Molekulare Mechanismen der Chemorezeption trigeminaler Neurone von Säugetieren

Dissertation

zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie der Ruhr-Universität Bochum

vorgelegt von
Jennifer Spehr aus Essen

angefertigt am Lehrstuhl für Zellphysiologie, Prof. Dr. Dr. Dr. H. Hatt

Bochum, 2004
Inhaltsverzeichnis

1. **EINLEITUNG** ... 3
 1.1 CHEMOSENSORIK - EIN ÜBERBLICK .. 3
 1.2 TRIGEMINALES SYSTEM .. 5
 1.2.1 Entwicklung und Anatomie .. 5
 1.2.2 Trigeminales Innervation der Nasenschleimhaut 8
 1.2.2 Physiologische Funktion .. 9
 1.3 TRIGEMINAL-OLFAKTORISCHE INTERAKTION 12
 1.4 BEERITS BESCHRIEBENE TRIGEMINALE REZEPtOREN 14
 1.4.1 TRP-Rezeptoren ... 14
 1.4.2 Purinrezeptoren ... 15
 1.5 ZIELSETZUNG DER ARBEIT .. 19

2. **MATERIALIEN UND METHODEN** .. 20
 2.1 VERWENDETE ZELLTYPEN .. 20
 2.1.1 Primärkultur trigeminaler sensorischer Neurone 20
 2.1.2 Dissoziation olfaktorischer Rezeptorneurone 21
 2.1.3 Kultivierung von HEK293-Zellen 21
 2.2 TRANSIENTE TRANSFEKTION DER HEK-ZELLEN NACH DER KALZIUMPHOSPHATMETHODE 22
 2.3 LÖSUNGEN UND PHARMAKA .. 23
 2.4 PRINZIP DER „PATCH-CLAMP“-TECHNIK 25
 2.5 VERSUCHSAUFBAU ZUR REGISTRIERUNG VON REZEPtORSTRÖMEN 29
 2.6 BILDGEBENDE VERFAHREN .. 31
 2.6.1 Untersuchungen der intrazellulären Kalziumkonzentration
 mittels des Fluoreszenzfarbstoffes Fura-2 31
 2.6.2 Untersuchungen der intrazellulären ATP-Konzentration
 mittels des Fluoreszenzfarbstoffes Quinacrin 33
 2.6.3 Versuchsaufbau zur Detektion von intrazellulären Fluoreszenzänderungen 34
 2.7 APPLIKATION DER STIMULI .. 35
 2.8 IMMUNHISTOCHEMIE .. 37
 2.9 ISOLIERUNG DER MRNA UND SYNTHESE DER cDNA 39
 2.10 POLYMERASEKETTENREAKTION .. 39

3. **ERGEBNISSE** ... 40
 3.1 KULTIVIERUNG TRIGEMINALER NEURONE 40
 3.2 CHARAKTERISIERUNG DER KULTIVIERTEN TRIGEMINALEN NEURONE ANHAND IHRER P2X-REZEPtOR
 EXPRESSION .. 41
 3.2.1 ATP induzierte Ströme ... 41
 3.2.2 Vergleich der elektrophysiologischen Eigenschaften der Neuronenpopulationen 45
 3.2.3 Pharmakologische Charakterisierung der verschiedenen ATP-induzierten Ströme 47
 3.2.4 Immunhistochemische P2X-Rezeptor Identifikation 49
1. Einleitung

1.1 Chemosensorik - ein Überblick

Die erfolgreiche Anpassung eines Organismus an seine Umwelt hängt direkt von der Entwicklung und Kapazität seiner sensorischen Systeme ab. Dabei leistet jede Sinnesmodalität einen charakteristischen Beitrag zur Gesamtverarbeitung der sensorischen Umweltinformation auf zentraler Ebene.

Die Geruchswahrnehmung (Olfaktorik) erfolgt über primäre sensorische Neurone, die über spezifische Rezeptorproteine flüchtige Duftmoleküle binden und somit detektieren können. Die olfaktorischen Rezeptorneurone sind in hoher Dichte in einem sensorischen Epithel
Chemoperzeption trigeminaler Neurone

Deshalb ist das trigeminale System in der Lage, bei pathologischen Störungen des olfaktorischen Systems (Anosmien), ein reduziertes Riechvermögen aufrecht zu erhalten.

Die molekularen Mechanismen der Detektion chemischer Stimuli, vor allem die der Duftstoffe, in den freien trigeminalen Nervenendigungen sind bislang weitgehend unbekannt.

1.2 Trigeminales System

1.2.1 Entwicklung und Anatomie

Abb.1.1: Anatomie des *Nervus Trigeminus*

b: Schematische Darstellung der zentralen Verschaltung des trigeminalen Systems. Blaue und rote Fasern sind sensorische Fasern, orange sind auch hier die motorischen trigeminalen Fasern, deren Somata im zentralen Nucleus motorius n.V. zu finden sind.
1.2.2 Trigeminale Innervation der Nasenschleimhaut

Im Focus der vorliegenden Arbeit steht die trigeminale Innervation der Nasenschleimhaut. Sowohl das respiratorische als auch das olfaktorische Epithel werden von zwei Ästen des N. trigeminus innerviert: N. ethmoidalis (von N. ophthalmicus) und N. nasopalatinus (von N. maxillaris), wobei sowohl frühe psychophysische (von Skramlick, 1926), als auch aktuellere elektrophysiologische (Hummel et al., 1996) Daten darauf hinweisen, dass eine erhöhte trigeminale Chemosensitivität im anterioren Drittel der Nasenhöhle zu finden ist.

Chemoperzeption trigeminaler Neurone

1.2.2 Physiologische Funktion

1.3 Trigeminal-olfaktorische Interaktion

Insgesamt wird deutlich, dass die trigeminal-olfaktorische Interaktion keineswegs einfach, linear und vorhersehbar sind und starken Einfluß auf die Duftwahrnehmung haben.
1.4 Bereits beschriebene trigeminalen Rezeptoren

Obwohl bislang das Vorkommen von spezialisierten Duftstoffrezeptorproteinen, wie sie in olfaktorischen Sinneszellen gefunden wurden, nicht nachgewiesen werden konnte, zeigen zahlreiche Untersuchungen, dass periphere trigeminalen Neurone über eine Vielzahl von anderen Chemorezeptoren verfügen. Einige der beschriebenen Rezeptoren sind typische Transmitter-aktivierte Rezeptoren wie Acetylcholin- (Liu et al., 1993; Keiger und Walker, 2000), GABA- (Durkin et al., 1999) Serotonin- (Bonaventure et al., 1998), Glutamat- (Gu et al., 1994; Ohishi et al., 1995) und Purinrezeptoren (Xiang et al., 1998), aber auch Opioid-(Zhu et al., 1998), Interleukin- (Jelaso et al., 1998) und Prolactinrezeptoren (Royster et al., 1995). In der vorliegenden Arbeit habe ich mich insbesondere mit der Duftstoffaktivierung und -modulation von trigeminal exprimierten Purinrezeptoren sowie ebenfalls trigeminal exprimierten TRP-Rezeptoren beschäftigt.

1.4.1 TRP-Rezeptoren

Ein weiterer temperatur- und chemosensitiver TRP-Kanal wurde kürzlich entdeckt (McKemy et al., 2002; Peier et al., 2002). Der TRPM8 (oder CMR1, cold and menthol receptor 1) wird von einer Subpopulation trigeminaler Neurone exprimiert und in niedrigen Temperaturbereichen (< 22 °C) oder kühlend wirkende Substanzen wie Menthol aktiviert.

1.4.2 Purinrezeptoren

Eine Rolle von ATP und trigeminalen Purinrezeptoren wird für die Signalübermittlung der kürzlich beschriebenen „einzelnchemosensitiven Zellen“ (engl. solitary chemosensory cells) im respiratorischen Epithel der Nase diskutiert. Bei diesen Zellen handelt es sich sekundäre Sinneszellen, die von trigeminalen Fasern innerviert werden. Eine Aktivierung der der Sinneszellen durch Bittersubstanzen wie Quinine oder Cycloheximid wird von den trigeminalen Fasern abgegriffen (Finger et al., 2003). Der dabei genutzte Transmitter ist bislang unbekannt. Da aber diese chemosensitiven Zellen viele Moleküle der Signaltransduktion, die auch in Bittergeschmackssinneszellen vorhanden sind, exprimieren, könnten auch sie ATP als Transmitter nutzen wie es für die Geschmackszellen postuliert wird (Bo et al., 1999).

In verschiedenen Typen sensorischer Neurone (Neurone des Hinterwurzelganglions, des Ganglions trigeminales und des Ganglions nodosum) wurden nur die Transkripte der Untereinheiten 1-6 gefunden (Chen et al., 1995; Collo et al., 1996; Cook et al., 1997). Immunhistochemische Studien zeigen eine deutliche Dominanz der Immunoreaktivität der Untereinheit P2X₃, die in sensorischen Neuronen gelegentlich mit Immunoreaktivität der Untereinheit P2X₂ kolokalisiert ist (Cook et al., 1997; Vulchanova et al., 1997; Bradbury et
Aus dieser Kolokalisation ergeben sich verschiedene Möglichkeiten der Rezeptorzusammensetzungen: zum einen entstehen potentiell homooligomere Rezeptoren der Untereinheiten P2X₂ oder P2X₃, es besteht aber auch die Möglichkeit der Bildung heterooligomerer Rezeptoren, die sich aus beiden Untereinheiten zusammensetzen (P2X₂/₃) (Lewis et al., 1995; Thomas et al., 1998; Grubb & Evans, 1999).

Da homooligomere P2X₃-Rezeptoren spezifisch von putativen nozizeptiven Neuronen (gekennzeichnet durch Peripherin-Expression, Capsaicin-Sensitivität, TTX-Insensitivität) exprimiert werden, scheint es einen Mechanismus für ATP-vermitteltes Schmerzempfinden zu geben (Chen et al., 1995). Tatsächlich zeigen genommanipulierte Mäuse, denen das Gen für die P2X₃-Untereinheit fehlt, ein reduziertes Schmerzempfinden in verschiedenen Versuchsansätzen (Cockayne et al., 2000; Souslova et al., 2000).

Eine pharmakologische Charakterisierung der Untereinheitenzusammensetzung der neuronal exprimierten P2X-Rezeptoren wird durch die Verwendung Untereinheiten-spezifischer Agonisten oder Antagonisten ermöglicht. Im Folgenden werden die Eigenschaften der Agonisten bzw. Antagonisten beschrieben, die zur Identifikation von P2X₂- und P2X₃-Untereinheiten und der Unterscheidung zwischen homom- und heteromeren Rezeptoren verwendet werden können (siehe auch Tabelle 1.1).

Unterschiedliche P2X-Rezeptortypen unterscheiden sich in ihrer Sensitivität gegenüber dem ATP-Analogon α,β Methylen ATP (α,β meATP). Während niedrige Konzentrationen dieses Analogons ausreichen, um homomere P2X₃- und heteromere P2X₂/₃-Rezeptoren zu aktivieren (EC₅₀ 1 µM bzw. 9 µM) (Lewis et al., 1995; Robertson et al., 1996), können homomere P2X₂-Rezeptoren erst durch Konzentrationen über 100 µM aktiviert werden (Dunn et al., 2001).

Der Antagonist Diinosin-pentaphosphat (Ip₅) wirkt antagonistisch an homomeren P2X₃-Rezeptoren (IC₅₀ 3 µM), ist aber ineffektiv an heteromeren P2X₂/₃ und homomeren P2X₂-Rezeptoren (King et al., 1999; Dunn et al., 2000).

Tabelle 1.1: Pharmakologische Charakteristika von P2X₂, P2X₃ und P2X₂/₃-Rezeptoren
(zur Übersicht siehe Dunn et al., 2001)

<table>
<thead>
<tr>
<th></th>
<th>homomerer P2X₂-Rezeptor</th>
<th>homomerer P2X₃-Rezeptor</th>
<th>heteromeric P2X₂/₃-Rezeptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agonist</td>
<td>αβ-methylene ATP</td>
<td>EC₅₀ > 100 µM</td>
<td>EC₅₀ 1 µM</td>
</tr>
<tr>
<td>Antagonist</td>
<td>Diinosine pentaphosphate (Ip5I)</td>
<td>kein Effekt</td>
<td>IC₅₀ 3 µM</td>
</tr>
<tr>
<td>Cibacron blue</td>
<td>IC₃₀ 10 µM</td>
<td>EC₅₀ 10 µM</td>
<td>< 30 µM Potenzierung</td>
</tr>
</tbody>
</table>
1.5 Zielsetzung der Arbeit

Durch die experimentell schwer zugängliche Lage der trigeminalen Somata und Nervenfasern ist die Charakterisierung neuronaler Signalverarbeitung auf Einzelzellniveau \textit{in vivo} kaum möglich. In dieser Arbeit soll daher ein Kultursystem dissoziiert er trigeminaler Neurone der Ratte etabliert werden. Mittels bildgebender Verfahren wird die akute Wirkung von Duftstoffen, die bereits als trigeminal wirksam beschrieben wurden, auf die kultivierten Neurone untersucht. Nach der Identifikation wirksamer Düfte soll überprüft werden, ob klassifizierbare Subpopulationen trigeminaler Neurone unterschiedliche Dufterkennungsprofile aufweisen.

2. Materialien und Methoden

2.1 Verwendete Zelltypen

2.1.1 Primärkultur trigeminaler sensorischer Neurone

Um trigeminale sensorische Neurone zu kultivieren wurden neugeborene Wistar Ratten (postnataler Tag 1-5) dekapitiert. Beide trigeminalen Ganglien wurden unter dem Binokular entnommen. Die Ganglien wurden in eisgekühlter Phosphat gepuffter Salzlösung (PBS, Invitrogen) gewaschen und in ebenfalls eisgekühltem Leibovitz Medium (L15, Invitrogen) gesammelt. Zur enzymatischen Dissoziation wurden die Ganglien in kleine Stücke geschnitten und für 45 min in warmem Dulbecco’s Modified Essential Medium (DMEM, Invitrogen) mit 0,025% Collagenase (Typ IA, Sigma) bei 37°C (95% Luft und 5% CO₂) inkubiert. Anschließend wurde das Gewebe mit Hilfe einer feuerpolierten Glaspipette mechanisch dissoziiert. Die erhaltene Suspension wurde für 8 min bei 1000 r.p.m. zentrifugiert (Viana et al., 2001).

Das erhaltene Pellet wurde in Kulturmedium mit folgender Zusammensetzung resuspendiert: DMEM/F-12 (1:1) mit Glutamax (Invitrogen) ergänzt durch 10% fetales Kälberserum (Invitrogen), 100µg/ml Penicillin/Streptomycin und 100ng/ml NGF (Nervenwachstumsfaktor, mouse-7s, Alomone labs).

