Deformation-Induced  Crystallization
In Rubb er-Lik e Materials

Vom Fachbereidh Mechanik der
Tednischen Universitdt Darmstadt
zur Erlangung desakademistien Gradeseines
DOKTORS DER INGENIEUR WISSENSCHAFTEN
genehmigte
DISSER TATION

von
Chem. Eng. Motasem Saidan

aus Jordanien

Referert: Prof. Dr. T. Alts
Korreferert: Prof. K. Hutter, Ph. D./ Cornell University

Tag der Einreichung: 1. Dez. 2004
Tag der méndlichen Prfung: 21. Jan. 2005

Darmstadt 2005
D 17






To my beloved brother, Khaled,
who passedaway on 18th Apr 2003.
God blessyou my brother,

you are always in my heart, Khaled.






Ac knowledgmen t

Most of all, I would like to expressmy thanks to God, in him alone | put
my trust. His mercy and blessingsaved, guided and enabledme to run towards
my ambitions. Also, | would like to expressmy sinceregratitude and heartfelt
appreciationsto my doctor-father, Prof. Thorsten Alts, for his guidance,encour-
agemen, and support during my graduate studies. His impressive knowledge,
technical skill, and creative thinking have been an invaluable help throughout
the courseof this work. The expertise that he sharedme will remain a tremen-
doussourceof professionalgrowth to me. | am really surethat | cannot be here
without him.

| am profoundly grateful to Prof. K. Hutter. His insight, kindness,and gen-
uine concernfor his studerts made staying in his group a memorableexperience.
| alsowish to thank my committee menbers, Prof. Dr.-Ing. Ch. Tsakmakis,
Prof. (jun.) Dr.-Ing. R. Méller, and Prof. Dr. M. Wilhelm, for their time,
counsel,and valuable cortributions to this work.

| owe much gratitude to DFG (Germanreseart foundation) for providing the
“nancial support throughout my study.

| wish to thank Dr. Eisele,Bayer AG, Leverkusenfor the polyisoprenerub-
ber samplesthat he hasprovided for this work. Also, | would like to expressmy
sincerethanks to Prof. Dr. Rolf Hosemann,Bundesanstaltfid Materialpriéfung
BAM-Berlin for performing the tensile loading-unloadingexperimerts for poly-
isoprenerubber samplesand providing us with the Wide Angle X-ray Di®raction
(WAXD) data.

We are indebtedto Rieter Automative Germary GmbH for providing us with
Ethylene-butenecopolymers materials. Finally, | would like to expressmy grati-
tude to the GermanPolymer Institute DKI -Darmstadt. Especially, Dr. -Ing. M.
Moneke, PD Dr. G. P. Hellmann, Dr. RezaGhahary, and Reinhold Damko for
their highly appreciatedcooperation and help including the preparationsof sam-
ples and running the tensile loading-unloadingtests of ethylene-butenecopoly-
mers.

| would like to adknowledge medtanic AG3 sta® for providing an enjoyable
educational atmosphere. Getting international friends in our group and profes-
sionaldiscussiorwith them mademy work morevaluable. Especially, | would like
to thank Dr. habil. Yongqgi Wang, Dr. Shiva Prasad Pudasaini,and Dr. Bernd
Miggefor their appreciatedhelp with LINUX systemand LaTex software. | wish



to thank Mahmoud Reza Maneshlarimi, M. Eng., Dr. Luca Placcidi, Dr. ha-
bil. Ralf Greve, Dipl.-Phys. Angelika Humbert, Dr. SergioFaria, Chung Fang,
M. Sc., Min-Ching Chiou, M. Sc., Dr. Ana Ursescu,for their endlessfriend-
ship. | will newer forget their supportive encouragemenand sympathieswhen
my brother passedaway last year. | have more friendswhom | wish to thank: Dr.
Hazim Rahahleh, Dr.-Ing. Muhanned Hararah, Dr.-Ing. Muhanned Marashdeh,
Dr.-Ing. Imad Mosallam.

Foremost, my parerts, sisters, and brothers have always encouragedme to
follow my dreamsand believed in me, | dedicate this work to them. | wish to
thank them who always provided me with invaluable guidanceand without their
support my dreamof PhD degreewould not have cometrue and my academicen-
deavors would not have beenful Tling. This dissertationis their accomplishmenh
asmuch asit is mine.



Contents

1 Intro duction 1
1.1 Introduction . . . . . . . . . ... 1
1.2 Objectivesand Justi cation . . . ... ... ... ......... 3
1.3 SummaryofContents. . . . . . .. .. ... .. .. ... 4

2 Thermo dynamic constitutiv e theory 5
2.1 Thermodynamic Constitutive Theory . . . . . ... ... .. ... 5
2.2 Uniaxial Extension . . . . . . .. ... ... ... .. 17

2.2.1 Approximations . . . . . ... ... 22
2.2.1.1 Incompressiblethermoelastic materials. . . . . . 22

2.2.1.2 Incompressiblethermoelasticmaterialswith ther-
mal volumeexpansion . . . . . ... ... .... 26

2.2.1.3 Continuum theory and Deformation-InducedCrys-

tallization . . . .. ... ... ... L. 26

3 Polymer Crystallization 31
3.1 Semi-CrystallinePolymers . . . . .. ... ... ... ... .... 31
3.2 Modelsof Semi-CrystallinePolymers . . . .. ... ... ..... 32

3.2.1 Fringed-micellemodel . . ... ... ............ 32



3.2.2 Folded-dain model

3.2.3 Extended-dtain crystallite

CONTENTS

3.3 Crystallization Kinetics . . . . . . .. ... ... ... .......

Statistical Approac h

4.1 Introduction .

42 Overviewofthe Model . . . . .. . . . ... . . ... ... ...,

4.2.1 Thermodynamic approad of an amorphousnetwork . . . .

4.2.2 Thermodynamic approadt of a partially crystalline network

4.2.3 Mooneyrepresemations . . . .. .. ...

Mo del Application

5.1 Model Parameters. . . . . . . . . . ...

5.1.1 Degreeof crystallinity » . .. ... .............

5.1.2 Parametera . . . . . . . . . . . .

5.1.3 Number of segmelts exposedto deformation, N orce

5.1.4 Entropy constart K, of partially crystallized chains . . . .

5.2 Application ofthe Model . . . . . .. ... ... .. ........

5.2.1 Polyisoprenecrosslinkedrubber . . . . . ... ..o

5.2.1.1

5.21.2

5.2.1.3

5.2.1.4

5.2.1.5

Crystallization results for the statistical model . .
Experimertal part . . .. ... ... ... ....
Uniaxial stress-strainresults. . . . . .. ... ..
Mooneyrepresemation results. . . . ... .. ..

Volumechange . . . . . ... ... ........

41

41

42

46

49

66

69

69

69

70

72

72

73

73

74



CONTENTS

5.2.2 Polyole n thermoplasticelastomers. . . . . ... ... ..

5.2.2.1 Crystallization results for the model . . . . . ..

5.2.2.2 Experimental part . .. ..............

5.2.2.3 Uniaxial stress-strainresults. . . . . ... .. ..

5.2.2.4 Mooneyrepresemtations . . ... ... ... ...

6 Conclusions and Recommendations

6.1 Conclusions

6.2 Recommendations . . . . . . . . . . . . ..

Bibliograph y

107

107

108

111

113

115



CONTENTS



List of Figures

11

2.1

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Schematic of b er spinning process(This picture is from the web-
site: www. b ersource.com/f-tutor/techpag.tm). . . . . . . . . .. 2

Stress-tempgerature curve of uniaxial extension.. . . . . ... ... 24

Two di®erer semi-crystallinestructures: (a) Fringed-micellestruc-
ture  (b) Spherulitestructure. . . . . .. ... ... . ... 32

Structure changeand selectedWide Angle X-ray Di®raction (WAXD)

patterns during stretching and retraction processof rubber. Where
, isthe deformationratio. . .. .. ... ... ... ........ 36

Example of a long chain of freely rotating segmets. . . . . . . . . 42
Statistical schematic of a freely rotating segmets around bonds.. 43

A schematic view of (a) polymer con guration and (b) polymer
conformation. . . . . . . . . ... ... 44

End-to-end chain length, with N segmeits: ve segmets are
shovn somewherein the chain, the remaining onesof which are
represemed by the dotted line till the N segmeh The angle®

is the anglebetweenthe i"" segmeh andther axis. . . .. .. .. 44
Conformational changein polymer. . . . . . .. .. ... ... .. 45
Boltzmann grave stonein Vienna. . . . . . . ... ... ... ... 47
An atzne deformationofamaterial.. . . . ... ... ... .... 48



Vi

4.8

4.9

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

LIST OF FIGURES
A sthematic of the proposedmodel of partially crystalline chain. 50

Mooney-Rivlin represemation for cross-linked natural rubber, where

o] 3/4_ i 1 i
f * equalsto O Tl{) and ® equals’l ................ 67
Structural formula of oneisoprenemolecule. . . . . .. .. .. .. 74

Theoretical results which shav the e®ectof temperature on crys-
tallization of polyisoprenerubber at low strain rate of 0.039min *
during the loadingprocess.. . . . . . .. .. .. .. ... ..... 75

Theoretical results which shav the crystallization of polyisoprene
rubberat 21*C and di®eren strain ratesduring the loading-unloading
processegarrows indicate load path direction). . . . ... .. .. 76

Theoretical results which shav the crystallization of polyisoprene
rubberat 50°C and di®eren strain ratesduring the loading-unloading
processegarrows indicate load path direction). . . . ... .. .. 76

Theoretical results which show crystallization of polyisoprenerub-
ber at 80C and low strain rates during the loading-unloadingpro-
cessegarrows indicate load path direction). . . ... .. ... .. 77

Temperature e®ectat 0:039mini ! strain rate on, (a) stress-strain
curvesfor uniaxial loading of polyisoprenerubber (theoretical re-
sults are represeted by the solid line, while the experimertal re-
sults by points) and, (b) crystallinity for uniaxial loading of poly-
isoprenerubber (theoretical results). . . . ... ... ... .... 79

E®ectof strain rates on uniaxial loading-unloadingof polyisoprene
rubber for, (a) stress-lysteresisat 21*C (theoretical resultsarerep-
reseried by solid and dashedlines, while the experimental results
by points) and, (b)crystallization at 21*C (arrows indicate load
path direction). . . . . . . . ... 80

E®ectof strain rateson uniaxial loading-unloadingof polyisoprene
rubber for, (a) stress-lysteresisat 50°C (theoretical resultsarerep-
reseried by solid and dashedlines, while the experimertal results
by points) and, (b) crystallization at 50*C (arrows indicate load
path direction). . . . . ... ... ... .. .. 81



LIST OF FIGURES

5.9 E®ectof strain rate on uniaxial loading-unloadingof polyisoprene
rubber for, (a) stress-lysteresisat 80°C (theoretical resultsarerep-
reseried by solid and dashedlines, while the experimental results
by points) and, (b) crystallization at 80*C (arrows indicate load
path direction). . . . . . . . ...

5.10 Shish-Kebabstructure of a polyisoprenerubber sample.. . . . . .

5.11 WAXD of polyisoprenerubber at 21*C and high strain rate 2.34
mini 1, provided by Prof. T. Alts, for, (a) an undeformedstate
(,1= 1) and, (b) maximum deformationratio (,;=5). ... ..

5.12 Mooney-represetation for uniaxial loading-unloadingof polyiso-
prenerubber at 21*C (theoretical results are represeted by solid
the line, the experimenrtal results by points , while the dashedline
is Kuhn's model whenno changein crystallinity is assumedn our
statistical model) for, (a) low strain rate = 0.039(mini 1) and, (b)
high strain rate = 2.34(mini ). . . . .. ... .. ... ......

5.13 Mooney-represetation for uniaxial loading-unloadingof polyiso-
prene rubber at 50°C (theoretical results are represeted by the
solid line, the experimertal results by points , while the dashed
line is Kuhn's model when no changein crystallinity is assumed
in our statistical model) for, (a) low strain rate = 0.039(min' %)
and, (b) high strain rate = 2.34(mini%). . . ... ... ... ...

5.14 Mooney-represetation for uniaxial loading-unloadingof polyiso-
prene rubber at 80*C (theoretical results are represeted by the
solid line, the experimertal results by points , while the dashed
line is Kuhn's model when no changein crystallinity is assumedn
our statistical model) for low strain rate = 0.039(mini ). . . . . .

5.15 Changeof volume, model results, at di®eren strain rates for, (a)
21*C, (b) 50°C and, (c) 8C°C. . . . . . . . .. .. .. ...

