Metal Complexes and Metals in Macromolecules

Synthesis, Structure and Properties

With Contributions from Y. Amao, M. Kaneko, E. A. Karakhanov, Y. S. Kang, A. L. Maximov, H. Nishide, T. Ohsaka, I. Okura, R. C. Raj and J. Won
Contents

A OVERVIEW AND BIOLOGICAL SYSTEMS
1 Definitions, Classifications, History, Properties
 (D. Wöhrle and A. Pomogailo) ... 3
 1.1 Definitions ... 3
 1.2 Classification of Metal Complexes and Metals in Macromolecules 7
 1.2.1 Classification by Kind of Metal Complex/Metal Binding 7
 1.2.2 Classification by Connectivities .. 10
 1.2.3 Classification by Dimensionality ... 11
 1.3 Metals in Nature and the History of Artificial Metal Complexes and Metals in Macromolecules ... 11
 1.4 Properties and Potential Applications of Metal Complexes and Metals in Macromolecules ... 14
 1.5 Examples of Inorganic Polymers .. 17
 1.6 References ... 21

2 Macromolecular Metal Complexes in Biological Systems
 (D. Wöhrle and M. Kaneko) .. 25
 2.1 Elements Essential for Life ... 25
 2.2 Some Functions of Metals .. 30
 2.2.1 Metals as Cofactors of Proteins, Metalloproteins 30
 2.2.2 Metalloenzymes .. 31
 2.2.3 Interference of Detrimental Metal Ions with Normal Cell Metabolism . 32
 2.2.4 Communicative Functions of Metals in Biology 34
 2.2.5 Interactions of Nucleic Acids with Metal Ions 34
 2.2.6 Biometal-Organic Chemistry ... 34
 2.3 Heme Proteins ... 37
 2.3.1 Oxygen Transport Hemes .. 38
 2.3.2 Oxygen Transfer Hemes ... 45
 2.3.3 Electron Transfer Hemes ... 48
 2.4 Non-Heme Proteins .. 49
 2.4.1 Oxygen Transport Non-Heme Proteins 49
 2.4.2 Oxygen Transfer Non-Hemes .. 50
 2.4.3 Electron Transfer Non-Hemes ... 51
 2.5 Copper Proteins .. 53
 2.5.1 Type I Copper Proteins ... 53
 2.5.2 Type II Copper Proteins ... 54
 2.5.3 Type III Copper Proteins .. 55
 2.5.4 Mixed Type .. 55
 2.6 Manganese Proteins .. 56
 2.6.1 Oxygen Evolving Center (OEC) of Photosynthesis 57
 2.6.2 Mn-Superoxide Dismutase (Mn-SOD) 58
 2.7 Magnesium Proteins – Chlorophyll ... 58
 2.8 Zinc Proteins .. 61
 2.9 References ... 62
Contents

SYNTHESIS AND STRUCTURES

3 Kinetics and Thermodynamics of Formation of Macromolecular Metal Complexes and Their Structural Organization (A. Pomogailo) ..67

3.1 Complexation in Dilute Polymer Solutions ..68
3.2 Complexation with Insoluble Polymers (Heterogeneous Complexation)79
3.3 The Structural Organization of MMCs ..82
3.4 Main Approaches to Describing the Thermodynamics of MMC Formation84
3.5 The Problem of the Topochemistry of MMCs90
3.6 References ..94

4 Polymerization of Metal-Containing Monomers (MCMs) as a Method for Incorporating Metals in Macromolecules (A. Pomogailo)97

4.1 MCM Classification ...98
4.2 Overview of the Different Methods of Synthesis of MCMs99
 4.2.1 Synthesis of σ-MCMs of the Organometallic Type99
 4.2.2 π-Type Organoelemental Monomers ...102
 4.2.3 Ionic-type MCMs ..105
 4.2.4 nπ-Type MCMs ..106
 4.2.5 π-Type Metal-Containing Monomers ...109
 4.2.6 Polymerizable Chelate-Type MCMs ...109
 4.2.7 MCMs with Macroyclic Chelate Nodes111
 4.2.8 Polynuclear and Cluster MCMs ...113
4.3 Homopolymerization of Metal-Containing Monomers117
 4.3.1 The Specific Character of the Homopolymerization of True Organometallic Monomers ..117
 4.3.2 Homopolymerization of Organoelemental Monomers120
 4.3.3 Radical Polymerization of Salts of Unsaturated Carboxylic Acids122
 4.3.4 Homopolymerization of nπ-Type MCMs125
 4.3.5 Frontal Polymerization of Acrylamide Complexes128
 4.3.6 Homopolymerization of π-Type MCMs ..131
 4.3.7 Polymerization of Chelate-Type MCMs ..134
4.4 MCM Copolymerization ..136
 4.4.1 Organometallic Monomers in Copolymerization Reactions137
 4.4.2 Copolymerization of Ionic-Type MCMs140
 4.4.3 Peculiarities of Copolymerization of Donor–Acceptor Type MCMs145
 4.4.4 Copolymerization of π-MCMs ..148
 4.4.5 Chelate-Type Monomers in Copolymerization with Conventional Monomers ...150
 4.4.6 Mutual MCM Copolymerization ...154
 4.4.7 Copolymerization of Cluster-Containing Monomers155
4.5 The Future Development of Polymerization and Copolymerization of MCMs ..157
4.6 Experimental ..159
4.7 References ..166