Die vereinzelten Zellen wurden in poly-L-Lysin (0,01%, Sigma) beschichteten Zellkulturschalen (Falcon, 140 µl Zellsuspension/Schale) ausplattiert und im Brutschrank (37°C, 95% Luft, 5% CO₂) kultiviert. Eine Stunde nach der Ausplattierung wurden zu jeder Schale 2 ml Kulturmedium zugegeben. Vier Stunden nach der Ausplattierung konnten die ersten Untersuchungen durchgeführt werden. Die Neurone ließen sich bis zu einer Woche kultivieren und untersuchen.

Um vergleichbare Bedingungen zu erhalten, wurden kortikale Neurone auf dieselbe Art dissoziert und kultiviert wie trigeminale Neurone. Allerdings wurden die kortikalen Neurone erst nach 10 Tagen in Kultur untersucht.

Die verwendeten Zellkulturschalen wurden zuvor für mindestens 12 Stunden mit poly-L-Lysin (180 µl; 0,01 %; Sigma) beschichtet. Nach der Beschichtung wurden sie dreimal mit destilliertem und autoklaviertem Wasser gewaschen. Vor der Ausbringung der Zellen mussten die Schalen vollständig trocken sein.

Zur Erstellung der Explantatkulturen wurden die entnommenen Ganglien nicht dissoziiert, sondern in kleine Gewebestückchen zerschnitten. Diese Explantate wurden in beschichtete

2.1.2 Dissoziation olfaktorischer Rezeptorneurone

Anschließend wurde das Gewebe in extrazelluläre Lösung überführt und durch Aufziehen in einer abgebrochenen, polierten Pasteurpipette mit weiter Öffnung mechanisch dissoziiert. Mit Hilfe von Zellsieben (Falcon 2350; 70 µm Nylon) wurden nicht vollständig dissozierte Zellverbände separiert. Die dissoziierten Zellen wurden in Concavalin A beschichtete Zellkulturschalen ausgebracht und zur Anhaftung für ca. 30 Minuten bei Raumtemperatur inkubiert. Anschließend konnten die olfaktorischen Rezeptorneurone aufgrund ihrer charakteristischen Form optisch identifiziert und untersucht werden (Spehr et al., 2002).

Zur Beschichtung wurden jeweils 10 µl 1mM Concavalin A (in 50 mM ACES-Puffer) in Kulturschälchen verteilt. Nach einer Trocknungszeit von etwa ein bis zwei Stunden wurden die Schalen zunächst einmal mit 70 % Ethanol und anschließend einmal mit destilliertem Wasser gewaschen. Nach erneuter Trocknung wurden die Schalen bis zur Verwendung im Kühlschrank aufbewahrt.

2.1.3 Kultivierung von HEK293-Zellen

HEK293-Zellen sind primäre, menschliche, embryonale Nierentumorzellen, die mit menschlichen Adenovirus Typ 5-DNA (Ad 5) transformiert und immortalisiert wurden (Graham et al., 1977). Die Zellen wurden in Zellkulturschalen (45-55 ml, Sarstedt) im Brutschrank (37 ºC, 95 % Luft, 5 % CO₂) kultiviert. Das verwendete Medium M 10 setzt sich aus MEM (Minimum Essential Medium, Invitrogen), 10 % fötalem Kälberserum, 23 mM L-
Glutamin (Invitrogen), MEM-nicht-essentielle Aminosäure-Lösung (Invitrogen) sowie 100µg/ml Penicillin/Streptomycin (invitrogen) und 200 µg/ml Neomycin zusammen. Alle zwei bis drei Tage wurde ein Mediumwechsel durchgeführt. Das Wachstum der Zellen wird optisch kontrolliert. Bei einer Dichte des Zellrasens von etwa 80 % der Gesamtfläche der Kulturschale (80 % Konfluenz) wurden die Zellen gesplittet und neu ausgesät. Hierzu wurde zunächst das Medium durch Absaugung und Waschen mit PBS- entfernt. Zur Ablösung der Zellen von der Kulturschale wurden diese in 750 µl Trypsin-EDTA-Lösung (0,5 g/l Trypsin, 0,2 g/l Ethylenedinitrilotetraessigsäure (EDTA)•4Na in HBSS, Invitrogen) für 5 min im Brutschrank (37ºC, 5 % CO₂) inkubiert. Zu diesen abgelösten Zellen wurden 9,25 ml Medium (M 10) zugegeben und die resultierende Zelllösung wurde in entsprechender Verdünnung in sterilen Kulturschalen ausgesät.

2.2 Transiente Transfektion der HEK-Zellen nach der Kalziumphosphatmethode

Die transiente Transfektion wurde nach der Kalziumphosphatmethode nach Gorman durchgeführt (Gorman et al., 1990). Zwei Tage vor der Transfektion wurden die HEK-Zellen in Zellkulturschalen (35 mm Durchmesser, Falcon) ausgesät, wobei die Dichte zwischen 0,7-1,0 * 10⁵ Zellen betrug. Die Konfluenz am Tag der Transfektion betrug dann 40-50 %. Für den Transfektionsansatz wurden eine definierte Menge der Plasmid-DNA (P2X₂: 2 µg, P2X₃: 10 µg, TRPM8: 8 µg), 25 µl Kalziumchloridlösung und 250 µl HBS (2x) zusammengegeben und mit Wasser auf einen Gesamtvolumen von 500 µl aufgefüllt. Alle Lösungen waren steril. Nach vorsichtiger Mischung wurde der Transfektionsansatz fünf Minuten bei Raumtemperatur inkubiert und dann tropfenweise auf die HEK-Zellen verteilt (100 µl der Transfektionslösung pro Zellkulturschale mit 1,3 ml Medium). Die Zellen werden für fünf Stunden in den Brutschrank zurückgestellt. Anschließend wird die Transfektionslösung durch zweimaliges Waschen mit PBS ++ entfernt und die Zellen erhalten frisches M 10 Medium. Die Transfektionsrate für die verwendeten Rezeptoren lag zwischen 50 und 70 %, die Zellen konnten bereits am nächsten Tag nach der Transfektion untersucht werden. Die cDNA Klone der Ratten ATP-Rezeptoruntereinheiten P2X₂ und P2X₃ wurden freundlicherweise von Dr. R. A. North (Universität Sheffield, UK), die cDNA Klone des Ratten TRPM8-Receptors (CMR1) von Dr. D. Julius (Universität von California, San Francisco, USA) zur Verfügung gestellt.
2.3 Lösungen und Pharmaka

Es wurden die im folgenden aufgeführten Lösungen und Medien verwendet. Sofern nicht anders angegeben wurden alle Substanzen von Sigma bezogen.

<table>
<thead>
<tr>
<th>Extrazelluläre Lösung (trigeminale Neurone):</th>
<th>Extrazelluläre Lösung (HEK-Zellen):</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl 140 mM</td>
<td>NaCl 140 mM</td>
</tr>
<tr>
<td>KCl 5 mM</td>
<td>KCl 5 mM</td>
</tr>
<tr>
<td>CaCl₂ 2 mM</td>
<td>CaCl₂ 2 mM</td>
</tr>
<tr>
<td>MgCl₂ 1 mM</td>
<td>MgCl₂ 1 mM</td>
</tr>
<tr>
<td>HEPES 20 mM</td>
<td>HEPES 20 mM</td>
</tr>
<tr>
<td>pH: 7,4; eingestellt mit NaOH</td>
<td>pH: 7,4; eingestellt mit NaOH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kalziumfreie extrazelluläre Lösung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl 140 mM</td>
</tr>
<tr>
<td>KCl 5 mM</td>
</tr>
<tr>
<td>MgCl₂ 1 mM</td>
</tr>
<tr>
<td>EGTA 5 mM</td>
</tr>
<tr>
<td>HEPES 20 mM</td>
</tr>
<tr>
<td>pH: 7,4; eingestellt mit NaOH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intrazelluläre Lösung (trigeminale Neurone):</th>
<th>Intrazelluläre Lösung (HEK-Zellen):</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl 140 mM</td>
<td>KF 150 mM</td>
</tr>
<tr>
<td>CaCl₂ 0,1 mM</td>
<td>KCl 30 mM</td>
</tr>
<tr>
<td>MgCl₂ 1 mM</td>
<td>EGTA 10 mM</td>
</tr>
<tr>
<td>HEPES 10 mM</td>
<td>HEPES 10 mM</td>
</tr>
<tr>
<td>EGTA 5 mM</td>
<td>pH: 7,4; eingestellt mit KOH</td>
</tr>
<tr>
<td>Na₂ATP 2 mM</td>
<td>pH: 7,4; eingestellt mit KOH</td>
</tr>
</tbody>
</table>
Phosphatgepufferte Salzlösung (PBS):

PBS\(^{++}\) Dulbecco’s und PBS\(^{-}\)Dulbecco’s (Invitrogen), PBS\(^{-}\) enthält keine divalenten Kationen

Hank’s Balanced Salt Solution (HBSS), ohne Magnesium- und Kalziumionen (Invitrogen)

Kulturmedien:

- DMEM (Dulbecco’s Modified Eagle Medium, Invitrogen)
- DMEM/F-12 (1:1) mit Glutamaxx (Invitrogen)
 + Fötales Kälberserum 10 % (hitzeinaktiviert, Invitrogen)
 + Penicillin/Streptomycin 100 µg/ml
 + NGF 100 ng/ml (Alomone)
- M10:
 MEM (Minimum Essential Medium, Invitrogen)
 + fötales Kälberserum 10 % (hitzeinaktiviert, Invitrogen)
 + L-Glutamin 23 mM (Invitrogen)
 + MEM-nicht-essentielle Aminosäure-Lösung (Invitrogen)
 + Penicillin/Streptomycin 100 µg/ml
 + Neomycin 200 µg/ml
2.4 Prinzip der „patch-clamp“-Technik

Bei der synaptischen Übertragung führt die durch präsynaptische Transmitterausschüttung induzierte Aktivierung postsynaptischer Rezeptorkanäle zu Ionenströmen, die eine Potentialänderung der postsynaptischen Zelle bewirken. Da Potentialänderungen spannungsabhängige Ionenkanäle aktivieren, tritt neben einer transmitterinduzierten postsynaptischen Stromkomponente auch eine spannungsabhängige Komponente auf, die zur Auslösung eines Aktionspotentials führt. Eine selektive Registrierung der transmitterinduzierten Ionenströme kann daher nur unter potentiostaten Bedingungen erfolgen.

haftet an dieser. Im günstigsten Fall reicht diese Anhaftung der Membran bereits zur Ausbildung einer hochohmigen (1-20 GΩ) Verbindung, des sogenannten „Gigaseals“, aus. Andernfalls kann die Membran auch durch Anlegen eines leichten Unterdrucks weiter in die Patchpipette eingesaugt werden. Ausgehend von dieser „cell-attached“-Konfiguration ergeben sich verschiedene Möglichkeiten für die weitere Vorgehensweise (Abb. 2.1.):

1. Legt man wiederum einen Unterdruck an, so kann das Membranstück unter der Patchpipette zerreissen, so daß man einen direkten Zugang zum Zellinneren erhält. In diesem Zustand können sogenannte Ganzzellableitungen („whole-cell-patch-clamp“) durchgeführt werden. Bei genügend kleinen Zellen können auf diese Weise die über die gesamte Zellmembran fließenden Ionenströme registriert werden.

Die bei der „patch-clamp“-Technik verwendete Meßschaltung ermöglicht es, auf eine zusätzliche Elektrode zur Potentialmessung zu verzichten. Der Operationsverstärker (OPV) stellt das zentrale Bauelement der „patch-clamp“-Verstärker-Schaltung dar (Abb. 2.2). Der OPV, der aus mehreren Transistoren aufgebaut ist, ist als Strom-Spannungs-Wandler verschaltet. Am „-“-Eingang des OPV liegt über die Patchpipette das Zellpotential an; während zwischen „+“-Eingang und Erde die sogenannte Sollspannung \(V_{\text{so}} \) angeliegt, auf die das Membranpotential „geklemmt“ werden soll. Der OPV stellt ein aktives Bauteil dar, das bestrebt ist, durch Variation des am rekursiv verschalteten Ausgang erzeugten Potentials die Potentialdifferenz zwischen „+“- und „-“-Eingang auszugleichen. Im Gleichgewicht liegt daher auch am „-“-Eingang das Sollpotential an, so daß bei Vernachlässigung des Pipettenwiderstandes über der Membran die Sollspannung anliegt.
Der Ausgang des OPV ist über einen als Rückkoppelwiderstand (R_f) bezeichneten Widerstand mit dem „+“-Eingang verbunden. Über der Membran auftretende Ströme (z.B. EPSCs) fließen über die Patchpipette zum OPV hin ab, da über den Verstärker der Stromkreis geschlossen wird. Aufgrund des sehr hohen Eingangswiderstands des OPV (ideal: unendlich groß; real: $10^{12}\Omega$) fließt der Haupteil des Stroms über den Rückkoppelwiderstand (0,5 GΩ). Da am „+“-Eingang des OPV im Gleichgewicht das Sollpotential anliegt, gilt für die am Ausgang des OPV abgreifbare Spannung, wenn ein Strom I_m über die Membran fließt: $V_{\text{out}} = V_c + I_m \cdot R_f$.

Ein Stromfluß über die Membran führt also bezüglich der Ausgangsspannung des OPV zu einer der Stromstärke proportionalen Änderung von V_{out}. Daher kann V_{out} zur Registrierung der über die Membran fließenden Ionenströme dienen. Um das Sollpotential V_c abzutrennen und ein dem Stromfluß direkt proportionales Spannungssignal zu erhalten, ist der „patch-clamp“-Schaltung meist ein Differenzverstärker nachgeschaltet.

Abb.2.2: Vereinfachtes Schaltbild einer „patch-clamp“-Ableitung

R_f: Rückkoppelwiderstand; R_s: Zugangswiderstand; R_m: Widerstand der Zellmembran; C_m: Kapazität der Zellmembran bzw. des „patches“; V_i: Potentialdifferenz zwischen Zellinnerem und Bezugelektrode; V_{out}: ausgegebene Spannung, Meßgröße; V_{soll}: Kommandospannung

Der Ausgleich des Membranpotentials auf den Wert des Sollpotentials erfolgt im Gegensatz zum idealen System nur mit endlicher Geschwindigkeit, da die dynamischen Eigenschaften der Spannungsklemme durch die relativ langsame Umladungsgeschwindigkeit der Zellmembran (und der Patchpipette) bestimmt werden. Daher folgt das Membranpotential dem vorgegebenen Sollpotential nur mit einer gewissen Verzögerung, weshalb die meisten Verstärker die Möglichkeit zur Kompensation der Zell- und Pipettenkapazität bieten.
Für die Effizienz der Spannungsklemme ist allein die effektiv über der Membran anliegende Klemmspannung von Bedeutung, die zur Umladung der Membran führt. Da der Membranwiderstand mit dem Zugangswiderstand in Reihe geschaltet ist, fällt ein Teil der Klemmspannung bereits über dem Zugangswiderstand ab, so daß das Verhältnis der beiden Widerstände über die Wirksamkeit der Spannungsklemme entscheidet. Ist der Membranwiderstand 50-100 mal größer als der Zugangswiderstand, so beträgt der Fehler entsprechend 1 bis 2% und ist deshalb vernachlässigbar. Der Zugangswiderstand bzw. Serienwiderstand hängt vom Widerstand der Pipetten ab, weshalb möglichst niederohmige Patchpipetten benutzt werden sollten. Der Einfluß des Serienwiderstandes auf die Eigenschaften der Spannungsklemme kann bei den meisten Verstärkern durch eine spezielle Schaltung kompensiert werden.