5.16 Chemicalstructure of ethylene-butenecopolymer. . . . . . . . ..

5.17 Theoretical crystallization of ENX-7256 at di®eren strain rates
for two temperaturesof, (a) at 23*C, and (b) at 50°C.. . . . . . .

5.18 Theoretical crystallization of ENX-7086 at di®eren strain rates
for two temperaturesof, (a) at 23*C, and (b) at 50°C. . . . . . . .

vii

82

84

84

86

87

88

89

90

91



viii LIST OF FIGURES

5.19 E®ectof temperature on stress-strainloading curvesat 0.09(mini 1)
strain rate for, (a) at 23*C and, (b) at 50*C. (Theoretical results
arerepreseted by the solid line, while the experimertal results by
POINES). . . . . o 95

5.20 Stress-straincurvesat 5.4 (mini ) strain rates for, (a) ENX-7086
and, (b) ENX-7256(theoretical resultsarerepreseted by the solid
line, while the experimenrtal resultsby points). . . . .. ... ... 97

5.21 E®ectof strain rate on stress-straincurvesat 23*C for, (a) ENX-
7086 and, (b) ENX-7256 (theoretical results are represeted by
solid and dashedlines, while the experimertal results by points.
Arrows indicate load path direction). . . . .. ... ... ... .. 98

5.22 E®ect of strain rate on stress-straincurves at 50°C for, (a) for
ENX-7086 and, (b) for ENX-7256 (theoretical results are repre-
serted by solid and dashedlines, while the experimertal results by
points. Arrows indicate load path direction). . . . . ... ... .. 99

5.23 Three deformation cyclesat three maximum strains for ENX-7256
at 23*C and 5.4 mini ! strain rate: (a) stress-straincurves (b)
crystallinity-strain curves (theoretical results are represeted by
solid and dashedlines, while the experimertal results by points.
Arrows indicate load path direction). . . . ... ... .. ..... 100

5.24 Mooney-represetation of stress-strainfor ENX-7256 at 23*C for,
(a) low strain rate = 0.09 (mini %) and, (b) high strain rate = 5.4
(mini 1) (theoretical results are represeted by the solid line, the
experimental results by points , while the dashedline is Kuhn's
model whenno changein crystallinity is assumedn our statistical
model. Arrows indicate load path direction). . . . . .. ... ... 102

5.25 Mooney-represetation stress-strainfor ENX-7256at 50*C for, (a)
low strain rate = 0.09 (mini 1) and, (b) high strain rate = 5.4
(mini 1) (theoretical results are represeted by the solid line, the
experimertal results by points , while the dashedline is Kuhn's
model whenno changein crystallinity is assumedn our statistical
mode. Arrows indicate load path directionl). . . . . .. ... ... 103



LIST OF FIGURES

5.26 Mooney-represetation of stress-strainfor ENX-7086 at 23*C for,
(a) low strain rate = 0.09 (mini ') and, (b) high strain rate = 5.4
(mini 1) (theoretical results are represeted by the solid line, the
experimertal results by points , while the dashedline is Kuhn's
model whenno changein crystallinity is assumedn our statistical
model. Arrows indicate load path direction). . . ... ... ...

5.27 Mooney-represetation of stress-strainfor ENX-7086 at 50*C for,
(a) low strain rate = 0.09 (mini ') and, (b) high strain rate = 5.4
(mini 1) (theoretical results are represeted by the solid line, the
experimertal results by points , while the dashedline is Kuhn's
model whenno changein crystallinity is assumedn our statistical
model. Arrows indicate load path direction). . . ... ... ...



LIST OF FIGURES



List of Tables

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Al

A.2

A.3

B.1

E®ect of strain rate on the constaris of the relaxation time for
loading-unloadingpolyisoprenerubber at all temperatures . . . .

E®ect of strain rate on the constars of the relaxation time for
loading-unloadingof the thermoplastic elastomer(both types) at
all temperatures . . . .. ...
Parametera valuesfor loading processof polyisoprene . . . . ..
Parametera valuesfor loading processof ENX-7086 . . .. ...
Parametera valuesfor loading processof ENX-7256 . . .. .. .

Valuesof °, for three di®eren polymeric materials. . . . . . . ..

Physical and chemical properties of the thermoplastic ethylene-
butenecopolymer . . . . ... L L

Parametera: Valuesof adjustable constarts during unloading pro-
cessfor polyisoprenerubber: . . . . .. ... o Lo

Parametera: Valuesof adjustable constarts during unloading pro-
cessfor ENX-7256elastomer: . . . ... ... ... ... .....

Parametera: Valuesof adjustable constarts during unloading pro-
cessfor ENX-7086elastomer: . . . .. ... .. ... .......

N¢orce: Valuesof adjustable constarts during loading processfor
polyisoprenerubber: . . . . .. ... ... o Lo

69

73



Xii LIST OF TABLES

B.2 Nt Valuesof adjustable constarts during loading processfor



Zusammenfassung

Deformations-induzierteKristallisation ist entscheidendfév die Vorherbestim-
mung der endgiltigen medanishen Eigensaften von Elastomerenund Gummi.
ElastomereNetzwerke zeigeneinen steilen Anstieg in der Spanrungs-Dehmngs
Kurve mit bedeutendenHysteresis-E®ektenbeides wird dem Phanomen der
deformations-induziertenKristallisation zugeordnet.

Die Thermodynamik von gummi-dhnlichen Polymerenist untersuct worden;
und uni-axiale Dehnungen mit einigen Approximationen werden diskutiert, um
einen Bberblick dber die vorgesblagenethermodynamische Materialtheorie zu
erhalten.

Ein thermodynamisd statistisches Modell wird vorgestilagen zum Studium
desSpannungs-DehmngsVerhaltensvon elastomererNetzwerkenund die AbhAng-
igkeit der Spanrungskoexzienten vom Kristallisationsgrad wird beredinet. Dies
beruht auf einermodi zierten Verteilungsfunktion von Kettensegmeten fév Ket-
ten von endlicher LAnge.

Die Beredinung der Kristallisation basiert auf Gleichungenaus der Thermo-
dynamik der irreversible Prozessejierbei werden Deformationsgesiowindigkeit
und Temperatur bendcksichtigt.

Mooney Darstellungender Spanrungs-Dehmings Kurven werden eingefinrt,
um die starke AbhAngigkeit der Spanrungskoe+zenten vom Kristallisationsgrad
Zu zeigen.

Uni-axiale Belastungsprozessait ansdliessenderEntlastung werden unter-
sudt fir mehrereDeformationsgesawindigkeiten und Temperaturen, um die Ef-
fekte der molekularenOrientierung und der dehrungs-induziertenKristallisation
zu zeigenin Polyisopren Gummi und in Ethylen-Butan Kopolymeren (thermo-
plastisthe Elastomere, TPE). Der Ein°uss desRelaxationsprozessesnd der De-
formationsgeshwindigkeit auf die Kristallisation wird illustriert.

Die Hysteresisder Spanrungs-DehmngsRelation und dasinelastiste Defor-
mationsverhaltenwird der dehrnungs-induziertenKristallisation und ihrer Umwand-
lung zugeordnet;dieswird insbesonderesvidert fik grosseDeformationsgesiewindig-
keiten und tiefe Temperaturen (d.h. oberhalb der Glas@bergangstemgratur).

Die Modell-Ergebnissezeigengute abereinstimmmg mit Experimerten, die
in dieserStudie durchgefdhrt worden sind.






Abstract

Deformation induced crystallization is crucial for determining the nal me-
chanical propertiesof elastomers-rubler. Elastomericnetworks show high upturn
in the stress-straincurveswith a signi cant hysteresis,this is attributed to the
deformation induced crystallization phenomenon.

Thermodynamicsof rubber-like high polymershave beenstudied, and uniaxial
extensionwith someapproximations is discussedto obtain an overview of the
proposedthermodynamic constitutiv e theory.

A thermodynamical statistical model is preserned for studying the stress-
strain behaviour of elastomericnetworks, and the dependenceof the stresscoef-
“cients on the degreeof crystallinity. This is basedon the modi ed distribution
of chains of nite length.

A crystallization formulation basedon irreversiblethermodynamicsis adopted
to descrike the crystallization taking into accoun the e®ectsof strain rate and
temperature.

Mooneyrepresetation curvesareintroducedin this study to shawv the strong
dependenceof stresscoexcients on the degreeof crystallinity.

Both uniaxial loading and unloading are investigated for a range of strain
rates and temperatures,to explain the e®ectof molecularoriertation and strain
induced crystallization in polyisoprenerubber and ethylene-butenecopolymers
(thermoplastic elastomers). The e®ectof relaxation process,and the rate of
deformation on crystallization hasbeenillustrated.

The hysteresisof the stress-strainrelation and inelastic deformation behaviour
is attributed to the deformationinducedcrystallites and their transformation; this
is clearly showvn at high strain rates and low temperatures (i.e. above the glass
transition temperature).

The model results shav good agreemeh with experimertal data that have
beendeterminedin this study.






Chapter 1

Intro duction

1.1 Intro duction

Of all the materials known to man, no material can match the remarkable
behaviour of rubber and rubberlike materials (i.e. thermoplastic elastomers).
They are capableof sustaining large deformationswithout rupture; a maximum
extensionof ve to ten times the undeformedlengths is a common property of
them. When a rubber-elastomericmaterial is stretched, it achievesits highest
modulus of elasticity at maximum deformations. It possesseshe capacity to
recover spontaneouslyits original dimensions,with little appreciablefraction of
pseudo-plasticresidual deformation.

A wide spectrum of polymeric materials have beendeweloped to replacethe
naturally occuring materials. Therefore, thermoplastic elastomers(TPES) are
widely used,due to the easeof processingthey behave like a cross-linked rubber
under ambient conditions. TPEs di®er from cross-linked rubber inso far as the
cross-linksare not covalent bondsbut physicallinks, e.g. consistingof crystallized
chain segmers. Thesecan be molten by heating, thus allowing thermoplastic
processing.

Elastomeric polymers are commonly usedin ewveryday life. In order to suc-
cessfullymanipulate their applicability, it is indispensableto completely under-
stand the relationship betweenthe structure and the properties of the polymer.
The medanical behaviour is closelyrelated to the morphology and consequetly
dependson the thermal and deformation histories experiencedby the polymer
during the process.

A number of polymersincluding natural and syrthetic rubbers and thermo-
plastic elastomershave the tendencyto crystallize both medanically and ther-

1



2 CHAPTER 1. INTRODUCTION

mally. In many applications,the formation of highly oriented or extendedcrystals
has a bene cial impact on the medanical behaviour of the polymer. This can

be noticed in Im blowing, injection molding and, drastically, in b er spinning
asshawn in gure.

_% Pt dves
b C'I.'v.r

Melt Spinning Polymer from Chip

Figure 1.1: Schematic of b er spinning process(This picture is from the website:
www. b ersource.com/f-tutor/techpag.itm).

In b ers,the formation of the extendedcrystalline phasein the direction of
extensiongreatly reinforcesand increaseghe strength of the ber.

The phenomenonof orientation in polymers is shovn by the larvae of silk
moth, and by spiders. The former weave their headsabout inside of cocoon, so
that asthey spin their silk, it is pulled and oriented. The latter, by suddenly
dropping on their drag line, produce a highly oriented and very strong b er.

Recen elds of researt on elastomericnetworks have focusedon medan-
ical properties under deformation. It has beenfrequerily obsened that some
networks shav rapid upturn in stress-strainisotherm. Many considerableviews
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have been proposedto interprete the causeof the upturn. It was interpreted
mainly as a result of limited chain extensibility as being due to appraximation
inherernt in the Gaussiantheory. The other considerableview of this behaviour
is attributed to deformation-induced-crystallization.

It is thereforeindispensableto provide a qualitativ e understandingof the be-
haviour of the elastomericnetwork, and to completely predict the crystallization
from macroscopicdeformation during drawing.

1.2 Objectiv es and Justi cation

The foregoingdiscussionof polymer crystallization morphology with its em-
phasis on the importance of deformation-inducedcrystallization would not be
completewithout a brief mertion of the statistical approad to predict crystal-
lization of elastomericnetworks. Accordingto this approad, a polymer is treated
asa network of freely-jointed chainscrosslinked at junction points, whosemotions
are axne to the macroscopicdeformation.

Stress-straindependenceof crosslinked networks was rst described by the
classicalGaussianrubber elasticity theory in the pioneeringwork of Kuhn [41],[42].
A thermodynamic theory of strain-induced crystallization was rst deweloped by
Flory [21]. Both theories do not descrike the real behaviour of physically or
chemically crosslinked networks.

The goalsof the presen study may be summarizedas follows:

(1) Gain a better understanding of the medanism of deformation-induced-
crystalization.

