plate with absorber layer</td>
<td>469</td>
</tr>
<tr>
<td>I.13 Sandwich panels</td>
<td>471</td>
</tr>
<tr>
<td>I.14 Finite size plate</td>
<td>480</td>
</tr>
<tr>
<td>I.15 Single plate across a flat duct</td>
<td>484</td>
</tr>
<tr>
<td>I.16 Single plate in a wall niche</td>
<td>489</td>
</tr>
<tr>
<td>I.17 Strip-shaped wall in infinite baffle wall</td>
<td>494</td>
</tr>
<tr>
<td>I.18 Finite size plate with front side absorber layer</td>
<td>497</td>
</tr>
<tr>
<td>I.19 Finite size plate with back side absorber layer</td>
<td>500</td>
</tr>
<tr>
<td>I.20 Finite size double-shell wall with an absorber core</td>
<td>501</td>
</tr>
<tr>
<td>I.21 Plenum modes</td>
<td>504</td>
</tr>
<tr>
<td>I.22 Sound transmission through suspended ceilings</td>
<td>506</td>
</tr>
<tr>
<td>I.23 Office fences</td>
<td>511</td>
</tr>
<tr>
<td>I.24 Office fences, with 2nd principle of superposition</td>
<td>513</td>
</tr>
<tr>
<td>I.25 Infinite plate between two different fluids</td>
<td>517</td>
</tr>
<tr>
<td>I.26 Sandwich plate with elastic core</td>
<td>519</td>
</tr>
<tr>
<td>I.27 Wall of multiple sheets with air interspaces</td>
<td>521</td>
</tr>
</tbody>
</table>
J. Duct Acoustics

J.1 Flat capillary with isothermal boundaries ... 527
J.2 Flat capillary with adiabatic boundaries ... 530
J.3 Circular capillary with isothermal boundary .. 531
J.4 Lined ducts, general ... 534
J.5 Modes in rectangular ducts with locally reacting lining 538
J.6 Least attenuated mode in rectangular, locally lined ducts 541
J.7 Sets of mode solutions in rectangular, locally lined ducts 545
J.8 Flat duct with bulk reacting lining .. 552
J.9 Flat duct with anisotropic, bulk reacting lining 554
J.10 Mode solutions in a flat duct with bulk reacting lining 555
J.11 Flat duct with unsymmetrical, locally reacting lining 558
J.12 Flat duct with unsymmetrical, bulk reacting lining 560
J.13 Round duct with locally reacting lining ... 561
J.14 Admittance of annular absorbers approximated with flat absorbers 575
J.15 Round duct with bulk reacting lining ... 577
J.16 Annular ducts .. 580
J.17 Duct with cross-layered lining .. 583
J.18 Single step of duct height and/or duct lining .. 591
J.19 Sections and cascades of silencers without feedback 602
J.20 A section with feedback between sections without feedback 603
J.21 Concentrated absorber in an otherwise homogeneous lining 607
J.22 Wide splitter type silencer with locally reacting splitters 611
J.23 Splitter type silencer with locally reacting splitters in a hard duct 614
J.24 Splitter type silencer with simple porous layers as bulk reacting splitters 620
J.25	Splitter type silencer with splitters of porous layers covered with a foil	623
J.26	Lined duct corners and junctions	625
J.27	Sound radiation from lined duct orifice	630
J.28	Conical duct transitions; special case: hard walls	634
J.29	Lined conical duct transition, evaluated with stepping duct sections	637
J.30	Lined conical duct transition, evaluated with stepping admittance sections	644
J.31	Mode mixtures	647
J.32	Mode excitation coefficients	651
J.33	CREMER's admittance	653
J.34	CREMER's admittance with parallel resonators	658
J.35	Influence of flow on attenuation	665
J.36	Influence of temperature on attenuation	673
J.37	Stationary flow resistance of splitter silencers	675
J.38	Nonlinearities by amplitude and/or flow	675
J.39	Flow-induced nonlinearity of perforated sheets	681
J.40	Reciprocity at duct joints	683
J.41	Turning-vane splitter silencer	683

K.0	Conventions in the present chapter	689
K.1	Acoustic power in a flow duct	690
K.2	Radiation from the open end of a flow duct	691
K.3	Transfer matrix representation	692
K.4	Muffler performance parameters	693
K.5	Uniform tube with flow and viscous losses	695
K.6	Sudden area changes	696
Formulas of Acoustics

K.7 Extended inlet/outlet ... 698
K.8 Conical tube ... 700
K.9 Exponential horn ... 700
K.10 Hose ... 701
K.11 Two-duct perforated elements .. 703
K.12 Three-duct perforated elements .. 711
K.13 Three-duct perforated elements with extended perforations .. 717
K.14 Three-pass (or four-duct) perforated elements .. 722
K.15 Catalytic converter elements .. 726
K.16 Helmholtz resonator .. 728
K.17 In-line cavity .. 728
K.18 Bellows .. 729
K.19 Pod silencer .. 730
K.20 Quincke tube .. 731
K.21 Annular airgap lined duct .. 732
K.22 Micro-perforated Helmholtz panel parallel baffle muffler .. 734
K.23 Acoustically lined circular duct .. 735
K.24 Parallel baffle muffler (Multi-pass lined duct) .. 737