5 Binding of Metal Ions and Metal Complexes to Macromolecular Carriers (D. Wöhrle) ..173

5.1 Binding of Metal Ions ..179
 5.1.1 Metal Ion Binding at Polymeric Oxygen Donor Ligands.......................180
 5.1.2 Metal Ion Binding at Polymeric Nitrogen Donor Ligands186
 5.1.3 Metal Ion Binding at Polymeric Oxygen/Nitrogen Donor Ligands191
 5.1.4 Metal Ion Binding at Polymeric Sulfur or Phosphorus Ligands193
5.2 Binding of Metal Complexes .. 195
 5.2.1 Covalent Binding of Metal Complexes .. 195
 5.2.2 Coordinative Binding of Metal Complexes 201
 5.2.3 Ionic Binding of Metal Complexes ... 205

5.3 Examples of Organometallic Compounds and π-Complexes 208

5.4 Experimental .. 209

5.5 References ... 222

6 Metal Complexes as Part of Linear or Cross-linked Macromolecules via the Ligand (D. Wöhrle) .. 229

6.1 Polymeric Metal Complexes with Noncyclic Organic Ligands 230

6.2 Polymeric Metal Complexes with Cyclic Organic Ligands 238
 6.2.1 Cyclization of Bifunctional and Higher-Functional Ligand/Chelate
 Precursors .. 238
 6.2.2 Polyreactions of Bifunctional or Higher-Functional Porphyrins and
 Phthalocyanines .. 245

6.3 Electropolymerization of Metal Complexes ... 250

6.4 Dendrimers Constructed via the Ligand of a Metal Complex 259

6.5 Hydrogen-Bonded Networks via the Ligand .. 262

6.6 Experimental .. 264

6.7 References ... 270

7 Metals or Metal Complexes as Part of Linear or Crosslinked
 Macromolecules via the Metal (D. Wöhrle) .. 279

7.1 Homochain Polymers with Covalent Metal–Metal Bonds 280

7.2 Heterochain Polymers with Covalent Bonds between Metals and Another
 Element .. 281

7.3 Heterochain Polymers with Coordinative Bonds Between Metal and Another
 Element .. 284
 7.3.1 Chain-Forming Coordination Polymers ... 284
 7.3.2 Supramolecular Organization of Coordination Polymers 291
 7.3.2.1 Non-Interpenetrating Coordination Polymers 292
 7.3.2.2 Interpenetrating Coordination Polymers 301

7.4 Metallocenes as Part of a Polymer Chain ... 304

7.5 Cofacially Stacked Polymeric Metal Complexes 306

7.6 Metalloendrimers .. 309

7.7 Experimental .. 312

7.8 References ... 317

8 Metal Complexes or Clusters Physically Embedded in Macromolecules
 (A. Pomogailo and D. Wöhrle) .. 325

8.1 Introduction .. 325

8.2 Metal Complexes Embedded Physically in Macromolecules 325
 8.2.1 Incorporation in Organic Polymers ... 326
 8.2.2 Incorporation in Inorganic Macromolecules 332

8.3 Metal-Cluster and Nanosized Particles Embedded in Polymers 334
 8.3.1 The General Characteristics of Metallopolymers Systems 335
 8.3.2 Microencapsulation of Metallocomplexes and Nanoparticles by Polymers 335
 8.3.3 Mechanochemical Dispersion of Nanoparticles with Polymers 337
 8.3.4 Spray-Coating of Polymers by Atomic Metals 338
 8.3.5 Formation of Nanocomposites in Polymer Solutions 339
10.2.3.1 Direct Electron Transfer of SOD at Cys/Au Electrode