Die Größe der mit der „patch-clamp“-Technik maximal messbaren Ganzzellströme wird durch die Wahl des Rückkoppelwiderstandes begrenzt:

\[R_f = \frac{V_{out,max}}{I_{max}} \]

\[I_{max} = \frac{V_{out,max}}{R_f} \]

Bei einer maximalen Ausgangsspannung von 10 V beträgt die maximal messbare Stromstärke 5 nA, wenn mit einem Rückkoppelwiderstand von 0,5 GΩ gearbeitet wird. In der Praxis wird allerdings der maximale Messbereich auf ca. 2 nA beschränkt.

2.5 Versuchsaufbau zur Registrierung von Rezeptorströmen

Alle patch-clamp Daten wurden mit Hilfe eines folgendermaßen aufgebauten Messplatzes ermittelt. Die gesamte Meßapparatur (Mikroskop, Patchpipettenhalterung, Vorverstärker, Applikationssystem) war in einem Faradaykäfig untergebracht, der die Einstrahlung von elektrischen Störfeldern weitgehend verhindern sollte. Das inverse Mikroskop (Zeiss Axiovert 32M) war mit einem Objektiv (Zeiss ACHROMAT 5x/0,12 ∞/-) mit 5facher Vergrößerung und einem Phasenkontrastobjektiv (Zeiss ACHROSTIGMAT LD 32x/0,40 Ph1 ∞/0,5-1,5) mit 32facher Vergrößerung ausgestattet. Zusammen mit der Vergrößerung der Okulare ergaben sich daher Gesamtvergrößerungen von 50 bzw. 320fach.

Um Schwingungen der Patchpipette gegenüber dem Mikroskop zu vermeiden, war die über Grob- und Feintriebe verfahrbare Halterung des Messkopfes am Mikroskoptisch fixiert, so daß sich eine starre Verbindung ergab. Das gesamte Mikroskop stand außerdem auf einem schwingungsgeämmften Tisch.

Die Positionierung der Patchpipette erfolgte mit Hilfe eines Mikromanipulators (Narishige, Japan) unter optischer Kontrolle.
Die für die Versuche benötigten Glasmikropipetten („Patchpipetten“) wurden mit einem elektronisch gesteuerten Elektroden-Ziehgerät (DMZ Universalpuller) hergestellt. Für die Herstellung der Mikropipetten wurden 10 cm lange Borosilikat-Glasröhrchen (1,2 mm O.D. x 1,17 mm I.D., Harvard apparatus) verwendet. Der feuerpolierte Spitzendurchmesser der verwendeten Patchpipetten betrug ca. 1µm, was einem Elektrodenwiderstand von 3-8 MΩ entsprach. Vor jeder Messung wurden die Glasmikropipetten frisch hergestellt.

In der statistischen Auswertung entspricht der bei quantitativen Aussagen angegebene Fehler dem sogenannten „Standardfehler des Mittelwertes“ (S.E.M.) und bezeichnet die Streuung des Mittelwertes. Signifikanzuntersuchungen erfolgten mit Hilfe des t-Testes nach Student, die Signifikanzgrenze lag bei 5 % (*) bzw. 0,1 % (**).
2.6 Bildgebende Verfahren

2.6.1 Untersuchungen der intrazellulären Kalziumkonzentration mittels des Fluoreszenzfarbstoffes Fura-2

Fura-2 weist gegenüber anderen Fluoreszenzfarbstoffen wie Quin 2 und Indo-1 bessere Absorptions- und Emissionseigenschaften auf, wodurch die Verwendung vergleichsweise niedriger Konzentrationen von Fura-2 ermöglicht wird. Außerdem weist Fura-2 eine bessere Photostabilität auf, wodurch der experimentelle Zeitrahmen der Fluoreszenzanalysen verlängert wird.

Chemoperzeption trigeminaler Neurone

durch Exozytose wieder aus den Zellen hinausbefördert wird, ist der Zeitraum der experimentellen Analyse auf etwa eine Stunde begrenzt.
2.6.2 Untersuchungen der intrazellulären ATP-Konzentration mittels des Fluoreszenzfarbstoffes Quinacrin

In der vorliegenden Arbeit werden jedoch nicht die physiologischen Effekte dieser Substanz betrachtet, sondern lediglich ihre hohe Bindungsaffinität zu Adenin Nukleotiden und insbesondere zu ATP genutzt. Diese hohe Bindungsaffinität zu ATP machen das fluoreszierende Quinacrin zu einem bevorzugten Marker für intrazelluläre ATP-Speicher (Bodin und Burnstock, 2001a; Sorensen und Novak, 2001; Mitchell et al., 1998; White et al., 1995). Zellen, die hohe intrazelluläre ATP-Konzentrationen aufweisen akkumulieren Quinacrin. Diese Eigenschaften des Quinacrins erlauben Untersuchungen des zellulären ATP Vorkommens auf Einzelzellniveau.

Die Quinacrin-gefärbten Zellen können hinsichtlich ihrer Fähigkeit, Stimulus-induziert ATP freizusetzen, untersucht werden. Nimmt nach einer Stimulation die intrazelluläre Fluoreszenz ab, kann dies als ATP-Freisetzung interpretiert werden (Bodin und Burnstock, 2001a; Sorensen und Novak, 2001; Knight et al., 2002).

Um die olfaktorischen Rezeptornerone mit Quinacrine zu färben, wurden sie für 15 min in 5 μM Quinacrin (in extrazellulärer Lösung) inkubiert. Die Quinacrin-Fluoreszenz wurde mit demselben Versuchsaufbau, der auch für die Bestimmung der intrazellulären Kalziumkonzentration verwendet wurde, untersucht.
2.6.3 Versuchsaufbau zur Detektion von intrazellulären Fluoreszenzänderungen

Der für die Analyse der Veränderungen der intrazellulären Kalziumkonzentration mittels Fura-2 bzw. der Freisetzung des Quinacrin-markierten, intrazellulären ATPs verwendete Meßaufbau bestand aus einem inversen Mikroskop der Firma Zeiss (Axiovert 100) und einem Monochromator der Firma T.I.L.L.Phototonics. Mit dem Monochromator wurden die alternierenden monochromatischen Wellenlängen, welche in den Versuchen genutzt wurden, erzeugt. Das Mikroskop war mit einem speziellen Objektiv der Firma Zeiss (Achroplan 40x/0,6 korr) ausgestattet, welches sich durch eine hohe UV-Transmission auszeichnet.

Die Messung der Fluoreszenz erfolgte über eine CCD-Kamera (PXL 37) der Firma Photometrics. Das Bild der Zellen wurde auf einen CCD-Chip (charged-coupled device) abgebildet und dort auf einem Array mit einer Pixel-Matrix elektronisch vermessen. Die Pixel des CCD-Array wurden gruppiert (Binning), was zwar die Auflösung verringert, aber die Empfindlichkeit der Kamera wesentlich steigert. Zur Reduzierung der anfallenden Datenmenge und zur Geschwindigkeitssteigerung ist es möglich, frei definierbare Bereiche, sogenannte ROI (Regions of interest), des Chips auszulesen. Die Meßergebnisse dieser Bereiche wurden während der Aufnahme direkt auf dem Bildschirm angezeigt und auf der Festplatte des angeschlossenen Computers gespeichert.

Chemoperzeption trigeminaler Neurone

In der statistischen Auswertung entspricht der bei quantitativen Aussagen angegebene Fehler dem sogenannten „Standardfehler des Mittelwertes“ (S.E.M.) und bezeichnet die Streuung des Mittelwertes. Signifikanzuntersuchungen erfolgten mit Hilfe des t-Testes nach Student, die Signifikanzgrenze lag bei 5 % (*) bzw. 0,1 % (***)

2.7 Applikation der Stimuli

Die Applikation der Stimuli erfolgte über ein schnelles Superfusionssystem (Spehr et al., 2002; Abb.2.3), das sowohl in patch-clamp als auch in Ca-Imaging Untersuchungen verwendet wurde.

Bedingt durch die experimentellen Bedingungen befand sich das Applikationssystem ständig in der extrazellulären Badlösung, so daß trotz geschlossener Ventile eine leichte Diffusion der Applikationslösungen in das Bad denkbar wäre. Um Adaptationsprozesse zu vermeiden, wurde deshalb während der Experimentabschnitte, in denen keine Stimuli appliziert wurden, über eine Kanüle extrazelluläre Lösung appliziert. Dies führt zum einen zu einer starken Verdünnung der möglicherweise diffundierenden Substanzen und außerdem zu einer schnellen Entfernung derselben mit der applizierten extrazellulären Lösung über die Applikationsabsaugung.

Mit Ausnahme der Duftstoffe wurden alle Substanzen in extrazellulärer Lösung gelöst. Die Duftstoffe Benzaldehyd, Citral, Toluene, 3-Phenylpropionaldehyd, 5-Phenylvaleraldehyd,
Cyclohexanon, Furfural, Pyridine, Menthol und Linalool wurden aufgrund ihrer schlechten Wasserlöslichkeit in Ethanol gelöst und anschließend in extrazellulärer Lösung bis auf die Endkonzentration verdünnt. Die sich dabei ergebenden Endkonzentrationen von Ethanol hatte keinen Effekt auf die Zellen.

Der Stimulus Icilin wurde zunächst in DMSO gelöst und anschließend in extrazellulärer Lösung verdünnt. Die resultierenden DMSO-Konzentrationen hatten keinen Effekt auf die Zellen.

In einigen Experimenten wurde die Generation von AP durch QX-314 (2 nM, Tocris), einem Blocker der spannungsgesteuerten Natriumkanäle, in der intrazellulären Lösung verhindert.

Um die Sensitivität der trigeminalen Neurone gegenüber TTX (Tetrodotoxin, Alomone) zu untersuchen, wurde die Fähigkeit, AP zu generieren, vor und während der Applikation von 1 µM TTX getestet.

Abb. 2.3

Die Skizze zeigt den prinzipiellen Aufbau der Superfusionsapparatur, aus Gründen der Übersichtlichkeit wurden nur drei Superfusionskanülen eingezeichnet.
2.8 Immunhistochemie

Für die immunhistochemischen Untersuchungen wurden kultivierte trigeminalen Neurone einmal mit PBS gewaschen und anschließend mit Paraformaldehyd (4 % in PBS, 60 °C; 20 min) fixiert. Die 4 %ige Paraformaldehydlösung wurde unter Erhitzung des Paraformaldehyd-PBS-Gemisches bis auf 60 °C hergestellt. Der trübe Lösung wurde tropfenweise 1 N NaOH zugegeben, bis die Lösung aufklarte. Diese 60 °C heiße Paraformaldehydlösung wurde auf die Zellen gegeben. Nach der Fixierung wurden die Zellen wiederum mit PBS gewaschen (dreimal, je fünf Minuten Wartezeit), um das Paraformaldehyd, dessen Rückstände zur Denaturierung der Antikörper führen konnten, vollständig zu entfernen. Unspezifische Bindungen der verwendeten Antikörper wurden durch Inkubation in einer Blocklösung vermieden. Die Blocklösung enhielt bei NST-Färbungen 10 % Pferdeserum und 0,2 % Triton X-100 (in PBS), während sie bei P2X-Färbungen 10 % Ziegenenserum und 0,2 % Triton (in PBS) beinhaltete. Triton gewährleistet die Permeabilität der Zellmembran. Die Inkubationszeit betrug bei beiden Ansätzen 60 min bei 37 °C. Diesem Absättigungsschritt folgte die Inkubation mit den primären Antikörpern über Nacht bei 4 °C. Anschließend wurden die Zellen gewaschen (PBS, fünfmal, je fünf Minuten Wartezeit) und mit den sekundären Antikörpern bei 37 °C inkubiert (vier Stunden bei der NST-Färbung, 30 Minuten bei der P2X-Färbung). Alle Antikörper wurden in PBS mit 0,2 % Triton verdünnt. Vor der Untersuchung der Immunofluoreszenz wurden die Zellen wiederum in PBS gewaschen (fünfmal, je fünf Minuten Wartezeit).

Die Immunofärbungen gegen die P2X-Rezeptorunteneinheiten 2 und 3 wurden mit folgenden primären Antikörpern durchgeführt: (i) anti-P2X\(_2\) (1:800), ein polyklonaler Antikörper aus dem Kaninchen gegen die Aminosäuren 457-472 des Ratten P2X\(_2\)-Receptors (Alomone) und (ii) anti-P2X\(_3\) (1:500), ein polyklonaler Antikörper aus dem Meerschweinchen gegen die Aminosäuren 383-397 des Ratten P2X\(_3\)-Receptors (Neuromics). Als zweite Antikörper wurden IgGAlexa Fluor® 488 goat anti-rabbit IgG (P2X\(_2\)-Färbung) und Alexa Fluor® 546 goat anti-guinea pig (P2X\(_3\)-Färbung) (je 1:1000, Molecular Probes) verwendet.

Um die NST Immunofluoreszenz nachzuweisen, wurden die Kulturen unter einem Mikroskop (Axioskop 2, Zeiss), das mit einer 75 W Xenon Lampe ausgestattet war, betrachtet. Die Fluoreszenz des sekundären Antikörpers wurde mit einem LP 590 nm Filter bei einer Anregungswellenlänge von > 546 nm (BP 546 nm Filter) detektiert. Mit Hilfe einer digitalen Kamera (Axiocam, Zeiss) und des Computerprogrammes Axiovision wurden die Ergebnisse festgehalten und analysiert.

Das trigeminline Explantat, das auf dem repräsentativen Bild dargestellt ist, wurde aus einer Maus mit ubiquitärer eGFP (enhanced green fluorescent protein) Expression erstellt (Hadjantonakis et al., 1998). Die Aufnahmen wurden mittels des konfokalen Mikroskopes gemacht. Als Anregungswellenlänge für das GFP wurde der 488 nm Laser (Argon) genutzt, die Fluoreszenz wurde mit einem LP 505 nm Emissionsfilter detektiert.
2.9 Isolierung der mRNA und Synthese der cDNA

2.10 Polymerasekettenreaktion

In der vorliegenden Arbeit wurde der Nachweis olfaktorischer Rezeptor kodierender mRNAs in Form von cDNA mit der PCR-Methode (polymerase chain reaction) durchgeführt. Ein Paar Sequenz-degenerierter PCR Primer (P1: ATGGCITA(TC)GA(TC)(AC)GITA(TC)GTIGCIA TITG, P2: CCIATG(CT)TIAA(CT)CC(GC)TT(TC)ATITA, I = Inositol) wurde anhand hoch konservierter Regionen der olfaktorischen Rezeptoren erstellt (Buck und Axel, 1991).

