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Abstract

We present measurements of electrodynamical response of (TMTSF)2PF6, a repre-

sentative member of the organic quasi-one dimensional Bechgaard salts, in both the

normal (T > 12 K) and spin density wave state (T < 12 K). We report on the in-

vestigations performed along the chain axis a, and transverse crystallographic axes

b′ and c∗. For the measurements along the b′ axis the single crystals samples were

utilized for the first time. These measurements have been made at 24 and 33.5 GHz

frequency and were anticipated by the DC transport measurements.

For the measurements at microwave frequencies the contactless cavity perturba-

tion technique, employing the cylindrical copper cavity operated in the TE011 trans-

mission mode, was developed. The design of the cavities allowed us to rotate the

sample inside it, resulting in a precise sample alignment. The measurements were

collected in the temperature range from 300 K down to 2 K.

The normal state transport properties of (TMTSF)2PF6 were analyzed in the

framework of Luttinger liquid and Fermi liquid. The strong discrepancies forward

the description within the Luttinger liquid picture were evidenced. The formation of

the SDW ground state in all three directions was observed below 12 K. The thermal

activation energy value at zero frequency (∆0 = 21 K) is in a good agreement with

literature single particle gap value, while at the microwave frequencies the valuable

reduction of the activation behavior (with ∆ = 6 K) was observed along the a and b′

crystallographic axes. Such behavior is indicative of a strongly frequency-dependent

response and was attributed to the vicinity of the SDW pinned mode in the mi-

crowave frequency range. The low-temperature anomalies, below T < 3.5 K, were
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evidenced deeply in the SDW state at 33.5 GHz, and we believe that these anomalies

are due to the exceeding of the threshold electric field when performing the microwave

measurements.



Kurzfassung

Stark anisotrope organische Kristalle dienen als Modellsysteme für quasi-eindimen-

sionale Metalle. Die Frage, ob die Transporteigenschaften der Bechgaardsalze

(TMTSF)2X im Rahmen der Fermiflüssigkeits-Theorie (”Fermi liquid”, FL) oder der

Luttingerflüssigkeits-Theorie (”Luttinger liquid”, LL) verstanden werden können, ist

Gegenstand einer lang andauernden Diskussion. Die Art der metallischen Phase eines

wechselwirkenden Elektronensystems hängt stark von der Dimensionalität ab. Es

ist aus theoretischen Überlegungen wohlbekannt, dass die konventionelle FL-Theorie

dreidimensionaler (3D) Metalle nicht auf wechselwirkende Elektronen, deren Bewe-

gung auf eine Dimension beschränkt ist, angewandt werden kann. Dies führt zur

Formation des LL Zustandes.

Unter allen experimentellen Ansätzen, mit denen die Dimensionalität des Elektro-

nengases in Bechgaardsalzen studiert werden kann, sind Messungen des transversalen

Transports besonders wichtig, um direkt die Zwischenkettenkopplungen zu unter-

suchen. Aus diesem Grunde besteht ein hohes Interesse an zuverlässigen Messungen

der Transporteigenschaften entlang der b′- und c∗-Richtungen. Dies war die Motiva-

tion für die vorgelegte Arbeit.

Die Untersuchung des Spindichtewellen (SDW) Grundzustandes bei tiefen Tem-

peraturen in (TMTSF)2PF6 im Mikrowellenbereich ist ebenfalls von großem Interesse.

Es wurde angenommen, dass die Modulation der Spindichte nicht vollständig kom-

mensurabel mit dem unterliegenden Kristallgitter ist und dass die kollektive Mode

gleitet und damit einen elektrischen Strom transportieren kann. Haftung (”Pinning”)

an Verunreinigungen lässt die kollektive Mode bei endlichen Frequenzen schwingen.

11
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Die Resonanz durch die gepinnte Mode liegt in einener Reiche von Modellsystemen

im Spektralbereich von Millimeterwellen [61]. Durch Anlegen eines äußeren elek-

trischen Feldes kann die kollektive Mode von den Haftzentren gelöst (”Depinning”)

werden und einen Strom transportieren. Die Elektrodynamik des SDW-Zustandes

wurde bei unterschiedlichen Mikrowellenfrequenzen (3–100 GHz) entlang der Ketten-

richtung (a-Achse) ausführlich untersucht [131, 132]. Bis jetzt gibt es keine Berichte

über Mikrowellentransportmessungen an (TMTSF)2PF6 im SDW-Zustand entlang

der beiden senkrechten Richtungen (b′ und c∗).

(TMTSF)2PF6 -Einkristalle von hoher Qualität wurden mit Hilfe der elektro-

chemischen Oxidation hergestellt. Die Proben sind nadelförmig mit den typischen Di-

mensionen 2 mm × 0.5 mm × 0.1 mm entlang der a-, b′- und c∗-Achsen. Die Messun-

gen der b′-Achsen Leitfähigkeit wurden an schmalen Kristallstücken, welche aus einem

dicken Kristall parallel zur Kettenrichtung (lange Achse der Nadeln) herausgeschnit-

ten wurden, durchgeführt; typische Dimensionen dieser Kristallstücke: 0.2 mm ×
1.3 mm × 0.3 mm (a × b′ × c∗). Die Mikrowellenmessungen in c∗-Richtung wurden

an Mosaiken durchgeführt.

In dieser Arbeit werden Messungen der elektrodynamischen Antwort von

(TMTSF)2PF6, einem repräsentativen Mitglied der Familie der organischen quasi

eindimensionalen Bechgaardsalze, sowohl im normalen Zustand (T > 12 K) als auch

im Spindichtewellen-Zustand (T < 12 K) präsentiert. Es wird über Untersuchun-

gen entlang der Kettenachse a und der senkrechten Richtungen b′ und c∗ berichtet.

Diese Messungen fanden bei Frequenzen von 24 und 33.5 GHz statt und wurden von

ergänzenden Gleichstrommessungen begleitet.

Die Gleichstromwiderstandsmessungen wurden mit einer Standard-Vierpunkt-

messtechnik durchgeführt, um Einflüsse von Kontaktwiderständen zu eliminieren.

Die Proben wurden langsam abgekühlt. Dadurch wurden Brüche in den Kristallen

verhindert und ein gutes thermisches Gleichgewicht mit den Temperatursensoren

gewährleistet. Die Widerstandsdaten wurden in einem weiten Temperaturbereich

von 300 K bis 2 K aufgenommen.
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Der niedrige Wert des Restwiderstandes ρa ist zusammen mit dem großen Wider-

standverhältnis ρa(300 K)/ρa(20 K) ein Anzeichen für eine sehr hohe Qualität der

Einkristalle. Unterhalb von 70 K folgt der spezifische Widerstand einer quadratischen

Temperaturabhängigkeit ρa(T ), ρb′(T ) ∝ T 2 entlang der a- und b′-Richtung. Dieses

Verhalten ist ein starkes Indiz für inelastische Elektron-Elektron Wechselwirkung

und ist typisch für Fermiflüssigkeiten. Die quadratische Temperaturabhängigkeit in

dem Temperaturbereich 12 K < T < 70 K wurde nicht entlang der c∗-Richtung

beobachtet. Hier gilt eher ρc∗(T ) ∝ T . Die Proportionalität ρa(T ) ∝ ρb′(T ) weist

auf eine einfache anisotrope Bandstruktur mit isotroper Relaxationszeit τ(T ) hin.

Die Anisotropie ρb′/ρa � 180 ist deshalb temperaturunabhängig. Zusammen mit

der kleinen Bandbreite weist die temperaturunabhängige Anisotropie auch darauf

hin, dass die ”Tight-Binding”-Näherung angemessen ist. Daraus folgt eine einfache

anisotrope Bänderstruktur: (4ta : 4tb : 4tc) ≈ (1 : 4 × 10−2 : 4 × 10−3) eV =

(11600 : 460 : 46) K. Dieses Resultat stimmt gut mit der Anisotropie, welche in

Bandstrukturrechnungen bestimmt wurde, überein [24].

Im normalen Zustand oberhalb von T = 100 K, in dem das System mehr eindi-

mensional sein sollte, wurden die Gleichstromeigenschaften im Rahmen der Lut-

tingerflüssigkeits-Theorie analysiert. Diese liefert die folgenden Abhängigkeiten für

den longitudinalen (ρ‖) bzw. transversalen (ρ⊥) spezifischen Widerstand:

ρ‖(T ) ∼ T 16Kρ−3,

ρ⊥(T ) ∼ T 1−2α,

wobei Kρ derjenige Exponent ist, der die Freiheitsgrade der Ladungen eines LL

charakterisiert, und α = 1/4(Kρ + 1/Kρ) − 1/2.

Die Bechgaardsalze sind bekannt dafür, dass ein großer Teil der Temperatur-

abhängigkeit der Leitfähigkeit durch thermische Ausdehnung verursacht wird. Um die

Gleichstromleitfähigkeit von (TMTSF)2PF6 innerhalb des LL Formalismus, welcher

das Verhalten von Messgrößen in strikt eindimensionalen Systemen bei konstan-

tem Volumen beschreibt, analysieren zu können, mussten die bei konstantem Druck
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gemessenen Daten in die Leitfähigkeit bei konstantem Volumen konvertiert werden.

Die Druckkoeffizienten für die Leitfähigkeit von (TMTSF)2PF6 sind aus der Literatur

bekannt [30, 88].

Die Temperaturabhängigkeit der Gleichstromleitfähigkeit bei hohen Tempera-

turen 100 K < T < 300 K ist durch ρ‖ = ρa ∝ T 0.56 gegeben. Ein Vergleich mit

den Vorhersagen der LL Theorie liefert den Exponenten Kρ = 0.22. Optische Expe-

rimente entlang der Ketten [105, 58] lieferten Kρ = 0.23. Wenn allerdings der Wert

Kρ = 0.22 verwendet wird, um die spezifischen Widerstandsdaten, die entlang der bei-

den senkrechten Achsen b′ und c∗ im selben Temperaturbereich gemessen wurden, zu

beschreiben, gibt es eine Inkonsistenz: aus Kρ = 0.22 folgt für den transversalen spezi-

fischen Widerstand ρ‖ ∝ T−0.36, die experimentellen Ergebnisse dieser Arbeit zeigen

aber eindeutig, dass ρb′ ∝ T 0.24 und ρc∗ ∝ T−0.95. Die hier diskutierten Resultate

zeigen somit deutliche Widersprüche zu den Vorhersagen der Luttingerflüssigkeits-

theorie auf.

Bei tiefen Temperaturen wurde der SDW Grundzustand unterhalb von T = 12 K

entlang aller drei Kristallrichtungen gefunden. Aktiviertes Verhalten wurde eindeutig

durch die log ρ(1/T )-Auftragung nachgewiesen. Die thermische Aktivierungsenergie

wurde entlang aller drei Achsen zu ∆ � 21 K bestimmt. Dieser Wert kann perfekt mit

”Mean-Field” BCS-Theorie beschrieben werden, welche für die Übergangstemperatur

TC = 12 K die Energielücke ∆ = 1.76kBTC = 21 K liefert.

Da die Bechgaardsalze eine ausgeprägte Nadelform haben (a � b′), ist es ins-

besondere schwer, Transportmessungen entlang der senkrechten Richtung b′ mit

Standard-Gleichstrommethoden durchzuführen. Bedingt durch eine nicht gleich-

förmige Ladungsverteilung zwischen den Kontakten können parasitäre Beiträge aus

anderen Kristallrichtungen eine Rolle spielen. Man kann diese Probleme umgehen, in-

dem man eine kontaktfreie Mikrowellenmesstechnik verwendet, die eine bessere Kon-

trolle der Orientierung der Stromlinien in den organischen Nadeln erlaubt.

Die Messungen der Mikrowellenleitfähigkeit wurden mit Hilfe der kontaktfreien
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Hohlkörperstörmethode (”Cavity Pertubation Technique”) durchgeführt unter Ver-

wendung zylindrischer Kupferresonatoren, welche in der TE011 Transmissionsmode

bei den Resonanzfrequenzen 24 oder 33.5 GHz arbeiten. Die Probe wurde mit einem

Quarzstab im Maximum des elektrischen Feldes positioniert. Es wurden nadelförmige

Proben für die Messungen entlang der a- und b′-Richtungen und Mosaike für die Un-

tersuchungen entlang der kristallografischen c∗-Richtung verwendet. Während der

Messungen kann die Probe innerhalb des Resonators rotiert werden, was Messungen

der Anisotropie insitu erlaubt. Im Experiment wird die Änderung der Resonanz-

frequenz
(

∆ω
ω0

)
und der Güte

(
∆ 1

2Q

)
des Resonators nach Einführung der Probe

gemessen. Ein kompletter Durchgang einer temperaturabhängigen Messung von

300 K bis 2 K ist mit verschiedenen Kühlraten möglich. Bei jeder gewünschten Tem-

peratur wurden sowohl die Resonanzfrequenz f0 = ω0

2π
als auch die Halbwertsbreite

Γ = f0

Q
gemessen. Mit der Apparatur können bei Zimmertemperatur Veränderungen

der Frequenz oder Halbwertsbreite mit einer Auflösung, die besser als 5 × 10−7

ist, gemessen werden. Durch Abkühlen zu tiefen Temperaturen verbessert sich die

Auflösung weiter um einen Faktor 2, die Temperaturgenauigkeit beträgt 10 mK.

Die komplexe Leitfähigkeit σ der Probe wird aus den Änderungen der Resona-

torparameter Γ und ∆f0 bestimmt. Die Resultate wurden entweder im Rahmen

der quasistatischen Näherung oder des Oberflächenimpedanz-Formalismus analysiert.

Erstere ist anzuwenden, wenn die Skin-Eindringtiefe die Dimensionen der Probe

überschreitet und die Mikrowellenstrahlung die Probe völlig durchdringt (Depola-

risationsbereich), letzterer, im entgegengesetzten Fall (Skintiefen-Bereich).

Mit der selbstkonsistenten Analyse war es möglich die absoluten Werte des spezi-

fischen Mikrowellenwiderstands von von (TMTSF)2PF6 entlang aller drei Richtungen

zu bestimmen. Die Temperaturabhängigkeit der spezifischen Mikrowellenwiderstände

ρa, ρb′ und ρc∗ ist ähnlich bei beiden Mikrowellenfrequenzen 24 und 33.5 GHz, ρa und

ρb′ unterscheiden sich aber von den Gleichstromwerten. Nur der spezifische Mikrowel-

lenwiderstand entlang der c∗-Achse skaliert mit den zugehörigen Gleichstromdaten,
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während die spezifischen Mikrowellenwiderstände ρa und ρb′ eine schwächere Tem-

peraturabhängigkeit zeigen, sowohl im normalen Zustand als auch im SDW Zustand.

Darüberhinaus wurde gefunden, dass der spezifische Mikrowellenwiderstand ρb′ im

Temperaturbereich 25 K < T < 55 K im normalen Zustand nicht metallisch ist:

mit abnehmender Temperatur nimmt ρb′ zunächst monoton ab bis zu einem lokalen

Minimum bei 55 K, steigt dann leicht an bis zu einem lokalen Maximum nahe 25 K

und nimmt dann wieder ab bis zum SDW Übergang bei 12 K. Die negative Stei-

gung ρb′/dT < 0 im Temperaturbereich 25 K < T < 55 K widerlegt die mögliche

Existenz von Quasiteilchenzuständen entsprechend dem Fermiflüssigkeitsmodell. Um

die Mikrowellendaten im Rahmen der Luttingerflüssigkeits Theorie zu beschreiben,

wurde eine Konvertierung der gemessenen Daten in den spezifischen Widerstand bei

konstantem Volumen vorgenommen gemäß dem oben beschriebenen Verfahren.

Die Analyse der experimentellen Daten liefert ρ⊥(T ) = ρb′(T ) ∝ T−0.4 im Tempe-

raturbereich 20 K < T < 45 K, daraus folgt Kρ = 0.22 im LL Modell. Wird

dieser Wert Kρ = 0.22 verwendet, um den Verlauf der spezifischen Widerstandsdaten,

welche entlang der Kettenrichtung a im selben Temperaturbereich 20 K < T < 55 K

aufgenommen wurden, zu beschreiben, taucht eine Inkonsistenz auf: mit Kρ = 0.22

würde man eine Temperaturabhängigkeit des longitudinalen spezifischen Wider-

standes gemäß ρ‖(T ) = ρa(T ) ∝ T 0.5 erwarten, während die experimentellen Re-

sultate eindeutig einen temperaturunabhängigen Widerstand in diesem Temperatur-

bereich zeigen. Daraus folgt, dass man die Mikrowellendaten von (TMTSF)2PF6

nicht vollständig innerhalb des LL Bildes verstehen kann.

Der Spindichtewellen-Übergang in (TMTSF)2PF6 wurde in allen drei Kristall-

richtungen bei 12 K nachgewiesen. Mit Hilfe des Arrhenius Auftrages log ρ(1/T ) des

spezifischen Mikrowellenzustandes im Bereich des thermisch aktivierten Verhaltens

wurde ein mittlerer Wert der Aktivierungsenergie im SDW Zustand entlang der c∗-

Achse von ∆c∗ � 20.7 K gefunden. Dieser bei Mikrowellenfrequenzen gemessene Wert

für die Energielücke stimmt sehr gut mit der aus den Gleichstrommessungen abgelei-

teten Einteilchenenergielücke ∆0 = 21 K überein. Entlang der a- und b′-Richtungen
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wurden deutlich niedrigere Werte für die Aktivierungsenergien im Mikrowellenbe-

reich gefunden: ∆a ≈ ∆b′ ≈ 6 K. Dieses Verhalten ist ein Anzeichen für eine stark

frequenzabhängige elektrodynamische Antwort und kann durch die Nähe der SDW

Mode (”Pinned Mode”) im Mikrowellenfrequenzbereich erklärt werden. Es wurde

vorgeschlagen, dass das SDW Kondensat in (TMTSF)2PF6 bei Mikrowellenfrequen-

zen an den Verunreinigungen haftet. Aus den hier vorgestellten Ergebnissen kann man

schlussfolgern, dass die Mikrowellenuntersuchungen in einem Bereich stattfanden, in

dem die kollektive Mode immer noch die Messungen beeinflusst, d.h. an der Schulter

der Resonanz der Haftmode. Werden Messungen bei 24 und 33.5 GHz durchgeführt,

so gibt es nicht vernachlässigbare Beiträge der kollektiven Mode (”Pinned SDW

Mode”) zu den Transporteigenschaften des Systems, was wiederum zu einer Re-

duzierung des thermisch aktivierten Verhaltens des spezifischen Widerstandes im

SDW Grundzustand führt. Zieht man einen zweidimensionalen Nesting-Vektor in

der a-b′ Ebene in Betracht, so führt dies zu einer vergleichbaren Antwort der SDW

entlang der a- und entlang der b′-Achse. Das aktivierte Verhalten wird dann durch die

Resonanzmode in beiden Richtungen gleichermaßen reduziert, während die Antwort

entlang der c∗-Achse unverändert bleibt. Betrachtet man im SDW Zustand den

Gleichstromfall (ω = 0), so besitzt der Transport nur Einteilcheneigenschaften.

Anomalien wurden bei Temperaturen unterhalb von T = 3.5 K im SDW Zus-

tand bei der Frequenz 33.5 GHz beobachtet. Vermutlich sind diese Anomalien darauf

zurückzuführen, dass während der Durchführung der Mikrowellenmessungen das elek-

trische Grenzfeld überschritten wurde.
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Chapter 1

Organic Conductors

”. . . organic conductors are a laboratory of solid state physics.”

— P. M. Grant

In 1842 the German chemist W. Knop synthesized K2Pt(CN)4 which had an un-

usual aspect; unlike most metal salts that have a mineral-like colored or white ap-

pearance, it had a golden brown metallic sheen. In 1910 the British scientist Burt

prepared another odd material which had the look of a metal, this time it was a

polymer of linked sulfur and nitrogen atoms. These two were the first ”metals from

molecules”. But it was not until the 1970’s that the electrical properties of these

materials were investigated [1]. In this time, a great variety of both organic (e.g.,

TTF-TCNQ) and inorganic (e.g., NbSe3 or K0.3MoO3) linear chain compounds with

an anisotropic overlap of the electronic orbitals have been synthesized. It turned out

that the electronic properties of organic conductors are extraordinarily sensitive to

even marginal changes in molecular structure. Due to this reason, organic conduc-

tors exhibit an especially rich variety of behaviors and their properties can easily be

turned over a wide range. In this chapter a brief overview of fundamental organic

conductors and their basic properties will be given.

In Section 1.1 we will give the basics of the classification and historical overview of

the investigations of organic conductors and superconductors. We will also answer the
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question why conductivity in organic solids is possible. The model material for our

experiments, the quasi-1-dimensional Bechgaard salts (TMTSF)2X, are introduced

in Section 1.2, where we will consider their crystal structure and electronic band

structure. A very rich phase diagram of the Bechgaard salts family will lead our

narration to the next Chapter 2 ”Low dimensional physics”.

1.1 Organic Conductors: an Overview

Organic conductors are compounds containing along with carbon also elements such

as hydrogen (H), nitrogen (N), sulfur (S), selenium (Se), oxygen (O), phosphorus (P),

and having considerable values of conductivity σ ≥ 1 Ω−1·cm−1, which shows metallic

temperature dependence σ(T ). Sometimes they are referred to as synthetic metals,

emphasizing by this that the electronic properties typical for metals are obtained in

them by synthesis of special organic chemical substances. What defines the electronic

transport properties of organic compounds and forces them to be either conductors

or dielectrics? A close look to their structure may answer this question.

In general, it is not so easy to get an organic material which is not insulating

because they like to have closed shells with localized electrons. The main problem is

how to create delocalized electrons. This is done by doping of polymers or by charge

transfer between cations and anions. These additional electrons now can move on the

chains of the polymer or of the molecules (anion or cation chains).

Structurally all existing organic conductors can be divided into two groups: poly-

mers and charge transfer salts. Conductors of the first group are various polymers

based on hydrocarbons. They have conjugated bonds all along their length, the

length of such a conjugation chain reaches several thousands angstroms, and poly-

mer molecules are assembled in fibers of diameter of 200 Å. The interactions between

threads in a fiber are very weak, and electrons motion is completely of one-dimensional

nature. Let us consider the simplest representative of the polymer family, namely the



1.1. ORGANIC CONDUCTORS: AN OVERVIEW 21

polyacetylene (–CH=CH–)n. Ideally, the delocalization of p-electrons along the poly-

mer molecule due to an overlap of corresponding π-orbitals brings polyacetylene to a

metallic state , and one would call such a hypothetical conducting polymer polyene

(Fig. 1.1, a). However, the metallic state with equidistant spacing between carbon

atoms in polyene is unstable against a so-called Peierls transition – dimerization [2];

this phenomenon will be discussed in details in Sec. 2.1. Due to the dimerization and

Coulomb repulsion, a gap of 1.5 eV opens in the energy spectrum of the p-electrons

in pure polyacetylene, forcing it to be a dielectric (Fig. 1.1, b). In 1977 it was first

discovered that the conductivity of polyacetylene can be increased by ”doping” by

many orders of magnitude [3]. Doping of polyacetylene with atoms of potassium (K),

sodium (Na), bromine (Br), iodine (I), or complexes like AsF6, or other organic donors

or acceptors leads to the emergence of spinless charge carriers – solitons, specific for

Peierls dielectrics. Solitons determine the conductivity of the family (CHXm)n; at

m < 0.1 the conductivity reaches the values of 10−4 – 10−3 Ω−1·cm−1 at temperature

T = 300 K and decreases on cooling. At m > 0.1 a typical for metals paramagnetic

susceptibility appears [4].