(2) Dewvelopa model to simulate crystallization taking placeat di®eren strain
rates and temperatures for uniaxial loading-unloading processesf elastomeric
network chains.

(3) Modify the Gaussiandistribution for chains of nite lengthsto descrike
the end-to-endvector distribution function and the cortribution of chain to crys-
tallinit y.

(4) Basedon the results of the above mertioned objectives, to propose a
statistical model for stress-strain-crystallinity prediction.

(5) Perform tensile experimerts for both amorphousand semi-crystallineelas-
tomeric network chains, to validate the modeled results of the 4 above points.
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1.3 Summary of Contents

The dissertation is organizedin the following way.

Chapter 2 deals with thermodynamics of rubber-like high polymers. An
overview of the thermodynamic constitutive theory is obtained by discussing
uniaxial extensionat certain constart conditions (mainly temperature and exter-
nal pressure). Approximations and internal constrains have been employed to
simplify the theory [8].

In chapter 3, a review of the fundamenal aspectsof polymer crystallization is
given, including variousexplanationsof rubber aswell asthermoplastic copolymer
crystallization. The main section of this chapter is to dewelop the mathemati-
cal model and to simulate stress-inducedcrystallization taking placeat di®eren
parameters. This model is given accordingto irreversiblethermodynamics. It is
capableto calculate the degreeof crystallinity for both the uniaxial stretching
loading and retraction unloading processedor a range of strain rates and tem-
peratures. In this model, hysteresisloops and inelastic deformation behaviour
(pseudo-plasticresidual strain) is discussedn detalil.

In chapter 4, a modi ed Gaussiandistribution, basedon atne deformation,
is employed for chains of nite lengthsto describe the end-to-endvector distri-
bution function and the contribution of that chain to crystallinity. Stress-strain-
crystallinity relations are then derived from conformationalentropy. This is done
in the cortext of statistical thermodynamics.

Chapter 5 is a discussionof the model results as well as experimertal re-
sults. The experimenrtal results of uniaxial loading-unloadingextensionare fully
discussedand comparedwith those predicted for validation. The di®eren poly-
meric elastomers(i.e. with di®eren values of referencedegreeof crystallinity)
that have beenusedin theseexperimerts were obtained from Rieter Automotive
systemcompary-Gundernhausen.The experimertal part hasbeenperformedin
the laboratories of the German Polymer Institute-Darmstadt. Obsened hystere-
sis loops and residual strain (pseudo-plastice®ect) have been investigated for
rubber and thermoplastic elastomerexperimerts at di®eren rangesof the defor-
mation ratios, temperatures,and strain rates. Model parametersand ttings are
discussedn this sectionas well.

Chapter 6 givesthe generalconclusionsand recommendationsfor potential
future work.



Chapter 2

Thermo dynamics of Rubb er-Lik e
High Polymers

2.1 Thermo dynamic Constitutiv e Theory

The goal of thermodynamicsof rubber-like high polymersis the determination
of the “elds of density ¥x;t), of the motion x; = Aj(Xe;t), of the temperature
T(x;t) and the degreeof crystallisation »(x;t). Thus, the equations for the
determination are the balanceequationsfor mass,linear momertum, momert of
momenum, internal energyand degreeof crystallinity:

Vo= 0 Vi VALS iy
ti = i, =0 qgy otV (2.1)
Yy = i Aj i + A,

wherev;; t;; ¢; A; are componerts of the velocity v, the Caudy-stresst, the
heat°ux q andthe °ux of crystallinity A (through a material surface moving with
material velocity v) with respect to a Cartesian co-ordinate system (obsener-
system), which is rigidly connectedto an inertial system. u denotesthe speci ¢
internal energyand A hasthe meaningof a transformation rate (per unit volume
and time) of chain segmets from the amorphousinto the crystalline state. The
gravitation is neglected. The symbols ;; and _denote partial derivatives with
respect to spatial co-ordinatesand the material time derivative, respectively.
Hence,for a function f (x;t)

_e. ._@, @.
=g " gtVg (2.2)

According to Einstein's summation convertion, doubly repeated co-ordinate in-
dices denote summation from 1 to 3. The symmetry of the stresstensort is

5
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a consequencef consenation of momert of momertum in non-polar materials.

The velocity v; and the deformation gradiert Fie are obtained by partial deriva-

tivesof the material motion A; (X e; t):

@\ (Xest) Fio = @\(X@,t)
@ I e

X @ denotesthe co-ordinatesof a material elemen in somereferencecon guration,

which wewant to idertify with someundeformedequilibrium state of the material

with xed valuesT = Tg of temperature, p = pr of pressureand » = »; of degree

of crystallinity. In this referencestate Fi®jR = +e, the unit tensor.

Vi = (2.3)

We now assume,that the material does not fracture during deformation.
Then, dueto det F > 0, the inversedeformation X g = )i®(xi;t) exists. Conse-
quertly the inversedeformation gradiert

F”mﬂ=@¥§%3 (2.4)
is well de ned. It holds
(F YeiFi = % ; Fio(F' Dej = % ; (2.5)
wheretz- and &; are Cartesiancomponerts of the unit tensor [71].
The massbalance(2.1); can be integrated using (2.3), the result being
daF—-% §%; (2.6)

wherev = 1=%is the speci ¢ volume, and %, and vg = 1=%;,respectively, are
the density and the speci ¢ volumein the referencestate.

With (2.6) onecan introduce a new deformation measure

®>(—yL¢ detG = 1: (2.7)
R
This measurehasthe special property, that it doesnot cortain volume changes.
Pure volume changesand isochoric deformationscan be treated separately

The decompsition (2.7) is rather important for the treatment of rubber-like
high polymers, sincethe total deformation can be separatedinto inelastic and
elastic cortributions. The inelastic deformation -thermal volume expansionand
a changeof the volume by a changeof the internal structure- is cortained in the
volume change(;~), while the elastic deformation is described by Gije. The last

oneis isochoric by de nition. With this all deformationswhich aredueto volume
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changesare explicity separated.This is of crucial importancefor the constitutive
theory of rubber-like high polymers.

To cometo the main goal of thermodynamics - which meansto transform
the balance equationsto a set of eld equationsfor the determination of the
“elds #x;1), xi = A(Xet), T(X;t), and »(x; t)- the "elds of stresst; (x;t), heat
°ux g(x;t), internal energyu(x;t), crystallization °ux A;(x;t) and crystallization
rate A(x;t) must berelatedin a materially dependernt mannerto the independen
“elds A ; T; ». Sud relations are called constitutive equations.

For rubber-like high polymerswe make the following assumptions:

tiy (x;t) = t;(v;T;» Ge; Ti) ;
gx;t) = q(v;iT;»Gie; Ti);
A(x;t) = 0;

ux;t) = u(v;T;»Gie; T;i);
Ax;t) = AV;T;»Ge;T):

(2.8)

Herein the hypothesisof equipresencénas beenapplied, accordingto which it is
assumedhat a variable which appearsin oneconstitutive equationcanappearin
all of them. In this way one avoids prejudicesin the formulation of constitutive
equations.

The constitutive equation (2.8); about the °ux of crystallization means,that
the crystallites move with material velocity and do not di®useagainstthis veloc-
ity. This relatesto the microscopicview, that crystallites inside their amorphous
surroundingsare just transformed during deformation, but cannot move relative
to their amorphoussurroundings.

We now introduce by the de nition

1
p:=j §t|| = p(v; T;» Gie; Ti) ; (2.9

an internal pressurep(x;t). Sincerubber-like high polymers are compressible,
@=@ 6 0, the constitutive equation (2.9) can be inverted with respect to the
speci ¢ volume

v(x;t) = ¥(p;T;» Gie; Tyi) ; (2.10)

instead of the speci ¢ volume the internal pressurecan be chosenas an indepen-
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dent eld variable. Hence,we obtain

ty (X;t) = i p(X;t)% + tj (p;T;» Gie; T;)  with €, =0 ;
g(x;t) = G(p;T;» Ge; Ti);
A(x:t) = O; (2.11)

ux;t) = a(p;T;»Gie; Ti);
A(x;t) = AT »Gie; Ti):

The constitutive equations(2.10) and (2.11) are equivalert to (2.8). The form
of (2.10) and (2.11) is better suited for the description of the material behaviour
of rubber-like high polymers, as we shall seelater. Therefore we choose this
formulation, [5].

If oneinsertsthe constitutive equations(2.8) or (2.10) and (2.11) into the bal-
anceequations(2.1), thesebecome eld equationsfor the independer elds. Ev-
ery solution of the "eld equationsto a Cauchy-problem (Boundary-value and/or
initial value problem) is called a thermodynamic process

If the constitutiv e equationswould be known, the exerciseof thermodynamics
would be to solve the eld equations,and this is a purely mathematical problem.
The constitutive equations,however, are in reality not known for no material, so
neither for high polymers. For this reasonthe main exerciseof thermodynamicsis
“rst of all to restrict the dependenceof constitutive equations(on their variables)
by generalrequiremerns. This is the content of the thermodynamic constitutive
theory, which we shall formulate now.

There exist three generallyvalid requiremerts for the restriction of constitu-
tive equations. Theseare the principle of material symmetry [71], The principle
of material obsener invariance,and the ertropy principle [5, 54].

The principle of material symmetry states, that the constitutive equations
are form invariant with respect to symmetry transformationsin the undeformed
state. For the isotropic high polymersconsiderechere (with inversionsymmetry)
this means,that the constitutive equationscan depend on Gijg only via the left
Caudy-Greendeformation tensor

i = Gi®Gj®: (212)

The principle of material obsener invariance states, that the constitutive
equationswhich are measuredby an obsener in an inertial frame, are the same
as for another obsener in a frame, which is translated and rotated against the
inertial frame. Then, the constitutive equations are form invariant under Eu-
clideantransformations. From this oneconcludesthat the constitutive functions
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are isotropic functions of T; and j and possesshe following irreducible repre-
sentations [64):

u = ulp;T;»leHe) ; A= AP;T;»leHe) ; v=V(p;T;le He);

G = ilaty 2+ a(lTy s (2.13)
2 _ —

i = i pi §(C1|1+ 2C,1 )% + 2(Ci+ Col1) T i 2Co(79)

5 5

H 1 - -
+@® (T-T)iji 5% +® S(T- "¢T+7T-T)i Hay

o .
+® %IT- B T i

Herelg(®= 1;2) are
- _ 1 _ -
=7 =Ty li= S )i trA; (2.14)

the principal invariants of the elastic deformation (I ; := det” = 1),
Ho= Te(CH ' T) = T4 N Ty (a= 1,23): (2.15)

H, are the irreducible invariants, which can be formed with the temperature
gradiert.

The scalarcoezxcients - 1; - ;- 3 In the heat °ux and C;;C, and ®;;®,; ®; in
the stresstensorarein generalfunctions of p; T; »; 1 ; Ha . The termsin the stress
tensor are trace free, exceptfor the pressurepart, e.g. tr(t + p1) = t; + 3p= 0.
One can easily prove this with the help of the Hamilton-Cayley-Theorem:

Ci =10 125 + % ¢ (2.16)

As athird generalprinciple for the restrictions on constitutiv e equationssenes
the ertropy principle . We postulate it in the form given by Miler [54].

i) There existsa mass- proportional ertropy. This satis esa balanceequation
of the form:

Vs =i Ayt Va: (2.17)

ii) The speci ¢ ertropy s and the (non-corvective) ertropy °ux A aregiven by
constitutive equations,which satisfy the principle of material symmetry and the
principle of material obsener invariance. For rubber-like isotropic high polymers
we then have

8(p;T;» Gie; Ti) = S(p;T; » le; Ha) ; (2.18)
APT»GeT) =i [ oy + 25+ a7y

s(x;t)
A (x;1)
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where' 1;' 5;' 3 are scalarfunctions of p; T; »; | ; Ha.

iii) At heat conducting material walls with cortinuoustemperature, the nor-
mal componert of the entropy °ux is cortinuous,

[Alleg =0 for [[T]l=0; (2.19)

[[A]] = A* i Al meansthe di®erenceof single sided limiting valueswhen ap-
proaciing the wall from either side, e is the unit normal vector of the heat con-
ducting wall.

iv) The entropy production density is non-negative for all thermodynamic
processes,

Y4, 0 8 thermodynamic processes: (2.20)

The key for drawing inferencedrom the ertropy principle is inequality (2.20).
It doesn't hold for arbitrary “elds ¥2A;; T:», but only for thermodynamic pro-
cesses.The inequality is therefore valid for all solutions of the “elds equations,
which follow from the balancelaws. These eld equationsformulate restrictions
for the independert elds. Onecanaccour for theserestrictions by the introduc-
tion of Lagrangianparameters. Onethen obtains an inequality that is equivalernt
to (2.20) and (2.17) of the following form:

Ys + Ayi Mt vay)i ML i)
i Nty tivig) i MYt Ayi A, O; (2.21)

which is valid for arbitrary (unrestricted) “elds ¥A;; T and » [43].