Die PCR Amplifikation wurde für 40 Zyklen (94 °C 1 min, 50 °C 1 min, 72 °C 1 min und 2.5 Einheiten der Taq-Polymerase) mit 100 pmol der Primer P1 und P2 sowie ~ 1 ng cDNA durchgeführt (entsprechend der Empfehlung des Herstellers, Invitrogen). Zur Überprüfung der cDNA Synthese wurden außerdem zwei Primer für die Detektion der GAPDH cDNA (Glyceraldehyde-3-Phosphat Dehydrogenase) verwendet (P3: AGGGGCCATCCACAGTCTTCTG and P4: CATCACCATCTTCCAGGAGCGA). Die Amplifikation wurde mit je 30 pmol der Primer und 30 Zyklen (94 °C 1 min, 60 °C 1 min, 72 °C 1 min, 2.5 Einheiten der Taq-Polymerase).

Die entstandenen PCR-Produkte wurden über 1 % Agarosegele (Invitrogen) in TBE-Laufpuffer bei RT für 60 bis 65 min bei 100 V in einer Gelkammer (Sambrook und Russel, 2001) aufgetrennt. Dem Agarosegel wurde Ethidiumbromid (10 mg/ml, Invitrogen) zugegeben, ein interkalierender DNA-Farbstoff, der unter UV-Licht fluoresziert. Nach Beendigung der Elektrophorese wurde das Muster der Moleküle auf dem Gel mit einer Kamera und nachgeschalteter Bildverarbeitung dokumentiert. Um die jeweilige Größe der PCR-Produkte abschätzen zu können, wurde DNA-Marker (100 bp ladder, Invitrogen) verwendet.
3 Ergebnisse

3.1 Kultivierung trigeminaler Neurone

Um die Untersuchung trigeminaler Chemoperzeption auf Einzelzellniveau zu ermöglichen, wurde ein Kultursystem für dissozierte trigeminales Neurone aus dem Ganglion gasseri der Ratte etabliert. In diesem Kultursystem überlebten die vereinzelten neuronalen Zellen bis zu einer Woche. Neurone wurden zunächst durch eine positive Immunfärbung mit einem Antikörper gegen Neuronen-spezifisches Tubulin (NST) identifiziert (Abb.3.1). In den folgenden Experimenten wurden die Neurone anhand ihrer charakteristischen Morphologie (große runde Somata mit einem Durchmesser von durchschnittlich 45 µm) und elektrophysiologisch anhand ihrer Fähigkeit, Aktionspotentiale (AP) zu generieren, von ebenfalls kultivierten Gliazellen unterschieden. Kennzeichnend für kultivierte trigeminales Neurone war ihr schnelles Neuritenwachstum. Vier Stunden nach der Dissoziation konnten bereits neu gebildete Neurite beobachtet werden (Abb.3.1a). In den folgenden Kultivierungstagen entwickelte sich ein dichtes Netzwerk von Neuriten (Abb.3.1b,c). Das Verhältnis von nicht-neuronalen zu neuronalen Zellen betrug etwa 100:1, eine Relation vergleichbar humaner trigeminaler Ganglien (LaGuardia et al., 2000).

Abb.3.1: Immunhistochemische Färbung trigeminaler Neurone mit einem Antikörper gegen Neuronenspezifisches Tubulin (NST)
a: Neurone vier Stunden nach der Dissoziation
b: Neurone einen Tag nach der Dissoziation, ein Tag in vitro (1 DIV)
c: Neurone zwei Tage nach der Dissoziation, (2 DIV)
Hier wird das schnelle Wachstum der Neurite während der Kultivierung deutlich.
Die Balken zeigen jeweils 50 µm.
3.2 Charakterisierung der kultivierten trigemenalen Neurone anhand ihrer P2X-Rezeptor Expression

3.2.1 ATP induzierte Ströme

Eine große Gruppe von Neuronen (57%, 130/230) zeigte einen langsam aktivierenden Einwärtsstrom (Anstiegszeit: 84 ± 7 ms (Zeit von 10% bis 90% der Maximalamplitude)), der während der ATP Applikation (30 µM) von einer Sekunde nur schwach desensitisirt („persistenter Strom“, Abb.3.2a). Die Amplitude lag am Ende der ATP Applikation bei 83 ± 3% der Maximalamplitude (n = 33). Die ermittelten Maximalamplituden in unterschiedlichen
Zellen waren sehr variabel und reichten von 30 pA bis 1079 pA (Mittelwert: 383 ± 52 pA) (siehe Tabelle 3.1).

Der zweite Neuronentyp (18 %, 42/230) zeigte phasische Einwärtsströme, die sich durch schnelle Anstiegszeiten (33 ± 7 ms), und eine rapide Desensitisierung mit biexponentieller Kinetik ($\tau_1 = 48 \pm 10$ ms, $\tau_2 = 231 \pm 59$ ms) auszeichneten. Diese Ströme desensitierten während der ATP Applikation von einer Sekunde fast vollständig auf 4 ± 1 % der Maximalamplitude (n = 17) („transienter Strom“, Abb.3.2b). Die Anstiegszeit und die Desensitisierungsrate der ATP-induzierten Ströme der ersten und der zweiten Neuronenpopulation unterschieden sich signifikant voneinander (p ≤ 0,001). Die Maximalamplituden der zweiten Neuronenpopulation wiesen ebenfalls eine enorme Variabilität von 94 pA bis 605 pA auf (Mittelwert: 315 ± 37 pA).

Darüber hinaus waren die Anstiegszeiten der gemischten Ströme dieser dritten Population und der persistenten Ströme der ersten Population signifikant verschieden (p ≤ 0,05). Zwischen den Anstiegszeiten der gemischten Ströme und der transienten Ströme der zweiten Population bestand kein signifikanter Unterschied.

Tabelle 3.1: Eigenschaften der Ströme, die von 30 µM ATP induziert werden (Haltepotential: -60 mV) (Mittelwerte ± S.E.M., * p≤ 0.05; *** p≤ 0,001)

<table>
<thead>
<tr>
<th>Ströme</th>
<th>Anstiegszeit (ms)</th>
<th>Desensitisierungsrate (%) nach 1 s</th>
<th>Maximalamplitude (pA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>persistente Ströme</td>
<td>84 ± 7 ***</td>
<td>17 ± 3 ***</td>
<td>383 ± 52 (von 30 bis 1079)</td>
</tr>
<tr>
<td>transiente Ströme</td>
<td>33 ± 7 *</td>
<td>96 ± 1 *</td>
<td>315 ± 37 (von 94 bis 605)</td>
</tr>
<tr>
<td>gemischte Ströme</td>
<td>51 ± 11 52 ± 5</td>
<td></td>
<td>335 ± 35 (von 107 bis 620)</td>
</tr>
</tbody>
</table>

Abb.3.2: Verschiedene ATP Antworten kultivierter trigeminaler Neurone auf ATP Applikation
30 µM ATP wurde für 1s appliziert
a/c/e: whole cell voltage clamp Aufnahmen, holding potential: -60 mV
b/d/f: whole cell current clamp Aufnahmen, es wurde kein Strom injiziert, das Ruhemembranpotential ist angezeigt
a, b: persistenter Strom; c, d: transienter Strom; e, f: gemischter Strom
Die drei Populationen zeigten keine Unterschiede bezüglich ihrer ATP Sensitivität und wurden daher für die Bestimmung der Dosis-Wirkungsbeziehung zusammengefasst. Anhand des ermittelten ATP Dosis-Wirkungsverhältnisses ließ sich eine halbmaximale Aktivierungskonzentration (EC_{50}) von $30 \pm 5,5 \mu M$ ATP und ein Hill-Koeffizient von 0,8 bestimmen (Abb.3.3). Da nicht alle ATP Konzentrationen an derselben Zelle getestet werden konnten, ergibt sich die Dosis-Wirkungskurve aus 74 Experimenten mit einem Minimum von 7 unabhängigen Messungen für jede Konzentration.

Abb.3.3: ATP Dosis-Wirkungsbeziehung kultivierter trigeminaler Neurone

a: Die schwarzen Kreise zeigen die ATP Dosis-Wirkungsbeziehung persistenter Ströme, die weißen Quadrate die gemischter Ströme und die grauen Dreiecke die transiente Ströme. Es konnten keine signifikanten Unterschiede in der Dosis-Wirkungsbeziehung zwischen den Strömen verschiedener Kinistik festgestellt werden. Die daher zusammengefassten Daten wurden mit Hilfe einer Hill-Gleichung gefittet. Es ergab sich ein EC_{50} von $30 \mu M$ ATP und ein Hill-Koeffizient von 0,8.

b-d: Beispielströme, induziert von verschiedenen ATP Konzentrationen
obere Spuren: $1 \mu M$ ATP (1 s), mittlere Spuren: $10 \mu M$ ATP (1 s), untere Spuren: $100 \mu M$ ATP (1 s)
b: gemischte Ströme
c: transiente Ströme, in der unteren Spur überlagerten Natriumströme (grau) den ATP-induzierten Strom, dieser wird daher durch eine eingezeichnete schwarze Linie gekennzeichnet
d: persistente Ströme
3.2.2 Vergleich der elektrophysiologischen Eigenschaften der Neuronenpopulationen

Um die Neurone des Ganglion gasseri weiter zu klassifizieren, habe ich die grundlegenden biophysikalischen Eigenschaften der Neuronenpopulationen verglichen, die unterschiedliche Antworten auf ATP-Applikation zeigen (Tabelle 3.2).

Das Ruhemembranpotential der drei Neuronenpopulationen unterschied sich nicht signifikant voneinander. Das mittlere Ruhepotential lag bei -51 ± 7 mV (n = 71). Die Membrankapazität wies ebenfalls keine signifikanten Unterschiede auf (Mittelwert 19 ± 1 pF).

Ein Vergleich der AP Maximalamplituden der unterschiedlich ATP-sensitiven Neuronenpopulationen zeigte keine Unterschiede. Daher wurden die Daten zusammengefasst und hinsichtlich der Ausbildung oder der Nichtausbildung eines humps verglichen. Dabei waren die Maximalamplituden der AP mit hump signifikant größer als jene ohne hump (Tab. 3.2).

Zusätzlich wurde die Dauer der AP bei 30% und bei 50 % der Maximalamplitude bestimmt, wobei für keinen der beiden Werte ein signifikanter Unterschied im Vergleich der Neuronenpopulationen mit unterschiedlichen ATP-Antworten oder mit unterschiedlichen AP Formen gezeigt werden konnte (Mittelwerte: 2 ± 0,1 ms bei 50 % der Maximalamplitude; 4 ± 0,2 ms bei 30 % der Maximalamplitude). Auch die Amplitude der Hyperpolarisation unterschied sich in keiner Gruppe signifikant (Mittelwert: 17 ± 7 mV).
Tabelle 3.2: Eigenschaften der Aktionspotentiale
(gemessen am Ruhemembranpotential; AP wurden durch Strominjektionen, die den Schwellenwert überschritten, induziert; die Werte sind Mittelwerte ± S.E.M., * p≤ 0.05)

<table>
<thead>
<tr>
<th>ATP induzierte Ströme</th>
<th>AP-Form</th>
<th>Maximalamplitude (pA)</th>
<th>AHP Ampl. (pA)</th>
<th>Dauer (50%) (ms)</th>
<th>Dauer (30%) (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent</td>
<td>hump</td>
<td>103 ± 5</td>
<td>18 ± 1</td>
<td>2.3 ± 0.2</td>
<td>3.9 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>ohne hump</td>
<td>89 ± 5</td>
<td>17 ± 1</td>
<td>2.5 ± 0.2</td>
<td>4.2 ± 0.5</td>
</tr>
<tr>
<td>Transient</td>
<td>hump</td>
<td>115 ± 5</td>
<td>16 ± 3</td>
<td>2.1 ± 0.3</td>
<td>3.9 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>ohne hump</td>
<td>98 ± 23</td>
<td>18 ± 4</td>
<td>2.1 ± 0.4</td>
<td>3.4 ± 1.1</td>
</tr>
<tr>
<td>Gemischt</td>
<td>hump</td>
<td>117 ± 3</td>
<td>15 ± 1</td>
<td>2.0 ± 0.6</td>
<td>4.5 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>ohne hump</td>
<td>92 ± 5</td>
<td>17 ± 2</td>
<td>1.6 ± 0.2</td>
<td>3.2 ± 0.9</td>
</tr>
<tr>
<td>alle Neurone</td>
<td>hump</td>
<td>112 ± 3 *</td>
<td>17 ± 1</td>
<td>2.1 ± 0.2</td>
<td>4.1 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>ohne hump</td>
<td>100 ± 3</td>
<td>17 ± 1</td>
<td>2.2 ± 0.1</td>
<td>4.0 ± 0.2</td>
</tr>
</tbody>
</table>
3.2.3 Pharmakologische Charakterisierung der verschiedenen ATP-induzierten Ströme

Die ATP-induzierten transienten Einwärtsströme der zweiten Neuronenpopulation ließen sich durch α,β meATP (15 µM) aktivieren und durch den Antagonisten Ip₃I (50 µM) blockieren (n = 8) (Abb.3.4b). Dieses pharmakologische Profil deutet auf die Expression homomerer P2X₃-Rezeptoren hin.