The representatives of the second group of organic conductors – charge transfer

salts – contain organic molecules with conjugated bonds. These molecules play the

role of donors and acceptors. In crystals of charge transfer salts plane molecules are

packed in such a way, that the ions of one sign pile up like pancakes to form stacks,

alternated with piles or chains of ions of the opposite sign (Fig. 1.2). The planarity of

these molecules is an essential condition to build a charge transfer salt – the molecules

can be packed closer to each other providing an overlap of the respective molecular

orbitals. The p-electron orbitals of conjugated bonds of planar molecules have the

slope of the figure-of-eight, elongated perpendicular to the plane of the molecule

(Fig. 1.2, the right stack). They provide a rather good overlap of the electron

wave-functions of neighboring molecules in a chain. Therefore electrons of the plane

molecules are delocalized not only inside a molecule, but also along a pile. In the

neutral state donor and acceptor molecules contain an even number of p-electrons,
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Figure 1.1: (a) Polyene – the simplest hypothetical conducting polymer, where electrons are
delocalized all over the solid (dashed line). Due to the Peierls transition, polyene
transforms to polyacetylene, a natural dielectric polymer with conjugated double
bonds (b).

but when the crystal is formed, the number of electrons in the p-shell changes and

p-electron band turns out to be partially filled in a pile. Thus, the two conditions

necessary for metallic behavior of electrons are realized: partial filling of p-electron

band, and their delocalization, at least along a chain.

Historically, the search of organic conductors was greatly stimulated by the idea of

W. A. Little [5] that the coupling of the electrons to Cooper pairs might possibly be

caused by an exitonic mechanism which could yield superconducting transition tem-

peratures Tc easily above the room temperature. The field of practical investigations

of organic conductors started in 1960 and 1970 with the discoveries of the molecules

TCNQ (tetracyanoquinodimethane) and TTF (tetrathiofulvalene), respectively [6, 7].

Three years later Ferraris was the first to combine both anion (TCNQ) and cation

(TTF) molecules in the ratio 1:1 and in this way to form the TTF-TCNQ molecule

[8] of the first conducting charge transfer salt. The planar molecules of TTF-TCNQ

form segregated stacks in a plane-to-plane manner and the molecular π-orbitals can

interact preferably along the stacking direction (crystallographic b-direction of the
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Figure 1.2: Schematic representation of a charge transfer salt. Planar molecules of donors
(cations) are packed in stacks alternating with chains of acceptor molecules
(anions, shown as balls). The intermolecular overlap of π-orbitals between the
donor molecules is shown in the right stack, as an example.

monoclinic structure), leaving only weak interactions in the perpendicular a- and c-

crystallographic directions. Hence TTF-TCNQ complexes exhibit very anisotropic

conduction properties; they behave as quasi-1D conductors, although they are, of

cause, three-dimensional crystals. Their one-dimensional nature also determines their

shape: naturally they grow in needle-like form, which is by itself a clear indication

of existing of a ”preferential direction”, whatever it means. The promising discovery

of rather large room temperature conductivity of ca. σb ∼ 1000 Ω−1·cm−1 (less than

three orders of magnitude smaller compared to copper), which increased by more

than an order of magnitude upon cooling to 60 K, and its anisotropy (σb/σc) of ca.

500 led to intense search for other conducting organic molecules. Such a search was

particularly promising, since TTF-TCNQ was subjected to metal-insulator transition

at 54 K due to a Peierls instability of the 1D electron system [9, 10] and the task was

to suppress this transition. (Sec. 2.1.1).

Under some physical conditions charge transfer salts may even become super-

conductors. The practical possibility of reaching of superconductivity in compounds

without a single metallic atom, but with two-dimensional (layered) nature of electron
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motion was established by R. L. Greene and coworkers in 1975, as a result of experi-

ments performed on synthesized polymeric polysulfurnitride (SN)x [11]. Molecules in

crystals of this polymer are so close to each other that the electronic motion is practi-

cally isotropic in two directions; the conductivity reaches the values of 5·105 Ω−1·cm−1

at 4 K, below the critical temperature of TC = 0.26 K superconductivity was observed.

As for the charge transfer complexes, about 15 years after Little’s stimulating

proposal, superconductivity in (TMTSF)2PF6 was observed [12]. These electronic

quasi-1-dimensional organic metals based on the donor molecule TMTSF, the Bech-

gaard salts, show at low temperatures, in general, a phase transition to an insulating

state. Only after applying pressure of a few kbar the insulating ground state is sup-

pressed and superconductivity emerges at a temperatures of 2–3 K.

Since 1980, over 400 organic conductors have been synthesized, over 50 of which

are superconducting. During this time the superconducting transition temperature

in these materials increased from 1.2 K to 12.6 K [31].

This dissertation is devoted to investigations of a particular group of charge trans-

fer salts – the Bechgaard salts, which we will introduce in the next section.

1.2 Bechgaard Salts

Typically organic chain compounds are formed by stacks of large cations separated

by anions. The incomplete electron transfer leads to the formation of a partially

filled band along the chain direction, and they show anisotropic behavior at room

temperature. Most of these compounds share various ground states in temperature

and pressure space. Our studies were done on the tetramethyletetraselenafulvalene-

hexafluorophosphate 1 (TMTSF)2PF6.

1Tetramethyletetraselenafulvalene, shortly (TMTSF) or (TM), has a chemical composition
(CH3)4C6Se4 and the official IUPAC name 4,4′,5,5′-tetramethyl∆2,2′

-bi-1,3-diselenolylidene.
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1.2.1 Crystal Structure of Bechgaard Salts

The first (TMTSF)2X molecular crystals were synthesized in the late 1970s and are

known as Bechgaard salts, after the name of the synthesizer Klaus Bechgaard [13].

While with various anions, X, they show highly conducting behavior at room tempera-

ture, the spin-density wave insulating state was found with anions of centrosymmetric

PF−
6 , AsF−

6 and SbF−
6 or non-centrosymmetric NO−

3 and ClO−
4 .

The crystals are grown by the electrochemical reaction (Sec. 3.4). The structure

[14] of these isomorphous crystals is shown in Fig. 1.3.

The unit cell structure is triclinic, with the anions at the inversion center of

the P1 space group [14]. The conduction chain is formed by a zig-zag stack of the

nearly planar TMTSF molecules (the angle between the two halves of the molecule

is 1.2˚) and each stack is separated by anions. The unit cell dimensions for several

different salts are listed in Table 1.1. The shortest distance between the Se atoms in

neighboring adjacent TMTSF molecules is 3.87 Å while the Van der Waals distance

is 4 Å, suggesting a large overlapping of the electronic wave functions of the direction

of the π-orbitals. The interplanar distance along the stacks alternates with 3.63 and

3.66 Å leading to a slight dimerization at room temperature; thus the mean value

of the intermolecular distance is as = 3.645 Å . This interaction with anions folds

the Brillouin zone into half of its size with 2 TMTSF molecules per unit cell. The

top band has a concave up curvature. One anion takes away one electron from two

TMTSF molecules resulting in a 1/4 filled hole band along the (TMTSF)2 stacks.

This partially filled band produces metallic conduction along the chain provided the

intermolecular electron repulsion (the Hubbard U) is not strong compared to the

bandwidth, i.e., U < D.

1.2.2 Role of Anions

To be more detailed, the position of anions, which can be categorized by their symme-

try as shown in Fig. 1.3, is an inversion center of the three-dimensional structure [19].

Thus the non-centrosymmetric anions, such as NO−
3 and ClO−

4 , can be in either two
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a)

b)

c)

Figure 1.3: Projection of the crystal structure of (TMTSF)2X on the a− c plane (a), where
the zig-zag structure can be clearly seen, and b − c plane (b). The Se atoms
are the large light gray circles, the carbon atoms are small black circles, and
dark gray circles between the molecules denote anions. From Ref. [32]. (c) The
triclinic unit cell of a salt with tetrahedral anions. From Ref. [33].
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Anion X TAO T a b c α β γ Vcell

(K) (K) (Å) (Å) (Å) (Å3)

AsF a
6 - 300 7.277 7.711 13.651 83.16 86.00 71.27 719.9

ClO b
4 24e 300 7.226 7.678 13.275 84.58 86.73 70.43 694.4

NO c
3 41 300 7.217 7.567 12.822 89.14 86.61 70.56 659.1

PF b
6 - 300 7.297 7.711 13.522 83.39 86.27 71.01 714.3

PF d
6 - 4 7.076 7.632 13.322 84.14 88.05 70.13 673.0

ReO b
4 180 300 7.284 7.751 13.483 83.23 86.56 70.08 710.5

SbF b
6 - 300 7.299 7.728 13.901 82.77 85.23 71.52 737.0

TaF b
6 - 300 7.280 7.716 13.918 82.88 85.37 71.67 735.6

Table 1.1: Anion ordering temperature TAO and unit cell dimensions for several different
Bechgaard salts (TMTSF)2X at temperature T . Labels a, b, and c are the unit
cell dimensions along the respective crystallographic axes. Labels α = (̂b, c),
β = (̂a, c), and γ = (̂a, b) are the angles of a unit cell of volume Vcell. Note the
substantial thermal contraction of the unit cell in (TMTSF)2PF6.
a Ref. [15]
b Ref. [16]
c Ref. [17]
d Ref. [18]
e Slowly cooled, typically ∆T/∆t < 100 mK/min



28 CHAPTER 1. ORGANIC CONDUCTORS

equivalent positions introducing disorder. At low temperatures, interactions between

the anions and the organic stacks [20, 21] lead to an anion ordering (AO) transition.

When the anions are ordered at low temperature, the periodicity of the lattice is either

doubled by alternating its orientation (BF−
4 and ReO−

4 ), or not affected by uniform

orientation (NO−
3 , ClO−

4 ). The resulting superstructure is characterized by the wave

vector which is identified by new reflection spots appearing in the X-ray pattern [20].

A list of the different AO transition temperatures TAO is given in Table 1.1. Interest-

ingly, having hexahedral centrosymmetric anions PF−
6 , the (TMTSF)2PF6 compound

around 58 K the proton relaxation experiments indicate structural phase transition

involving rearrangement of the PF6 ions [22].

1.2.3 Band Structure and Electronic Properties

From the Fig. 1.3, it can be seen that the cation stacks are arranged in sheets which

are separated by planes of anions. As we mentioned above, the intrastack molecular

spacing is smaller than the sum of the Van der Waals radii of Se atoms, whereas the

interstack spacing is nearly equal to (b direction) or much larger (c direction) than the

sum of the Van der Waals radii. Describing the electron band within the tight-binding

approximation, the linearized energy dispersion relation is given by [30]:

ε(k) = −2ta cos(ka · as) − 2tb cos(kb · b) − 2tc cos(kc · c), (1.1)

where ta, tb, and tc are the transfer integrals along the a, b, and c axes respectively, as

is the intermolecular distance along the a-axis and ki are the electron wave vectors in

the ith direction. The lobes of the molecular π-orbitals point along the stacks and this,

together with anisotropic Se-Se distance leads one to expect relations ta � tb � tc.

For a purely one-dimensional (1D) system, i.e., completely neglecting the trans-

verse overlap, the bandwidth is 4ta and the density of states diverges at the band

edges, with a minimum at zero energy (Fig. 1.4a). The Fermi surface of such a sys-

tem consists of two planes separated by 2kF when viewed in a 3D space , as shown

in Fig. 1.4b, and this surface is perfectly nested (εk = εk+Q for all k on the Fermi
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surface) by the wave vector Q = (2kF , 0, 0).

The three-dimensional band structure can be considerably simplified, if one does

not consider any interaction in c-direction. Thus with ta � tb and tc = 0 the disper-

sion relation reduces to [30]:

ε(k) = 2(tb cos(kb · b) ± ta cos(
1

2
ka · a)) (1.2)

Equation (1.2) provides a complete analytical description of the 2D or quasi-1D

band structure of (TM)2X which can be used as a basis for derivation of the electronic

and transport properties [23].

The Fermi surface is determined by the condition

ka = kF +
2tb
vF

cos kbb + Ō(t2b cos kbb) (1.3)

with vF = 2ata sin(akF /h). This leads, neglecting the third term in equation (1.3),

to a sinusoidal Fermi surface in the ka-kb plane, as shown in Fig. 1.4c,d. While the

Fermi surface of a strictly 1D conductor consists of two planar sheets intersecting the

ka axis at ±kF (see Fig. 1.4c, dashed lines), the effect of the small transverse overlap

tb is to introduce some warping of the original planar Fermi surface. The wave vector

Q = (2kF , 0, 0) no longer nests the warped Fermi surface, but the new nesting vector

(2kF , π/b, π/c) deviates from the perfectly nesting vector only with terms of the order

(tb/ta)
2 [19, 25]. It is clear that the general trend of increasing tb and/or tc leads to

a destruction of the nesting. Perfect nesting, as shown in Fig. 1.4c, is obtained only

in the limit when tb/ta → 0. With increasing tb/ta the last term in equation (1.3)

becomes progressively more important and the nesting condition applies for a smaller

number of electron-hole pairs [26].

The dimensionality of the system is defined by the ratio of the thermal energy

kBT to the band parameters: ta, tb, and tc. Whenever kBT/ti � 1 the motion is dif-

fusive in the ith direction. In an anisotropic system one typically finds a temperature-

dependent dimensionality with a cross-over to 3D behavior occurring only below tem-

peratures kBT/ti � 1, for all i. With this in mind (and keeping our 1D tight-binding
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Figure 1.4: (a) The bandwidth of a purely 1D system, conducting along a-axes. (b) The
Fermi surface of a purely 1D system, conducting along a-axes. (c) The solid
curves represent the Fermi surface obtained by neglecting the 2nd harmonic
term in Eq. (1.3); the dashed lines show the flat Fermi surface in the absence of
transverse coupling, after Ref. [31]. (d) The 3D view of the Fermi surface of a
Q1D/2D system, corresponding to the solid curves in figure (c).
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approach), the charge transfer of 1/2 electron per TMTSF molecule formally gives a

3/4 filled hole band (TMTSF is the donor). However, the slight dimerization found in

these systems causes a zone folding, opening a small gap ∆(4kF ) at the zone bound-

ary, thus leaving a 1/2 filled upper band. Typically, the dimerization (δa/a) found in

the TMTSF salts is ca. 0.8%, while the TMTTF (tetramethyltetrathiafulvalene, or

”Fabre salts”, the four selenium atoms of TMTSF are replaced by sulfur) salts have

a more pronounced dimerization, ca. 2.8%, as found from the optical measurements

[25].

In the tight binding approximation the mean free path, �, is given approximately

by [28]:

� =
σπ�

2ne2a
, (1.4)

where a and σ is the lattice constant and conductivity in the direction in question,

respectively; n is the concentration of the charge carriers, and e is elementary charge.

The conductivity anisotropy is approximately given by the square of the band

structure anisotropy. The conductivity across the chain is diffusive and can be related

to the longitudinal conductivity by using the one dimensional Golden rule [27]. The

resulting expression is

σa

σ⊥
=

(
ta
t⊥

)2 (as

l

)2

, (1.5)

where σa and σ⊥ are the conductivities along and perpendicular to the chain axis;

as = a/2 is the mean value of the intermolecular distance (see page 25 for more

details), and l =(b or c) is the distance to the neighboring stack (see the lattice

parameters in Table 1.1). Equation (1.5) shows, that the conductivity anisotropy

should thus be temperature independent.

A more realistic approach incorporates the finite transverse coupling. P. M. Grant,

to whom the quotation in the beginning of this chapter belongs, has performed a

3D band structure calculation and, considering only the highest occupied molecular

orbitals (HOMO), he finds (4ta : 4tb : 4tc) = (1.5 : 10−1 : 3×10−3) eV for the TMTSF
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salts [24]. Such parameters lead to a strongly anisotropic system with open orbits

(at all temperatures) and a cross-over to 3D behavior below about 10 K. The energy

dispersion along XV and ΓV is shown in Fig. 1.5. In Table 1.2 we report the transfer

integrals ta and tb as taken from this band strucure calculation Ref. [24].

Figure 1.5: Band structure of (TMTSF)2AsF6, which is representative for all Bechgaard
salts, as calculated by P. M. Grant [24]. The different symbols and the solid
curve on the plot correspond to the different numerical procedures, which con-
form with each other.

1.2.4 The Phase Diagram of Bechgaard Salts

A direct consequence of the pronounced 1D character of the (TM)2X series is the

existence of a wide variety of ground states that can be observed for various members

of the family. The nature of the ground state depends on such parameters as chemical

composition of the organic molecule or the inorganic anion, the hydrostatic pressure
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ta (meV) tb′ (meV)

(TMTSF)2ClO4 366 21.6

(TMTSF)2NO3 391 23.9

(TMTSF)2PF6 365 26.2

(TMTSF)2ReO4 364 19.7

Table 1.2: Room temperature transfer intrastacks (ta) and interstacks (tb′) integrals of se-
lected Bechgaard salts. The transfer integrals differ due to the slightly different
unit cell parameters. From Ref. [24].

and an eventually applied external magnetic field. The generic phase diagram in

Fig. 1.6 displays the variety of ground states found in Bechgaard salts.

Thereby, the crucial parameter is pressure and not the charge-carrier concentra-

tion, as it known for high-temperature superconductors. Increased pressure is equiv-

alent with an increased overlap of the molecular wave functions, in particular perpen-

dicular to the direction of high conductivity (a-axis). This results in a reduction of

the anisotropy and, consequently, in an increase of the dimensionality. The arrows in

Fig. 1.6 indicate ambient-pressure starting points for different charge-transfer salts.

At the far left side of the phase diagram the (TMTTF)2PF6 is located, the sulfur

analog of (TMTSF)2PF6. At high temperatures of about 230 K this system shows

a smooth transition into an insulating state (loc), which is caused by localization of

the interacting electrons presumably due to a Mott-Hubbard transition. The anti-

ferromagnetically ordered spin chains lead to a spin-Peierls (SP) transition at about

15 K, where the lattice dimerizes with two neighboring spins forming a spin singlet.

Consequently, the magnetic energy of the crystal is reduced. By applying external

pressure of about 13 kbar, the transition into a localized state gets suppressed and

the system remains metallic until at lower temperatures a Peierls transition connected

with a spin density wave (SDW) occurs as a new ground state. The organic mate-

rials (TMTTF)2Br and (TMTSF)2PF6 have an increasingly larger dimensionality
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Figure 1.6: Generalized phase diagram for the (TM)2X series. The notations loc, SP, AFM,
SDW and SC refer to Mott localized, spin-Peierls, antiferromagnetic (commen-
surate SDW), spin density wave (incommensurate), and superconducting ground
sates, respectively. The dashed curves within the metallic phase mark the dimen-
sional crossover regions. The arrows indicate the location at atmospheric pres-
sure of the different compounds in the generalized diagram. Adopted from [29].
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already at ambient pressure and show the SDW transition at correspondingly lower

temperatures. Under a pressure of 26 kbar for (TMTTF)2Br [34] and about 6 kbar

for (TMTSF)2PF6 [35], the metal-insulator transition is completely suppressed and

superconductivity (SC) develops with transition temperatures of about 1–3 K. The

only Bechgaard salt with low-enough anisotropy is (TMTSF)2ClO4, which becomes

superconducting already under ambient pressure at about 1.4 K.

We will discuss these ground states in the next Chapter 2 ”Low dimensional

physics” in more details.
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Chapter 2

Low-Dimensional Physics

”Nature is an infinite sphere whose center is everywhere.”

— Emerson

Metals may undergo a phase transition to a state with a new type of electronic

order. Iron and nickel, for instance, become ferromagnetic. In these materials, mag-

netic interactions cause an alignment of the spins of the conduction electrons, and an

ordered state with nonzero magnetic moment is formed. Other metals, such as alu-

minum and lead, become superconducting. In superconductors, electrons of opposite

momentum are grouped into pairs as a result of their interactions with lattice vibra-

tions. Such Copper pairs can move through the superconductor without dissipation.

A different type of phase transition occurs in a class of metals with chain-like

crystal structure, namely quasi-one dimensional materials.

In the charge-density-wave (CDW) state, the electron density is periodically mod-

ulated in space, and the ions are slightly displaced. The wavelength of this modu-

lation can be both commensurate and incommensurate with the underlying lattice.

The transition to the CDW state is named after Rudolph Peierls who in 1930 was the

first to describe the mechanism for CDW formation [36].

CDWs bear a strong formal analogy to superconductivity. The CDW transition

can be viewed as a Bose condensation of electron-hole pairs, similar to Cooper-pairs

37
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forming a superconductor. Like superconductors, CDWs give rise to remarkable elec-

tron transport properties. In 1954, Fröhlich predicted that incommensurate CDWs

can slide along the chains without dissipation as a result of translational invariance

with respect to the lattice [37]. Such Fröhlich superconductivity has never been found

experimentally. In real crystals, CDWs are pinned by impurities, and a finite elec-

tric threshold field must be applied to set the CDW into motion. CDW sliding was

observed for the first time in 1979 as a sharp increase of conductance in NbSe3 [38].

Another typical 1D low-temperature ground state is the spin-density-wave (SDW)

state, which is due to electron-electron repulsive interactions. When electron-electron

interactions are attractive, the superconducting ground state is formed. In Section 2.1

we will discuss in more detail the various broken-symmetry ground states found in

Bechgaard salts.

In Section 2.2 we will finally concentrate on the normal state properties of systems

of reduced dimensionality. We will introduce the most important properties of a

Luttinger liquid (LL), which could serve as a model to describe the normal state of a

strictly 1D interacting electron system in which interactions play a crucial role.