According to (2.3), (2.4), and (2.7) the velocity gradiert may be written as
— il —_ 1\L il .
Vij = Fe(F' e = §ij + Gip(G' Vg (2.22)

Now, oneinsertsinto (2.21) the constitutive equations(2.18), (2.10) and (2.11)
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and performsthe di®erettiations. One obtams thus Wlth V= 1—1/2and (2.22)

M 1.
: U@ @‘ﬂ
+ 15 = AU = 4 P— i N>
@ @ "o q
1 AU @ @ . il . NY il ’
+ Y i @ P i M (G e i "G N Gie
. i® i® @ﬁl@
M a@ @ "
G- L=l = #(T;iyi ZA AV (2.23)
+ @i AU@ AV AV@ D
@ e e ] ,
M T L R L VTN
a a a 4 @ @ @
+ @ Nnu @ +/\V @\kl GI®J

This inequality is valid for arbitrary variations of the (independen) elds. With-

out restriction of generality onecan choosethe Lagrangeparameters® Y; A >; A %in
sut away, that the expressionsn the bracketsin front of T; »and Gje disappear.
Then these Lagrangeparametersare functions of the variablesp;T; »; Gig; T, of
the constitutive equations. Further, the Lagrangeparameter”™? can be chosen
sud, that it is independert of v;. Then Y = 0 must vanish, since otherwise
the inequality can be cortradicted. Now it follows, that the inequality (2.23) is
linearin p; (T;)% pj; »; Gie; and T;;. It could, consequetly, be violated for
arbitrary variations of these elds, exceptif the correspnding forefactorsvanish.

This gives q

@ = AUH@ + p@ ;
@ H@ @Tﬂ '
@ @, 6 @
— = AU = — 2.24
o ) o + p@)ﬂ (2.24)
@ _ . @, @ ..
= = —+p= +"7
@ @ e q

@ u @ @ i N i -

@o " u @ie * p@;ﬁ@ i W (G e + MG Ny ;

@ = nu @+ pg ;

@-;i @-I @-;i ’
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AV=0; (2.25)

= ; (2.26)
= AU
@B|® @B|®’
@(J — AU @J :
@) @)
There remainsthe residual inequality
A !
"e %i S (2.27)

which holds for unrestricted processes.

It seems,that we do not come closerto our wanted goal, namely to nd
restrictions on the constitutiv e equationsfor ¥; 0; f} ; § ; A, becausewe introduced
new unknown constitutiv e functions Q;A- and unknown Lagrangeanparameters
Au.A»AY But this only seemsso, becausethe new constitutive functions can
be eliminated. First we recognise,that the " Ansatz" A = ~Ug satis es the
relations (2.26), provided MY is only a function of T,

A’_ = AUT)G (2.28)

This is a suxcient solution of (2.26). That it is alsonecessarycan be provenwith
the help of the represemations (2.18), for the erntropy °ux and (2.13), for the
heat °ux after lengthly calculations. The ertropy °ux is therefore proportional
to the heat °ux with afactor of proportionality ~“(T), which is only a function of
temperature. To determinethis factor we usethe requiremert (iii) of the ertropy
principle on heat conducting material walls. At thesewalls, as a consequencef
the energylaw, the normal componert of the heat °ux must be cortinuous:

[[glle = O: (2.29)

If the heat conducting wall is nothing elsebut the interface betweentwo heat
conducting rubber-like high polymers+ and j , the temperature is cortinuous
and it follows from (2.29) and (2.19)

MM =) (2.30)
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The Lagrangeparameter™Y(T) is cortinuouson heat conductinginterfaces. Con-
sequetly, it is a universalfunction of temperature for all heat conductingrubber-
like high polymers.

For an ideal gasthe Lagrangeparameter”y(T) = 1=T is iderti ed with (1
over the absoluteideal gastemperature). If one cortacts the high polymer via a
heat conducting interface with an ideal gas,one has

AU(TY) = %: (2.31)

The Lagrangeparameter” Y(T) for high polymersis identi ed with the reciprocal
(absolute) temperature.

Now we usethis result and insert it in (2.24). With the speci ¢ enthalpy

f:= 0+ po; (2.32)
we obtain

@ _ 16,

a T%’

@ _ 1a ..

@ $(@| ¥ ; (2.33)
@ - l@-{-/\»'

@ T |

1 . .

£® = 7 £®' i (G' Nej i “G' Ve

@ _ 1d.

@;i T@-;i.

We assume,that the entropy is twice cortinuously di®ereniable. From the in-
terchangemen of the secondderivativesone concludes,amongother things,

» R
@:O;Q:O;@:O;@:O;@:: (2.34)
@;i @;i @;i @;i @;i
The speci ¢ ernthalpy, the speci ¢ volume, the trace-free cortribution of the
Caudy-stressand the Lagrange parameters”” and ~* are independert of the
temperature gradiert. The sameresult holds accordingto (2.33)s and (2.32) for
the ertropy and the internal energy

@
@;i

_n. @ _
=0 ; . 0: (2.35)
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This implies important simpli cations in the represetations (2.13) and (2.18) of
the constitutive functions: The speci ¢ volume, the internal energy the erntropy,
the erthalpy and the coexcients C; and C, of the stresstensor are independert
of the invariants H, (a= 1,;2;3). Further, the coexcients of the stresstensor

®=@®=®=0 (2.36)

vanish. The chemical production density A, and the coezcients - ;- 5;- 3 Iin the
heat °ux may, howeer, further dependon H, (a= 1;2;3).

We insert now the represemations (2.13) under the use of (2.36) and (2.33)
and obtain with (2.12), (2.14) and (2.16), using the following mathematical ex-
pressions

@ _6,0.,6, 0@
@ie @1 @ @2 @G
@ _ @, 0 0, Q.
@ie @1 @B @ @Bio’

after lengthy calculations':

Aoz %%(cllﬁ 2C,l5) (2.37)
and
G _ 16,
@ 1
@ = ?(@I V) ; (2.38)
@ = 1@+/\»'
@ T@ ’
e _ 1@ .
@ = Tlg.iVvCe: (@=12):

To simplify notation, the hats * above the constitutive functions have been
dropped.

The Caudy stresstensor can be somewhatsimpli ed using the Hamilton-
Cayley Theorem (2.16) and (2.36):

2 _ _
Gj =i Py i é(Cllli Colo)%y + 2Cy i 2C,(T1 Y ¢ (2.39)
If oneintroducesthe speci ¢ free erthalpy

g:=hj Ts; (2.40)

1These calculations are available upon request.
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then relations (2.38) simplify formally to
@ . Q@ @ @

—=iS, =V, —=jT"

@ @ @ @

With these,the Lagrangeanparameter”” has nally beenidenti ed. It is given
by the derivative of the free ernthalpy with respect to the degreeof crystallinity.

=vCe (®=1,2): (2.41)

The integrability conditions for the free erthalpy are

@_. @ . @_@™) . 6 _ @Cd . (2.42)
@ '@ 'e @ '@ @@ '
@_ @ @ _@C) @ _ @cCo

@ ' @ @ @ ' @ ' @
@vCi) _ @vC,)

@ @

We shall producesomefurther relations. Weintroduceby ¢, := % the speci ¢
heat capacity at constart pressure.From (2.38) we concludewith (2.42)

@ _ _ 1+ @

@ % 'a

% = viT%; (2.43)
@ _ @

@ a’

% = vC®iT@g®):

Theserelations imply the integrabitlity conditions

%= i T % ; %= @@(TZ%) ; @ _ i T@(VC®): (2.44)

For the internal energyu = hj pv we obtain with (2.43)

@a_ @ a..@ @,

@—Cplp@-, @ |T@-|p@. (2.45)
@ _ .,@ @ @_._ _@c) @

@ '@ 'Pe @ T @ Pa.

With this all generalrelations for rubber-like high polymersare derived.
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There remainsto draw conclusionsfrom the residual-inequaliy (2.27). This
simpli es with (2.28) and (2.31) to

1
Loz AT+ AA 0 (2.46)

We de ne thermostatic equilibrium as a state with spatially and temporarily
constart temperature T, with temporarily constart deformationGie, temporarily
constart pressurep and temporarily constart degreeof crystallization ». Accord-
ing to (2.1) and (2.11); the chemical production density A = 0. We denotethis
thermostatic equilibrium state by je (equilibrium).

The erntropy production assumesn equilibrium its minimum value zero. Nec-
essaryconditions are

@ s. Q@ s.
= 0; = 0; 2.47
@;jJE @ (2.47)
— @ J- Ls —
- @;i T;j E @;i @\ E — _
- — » nonj nhegative de nite (2.48)
- _@:LJ @, 3| -
@a;le ‘@zl
Relations (2.47) give
gj. =0 ; "7 =0: (2.49)

According to (2.13),, (2.49), is satis ed automatically, (2.49), meansaccording
to (2.41)

%jE = 0: (2.50)

This relation determinesthe equilibrium value »_ = »(T;p;le) of the degreeof
crystallinity.

The matrix of the secondderivativesin equilibrium is, accordingto (2.13) and
(2.43),

Is . 1 i 1 £ . - . oo B
@-,'-I-S_JE = i ﬁ%lg = T2 “aed *or2e i o ale( 2)ij ;
il i
I @»
IS i = = i = O’
@e: = @-
: .. @»-

@2 le = @JE :
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From (2.48), there follows

ety + oo +-sje(T)y » nonj negative dinite ; (2.51)
@)).
— 0: 2.52
@JE 5 ( )

With theseall generalrestrictions on the constitutive equations of rubber-like
high polymersare obtained.

2.2 Uniaxial Extension

To obtain a rst overview about the content of the thermodynamic constitu-
tive theory, we will discussthe uniaxial extensionat constart temperature T and
constart external pressureP. The direction of extensionshall be the 1-direction.
Let the extensionalforce per unit crosssectionin the referencestate be % (nom-
inal stress). This is related to the 11-compnert of the 1%t Kirchho®-Piola-stress

Tie = tj (F' Y)g; detF (2.53)
as follows:
Y% = T+ P(F' 1)y detF : (2.54)

The states of stressand deformation are uniform and along the Eigen-direction,
wherefor the Caudy-stressthe following boundary conditions at the freesurfaces
perpendicular to the direction of extensionapply:

top=1t3=i P; (2.55)

Furthermore, the deformation gradiert in the usedCartesian co-ordinate system
hasthe represemation

0 1
a; O 0
liFiell = @0 o, 0A: (2.56)
0 0 oy,

g, is the ratio of the length L at constart T and constart P of the extended
material probeto the length L in the undeformedreferencestate at the reference
temperature Tg, referencepressurePr and crystallinity %, namely

L
o, = L_
R

Using (2.6) the deformationsa, = &3 perpendicularto the extensionaldirection
become

(2.57)

g,= gg= —_—: (2.58)



18 CHAPTER 2. THERMOD YNAMIC CONSTITUTIVE THEORY

The isochoric strain tensoris alsoin principal form

0 1
.1 0 0
jiGeii=@o0 ,, 0A: (2.59)
0 0 .3

The correspnding isochoric principal strains , , = , 3 perpendicular to the ex-

tensional direction follow from (2.7), as
r__
— — 1 -
Sl

.25 ,3% (2.60)
The relationship betweenthe deformation measuresn (2.56) and (2.59) follows
from (2.7), as

Vi3 v 16 1
1= () e 2= () p=: (2.61)

VR VR oy

The left Caudy-Greendeformation tensor (2.12) hasthen the represemation
0 1
0
0A: (2.62)
1
1

5

i
ii=@o
0

o.|lro

The main invariants (2.14) are consequetly

2 1
1= 5+ = 1,=2 .1+ 5 (2.63)
5 1 5 1
The componerts of the Caudy-stressfollow from (2.39):
4 1 1
ty = §ipt §(’ i =)Ci+ Co);
s 1 1
2 1 1
tx = iDpi §(, 2i —)Ci+ Cp—) = tas: (2.64)
s 1 .1
From the boundary condition (2.55) we obtain the internal pressure
2 1 1
p=Pi 3(3i )G+ ) (2.65)