Das pharmakologische Profil der dritten Population wies interessante Eigenschaften auf. α,β meATP in niedrigen Konzentrationen aktivierte in diesen Neuronen ausschließlich die schnell ansteigende und schnell desensitisierende Stromkomponente, währende Ip₃I genau diese Stromkomponente inhibierte (n = 12) (Abb.3.4c). Diese Eigenschaften stimmen nicht mit den beschriebenen pharmakologischen Eigenschaften heteromerer P2X₂₃-Rezeptoren überein, sondern weisen vielmehr auf die Expression zweier separater Rezeptorpopulationen, nämlich homomerer P2X₂- und P2X₃-Rezeptoren, hin, die unabhängig voneinander aktiviert und inhibiert werden können.
Chemoperzeption trigeminaler Neurone

Abb. 3.4: Pharmakologische Identifikation der P2X Untereinheitenzusammensetzung der nativen P2X-Rezeptoren

Applikationen waren 30 μM ATP, 15 μM meATP, 50 μM Ip,I + ATP und 20 μM Cibacron blue + ATP, jeweils für 1 s

* 60 s Präinkubation mit Ip,I vor der Applikation von ATP + Ip,I (a, b, c)

** 120 s Präinkubation mit Cibacron blue vor der Applikation von ATP + Cibacron blue (a)

a: ATP-induzierter persistenter Strom, kein Effekt von meATP oder Ip,I, aber effektiver Block durch Cibacron blue

→ pharmakologisches Profil homomerer P2X₂-Rezeptoren

b: ATP induzierter transienter Strom, meATP induziert den transienten Strom, Ip,I blockt den transienten Strom

→ pharmakologisches Profil homomerer P2X₃-Rezeptoren

c: ATP induzierter gemischter Strom, meATP induziert ausschließlich die transiente Komponente des gemischten Stromes, Ip,I blockt ausschließlich die transiente Komponente

→ pharmakologisches Profil homomerer P2X₂- und homomerer P2X₃-Rezeptoren

48
3.2.4 Immunhistochemische P2X-Rezeptor Identifikation

Zusätzlich zur elektrophysiologischen und pharmakologischen Charakterisierung der P2X-Rezeptor-Expression in trigeminalen Neuronen, habe ich die Lokalisation der Rezeptoren mittels immunhistochemischer Methoden untersucht. Dazu wurden spezifische Antikörper gegen die P2X-Rezeptorproteine der Untereinheiten 2 (P2X₂) und 3 (P2X₃) verwendet. Ein Teil der kultivierten trigeminalen Neurone (22 %, 11/50) zeigte eine exklusiv positive Immunreaktion gegen P2X₃-Rezeptoruntereinheiten sowohl auf den Somata als auch auf den Neuriten der Neurone (rote Färbung, Abb.3.5a). 36 % (18/50) der Neurone waren immunopositiv sowohl für P2X₂- und für P2X₃-Rezeptoruntereinheiten, was sich in einer roten und grünen bzw. gelben (Bildüberlagerung) Färbung der Somata widerspiegelte. Die Färbung der Neuriten zeigte, dass beide Rezeptoruntereinheiten (P2X₂ und P2X₃) auch auf den Ausläufern lokalisiert sind (Abb.3.5b). Die übrigen Neurone (42 %, 21/50) waren ausschließlich grün gefärbt, d.h. sie zeigten nur eine positive Immunreaktion gegen P2X₂-Rezeptoruntereinheiten (Abb.3.5c). P2X₃-Rezeptoruntereinheiten waren auf diesen Neuronen nicht nachweisbar. Diese immunhistochemischen Befunde stimmen sowohl qualitativ als auch quantitativ mit den Ergebnissen der elektrophysiologischen Untersuchungen überein. Jede der drei pharmakologisch identifizierten Subpopulationen lässt sich mittels der spezifischen Immunfärbsungen nachweisen.
Abb.3.5: Immunhistochemische Färbung kultivierter trigeminaler Neurone (2 DIV) mit spezifischen Antikörpern gegen P2X₂- und P2X₃-Rezeptoruntereinheiten

a, d, g, j: Färbung gegen P2X₃-Rezeptoruntereinheiten mit Alexa dye 546 (grün)
b, e, h, k, : Färbung gegen P2X₂-Rezeptoruntereinheiten mit Alexa dye 488 (rot)
c, f, i, l: Cofärbung gegen P2X₂- und P2X₃-Rezeptoruntereinheiten (rot und grün)
a-c zeigen ein Neuron, das nur P2X₃-Rezeptoruntereinheiten exprimiert, es sind sowohl Soma als auch Neurite gefärbt.
d-f zeigen zwei Neurone, die P2X₂- und P2X₃-Rezeptoruntereinheiten exprimieren, dies resultiert in einer rot/grün oder gelben Färbung. Der Ausläufer des einen Neurons ist rot und grün gefärbt, der Ausläufer des anderen Neurons ist nur grün gefärbt.
g-i zeigen Neurone, die ausschließlich P2X₂-Rezeptoruntereinheiten exprimieren (drei Neurone nebeneinander).
j-l: Kontrollfärbung, die primären Antikörper wurden mittels spezifischer Blockpeptide präabsorbiert.
Der Skalierungs balken ist für alle Bilder identisch und zeigt 50 µm.
Die Cofärbung belegte die Existenz drei verschiedener Neuronentypen. Besonders zu beachten ist die Färbung der Neuriten (gekennzeichnet durch *).
3.2.5 Funktionelle dendritische P2X-Rezeptor Expression

Dieser Befund ist ein deutlicher Hinweis auf die funktionale P2X-Rezeptor-Lokalisation in den Endbereichen der vom Explantat auswachsenden Neurite.

3.2.6 Vergleich nozizeptiver und nicht-nozizeptiver Neurone

Wie einleitend erwähnt, scheint die Expression bestimmter P2X-Rezeptoruntereinheiten mit der Funktion der Neurone zu korrelieren (Cook et al., 1997). Daher habe ich die unterschiedlichen trigeminalen Neuronenpopulationen bezüglich der Merkmale nozizeptiver Neurone untersucht. Die Expression TTX-insensitiver Natriumkanäle ist ein anerkanntes Merkmal solcher Schmerzfasern (Pearce und Duchen, 1994; Djouhri et al., 1998; Lopez di Armentia et al., 2000).

Untersuchungen im „Current-clamp“ Modus (Whole-cell patch clamp) zeigten, dass bei 67 % (69/103) der kultivierten dissozierten Neurone eine Strominjektion auch während der Inkubation mit Tetrodotoxin (TTX, 1 µM) zur Generation von AP führte. Die übrigen Neurone waren auch bei erhöhter Strominjektion nicht in der Lage, in Gegenwart von TTX AP zu generieren (Abb.3.7). Der Hauptteil der TTX-insensitiven Neurone (87 %, 60/69) antwortete auf ATP-Applikation mit transienten oder gemischten Strömen. Entsprechend der pharmakologischen Charakterisierung exprimierten diese Neurone ausschließlich P2X$_{3}$- (transienter Strom) oder P2X$_{3}$- in Kombination mit P2X$_{2}$-Rezeptoruntereinheiten (gemischter Strom) (Abb.3.7a). Im Gegensatz dazu zeigten fast alle Neurone, in denen ATP einen persistenten Strom induzierte und die entsprechend nur P2X$_{2}$-Rezeptoruntereinheiten exprimierten, eine TTX-Sensitivität (91%, 31/34) (Abb.3.7b). Da dieser letzteren Population
zwei typische Eigenschaften nozizeptiver Neurone (TTX-Insensitivität und P2X₃-Receptoruntereinheiten Expression) fehlen, ist es wahrscheinlich, dass diese Neurone eine nicht-nozizeptive Funktion aufweisen.

Abb.3.7: TTX-Sensitivität trigeminaler Neurone mit unterschiedlichem ATP Antwortverhalten
Die Fähigkeit der Neurone, AP zu generieren, wurde in „current-clamp“ Experimenten untersucht. Die Neurone wurden schrittweise depolarisiert bis sie AP generierten, dasselbe Experiment wurde während der Anwesenheit von 1 µM TTX wiederholt.

a: TTX-insensitive Neurone zeigten alle drei Formen ATP-induzierter Ströme, aber die Mehrzahl der Neurone antwortete mit transienten oder gemischten Strömen (60/69) und exprimieren daher wahrscheinlich P2X₃-Receptoruntereinheiten.

b: TTX-sensitive Neurone antworteten fast ausschließlich mit persistenten Strömen (31/34), höchstwahrscheinlich induziert durch Aktivierung homomerer P2X₃-Rezeptoren.

3.3 Wirkungen von Duftstoffen auf trigeminal Neurone
3.4 Der Duftstoff Benzaldehyd als trigeminaler Stimulus

Im Gegensatz zu den oben genannten Studien, die Benzaldehyd als wirksamen trigeminalen Stimulus beschreiben, konnte ich keine direkte Aktivierung trigeminaler Neurone der drei Populationen durch Benzaldehyd feststellen. Die Applikation von Benzaldehyd (2.25 mM) führte weder zu einer Induktion von Ionenströmen oder Änderungen des Membranpotentials (elektrophysiologische Untersuchungen, n = 15) noch zu einer Erhöhung der intrazellulären Kalziumkonzentration (Calcium-Imaging Experimente, n = 16).

Abb.3.8: PCR Detektion der Expression olfaktorischer Rezeptorneurone im trigeminalen Ganglion und im olfaktorischen Epithel

PCR mit einem Paar sequenz-degenerierter Primer, die anhand konservierter Regionen olfaktorischer Rezeptorproteine erstellt wurden, detektierte Transkripte in der RNA des olfaktorischen Epithels, aber nicht in der RNA des trigeminalen Ganglions der Ratte. Die Qualität der cDNA Synthese wurde durch die Detektion von GADPH cDNA (Glyceraldehyd-3-phosphat Dehydrogenase) kontrolliert. (Gg: *Ganglion gasseri*, OE: olfaktorisches Epithel, Ktr: Kontrolle mit Wasser)
3.4.1 Benzaldehyd Modulation purinerger Rezeptoren

Offen bleibt, wie trigeminales Neuronen den chemischen Stimulus Benzaldehyd detektieren können. Interessanterweise führte gleichzeitige Applikation von Benzaldehyd und ATP auf trigeminales Neuronen zu einer Modulation der ATP-induzierten Stromantwort. Die Untersuchungen belegten, dass dieser Effekt von Benzaldehyd spezifisch für nichtdesensitisierende P2X2-Rezeptor vermittelte Ströme ist. Die Koapplikation von Benzaldehyd (2,25 mM) und ATP (10 µM) reduzierte die Maximalamplitude signifikant (p ≤ 0,05; n = 10) auf 63 ± 11 % der von ATP allein induzierten Antwort (Abb.3.9a,d). Die Anstiegszeit (Zeit von 10 % bis 90 % der Maximalamplitude) und die Antwortzeit (Zeit vom Start der Applikation bis 50 % der Maximalamplitude) des ATP-induzierten Stromes wurden durch gleichzeitige Benzaldehydgabe ebenfalls moduliert. Beide Eigenschaften nahmen signifikant um 193 ± 71 % bzw. 157 ± 37 % zu (p ≤ 0,05; n = 10 für beide) (Abb.3.9b,c,d).

Zudem wurden mögliche Auswirkungen einer Präinkubation mit Benzaldehyd auf die eben beschriebenen Effekte untersucht. Eine 30 sekündige Präinkubation der trigeminalen Neurone mit Benzaldehyd und anschließender Koapplikation von Benzaldehyd und ATP führte zu einer weiteren signifikanten Reduktion der Maximalamplitude des ATP-induzierten Stromes auf 34 ± 8 % (p ≤ 0,001; n = 10) und erhöhte die Anstiegszeit signifikant um 285 ± 88 % (p ≤ 0,05; n = 10). Die Antwortzeit nahm durch die Präinkubation nicht signifikant weiter zu. Eine Verlängerung der Präinkubationzeit auf 90 Sekunden führte zu keiner weiteren signifikanten Veränderung der drei Effekte (Abb.3.9a,b,c,d).

Im Gegensatz zu den persistenten P2X2-Rezeptor vermittelten Strömen wurden transiente P2X3-Rezeptor vermittelte Ströme nicht von einer Benzaldehyd (2,25 mM)-ATP (10 µM) Koapplikation verändert (Abb.3.9e). Auch die Aktivierung des Receptors durch seinen spezifischen Agonisten α,β meATP (10 µM) blieb unbeeinflusst durch Benzaldehyd Koapplikation. Präinkubation mit Benzaldehyd war ebenso wirkungslos.
Abb. 3.9: Benzaldehydmodulation ATP-induzierter Ströme in trigeminalen Neuronen

a-c: Modulation ATP-induzierter persistenter Ströme; Maximalamplitude, Anstiegszeit und Antwortzeit des induzierten Stromes wurden jeweils auf die ursprüngliche (erste) ATP Antwort normiert (Mittelwerte ± SEM, * zeigt Signifikanz $p \leq 0.05$; *** $p \leq 0.001$).

a: Koapplikation mit 2,25 mM Benzaldehyd führte zu einer signifikanten Reduktion der Amplitude, Benzaldehyd-Präinkubation für 30 s bzw. 90 s reduzierte die Amplitude noch stärker.
b: Die Anstiegszeit wurde durch Benzaldehyd Koapplikation signifikant erhöht, Präinkubation verstärkte auch diesen Effekt.
c: Die Antwortzeit der Ströme wurde durch Benzaldehyd ebenfalls erhöht, allerdings konnte keine signifikante Verstärkung durch Präinkubation ermittelt werden.

d-e: Vergleich der Benzaldehydmodulation ATP-induzierter Ströme verschiedener Kinetik in trigeminalen Neuronen

e: ATP (10 µM) induzierte einen transienten Strom, auch auf Neurone dieses Typs hatte Benzaldehyd allein keinen Effekt. Im Gegensatz zu den persistenten Strömen veränderte eine Koapplikation den ATP-induzierten transienten Strom bezüglich keiner der untersuchten Parameter.
Um einen möglichen direkten Effekt von Benzaldehyd auf den P2X₂-Rezeptor charakterisieren zu können, ist es wichtig, den Rezeptor außerhalb des nativen trigeminalen Systems zu untersuchen. Daher wurde dieser Rezeptor in einem heterologen System (HEK 293 Zellen) rekombinant exprimiert. Auch in diesem System induzierte Benzaldehyd allein (in Konzentrationen bis zu 4,5 mM) keine nachweisbaren Zellantworten in patch-clamp Experimenten (Haltepotential: -60 mV, n = 10). Koapplikation von Benzaldehyd (2,25 mM) und ATP (10 µM) führte zu Modulationen der ATP-induzierten Ströme ähnlich den in trigeminalen Neuronen beschriebenen Effekten (Abb.3.10a). Die verwendete ATP Konzentration von 10 µM entspricht dem EC₅₀ Literaturwert für heterolog in HEK Zellen exprimierte P2X₂-Rezeptoren (Spelta et al., 2003). Benzaldehyd reduzierte die Maximalamplitude der P2X₂-vermittelten Ströme auf 70 ± 6 % und verlängerte die Anstiegszeit auf 213 ± 19 % (p ≤ 0,001; jeweils n = 8). Die Antwortzeit der Stromantwort wurde ebenfalls signifikant auf 211 ± 15 % verlängert (p ≤ 0,001; n = 8). Nach einer Auswaschperiode (90 s) konnten wieder ATP-Ströme der ursprünglichen Größenordnung (Kontrolle) detektiert werden.

Um die Spezifität der Benzaldehydmodulation zu überprüfen, wurden auch heterolog exprimierte P2X₃-Rezeptoren untersucht. ATP-induzierte P2X₃-Ströme wurden durch Koapplikation von Benzaldehyd (2,25 mM) nicht signifikant beeinflusst (Abb.3.10a). Die Spezifität der Benzaldehydmodulation an P2X₂-Rezeptoren wurde durch ein weiteres Experiment unterstrichen. Auch der ebenfalls heterolog exprimierte TRPM8-Rezeptor, ein weiterer ionotroper Ionenkanal trigeminaler Neurone, der durch 100 µM Menthol aktiviert wurde (McKemy et al., 2002), ließ sich durch Benzaldehyd nicht modulieren (Abb.3.10b).
Abb. 3.10: Spezifität des Benzaldehydeffektes

a: Vergleich der Benzaldehydmodulation P2X$_2$- und P2X$_3$-Rezeptor vermittelter Ströme (heterologe Rezeptorexpression in HEK 293 Zellen). Die Maximalamplitude, die Anstiegszeit und die Antwortzeit wurden auf die ATP-induzierte Antwort des jeweiligen Rezeptortyps unter Kontrollbedingungen normiert. Bei P2X$_2$-Rezeptor vermittelter Strömen wurde jede der drei Eigenschaften durch ATP und Benzaldehyd Koapplikation signifikant verändert. Keine signifikante Veränderung konnte bei P2X$_3$-Rezeptor vermittelten Strömen beobachtet werden. (Mittelwerte \(\pm \) SEM, *** zeigt Signifikanz \(p \leq 0.001 \)).