2.1 Quasi-1-D Ground States

2.1.1 Charge-Density Waves

Charge-density waves occur in conductors with a chain-like crystal structure. For

such materials, the Fermi surface can be approximated by two parallel planes

separated by a wavevector 2kF (see Sec. 1.2.3). This particular topology leads to

a response to external perturbations that is strongly different from that in three

dimensions. Due to the large number of electron states at the Fermi-surface that

differ by 2kF , the electron gas is unstable with respect to external perturbations of

this wavevector. At low temperatures, both the charge density and the lattice sites

(only in the commensurate case of 1/2 filling) are modulated by the corresponding

wavelength λ = π/kF .
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A schematic representation of the CDW modulation is shown in Fig. 2.1 for a

wavelength equal to twice the lattice parameter a (for the half-filling). The electron

density ρ is given by

ρ(r) = ρ0 + ρ1 cos(2Q · r + φ) (2.1)

in which Q denotes the net momentum of an electro-hole pair (total spin S=0),

and ρ1 denotes the CDW amplitude and φ is the CDW phase, which determines the

position of the CDW with respect to the lattice. The distortion of the lattice sites

has been exaggerated in the sketch; real distortions are typically less than 1% of the

lattice constant. The new periodic potential lowers the electronic energy by opening

a Peierls gap 2∆ at the Fermi energy. This energy gain overcomes the energy cost for

distorting the lattice.

The opening of the Peierls gap has far-reaching consequences for the electrical

transport properties. The material becomes a semiconductor, and transport can only

occur through quasi-particles that are thermally excited across the gap. Typical gap

values for Peierls semiconductors lie in the range of 20–200 meV, which is an order

of magnitude smaller than for well-known band semiconductors such as silicon and

germanium (1.12 and 0.66 eV at room temperature, respectively).

Since the wavelength of the CDW is determined only by the Fermi wavevector,

there is no direct relation between λ and a. If the ratio λ/a is a rational number, the

CDW is commensurate with the underlying lattice and the CDW energy depends on

its phase. In the ground state, the phase is such that the energy is minimized, and

a force is required to push the CDW out of this potential minimum. For incommen-

surate CDWs, on the other hand, λ/a is irrational, and the CDW is translationally

invariant with respect to the underlying lattice.

Due to this translational invariance, incommensurate CDW can slide through the

lattice . But in real materials the CDW is pinned to the impurities and to the crystal

imperfections (such as micro cracks, for example), and the CDW can slide when a

moderate electric field is applied. Then the CDW is depinned from impurities, and a
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Figure 2.1: Charge-density-wave formation. A sketch of the spatial variation of the net
charge density in both the metallic (a, left figure) and CDW (b, left figure)
states. In the band structure, a gap 2∆ opens at the Fermi energy (b, right
figure). The thick line denotes filled states at T = 0.
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current is carried by the collective motion of the CDW electrons. CDW sliding causes

nonlinear voltage-current characteristics.

One of the most appealing phenomena originating from CDW sliding is the ap-

pearance of coherent current oscillations, also known as narrow-band noise. If a DC

current is applied between the contacts of a sliding-CDW conductor, an AC voltage

component is measured in addition to the normal DC response. The frequency of

this AC response is proportional to the CDW current, with a proportionality con-

stant that only depends on the number of current-carrying chains. Typical internal

frequencies in CDW crystals are in the range of 1–100 MHz.

Several models have been proposed to describe the sliding CDW motion in the

presence of impurities. A simple model is the single-particle model [39]. This model

treats the CDW as a rigid object moving in a periodic pinning landscape (”wash-

board potential”). Applying an electric field corresponds to tilting the washboard.

For low fields, the particle remains trapped in a trench of the washboard, and the

CDW is pinned. Sliding occurs if the applied electrical field E exceeds the threshold

field ET (E > ET ∼ 0.5 V/cm), when the washboard tilt is strong enough for the

particle to come out of the trench and roll down. The single-particle model can qual-

itatively predict several phenomena associated with CDW sliding. For instance, the

presence of coherent current oscillations in the response to a DC signal can easily be

visualized with a rigid object bumping down a washboard. For a quantitative com-

parison with experimental data, however, the single-particle model is in most cases

an oversimplification.

A more elaborate and widely-used model of CDW motion has been worked out

by Fukuyama, Lee, and Rice in the late seventies [40, 41]. In FLR model, the CDW

is an elastic medium which can adjust itself at impurity sites. Two regimes can be

identified. In the strong-pinning regime, the pinning strength of impurities dominates

over the elastic energy of the CDW, and the CDW phase is fully adjusted at each

impurity. In the weak-pinning regime, on the other hand, the CDW elastic force

is stronger than the impurity-pinning force, and the CDW phase is only partially
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adjusted at each impurity. In this case, the phase coherence length can extend over

many impurities. The classification of CDW conductors into weak-pinning and strong-

pinning materials has been the subject of intensive research and debate [42, 43, 44, 45].

2.1.2 Spin-Density Waves

While the Peierls transition and the phenomena related to it are a consequence of

electron-phonon interactions, electron-electron interactions can also play a significant

role in the dynamics of low-dimensional systems. In particular, such interactions,

either attractive or repulsive, can lead to broken-symmetry ground states such as

superconductivity (SC) and spin density waves (SDW). It was Overhauser who first

realized that the paramagnetic state of an interacting electron gas is unstable with

respect to the formation of a static spin density wave [46, 47]. In analogy to the case

of the CDW, the ground state consists of electron-hole pairs with total spin S = 1

and net momentum Q, and is characterized by a spatial modulation of the electronic

spin density:

S(r) = S1 cos(Q · r + φ), (2.2)

where S1 and φ are the amplitude and phase of the electronic spin density, respectively.

The existence of such a state has been well established and extensively studied, and

several comprehensive reviews have been written [26, 61].

The simplest way to visualize the SDW is to imagine that a SDW actually is

a split CDW: it consists of a wave for spin-up (↑) electrons and another one for

spin-down (↓) electrons with a phase shift 180˚ between spin-up and spin-down

wave. The splitting is intruduced by electron-electron interactions. Because of the

phase shift the corresponding lattice distortions interfere destructively and there is

no net distortion, i.e. the SDW is accompanied by no lattice distortion. Therefore, a

SDW cannot be detected by structural investigations (X-ray or neutron scattering),

however, local susceptibility measurements turn out to be very powerful such as ESR

(electron spin resonance) and NMR (nuclear magnetic resonance), the latter because

of the hyperfine interaction through which electronic spins relax the nuclear spins [61].
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Figure 2.2: A plot of the spacial variation of the spin up (↑) and spin down (↓) waves forming
an SDW state. The depicted phase difference is 180˚.

Because the SDW is pinned for a small applied field and the gap opens for all sates

on the Fermi surface, electrical conduction is caused by single particle excitations

above the gap. Since the number of carriers is proportional to the Boltzmann factor

exp(−∆/T ), the low temperature resistivity in the SDW state roughly obeys

ρ ∝ exp(∆/T ). (2.3)

with SDW gap values of ∼ 1 meV.

Similar to CDWs, for electric fields larger than a threshold ET , the SDW can

brake free from the pinning potential landscape and additional current from the SDW

results. This feature is seen in the nonlinear DC current versus voltage and broadband

noise generated by the sliding SDW. Typical static threshold fields for (TMTSF)2PF6

are 3.5 mV/cm [48].

In general, SDW transition temperatures are significantly smaller (around 10 K),

often by an order of magnitude or more, than those in CDW compounds. In ad-

dition, the calculated mean field transition temperatures for materials with SDW

ground states are typically very close to the actual transition temperatures, and the

fluctuation regime is rather narrow. However, despite this fact, the normal state

properties of these materials are not necessarily characteristic of simple metals. This
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fact will be discussed in more detail below in Sec. 2.2 and examined experimentally

in Chapter 5.

2.1.3 Superconductivity

As mentioned above, these two ground states (CDW and SDW) are the result of

Fermi-surface instabilities whose effects are enhanced due to the reduced dimension-

ality.

Superconductivity is another ground state common to systems with interacting

Fermi surface electrons. A quick glance at Table 2.1 shows that, with the notable

exceptions of (TMTSF)2BF4 and (TMTSF)2NO3, all of the Bechgaard salts listed

display a transition to a superconducting ground state (usually external pressure

and low temperatures are required). However, as a SC consists of electron-electron

pairs with zero net momentum, the Coulomb repulsion between electrons must be

overcome in order to form a pair. Typically (within the BCS theory, see the next

section), the bare repulsion is overcome by the retarded electron-phonon interaction.

Within this picture, the lattice polarization induced by one electron slowly decays,

and can therefore attract a second electron for some time after the first electron has

moved away. However, in 1D the retardation is not so effective, as the reduction

in the phase space available makes it difficult for two electrons moving in opposite

directions to avoid one another [59]. The upshot is that superconductivity is always a

2D or 3D phenomenon and therefore should usually not compete with either a CDW

or a SDW ground state. This was reconciled with the observed SC state in these Q1D

salts, by the large, experimentally measured [60] decrease in the anisotropy (increased

dimensionality) under pressure.

The picture which emerges is that of a family of salts where the charge transfer is

complete and the conduction takes place solely along the TMTSF chains. The phase

transitions observed at low temperature are tied to the Fermi surface instabilities.

Yet, the dominant response function is determined in part by the dimensionality of

the system, which depends on the molecular overlap in the transverse direction and
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Material Metal-
Insulator

Ground
State

SC∗ SC∗

TMI

(K)
Ambient
Pressure

PC

(kbar)
TC

(K)

(TMTSF)2BF4 38 AO - -

(TMTSF)2ClO †
4 24 SC 0 1.2

(TMTSF)2ClO ‡
4 6 SDW - -

(TMTSF)2ReO4 180 AO 9.5 1.3

(TMTSF)2NO3 41 SDW - -

(TMTSF)2AsF6 12 SDW 12 0.9

(TMTSF)2PF6 12 SDW 6.5 1.2

(TMTSF)2SbF6 12 SDW 11 0.4

(TMTSF)2TaF6 11 SDW 12 1.4

Table 2.1: Characteristics of the phase transitions seen in the (TMTSF)2X salts.
† Slowly cooled, typically ∆T/∆t < 100 mK/min
‡ Quenched
∗ Under pressure, most of the salts show a low-temperature transition to a su-
perconducting state. PC is the minimum pressure required to observe such a
transition and TC is the maximum temperature at which superconductivity can
be observed.

therefore is sensitive to the effects of pressure and/or anion size and shape. One

manifestation of this sensitivity to dimensionality is, as displayed in Fig. 2.3, the

strong dependence of the critical pressure on the b-axis lattice constant. One can see

that the two effects (i.e. pressure and increasing anion size) compete and one is left

with a system where the dimensionality can effectively be ”tuned”.

Thus, it turns out to be very important to perform reliable measurements of the

anisotropy of Bechgaard salts, this dissertation is devoted to, since the anisotropy

(or dimensionality) is the key feature for the formation of this or that type of low-

temperature ground state.
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Figure 2.3: The relationship between PC , the critical pressure above which the ground state
is superconducting, and the b-axis parameter in several different Bechgaard salts.
After Ref. [31].
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2.1.4 BCS Theory

The general microscopic theory of superconductivity was developed by Bardeen,

Cooper and Schriffer (BCS) in 1957 [50, 51]. The fundamental aspect of the model

was that, in the presence of an attractive interaction, electrons in the neighborhood

of the Fermi surface condense into a new ground state formed of electron-pairs with

equal and opposite momentum and opposite spin components called Cooper pair:

(k, ↑) and (−k, ↓) Bloch states. The attraction between the electrons in a pair can

in principle be due to any suitable kind of interaction that overcomes the Coulomb

repulsion (e.g. magnetic interaction, coupling by polarons or excitons). The energy

required to break a pair is 2∆(T = 0). In 1950 Fröhlich suggested that the attractive

interaction of the electrons in the solid is mediated by lattice distortions (phonons)

[52]. The discovery that for many superconductors the transition temperature TC de-

pends on the isotope mass [53], supported this proposal. In this case, the transition

temperature scales as the Debye temperature (TD). Early, it was anticipated that

other mechanism could also lead to the same pairing, but so far conclusive examples

have not been found. Although the BCS theory was developed for superconductiv-

ity, its principle, the mean-field theory, is general enough to apply for every type of

pairing (for example CDW and SDW order).

One of the main characteristics of the condensed phase is that the quasiparticle

excitation spectrum has an energy gap 2∆(0) at zero temperature. In the BCS

model, this gap is isotropic and independent of the k direction. A cut-off energy

(�ωC = kBTD) fixes the neighborhood of the Fermi level affected by the attractive

interaction. N(0) is defined as the single-spin electron density at the Fermi energy

and V represents the interaction energy between the electrons. In the weak coupling

limit (TC � TD) or V N(0) → 0, the amplitude of the gap takes the limiting form:

∆(0) ∼ 2�ωCe−1/N(0)V . (2.4)

The transition temperature can be then estimated from the gap value:

2∆(0) = 3.528 kBTC . (2.5)
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The temperature dependence ∆(T ) is inferred from the famous ”gap equation”

1 = V N(0)

∫
�ωC

0

du
tanh(

√
u2 + ∆2(T )/2kBT )√
u2 + ∆2(T )

. (2.6)

2.1.5 Other Pairing Symmetry

The basics of the BCS theory shown in the previous section can be extended to any

other type of pairing mechanism [49]. For example, one can use the same tools to

grind through the CDW ground state. The CDW ground state couples an electron

and a hole of opposite spin at the antipode of the Fermi surface: (k,↑)e and (-k,↓)h.

Other possible pairing symmetries include:

• SS (singlet superconductivity), coupling two electrons of the opposite spin and

opposite momentum (k,↑)e and (-k,↓)e (”classical” BCS superconductivity);

• TS (triplet superconductivity), coupling two electrons of the same spin, but

opposite momentum (k,↑)e and (-k,↑)e (never observed without controversy);

• SDW, coupling an electron (k,↑)e to a hole (-k,↑)h of the same spin.

2.1.6 Spin-Peierls State

It is important to mention that another ground state occurs in these materials which

is not due to a Fermi surface instability. This state is found at low temperatures

in the TMTTF salts (a sulfur analog of TMTSF) and is characterized by a lattice

distortion at 2kF [62, 63] together with a rapid freeze out of the susceptibility below

the critical temperature TSP [64].

The nature of the SP transition can be explained by the following simple picture.

Let us consider a magnetically ordered spin chain, known as Heisenberg spin chain.

The spins can order ferromagnetically (all parallel) or antiferromagnetically (up and

down alternating). The Heisenberg chain has collective excitations, the magnons. If



2.2. THE LUTTINGER LIQUID 49

Figure 2.4: Spin-Peierls transition. The chain of equidistant electrons (Heisenberg chain)
orders magnetically. The magnetic energy can then be lowered by approach of
the electrons in pairs.

the equidistant electron arrangement is changed into a pair arrangement as indicated

in Figure 2.4, the magnon energy can be lowered in a way similar to the lowering

of the electron energy in the Peierls transition. The lattice adjusts to the paired

electrons, the elementary cell is doubled and the lattice distortion is again found at

π/2a. Because of the analogy to the Peierls instability, this transition is called a

spin-Peierls (SP) transition.

2.2 The Luttinger Liquid

In order to understand the phase transitions discussed above, in particular the SDW

formation, it is crucial to understand the dynamics of interacting electrons in their

normal state. Landau’s well known Fermi liquid (FL) theory [65], which describes

the excitations of the interacting system, the so-called quasi-particles, as a gas of

non-interacting particles, gives a good description of interacting fermions in 3D, for

excitation energies small compared to the Fermi energy. A quasi-particle emerges from

a free electron gas upon adiabatically switching on the electron-electron interactions.

Those electrons form a cloud of finite diameter due to screening around the dressed

electron. The quasi-particle keeps all the characteristic quantum numbers of a bare

particle. However, the kinetic parameters as the effective mass or the dispersion

velocity are renormalized. The quasi-particles with typical energies ε ∼ 25 meV are

robust against small displacements away from the Fermi surface (εF ∼ 0.8 eV) with



50 CHAPTER 2. LOW-DIMENSIONAL PHYSICS

a lifetime τ ∝ (ε− εF )−2, leading to the well-known T 2 temperature dependence of

resistivity [49].

The FL picture breaks down in 1D because of less stringent phase space restrictions

on particle-particle interactions. An approach to this problem which has attracted

much attention in recent years is known as ”bosonization”. It is based on the fact that

in 1D long wavelength CDW and SDW oscillations, constructed by the combination

of electron-hole pair excitations at low energy, form extremely stable excitations.

These actually have no space available to decay, in contrast to the situation found

in a FL where a damping exists. Quasi-particles are absent at low energy for a 1D

system of interacting electrons and are replaced by collective acoustic excitations for

both spin and charge degrees of freedom which turn out to be true eigenstates of

the system. This description in terms of non-interacting boson fields is the basis

of what has come to be known as the Luttinger liquid (LL) picture [66], which has

received considerable attention in recent years [67, 68]. This renewed interest for the

properties of the LL was stirred up by Anderson’s proposal [69, 70] that the normal

state properties of high-TC superconductors, which can not satisfactory be described

by a FL picture [71, 72], could be described by a hypothetical LL in 2D. While

there is no consensus on this issue and indeed others have argued for FL [73, 74]

or ”marginal FL” [75, 76, 77] physics, attention has certainly been refocused on

understanding the physics of interacting electrons in low dimensions. An alternative

field of research for typically 1D correlations and eventual evidence in favor of a LL

picture could be provided by organic and inorganic quasi-1D metals whose normal

state properties show significant deviations from FL behavior. Due to their strongly

anisotropic physical properties, these materials are excellent systems in which to

study 1D physics. A family of quasi-1D metals is the Bechgaard salts, introduced

in Chapter 1. Both, nuclear magnetic resonance (NMR) [78, 79] and (partially)

angle-resolved photoemission measurements (APRES) [80, 81] on these compounds

provided evidence in favor of a LL behavior, as we will see in Chapter 4. This was a

part of the motivation to examine the microwave properties of the normal state of a
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representative of the Bechgaard salts, namely (TMTSF)2PF6, with focus on possible

evidence for LL behavior.

The theoretical predictions of the LL model have been extensively covered in

several review articles [67, 68, 82]. Therefore we will limit the discussion to a survey

of some of the most important results. The key features of a LL are:

• spin-charge separation, leading to a fractionization of the electrons into charged,

spinless, and neutral, spin-carrying collective excitations: holons ρ (S = ±1/2,

q = 0) and spinons σ (S = 0, q = ±e), with different dynamics determined by

velocities vρ �= vσ;

• correlation functions with non-universal power laws, parametrized by one renor-

malized coupling constant Kν per degree of freedom ν = ρ charge, σ spin which

can be viewed as the 1D equivalents of the Landau parameters of a FL;

• each of the above features leads to the absence of fermionic quasi-particles

[83, 84].

2.2.1 Bosonization Formalism

As there are no fermionic quasi-particles in a LL, the problem can be treated by

a procedure known as bosonization, a representation when all excitations of an 1D

system can be described in terms of density oscillations [59, 66, 89].

The Hamiltonian describing the excitations of the fermionic system is expressed

as a sum of the bosonic terms, one involving charge field and the other only spin

fields [67]:

H = Hρ + Hσ. (2.7)

The bosonic Hamiltonians Hρ and Hσ can be expressed as [67, 90]:

Hν =
1

2π

∫
dx

[
(uνKν) (πΠν)

2 +

(
uν

Kν

)
(δxφν)

2

]
, (2.8)

where all of the interaction effects are hidden in uν , the propagation velocities of

the charge and spin excitations, and in Kν , the LL coefficient controlling the decay



52 CHAPTER 2. LOW-DIMENSIONAL PHYSICS

of correlation functions. These LL parameters can be viewed as the 1D equivalents

of the Landau parameters of a FL. Πν and φν are canonically conjugate variables

satisfying the Bose commutation relation

[φν (x) , Πµ (y)] = iδνµδ (x − y) . (2.9)

The quantities δxφν give the deviations of the charge and spin densities from their

average values, and Πρ is proportional to the current density.

The model described by the Hamiltonian (2.7) can be solved exactly. It describes

the electrons in a gapless one-band 1D system in the vicinity of the Fermi surface.

The spectrum shows only collective excitations with bosonic character and all the

properties of the model then become entirely governed by the velocities uν and the

parameter Kν of acoustic excitations, which are functions of the microscopic coupling

constants and differ for the charge and spin. The eigenstates of this Hamiltonian

(Eq. (2.7)) are independent long wavelength oscillations of the charge and spin densi-

ties with linear dispersion relations ων(k) = uν |k|, therefore the system is conducting.

For a noninteracting system, the velocities of the charge and the spin excitations

would be the same uρ,σ = vF and Kρ,σ = 1 This latter situation describes then free

1D fermions with U = 0 (if one considers the 1D Hubbard model).

When electron-electron interactions are turned on (U �= 0), the values of Kν are

modified. The renormalized value of Kσ can be calculated or, if applicable, fixed

to unity by the requirement of spin-rotation invariance [82]. One consequence of

the modification of Kρ is that there is no universal power-law decay of correlation

functions in the LL. In addition, the interactions will cause the separation of the

Hamiltonian into spin and charge parts, a peculiar feature of LL, which will be dis-

cussed below.

2.2.2 Spin-Charge Separation

One of the most spectacular key features of the LL model is the complete separation of

the dynamics of the spin and charge degrees of freedom. In general, one has vρ �= vσ,
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i.e. the charge and spin oscillations propagate with different velocities. The concept

of spin-charge separation can be visualized very easily by a simple picture [67]. We

consider a piece of a half-filled Hubbard chain. Then, for strong U there will be no

double-occupied sites, and because the strong short-range antiferromagnetic order the

typical local configuration will be

↑↓↑↓↑↑↓↑↓↑↓↑↓↑↓ .

Introducing a hole will lead to

↑↓↑↓↑↑↓↑ ◦ ↑↓↑↓↑↓,

and after moving the hole by a few lattice sites the configuration is as follows:

↑↓↑↓ ◦ ↑↑↓↑↑↓↑↓↑↓ .

Note the hole, which was originally surrounded by two up spins, has split into a hole

bracketed by antiferromagnetically aligned spins (called a ”holon”) and an object

with two adjacent up spins, containing an excess spin 1/2 with respect to the initial

configuration (called a ”spinon”). This spinon can, of course, propagate via spin

exchange process leading, for example, to

↑↓↑↓ ◦ ↑↑↓↑↓↑↓↑↑↓ .

Thus, we see that a single excitation can split into two excitations, one with charge

and one with spin, with different velocities.