The 11-commnert of the 15t Kirchho®-Piola-stres$2.53) is then given by

. 1 v 1
Ty = tlj(F' 1)1] detF = tlln_alng = tyu—— (266)
1 VR B1
v. 23 1 v 231 4 1 1.
= (—) tu—=(—) = ip+=(fi =NCi+Co—) :
VR s 1 VR s 1 3 s 1 .1
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Thus, from (2.54), with the help of (2.65), onededucedor the nominal extensional
stress

g _ V&, 1 (N
e (g) (1i —) (2Ci+ 2C2_1) : (2.67)
5 1 5

In the uniaxial extensionexperimert the independerly given variables, and
therefore measurablequartities, are the external pressureP, the temperature T
and the length ratio @;. It is therefore necessaryfor the experimertal testing,
to introduce P; T; &, (besides») asindependen variables. Any state function
A(p;T:;»: 1) is thus represetable as

A(p;T;» le) = A(P; T;»8,); (2.68)

where the dependenceon the set of variables on the right-hand side is denoted
by a ~ above the function symbol. The speci ¢ volumeis then given by

v=w¥P;T;»na,): (2.69)

For the deformation invariants (2.63), (2.61) implies

w i, 2 v
;= [(P;T;»0,) = (E) (mf+ D_lﬁ), (2.70)
v 1 1 v
IZ—E(P,T,»,Ol)—(g) (21211+a—%E ;

and for the internal pressure(2.65) and the nominal extensionalstress(2.66) we
get the expressions

p = p(P;T;» 0y
11 v 0 e 1 v
= Pij 2 () g, o 2Cy) + 2(vCo) —(—) - (2.71
|3VR(VR) = v (vCyp) + 2( Z)Cfl(vR) (2.71)
Yo = %H(P;T,»no
’ il( v ’ H 1 vﬂ' 1 v 5
= —(Yyi23 e 2(YC)) + 2(vCy) —(—) 2.72
VR(VR) Q9 Ova (¥C1) ( 2)01(VR) ( )

The crystallinity » in non-equilibrium is, cortrary to P;T;a,, not directly
measurablein uniaxial, isothermal and isochoric extensiontests. The volume
relaxation and the stressrelaxation are measurable,becauseat xed values of
P; T; and &, the speci ¢ volumew aswell asthe nominal stress¥ are measurable
as functions of time. In the relations

@

ip-T:a, 2.73
@»}P,T, ( )

Yp T, = %’#;T;nl ; #lpTie, =
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the left-hand sidesare known and, consequetly, alsothe ratio

%J‘P;T;ul @4 @ @4

Ypre, @@ @

If one knows in addition the time rate of changeof », @=@ and @4=© are
indirectly determinablefrom (2.73). To calculate» appraximately, we employ the
following reasoning: For small departuresof crystallinity » from its equilibrium
value »(P; T; =), the chemical production rate density A is proportional to the
"axnit y" *”. Then onehas

(2.74)

A=aj " (2.75)

Accordingto (2.52) aj. , 0. If onedewelops”” in aTaonr seriesfor xed values
of T; P; o, with respectto » about the equilibrium value », oneobtains, on using
(2.41), (2.42) and (2.50),

|
» x » |
L@@ X @a

N> = AN _ i » i ;L) .
JE"+ @6’ . @@@z i (i »  (2.76)
1@y, 0@ X QC)@s ; . 4.
'T @ @@’ @ @ ="'

®

In equilibrium the freeerthalpy assumest xed valuesof T;p= pi.;le = lej. @n
extremum. If we assumethat this extremum is a minimum, then @g=@?j. > O,
and the crystallization equilibrium is stable. Then, the cortent of the square
bradkets canin (2.76) be positive.

We insert now (2.75) and (2.76) into the balanceequation (2.1)s and obtain
with Aj =0
1 1
2= —(»j ») (2.77)
¢

for the time rate of changeof the crystallinity. ¢ = ¢(p;T; % le) = &(p;T;21) has
the meaningof a relaxation time and is given by

1_a, @, @@, X @Co)@s
@ @

#

T T @ @@

(2.78)
® ie

For someuniaxial deformation history , ;(t) at constart temperature T and
constart external pressureP, $ = >1>(t) and ¢ = ¢(t) are functions of time. Inte-
gration of (2.77) yields then for the non-equilibrium crystallinity » (the internal
variable)

1 R g0 R Z »(t(b R0 400 *
»(t) = 3(0) € °u? + ¢ 0w @0 (%

NG ;

(2.79)
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where(0) is the equilibrium crystallinity at the beginningof deformation. »(t) is
an after e®ecffunctional of stresshistory. This is the reasonfor volumeand stress
relaxation and stress-strainhysteresis. Conclusionsfrom (2.79) will be drawn in
the sequel.

In uniaxial extensionexperiments . ;(t) is prescribed at given values of the
temperature T and the external pressureP. So, the independen variables are
T; P; , 1 and ». We needall equationsin this set of variables. The derivativesof
the function A with respectto T;P;»; ;1 are, accordingto (2.68)-(2.72),

@& _ @ de * Ao

a @ e@ ,@a '’

@ @ X @as

— = — — 2.80
@ ‘@@ 0.0 (2.80)
@ _ 4@ de " A

@ e @@ @0
@ = +@@+X @%

(@} @@: , @@:

Identifying A with the free erthalpy g we obtain, on using (2.41),

@ = is +V-@+X VC®%

@ a , ‘@’

@ @, X @

— = — vCo——ob 2.81
@ Ve e (2.81)
@ . R

= = i TA = VCo——

e ' e ™e

@ @,* @

-~ = = V‘C—

@: e, , "a:

With & = g pv+ Ts the derivatives of the internal energy are directly
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obtained from (2.81),

@ _ & @& X @e
@ = T@l p@"‘ . VC®@ ;
@ _ .6 @ X _@.
@—T@|p@)+®\fC®@), (2.82)
X
®
@ @ @ X @
= T—i p— ¥Co——r !
@ ! p@1+ ® ®@1
Finally, the derivativesof the freeenergyf~:= g+ pvr=tj Tsare
@ @ X @s
~ - . . = VC_ .
a i S i ﬂ@"' . ®@_ ;
X
g : .pg+ v%% ; (2.83)
®
@ . @ X @s
~ - . TA.. — =% .
@ i i F}@"‘ . VC®@ ;
@ @ X @
— = i vCop—
@: 'Pe. ", e

2.2.1 Appro ximations

All relations given sofar are generallyvalid. They are correspndingly com-
plicated. Especially, the choice of the pressureas an independert state variable,
seemsto make the formulas complicated. Howewer, they are in this form espe-
cially well suited for approximations. This will be demonstratednow.

2.2.1.1 Incompressible, thermo elastic materials

In the older theoriesof rubber-elasticity, Kuhn [41] , Mooney[52], Rivlin [55],
it is assumed,that rubber is an incompressiblethermoelastic material, whose
elasticity is solely traced badk to the deformation dependenceof the ertropy.
This theory is included as a special caseof ours, if we assumethat no state
quartity dependson crystallinity, that the internal energyis independen of de-
formation and that the speci ¢ volume is independert of temperature, pressure
and deformation, namely

s=s(T;p;le); u=u(T;p); v=vg = const: (2.84)
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From the consequencef equations(2.84) and (2.42),, the stresscoezcients are
independen of pressure,and they are linear homogeneoudunctions of the (ab-

solute) temperature

@, _ X,
Co(T;1-) =T Ke(l-) ; —=—=—"": 2.85
o(T;1-) o(1-) @, o (2.85)
The speci ¢ heat capacity dependsonly on temperature,
@ @
=c(T); =—=0; =—=0; 2.86
G = C(T) @ @e (2.86)
the ertropy is independen of pressure
@ = & @ = O @ =iV %
@a 1T @ @ 'a
and given by
Z Bz
S(Tile) = S+ Cp(TOO)dTO; w2 T K1(1%3)dI?
T T a 3
Z o ﬂa
+ Ko(l; 1 dld (2.87)
3
and the internal energyis only a function of temperature
Zy
u(T) = ug + c(TY dT: (2.88)
Tr
For uni-axial extension,from (2.61) , ; = &, and from (2.70), we obtain
— — 2 2 . — — 1 .
lp= M) =081+ — ; l2=RR) =20+ — (2.89)
Ol 01
With this the stresscoezcients (2.85) take the form
C®(T, c11) = TK-®(Q 1) ; (290)
and the ertropy and internal energyare
£ 7 619 @  ~¢ 1 A
s(Tio) = sg+ 2 2dT% vg— 2T K1(@9) + —Ky(a9)
e T a 1 a7
H 1 T .
£ o =3 da? (2.91)
z, *
— 0
HT)= ug+ (T dT

Tr



24 CHAPTER 2. THERMOD YNAMIC CONSTITUTIVE THEORY

Finally, accordingto (2.67), for nominal extensionthe stress% follows as

3>‘—2T“c:t- 1."HK“+1K“."—'1T@' (2.92)
This relationship shaws that the nominal tension stressis given by the defor-
mation derivative of the entropy. This behaviour is called Entropy Elasticity of

rubber. This implies two e®ectswhich are typical for rubber:

1. If oneincreaseghe temperature at constar stress¥ and constart external
pressureP, the rubber sampleshrinks (Gough-e®ec)[28].

2. If oneextendsa rubber sampleunder adiabatic isolation (e.g. at constart
ertropy s), and constant external pressure,the temperature is increased(Joule-
E®ect[34))2.

From (2.92) follows additionally, that the stressat constart deformation and
constart external pressureis a linear homogeneougunction of temperature,
@4
This meansgraphically, that the stress-temgrature curvesat constart extension
are straight lines which for extrapolation to T ! 0 approad the origin 3% =
0, and whoseinclination increaseswith increasingdeformation as explained by
equation (2.92) and shavn in gure 2.1.

0
-

Figure 2.1: Stress-temg@rature curve of uniaxial extension.

In the statistical theoriesof rubber elasticity, rst treated by Kuhn [42], it is
assumedhat the molecularchain betweentwo crosslinkingpoints can be divided

2For materials, which are essetially energy-elastic(e.g. metals) both e®ectsare exactly
reversed.
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into (statistically equivalert) segmets, which are connectedto ead other by free
rotations. For this model the conformational ertropy is calculatedfor small and
medium deformations(strong coiling : Maximdfr‘f”ﬁgngfgosf)'%”kgrgemf“e’g“ gan << 1)inthe
socalled Gaussianappraximation, underthe assumptionsthat crosslinkingpoints
move aznely to the macroscopicdeformation and that the model substanceis

incompressible.From this model, there result constart stresscoezxcients,

k

N ; Ko=0: (2.94)

VrK1 =

Here, k is Boltzmann's constart, N is the number of segmets between two
crosslinking points, and m, is the massof one segmen The obsened stress-
strain curves can be descrilked with this for small deformations. Especially, the
e®ectis well descriked, that weakly cross-linked rubber can be deformed more
easilythan strongly cross-linked rubber.

For mediumand large deformationsthe stress-strainbehaviour is not correctly
descrited by (2.94). The reasonis, besidesothers, that the Gaussianapproxi-
mation is employed for calculating the conformational ertropy, even though for
large deformationsthe strong coiling of the chain moleculeis no longer valid. If
one weakensthis Gaussianassumption,then the conformational entropy can be
calculatedonly appraximately usinga complicated Taylor seriesexpansionin @ q,
seeTreloar [70]. With this onemay derive by di®erettiation accordingto (2.92) a
seriesexpansionfor the stress,which cortains just one tting parameter, NLmo%

In a cortinuum theory onehas, in cortrast to the statistical theory, two stress
coexcients. Mooney [52] assumedthat K; and K, are constarts for uniaxial
extensiontests. With this, the measuremets canbe explainedup to intermediate
deformations. Howewer, the steep upturn of the stressfor large deformations
cannot be described with constart valuesof stresscoezcients.

Rivlin and Saunders[56] were able to descrile alsothe steepupturn. They
assume that K is constart and K, dependson the deformation. According to
(2.85), K, canthen depend only on the seconddeformation invariant,

K1 = const; K,= Ky(l,): (2.95)

With this, Rivlin and Saunderscan also explain quite well bi-axial stress-
strain experimerts, howewer they report, that K, seemsto depend weekly on
time in sud a way that K,, in the courseof time, decreasest constart load.
This time dependencecannotbe understood with any theory of thermo-elasticity.
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2.2.1.2 Incompressible, thermo elastic materials with thermal volume
expansion

Mayer and Ferri [51] and Anthony, Casten and Guth [9] report, that the
stress-temprature curve can be reproduced only, if as a deformation measure
the thermal cornvective length ratio

_ L(T) _ Lengthunderload at temperature T
*17 L(T) ~ Length without load at temperature T

is usedas a curve parameter. If, howeer, the deformation measurea; = 1

is used, the measuredcurvesfor T ! 0 do not mergeinto the point %4 = 0.

This obsenation is calledthermo-elasticinversion. The relationship betweenthe
i 1=3

deformation measures, ; and @ is | ; = LL(I) LE(RT) = o4 % l accordingto

(2.61),. From this must be concluded,that for the description of the thermoe-

lastic inversionthe thermal convective deformation measuremust be used.