Im unteren Teil sind representative P2X$_2$-Rezeptor bzw. P2X$_3$-Rezeptor vermittelte Ströme dargestellt. Diese zeigen, dass P2X$_2$-Rezeptor vermittelte Ströme durch Benzaldehyd moduliert werden, während P2X$_3$-Rezeptor vermittelte Ströme unbeeinflusst bleiben („whole-cell“ Ableitungen, Haltepotential –60 mV).

b: Benzaldehydeffekt auf TRPM8-Rezeptoren

Um die Spezifität des Benzaldehydeffektes zu untersuchen, wurde ein weiterer trigeminaler ionotroper Rezeptor heterolog exprimiert: der Menthol- und Kälterezeptor TRPM8.

Eine Koapplikation des Agonisten Menthol mit Benzaldehyd zeigte, dass der Menthol-induzierte Strom durch Benzaldehyd nicht moduliert wird. Die Maximalamplitude, die Anstiegszeit und die Antwortzeit wurden auf den Menthol-induzierten Strom normiert (Mittelwerte \(\pm \) SEM).
Die Untersuchung der Dosis-Wirkungsbeziehung des inhibitorischen Benzaldehyd- effektes auf heterolog exprimierte P2X₂-Rezeptoren zeigte eine steile Konzentrationsabhängigkeit: die Maximalamplitude und Antwortzeit des ATP-induzierten Stromes blieben unbeeinflusst von 0,5 mM Benzaldehyd, wurden aber durch Konzentrationen von 2,25 mM maximal verändert. Der Effekt auf die Anstiegszeit zeigte eine noch steilere Dosisabhängigkeit, 1 mM Benzaldehyd hatte keinen Effekt, während der maximale Effekt bei 2,25 mM auftrat (Abb.3.11, Tabelle 3.3a).

Der zugrunde liegende Mechanismus der Benzaldehydmodulation konnte durch Koapplikation verschiedener ATP-Konzentrationen in Anwesenheit einer sättigenden Benzaldehydkonzentration (2,25 mM) untersucht werden (Abb.3.12, Tabelle 3.3b). Die modulierenden Effekte von Benzaldehyd auf die Maximalamplitude, die Anstiegszeit und die Antwortzeit nahmen bei ansteigender ATP Konzentration ab. Signifikante Modulationen konnten bei ATP Konzentrationen von 10 µM und 30 µM festgestellt werden (p ≤ 0,001 bzw. p ≤ 0,05). Stimulation durch ATP Konzentrationen höher als 70 µM, die als sättigende Konzentrationen an heterolog exprimierten P2X₂-Rezeptoren angegeben werden (Spelta et al., 2003), hoben den Benzaldehydeffekt komplett auf. Diese Aufhebung des Benzaldehydeffektes durch Erhöhung der ATP Konzentrationen legt eine Kompetition von Benzaldehyd und ATP um dieselbe Bindestelle des P2X₂-Receptors nahe.
Abb. 3.11: Abhängigkeit der Modulation P2X₂-Rezeptor vermittelten Ströms von der Benzaldehydkonzentration

a-c: Die Rezeptoren wurden jeweils durch 10 µM ATP aktiviert. Die Konzentrationsabhängigkeit des Benzaldehydeffektes wurde durch Koapplikation verschiedener Benzaldehydkonzentrationen untersucht. Die Maximalamplitude und die Antwortzeit wurden durch Benzaldehydkonzentrationen von 1 mM und höher moduliert, die Anstiegszeit wurde nur durch Konzentrationen von 2,25 mM oder höher beeinflusst (Mittelwert ± SEM, * zeigt Signifikanz $p \leq 0.05$, *** $p \leq 0.001$).

d: Beispiele für ATP-induzierte Ströme
oben: ATP (10 µM) allein appliziert, mittig: ATP koappliziert mit einer nicht wirksamen Benzaldehydkonzentration (0,5 mM), unten: ATP koappliziert mit einer effektiven Benzaldehydkonzentration (2,25 mM).
Abb.3.12: Abhängigkeit der Benzaldehydmodulation P2X2-Rezeptor vermittelter Ströme von der ATP-Konzentration

a-c: Die Rezeptoren wurden mit verschiedenen ATP-Konzentrationen aktiviert. Benzaldehyd wurde in einer maximal wirksamen Konzentration von 2,25 mM koappliziert, die Daten wurden auf die jeweilige ATP-Konzentration normiert. Die modulatorischen Effekte von Benzaldehyd auf die Maximalamplitude (a), die Anstiegszeit (b) und die Antwortzeit (c) konnten durch Koapplikation mit ATP-Konzentrationen von oder höher als 70 µM aufgehoben werden. (Mittelwert ± SEM, * zeigt Signifikanz p \(\leq 0.05\), *** p \(\leq 0.001\)).

d: Beispiele für Benzaldehydmodulation (2,25 mM) an ATP-induzierten Strömen
oben: 10 µM ATP + 2,25 Benzaldehyd, starke Modulation
mittig: 30 mM ATP + 2,25 mM Benzaldehyd, mittlere Modulation
unten: 100 µM ATP + 2,25 mM Benzaldehyd, keine Modulation
Tabelle 3.3: Benzaldehyde moduliert P2X₂-Rezeptor vermittelte Ströme

Die Daten wurden jeweils auf die ATP-induzierte Antwort normiert, dabei wurden verschiedene Benzaldehyd (a) und verschiedene ATP Konzentrationen (b) untersucht. (Mittelwert ± SEM, * zeigt Signifikanz p ≤ 0.05, *** p ≤ 0.001 gegenüber der ATP-induzierten Antwort).

a

10 µM ATP

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Max.amp. (%)</th>
<th>Anstiegszeit (%)</th>
<th>Antwortzeit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mM Benzal.</td>
<td>89 ± 8 %</td>
<td>86 ± 9 %</td>
<td>88 ± 20 %</td>
</tr>
<tr>
<td>1.0 mM Benzal.</td>
<td>75 ± 5 %***</td>
<td>132 ± 30 %</td>
<td>173 ± 15 %***</td>
</tr>
<tr>
<td>2.25mM Benzal.</td>
<td>70 ± 6 %***</td>
<td>213 ± 19 %***</td>
<td>211 ± 15 %***</td>
</tr>
<tr>
<td>4.5 mM Benzal.</td>
<td>77 ± 2 %***</td>
<td>215 ± 18 %***</td>
<td>197 ± 14 %***</td>
</tr>
</tbody>
</table>

b

2.25 mM Benzaldehyde

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Max.amp. (%)</th>
<th>Anstiegszeit (%)</th>
<th>Antwortzeit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 µM ATP</td>
<td>70 ± 6 %***</td>
<td>213 ± 19 %***</td>
<td>211 ± 5 %***</td>
</tr>
<tr>
<td>30 µM ATP</td>
<td>82 ± 5 %*</td>
<td>178 ± 17 %*</td>
<td>189 ± 23 %*</td>
</tr>
<tr>
<td>70 µM ATP</td>
<td>100 ± 7 %</td>
<td>83 ± 7 %</td>
<td>76 ± 8 %</td>
</tr>
<tr>
<td>100 µM ATP</td>
<td>103 ± 13 %</td>
<td>109 ± 16 %</td>
<td>97 ± 19 %</td>
</tr>
</tbody>
</table>

3.4.2 „Rezeptives Feld“ der P2X₂-Rezeptor Modulation

In weiteren Experimenten wurde an rekombinant exprimierten P2X₂-Rezeptoren die potentielle Wirksamkeit chemischer trigeminaler und olfaktorischer Stimuli mit struktureller Ähnlichkeit zu Benzaldehyd untersucht, um so ein „rezeptives Feld“ zu ermitteln. Benzaldehyd selbst weist eine aromatische Ringstruktur und eine daran gebundene Aldehydgruppe auf. Die strukturell verwandten Stimuli (Struktur siehe Abb.3.13) wurden wie zuvor Benzaldehyd gemeinsam mit ATP appliziert und die resultierenden Ströme bezüglich ihrer Maximalamplitude (Abb.3.13a), ihrer Anstiegszeit (Abb.3.13b) und ihrer Antwortzeit (Abb.3.13c) charakterisiert und mit den ATP-induzierten Strömen verglichen. Das Ersetzen der funktionellen Aldehydgruppe durch eine Methylgruppe wurde toleriert. Der Stimulus Toluen (2 mM) zeigte einen ähnlichen Effekt wie Benzaldehyd (n = 17). Durch Anfügen einer Methylgruppe an die Aldehydseitenkette wird aus dem Aldehyd ein Keton. Dieses Acetophenon (2 mM) war ebenfalls wirksam (n = 17). Mögliche Einflüsse der Länge der Kohlenstoffseitenkette wurden zusätzlich untersucht. Eine Aldehydgruppe mit einer Verbindungskette aus drei Kohlenstoffatomen zum aromatischen Ring (3-
Phenylpropanaldehyd (3-PPA), 2 mM zeigte einen Benzaldehyd vergleichbaren Effekt (n = 9), während eine weitere Verlängerung der Seitenkette zu fünf Kohlenstoffatomen (5-Phenylvaleraldehyd oder 5-PVA, 3 mM) zum Verlust der Effektivität am P2X₂-Rezeptor führte (n = 12). Dies zeigt, dass geringe Veränderungen der Seitenkette der Benzaldehydstruktur vom Rezeptor toleriert werden, wenn das Gesamt molekül dadurch nicht zu groß wird. Die entsprechenden Moleküle zeigen eine ähnliche Inhibition des P2X₂-Rezeptor vermittelten Stromes wie Benzaldehyd. Weder Toluen, noch Acetophenon oder 3-PPA zeigten einen direkten Effekt auf trigeminales Neuron. Analog vorheriger Experimente wurde eine mögliche Strominduktion oder eine Membrandepolarisation in patch-clamp Experimenten (n = 10) sowie eine mögliche Erhöhung der intrazellulären Kalziumkonzentration in Calcium-Imaging Experimenten (n = 14) untersucht.

Weitere Experimente konnten zeigen, dass Veränderungen der Ringstruktur nicht toleriert werden. Citral (3 mM), ein als trigeminaler Stimulus beschriebenes Aldehyd ohne Ringstruktur hatte keinen Effekt auf den ATP-induzierten Strom (n = 7). Dies belegt die Wichtigkeit der aromatischen Ringstruktur. Durch Substitution eines Kohlenstoffatoms der Ringstruktur durch ein Stickstoffatom entsteht Pyridin, das keinen Benzaldehyd-ähnlichen Effekt mehr aufwies (3 mM, n = 7). Das nicht aromatische Keton Cyclohexanon hatte ebenfalls keinen Effekt (2,5 mM; n = 15). Die gleiche Ineffektivität konnte bei Furfural beobachtet werden (2,5 mM; n = 7). Bei diesem Molekül handelt es sich um eine cyclische Struktur aus fünf Atomen (vier Kohlenstoffatome und 1 Sauerstoffatom) mit einer Aldehydseitenkette. Alle getesteten Moleküle sind wie Benzaldehyd als chemische Stimuli des trigeminalen Systems beschrieben worden. Die Ergebnisse belegten, dass eine kleine Gruppe strukturell verwandter chemischer Stimuli den gleichen inhibitorischen Effekt auf P2X₂-Rezeptor vermittelte Ströme und damit auf die Aktivität der diesen Rezeptor exprimierenden Neurone hat.
Abb. 3.13: Rezeptives Feld des Benzaldehydeffektes
a: Maximalamplitude, b: Anstiegszeit, c: Antwortzeit der induzierten Ströme
Die durch Koapplikation von ATP und verschiedenen Duftstoffen induzierten Ströme wurden auf die ATP-induzierten Antworten normiert (Mittelwerte ± SEM, * zeigt Signifikanz p ≤ 0.05, *** p ≤ 0.001). Die aromatische Ringstruktur des Benzaldehyds scheint als struktureller Bindungspartner am P2X₂-Rezeptor essentiell zu sein. Moleküle, bei denen die Ringstruktur erhalten ist und lediglich die Seitenkette leicht verändert wird, zeigen einen Benzaldehyd analogen Effekt. Ab einer kritischen Seitenkettenlänge tritt der Effekt nicht mehr auf. Strukturelle Modulationen innerhalb der aromatischen Ringstruktur heben den Effekt immer auf.
3.5 Eine mögliche ATP-Quelle im nasalen Epithel

Frisch dissozierte ORN akkumulierten Quinacrine schnell, was sich in einer grünen Fluoreszenz widerspiegelte (Abb.3.14b). Diese Fluoreszenz war in unstimulierten ORN über den gesamten Meßzeitraum von fünf Minuten stabil (Abb.3.14a, graue Linie). Bereits 1978 konnte gezeigt werden, dass durch hohe extrazelluläre Kaliumkonzentrationen induzierte Membrandepolarisationen in Neuronen zu einer ATP Freisetzung führt (White et al., 1978). Daher wurde in diesen Experimenten eine hochkonzentrierte Kaliumlösung (50 mM K⁺) als Referenzstimulus verwendet. Außerdem wurden die ORN mit einer equimolaren Mischung aus 50 verschiedenen Duftstoffen (Henkel 50, 1:5000 verdünnt) stimuliert. Um eine Duftstimulation der ORN zu imitieren, wurde zudem der spezifische Adenylatzyklase Aktivator Forskolin (50 µM) verwendet (Spehr et al., 2002; Ma und Shepherd, 2003).