This charge-spin separation is one of the most interesting features of the Luttinger

liquid, though it is difficult to study experimentally. For the first time it was experi-

mentally investigated [54] by photoemission-based techniques on an artificial system

of chains of Au atoms on Si(111) insulating substrate. The successful experiments

on real materials were performed only recently, a wide class of Q1D Bechgaard salts

were clearly indicate the separation of spin and charge degree of freedom in transport,

sensitive to charge dynamics, and electron spin resonance (ESR), sensitive to spin dy-

namics, measurements [55]. The latter work was confirmed by thermal conductivity

experiments [56].
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2.2.3 Physical Properties of a Luttinger Liquid

The simple form of the LL Hamiltonian (Eq. (2.7)) makes the calculation of physical

properties of a LL rather straightforward. The low-temperature specific heat can be

shown to be linear in temperature, with a coefficient given by [67]:

γ/γ0 =
1

2
(vF /uρ + vF /uσ), (2.10)

where γ0 is the specific heat coefficient of non-interacting electrons of Fermi velocity

vF . Similarly the spin susceptibility can be written as

χ/χ0 = vF /uσ, (2.11)

where again χ0 indicates the non-interacting value.

We see that apart from renormalization uρ, uσ and Kρ, these properties are the

same as those of a FL. However, this system is not a FL, and this can be seen by

considering the single-particle Green’s function by using bosonization [91] in order to

obtain momentum distribution function in the vicinity of kF at T = 0 (Fig. 2.5) [67]:

nk ≈ nkF
− βsign(k − kF )|k − kF |α, (2.12)

where β is a model-dependent constant. The parameter α is called anomalous di-

mension and is given in terms of Kρ (assuming spin-rotation invariance, i.e. Kσ = 1)

as

α = (Kρ + 1/Kρ − 2)/4 ≥ 0. (2.13)

and therefore is interaction dependent. It does not depend on the sign of the inter-

action but only on its strength and range. For the noninteracting case (Kρ = 1) α is

zero.

The single particle density of states near kF is found to be

D(ω) ≈ |ω|α . (2.14)
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Figure 2.5: Fermi distribution at T = 0 for a non-interacting electron gas (solid curve), an
interacting Fermi liquid (dashed curve), and a Luttinger Liquid (dotted curve)
showing no discontinuity of nk at k = kF . From Ref. [85].

Thus, it is clear that for any interaction (Kρ �= 0) the distribution function and

density of states have power-law singularities at the Fermi level, with a vanishing

single-particle density of states at EF , contrary to a standard FL which would have

a finite density of states and a step-like singularity in nk (Fig. 2.5).

The transport properties of the LL depend on the scattering mechanisms. If we

consider electron-electron scattering in a band with filling factor 1/n, we obtain from

the current-current correlations [57]

ρ(T ) ∼ T n2Kρ−3, (2.15)

σ(ω) ∼ T n2Kρ−5. (2.16)

The second law has apparently been observed in Bechgaard salts [58].

2.2.4 A System of Weakly Coupled Luttinger Chains

While there were several successful issues to describe the longitudinal transport and

optical properties of quasi-1D Bechgaard salts within a framework of LL theory, the

nature of finite transverse conductivity is still under debate. Recently, a theoretical
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work was devoted and focused on interchain transport and optical response of Q1D

Bechgaard salts [86] describing it by a model of weakly coupled Luttinger chains. It

was shown, that the interchain conductivity for the simplest case of weakly coupled

metallic Luttinger liquids obeys

σ⊥(T, ω) ∝ (T, ω)2α−1, (2.17)

where α is the Fermi surface exponent (see Eq. (2.13)).

Several experimental results on transverse transport properties of (TM)2X were

tried to be interpreted in the framework of this theory [87, 88], although unsuccess-

fully.



Chapter 3

Experimental

”There is no higher or lower knowledge, but one only, flowing out of

experimentation.”

— Leonardo da Vinci

Frequency-dependent measurements were always essential for studying the elec-

trodynamic properties of materials and solids. At low frequencies (kHz and MHz),

contacts can be attached to the sample and the complex response of the material can

be determined by lock-in techniques, network analyzers, impedance analyzers. These

methods, however, fail in the GHz frequency range because the wavelength becomes

comparable to the cable length, and capacitance and inductance between the wires

can obscure the sample properties.

For this reason since the early 1950s the cavity perturbation technique (CPT)

has been extensively employed for studying the dielectric and magnetic properties

of materials at microwave frequency, when the GHz-frequency-range sources of the

electro-magnetic (EM) radiation became available. This technique was pioneered by

Slater [92] and co-workers. Nowadays this contact-free technique is still one of the

most widely used because of its high sensitivity and relative simplicity.

A microwave resonant cavity is a box fabricated from high-conductivity metal

(usually from oxygen-free copper) with dimensions comparable to the wavelength.

57
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Often it has rectangular or cylindrical form, because in a resonator of complicated

shape, it may be nearly impossible to calculate the distribution of electric and mag-

netic fields. While in the case of right or simple geometrical form these distributions

are well-known and calculated for a long time.

At resonance, the cavity is capable of sustaining microwave oscillations, which

form an interference pattern (standing wave configuration) from superposed mi-

crowaves multiply reflected from the cavity walls. Each particular cavity size and

shape can sustain oscillations in a number of different standing wave configurations

called modes.

There are many ways of using cavity perturbation to characterize the microwave

properties of materials, but the principle of operation is similar in all cases. Samples

are placed in the vicinity of a microwave resonator, with some provision made for

varying the sample temperature. The change in the resonant frequency and the

quality factor upon introducing a sample inside the cavity is the basis of the cavity

perturbation technique.

Historically, the microwave range of frequency was approached both ”from below”

and ”from above”, by means of more traditional low-frequency (up to MHz) and op-

tical (starting with FIR) measurements, respectively1. Only since the 1950’s the mm-

wave gap between conventional electrical low-frequency measurements and optics was

covered by the rapid developing of the microwave technique, which became available

for physicists, which were already familiar at that time with the neighboring ranges of

the EM spectrum. This is the reason why there is almost no ”microwave language”,

and people rather use a typical terminology of both electrical (resistance, reactance,

impedance, and so on) and optical (reflectivity, refractive index, etc.) terms for the

microwaves. Hereinafter in this chapter we will just call all the physical parameters

as ”optical”.

1Some people can raise an objection against the optical spectroscopy as an old tool. To my
opinion, it is ancient and maybe the first scientific method of investigation of nature. We should
not forget about the ”everyday optical spectroscopy”: gems are colored and transparent and metals
are opaque and shiny, this was observed since thousands of years, although it got its physical
interpretation only in the last century.
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In this chapter we first will describe the experimental technique we developed for

our investigations and the physical language of optical and electrodynamical param-

eters, needed for this description. In Section 3.1 we will briefly introduce the basics

of microwave electrodynamics and consider the Hagen-Rubens limiting regime, which

is of great importance for the analysis employed in our experimental methods, which

we describe in details in Section 3.2. Section 3.3 is devoted to the analysis of the

experimental data. Finally, the electrochemical crystal grow procedure is described

in Section 3.4.

3.1 Theoretical Background

The electrodynamic response of any system is characterized by two quantities, often

combined to a complex parameter, basically describing the amplitude and the phase

of the response. This might be the complex conductivity, the refractive index or

the surface impedance. At low frequencies, up through the radio frequencies (RF),

these quantities are usually experimentally accessible, and hence both the real and

imaginary parts of the complex conductivity σ̂ = σ1 + iσ2 can be directly determined.

On the other hand, at higher frequencies only one experimental parameter is usually

directly accessible (surface resistance RS in the micro and millimeter spectral range

and the reflectivity R in the optical spectral range). In order to combine the micro and

the millimeter wave data with the optical results, we have to consider the relationships

between different optical parameters.

3.1.1 Basic Electrodynamics

When we study highly conducting materials at microwave frequencies, the physical

quantity we usually measure is the complex surface impedance ẐS = RS + iXS, where

RS is the surface resistance and XS is the surface reactance. The surface impedance

is defined [93] as the ratio of the electric and magnetic field at the surface of the

metal ẐS = E‖/H‖, where the subscripts indicate the field component parallel to the
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plane of the surface. The surface impedance, put by this definition, is a dimensionless

quantity, which is independent of the surface geometry. Usually it is normalized by

the impedance of the vacuum Z0 = 4π/c0 = 377 Ω [49], and the definition becomes

ẐS =
4π

c0

· E‖
H‖

(3.1)

The impedance is a response function which determines the relationship between

the electric and the magnetic fields in a medium, it can be shown [2.16], that for a

non-magnetic conductor (µ1 = 1)

ẐS =
4π

c0

· 1√
ε̂

=
4π

c0

· 1

N̂
=

Z0

N̂
(3.2)

where

N̂ = n + ik =
√

ε̂ (3.3)

is the complex refractive index, ε̂ = ε1 + iε2 = ε1 + 4πi
ω

σ1 is the complex dielectric

constant.

Although the surface impedance is mainly used in characterization of high-fre-

quency properties of conductors, its idea is also useful if the thickness of the medium

is much larger than the skin depth.

At high frequency f = ω/2π, the electrical field penetrates into the matter on a

length scale, 1/Im(k̂), where k̂ is the wavevector inside the material [49]; this length

in general is either the skin depth in the normal state or the penetration depth in the

superconducting state. It is assumed that the sample surface is flat at the scale of

the penetration length.

Typically for the most of good conducting materials, the low-frequency approx-

imation, known as the Hagen-Rubens limit (ωτ � 1), is valid [49]. For a good

metal in the Hagen-Rubens limit σ1 ≈ σDC � σ2, and 1/Im(k̂) becomes the classical

skin-depth, which depends on the DC-conductivity σDC :

δ =
c0√

2πωσ1

=
c0√

2πωσDC

(3.4)
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If we assume that |ε1| � 1, which is certainly true for the case of good metals

at microwave frequencies but may also be fulfilled for dielectrics, we obtain from

Eq. (3.2) the well known relation for the surface impedance [49]:

ẐS ≈
(

4πω

i · c2
0 (σ1 + iσ2)

)1/2

; (3.5)

the expression for the real and imaginary parts, RS and XS, are then

RS =

(
2πω

c2
0

)1/2
[

(σ2
1 + σ2

2)
1/2 − σ2

σ2
1 + σ2

2

]1/2

, (3.6)

XS = −
(

2πω

c2
0

)1/2
[

(σ2
1 + σ2

2)
1/2

+ σ2

σ2
1 + σ2

2

]1/2

. (3.7)

In the Hagen-Rubens limit, for highly conducting materials at microwave fre-

quencies ε2 � |ε1| or σ1 ≈ σDC � |σ2|, we find that the components of the surface

impedance are equal:

RS (ω) = −XS (ω) =

(
2πω

c2
0σ1

)1/2

=
1

δ (ω) σ1

(3.8)

and display a characteristic ω1/2 dependence on the frequency.

Eq. (3.8) means that the surface resistance and (the absolute value of) the surface

reactance are equal in the case of a metal. In cases where both the surface resistance

and the surface reactance are measured, we can calculate the complex conductivity

σ̂ = σ1 + iσ2 by inverting these expressions:

σ1 = −8πω

c2
0

RSXS

(R2
s + X2

s )2 , (3.9)

σ2 =
4πω

c2
0

X2
s − R2

s

(R2
s + X2

s )2 . (3.10)

The complex refractive index N̂ is related to the reflectivity R at the normal

incidence by [49]:
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R (ω) =

∣∣∣∣∣1 − N̂

1 + N̂

∣∣∣∣∣
2

=
[1 − n]2 + k2

[1 + n]2 + k2
(3.11)

at the interface air-material. The relationship between RS, XS and R(ω) can be

calculated from Eqs. (3.2) and (3.11), giving

R (ω) = 1 − 4RS

Z0

(
1 +

2RS

Z0

+
R2

S + X2
S

Z2
0

)−1

. (3.12)

In the limit RS, XS � Z0, the higher order terms in Eq. (3.12) can be neglected,

yielding

A (ω) = 1 − R(ω) =
4RS

Z0

. (3.13)

Thus, at this limit, the absorptivity A(ω) is directly proportional only to RS. As

Z0 is very large compared with the values of the surface impedance measured in our

experiments (a typical order of magnitude for the samples we have investigated is

1 Ω; for a good metal as copper it is equal to 30 mΩ at the temperature of 4.2 K and

frequencies of 1011 GHz), this limit is appropriate for the most of the situations we

intended to examine.

3.2 Experimental Techniques

3.2.1 Cavities

In order to perform microwave absorption measurements at K (18–26.5 GHz), Ka

(26.5–40 GHz), and V (50–75 GHz) frequency bands, we have designed three enclosed

resonators (cavities) with center frequencies of 24 GHz, 33.5 GHz, and 60 GHz, re-

spectively. Being manufactured from a copper block, the cylindrical TE011 cavities

are operated in a transmission configuration; the microwave power is led into the cav-

ity through the inlet waveguide, and the detector is mounted at the end of the outlet

waveguide. All cavities are constructed in three pieces: two flat endplates mechani-

cally attached by screws to the middle cylindrical barrel, which provide the pressure
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for reproducibly clamping the cavity assembly tightly together (see Fig. 3.4). The

cavity may be taken apart or disconnected from the waveguides in a matter of min-

utes providing an easy sample insertion/removal. Nevertheless, since the resonance

frequency of a cavity is extremely sensitive to the volume of the cavity, after any

disassembling and further assembling of the resonator we suffer an inevitable shift of

the central frequency of about ±1 MHz. However, this irreproducible frequency offset

can be taken into account and can be eliminated from the consequent analysis, and

we will come back to this problem in Section 3.3.

The resonance frequency of a cavity is determined by the length h and the inner

diameter d of the cylindrical barrel. In fact, for one particular mode there is only one

parameter, either the diameter d or the height h, which can be arbitrarily chosen to

obtain the best performance of the resonator, namely, high quality factor Q. In the

beginning, we have selected the diameter d to height h ratio equal to 3/2. This value

of d/h gives small density of modes near the desired resonance frequency together

with a good value of the quality factor Q, which is maximal for d/h = 1 for any

TEmnp =TE0np mode [94]. Here the subscripts m, n, and p refer to the number

of half-cycle variations in the angular (φ), the radial (r), and the longitudinal (z)

direction, respectively.

The dependence of the frequency f on the diameter d and the height h of a

cylindrical cavity in the vacuum (or air) is presented by [95]:

(df)2 =

(
c (kca)′mn

π

)2

+
(c0p

2

)2
(

d

h

)2

(3.14)

where c0 = 1/(µ0ε0)
1/2 is the velocity of light in the vacuum, and (kca)′mn is a nth root

of the mth-order Bessel function J ′
m(kca). By substituting numerical values TEmnp =

TE011, (kca)′mn = 3.832, d/h = 3/2, and c = 2.998 × 1010 cm/s, we get:

d [cm] =
4.29 × 1010 [cm/s]

f [Hz]
, h [cm] =

2.86 × 1010 [cm/s]

f [Hz]
.

The Table 3.1 summaries the so-calculated sizes of resonators for appropriate

frequencies.
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f Q † d h Vc

(GHz) at 300 K (mm) (mm) (mm3)

24 12500 17.9 11.9 2994

33.5 11000 12.8 8.6 1100

60 7000 7.1 4.8 190

Table 3.1: Resonant frequency f , the measured quality factor Q, diameter d, height h, and
volume Vc for each of our cavities. Notice the ratio d/h ≈ 3/2 for each cavity.
† dependent on the quality of cavity interior surface

In order to minimize Ohmic losses in the cavity walls and, therefore, to maximize

the resonator’s quality factor Q, all interior walls of the cavities were polished after

fabrication up to perfect mirror surface condition.

3.2.2 Modes Excited

We have chosen the working mode of the resonators to be TE011 for the following

reasons. First, the quality factor Q is roughly proportional to the volume divided by

the surface area because the stored energy depends on the volume while the losses

occur only at the walls. An exceptional case is the TE01p mode. For this mode the

side-wall losses decrease continuously with increasing frequency, and it may be used

to obtain a very high Q, so that the resonances are sharp. Second, in the TE011 mode

only the circumferential currents flow, thus the field distribution and the quality factor

Q are independent of the contact between the middle cylindrical part and removable

endplates of the cavity. In fact, there is no electric current flow in either the radial

(r) or the longitudinal (z) direction, but only in angular (φ) direction (Figs. 3.1,

3.2). This allows us to open the cavity for introducing the sample without a posterior

degradation of the Q value.

In general, for a perfectly cylindrical cavity, the TE01p modes are degenerate with

the TM11p modes. This problem can be easily avoided by small modification of shape

of the cavity, since the TM11p modes have electrical currents flow on the walls of
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Figure 3.1: Electric field lines inside a cylindrical cavity resonating in the TE011 mode.
The position of the maximal electric field Emax, position 1, is indicated on the
figure. The field distribution was calculated numerically using the commercially
available program MAFIA [103].
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Figure 3.2: Magnetic field lines inside a cylindrical cavity resonating in the TE011 mode.
Both Hmax, the maximal magnetic field in the cavity, position 1, and Hend

max,
the maximal magnetic field on the endplate, position 2, are indicated on the
figure. The field distribution was calculated numerically using the commercially
available program MAFIA [103].
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Figure 3.3: Electric and magnetic field lines inside a cylindrical cavity resonating in the
TM111 mode. Note that the electric field has its antinode on the endplate. The
field distribution was calculated numerically using the commercially available
program MAFIA [103].



68 CHAPTER 3. EXPERIMENTAL

the cavity. To discriminate against the TM111 mode, we made small grooves at both

the top and the bottom ages of the barrel part (see Fig. 3.4). These grooves are at

the position of an antinode in the TM111 mode and of a node of the TE011 mode(see

Fig. 3.3). Consequently, the TM111 mode shifts to lower frequencies by some hundreds

MHz. It gets also weaker and has lower Q-values than that for the TE011 mode. This

was experimentally checked for 24 GHz and 33.5 GHz cavities by using a broad-band

microwave spectrum analyzer.

The hole for the sample positioning as well as the coupling apertures also affect

only the center frequency and the Q factor of the TM111 mode rather a that of the

TE011 mode.

3.2.3 Coupling

Coupling between the waveguides and the cavity is achieved by means of small circu-

lar holes in the cavity wall. For the cylindrical TE011 mode the electric field is zero at

all surfaces, so the coupling must be magnetic. Actually, possible are only two good

ways of magnetic coupling of the TE011 cylindrical cavity resonator to the rectangu-

lar waveguide operating in TE10 mode. They correspond to the two magnetic field

maximum belts in the cavity: the first, ”equatorial” belt lies at h/2 position of the

barrel part, the second is located on the surface of each end plate at distances 0.24d

from the center of the plate (see Fig. 3.2). Obviously, the hybrid use of these two

magnetic field maximum belts provides a third possible configuration of the coupling.

Since we wanted to use an upper end plate for the sample positioning, we have chosen

the lateral coupling configuration. The two antipodal coupling holes were made on

opposite sides in the side wall of the cylindrical part of the cavity at half of its height,

where the magnetic field of the TE011 mode has its antinodes (Fig. 3.2). These holes

coincide with the holes in the narrow faces of the rectangular waveguides operating

in TE10 mode. The only field existing at the narrow edge of a waveguide carrying

the dominant mode is a longitudinal magnetic field. Through the two coupling holes

this field is transmitted into the cavity with opposite phases for the two holes, and



3.2. EXPERIMENTAL TECHNIQUES 69

so it matches the TE011 mode, but not the other possible TE-modes. The attached

waveguides were terminated at distances of 3/4λg from the holes by pieces of metal

soldered to butt-ends. Here λg is a wavelength of the electromagnetic (EM) radiation

in a waveguide defined by formula [96]:

λg =
λ0√

1 −
(

λ0

λc

)2
, (3.15)

where λ0 = c/f is the wavelength of EM-radiation in the free space without walls, λc

is a cutoff wavelength, which equals λc = 2a in the case of a rectangular waveguide

with cross section dimensions a < b [96]. From the geometrical consideration (see

Fig. 3.4) it is obvious that the length between the coupling hole and the shorted end

of the waveguide should be any odd multiple of 1/4λg.

We can control the degree of coupling between the waveguides and the cavity

by means of the diameter and the thickness of the coupling apertures: the bigger

the ratio of the diameter to the thickness, the stronger the coupling. Nevertheless,

the diameter of the coupling hole cannot be too large: Bethe [97] has shown that

the linear dimensions of the aperture must be less than λg/2π, so that the electrical

and the magnetic fields in its neighborhood are closely approximated by unperturbed

fields. There is a crucial trade off between the strong coupling, which assures a good

signal-to-noise ratio, and weak the coupling, which decreases radiation losses from

the cavity, resulting in a higher Q-factor and an increased sensitivity. We have found

experimentally that the optimal coupling apertures should be small, with a diameter

of λ0/5 – λ0/4, where λ0 is the wavelength corresponding to the working frequency.

For the cavities working at frequencies 24, 33.5, and 60 GHz we used the coupling

holes with diameters 3, 2, and 1 mm, respectively. The diameter to thickness ratio for

a coupling aperture was always kept larger than 3/2. Therefore we used undercoupled

cavities with a coupling of about 10%, which provides a good compromise between a

good dynamic range and a high sensitivity.
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Figure 3.4: Schematic view of the TE011 cavity coupled via magnetic field (dashed lines).
The grooves in the barrel wall edges serve to shift the TM111 mode to lower
frequency. For the distance of the coupling holes to the shorted ends we have
chosen 3/4λg, where λg the wavelength of the guided wave.
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3.2.4 Sample Positioning, and Sample Rotation

Typically, the perturbation is realized by either placing a small piece of the material

of interest into the cavity (enclosed configuration) or by replacing one of the walls

of the cavity with the material (endplate configuration). For studies of quasi-one-

dimensional conductors, which usually grow as tiny needle-like crystals, the endplate

configuration cannot be applied because of geometrical/size reasons. Moreover, as

it was discussed above, the current in the endplate of a cylinder cavity operating

in the TE011 mode flows circularly. This implies that the endplate configuration is

useful only for materials which are plane-isotropic, i.e., for a two-dimensional sample.

We have developed the enclosed configuration technique which does not preclude the

study of anisotropic conductors [98, 100].

From the field patterns of the TE011 mode described above it turns out that there

are two possibilities of performing the microwave absorption measurements either in

the electric or in the magnetic field antinodes. If the sample is placed in the magnetic

field antinode, then the circular eddy currents are excited in the plane perpendicular

to the magnetic field, thus one cannot use this configuration for probing the one-

dimensional samples along a desired direction. The placing of the sample in the

electric field antinode is preferred for measurements of low-dimensional systems. In

this case the excited currents are co-directed with an electric field vector giving the

possibility to measure along one particular direction, as shown in the Figure 3.1.