The measuremets show, that the nominal stress34 in uni-axial extensionat
constart external pressureP and xed thermal cornvective length ratio | ; is a
homogeneoudinear function of absolutetemperature, i.e.,

“ g

Vii T
@ , 1P

=0; (2.96)
For the stresscoezcients, after insertion of (2.67), one obtains

H T2
T I
Co(T;,1) = —V\(/R)

TKe(,1) (2.97)

The stresscoexcients are, consequetly, not exactly lingar in T (asin the ap-
i 2=3

proximation (2.85)), but they cortain the volume factor %
R

2.2.1.3 Contin uum theory and Deformation-Induced Crystallization

For simpli cation of the theory, some appraximations have been assumed
about the speci ¢ volumev = v(T;p;» lg). We make now the following linear
(Taylor) seriesexpansionof the speci ¢ volume about the referencestate:

V=VR[1+ &(T i Tr)+ o(Pi Pr)+ %o(»i M)+ H(l1i 3)+ "o(l2i 3)] (2.98)

For small departuresof T;p;»;11;1, from the referencestate valuessud an ex-
pansionshould be valid.
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The coezxcients in this expansionare, in the referencestate,

VISR |
1 .1
® = — @ = 66£ 10 4—;
VR H @-ﬂ PR PR K
_ 1 =1
0= — @ =j51£ 10°—;
VR @ . bar
TR ™R
1 U@ﬂ
°0= — — : (2.99)
VR 3 @' TrPR
- 1 @
= 65-3 @:- TR PR PR ’
n : i @ .
° VR @2 TR PR ™R ’

where®, is the classicalcoexcient of thermal volumeexpansion, , the isothermal
compressibiliy, °, the coexcient of volume expansiondue to crystallization, *,
and ", are volume expansioncoezcients due to the deformation. The orders
of magnitude of °q; %,;", are unknown. Specialization to uniaxial extension at
T = Tr and P = pg yields, with (2.63) and (2.65),

_2 1 1
Y= vr 1+ °(»i )i 05(, Zi —l)(Cl"‘ —1C2)
2 2 " 1 >
+ oK1t —i0 )+t (2, 1t i ) (2.100)
5 1 5 l
For simpli cation, the changeof volumewith deformationis assumedo belinear,
whensi » = @@ (.1i 1) holds. For the equilibrium volume thus
1 Tripr:, 1=1
follows q
" @
_2 1 1
v ovg 1+, — Gii Di oz 2i =)Ci+ =&y
@ 1 Tripr 3 s 1 s 1
2 2 . n 1 . ’
+ K1+ — i 3+ "2 1t =i 3) (2.101)
5 1 5 l

Co = Co(Tr;PrR; ; .1) (®= 1;2) denotethe valuesof the stresscoezcients in
crystallization equilibrium. For deformation up to 100%the Mooney approxi-
mation is valid. Then the stress-cezcients in equilibrium are independert of
deformation and pressure,and functions of temperature alone, Co= Ce(Tr). In
this case,¥ = YL\® jg a linear function of , 1j 1,onlyif o= % =", = 0. This

VR VR

explainsthe experimertal 'ndings of Géritz [31].

The linear increaseof volume up to deformationsof about 100%can be ex-
plained only, if the compressibiliy and the dependenceof the volume from the
deformation invariants are neglected. Then,

v=V(T;»): (2.102)
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This explains the linear increaseof the speci ¢ equilibrium volume for small
deformation ratios.

With the appraximation (2.102) the formulas (2.42) to (2.45) simplify asfol-
lows:

@ , @2 @1’
@ 1@. @ 1 @vCe)

= == =j= ; (2.103)
@ To® Qe T I@ K
@ = l@ @: @ Tz@ @:_T@(VC@
@ 'T@:’ e '@ @ '@ '@ ' @2’
@ = % . @: @ . @: Q(T/\») @ — @VC®)
@- T @ I@' ! @ @' ’ @® | @- ,
@ _ a a_ . a__.@ @
@ ®Pg @ '@ e '@ e
@g@ - VC®| T@V@_C®)

The stresscoezcients are consequetty independert of the pressure.

Theserelations shall now be integrated, starting in the referencestate T =
Tr; P=Pr; »=R; le= 3(®= 1;2). From (2.103%4

1@(T;»
M(Tipnile) = AT O

=
1@ ?1

T V(T;»)  Cy(T;»1%3)dl? (2.104)
1@ 2, ’
Te v(T;») . Co(T;»; 14519 dId

(Pi Pr)

The integration function 2” must be interpreted as” ”(T; pr; »; 3; 3). The equilib-
rium values™”j. = A”(T;p;» le) = O are zeroaccordingto (2.50). This implies,
sincethe referencestate hasbeenchosenas an equilibrium state, that

A = A"(Tr;pr) = 0O (2.105)
Moreover, with ~”j_ = ~>(T; p;%; 1) = 0, (2.104)is an equation for the determi-
nation of the equilibrium values», = »(T;p;le) of the degreeof crystallization

outside the referencestate.

Next we integrate formulas (2.103), ; for the speci ¢ heat capacity. Use of
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(2.104)yields

Co(T; p;» le) =
@

a

.

iT@

GMi T

TZ

29

T;»
%(pi Pr)
_@ 7 A »(T' »() d»O’
@- »R ’

Z

V(T;»)

(2.106)

I1 5
Cy(T;»1%3) dI?
Z°,

V(T;») Co(T;»; 14519 dId
3

Here &,(T) denotesthe speci ¢ heat capacily at p= pr;»= »&;l1= 1, = 3.

With this result, using (2.104), we now integrate formulas (2.103); 11 and

(2.103); 15 for the speci ¢ entropy and the speci ¢ internal energy After some
calculation the following formulas are obtained:

z
T é"p(-l-c) TO. @(T;»)
w70 @
@ ' Z » 5
+ =T A»(T;»O) d»°
@- »R
@ z ’
iT@ v(T;») 3 Cu(T;»123) dI?
n Z I #

i T@@ v(T; ») . Cao(T;» 1119 dlId

(Pi Pr)

S(T;p;»le) = Sk +

(2.107)

I1

Z
& dT% pr[V(T;») i VR]

Z »
72 @
@- »R

Co(T;»193) dI

u(T;p;»le) = Ur+

Tr
@(T;»)

a
Z

+ V(T;»)

i T (pi pr)+ A2(T;»9) dY

§ (2.108)

z°,

2 5
Cao(T;» 111 dI)
z

+ V(T;»)
3

@. " s

i T@ V(T;») ; Cl(T;»”% 3) dlf

@ . Z |2 5

i T@ v(T;») CZ(T;»;ll;lg) dlg

3
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sr and ur, respectively, denotethe speci c ertropy and speci ¢ internal energy
in the referencestate.

The problem of deformationinducedcrystallization and the description of the
relatedtime e®ectgstressrelaxation, hysteresis, reversiblethermoplasticity, time
delayed heat e®ects)would be solved, if &(T); v(T;»); 27(T;»); Ce(T;» 11;12)
would be known as functions of the given variables, and if the crystallization
rate A(T; p;»;le) would be determinedas a function of the given variables. The
solution of the di®erertial equation (2.1)s with Aj = 0 would determine »(t) at
“xed external pressureasa result of integration over the histories of deformation
and temperature. Insertion of the result of integration (2.79) for »(t) in (2.39),
(2.107)and (2.108) will give the Caudy stresst;; , the internal energyu and the
ertropy s asintegrals over the histories of deformation and temperature.

Howe\er, the solution of this problem requires, rst the determination of the
explicit dependenceof all involved functions upon their variables.

According to (2.63),(2.67), (2.102), (2.107) and (2.108) the formula for the
nominal stressis

H ,» ﬂ2:3 . >
v(T:») Gai iz) Ci(T;»le(, 1) + ilcz(T;»n@(, ) (2.109)

5

3/422

VR

Basedon (2.95) we assumen addition with Rivlin and Saunderg56] that the rst
stresscoezxcient is independen of . Then, accordingto (2.103),, the second
stresscoezcient is independert of |;:

Ci=Cy(T;» ; Co=Cy(T;»ly) (2.110)

For qualitative understanding of stress-straincurves, one needs rst the depen-
dencesof the stresscoezcients Cg on the degreeof crystallinity ». This will in
sequelbe derived within the framework of the statistical theory.



Chapter 3

Polymer Crystallization

Crystallization of polymers has beenthe focus of attention in the past four
decades.It plays an important role in polymer applications, primarily in many
manufacturing processesud as b er spinning, extrusion drawing, Im blowing,
blow molding, and injection molding.

The medanical behaviour of polymersis strongly depending on their mor-
phology, which in turn is in°uenced by the thermo-medanical history during
processing. Molecular orientation a®ectsthe crystallization behaviour of poly-
mersin two di®eren aspects: thermodynamic and hydrodynamic. The thermo-
dynamic e®ectinvolvesthe reduction of entropy in extendedchains and this will
increasethe opportunity of crystal formation by increasingthe melting point,
while kinetically the extendedchain is closerto a crystal state than a random
chain. The hydrodynamic e®ectis a phasetransformation, which is responsible
for the resultant morphology sud asshish, kebabor spherulite. Seweral on-going
projects are designedto explorethe underlying physicsof this subject.

Medanically, deformation induced crystallization in rubbery polymers pro-
ducesinternal inhomogeneiy in their structure and leadsto a signi cant redistri-
bution of stressessincethe orientation of the crystals hasa bene cial impact on
the medanical properties of the rubbery polymers. Crystallization of rubberlike
polymer networks exhibits clear upturns in the stress-straincurve at high elon-
gation. This is mainly due to the reinforcing e®ectof the crystallites that are
generated.

3.1 Semi-Crystalline Polymers

Depending on the processingconditions, polymer-crystallization behaviour
is attributed to the long chain length of the polymeric molecules,which makes

31
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it dixcult for thesechains to disertangle from ead other in disorganizedand
enangled melt and subsequetly to adieve a regular conformation and align
parallel to ead other to form an ordered structure (i.e. crystal). Therefore,
whether polymersare able to crystallize or not dependson their structure.

3.2 Mo dels of Semi-Crystalline Polymers

The most obvious questionthat needsto be answered about polymer crys-
tallites is 'How can long moleculesgive rise to small crystallites?'. Two princi-
pal types of answer have beengiven: they lead to the fringed-micelle and the
chain-folded model for polymer crystallites. A further type of crystallites is the
chain-extendd crystallite which will be discussedn detail.

3.2.1 Fringed-micelle model

The fringed-micellemodel wasan early attempt to inter-relate long molecules,
small crystals and a "sea’'of amorphousmaterial [22]. The crystalline regionsare
made up of di®eren chains of short lengths aligned parallel to ead other, while
the amorphousregionsare comprisedof disorderedconformations.

The model suggeststhe occurrenceof bril lar crystallites, which can grow
both parallel and perpendicular to the chain axes. The long chain character of
polymer allows a given chain to passthrough se\eral di®eren crystallites [49, 48,
47] asshovn in gure 3.1a. This model explainsthe medanical properties of the
samplebasedon the physical linkages(fringes) betweentwo regions.

(@) (b)

Figure 3.1: Two di®eren semi-crystallinestructures: (a) Fringed-micellestruc-
ture  (b) Spherulite structure.
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3.2.2 Folded-c hain model

It wasreported by Keller [37, 38] that polyethylenesinglecrystals, grown from
a dilute solution, appear in the form of thin plates or Lamelae when viewed by
electrondi®ractionto be composedof largecrystallites with the chain axesnormal
to the plane of the lamellae. The only possibility to explain this wasthat chains
folded badk and forth upon themsehes, so that adjacert segmets were parallel
and in crystal registers.

The adjacern re-ertry model of Keller was challengedby Flory [24]. In an
early theoretical treatment, Flory [24] examinedsomeof the factors related to
the generationof a crystalline phasefrom long chain moleculesn random confor-
mations. He establishedthat "no more than half of the chains emanating from
the lamellar crystal surfacecanbe accommalated by the neighbouring disordered
amorphousphase”. As a result, more than half of those sequencesnust return
to the crystal facefrom which they departed. This re-ertry is proposedto occur
via loops of varying lengths that are preset in the spacesbetweenthe crystal
and the amorphousregions. There also exist a number of chains that do not re-
erter a given crystallite, but leave the basal plane of the crystal to becomepart
of a disorderedamorphousregion. These chains could ewvertually erter another
neighbouring crystallite. Sud a possibility of chain folding is often referredto as
the "switchboard model".