10.2.3.2 SOD-Based Third Generation Biosensor for Superoxide Ion

10.2.4 Experimental

10.3 References

11 Catalysis by Soluble Macromolecular Metal Complexes

11.1 Water-Soluble Metal Complexes with Modified Poly(ethylene Oxide)s in Catalysis

11.2 Polymers and Polyacids Based on Soluble Macromolecular Metal Complex Catalysts

11.3 Catalysis by Soluble Dendrimers

11.4 Macromolecular Metal Complex Catalysts Soluble in Nonpolar Solvents

11.5 Metal Complexes with Ligands Based on Other Polymers

11.6 Macromolecular Metal Complexes Capable of Forming Host–Guest Complexes

11.7 Experimental

11.8 References

12 The State of the Art and Perspectives in Catalysis by Heterogenized Polymer-Bound Metal Complexes

12.1 The Place of Polymer-Immobilized Metal Complexes in Catalysis

12.2 The Features of Hydrogenation Reactions Catalyzed by Macromolecular Metal Complexes

12.2.1 General Kinetic Regularities

12.2.2 The Influence of the Nature of a Metal Complex on Its Catalytic Properties

12.2.3 Formation of Coordinatively Unsaturated and Isolated Complexes

12.2.4 The Influence of Solvent Properties

12.2.5 The Influence of Reaction Temperature

12.2.6 Surface Density

12.2.7 Size Effects in Hydrogenation by Polymer-Immobilized Complexes

12.2.8 Problems of Selectivity in Hydrogenation Reactions Catalyzed by Macromolecular Metal Complexes

12.2.9 Perspectives in the Development of Hydrogenation Catalysis by Macromolecular Complexes

12.3 Polymerization Processes Initiated by Macromolecular Complexes

12.3.1 Peculiarities of Olefin Polymerization

12.3.2 Ethylene Polymerization by Titanium–Magnesium Catalysts

12.3.3 Gel-Immobilized Systems

12.3.4 Stereospecific Propylene Polymerization

12.3.5 The Heterogenization of Homogeneous Metallocene Catalysts for Olefin Polymerization

12.3.6 Polymerization of Vinyl Monomers in the Presence of Macromolecular Complexes

12.3.7 Other Perspectives in Polymerization Catalysis by Macromolecular Complexes

12.4 Oxidation Catalysis in the Presence of Macromolecular Complexes

12.4.1 The Role of Metal Ions in Oxidation

12.4.2 Reactions of Hydrocarbon Oxidation by Oxygen

12.4.3 Peroxide Oxidation of Alkylarenes and Hydroxyarenes

12.4.4 Catalysis of Olefin Epoxidation by Alkylhydroperoxides
12.4.5 Catalytic Oxidation of Oxygen-Containing Substrates and Prospects for Oxidation Catalysis ... 555

12.5 Hydroformylation in the Presence of Polymer-Immobilized Metal Complexes ... 559
 12.5.1 Hydroformylation of Olefins 559
 12.5.2 Problems of Polynuclear Catalysis by Immobilized Metal Complexes ... 560
 12.5.3 Asymmetric Hydroformylation Reactions 562
 12.5.4 Other Prospective Oxo-Processes 562

12.6 Conclusion ... 564

12.7 Experimental .. 564

12.8 References ... 566

13 Photocatalytic Properties (M. Kaneko and D. Wöhrle) 573

13.1 Photocatalysis .. 573

13.2 Photocatalysis towards Future Artificial Photosynthesis 574
 13.2.1 Photosynthesis and the Energy Cycle on the Earth 574
 13.2.2 A Model for Artificial Photosynthesis 576
 13.2.3 Dark Catalysis and Photocatalysis for Artificial Photosynthesis ... 577
 13.2.3.1 Dark Catalysis for Water Oxidation 578
 13.2.3.2 Dark Catalysis for Proton Reduction 581
 13.2.3.3 Dark Catalysis for Carbon Dioxide Reduction 583
 13.2.3.4 Photoexcited-State Electron Transfer in Polymer Matrixes ... 584
 13.2.3.5 Photochemical H₂ and O₂ Evolution as Half-Reaction Models for Future Artificial Photosynthesis 587

13.3 Photocatalysis for Solar Cells and Water Photolysis by TiO₂ 588

13.4 Photoinduced Energy Transfer 592

13.5 Experimental .. 595

13.6 References ... 599

14 Electron- and Photon-Induced Processes (M. Kaneko) 601

14.1 Charge Transport by Metal Complexes in the Ground State Confined in Polymer Matrixes ... 602
 14.1.1 Fundamental Aspects ... 602
 14.1.2 The Mechanism of Charge Transfer 605
 14.1.3 Distance of Charge Hopping with Bounded Motion 614
 14.1.4 The Percolation Process for Charge Hopping without Bounded Motion ... 616
 14.1.5 Electrochemistry – a Combination of Charge Transfer and Catalysis ... 619

14.2 Charge Transfer in a Photoexcited State – Photochemistry 621
 14.2.1 Fundamental behavior .. 621
 14.2.2 Photoexcited State Electron Transport in Solid Polymer Matrixes ... 622
 14.2.3 The Mechanism of Photoexcited State Electron Transport in Polymer Solid Matrixes ... 624
 14.2.4 Photovoltaic Devices Utilizing Charge Transfer in Photoexcited and Ground States ... 626

14.3 New Aspects and Future Scope of Charge Transfer in Polymeric Quasi-Solids ... 630

14.4 Organic Electroluminescent Devices 634
 14.4.1 General Overview .. 634
 14.4.2 Structure and Mechanism of EL Devices 634
 14.4.3 Materials for EL Devices 637
 14.4.4 Commercialization ... 644
14.5 Experimental ... 645
14.6 References ... 648
15 Outlook (D. Wöhrle and A. Pomogailo) 653
Index ... 661