In order to make measurements of samples placed in the electric field antinode

(cylindrical coordinates [0.24d; φ; h/2] ), we drilled a small hole of a 0.2 mm diameter

in the top plate at a distance 0.24d from its center. The samples were mounted atop

of a quartz rod of diameter 0.15 mm, which was run through this hole. Typically, we

used the central purely quartz part of an optical fiber cut exactly perpendicular to

the axis. The length of the quartz rod was chosen in a way that the sample position

was exactly h/2 inside the cavity resonator. The quartz fiber was connected to a

specially constructed rotation mechanism, which allowed rotating the sample inside

the cavity without taking it out (insitu rotation). For setting on the rotation of the
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Figure 3.5: Schematic view of the rotation mechanism we utilized in our experiments.

sample we used a PC-controlled stepper motor. The whole construction is depicted

in Fig. 3.5 This technique provided us with an angular positioning accuracy of better

than 1 degree. The typical angular scans of center frequency and halfwidth of a

sample rotating inside the cavity are shown in Fig. 3.6.

We found that the quartz fiber does not change the cavity Q-factor, but introduces

a slight temperature-independent shift of the center frequency of a resonance. This

shift can, however, be excluded from the analysis by making both an unperturbed

(reference) and a perturbed (with a sample) measurements in the presence of the

same quartz rod.

3.2.5 Experimental Scheme and Devices

A schematic diagram of the setup is shown in Figure 3.7. We utilized in our measure-

ments a common width technique [100, 102] by making a broad sweep of the source
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Figure 3.6: Typical angular scans of center frequency (top) and halfwidth (bottom) of a
sample rotating in the cavity. Solid symbols are measured points, the curve is
a fit with cos2 function. The minima of the center frequency and maxima of
the halfwidth correspond to situation when the sample is aligned parallel to the
local electric field.
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Figure 3.7: Schematic view of the experimental setup for the width measurement configu-
ration.

frequency over a range of several times the resonance width Γ. The amplified detected

signal is averaged (typically 50 times) before fitting with a Lorentzian, which directly

gives the center frequency f0, halfwidth Γ, and quality factor Q = f0/Γ. A perfect

Lorentzian fit, which has three parameters, requires at least three points, though we

found that the best results can be obtained with a scan of approximately 5–7 times

the halfwidth of the resonance curve containing 150–200 experimental points.

The experiments are performed by using a varactor-tuned Gunn sweep oscillators

with an essentially flat power output of about 100 mW (14 dBm) and a frequency

bandwidth of 1 GHz around the center frequencies of 24 GHz, 33.5 GHz, and 60 GHz

for K, Ka, and V bands, respectively. These voltage-controlled sources are tuned by

high – stability 16-bit digital-to-analog controller (DAC) made in the electronic shop

of Physics Department. The DAC has either a grounded or a float output in the range

of ±15 V (max. current 5 mA) with a resolution of 458 µV/step. In order to prevent

the microwave source from reflected waves, we used a ferrite isolator attached to the

oscillator. Then the microwave power goes though a 20 dB directional coupler, the
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reference arm of which is connected to the ”EIP 598A” microwave frequency counter

capable of reading frequencies up to 170 GHz. A calibrated attenuator is utilized to

tune the microwave power and finally is fixed to some value preventing the sample

from heating with the microwave radiation. The radiation is chopped by a modulator

controlled by a commercial function generator, at the frequency around 3 kHz . After

passing through the cavity, the transmitted microwaves pass through another ferrite

isolator and finally reach a diode detector. Since the typical detected signal is some

millivolts, we used a 40 dB low noise preamplifier connected directly to the detector,

before transmitting the signal through the lengthy coaxial cable to the ”EG&G 5210”

lock-in amplifier. The lock-in amplifier is synchronized with the chopper by using the

signal of the same reference frequency from the function generator.

All used devices are connected to a PC via IEEE-488 bus interface, and the ex-

periment is completely controlled by a homemade computer program.

3.2.6 4He Cryogenic System

In order to perform measurements at low temperatures, the following cryogenic system

was constructed. The heart of the system is a glass 4He bath cryostat (Fig. 3.8a) with

an internal metallic cryostat inserted. The glass cryostat consists – from outside to

inside – of following volumes: the outer vacuum shield volume with an unrestorable

vacuum quality, the liquid nitrogen (LN2) bath, the intermediate vacuum volume,

and the liquid helium (LHe) bath. The double-wall metallic cryostat is made of two

light-wall stainless steel tubes inserted one into another. This construction provides

two additional volumes: the intermediate vacuum jacket between the tubes, and the

sample volume, usually filled with a small quantity of He exchange gas. A Mylar

window atop each copper waveguide is used to ensure a vacuum-tight environment of

the sample volume.

The LHe bath volume, the intermediate vacuum volume of the metallic insert and

the sample volume are separately connected to the helium main and pumping stand,

formed by a concatenated booster and rotary pumps. The system of valves permits
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Figure 3.8: Schematic view of the 4He cryostat with a cavity inserted (a). Schematic view
of the resonator with attached waveguides and temperature regulation elements
(b).
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to inflate with gaseous helium or to evacuate any of these volumes independently.

This allows, varying the intermediate vacuum and exchange gas density, to control

the heat exchange and therefore tune the cooling rate inside the sample volume from

0.1 K per minute to several Kelvin degrees per minute.

In order to cool from the room temperature down to 80 K, we fill the cryostat

only with liquid nitrogen, make rough intermediate vacuum of 0.1 mbar and put some

exchange gas into the LHe bath and the sample volume, usually about 5 mbar, which

provides a weak thermal link to the He bath. To cool further down we put some cold

helium gas from a helium transportation dewar, reaching the temperature of about

20 K. Subsequent temperature lowering down to 4.2 K is achieved by filling the LHe

volume with liquid helium.

The measurements below 4.2 K are performed by pumping on liquid helium in

the LHe bath. By doing this, the lowest temperature of 1.8 K can be achieved. The

measurements on warming were done using either a natural warming of the cryostat

or combining that with an additional heating of the cavity. The natural warming of

the cryostat from 4.2 K to the room temperature usually takes about 50 hours with

minimal cooling rate of 0.1 K per minute. In order to increase or vary the warming

rate, the built-in heater can be used, power load of which is regulated by a ”Lake

Shore DRC-91C” temperature controller.

3.2.7 Temperature Regulation and Stability

The three-term (PID) ”Lake Shore DRC-91C” temperature controller provides real-

time adjustment and control of the temperature setpoint, gain (proportional), reset

(integral), and rate (derivative). Having determined the proper PID coefficients, we

can achieve the temperature stability of better than 10 mK. An analog heater output

with four decade steps of a maximum output power from 25 mW to 25 W is connected

to a ”Watlow” 20 W cartridge heater, embedded in the side wall of the cavity (see

Fig. 3.8b). The temperature controller is supplied with IEEE-488 standard remote

interface.
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Temperature sensing over the range from 1.4 K to 325 K is realized by a ”Lake

Shore DT-470” silicon diodes, which follow a standard voltage-temperature response

Curve # 10 from Lake Shore. The temperature sensor is mounted atop the cavity

housing opposite to the heater.

In order to prevent the sample from heating by the microwave radiation, we used

a series of test measurements of a reference sample and changed the attenuation of

the microwaves, to ensure that the power applied did not affect the results of the

measurements. The small amount of the He exchange gas inside the cavity is also

promotes that the cavity and the sample are at the same temperature.

3.3 Data Analysis

The theory of an analysis required to determine the sample properties when inserted

inside a cavity is highly developed [99, 100, 101]. In this case one simply takes the

difference of the measured quality factor Q (or a halfwidth of the resonant curve

Γ = f0/Q) and center frequency f0 = ω0/2π with the sample in and out. However,

the relative changes of quality factor
(
∆ 1

2Q

)
and center frequency

(
∆ω
ω0

)
upon in-

troducing the sample are connected to the complex conductivity in a nontrivial way,

depending on the sample ”electrodynamical” geometry. Namely, the sample can ei-

ther be a good conductor and microwaves penetrate only in the length scale of skin

depth into it, or it can be a bad conductor (or even a dielectric) and microwave ra-

diation penetrates completely through it, since the skin depth exceeds the principal

dimensions of a sample. The former situation is called ”skin depth regime”, the latter

is called ”depolarization regime”. Since it is the conductivity, which defines the skin

depth value (see Eq. (3.4)) at a certain frequency, it turns out that to be useful to

know the conducting properties of a sample a priori, at least roughly. Nevertheless, a

self-consistent analysis can be performed even for a sample of unknown conductivity;

and we will discuss it below.
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3.3.1 Skin Depth Regime

If the sample is in the skin depth regime, then both, the surface resistance RS and the

surface reactance XS can be calculated directly from the change of the halfwidth of

the resonance (∆Γ) and the center frequency (∆f), divided by the center frequency

(f0) of the unperturbed cavity [99, 100, 101]:

ξRS =
∆Γ

2f0

, (3.16)

ξXS =
∆f

f0

− C, (3.17)

where C is a constant frequency shift which is introduced when the cavity is disas-

sembled in order to mount the sample (Sec. 3.2.1), and ξ is a calculable resonator

constant depending on cavity sizes, operating mode at given frequency ω = 2πf0, as

well as on the sample’s shape and size [99]:

ξ =
−iγ

n2

ωa

2c0

· Θ, (3.18)

where γ is a constant that depends only on the filling factor and the resonant mode

of a cavity of a given shape; n is a depolarization factor, depending on the shape of

the sample; a is a principal sample’s size; c0 is the speed of light. The parameter Θ

describes the deviation of the sample’s shape from the spherical one and its values

for the two typical configurations, a prolate and an oblate spheroid, are summarized

in Table 3.2.

In our experiments we have employed cylindrical cavities operating in the TE011

mode, having the ratio of the diameter to the height equal to 3/2 and we were

putting the samples in the electric field antinode, at the half height of the cavity (see.

Sec. 3.2.4). In this experimental configuration the sample’s constant γ is defined by

the following equation [99]:

γ = 2.03
VS

VC

, (3.19)

where VS and VC is the volume of the sample and of the cavity, respectively. Both of

them are measurable quantities.
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Prolate Spheroid, Oblate Spheroid,

Θ Θ

Field ‖ ẑ (32π/25)b/a (3/23)a/b

Field ⊥ ẑ (3π3/26)b/a (32/23)b/a ln a/b

Table 3.2: Parameter Θ for different orientations of either a prolate or an oblate spheroid,
in the electric field antinode, where 2a � 2b are the sample dimensions; ẑ is the
direction of the spheroid symmetry axis and the electric field is either parallel or
perpendicular to this symmetry axis.

The value of the depolarization factor, n, is fully determined just by the shape of

the sample and can be exactly calculated for any rotationally symmetric body, like

a spheroid or a disk. This means that we have to model our sample with one of the

following bodies [99]:

• A sphere (a = b = c): nx = ny = nz = 1/3.

• A cylinder in the x-direction (a → ∞, b = c): nx = 0, ny = nz = 1/2.

• A flat plate (a, b → ∞): nx = ny = 0, nz = 1.

• A prolate spheroid (a > b = c) of eccentricity ε =
√

1 − (b/a)2

nx =
1 − ε2

2ε3

(
ln

1 + ε

1 − ε
− 2

)
, ny = nx =

1

2
(1 − nx). (3.20)

• An oblate spheroid (a = b > c) with ε =
√

(a/c)2 − 1

nz =
1 + ε2

ε3
(ε − arctan ε) , nx = ny =

1

2
(1 − nz). (3.21)

• A prolate ellipsoid (a � b ≥ c)

nx =
bc

a2

(
ln

4a

b + c
− 1

)
. (3.22)
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Here a, b, and c are the sample dimensions and nx, ny, nz are the depolarization

factors (nx + ny + nz = 1) along the x, y, and z directions, respectively. All of our

samples had a needle-like geometry and therefore were modelled either by a prolate

spheroid or prolate ellipsoid, using Eqs. (3.20) and (3.22).

Hence, as a consequence of the analysis described above, for the most common

configuration of our investigations, a sample of a needle-like shape with dimensions

a � b ≥ c placed in the electric field antinode of a cylindrical cavity operating at

TE011, the constant ξ would result in:

|ξ| = 2.03
VS

VC

· 32πω

26c0

· a4

bc2
(
ln 4a

b+c
− 1

)2 (3.23)

in terms of notations introduced above.

Finally, the complex conductivity can be evaluated from RS and XS

σ1 =
f0RSXS

(R2
S + X2

S)2
, (3.24)

σ2 =
f0 (X2

S − R2
S)

2 (X2
S + R2

S)
2 . (3.25)

If the sample is a good conductor, when we have a so-called Hagen-Rubens limit

(see Sec. 3.1), it can be shown that:

RS = −XS, (3.26)

and from Eqs. (3.16) and (3.17) the unknown frequency shift C can be determined.

This was the case when we were measuring our samples along a- and b′- crystallo-

graphic directions.

In the Hagen-Rubens limit [101]:

σ2 � σ1 � σDC , (3.27)

and

σ1 =
f0

4R2
S

. (3.28)
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The measurements along the c∗ crystallographic axis were done in a depolariza-

tion regime, since we made mosaics, a single unit of which was shorter than the

corresponding skin depth.

3.3.2 Depolarization Regime

In depolarization regime the real part of the conductivity is given by

σ1 =
f0γ · ∆Γ

2f0

2
(
γ + n · ∆f

f0

)2

+ 2n2
(

∆Γ
2f0

)2 , (3.29)

where n is the depolarization factor of a sample depending only on its shape, γ is

a constant that depends only on the filling factor of the cavity for a given resonant

mode (see above).

All of the values used for both skin depth and depolarization regimes are given

in CGS (Gaussian) units. The surface impedance can be converted to Ohms by

multiplying by Z0 = 377 Ω and the conductivity can be converted from s−1 to (Ωcm)−1

by using the conversion factor 9 × 1011 s−1 = 1 (Ωcm)−1.

3.4 Crystal Grow

The crystals of (TMTSF)2PF6 were electrochemically grown in the technological lab-

oratory of the 1. Physikalisches Institut, Universität Stuttgart. The growth was per-

formed in glass cells (see Fig. 3.9) at room temperatures (22–23˚C) and at 0˚C. The

following mixture of chemical components was added into the glass cells and stirred

up until the complete dilution of radical ions salts:

• 150 mg TMTSF (in powder form), from ”Sigma-Aldrich”, catalog Nr. 27,440-2

• 1.06 g Tetrabutylammonium-hexafluorophosphate, from ”Sigma-Aldrich”, cat-

alog Nr. 28,102-6

• 70 ml Methylenchloride (solvent), from ”Sigma-Aldrich”, catalog Nr. 15,479-2
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 Protecting gas
inflow (argon)   
       

        Platinum electrodes            Glas filters       

    
           

                  Constant voltage
source

          Glas flask

Refill nozzle

Figure 3.9: The crystal grow scheme. Constant voltage is applied to the platinum electrodes,
where the needle-shaped crystals of TMTSF2PF6 are grown on the anode. The
porous glass filters (with pores of 10–16 µm in diameter) are used to prevent
the electrode from pollution by solid waste of the electrochemical process.

The mixture was filled into glass cells, which were then flushed with argon to avoid

oxygen contamination. The platimun electrodes (of approx. 3 cm2 area) were placed

in the cells and tightly closed. During the electrochemical crystallization process we

applied a constant voltage (1.5 V) to the electrodes, and the current through the

solution was between 9.2 and 13.4 µA. The crystal growth, carried in a dark room,

took a time from several weeks to several months, depending on the temperature of

the cells environment. During this time, the solvent was permanently filled up into

the glass flask under argon atmosphere so that the electrodes were always covered

with a liquid. After the crystals of TMTSF2PF6 reached the needed sizes, they were

cleaned with a pure solvent (Methylenchloride), dried and kept in a dark place.
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Chapter 4

DC resistivity measurements of

(TMTSF)2PF6

There is a long standing controversy whether the transport properties of the Bech-

gaard salts can be understood in terms of the usual Fermi-liquid (FL) theory, or the

Luttinger liquid (LL) theory [67, 83, 30]. The nature of the metallic phase of inter-

acting electron system depends strongly on the dimensionality. It is theoretically well

established that the conventional FL theory of 3D metals cannot be applied to the

interacting electrons whose motion is confined to one dimension, thus leading to a

formation of the LL state (Sec. 2.2).

It is expected that the strongly anisotropic Bechgaard salts may exhibit non-FL

like properties at high temperatures (where the thermal energy exceeds the transverse

coupling energy) that lead to the loss of coherence for the interchain transport. The

crossover from the LL behavior to the coherent one is expected as the temperature

(or the frequency) is decreased [78, 104].

While many of the low temperature properties (in the normal state, below 50 K )

of the Bechgaard salts are well described by the FL theory [31], their high temperature

phase is still poorly understood. The optical conductivity data were interpreted as a

strong evidence for a non-FL behavior and the power law asymptotic dependence of

the high frequency optical mode has been associated with the LL exponents [105, 58].

85
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On the other hand, the interpretation of the transport and magnetic susceptibility

results has not been unambiguous, as some data were interpreted in the framework

of the LL model [29, 106], whereas for the other, the FL theory was used [107, 108].

Recently, the long missing basic experiment, the temperature dependence of the

Hall coefficient in the metallic phase of the Q1D organic conductor (TMTSF)2PF6

was performed by two groups [114, 109]. Their results were obtained for different ge-

ometries and were interpreted differently, i.e., using the conventional FL theory [114]

and LL concept [109]. More recently, the theoretical calculations of the in-chain and

inter-chain conductivity as well as of the Hall effect in a system of weakly coupled

LL chains have been performed [87, 86], giving the explicit expressions as a func-

tion of temperature and frequency, but the measurements of the DC transport in

(TMTSF)2PF6 along the c∗-axis are not fully understood theoretically within a LL

formalism [29, 87].

The aim of the measurements described in this Chapter is to contribute to the

solution of these, still open, questions by studying the anisotropic transport properties

of the Bechgaard salt (TMTSF)2PF6. The DC measurements are also a good tool to

check the quality of the samples we used for microwave frequency measurements. We

will describe the experimental details and the geometry of our samples in Sec. 4.1.

The experimental results, obtained for both the high-temperature metallic and the

low-temperature SDW state are discussed in Sec. 4.2. Finally, the analysis of our data

in the normal state and in the SDW state will be presented in Secs. 4.3.1 and 4.3.2,

respectively.

4.1 Experimental

High quality single crystals of (TMTSF)2PF6 have been synthesized by the standard

electrochemical growth method (see Sec. 3.4). The samples have a needle-shaped form

with typical dimensions 2 mm × 0.5 mm × 0.1 mm along a, b′ and c∗- axis, respec-

tively. The results on the b′ axis conductivity were obtained on a narrow slice cut from
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a thick crystal perpendicular to the chain axis (the needle’s longest dimension); and

the typical dimensions of so-made samples were a × b′ × c∗ = 0.2 × 1.3 × 0.3 mm3.

Direct current (DC) resistivity measurements were performed using a conventional

four-probe technique to eliminate influence of the contact resistances. The contacts

were made by evaporating gold pads on the crystal, then 25 µm gold wires were pasted

on each pad with a small amount of silver paint. The samples were slowly cooled down

to avoid cracks and ensure a good thermal equilibrium with temperature sensors, and

the resistivity data were taken in the wide temperature range from 300 K down to 2 K

(Helium on pump). The experimental setup is described in details elsewhere [110].

Electrical resistance of several samples was measured along the most conducting

longitudinal direction [110, 55], the transversal direction b′, and the least conducting

transversal direction c∗. The c∗ direction is perpendicular to the sheets of TMTSF

stacks (a − b plane) and b′ denotes the direction normal to a and c∗, and therefore

does not completely coincide with the principal crystallographic axis (tilt angle 1.7

degree) [13].

Typical set of resistivity ρDC versus temperature T for all three directions is

displayed in Figure 4.1. In general terms, the temperature behavior of the resistivities

of (TM)2X along the a, b′ and c∗ axes has a similar feature: a metal-to-insulator

transition occurs at T = 12 K due to the developing spin density wave (SDW);

this value, obtained from the derivatives of our data, is in good agreement with the

literature. Below we will discuss our findings separately for high-temperature normal

phase and low-temperature SDW ground state.

4.2 Experimental Results

Due to the long, needle-shaped crystals of (TM)2X compounds, the DC conductivity

along the longest chain axis a of (TMTSF)2PF6 is most intensively studied. Despite

of some differences in the absolute value of the room-temperature a-axis conductivity,

its temperature behavior was scrutinized by various groups [13, 111, 19, 112, 29, 113].
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Figure 4.1: (a) Temperature dependence of the DC-resistivity of (TMTSF)2PF6 measured
along the a, b′, and c∗ crystallographic directions. (b) DC-conductivity as a
function of inverse temperature for all three directions (open circles) compared
with the data from [113] (solid circles).
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The a-axis resistivity obtained in our experiments agrees well with the previously

published data [13, 111, 19, 112, 29, 113, 30]. In the normal state (i.e., above the

metal-insulator transition at TSDW = 12 K) it has a metal-like behavior, and the

decrease of the resistivity between the room temperature and T ≈ 100 K can be

fitted to a ρa(T ) ∼ T 1.3 power law (Fig. 4.3). Below 70 K, the resistivity follows

the law ρ0 + AT 2, which is valid down to the metal-insulator (SDW) transition at

12 K (see inset in Fig. 4.3). For our samples, values of ρ0 = 1.1 × 10−4 Ω·cm and

A = 0.2 µΩ·cm·K−2 are found; the low value of the residual resistivity ρ0 together

with a high resistivity ratio ρ300K/ρ20K are the indicatives of a very high crystal

quality. The quadratic temperature dependence of the resistivity suggests that the

inelastic electron scattering is dominant in the normal state at low temperatures [30].

Figure 4.2: Temperature dependence of the a, b′, and c∗ resistivity of (TMTSF)2PF6,
as taken from Ref. [111] (left graph); and of the a, b′, and c∗ resistivity of
(TMTSF)2PF6, as taken from Ref. [114] (right graph).

To our knowledge, there are only two papers reporting on the DC measurements
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of the b′-axis conductivity of (TMTSF)2PF6 crystals (Fig. 4.2). The former is the

original paper of Jacobsen et al. [111], which was the only available result for almost 20

years. The latter is the recent publication of G. Mihály et al. [114], who obtained their

data using the Montgomery method for a single crystal [115], as well as independent

longitudinal four-probe measurements along the b′ axis. These two results strongly

contradict each other; and our findings are in a very good agreement with the report

of G. Mihály et al. [114].

The intermediate conductivity direction also shows a metal-like behavior of ρ(T );

the resistivity along this direction decreases almost as steeply as ρa(T ). However, it

follows the dependence ρb′(T ) ∼ T 0.84 between 300 and 200 K and changes to the

ρb′ ∼ T 1.63 power law on further cooling down to 80 K (Fig. 4.3). Below 70 K, as that

for ρa(T ), it can be perfectly described by a quadratic power law: ρb′(T ) ∼ T 2 (see

inset in Fig. 4.3).