When crystallized from the melt, the lamellae often aggregatetogether in
the form of a superstructure called a spherulite Spherulitesmay be viewed as
sphericalaggregatef lamellaethat originate from a commoncerter and radiate
outwards as shavn in gure 3.1b. The spherical shape is formed as a result of
branching and splaying of lamellae at dislocation points. Typical dimensionsof
spherulitesare of the order of microns and sometimes,even millimeters. There-
fore, they can be easily viewed under an optical microscoge. The spherulites
cortinue to grow radially until they impinge upon one another. A measureof
their growth rate until the time of impingemern providesa wealth of information
regardingthe medanismof crystallization in the polymer, and hasbeenthe focus
of sewral investigations.

3.2.3 Extended-c hain crystallite

Extended, or fully extended, chain crystallites contain long oriented chains
that can be formed medianically. Crystallization induced by orientation can be
described as stretching of long chainsto form brous crystals. During stretching,
distortion of chains from their most probable conformationsresults and hencea
decreasan the conformational entropy takesplace. If this deformation is main-
tained in this lower conformationalentropy state then lessconformationalertropy
needsto be sacri ced by transforming to a crystalline state. This decreasen to-
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tal ertropy of fusion allows the crystallization to occur at higher temperatures
than will take place under quiescem conditions.

Natural and synthetic rubbers are excellen examplesof suth an e®ectas
they show greattendencyto crystallize under stretched conditions, whereasthey
crystallize slonvly under quiescen conditions. Also, crystallization in an already
oriented polymer results in a reduction of retractive force (with respect to the
oriented state). This can be explained on the basis of rubber-elasticity theory
accordingto which the forceexertedby xed chain endsis inverselyproportional
to the number of statistical segmets and the magnitude of end to end distance.
The reduction in force results becauseof a lessernumber of statistical segmets
sitting in the amorphousdomain and also becausethe end to end distance of
the amorphoussegmets is smaller than that in the crystal. Melting of sud
extended crystals leadsto cortraction, and crystallization leadsto elongation.
That is why the deformationis consideredtio be of atne type, sincemacroscopic
dimensionalchangesand changesin retractive force can be related to the crystal
phasetransformation.

The formation of the so-called'Shish-Kebab'kind of morphology consistsof
the outside 'kebab-like' regionswhich are essetially folded chain regionscom-
prised of chains which do not crystallize during the orientation process,while
the inner 'shish' regionsform rst. The formation of folded chain discs occurs
due to nucleation ewvents taking place on the extended chain surface. This has
beenusedasa strong argumert in favor of kinetic theoriesthat discussthe chain
folded model of crystallization. Keller and Machin [39] shoved essetially a per-
pendicularly oriented shish-lkebabtype lamellar morphology they proposeda two
step nucleation and growth for crystallization under oriertation. The nucleation
processis thought to be assaiated with the formation of extended chain shish
from oriented moleculesand the growth processis assaiated with the formation
of lamellar crystals from an isotropic melt by chain folding onto the line nuclei.
Alternativ ely, Yeh [45] revealedthe presenceof a nodular structure (» 10\)
within perpendicularly oriented \lamellae". Indeed,Gert [26, 27] had concluded
that the form and the magnitude of the stresschangesduring the crystallization
of stretched networks are generallythe samefor di®eren typesof rubber. Thus,
basedon axial stress-relaxationevidence,Gert ruled out the possibility of chain
folding during oriented crystallization.

Thermodynamically, if the coiled chains in a polymer melt are stretched,
their entropy approatesthat of the crystalline state. The di®erencebetweenthe
ertropies of the oriented and crystalline states decreasesnd thus, as indicated
by equation (3.1), the melting point is raised. If the melting point is raisedabove
the ervironment, stresscrystallization takesplace[72].

Tr = CH.=CS, ; (3.1)
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where ¢ H. and ¢ S, are the erthalpy and the ertropy of melting, respectively,
de ned asthe changesin state for the corversion of 1 Mole from the crystal to
the melt phase.

The following relationship wasderived by Flory [2]] for the dependenceof the
melting point on strain for a crosslinked elastomer:

I=Tmi 15T = i (R=¢HL) 0(,) ; (3.2)

wherethe function g(, ) - not the free erthalpy - dependson the type of applied
chain statistics. Accordingto Flory [21, 72]:

9(.) = (6=YN)'2, i (,%=2+ 1=,)=N (3.3)

whereN is the number of statistical chain segmelts per network chain, and , is
the deformation ratio.

The foregoingbrief survey of semi-crystallinepolymers, with its emphasison
the importanceof the typesof crystalline chainswould not be completewithout a
brief mertion of amorphouspolymer chains. The amorphouspolymer chains are
thosewith a randomly coiled and entangled state. They possess large speci ¢
volumev, comparedwith the crystalline volume v, domain at room temperature.
Thus, the total volume of a pieceof rubber is given by

V = mpvy + mevg (3.4)

wherem, is the amorphousmassand m. is the crystalline mass. The total mass
IS consequetty

m= my+ mg; (3.5)
Accordingly, the speci ¢ volume of the rubber is given by the equation
V= (1i »Vat »; (3.6)
where » denotesthe degreeof crystallinity,

s Me _ Number of chain segmeh in crystallites (3.7)
" m  Total numberof chainssegmets '

G#ritz [30] performedsomeexperimerts for cis-1,4-Plybutadienerubber and
reported a relationship betweenvolume changeand strain up to large extension;
on the basisof an atne deformation this dependenceis proportional to , | 1,
where, is the extensionratio. Furthermore, he studied the elongation-induced
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crystallization and found that the nal degreeof crystallization dependson tem-
perature and elongation. The dependenceon elongation doesnot follow Flory's
theory of crystallization induced by stretching polymeric networks [21, 31].

Toki [68, 69 extensiwely studiedthe strain-inducedcrystallization phenomenon
in sulfur vulcanizednatural rubber by X-ray di®ractiontechniques. The detected
structureswerenot only in a stretchedbut alsoin arelaxedstate to accommalate
the relatively weak X-ray intensity.

Crystallinity

O sl | :

Figure 3.2: Structure changeand selectedWide Angle X-ray Di®raction (WAXD)
patterns during stretching and retraction processof rubber. Where , is the
deformation ratio.

The crystallization curve and selectedWide Angle X-ray Di®raction (WAXD)
patterns during stretching and retraction are shovn in “gure 3.21. It is seenthat
highly oriented crystalline re°ection peaks begin to appear at strains around
., = 2:0 at which orientation of the chain segmets occurs. The intensity of
thesere’ectionsincreaseswith strain during stretching, and darker spots are no-
ticed to form at the maximum stretching deformation ratio (, = 5:0), while an
amorphoushalo is found to persistin WAXD during both processe®f stretching
and retraction (even at the highestapplied strain). When the medanical draw-
ing ceasesand the retraction processoccurs, secondarycrystallites develop, and
stressrelaxation is a direct consequencef folded lamellaformation at the surface

1The WAXD patterns appearing in this “gure have been taken from the work of S.Toki
[68,69].
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of extended-ain crystals. However, we beliewe that someof the strain-induced
crystallites might transform their morphology to secondarycrystallites that do
not cortribute to the stress. This is obvious sincethe re°ection intensities will
decreasdf they are comparedat the samedeformation ratio for retraction and
stretching processes.While the retraction unloading processis proceedingthe
crystallinity and the orientation are larger than during stretching at a certain
deformation ratio. This can be noticed at all deformation ratios (e.g. , = 2:0),
see gure 3.2. This alsois shovn by WAXD pattern in gure 3.2 during re-
traction. For example, at the strain of 1.0, no crystalline pattern is obsened
during stretching but clear crystalline re°ections are seenduring retraction. This
is a great evidencefor shish-kebab formation during retraction due to stressre-
laxation which is responsible for having a hysteresisin the stress-straincurve.
When that the strain-induced crystallites are totally molten at elevated temper-
ature and no further folded crystallite typesexist, then the crystallization curve
coincidesduring the stretching and retraction processes.

Basedon this, crystallites formed by deformation may be composedof two
types:

Type 1. The important portion of the crystallites are the extended-tain
crystallites that dewelopby the strain directly during stretching (loading process).
Thesesene asnuclei for further crystallization.

Type 2. The secondarycrystallite types are the folded-dain crystallites
(lamellae, Shish-lkebab structure). Thesedewelop during retraction on nuclei of
extendedtype and may decreaseor increasewith retraction depending on the
processconditions. Without a further increasein strain, this type of crystallite
is ableto form at low temperature.

3.3 Crystallization Kinetics

Our presen concernis to simulate crystallization kinetics induced by defor-
mation and taking placeat di®eren strain rates and temperatures. The simplest
applicabledi®erenial equationfor this processaccordingto irreversiblethermo-
dynamics, is the following rst order equation

»= g(»i >1>), (3.8)
<

where ¢, = ¢(T;,; ») is the relaxation time and % = >1>(T;,) is the equilibrium
crystallinity. For this we assumesaturation behaviour:

=%+ (% »m) tanh(, | 1) ; (3.9)
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wheres, is the equilibrium crystallinity at the referencestate, 5 is the equilibrium
maximum (saturation) degreeof crystallinity, and , is the extensionratio de ned
asthe ratio of the nal to the initial length for uniaxial extension.

». and % are temperature dependert and given by the relations

1 Tmoi To
DS ———————» ] 3.10
- Tmo l T - ( )
1 Tmoi To
s Tmoi T s (3.11)

where T ; To; T are the melting (absolute) temperature, the referencetem-
perature, and the temperature, respectively, ». is the degreeof crystallinity at
the referencestate, while »s is the maximum (saturation) degreeof crystallinity
at referencetemperature.

After carrying out the integration and appropriate rearrangemen of equation
(3.8), we obtain
1 Ry g0 R Zy )1>(t(b Ro oo 0
»(t) = »0) e 0« + ¢ o0e eo (% dt (3.12)
o 19
This equationimplies two limiting caseghat explain the cortent of the compli-
cated relaxation behaviour and its e®ecton crystallization kinetics:

(A) In the limit of low temperatures, the relaxation time ¢, j! 1 which is
independert of strain rate. Then the crystallinity doesnot changewith deforma-
tion: »(t) = »(0).

(B) In the limit of high temperatures, the relaxation time ¢, j! 0 which is
independent of strain rate. Then, the crystallinity will be momertarily at an
equilibrium state.

Betweenthesetwo extreme caseghere existsa time delay for the equilibrium
approad which alsois the reasonfor stress-and volume relaxations.

We considernow a loading processwith constart loading speed™_
L, 1="t 5 0 t- ty; (3.13)

wheret is the loading time, and t; is the loading time required to read the
maximum deformation ratio. Furthermore, we assumethat the relaxation time
¢, i1s merely a function of temperature T namely

o(T) = a expb.=(RT)] = ¢ ; (3.14)
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wherea, ;b are constarts and R is the universalgasconstart. From the dimen-
sionsof the parametersa, ;b_, it canbe concludedthat by is a jump energyper
mole for crystallization, and a, is an inversejump frequency and it is propor-
tional to the jump probability of the chain segmen for the transformation from
amorphousto crystalline state.

For an isothermal loading processone may then deducefrom (3.12), together
with (3.9), (3.13) and (3.14),

. Z .
A= H0)+ (i %) anh('ni eie Y —F  _dx;  (3.15)
o CcosH("¢ x)

in0- t- t; :

The non-equilibrium crystallization at the end of the loading processis

1 1 1 . i Z :/LL ex :
»te) = »0) + (i ») tanh("te) i e« "¢ ————dx ; (3.16)
o CcosH("¢ x)
where »(t; ) is the degreeof crystallinity at the maximum deformation ratio for
the loading processand can be calculateddirectly from equation(3.15)for t = t;.

Next, we considerthe correspnding isothermal unloading processwith re-
versedspeedof deformation,

L) =00 (i te) ot - T 2 (3.17)

where | ¢ is the maximum deformation ratio at the end of loading. Using (3.12)
we obtain for the non-equilibrium crystallization in unloading
R ( Z,:

dx

) dx 1 R0 00 *
»(t) = e' tr ¢(x) »(tf) + »(t%

— et ™ (g (3.18)
ts C(t%
for tf - t- 2t

As mertioned before,in unloading, crystallite structures of shish-kebb-types are
formed besidesthe extendedcrystallites of loading. This means,that the relax-
ation time in unloading is di®eren from that in loading.

We assumeagain a constart relaxation time ¢, for isothermal unloading but
assumeotherwisea temperature dependenceas follows:

UT)=a, exp[,=(RT)] = é: (3.19)
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Insertion into (3.18) yields then for the crystallinity during an unloading pro-
ces$
H 1 Y2
tit ti tf

o) = »t)e @ +% 1) 6w +(xi %) tanh[( ;i 1) (3.20)

Sty
i "(ti t)]i € @ tanh(, ¢ i 1)
Z titg 3,
it T e
: dx

+e w "
o cosRICr i 1)i "euX]

for tg - t- 2tf

2The mathematical calculations of equations (3.15) and (3.20) are available upon request.