L. Capsules and Cabins

L.1 The energetic approximation for the efficiency of capsules .. 741
L.2 Absorbent sound source in a capsule .. 745
L.3 Semicylindrical source and capsule .. 751
L.4 Hemispherical source and capsule .. 755
L.5 Cabins, semicylindrical model .. 760
L.6 Cabin with plane walls .. 764
L.7 Cabin with rectangular cross section .. 770

M. Room Acoustics

M.1 Eigenfunctions in parallelepipeds .. 774
M.2 Density of eigenfrequencies in rooms .. 777
M.3 Geometrical room acoustics in parallelepipeds ... 778
M.4 Statistical room acoustics .. 780
M.5 The mirror source model ... 784
M.6 Ray tracing models .. 837
M.7 Room impulse responses, decay curves, and reverberation times 841
M.8 Other room acoustical parameters .. 842

N. Flow Acoustics

N.1 Concepts and notations in fluid mechanics, in connection with the field of aeroacoustics .. 846
N.2 Some tools in fluid mechanics and aeroacoustics .. 850
N.3 The basic equations of fluid motion .. 856
N.4 The equations of linear acoustics ... 863
N.5 The inhomogeneous wave equation, Lighthill's acoustic analogy .. 866
N.6 Acoustic Analogy with source terms using the pressure ... 871
N.7 Acoustic analogy with mean flow effects, in form of convective inhomogeneous wave equation .. 874
N.8 Acoustic analogy in terms of vorticity, wave operators for enthalpy 880
N.9 Acoustic analogy with effects of solid boundaries ... 890
N.10 Acoustic analogy in terms of entropy, heat sources as sound sources, sound generation by turbulent two-phase flow ... 895
N.11 Acoustics of moving sources ... 901
O. Analytical and Numerical Methods in Acoustics

O.1 Computational optimisation of sound absorbers .. 930
O.2 Computing with mixed numeric-symbolic expressions, illustrated with silencer cascades 942
O.3 Five standard problems of numerical acoustics .. 948
O.4 The source simulation technique .. 954
O.5 The boundary element method (BEM) ... 972
O.6 The finite element method (FEM) .. 989
O.7 The Cat's Eye model .. 997
O.8 The Orange model ... 1005

P. Variational Principles in Acoustics

P.1 Eigenfrequencies of a rigid-walled cavity and modal cut-on frequencies of a uniform flat-oval duct with zero mean fluid flow .. 1026
P.2 Sound propagation in a uniform narrow tube of arbitrary cross-section with zero mean fluid flow .. 1029
P.3 Sound propagation in a uniform, rigid-walled, duct of arbitrary cross-section with a bulk-reacting lining and no mean fluid flow: low frequency approximation .. 1034
P.4 Sound propagation in a uniform, rigid-walled, rectangular flow duct containing an anisotropic bulk-reacting wall lining or baffles ... 1035
P.5 Sound propagation in a uniform, rigid-walled, flow duct of arbitrary cross-section, with an inhomogeneous, anisotropic bulk lining .. 1038
P.6 Sound propagation in a uniform duct of arbitrary cross-section with one or more plane flexible walls, an isotropic bulk lining and a uniform mean gas flow .. 1042
P.7 Sound propagation in a rectangular section duct with four flexible walls, an anisotropic bulk lining and no mean gas flow .. 1046
Q. Elasto-Acoustics

Q.1 Fundamental equations of motion ... 1052
Q.2 Anisotropy and isotropy .. 1054
Q.3 Interface conditions, reflection and refraction of plane waves 1059
Q.4 Material damping .. 1060
Q.5 Energy .. 1064
Q.6 Random media ... 1066
Q.7 Periodic media ... 1067
Q.8 Homogenization ... 1070
Q.9 Plane waves in unbounded homogeneous media 1073
Q.10 Waves in bounded media .. 1077
Q.11 Moduli of isotropic materials and related quantities 1089
Q.12 Modes of rectangular plates ... 1093
Q.13 Partition impedance of plates .. 1096
Q.14 Partition impedance of shells .. 1099
Q.15 Density of eigenfrequencies in plates, bars, strings, membranes 1102
Q.16 Foot point impedances of forces ... 1102
Q.17 Transmission loss at steps, joints, corners 1108
Q.18 Cylindrical shell .. 1110
Q.19 Similarity relations for spherical shells .. 1114
Q.20 Sound radiation from plates ... 1115

R. Ultrasound Absorption in Solids

R.1 Generation of ultrasound .. 1123
R.2 Ultrasonic attenuation ... 1124
R.3	Absorption and dispersion in solids due to dislocations	1129
R.4	Absorption due to the thermoelastic effects, phonon scattering and related effects	1132
R.5	Interaction of ultrasound with electrons in metals	1134
R.6	Wave propagation in piezoelectric semiconducting solids	1136
R.7	Absorption in amorphous solids and glasses	1136
R.8	Relation of ultrasonic absorption to internal friction	1138
R.9	Gases and liquids	1138
R.10	Kramers-Kroning relation	1138

S. Nonlinear Acoustics

S.1	General formulas	1142
S.2	Riemann waves	1144
S.3	Plane nonlinear waves in a dissipative medium	1145
S.4	One-dimensional nonlinear waves in a dissipative medium	1150

Index

1153