Finally, for the lowest conducting, c∗ direction, our data are consistent with the

previously published results [111, 29, 114]. ρc∗ increases by about a factor of 1.5

when going down to 90 K. Below 90 K ρc∗(T ) falls rapidly before turning upwards

again below 15 K. In the temperature range between 35 and 65 K it follows a metallic

behavior with ρc∗ ∼ T . The quadratic dependence of the resistivity below 65 K was

not observed in this direction (see inset in Fig. 4.3).

4.3 Analysis and Discussion

4.3.1 Normal State

First of all, it should be noted that all our data are obtained at ambient pressure. As

it is known for the Bechgaard salts (TM)2X, much of the temperature dependence

of their conductivity at high temperatures arises from the thermal expansion [30].

Consequently, the constant-pressure data usually show different temperature depen-

dences than the constant-volume data. In order to be able to directly compare our
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Figure 4.3: Temperature dependence of the DC resistivity of (TMTSF)2PF6 measured along
the a (open squares), b′ (open circles), and c∗ (solid circles) crystallographic di-
rections in log-log scale. The inset depicts the T 2 dependencies of the resistivities
below 100 K. Note, that below 65 K ρc∗(T ) cannot be described by a quadratic
dependence; instead it follows square root behavior of T 2, i.e., ρc∗(T ) ∼ T .

constant-pressure ρ(T ) experimental data with the theoretical models for constant-

volume ρ(V )(T ) dependences, a conversion has to be performed. We utilize for that

a conversion procedure, as it was done before for (TM)2X salts [30, 88]. We take the

unit cell at 16 K at ambient pressure as a reference unit cell – when the temperature

T is increased, a pressure P must be applied (at a given T ) in order to restore the ref-

erence volume. Taking into account, that in the metallic phase ρa varies by 10% per

1 kbar [29, 114] for all T values above 50 K; the measured resistivity ρa is then con-

verted into a constant-volume value ρ
(V )
a using the expression ρ

(V )
a = ρa/ (1 + 0.1P ).

Although the value of 25% is reported in Ref. [29], the data taken from this paper
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and displayed in Fig. 4.4 (top panel) show this value to be around 10%, and we as-

cribe this fact to an unfortunate misprint of the authors. The analogous procedure is

applied to get ρ
(V )
b′ and ρ

(V )
c∗ , taking into account that the variation of ρb′ and ρc∗ in

the metallic phase for all T has the same value of 10% kbar−1 [29, 114] (Fig. 4.4).

At low temperature, T < 50 K, both the thermal expansion and the pressure co-

efficient are small [30, 116]. Therefore, the constant-volume temperature dependence

of the resistivity does not derivate from the quadratic law observed under constant

pressure.

The calculated values of the temperature dependencies of the constant-volume

resistivity ρ
(V )
a , ρ

(V )
b′ and ρ

(V )
c∗ between 100 K and the room temperature are shown in

Fig. 4.5. As a consequence of constant-pressure to constant-volume corrections of our

data described above, the temperature behavior of the DC resistivity along all three

crystallographic axes of (TMTSF)2PF6 possesses the reduced power laws.

Along the linear chain axis, the constant-volume resistivity follows the power law

ρ
(V )
a ∼ T 0.56 temperature behavior. The temperature dependence of the transverse

b′- axis constant-volume resistivity can be fitted by ρ
(V )
b′ ∼ T 0.24 and by ρ

(V )
b′ ∼ T 1.31

in the temperature ranges 200 K< T <300 K and 100 K< T <150 K, respectively

(see Fig. 4.5). The constant-volume resistivity along the least conducting axis c∗

experiences a semiconducting behavior from room temperature down to 93 K, some-

what stronger than that for a constant-pressure dependence; it follows ρ
(V )
c∗ ∼ T−0.95

temperature dependance in the temperature range 150 K< T <300 K.

In the rest of this Section we will consider a resistivity in the sense of a resistivity

in conditions of unchanged unit cell volume, i.e., the constant-volume values, and we

will omit the superscripts ”(V)”.

The in-plane conductivity (σ‖) and inter-plane conductivity (σ⊥) have been cal-

culated for a system of weakly coupled Luttinger chains [87, 86]. It was found that

the inter-chain hopping (t⊥ is a perpendicular hopping integral) is responsible for the

metallic character of the (TMTSF)2X compounds, which otherwise would be Mott
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Figure 4.4: (Top panel) Temperature dependence of the DC resistivity for (TMTSF)2PF6

along the chain axis a (dashed curve) and transverse axis c∗ (solid curve), as
taken from Ref. [29]. When changing the pressure from 1 bar to 5 kbar, the
a-axis resistivity changes 50%, meaning that the pressure coefficient for the
resistivity is 10% per kbar. The inset depicts the pressure dependence of the
ratio ρa/ρc∗ ,which is almost pressure independent (within 10%). (Bottom panel)
Pressure dependence of the DC resistivity of (TMTSF)2PF6 along a and b′ axes
as taken from Ref. [113]; in the low pressure domain the pressure coefficient is
10%.
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Figure 4.5: The log-log scaled temperature dependence of the constant-volume resistivity
of (TMTSF)2PF6 along the a (open squares), b′ (open circles), and c∗ (open
triangles) axes, as derived from our analysis.

insulators. The temperature (or the frequency ω) power-law was found, giving for

the longitudinal and transverse resistivity respectively

ρ‖(T ) ∼ (g1/4)
2T 16Kρ−3, (4.1)

ρ⊥(T ) ∼ T 1−2α, (4.2)

where g1/4 is the coupling constant for the umklapp process with 1/4 filling, Kρ is the

LL exponent controlling the decay of all correlation functions (Kρ = 1 corresponds

to non-interacting electrons and Kρ < 0.25 is the condition upon which the 1/4 filled

umklapp process becomes relevant) and α = 1/4(Kρ + 1/Kρ) − 1/2 is the Fermi

surface exponent (see Sec. 2.2.3).
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The comparison of our experimental data, where ρ‖ = ρa ∼ T 0.56, with the above

LL theoretical model yields Kρ = 0.22, the value that is in good agreement with

the value Kρ = 0.23 for (TMTSF)2PF6 obtained from the temperature dependence

ρa(T ) ∼ T 0.5 in the 100 K< T <300 K range [109, 86]. For the frequency dependent

conductivity parallel and perpendicular to the chains the behavior

σ‖(ω) ∼ ω16Kρ−5, (4.3)

σ⊥(ω) ∼ ω2α−1 (4.4)

is predicted [87]. Optical experiments on (TMTSF)2X (where X = PF6, AsF6, and

ClO4) along the chains [105, 58] yield Kρ = 0.23.

If we use this value Kρ = 0.22 obtained from the measurements parallel to the

chains in order to describe the results we obtained from the measurements perpen-

dicular to the chains, some inconsistency arises: with Kρ = 0.22 we would expect for

the transverse resistivity the power law ρ⊥ ∼ T−0.36, while our experimental result

gives ρc∗ ∼ T−0.95. However, the theoretical model was compared with the c∗-axis re-

sistivity results [87, 29], which, in our opinion, is not the best choice: the comparison

should be applied to tb and ρb′ in the first place, rather than to tc and ρc∗ , because

tb � tc. This means that if we assume the Luttinger chains along the a direction,

we should consider the b direction as the direction, where the chains are weakly cou-

pled above all. Nevertheless, a comparison of the calculated transverse resistivity

ρ⊥ ∼ T−0.36 with the experimentally obtained ρb′ ∼ T 0.24 in the temperature range

200 K< T <300 K and ρb′ ∼ T 1.31 in the temperature range 150 K< T <200 K pro-

vides even stronger evidence against the LL picture. Hence we have to point out that

for (TMTSF)2PF6 the DC transport along the transversal axes cannot be understood

within the LL picture. Another possibility to interpret the DC transport properties

of our object of investigations is to turn to the conventional Fermi-liquid theory.

The simplest model of the electronic transport in metals is the Drude model [49],

where all relaxation processes are described by a single particle relaxation time τ :
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σDC =
Ne2τ

m∗ , (4.5)

where N – a charge carrier concentration, e – an elementary charge, m∗ – an effective

mass of the charge carriers. The anisotropy of the resistivity ρDC = 1/σDC values can

be accounted for by an anisotropic band mass m∗. Going beyond the Drude model,

the scattering rate Γ = 1/τ may be frequency dependent [49].

As plotted in Fig. 4.3, ρa and ρb′ have quite coinciding temperature profiles; the

correspondent curves scale together. Consequently, the anisotropy ρb′/ρa is almost

temperature independent (within 20%) in the temperature range from room temper-

ature down to 50 K, and goes from the value of 180 at T = 50 K to approximately

300 at 13 K, just above the metal-insulator transition (Fig. 4.6). This temperature

behavior of the anisotropy is in good agreement with recent results [114], which we

have already mentioned above.

The proportionality ρa(T ) ∼ ρb′(T ) suggests a simple anisotropic band structure

with isotropic relaxation time τ(T ). Thus the homogeneous relaxation rate, describ-

ing the similar T dependencies observed for a and b′ directions, provides a strong

evidence forward a conventional FL picture. At the same time, in (TMTSF)2PF6,

the temperature dependences of ρa (Ref. [117]) and the Hall coefficient, between

room temperature and the lowest temperatures, were quite satisfactorily compared

with the FL theoretical model where the electron relaxation time varies over Fermi

surface [118, 119]. According to this model, in the high temperature region (where

T > tc ≈ 10 K and T < tb ≈ 300 K) the system is treated as a 2D FL. It is pro-

posed that a quasi-1D conductor behaves like an insulator (dρa/dT < 0), when its

effective dimensionality equals one, and like a metal (dρa/dT > 0), when its effective

dimensionality is greater that one.

The small bandwidth also suggests that a tight binding approximation is appro-

priate. In the tight binding model (Sec. 1.2.3) a quarter-filled band has a conduction

anisotropy of [27]:



4.3. ANALYSIS AND DISCUSSION 97

0 50 100 150 200 250 300

150

200

250

300

350

 

 
ρ b'

/ρ
a

T (K)

0 100 200 300

104

105

 

T (K)

 

ρ c*
/ρ

b'
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where ρa(σa) and ρb(σb) are the resistivity(conductivity) in the a-axis direction and in

the direction perpendicular to the a-axis, respectively. ta, tb are the transfer integrals

along the a and b′ directions; as = a/2 is the intermolecular distance along the a-axis,

and b is the interchain distance to the neighboring stack (see Sec. 1.2.1).

Using 4ta = 1.0 eV (see Sec. 1.2.3) together with measured resistivities gives (4ta

: 4tb : 4tc) ≈ (1 : 4 × 10−2 : 4 ×10−3) eV = (11600 : 460 : 46) K, which is

quite close to the anisotropy (4ta : 4tb : 4tc) = (1 : 6.7 × 10−2 : 3 × 10−3) eV

as determined by P. M. Grant by band structure calculations [24]. Here we have to
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admit that the ρc∗/ρb′ anisotropy is not quite temperature independent, as seen from

the inset of Fig. 4.6. Therefore we can speak only about an estimate of the transfer

integral along the c∗ direction in the order of magnitude.

Equation (4.6) establishes that whenever the collective modes do not contribute

to σa, the conductivity anisotropy is approximately given by the square of the band

structure anisotropy. It should thus not be strongly temperature dependent [27],

as depicted in Fig. 4.6. This relation is certainly valid at low temperature, where

the mean free path �b′ ≈ 20 Å along the b′ direction exceeds the lattice constant

(b = 7.7 Å) [111, 114]. With increasing the temperature, �b′ decreases below the dis-

tance between the chains b at TX ≈ 50 K [111, 114], and above this temperature the

interchain propagation becomes diffusive. For such an incoherent motion the perpen-

dicular hopping probability is given by τ−1
b = τ(tb/�)2 [120], i.e., it is determined by

the lifetime along the chain direction. As a consequence, even a diffusive b′-direction

transport follows the temperature dependence of the relaxation time τ , moreover, the

magnitude of the anisotropy is the same as in the case of the coherent b′-direction

transport (within a factor close to unity) [120].

A coherent-diffusive crossover has not been observed along the c∗ direction either,

where the mean free path is much smaller than the intermolecular distance [108]. The

resistivity anomaly observed in ρc(T ) (Fig. 4.3) can easily be related to the fact that

along the c∗ direction the chains are separated by the PF6 anions; thus the transport

may rather be characteristic of a hopping process through the anions than of the

nature of an ideal anisotropic electron system [108].

4.3.2 SDW State

Although in Chapter 2.1 we have considered the SDW and the CDW as a purely 1D

phenomenon, one can easily imagine a 3D Fermi surface, which can satisfy the nesting

conditions in all three principal directions, leading to the formation of a density wave

ground state along each direction. The transport properties of the low-temperature

SDW ground sate in (TMTSF)2PF6 is well studied along the a axis, but there is still
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a lack of data in the transversal directions. We have found that at low temperature

the spin density wave state develops below T = 12 K along the a, b′, and c∗ directions

(Fig. 4.1). The activation behavior along all these directions is clearly seen, as shown

in Fig. 4.7.

The corresponding values of a single particle energy gap ∆0 opened along the a,

b′, and c∗ directions are 27.1, 27.4 and 20.5 K, respectively (Fig. 4.7). On cooling

down further, somewhat below 6 K, the activation behavior gives the value of the gap

of 20.8 K, 21.3 K, and 18.4 K for a, b′, and c∗ direction, respectively (see Fig. 4.7).

This slight change of an activation behavior may be due to the heating of our samples

at very low temperatures, below 6 K.

The values of the single particle gap ∆0 we found from our measurements are in

good agreement with earlier findings from the DC measurements along the a axis

with a value of ∆0=21 K [113] and Hall coefficient measurements with two different

configurations: when the current J ‖ a and the magnetic field B was applied along

c∗ axis (B ‖ c∗, ∆0=23 K) [114] and when the applied magnetic field was parallel to

the b′ axis (B ‖ b′, ∆0=24 K) [121].

The values of the single particle gap (at zero frequency), which we found for the

three crystallographic axes, can be perfectly described by a mean-field BCS theory

(see Sec. 2.1.4), which gives

2∆0(T = 0) = 3.528kBTC , (4.7)

where ∆0 is the single particle gap at T = 0, kB is the Boltzmann constant, and TC

is the transition temperature. For the transition temperature we have obtained from

the derivative of our data T=12 K we get ∆0=21 K, which coincides excellently with

our results.
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Chapter 5

Microwave Investigations of

(TMTSF)2PF6

Among all the experimental approaches used to study the dimensionality of the elec-

tron gas in Bechgaard salt, transverse transport measurements are particularly rele-

vant to directly probe of interchain coupling. It was further realized that since the

transverse transfer integrals are small, an electric field applied along the b′ or c∗ direc-

tions could also act as a probe of the physical properties in the plane perpendicular

to that direction. Our DC measurements along the axis c∗, described in the pre-

vious Chapter, have shown a non-monotonic behavior of the temperature profile: a

maximum of ρc∗ was observed near 80 K. Earlier, a strong pressure dependence of

this unusual feature was evidenced [29] and a typical 1D power law profile was found

above the characteristic ρc∗ maximum. This maximum was then ascribed to a broad

crossover regime indicative of a deconfinement of the charge carriers from the chain

axis; this results in a gradual onset of coherent transport along b′ direction below

80 K, suggesting then a FL behavior in the a− b′ plane. However, from our DC mea-

surements we did not observe the temperature independence of the anisotropy ratio

ρc∗/ρa (see the inset in Fig. 4.6), as expected from FL arguments; it was also found

to be temperature dependent in the only previous work [29]. These observations con-

trast with the work of Gor’kov et al. [122, 123, 124] who argued that the longitudinal

101
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transport properties, below 60 K and down to the SDW transition temperature, can

be well accounted for in terms of a weakly interacting Fermi liquid. However, such a

quasi-particle like signature should also be detected in the b′ transverse direction.

Reliable measurements of the transverse transport properties along b′ direction are

highly needed to clarify the present controversy. Unfortunately, since the Bechgaard

salts have a pronounced needle shape whose axis is parallel to the chains, transverse

transport along b′ is particularly difficult to perform with usual DC methods. Owing

to non-uniform current distributions between contacts, parasitic contributions from

other directions can be introduced. These problems can be avoided by using a con-

tactless microwave technique which allows a better control on the orientation of the

current lines in these organic needles.

The low-temperature SDW ground state of (TMTSF)2PF6 is also of great interest

to examine in the microwave frequency range. It was proposed that the modulation of

the spin density is weakly incommensurate with the underlying lattice [125], and the

collective mode can slide carrying current. But impurity pinning causes the collective

mode to resonate at finite frequencies, the pinned mode resonance usually occurs in

the millimeter wave spectral range in nominally pure specimens, as it was proposed

for both the CDWs [126, 127, 128], and for the SDWs [61]. Upon application of an

external electric field, the collective mode can be depinned and carry current [129, 112,

130]. The electrodynamics of the SDW state was well studied at several microwave

frequencies (3–100 GHz) along the linear chain axis a [131, 132]. To our knowledge,

the microwave transport properties of (TMTSF)2PF6 in the SDW state were never

reported along the transverse directions (b′ and c∗). And we have contributed to fill

this lack of data by the investigations described in this Chapter.

In this Chapter we report microwave resistivity data obtained along both longi-

tudinal and transverse directions of (TMTSF)2PF6 crystals. The different sample

geometries we employed for our measurements at different polarizations are discussed

in Sec. 5.1. We have used a conventional cavity perturbation technique, which is

described in Sec. 3.2, at 33.5 and 24 GHz to obtain the electrical resistivity along
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each crystal axes as a function of the temperature (2–300 K). We will report on our

findings at 33.5 and 24 GHz in Secs. 5.2 and 5.3, respectively.

5.1 Sample Preparation

The single crystals of (TMTSF)2PF6 have been synthesized by the standard elec-

trochemical method (Sec. 3.4) with typical needle-like shape along the a-direction.

We have performed our microwave investigations along the a-directions employing for

that naturally grown needles of typical dimensions of 1 mm × 0.2 mm × 0.2 mm.

Unfortunately, such a needle geometry is not suitable for precise measurements of

the transverse properties; this is particularly true for our microwave technique which

yields very accurate data only when the electric field is oriented along the needle’s

axis. In order to perform the microwave measurements along the b′-direction, we

have grown thick samples of the width of up to 1.8 mm in the transversal b′-direction.

These thick needles were cut perpendicularly into pieces of a needle shape, where the

b′-direction was the direction along the needle. Such single crystals of typical dimen-

sions of 1.2 mm × 0.2 mm × 0.2 mm were used to perform measurements along

the b′ transverse direction, and a typical sample is shown in Fig. 5.1a. Unfortunately,

it turns out that one cannot grow (TMTSF)2PF6 crystals thick enough to perform

single crystal measurements along the c∗-axis, the maximal thickness along this trans-

verse direction is about 0.2 mm. Each crystal was therefore cut into several pieces

(Fig. 5.1b) so that it could be reconstructed with a shape of a needle having the

crystal c∗ direction as its longest axis (Fig. 5.1c), the typical dimensions of such mo-

saics samples were 0.8 mm × 0.2 mm × 0.2 mm. The small sample blocks were

attached with vacuum grease ”Apiezon N” to the quartz plate of dimensions slightly

exceeding the dimensions of the sample and of the thickness of 0.07 mm. The com-

mercially available vacuum grease ”Apiezon N”, which is known to be transparent in

the microwave range, remains malleable down to the very low temperatures (down
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Figure 5.1: The sample arrangements in our experiments. (a) The typical sample arrange-
ment we utilized for the measurements along the a or b′ crystallographic axis is
shown. (b) The blocks for reconstruction the c∗-needle are shown. (c) Mosaics
sample (c∗-needle) built from the four blocks on the transparent substrate, top
view. (d) Mosaics on the substrate forming the c∗-needle sample is attached to
the quartz rod, side view.
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to 4 K) and thus can not cause the damage of the samples due to the thermal con-

traction, which is typically valuable in the temperature range from room temperature

down to 70 K. The quartz substrate also does not absorb the microwave radiation, it

rather introduces a small frequency shift, which can be excluded by performing the

reference (i.e., that of unloaded cavity) measurements with the same quartz plate.

Finally, the quartz substrate with the sample atop of it is glued to the quartz rod of

diameter of 0.15 mm (Fig. 5.1d) and placed at the position of the maximal electric

field (see Sec. 3.2.4). As it was discussed above (Sec. 4.2), the transport properties

of Bechgaard salts are very sensitive to the applied external pressure. In order to

be sure that there was no mechanical stress due to the confinement to the substrate,

we also employed the substrate configuration in the measurements performed on the

single crystals along the a and the b′ directions (see Fig. 5.1a). Having done our

measurements both with and without the substrate, we can conclude that there is no

influence of the substrate on the results of our investigations, and we will discuss it

in the next Section in more details.

5.2 Microwave Investigations of (TMTSF)2PF6 at

33.5 GHz

At 33.5 GHz we have performed the measurements along all three crystallographic

axes: a, b′, and c∗. The samples were cooled slowly (at the typical cooling rate of

0.1–0.3 K per minute) to the lowest temperature of 2 K to prevent microcracking

and outright breakage, which was evidenced by a sharp increase in the resonance

frequency. In general, crystals of the same crystallization batch yielded similar prop-

erties; however, we did notice changes in the SDW response below 3.5 K (but not

the normal state properties) after repeated cycling to room temperature, we will dis-

cuss these anomalies in Sec 5.4.3. Consequently, thermal cycling was avoided and

measurements were generally taken on an origin sample, if possible.

Below we will report on our results separately for each direction.
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5.2.1 Measurements along the a axis

Along the chain axis (a) the DC conductivity of (TMTSF)2PF6 is rather large (∼
103 (Ω·cm)−1 at room temperature), as it was shown by DC measurements described

in Chapter 4. For the microwave measurements along the a axis we have used needles

of length of approximately 1 mm. Under this conditions, the skin depth exceeds the

half of the sample’s principal length along the a direction and the microwave radiation

penetrates completely through the sample only if the conductivity has a value less

then 0.3 (Ω·cm)−1 at the frequency of 33.5 GHz. As it was shown by the earlier

measurements, the microwave conductivity of (TMTSF)2PF6 along the chain axis

is much larger than 0.3 (Ω·cm)−1 and is comparable to the DC conductivity in the

order of magnitude [131, 132]. Therefore in the microwave investigations along the a

axis we have expected (TMTSF)2PF6 to be in the skin-depth regime (see Sec. 3.3.1),

at least in the normal state. In the skin-depth regime, one performs the analysis

in terms of surface resistance RS and surface reactance XS, which can be extracted

from the change of center frequency and halfwidth, using Eqs. (3.16) and (3.17),

respectively. The main problem here is to get rid of the unreproducible frequency

shift which is introduced when the cavity is disassembled. It is possible to exclude

this additive shift from the center frequency data, if the Hagen-Rubens limit can be

applied for some parts of the experimental data (usually, to the temperature region of

the higher conductivity). Then, in the range of the Hagen-Rubens limit applicability,

the change in center frequency (∆f/f0) and the change of the halfwidth (∆Γ/2f0) can

be equalized to each other through the equality of the absolute values of the surface

reactance (XS) and the surface resistance (RS), respectively (see Eqs. (3.16), (3.17)

and (3.26)).