In allen untersuchten ORN (n = 15) führte eine Stimulation mit der hochmolaren Kaliumlösung zu einer starken Abnahme der Fluoreszenzintensität (Abb.3.14), wahrscheinlich aufgrund von vesikulärer ATP Freisetzung. Diese robuste Fluoreszenzabnahme jedes Neurons wurde als Standardwert (100%) für die Normalisierung genutzt. Forskolin induzierte ebenfalls in allen getesteten Neuronen einen signifikanten Verlust der Fluoreszenzintensität (57 ± 22 % der Kalium induzierten Reduktion, n = 10). Wie erwartet, führte eine Stimulation der ORN mit dem Duftstoffgemisch nur in einem Teil der

Ob diese als ATP-Freisetzung wertbare Fluoreszenzabnahme durch vesikuläre Freisetzungsmechanismen zustande kommt, wurde mit Hilfe bestimmter Blocker untersucht. Tetanustoxin (TeTx) verhindert die Exocytose von Vesikeln durch die Blockade des für die Anbindung des Vesikels an die präsynaptische Membran benötigten Synaptobrevins (Ahnert-Hilger und Bigalke, 1995). N-Ethylmaleimid (NEM) ist ebenfalls als Blocker vesikulärer Exozytose beschrieben (Bodin und Burnstock, 2001a; Chakravarty, 1980). Bei dem N-Ethylmaleimid sensitiven Faktor (NSF) handelt es sich um ein Peptid, dem eine wichtige Rolle in der Vesikelverschmelzung zugeschrieben wird (Brunger und DeLaBarre, 2003). Weder TeTx (0,5 µM; 90 min Inkubation; n = 10) noch NEM (10 µM; 15 min Inkubation; n = 5) konnten die Aktivitäts-induzierte Fluoreszenzabnahme und damit die ATP-Freisetzung verhindern.
Chemoperzeption trigeminaler Neurone

Abb. 3.14: Aktivitätsinduzierte ATP Freisetzung von olfaktorischen Rezeptorneuronen
a, b: representative Aufnahmen von zwei unterschiedlichen ORN
Die Fluoreszenzabnahme kann sowohl in der Kinetik der Fluoreszenz (life kinetik) (a) als auch in den Fluoreszenzbildern (b) beobachtet werden. In einem Neuron (Zelle 1) wurde die Fluoreszenz nach jeder Stimulation reduziert, während in dem anderen Neuron (Zelle 2) keine Fluoreszenzänderung bei Duftapplikation erkennbar war.
c: Vergleich der Fluoreszenzabnahme nach den unterschiedlichen Stimulationen
Die Daten wurden auf die Fluoreszenzabnahme nach Kaliumstimulation normiert (Mittelwerte ± SEM, *** zeigt Signifikanz p ≤ 0.001).
3.6 Der Duftstoff Linalool als trigeminaler Stimulus

3.6.1 Spezifität des Linalool-Effektes

Neben den zuvor beschriebenen Duftstoffen wurden noch weitere Düfte hinsichtlich ihres Aktivierungspotentials an trigeminalen Neuronen überprüft. Calcium-Imaging Untersuchungen zeigten, dass einer der getesteten Duftstoffe, Linalool (3 mM), in 28 % (25/89) der trigeminalen Neurone zu einer Erhöhung der intrazellulären Kalziumkonzentration führte (Abb.3.15a). Linalool ist ein tertiärer Alkohol mit offener Kohlenstoffkette, dessen Duft an Maiglöckchen erinnert und der als „blumig-frisch“ klassifiziert wird.

Dieselben Neurone, die durch Linalool aktiviert wurden, zeigten auch einen Anstieg der intrazellulären Kalziumkonzentration bei Applikation der strukturverwandten Duftstoffe Geraniol, Citral (jeweils n = 20) und Citronellal (n = 12) die ebenfalls der Duftklasse „blumig-frisch“ zugeordnet werden können.

Um eine unspezifische Wirkung von Linalool ausschließen zu können, wurden auch andere Zelltypen untersucht. Weder dissozierte kortikale Neurone, noch untransfizierte HEK-Zellen zeigten eine Veränderung der intrazellulären Kalziumkonzentration bei Applikation von bis zu 6 mM Linalool (Abb.3.15b,c). Die generelle Antwortfähigkeit der Zellen wurde durch Kontrollstimulation mit hochkonzentrierte Kaliumlösung (kortikale Neurone) bzw. ATP (HEK Zellen) überprüft.
Chemoperzeption trigeminaler Neurone

Abb. 3.15: Spezifität des Linalool Effektes
b: Eines von drei trigeminalen Neuronen ließ sich konzentrationsabhängig von Linalool aktivieren. ATP wurde als Kontrollstimulus genutzt, um die Antwortfähigkeit der Neurone zu überprüfen.
b: Untransfizierte HEK 293 Zellen lassen sich nicht von Linalool aktivieren. Auch hier wurde als Kontrollstimulus ATP verwendet.
c: Dissozierte kortikale Neurone lassen sich ebenfalls nicht von Linalool aktivieren. Als Kontrollstimulus wurde eine hochmolare Kaliumlösung (30 mM) verwendet.
3.5.2 Vergleich der Linalool Aktivierbarkeit und der P2X-Rezeptor Expression

Da sich die trigeminalen Neurone entsprechend ihrer P2X-Rezeptor Expression in Subklassen unterteilen lassen, wurde in patch-clamp Experimenten ein Zusammenhang zwischen der Expression bestmäßiger Purinrezeptoren und der Aktivierbarkeit durch Linalool untersucht. Ein modulierender Effekt auf ATP-induzierte Ströme wie zuvor für Benzaldehyd beschrieben konnte bei Linalool nicht festgestellt werden (n = 10).

3.5.3 Charakterisierung der Linalool induzierten Antwort in trigeminalen Neuronen

Um den Linalool induzierten Anstieg der intrazellulären Kalziumkonzentration zu charakterisieren, wurde zunächst dessen Dosis-Wirkungsabhängigkeit untersucht. Dabei zeigte sich eine Konzentrationsabhängigkeit des Effektes (n = 7, Abb.3.16). Der Kalziumanstieg nahm ab einer Konzentration von 1 mM Linalool kontinuierlich zu. Aufgrund der geringen Wasserlöslichkeit des Linalools konnten allerdings keine Konzentrationen über 10 mM getestet werden, so dass keine sättigende Konzentration und somit auch kein EC₅₀-Wert bestimmt werden konnte.
Abb.3.16: Linalool Dosis-Wirkungbeziehung in trigeminalen Neuronen

Um eine Beteiligung anderer Ionen an der Linalool induzierten Antwort zu untersuchen, wurden patch-clamp Experimente durchgeführt (Abb.3.17d). Messungen mit Kalziumfreier extrazellulärer Lösung zeigten, dass auch der Linalool induzierte Strom signifikant auf $34 \pm 13\%$ der ursprünglichen Linaloolantwort reduziert wird ($n = 9; p \leq 0,001$). Der Reststrom, der hier im Gegensatz zu den Calcium-Imaging Messungen noch detektierbar ist, wird höchstwahrscheinlich von anderen Ionen getragen.
Abb. 3.17: Kalziumabhängigkeit des Linaloolerfektes

a-c: Ca-Imaging Untersuchungen zur Entstehung der Kalzium-getragenen Linaloolantwort in trigeminalen Neuronen

a: Nach der Entleerung der intrazellulären Kalziumspeicher induzierte Linalool immer noch einen vergleichbaren Anstieg der intrazellulären Kalziumkonzentration in den Neuronen.

b: Wird Kalzium hingegen aus der extrazellulären Lösung entfernt, konnte Linalool keinen Kalziumanstieg mehr induzieren.

d: patch-clamp Untersuchungen mit Kalziumfreier extrazellulärer Lösung

In whole cell voltg clamp Messungen wurde die Amplitude der Linalool-induzierten Ströme auf etwa 40% reduziert, wenn die extrazelluläre Lösung keine Kalziumionen enthielt (Haltepotential -60 mV). Dies zeigt, dass die von Linalool geöffnete Leitfähigkeit außer für Kalziumionen auch für andere Ionen permeabel ist.
3.5.3 TRPM8 als Linaloolrezeptor

Um diese Wirkungsmöglichkeit zu überprüfen, wurden zunächst rekombinante TRPM8-Rezeptoren in HEK293-Zellen heterolog exprimiert und auf ihre Aktivierbarkeit durch Linalool überprüft.

Die rekombinanten TRPM8-Rezeptoren zeigten ebenfalls eine dosisabhängige Aktivierung durch Linalool, allerdings reagierten sie erst bei höheren Konzentrationen. Bis zu einer Konzentration von 2,5 mM Linalool zeigten die Rezeptoren keine Aktivierung, aufgrund der eingeschränkten Löslichkeit konnten erneut keine Konzentrationen über 10 mM getestet werden (n = 53, Abb.3.18a).

Um das Bindungsverhalten am TRPM8-Rezeptor zu studieren, wurden die Agonisten Linalool und Icilin (McKemy et al., 2002) koappliziert. Interessanterweise reduziert eine nicht-aktiverende Linaloolkonzentration von 2,5 mM die Icilin (500 nM) induzierte TRPM8 Antwort in patch-clamp (n = 5) und in Calcium-Imaging Experimenten (n = 41). Beide Methoden zeigten eine vergleichbare signifikante Reduktion des Icilin-Signals auf 31 ± 7 % (patch-clamp) bzw. 35 ± 3 % (Calcium-Imaging) (p ≤ 0,001 für beide). Durch die Erhöhung der Icilinkonzentration konnte der reduzierende Effekt von Linalool immer weiter aufgehoben werden (Abb.3.18b). Eine Aktivierung der TRPM8-Rezeptoren von 100 µM Icilin wurde nicht mehr durch Linalool beeinflußt. Diese Untersuchung weist auf einen kompetitiven Wirkmechanismus von Linalool und Icilin an derselben Bindestelle des TRPM8-Receptors hin.
Chemoperzeption trigeminaler Neurone

Abb. 3.18: Linaloolwirkungen an heterolog exprimierten TRPM8-Rezeptoren

a: Linalool Dosis-Wirkungsbeziehung an TRPM8-Rezeptoren in HEK 293 Zellen
Es ließ sich eine konzentrationsabhängige Aktivierung des Rezeptors in Ca-Imaging Experimenten beobachten. Aufgrund der schlechten Löslichkeit von Linalool konnte keine maximal wirksame Konzentration bestimmt werden.

b: Icilin-Linalool Wechselwirkungen am TRPM8-Rezeptor
Hier wurde der Effekte einer Linalool-Icilin Koapplikation im Ca-Imaging-Verfahren untersucht. Linalool wurde in nicht aktivierender Konzentration (2,5 mM) eingesetzt, die Konzentration von Icilin wurde variiert. Die Antworten wurden auf die jeweilige Icilinantwort normiert.
In Abhängigkeit von der Icilinkonzentration reduzierte Linalool den Icilin-induzierten Kalziumanstieg. Diese inhibitorische Wirkung wurde mit steigender Icilinkonzentration kleiner und konnte durch eine Icilinkonzentration von 100 µM völlig aufgehoben werden (Mittelwerte ± SEM; ** zeigt Signifikanz p ≤ 0,001).
3.5.5 Pharmakologische Identifikation der trigeminalen Linaloolantwort

Der geschilderte Befund wurde mittels patch-clamp Untersuchungen an heterolog exprimierten TRPM8-Rezeptoren überprüft. Eine hohe Konzentration des Antagonisten BCTC (10 µM) reduzierte den Linalool (5 mM) induzierten Strom signifikant auf 19 ± 4 % (p ≤ 0,001; Abb3.19). Da dieser Antagonist auch an TRPV1-Rezeptoren wirksam ist und trigeminal Neurone diese Rezeptoren ebenfalls exprimieren, musste sichergestellt werden, dass TRPV1-Rezeptoren nicht durch Linalool aktiviert werden. Aus diesem Grund wurden auch TRPV1-Rezeptoren heterolog in HEK293 Zellen exprimiert. Die funktionelle Expression wurde durch Aktivierung mit dem beschriebenen hochwirksamen Agonisten Capsaicin (10 µM) überprüft. Die TRPV1-Rezeptoren konnten in keiner Zelle durch Linalool (5 mM) aktiviert werden (n = 8). Daraus folgt, dass eine Blockade der Linalool induzierten Antwort trigeminaler Neurone durch BCTC als Beweis für die Aktivierung trigeminaler TRPM8-Rezeptoren gewertet werden kann.

Diese Hypothese wurde in patch-clamp und in Calcium-Imaging Experimenten überprüft. Es zeigte sich eine signifikante Reduktion der Linaloolantwort (2,5 mM) durch BCTC (10 µM). Allerdings wurde der induzierte Strom ebenso wie der induzierte Anstieg der intrazellulären Kalziumkonzentration nur auf etwa die Hälfte reduziert (Strom: 52 ± 7 %, n = 4, p ≤ 0,05; Kalziumanstieg: 47 ± 9 %, n = 10, p ≤ 0,001). Dies zeigt, dass zumindest ein Anteil der Linalool induzierten Antwort trigeminaler Neurone von TRPM8-Rezeptoren vermittelt wird.
Abb.3.19: Pharmakologische Charakterisierung der Linalool-induzierten Antwort

a: patch-clamp Untersuchungen zur inhibitorischen Wirkung von BCTC
Aktivierung heterologexprimierter TRPM8-Rezeptor durch Linalool wurde von BCTC signifikant reduziert, der Strom betrug nur noch etwa 20 % des ursprünglichen Linalool Stromes.
Die Linalool-induzierte Antwort trigeminaler Neurone wurde von BCTC ebenfalls signifikant, allerdings nur auf etwa 50 % des Ausgangswertes reduziert.
b: Eine entsprechende Reduktionsrate ließ sich auch in Ca-Imaging Experimenten beobachten.
4. Diskussion

4.1 Kultivierung trigeminaler Neurone

4.2 Klassifizierung trigeminaler Neurone anhand ihrer P2X-Rezeptor Expression

4.2.1 Elektrophysiologische Charakterisierung

Chemoperzeption trigeminaler Neurone

Desensitisierungsverhalten. P2X₁-Rezeptor-Ström e zeigen eine monoexponentielle (Collo et al., 1996), während P2X₃-Rezeptor vermittelte Ström e eine biexponentielle Desensitisierungskinetik aufweisen (Lewis et al., 1995). Demnach werden die hier charakterisierten Ström e aufgrund ihrer biexponentiellen Desensitisierungskinetik von homomen P2X₃-Rezeptoren vermittelt. Zudem ist funktionale Expression homomerer P2X₁-Rezeptoren in trigeminalen Neuronen unwahrscheinlich, da nur sehr niedrige mRNA Mengen (im Vergleich zu P2X₃ mRNA) mittels PCR nachgewiesen und keine Immunreaktivität für P2X₁-Untereinheiten gefunden wurde (Xiang et al., 1998; Cook et al., 1997; Collo et al., 1996).

getragene Ströme zeigen, immer noch unter 1 %. Es ist nicht auszuschließen, dass diese Zellen in der vorliegenden Arbeit aufgrund der zufälligen Auswahl einzelner Neurone aus einer kompletten Ganglienpräparation nicht in die Untersuchung eingingen.