Because we have performed our measurements at microwave frequencies, we expect

the Hagen-Rubens limit (ωτ → 0) to be appropriate for our analysis, this was also the

case in earlier investigations [131, 132]. Indeed, the temperature dependencies of the

relative change of the halfwidth ∆Γ/2f0 = RS and the center frequency −∆f/f0 =

XS +C have the same profile over the wide temperature range, as depicted in Fig. 5.2,
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top panel. This is a strong proof that the (TMTSF)2PF6 system is in the Hagen-

Rubens limit along the a-direction at the microwave frequencies, and the surface

resistance RS = ∆Γ/2f0 and the surface reactance XS = ∆f/f0 have equal absolute

values to within an additive constant C:

−RS = XS + C. (5.1)

Thus the constant C containing in the center frequency data, which is due to the

shift of the center frequency upon the disassembling of the cavity for the introducing

the sample, can be determined from our analysis if we normalize the surface reactance

XS = ∆f/f0 + C data to the surface resistance RS = ∆Γ/2f0 data, as shown in

Fig. 5.2, top panel.

After making this procedure, we have obtained the absolute values of both the

change of the center frequency ∆f/f0 and the halfwidth ∆Γ/2f0 over the whole

temperature range, as shown in Fig. 5.2 for two different samples at the top and

the bottom panel, respectively, and therefore the self-consistent analysis has been

performed in order to obtain the absolute values of the complex conductivity. The

same scenario, i.e., the applicability of the Hagen-Rubens limit, was evidenced for all

our samples. After excluding the frequency shift C from our data, we were able to

perform a self-consistent analysis assuming the system to be either in the skin-depth

regime or in the depolarization regime.

To make the analysis assuming the skin-depth regime, we took the absolute values

of the surface resistance RS = ∆Γ/2f0 and the surface reactance XS = ∆f/f0 and

calculate the conductivity, using the Eq. (3.24) for the general skin-depth regime and

Eq. (3.28) for the (probable) Hagen-Rubens limit. The typical calculated values of

the microwave conductivity of (TMTSF)2PF6 along the a axis under the assumptions

of the skin-depth regime and the Hagen-Rubens limit of it are depicted in Fig. 5.3.

To perform the analysis in the framework of the depolarization regime, we have

used Eq. (3.29) and from the known frequency shift ∆f/f0 and the halfwidth ∆Γ/2f0

we have calculated the conductivity, as shown in Fig. 5.3. As we see from Fig. 5.3, the
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Figure 5.2: The center frequency −∆f/f0 and the halfwidth ∆Γ/2f0 temperature profiles
(top panel). The profiles scale each other in the broad temperature range 12 K<
T <150 K, showing the Hagen-Rubens limit applicability at these temperatures:
RS = ∆Γ/2f0 � XS = −∆f/f0. (Bottom panel) The Hagen-Rubens limit
evidenced from the measurements on another sample.
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Figure 5.3: The 33.5 GHz conductivity of (TMTSF)2PF6 along the a axis, as calculated for
different regimes: the skin-depth regime (solid circles), the Hagen-Rubens limit
(open circles), and the depolarization regime (open triangles).

results obtained under the assumption of the depolarization regime are very conflict-

ing with the DC results (Sec. 4.2) and previous microwave measurements [131, 132]

both quantitatively (in the order of magnitude) and qualitatively (the semiconducting

behavior in the normal state), and hence we can assume that along the chain axis a

the system is in the skin-depth regime both in the normal state (above the tempera-

ture 12 K) and in the SDW state (below 12 K). One more argument supporting this

assertion we will present below.

The generic plot of the conductivity σa versus temperature T along the chain axis
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Figure 5.4: The 33.5 GHz conductivity of (TMTSF)2PF6 along the chain axis a.

a for several samples of (TMTSF)2PF6 measured at the frequency 33.5 GHz is pre-

sented in Fig. 5.4. The values of the conductivity were calculated using the general

skin-depth formalism, not the Hagen-Rubens limit. Although being not necessary,

we have measured our samples with and without the substrate. And in both cases

we have obtained the same temperature profiles of the conductivity. This means

that the substrate did not affect the results of our measurements, and this finding is

very important for our investigations along the c∗-direction, where we utilized mo-

saics samples attached to the substrate. We also have checked whether the weakly

temperature-dependent behavior of the a-axis conductivity in the intermediate tem-

perature range from 100 K down to the SDW transition temperature of 12 K is due
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to the limit of the resolution of our experimental setup. In order to test this assump-

tion we have used the samples of considerably different sizes; we have found that

this behavior is typical for all our samples under investigation and therefore is an

intrinsic property of the samples, rather then the limitation of the dynamic range or

the resolution of our experimental setup. The orders of magnitude of the microwave

conductivity are in good agreement with our DC results along the a crystallographic

axis (see Sec. 4.2).

From Fig. 5.4 we see that the a-axis conductivity of (TMTSF)2PF6 at the fre-

quency 33.5 GHz in the SDW state is higher than that in the normal state above

80 K, where the system is indeed in the skin-depth regime. Therefore, we were cor-

rectly applied the skin-depth analysis for our data below 12 K.

5.2.2 Measurements along the b′ axis

For the analysis of our data measured along the b′ transverse direction we have used

the same arguments as for the a-direction. From the DC conductivity measurements

we have found that the DC resistivity of (TMTSF)2PF6 along the b′ axis is in the

order of magnitude of 0.1–1 Ω·cm (see Sec. 4.2), which gives us a value of skin depth

of 0.1–0.3 mm at 33.5 GHz. For the microwave measurements along the b direction

we have utilized the needle shaped samples of the length of approximately 1–1.2 mm.

This implies that if we would rely on this value of the transverse resistivity as a

starting point for our investigations, we should expect the system to be in the skin-

depth regime along the b′ direction, at least in the normal state. To answer this

question, we have performed the self-consistent analysis, in the manner described in

the previous Section.

From the the temperature profiles of the center frequency and the halfwidth we

found that the Hagen-Rubens limit (|RS| = |XS|) is valid for our data in a wide

temperature range, as shown in Fig. 5.5 for several samples. Therefore, the constant

frequency shift was excluded from our center frequency data, and we have performed

our analysis both in the framework of the skin-depth regime and the depolarization
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Figure 5.5: The temperature profiles of the surface resistance RS and the surface reactance
XS measured for three different samples of (TMTSF)2PF6 at 33.5 GHz. The
validity of the Hagen-Rubens limit (|RS | = |XS |) is clearly seen in a broad
temperature range.
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regime, the analysis using these two regimes is displayed in Fig. 5.6 for the same

crystals as in Fig. 5.5. From the analysis depicted in Fig. 5.6 we can conclude, that

our data can be analyzed using skin-depth formalism almost in the whole temper-

ature range, except for below the temperature T � 4 K. There, the conductivity

calculated in the framework of the skin-depth regime has nonphysical negative val-

ues, at the same time the analysis performed in the framework of the depolarization

regime becomes reasonable, since the corresponding curves touch the curves repre-

senting the skin-depth regime, making a smooth crossover from one regime to an-

other. The Hagen-Rubens limit cannot be treated as a valid approximation for this

low-temperature region, as it clearly seen from Fig. 5.5. Moreover, to present the

final values of the b′-axis conductivity of (TMTSF)2PF6 even in the normal state, i.e.

above 12 K, we used the general skin-depth formalism, rather then the Hagen-Rubens

limit, which is the limiting case of the skin-depth regime. The generic plot of the so-

calculated b-axis conductivity of (TMTSF)2PF6 at 33.5 GHz for several samples is

presented in Fig. 5.7.

Here we show the results of our measurements on several samples from different

crystallization batches. In order to be sure that the measurements along the b′ axis

were not polluted from the perpendicular direction of the sample due to the slight

curvature of the electric field in the electric field antinode (see Fig. 3.1), we have

performed our measurements in the configuration when either the a axis or the c∗

axis of the sample were parallel to the resonator’s axis Z (see the sketch in Fig. 5.7).

We also have performed the measurements both with the substrate and without the

substrate. All the results, depicted in Fig. 5.7 perfectly coincide with each other,

meaning that the substrate does not affect our data, as well as the results of our

measurements are independent from the orientation of the sample with respect to the

resonator’s axis Z.

The behavior of the b′-axis conductivity at 33.5 GHz of the (TMTSF)2PF6 com-

pound we found in current investigations differs from the DC conductivity behavior

along this axis. The microwave conductivity profile displays clearly, near 50 K, the
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Figure 5.6: The 33.5 GHz conductivity of (TMTSF)2PF6 along the b′ direction, as calculated
in the skin-depth regime (open circles), the Hagen-Rubens limit (solid circles),
and the depolarization regime (gray circles).
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Figure 5.7: The 33.5 GHz conductivity of (TMTSF)2PF6 along the b′ crystallographic axis,
measured for several samples (labelled with ”#” on the plot).
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Figure 5.8: b′-resistivity profiles relative to the value just above the SDW transition at
intermediate temperatures for (TMTFSF)2PF6, as obtained in [133] at 16.5 GHz
for three different samples.

change from the metallic behavior to the semiconductor-like behavior. It reaches min-

imum at around 25 K and becomes metal-like on further cooling down to 12 K, where

the SDW transition is evidenced. This unusual behavior generally coincides with the

only published results on the microwave conductivity measurements of (TMTSF)2PF6

along the b′ direction [133], where the measurements were performed on mosaics in

a rectangular copper cavity operated at 16.5 GHz in the TE102 transmission mode.

The results of [133] are displayed in Fig. 5.8. There was found that on lowering the

temperature, the resistivity ρb′ first decreases monotonically down to a local minimum

around 75 K, increases slightly to reach a local maximum near 40 K and decreases

again down to 15 K before entering the SDW phase below 12 K. This peculiar profile

observed between 12 and 80 K was also found to be sample dependent (Fig. 5.8),

probably due to the slight misalignment relative to one another of the small crystals

used in the needle’s construction.
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5.2.3 Measurements along the c∗ axis

The measurements along the c∗-crystallographic axis were performed on mosaics con-

structed from the blocks cut out of the grown crystals so, that finally we have obtained

a needle-like sample with c∗ crystallographic direction as a longest axis of it, as de-

scribed in Sec. 5.1. The DC value of the resistivity along the c∗ axis in (TMTSF)2PF6

found in our experiments (see Sec. 4.2) is around 50 Ω·cm. This value of the con-

ductivity gives us the value of skin depth of about 2 mm at zero frequency, which is

larger than the size of the blocks we utilized to build the mosaic needle (with typical

length of a block in the corresponding direction of 0.2-0.25 mm) for our investiga-

tions. In the microwave region, one even would expect the increase of resistivity, i.e.,

the decrease of conductivity with respect to the DC values, if one would assume the

system to be a metal describing by Drude model [49]. Therefore, we have expected

the depolarization regime to be appropriate for the analysis of our data measured

along the c∗ direction of (TMTSF)2PF6 at 33.5 GHz. Finally, we have found that

this was really the case, and a very strong argument supporting this assumption will

be presented below.

Unfortunately, applying the depolarization regime, we have the situation, when

it is not possible to exclude the constant frequency shift due to the disassembling

the cavity for the sample’s insertion. Nevertheless, we have collected the statistics

on the value of this frequency shift from the previous measurements along the a

and the b′ directions and we have taken the mean value of the frequency shift of

130 MHz to exclude it from the center frequency data it in the analysis we performed

for our investigations along the c∗-axis. Trying to assemble the cavity each time

with the same strength, we have achieved the random error only about 10% around

this value, meaning that we can be sure within 20% in the magnitude of obtained

conductivity values coming out from our analysis using the Eq. (3.29). After applying

the depolarization regime, described in Sec. 3.3.2, we have obtained the 33.5 GHz

conductivity of (TMTSF)2PF6 along the c∗ axis.

The generic plot of the c∗-axis conductivities of (TMTSF)2PF6 measured at
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cavity
overload

Figure 5.9: The 33.5 GHz conductivity of (TMTSF)2PF6 along the c∗ crystallographic axis
measured for the four-block mosaics (open squares), for the tree-block mosaics
(open circles), and for the two-block mosaics (solid circles).

33.5 GHz is displayed in Fig. 5.9. Here we present the results obtained on the in-

vestigations of three mosaic samples. First, we took the sample consisting of four

crystal blocks, a needle of about 1 mm long, the corresponding data on the plot are

labelled as ”����”. We found that in the temperature region of 10 K< T <40 K

the cavity was overloaded, namely the quality factor of the cavity was below 2000,

which is the limit of resolution of our setup. This was also a good proof that the

depolarization regime was appropriate in our analysis; because the quality factor of

the cavity was decreasing with increasing the conductivity of the sample (because

the radiation penetrates completely through the sample and the absorption increases
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when the conductivity increases), while in the skin-depth regime the quality factor of

the cavity increases with increasing the conductivity of the sample (because the radi-

ation penetrates only within the skin depth, which decreases when the conductivity

increases, resulting in lower absorption). The next step was to decrease the number

of blocks forming the mosaics down to 3, this data are labelled as ”���” in Fig. 5.9.

We have obtained better results, but the cavity was still overloaded in more narrower

temperature region 15 K< T <25 K. Finally, we utilized the mosaics consisting of

only two blocks, labelled as ”��” in Fig. 5.9, and obtained the reliable results over

the whole temperature range.

All three curves we have obtained from our measurements on three different sam-

ples are perfectly coincide with each other in the temperature range, where the cavity

was not overloaded. In general, the temperature profile of the c∗-axis conductivity of

(TMTSF)2PF6 at 33.5 GHz is in a good agreement with the DC-conductivity data

along this direction, except for the the temperature region above 80 K, where the

slightly semiconducting behavior was observed in the DC-conductivity results, while

the 33.5 GHz conductivity is almost temperature independent in this temperature

region.

5.3 Microwave Investigations of (TMTSF)2PF6 at

24 GHz

The microwave investigation of the conductivity of the Bechgaard salt (TMTSF)2PF6

at the frequency of 24 GHz was performed in order to confirm our results obtained

at 33.5 GHz, since these two frequencies are not far away from each other, and we

did not expect any valuable frequency-dependence of the conductivity results within

such a limited frequency domain. The nearness of these two frequencies in terms of

electrodynamical geometry for our samples, meaning that the characteristic length

scales (skin depth, sample sizes) remain almost the same, also suggests that the

analysis described in the previous Section can be applied without changes to the data
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obtained at 24 GHz.

After applying the analysis exactly in a way described in the previous Section, we

have obtained the 24 GHz conductivity of (TMTSF)2PF 6 along three crystallographic

axes. The generic plot of microwave conductivity of (TMTSF)2PF6 at the frequency

of 24 GHz along the a, b′, and c∗ axes is presented in Fig. 5.10. The temperature

profiles of the conductivity for each direction are perfectly coincide with the results

obtained at 33.5 GHz.

5.4 Analysis and Discussion

Below we will discuss our findings separately for the normal state (T > 12 K) and the

SDW state (T < 12 K). In this section we will speak about the results obtained in the

measurements at 33.5 GHz and 24 GHz jointly. In Fig. 5.11 de have depicted the se-

lected representative results of our microwave resistivity measurements together with

DC values of resistivity of (TMTSF)2PF6, as obtained from our DC measurements

(Chapter 4).

5.4.1 Normal State

Along the chain axis (a), the usual metallic behavior of the microwave resistivity is ob-

served down to 14 K, where the microwave resistivity reaches a minimum (Fig. 5.11).

Interestingly, the microwave resistivity profile displays clearly, near 70 K, a change of

slope, when the DC one shows a single quadratic behavior below 70 K (see Sec. 4.2)

Along the least conducting direction (c∗), the microwave resistivity profile is con-

sistent with the DC curve (Fig. 5.11): it is almost temperature independent when

the temperature is decreased from 300 K to 90 K and recovers a metallic behavior on

further cooling below 90 K.

The b′-axis microwave resistivity presents definitely a different profile, being almost

flat (below 120 K) on the logarithmic scale compared to the other crystal directions.

This profile is shown in more details in the inset of Fig. 5.11. On lowering the
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Figure 5.10: The 24 GHz conductivity of (TMTSF)2PF6 along the a, b′, and c∗ crystallo-
graphic axis.
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Figure 5.11: The microwave resistivity of (TMTSF)2PF6 along the a, b′, and c∗ crystal-
lographic axis, measured at 24 and 33.5 GHz (symbols). The corresponding
DC resistivity results along each axis displayed by curves. Inset: the b′-axis
microwave resistivity shown in the temperature range 10 K< T <100 K.



5.4. ANALYSIS AND DISCUSSION 123

temperature, the microwave resistivity ρb′ first decreases monotonically down to a

local minimum around 55 K, increases slightly to reach a local maximum near 25 K

and decreases again down to the SDW transition at 12 K.

The emergence of an insulating behavior below 55 K (dρb′/dT < 0 in the inset

of Fig. 5.11) refutes the possible existence of quasi-particle states down to 25 K.

A Fermi liquid description of interacting electrons above 25 K would, indeed, have

required a quadratic temperature profile of both the ρa and ρb′ components, as it was

discussed in Sec. 4.2. Between 25 K and 55 K, ρb′ is might be better understood

by assuming a Luttinger liquid behavior along the stacks: this yields a power-law

increase ρb′(T ) ∼ T 1−2α, where α is the exponent of the single-particle density of

states of the LL (see Sec. 2.2.3)

In order to describe our microwave data within the framework of the Luttinger

liquid theory, we have performed the conversion to the constant-volume quantities

similar to that described in Sec. 4.3.1. However, due to the reduced temperature

domain used to fit the power law of ρb′ , the exponent might be only approximative.

In Fig. 5.12 we report the results of this conversion and of finding the appropriate

power law descriptions for selected data.

As it was discussed in Sec. 2.2.3, the Luttinger liquid theory gives the following

power-law description for the longitudinal and transverse resistivity, respectively:

ρ‖(T ) ∼ T 16Kρ−3, (5.2)

ρ⊥(T ) ∼ T 1−2α, (5.3)

where Kρ is the exponent characterizing the charge degrees of freedom of a LL and

α = 1/4(Kρ + 1/Kρ) − 1/2 is the Fermi surface exponent.

The comparison of our experimental data depicted in Fig. 5.12, where ρ⊥(T ) =

ρb′(T ) ∼ T−0.4 in the temperature range 20 K< T <55 K, with the LL theoretical

model yields Kρ = 0.22, this value of Kρ is in a good agreement with the value Kρ =

0.23 for (TMTSF)2PF6 obtained from the DC transport [109, 86] and optical [105, 58]

experiments on (TMTSF)2PF6 along the chains.
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Figure 5.12: The Arrhenius plot of the constant-volume microwave resistivity of
(TMTSF)2PF6 along the a (bottom panel), b′ (middle panel), and c∗ (top
panel) crystallographic axis in the normal state.
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However, if we use this value Kρ = 0.22 in order to describe the own resistivity data

collected along the chain axis a in the same temperature range 20 K< T <55 K, an

inconsistency arises: with Kρ = 0.22 we would expect for the longitudinal resistivity

the power law ρ‖(T ) = ρa(T ) ∼ T 0.5, while our experimental result clearly shows the

temperature independent a-axis resistivity in this temperature range (see Fig. 5.12).

Another possibility would be to check whether the high-temperature region

100 K< T <200 K could be described by the Luttinger Liquid theory, since the

c∗-axis 24 GHz resistivity possess the semiconductor-like behavior (dρc∗/dT < 0) in

this temperature range with the power law ρ⊥(T ) = ρc∗(T ) ∼ T−0.6. From this power

law we obtain Kρ = 0.20, and therefore using this value of Kρ to calculate the lon-

gitudinal resistivity we get ρ‖(T ) = ρa(T ) ∼ T 0.2. The latter power law contradicts

our experimental result for the resistivity along the chains in this temperature range:

ρa(T ) ∼ T 1.7. Therefore, we can conclude that for (TMTSF)2PF6 our microwave data

cannot be completely understood within the LL picture.

5.4.2 SDW State

The spin-density wave transition in (TMTSF)2PF6 is evidenced at 12 K along all

three directions at microwave frequencies, as seen from Fig. 5.11. It is also seen from

Fig. 5.11 that the SDW transition behavior along the a and the b′ crystallographic

directions is much less activated when compared to the DC data. This reduction of the

activation behavior at microwave frequencies was not observed along the c∗ direction,

where the resistivity profile below 12 K perfectly scales with the correspondent DC

results (see Fig. 5.11).

We have performed the quantitative analysis of the microwave resistivity activa-

tion behavior in the same manner it was done for the DC results and reported in

Sec. 4.3.2. We have compiled the Arrhenius plot of the resistivity ρ versus inverse

temperature 1/T and defined the thermal activation energy values corresponding to

the measurements along the different sample directions, as depicted for the selected

samples in Fig. 5.13.
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Figure 5.13: The Arrhenius plot of the microwave resistivity of (TMTSF)2PF6 versus re-
versed temperature along the c∗ (top panel), the b′ (middle panel), and the a
(bottom panel) crystallographic axes for different samples. The correspondent
thermal activation energy values are displayed at the left to the data plots for
each direction.
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We have found that along the c∗-axis, the activation behavior of the microwave

resistivity within the SDW temperature region, i.e. below 12 K, has the mean value

of the activation energy of ∆c∗ � 20.7 K. This value of the gap we found from

our microwave measurements is in very good agreement with our DC results for the

single-particle gap ∆0 = 21 K (see Sec. 4.3.2).

Along both the a and the b′ directions, the reduced values of the activation energy

were found: ∆a ≈ ∆b′ ≈ 6 K. Such behavior indicates a strongly frequency-dependent

response. This value is less than the one we found from the DC measurements and,

apparently, the reduction of the gap value is associated with collective mode contri-

bution to the transport properties.

It was proposed that in (TMTSF)2PF6 the SDW condensate is pinned to the

impurities at finite frequencies [132, 49]. The pinned mode is in the microwave fre-

quency range, and its precise position is sample dependent, because it is defined by

the impurity content of the samples.

This situation is depicted in Fig. 5.14, which represents the proposed frequency

dependence of the conductivity of (TMTSF)2PF6 in the SDW state. The single

particle gap 2∆ ≈ 42 K is indicated with a solid arrow at 30 cm−1, as obtained from

the DC measurements. The pinned mode is indicated in the microwave frequency

range with a solid arrow. The dashed arrow depicts the frequency of our experimental

technique (0.8 cm−1 for 24 GHz and 1 cm−1 for 33.5 GHz). It is evident, that

our microwave investigations have been performed in the range, where the pinned

collective mode is still very well pronounced, i.e., on the shoulder of the pinned mode

resonance. The pinned mode is also grows with decreasing the temperature [132].

Therefore we can conclude that performing measurements at the frequencies of 24

and 33.5 GHz we have an appreciable contribution of the collective mode (the pinned

SDW mode) to the transport properties of the system, leading to the reduced activa-

tion behavior of the resistivity in the SDW ground state. When at zero frequency in

the SDW state, the transport is only of single particle nature.

Remarkably, the activation energy values reduce the same way for the a and b′



128 CHAPTER 5. MICROWAVE INVESTIGATIONS OF (TMTSF)2PF6

Figure 5.14: The frequency dependent SDW conductivity is displayed, as adopted
from [132]. The measured conductivity is shown with symbols, the solid line
represents the interpolation with the optical conductivity data and with the
microwave conductivity data collected along the chain axis a . The solid ar-
rows depict the position of single particle gap at 30 cm−1 and the SDW pinned
mode in the microwave frequency range, labelled as ”Gap” and ”Pinned Mode”,
respectively. The dashed arrow depicts the frequency domain of the investiga-
tions presented in this work.

directions. This behavior was never observed before due to the lack of microwave

investigations along the transverse axes of (TMTSF)2PF6, and the possible interpre-

tation we will present below. As it was discussed in detail in Chapter 1, the Fermi

surface of (TMTSF)2PF6 consists of two warped sheets (see Fig. 1.4, c), and thus the

Fermi surface is opened along the kc axis of the momentum space. We have clearly

observed the development of the SDW ground state along the c∗ axis in our DC and

microwave investigations, meaning that the picture following from the tight-binding

model and presented in Chapter 1 is rather simplified. The interchain single-particle
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tunnelling along the b′ direction is much large than that along the c∗ direction, since

tb � tc, and leads to a warping of the Fermi surface. At low temperatures, the wave

vector Q = 2kF · â no longer nests this warped Fermi surface, but the nesting is

possible in the a − b′ plane with a tilted nesting vector Q = 2kF · â + π
b
· b̂, and this

situation is depicted in Fig. 5.15. The tilting of the nesting vector Q is responsible

Figure 5.15: The schismatical representation (not to scale) of the nesting of the Fermi sur-
face of (TMTSF)2PF6. At high temperature (a), the thermal fluctuations hide
the warping of the Fermi surface and the conductor has a one-dimensional
nesting vector Q = 2kF · â. At low temperature (b), the warping is felt and
the nesting vector becomes two-dimensional: Q = 2kF · â + π

b · b̂.

for the fact that the SDW formation also takes place along the b′ crystallographic

axis, as it was evidenced from the microwave experiments. The quantitative simi-

larity in the suppression of the activation behavior along the a and b′ axes can also

be explained within this picture. The tilting of the nesting vector means that the

collective mode transport occurs not only along the a direction, but along the mixed

direction in the a − b′ plane, having its projection both along a and b′. Therefore,

response of the collective mode along these two axes should be qualitatively similar:

when the SDW slides, there is an equivalent contribution both in the a and b′-axis



130 CHAPTER 5. MICROWAVE INVESTIGATIONS OF (TMTSF)2PF6

transport. Hence the collective mode contribution to the transport properties of the

system below 12 K at the microwave frequencies is equal for the two directions a

and b′, leading to the equal reduction of the activation behavior for these two direc-

tion. To come to these conclusions is only possible by the probe of the transverse

properties of the (TMTSF)2PF6 system at the microwave frequencies, where both the

single-particle transport and the collective mode contribution coexist, and this was

done in the presented work.

From Fig. 5.13 we see that even for a single sample the found values of the thermal

activation energies are rather uncertain, sometimes within 10% error. The possible

explanation for this uncertainty is that the precise position of the SDW pinned mode

on the frequency scale, and therefore the corresponding value of the thermal activation

energy, is define by the impurity content of the samples. Hence, it may be sample-

dependent or, at least, it may differ for the samples from different crystallization

batches.

The difficulty in more precisely defining the thermal activation energies in the

SDW state is also associated with the low-temperature anomalies below 3.5 K. This

anomalies is clearly seen in the microwave resistivity data collected at 33.5 GHz along

the a and the b′ (see, for example, Figs. 5.4 and 5.7) axis and is a subject of discussion,

given in the next Section.

5.4.3 Below 3.5 K

Below the temperature of 3.5 K, i.e., deeply in the SDW ground state, the strong

deviations from the activated semiconductor-like behavior were observed in the data

obtained at 33.5 GHz along the a and the b′ crystallographic axes of (TMTSF)2PF6

(Figs. 5.4, 5.7). These deviations, however, were not observed by DC resistivity mea-

surements (see Sec. 4.3.2) on fresh samples and 24 GHz measurements on annealed

samples (Fig. 5.10); we have used the samples at 24 GHz after making the investiga-

tions at 33.5 GHz on them. Qualitatively similar anomalies at very low temperatures
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from 3 K up to 6 K were evidenced in the previous microwave investigations at differ-

ent frequencies, and one typical example is depicted in Fig. 5.16. At the same time,

Figure 5.16: The 9 GHz microwave resistivity of (TMTSF)2PF6 as measured by several
groups. The earlier results from Walsh et al. [134], Jànossy et al. [135], Buravov
et al. [136], and Javadi et al. [137] are compared with the results of [132],
labelled as ”present results”. From Ref. [132].

the earlier DC transport measurements did not show this discrepancies in the SDW

ground state [113]. Here we will present a possible explanation of these, still never

discussed, anomalies.

In contrast to contact-employed measurements (DC and RF), where the voltage

applied to the sample is always strictly determined, the strength of the electric field

inside the cavity is hard to control. We have estimated the electric field intensity

at the position of the sample (the electric field antinode) inside the cavities in our

experimental setups and came to the value of around 1 mV/cm. A more precise

determination of the electric field value is difficult to perform due to the large uncer-

tainties in the attenuation of the EM waves in bent waveguides. This value of the

electric field is still smaller than the static threshold field value ET � 3.5 mV/cm
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for (TMTSF)2PF6 [48] and therefore should not result in sliding of the SDW pinned

mode.

Nevertheless it was shown recently that the AC threshold electric field is smaller

than the static threshold field and is temperature dependent for the (TMTSF)2PF6

system [138], as presented in Fig. 5.17. It was found, that below 5 K the AC signal

amplitude needed to drive the SDW far away from its equilibrium state, i.e., to depin

it, strongly decreases (Fig. 5.17). Although these measurements were performed at

lower frequencies (up to 1 MHz) compared to our investigations, a simple extrap-

olation of this findings to the microwave frequency range (see Fig. 5.17, top panel)

would result in lower values of the microwave threshold field with respect to the static

threshold field values.

These results are quite reasonable from the point of view of wash-board potential

model, described in Sec. 2.1.2, because even applying the AC electric field smaller

that the wash-board barrier (equal to the static threshold field), a sort of resonance

can occur leading the SDW condensate to overcome the barrier height.

We have performed our measurements with the electric field of approximately

1 mV/cm, which is quite close from below to the static threshold field value. Being

based on the argument given above, we believe that at low temperatures, below

3.5 K, this value of electric field exceeds the critical dynamic electric field value,

leading to the depinning of the SDW mode, at least partially. This is the reason for

the suppression of the semiconductor-like activating behavior.

This conclusion is also supported by sample-dependent results below 3.5 K. At

33.5 GHz, these anomalies have slightly different temperature profiles for different

samples. The deviations from the semiconductor-like behavior were not observed at

all for the samples from another crystallization batch (see Fig. 5.7), and this can be

explained by the fact that the pinning strength strongly depends on the impurity

content in the samples and therefore can differ for the samples from different crystal-

lization batches. The annealed samples we used for the investigations at 24 GHz have
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Figure 5.17: (Top panel) Real part of the conductivity in the low AC field regime nor-
malized to the DC value ((G − G0)/G0) versus frequency for several selected
temperatures. (Bottom panel) Maximum AC signal amplitude in the low AC
filed regime normalized to DC threshold (V max/VT ) versus temperature. For
VS > V max

S the sample response starts to deviate from the behavior shown in
the top panel. Full line indicates the fit to the power law behavior. The inset
shows the fit to Arrhenius form. From Ref. [138].
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lost this anomalous behavior below 3.5 K after making cooling cycles during the mea-

surements at 33.5 GHz on them (see Fig. 5.10). Here, on performing a cooling cycle,

we inevitably introduce some microckracs to the sample, which also could cause the

SDW collective mode to pin more strongly to these imperfections, making the value

of threshold field considerably higher.



Chapter 6

Conclusions

6.1 Results

There is a long standing controversy whether the transport properties of the Bech-

gaard salts can be understood in terms of the usual Fermi-liquid (FL) theory, or

the Luttinger liquid (LL) theory. The nature of the metallic phase of an interact-

ing electron system depends strongly on the dimensionality. It is theoretically well

established that the conventional FL theory of 3D metals cannot be applied to the

interacting electrons whose motion is confined to one dimension, thus leading to a

formation of the LL state.

Among all the experimental approaches used to study the dimensionality of the

electron gas in Bechgaard salt, transverse transport measurements are particularly

relevant to directly probe of interchain coupling. Therefore, the reliable measurements

of the transverse transport properties along b′ and c∗ directions are highly needed,

and this was the motivation of the current work.

To explore the low-temperature spin-density (SDW) ground state of

(TMTSF)2PF6 in the microwave range is also of great interest. It was proposed

that the modulation of the spin density is slightly incommensurate with the underly-

ing lattice, and the collective mode can slide carrying current. But impurity pinning

causes the collective mode to resonate at finite frequencies, the pinned mode resonance

135
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usually occurs in the millimeter wave spectral range in nominally pure specimens, as

it was proposed for the SDWs [61]. Upon application of an external electric field, the

collective mode can be depinned and carry current. The electrodynamics of the SDW

state was well studied at several microwave frequencies (3–100 GHz) along the linear

chain axis a [131, 132]. To our knowledge, the microwave transport properties of

(TMTSF)2PF6 in the SDW state were never reported along the transverse directions

(b′ and c∗).

High quality single crystals of (TMTSF)2PF6 have been synthesized by the stan-

dard electrochemical growth method. The samples have a needle-shaped form with

typical dimensions 2 mm × 0.5 mm × 0.1 mm along a, b′ and c∗- axis, respectively.

The results on the b′ axis conductivity were obtained on a narrow slice cut from a

thick crystal perpendicular to the chain axis (the needle’s longest dimension); and

the typical dimensions of so-made samples were a × b′ × c∗ = 0.2 × 1.3 × 0.3 mm3.

The microwave measurements along the c∗ axis have been performed on the mosaics.

We present measurements of electrodynamical response of (TMTSF)2PF6, a rep-

resentative member of the organic quasi-one dimensional Bechgaard salts, in both

the normal (T > 12 K) and spin density wave state (T < 12 K). We report on the

investigations performed along the chain axis a, and transverse crystallographic axes

b′ and c∗. These measurements have been made at 24 and 33.5 GHz frequency and

were anticipated by the direct-current (DC) measurements.

The DC resistivity measurements were performed using a conventional four-probe

technique to eliminate influence of the contact resistances. The samples were slowly

cooled down to avoid cracks and ensure a good thermal equilibrium with temperature

sensors, and the resistivity data were taken in the wide temperature range from 300 K

down to 2 K.

The low value of the residual DC resistivity ρa together with a high resistivity

ratio ρa(300 K)/ρa(20 K) indicated a very high crystal quality. Below the T <

70 K, we have found, that the resistivity along the a and b′ directions follow the

quadratic power law: ρa(T ), ρb′(T ) ∼ T 2, this behavior is a strong indication of the
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inelastic electron-electron scattering and is typical for the Fermi-liquid systems. The

quadratic power law in this temperature range 12 K< T <70 K was not observed

along the c∗ direction, but rather ρc∗(T ) ∼ T . The proportionality ρa(T ) ∼ ρb′(T )

suggests a simple anisotropic band structure with isotropic relaxation time τ(T );

thus the anisotropy ρb′/ρa � 180 is temperature independent. The temperature-

independent anisotropy together with the small bandwidth also suggests that a tight

binding approximation is appropriate. Thus we have found the simple anisotropic

band structure: (4ta : 4tb : 4tc) ≈ (1 : 4 × 10−2 : 4 ×10−3) eV = (11600 :

460 : 46) K, which is quite close to the anisotropy as determined by band structure

calculations [24].

The DC transport properties of (TMTSF)2PF6 in the normal state above T =

100 K, where the system is expected to be more one-dimensional, were analyzed in

the framework of Luttinger liquid, which gives the following power-law description

for the longitudinal (ρ‖) and transverse (ρ⊥) resistivity, respectively:

ρ‖(T ) ∼ T 16Kρ−3,

ρ⊥(T ) ∼ T 1−2α,

where Kρ is the exponent characterizing the charge degrees of freedom of a LL and

α = 1/4(Kρ + 1/Kρ) − 1/2 is the Fermi surface exponent.

As it is known for the Bechgaard salts (TM)2X, much of the temperature depen-

dence of their conductivity at high temperatures arises from the thermal expansion.

To analyze the DC conductivity data of (TMTSF)2PF6 within the LL formalism,

which was developed for the constant-volume quantities of a strictly 1D system, we

have performed the conversion of constant-pressure to constant-volume conductivity

data.The pressure coefficients for the conductivity of (TMTSF)2PF6 are known from

the literature [30, 88].

From the temperature profiles of the high-temperature DC resistivity in the tem-

perature range 100 K< T <300 K, we have found that the comparison of our exper-

imental data, where ρ‖ = ρa ∼ T 0.56, with the above LL theoretical model yields
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Kρ = 0.22, optical experiments on (TMTSF)2X along the chains [105, 58] yield

Kρ = 0.23. However, if we use this value Kρ = 0.22 in order to describe the re-

sistivity data collected along the transverse axes b′ or c∗ in the same temperature

range, an inconsistency arises: with Kρ = 0.22 we would expect for the transverse

resistivity the power law ρ⊥(T ) ∼ T−0.36, while our experimental result clearly shows

the ρb′ ∼ T 0.24 and ρc∗ ∼ T−0.95 temperature dependence. Hence, the strong discrep-

ancy forward the description within the Luttinger liquid picture was evidenced.

At low temperature we have found that the SDW state develops below T = 12 K

along the a, b′, and c∗ directions, and the activation behavior was clearly evidenced

from the log ρ(1/T ) plot. The value of the thermal activation energy is found to be

around ∆ � 21 K along all three directions. This value can be perfectly described

by a mean-field BCS theory, which gives ∆ = 1.764kBTC = 21 K for the transition

temperature we observed TC = 12 K.

Unfortunately, since the Bechgaard salts have a pronounced needle shape whose

axis is parallel to the chains, transverse transport along b′ is particularly difficult

to perform with usual DC methods. Owing to non-uniform current distributions

between contacts, parasitic contributions from other directions can be introduced.

These problems can be avoided by using a contactless microwave technique which

allows a better control on the orientation of the current lines in these organic needles.

Measurements of the microwave conductivity were performed by means of the con-

tactless cavity perturbation technique, employing the cylindrical copper cavity oper-

ated in the TE011 transmission mode at a resonance frequency of 24 and 33.5 GHz.

The sample was fixed to a quartz rod positioned in the electric field maximum. We

have utilized the needle-shaped samples for the measurements along the a and b′

directions and mosaics for the investigations along the c∗ crystallographic direction.

During a measurement the sample can be rotated inside the cavity, allowing to mea-

sure its anisotropy insitu. In the experiment we determine the change of the resonance

frequency
(

∆ω
ω0

)
and the quality factor

(
∆ 1

2Q

)
of the cavity upon insertion of the sam-

ple. A complete temperature sweep from 2 K to 300 K is possible with varying cooling
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rates and at each desired temperature both the center frequency f0 = ω0

2π
of the cavity

resonance and the halfwidth Γ = f0

Q
were measured. Using our apparatus, changes of

the frequency and halfwidth can be determined with a sensitivity better then 5×10−7

at room temperature, with a further factor of 2 improvement at low temperatures;

about 10 mK precision was achieved in temperature control.

The complex conductivity σ the sample is related to the change in the cavity pa-

rameters, ∆Γ and ∆f0, and the results were analyzed either within the framework of

the quasistatic approximation or surface impedance formalism. The former is appli-

cable when the skin depth exceeds the samples dimensions and microwave radiation

penetrates the sample entirely (depolarization regime); the latter corresponds to the

opposite case (skin depth regime).

From the self-consistent analysis we were able to find the absolute values of the

microwave resistivity along all three directions. We have found that the temperature

dependence of the microwave resistivity ρa, ρb′ , and ρc∗ is similar at both microwave

frequencies of 24 and 33.5 GHz, but differs from the DC results. Namely, while the

microwave resistivity of (TMTSF)2PF6 along the c∗ axis scales with the corresponding

DC data, the microwave resistivity ρa and ρb′ shows less pronounced temperature

dependence both in the normal state and in the SDW state. It was also found that the

microwave resistivity ρb′ is not metal-like in the temperature range 25 K< T <55 K

in the normal state: on lowering the temperature, it first decreases monotonically

down to a local minimum around 55 K, increases slightly to reach a local maximum

near 25 K and decreases again down to the SDW transition at 12 K. The negative

derivative dρb′/dT < 0 in the temperature range 25 K< T <55 K refutes the possible

existence of quasi-particle states corresponding to the Fermi-liquid description. In

order to describe our microwave data within the framework of the Luttinger liquid

theory, we have performed the conversion to the constant-volume resistivity values

similar to that described above.

The analysis of our experimental data gives ρ⊥(T ) = ρb′(T ) ∼ T−0.4 in the temper-

ature range 20 K< T <45 K, and within the LL theoretical model yields Kρ = 0.22.
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However, if we use this value Kρ = 0.22 in order to describe the own resistivity data

collected along the chain axis a in the same temperature range 20 K< T <55 K, an

inconsistency arises: with Kρ = 0.22 we would expect for the longitudinal resistivity

the power law ρ‖(T ) = ρa(T ) ∼ T 0.5, while our experimental result clearly shows

the temperature independent a-axis resistivity in this temperature range. Therefore,

we can conclude that for (TMTSF)2PF6 our microwave data cannot be completely

understood within the LL picture.

The spin-density wave transition in (TMTSF)2PF6 is evidenced at 12 K along

all three directions. From the Arrhenius plot log ρ(1/T ) we have found that along

the c∗-axis, the activation behavior of the microwave resistivity within the SDW

temperature region has the mean value of the activation energy of ∆c∗ � 20.7 K.

This value of the gap we found from our microwave measurements is in very good

agreement with our DC results for the single-particle gap ∆0 = 21 K. Along both

the a and the b′ directions, the reduced values of the activation energy were found:

∆a ≈ ∆b′ ≈ 6 K. Such behavior is indicative of a strongly frequency-dependent

response and was attributed to the vicinity of the SDW pinned mode in the microwave

frequency range. It was proposed that in (TMTSF)2PF6 the SDW condensate is

pinned to the impurities in the microwave frequency range. We have concluded that

our microwave investigations have been performed in the range, where the pinned

collective mode is still very well pronounced, i.e., on the shoulder of the pinned

mode resonance. Therefore we can conclude that performing measurements at the

frequencies of 24 and 33.5 GHz we have a valuable contribution of the collective

mode (the pinned SDW mode) to the transport properties of the system, leading

to the reduced activation behavior of the resistivity in the SDW ground state. We

have considered the two-dimensional nesting vector in a − b′ plane, which leads to

the similar response of the SDW along a and b′ axis, and therefore the activation

behavior reduces the same way for these directions. When at zero frequency in the

SDW state, the transport is only of single particle nature.

The low-temperature anomalies, below T < 3.5 K, were evidenced deeply in the
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SDW state at 33.5 GHz, and we believe that these anomalies are due to the exceeding

of the threshold electric field when performing the microwave measurements.

6.2 Future Work

While our results strongly point forward the conventional FL theory to be applicable

in the normal state of the (TMTSF)2PF6 system, there are several open questions

which remain. There are still several representatives of the Bechgaard salts, which

have more pronounced one-dimensionality, e.g. (TMTSF)2ClO4 or (TMSTF)2ReO4.

They may be a good subject of contactless microwave investigations to successfully

apply the LL theory.

In addition, extending the technique described in this thesis to other microwave

frequencies to study these representatives of the Bechgaard salts, one can supplement

phase diagram and the frequency-dependent picture proposed for (TM)2X salts in the

normal and SDW states.

Finally, the dynamical properties of the SDW mode in (TMTSF)2PF6 are of in-

terest and could be scrutinized with respect to the applied electric field below 4 K.
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[61] G. Grüner, Rev. Mod. Phys. 66, 1 (1994)

[62] J. P. Pouget, R. Moret, R. Comes, and K. Bechgaard, J. Phys. (Paris) Lett.

42, L543 (1981)

[63] J. P. Pouget, R. Moret, R. Comes, K. Bechgaard, J. M. Fabre, and L. Giral,

Mol. Cryst. Liq. Cryst. 79, 129 (1982)

[64] C. Coulon, in Organic and Inorganic Low-Dimensional Crystalline Materials,

edited by P. Delhaes and M. Drillon, Plenum, New York, p. 201 (1987)

[65] L. D. Landau, Sov. Phys. JETP 3, 920 (1956)

[66] F. D. M. Haldane, J. Phys. C 14, 2585 (1981)

[67] H. J. Schulz, Int. J. Mod. Phys. 5, 57 (1991)

[68] J. Voit, Rep. Prog. Phys. 58, 977 (1995)

[69] P. W. Anderson, Phys. Rev. Lett. 65, 2306 (1990)



148 BIBLIOGRAPHY

[70] P. W. Anderson, Phys. Rev. Lett. 64, 1839 (1990)

[71] H. Basista, D. A. Bonn, T. Timusk, J. Voit, D. Jérome and K. Bechgaard,
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[109] J. Moser, J. R. Copper, D. Jérome, B. Alavi, S. E. Brown, and K. Bechgaard,

Phys. Rev. Lett. 84, 2674 (2000)

[110] S. Kirchner, Diploma Thesis, Universität Stuttgart, Stuttgart (1999)



BIBLIOGRAPHY 151

[111] C. S. Jacobsen, K. Mortensen, M. Weger, K. Bechgaard, Solid State Commun.

38, 423 (1981)
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[132] S. Donovan, M. Dressel, Y. Kim, L. Degiorgi, G. Grüner, and W. Wonneberger,
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