In meinen Forschungsarbeiten zeigen die drei Neuronenpopulationen denselben EC$_{50}$-Wert für ATP. In der Literatur hingegen wurden unterschiedliche EC$_{50}$ Werte für P2X$_2$- (48 µM in C6BU-1 Zellen (heterolog), 23,7 µM in DRG Neuronen (nativ), 4,3 µM in Oocyten (heterolog)) und P2X$_3$-Rezeptoren (1,6 µM in C6BU-1 Zellen (heterolog), 5,6 µM in DRG Neuronen (nativ), 1,4 µM in Oocyten (heterolog)) beschrieben (Ueno et al., 1998 und 1999; Liu et al., 2001). Besonders der ermittelte EC$_{50}$-Wert der homomeren P2X$_3$-Rezeptoren ist höher als in der Literatur angegeben. Möglicherweise werden die Rezeptoren durch die hier angewendeten Kultivierungsbedingungen beeinflusst. Auch das in dieser Arbeit angegebene Interstimulus-Intervall von 90 Sekunden, das zur vollständigen Resensitisierung der Rezeptoren ausreicht, steht im Gegensatz zu den Literaturangaben. Für die vollständige Aufhebung der Desensitisierung werden für P2X$_3$-Rezeptoren Interstimulus-Intervalle von bis zu 20 Minuten beschrieben (Lewis et al., 1995; Cook et al., 1998). Der Grund für die Unterschiede in den berechneten EC$_{50}$-Werten und den Interstimulus-Intervallängen könnte auch im hier verwendeten Applikationssystem liegen. Das System ermöglicht eine sofortige Absaugung der applizierten ATP-Lösung und stellt sicher, dass keine Verunreinigung der Badlösung auftritt. Dadurch wird der benötigte Interstimulus-Intervall verkürzt, da zur Aktivierbarkeit aller Rezeptoren, also der Wiederherstellung der Ausgangsbedingungen (erste ATP-Applikation) ATP vollständig aus der Badlösung entfernt werden muß. Es ist denkbar, dass in anderen Applikationssystemen Restmengen von ATP in der Badlösung verbleiben, die zur Desensitisierung eines Teils der Rezeptorphopulation führen kann. In diesem Fall würde die zu erreichbare Maximalamplitude und damit der berechnete EC$_{50}$-Wert gesenkt.

Durch Charakterisierung der Aktionspotentiale (Form, Dauer, Amplitude) der verschiedenen Populationen sollte eine Zuordnung der Fasertypen vorgenommen werden. Wie einleitend beschrieben bilden myelinisierte Aδ-Fasern und nicht-myelinisierte C-Fasern das trigeminate Netzwerk. Lopez de Armentia und Mitarbeiter (2000) berichten über spezifische

4.2.2 Immunhistochemische Charakterisierung

Die zweite Population der kultivierten trigeminalen Neurone (36%) wird durch P2X₂- wie P2X₃-Antikörper angefärbt, es befinden sich also beide Rezeptoruntereinheiten auf den Somata und den Fortsätzen dieser Neurone. Aufgrund der räumlichen Nähe der exprimierten Receptoruntereinheiten erlauben diese Studien allerdings keine Aussage über die resultierende homo- oder heteromere Receptorsammensetzung.

Interessanterweise zeigte eine dritte Population (42%) ausschließlich Immunreaktivität gegen P2X₂-Rezeptoruntereinheiten. Dies unterstützt die vorausgegangene pharmakologische Charakterisierung dieser bislang nicht beschriebenen Gruppe trigeminaler Neurone, die exklusiv homomere P2X₂-Rezeptoren exprimieren.
Chemoperzeption trigeminaler Neurone

4.3 Physiologische Funktion der trigeminalen Populationen

4.3.1 Lokalisation der Purinrezeptoren

4.3.2 Nozizeptive Eigenschaften

4.3.3 Modulation durch Duftstoffe

Die Untersuchung der Effekte strukturverwandter Substanzen belegt, dass der gefundene Modulationsmechanismus spezifisch für eine bestimmte Gruppe von trigeminalen Stimuli ist. Eine grundlegende strukturelle Voraussetzung scheint die aromatische Ringstruktur zu sein, während leichte Veränderungen der Seitenkette toleriert werden. Da es sich auch bei den nicht modulatorisch wirksamen Stimuli mit struktureller Ähnlichkeit zu Benzaldehyd um trigemrale Stimuli handelt, scheint es für diese Stimuli einen anderen, bisher noch ungeklärten Detektionsmechanismus zu geben.

4.4 Mögliche ATP-Quellen im nasalen Epithel

4.5 Linalool als trigeminaler Stimulus

Bestimmung der halbmaximal wirksamen Konzentration (EC$_{50}$) sowie des Hillkoeffizienten nicht vorgenommen werden.

4.5.1 TRPM8 als Linaloolrezeptor

Chemoperzeption trigeminaler Neurone

TRPM8-Rezeptoren sind ionotrope Rezeptorkanalkomplexe, d.h. eine Aktivierung induziert direkt einen Ionenstrom. Sie leiten sowohl monovalente als auch divalente Kationen mit einer Präferenz für Kalziumionen (McKemy et al., 2002; Peier et al., 2002). Entsprechend wäre der Reststrom, der nach Entfernung der Kalziumionen aus der extrazellulären Lösung bei patch-clamp Untersuchungen zu beobachten ist, ein Einstrom von Natriumionen. Auch die Beobachtung, dass sowohl potentielle nozizeptive und nicht-nozizeptive Neurone Linalool detektieren können, lässt sich mit dem postulierten TRPM8-Rezeptor Expressionsmuster vereinbaren. Es konnte gezeigt werden, dass etwa 50 % der Kälte- und Menthol-sensitiven trigeminalen Neurone ebenfalls Capsaicin-sensitiv sind und damit den nozizeptiven Neuronen zugeordnet werden (McKemy et al., 2002; Reid et al., 2002). Dieser Befund steht im Einklang mit den Ergebnissen meiner Arbeit, die 53 % der Linalool-sensitiven Neurone als putativ nozizeptiv charakterisieren. Auch andere Arbeiten charakterisieren TRPM8-Rezeptor exprimierende Neurone als nozizeptiv (trkA-Rezeptor Expression), allerdings finden sie keine Koexpression mit TRPV1 (Capsaicin-Rezeptor) oder typischen Markern Capsaicin-sensitiver Neurone (IB4 oder CGRP) (Peier et al., 2002; Nealen et al., 2003). Der Grund hierfür scheinen unterschiedliche Kultivierungsbedingungen zu sein. Eine Kultivierung der Neurone mit Nervenwachstumsfaktor (NGF) (McKemy et al., 2002; Reid et al., 2002) beeinflusst die Expression des TRPV1-Rezeptors (Winston et al., 2001; Chuang et al., 2001; Ji et al., 2002) und scheint daher für eine Koexpression von TRPV1 und TRPM8 verantwortlich zu sein (Story et al., 2003).

Einzig der in dieser Arbeit bestimmte Gesamtanteil Linalool-sensitiver trigeminaler Neurone stimmt nicht mit dem in der Literatur beschriebenen Anteil Menthol-sensitiver Neurone überein. Menthol induzierte in 13-15 % der trigeminalen Neurone eine Kalziumerhöhung (McKemy et al., 2002; Nealen et al., 2003), während Linalool etwa 25 % der Neurone aktiviert. Auch unter denselben Kulturbedingungen, die in diser Arbeit verwendet wurden,
Chemoperzeption trigeminaler Neurone

aktiviert Menthol nur 15,9% der trigeminalen Neurone (N. Damann, persönliches Gespräch). Dies könnte ein erster Hinweis darauf sein, dass trigeminalne Neurone neben TRPM8-Rezeptoren noch über (einen) andere(n) Linalool-sensitive Detektionsmechanismen verfügen.

Zudem konnte kürzlich gezeigt werden, dass nur 27 % der Menthol-sensitiven trigeminalen Neurone TRPM8-Rezeptoren exprimieren (Nealen et al., 2003). Es scheint also auch für Menthol weitere Detektionsmechanismen zu geben. Beispielsweise berichten Swandulla und Mitarbeiter (1987), dass Kalziumkanäle hoher und niedriger Aktivierungsschwelle auf unterschiedliche Art von Menthol moduliert werden.

Da sowohl Menthol als auch Linalool als kühl und frisch empfunden werden, ist auch eine zusätzliche Detektion durch weitere Kälte-sensitive Ionenkanäle denkbar. So wird der epitheliale Natriumkanal (ENaC) ebenfalls durch Kältereize aktiviert (Askwith et al., 2001). Der mechano- und chemosensitive Kanal TREK-1, ein zwei-Poren-Domänen Kaliumkanal, schließt bei Kältetiriz und induziert damit eine neuronale Depolarisation (Maingret et al., 2000). Zudem wurde kürzlich ein weiterer Kälte-sensitiver TRP-Kanal (ANKTM1) identifiziert, der auch durch Icilin, aber nicht durch Menthol aktiviert werden kann (Story et al., 2003). Möglicherweise ist dieser ANKTM1 auch sensitiv gegenüber Linalool.

5. Zusammenfassung

Die Bedeutung des beschriebenen modulatorischen Effektes wird durch mehrere experimentelle Befunde unterstützt. Zum einen ist die Modulation, aufgrund der strukturellen Anforderungen an wirksame Moleküle (rezeptives Feld), sehr spezifisch für bestimmte Duftstoffe. Außerdem werden trigeminales Neurone, die aufgrund ihrer P2X₃-Rezeptor-Ausstattung einer anderen Population zugeordnet werden können, nicht moduliert. Ein
Chemoperzeption trigeminaler Neurone

direkter Effekt von Benzaldehyd oder strukturverwandten Molekülen an trigeminalen Neuronen wurde nicht gefunden.

5. Abkürzungsverzeichnis

αβ meATP α,β- MethylenATP
AP Aktionspotential
ASIC „acid-sensing ion-channel“, Protonen-aktivierter Ionenkanal
ATP Adenosintriphosphat
cDNA zyklische Desoxyribonukleinsäure
CGRP „calcitonin-gene-related peptide“
DMEM Dulbecco’s modifiziertes Eagle Medium
EC50 halbmaximale Aktivierungskonzentration
eGFP „enhanced“ grün fluoreszierendes Protein
GADPH Glycerinaldehyd-3-Phosphat Dehydrogenase
Gg Ganglion gasseri
HBSS „Hank’s buffered salt solution“
DIV „days in vitro“, Tage in Kultur
EDTA Ethylendinitroloessigsäure
EGTA Ethylenglykol-bis(β-aminoethylether)-N,N,N',N'-tetraessigsäure
G-Protein Guanosinnukleotid-abhängiges Protein
HEK „human embryonic kidney cells“, humane embryonale Nierenzellen
VPM Nucleus ventralis posteromedialis
HEPES N-2-Hydroxyethylpiperazin-N'-'-ethansulfonsäure
I_{ps} Diinosinpentaphosphat
mRNA „messenger“ Ribonukleinsäure
MEM „minimal essential medium“
NEM N-ethylmaleimid
NGF „nerve growth factor“, Nervenwachstumsfaktor
NST Neuronen-spezifisches Tubulin
OE olfaktorisches Epithel
OPV Operationsverstärker
ORN olfaktorische Rezeptorneurone
PBS „phosphate-buffered salt solution“
PCR „polymerase chain reaction“, Polymerasekettenreaktion
Rf Rückkoppelwiderstand
S.E.M. Standardfehler des Mittelwertes
TeTX Tetanustoxin
TRITC Tetramethylrhodamin 5-(und-6-)Isothiocyanat
TRP „transient receptor potential“ Kanal
TTX Tetrodotoxin
6. Literaturverzeichnis

Chemoperzeption trigeminaler Neurone

Chemoperzeption trigeminaler Neurone

7. Danksagung

Abschließend möchte ich mich bei allen bedanken, die direkt oder indirekt zum Gelingen dieser Arbeit beigetragen haben.

Herrn Prof. Dr. Dr. Dr. H. Hatt danke ich für die Überlassung des interessanten Themas, die Bereitstellung des Arbeitsplatzes, die wissenschaftliche Betreuung und Förderung sowie für die kontinuierliche Unterstützung und offene Diskussionsbereitschaft während der alltäglichen kleineren und größeren Probleme.

Herrn PD Dr. M. Schmidt danke ich für das Interesse an dieser Arbeit und für die Übernahme des Koreferates.

Der Studienstiftung des deutschen Volkes danke ich für das dreijährige Stipendium und das Vertrauen in meine Arbeit.

Mein besonderer Dank gilt Herrn Prof. Dr. E. Kalisch für seine hervorragende Betreuung in schwierigen Situationen, ohne die ich diese Arbeit wahrscheinlich nicht beendet hätte.

Bei Herrn HD Dr. Christian H. Wetzel möchte ich mich für seine ständige Hilfsbereitschaft und die konstruktive Unterstützung bei der Anfertigung dieser Arbeit, sowie für viele interessante Gespräche abseits der rein wissenschaftlichen Thematik bedanken.

Ein großes Dankeschön allen Mitarbeitern am Lehrstuhl für Zellphysiologie, allen ehemaligen Kolleginnen und Kollegen, sowie allen Mitgliedern der Caipi-Runde, die zu der guten Atmosphäre während und oft auch nach der Arbeit beigetragen haben.

Mein ganz besonderer Dank gilt meinen Eltern, die mir die Ausbildung ermöglicht und mich bei meinen ersten Schritten ins Berufsleben immer unterstützt haben, meiner Familie und meinen Freunden, die mir Rückhalt geben und auf die ich mich immer verlassen kann.

Meinem Mann und Kollegen Marc danke ich für seine großartige Unterstützung sowohl in fachlichen als auch in emotionalen Situationen, seine unendliche Geduld und seine Liebe. Danke, dass wir einen gemeinsamen Lebensweg gefunden haben!
8. Anhang

8.1 Lebenslauf

Name: Jennifer Spehr, geb. Paul
Geburtsdatum und -ort: 24.11.1975, Essen
Nationalität: deutsch
Geschlecht: weiblich
Familienstand: verheiratet
Adresse: Duisburger Weg 16
59439 Holzwickede
Deutschland
Arbeitsplatz: Lehrstuhl für Zellphysiologie, ND 4
Universitätsstraße 150
44780 Bochum
Deutschland
Telefon: +49 234 3226718
Fax: +49 234 3214129
E-mail: jennifer.paul@ruhr-uni-bochum.de

Ausbildung und beruflicher Werdegang

1995 Abschluß der gymnasialen Schullaufbahn
(B.M.V.Schule Essen) mit Erreichen der
Allgemeinen Hochschulreife (Abitur-
Durchschnittsnote 1,6)

1995 – 2000 Studium der Biologie an der Fakultät für Biologie
der Ruhr-Universität Bochum (Abschluß mit der
Diplomnote 1,1)

2000 – 2004 Promotion am Lehrstuhl für Zellphysiologie an der
Fakultät für Biologie der Ruhr-Universität Bochum

Arbeitserfahrung

Methodische Kenntnisse
Elektrophysiologie: Patch-clamp und EOG Aufnahmen, bildgebende Verfahren: Calcium
imaging, Immunohistology, Experimentelle Tierhaltung (Maus und Ratte), Zellkultur,
heterologe Proteinexpression, Präparation neuronaler Zellen und Dissoziationstechniken.

Computerkenntnisse
Hard- und Softwarekenntnisse (PC und Mac) inkl. Word, Exel, Power Point, Corel Draw, etc.

Sprachkenntnisse
Deutsch: Muttersprache
Englisch: fließend in Wort und Schrift
Französisch: Grundkenntnisse
8.2 Publikationen

Veröffentlichte Artikel

eingereichte Artikel

Kongressbeiträge

Paul J., Spehr M., Hatt H., Wetzel C.H. Expression of different P2X-receptors in cultured trigeminal neurons. 82nd Annual meeting Deutsche Physiologische Gesellschaft 2003, Bochum, Germany