Chapter 4

Deformation-Induced
Crystallization:  Statistical
Approac h

4.1 Intro duction

The rubber elasticity approad includesa greatvariety of descriptions,models
and concepts.The researt hasstarted last certury in the late thirties by Kuhn,
Guth and H.F. Mark. It becamea very active eld in the forties and fties with
important cortributions by Flory, James, Guth, Treloar, Wall and many other
researbers, basedmostly on the analysisof Gaussianchain models. The sixties
and se\erties were the times of the establishmen of the basisfor the statistical
medanical treatment of polymers and elastomericmaterials, with fundamenal
works by Flory and many other sciertists. In the sewerties the computertechnol-
ogy of polymersbecamevery important and the role of thesesimulations rapidly
increasedin the eighties and the nineties.

The simple, elemerary statistical theory which paved the way to the current
understandingof rubber elasticity was proposedin the pioneeringwork of Kuhn
[41, 42]. Other important early cortributions to the early rubber elasticity theory
were given by Flory [21]. Flory wasthe rst to dewelop a thermodynamic theory
of strain induced crystallization which is consideredto be the simplestand the
most corveniert amongthe multitude of the statistical theories. Starting from
the simple model of Kuhn, Flory's theory is basedon many simplifying assump-
tions. Accordingto it, a rubber network consistsof freely-joint Gaussianchains,
of which the positions of crosslinking points deform atnely upon deformation.
Ead chain cortains a certain number of statistically equivalert rigid and sim-
ply connectedsegmets with complete freedom of orientation. Flory, imposing

41
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the assumptionof constart volume, calculatedthe changesof the crystalline and
amorphousertropies with deformation. So far, the following crucial points of
worthiness may be mertioned: (i) Flory's theory is basedon the assumption
that, the changeof entropy is unequalto zeroin the undeformedstate, in con-
tradiction to his assumption since he performed his calculations starting from
the totally crystalline network; (ii) the changeof entropy in the deformedstate
approahesfor completecrystallization a negative in nitely large value.

Flory's theory is inadequateto descrike real rubber, becauseof his assump-
tions, that there is no crystallization in the undeformel state, and that complete
crystallization is possible Both assumptionsare not consisten with reality.

In the presen corntext, we correct the shortcomingsof Flory's theory. We
return to the picture of freely-joint chainscrosslinked at junction points, of which
the motions are atne to the macroscopicdeformation. A modi ed Gaussian
distribution is employed for chains of nite lengths to describe the end-to-end
vector distribution function and the cortribution of that chain to crystallinity.

4.2 Overview of the Mo del

In our model, we start treating the amorphouschain. According to Kuhn
[41, 42], we shall be concernedprimarily with those statistical properties which
may conveniertly be dealt with in terms of an idealized chain of N numbers of
freely rotating equivalert segmets of length ~. (A \chain" is de ned as that
portion of the network extending from one crosslinkingpoint to the next [21], as
shavn in gure 4.1).

Figure 4.1: Example of a long chain of freely rotating segmets.



4.2. OVERVIEW OF THE MODEL 43

The statistical form of the long-chain moleculeis illustrated by gure 4.2,
in which the angle betweensuccessig segmets (i.e. the valenceangle)is xed
but completefreedomof rotation of any given segmen with respect to adjacen
segmets in the chain is allowed. The actual chain conformation will be subject
to cortinual °uctuation dueto thermal agitation which enhanceghesesegmeis
to shift at a rapid rate from one position to another, consistenn with their at-
tachmerts to neighbouring segmets of the samechain and the availability of free
spacein their immediate environment [21, 70].

0=180

bond i+1

bond i-1

Figure 4.2: Statistical schematic of a freely rotating segmets around bonds.

Polymerscan exist in various conformations and various con gurations. Two
polymers which di®er only by rotations about single bonds are said to be two
conformationsof that polymer. A stchematic view of two polymer conformations
is shavn in "gure 4.3. Two polymerswhich have the samechemical composition
but can only be madeidentical (e.g. superposable)by breaking and reforming
bondsare saidto be two con gurations of that polymer. No manner of rotations
about single bonds can turn polymers in di®erer con gurational states into
superposablepolymers.

The above de nitions of conformations and con gurations are standard, but
they have not always beenrigorously followed in the literature. For example,
Flory used con guration in his writings when he meart conformation. Fortu-
nately a writer's meaningis usually obvious from the cortext.

There are di®eren ways to characterize the size of a polymer chain. The
contour length L is the total length of a stretched chain,
L = N° (4.1)
The cortour length has a xed value, no matter what the value of the chain
conformation.

The socalledfreely joint chain (‘gure 4.1), or randomwalk model is employed
to get the averagesover all the possible chain conformations. In this model
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(a) (b)

Figure 4.3: A schematic view of (a) polymer con guration and (b) polymer con-
formation.

the angle of eath segmen is independent of every other, including the nearest
neighbouring segmets. To descrike it, another measureof polymer chain sizeis
neededthe end-to-endvector. It is usedwhena chain is in a given conformation
asshowvn in gure 4.4. The end-to-endlength variesfrom onechain conformation
to the next. The end-to-endvectorr is the vector sumover the bonds”; for bonds
i=1,2,3,...,N

Figure 4.4: End-to-end chain length, with N segmets: v e segmets are shovn
somewheren the chain, the remainingonesof which arerepresered by the dotted
line till the N™ segmeh The angle® is the angle betweenthe i" segmen and
the r axis.

ro= e (4.2)

The end-to-endlength can not be greaterthan the contour length. The end-to-
end length changeswhen a polymer is subjected to applied forces.



4.2. OVERVIEW OF THE MODEL 45

The z-componert of the end-to-endvector is

X
r, = Z; (4.3)

wherez; = ° cos® is the projection on the z; j axis of the ith vector and ® is
the angle of segmen i relative to the z; j axis. If all the segmen vectors have
the samelength °, then

r, = =~ CoS®: (4.4)

The meanvalue of the end-to-endvector doesnot cortain usefulinformation,
sinceit equalszero (hri = 0). This is so becausethe averageover randomly
oriented vectorsis hcos®i = 0 assumingthat all conformationshave equal prob-
abilities. Thus, the mean squake root (rms) is a more expressie quartity for the
conformation of the polymer chain [70]. So,

hr2i = N°Z (4.5)

Fully stretched, the size of the chain is determined by its cortour length,
L = N". In its undeformedstate, its averagesizeis hr2i*2 = N 12" soa polymer
chain can be stretched by nearly a factor of = N. Howewer, this model su®ers
from sewere simpli cations. The chains do not interact with any ervironmernt.
Evenasa singlechain model this is a dramatic simpli cation, sincethe chain can
interact with itself.

It is important to realize,sincewe start treating the amorphouschain in our
model, that all conformationsof the chain descriked within this theory are purely
ertropic. The shape of the chain is driven purely by ertropy. This meansthat

Figure 4.5: Conformational changein polymer.
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the meansquareroot of the chain °uctuates around its value given by equation
(4.5).

The shape, or \conformation” of a polymer molecule can range from the
fully extendedchain to the randomly coiled sphereas shovn in gure 4.5. The
extendedchain picture is the way we might chooseto draw a polymer structure.
The random coil picture, however, is a more realistic view of the shape of real
polymer molecules. Statistically, the coiled shape is much more likely than the
extendedone, simply becausehere are somany ways the chain canbe coiledand
only oneway it can be fully extended.

4.2.1 Thermo dynamic approac h of an amorphous network

To understand why rubbers are elastic, the full distribution function of the
end-to-endlengthsis neededto court all the stretched and all the coiled confor-
mations of a polymer chain. More precisely we would like to know how many
di®eren conformations of the chain have the same end-to-end vector. Thus,
Gaussiandistribution is usedin this cortext for the probability of a conforma-
tion of the end-to-endvector of a randomly wriggling segmen

In the cortext of our recert model, we start treating the amorphouschain.
Accordingto Kuhn [41, 42], the number of conformationsof the simply connected
chain from N statistically equivalent segmets of length * for a given end-to-end

distanceR and under the prerequisiteof large coiling % = % << 1is given by

W(R) = K (p5)° expli *R; (46)

where is a measurefor the averageend-to-enddistancein the standard models
of random walk,
—2

X 4.7)

|~

3
>

K is a proportionality constart, and L is the length of the totally stretched
molecular chain.

Carved on the tombstoneof Ludwig Boltzmann in the Zertralfriedhof (certral
cemetery)in Vienna asshavn in gure 4.6, is the inscription

S = klogW: (4.8)

This equationis the historical foundation of statistical medanics. It connectsthe
microscopicand macroscopicproperties. It de nesthe entropy S, a macroscopic
quartity, in terms of the multiplicit y W of the microscopicdegreesof freedom
of a system. For thermodynamics, k = 1:380662£ 10 23JKi ! is a quartity
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S=klog W

LVDWIG
BEOLTZMANN
1844 - 1906

Figure 4.6: Boltzmann grave stonein Vienna.

called Boltzmann's constart, and Boltzmann's inscription refersto the natural
logarithm, log, = In.

Employing this fundamertal equation (4.8) of Boltzmann's formula to calcu-
late the entropy of one chain molecule,will yield immediately the expression

HW) = KBIN(po)li 208+ B+ @I+ kK : @9

The number of chains with one end at the origin and the other end within the
interval (4; i + dy) is proportional to equation (4.6) and given by

H— T3
Z(Wdwdipdis = C pp expli (16 + 18 + 1B)] diy die dis 5(4.10)

where C is a constart that is determined by the requiremen that the total
number of the chainsin the material is %. Then,
Z 1 Z 1 YA 1
Z(k)dwdpds = %= C (4.112)
il il
must hold. Rubbersand polymeric elastomersare chemically or physically cross-
linked networks of polymer chains. The end points of the molecular chain are
the crosslinking points. One of the simplest and earliest assumptionsregarding
microscopicdeformationin networksis that the crosslinkingpoints in the network
move atnely with the macroscopiadeformation, which meansthat every part of
the specimendeformsas doesthe whole (this is the elastic assumption). If one
lays the co-ordinate axesof the chosenCartesianco-ordinatesystemin the Eigen
directions of the stretch tensor, the crosslinking points are shifted as showvn in
“gure 4.7 accordingto

#1= 0y ; #y= Oyl ; #H3= Oglg: (4.12)
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Figure 4.7: An atne deformation of a material.

Hence,the entropy of one chain moleculewith atnely deformedendpoints is
H#) = K[3 In(pT_A)i 2#2+ #2+ #2)]+ k InK (4.13)

Sincean atne deformation of endpoints does not changethe number of chains
of the network, onehas
zZ(#) diyd#d#s = Z(4) dpdipdis : (4.14)

According to equations(4.10) (4.12), the number of chains for the atnely de-
formed network is

U — ﬂ3 ' 2 2 2 s
— Ya . —2,71 i #3
z(#) = o008, p—% exp i (Q_i + Q—% + 0_§) (4.15)

The ertropies of the amorphousrubber in the undeformedand deformedstates
are then

Z 1 Z 1 Z 1
So = H() Z(4) dpdipds (4.16)
il il il
: ' 1 3 .
- 3 P .
¥k 31n pT_/4 i 2+InK :
and
Z 1 Z 1 Z 1
Sa = H(#,) Z(#i) d#l d#2 d#3
z4 7 7%
= H#) Z(4) didieds (4.17)

= 9 3In Py i a3+ a3+ nd+inK
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The speci ¢ entropy of amorphousrubber canbe expressedf onerefersto a mass
unit, by division through the massof network chains

m = INmMg; (4.18)
wherem, is the massof a segmeh Thus, the speci ¢ ertropy of the amorphous
rubber networks is

1 k

Sa = Soi QNm
0

(ei+of+0dj 3); (4.19)

and this deliversjust the stresscoezcients (2.95) of the statistical theory for pure
entropy elasticity.

4.2.2 Thermo dynamic approac h of a partially crystalline
network

The main purpose now is to proposea model that describes the deforma-
tion induced crystallization of a network with partially crystallized chains. The
undeformedamorphousstate hasbeenchosenasa referencestate for the ertropy.

For partial crystallization somechangeson the conformational entropy of the
molecularchain must be made,sincethe molecularchain passeghrough di®eren
domains, mainly, amorphousand crystalline domains. However, when the chain
folds badk to form a crystalline phase (lamellae), part of the amorphouschain
forms closedloops which are free of force at the beginning of the deformation,
until brealkageof the crystalline folded-dains occurs, and then theseclosedloop
chainsbecomeexposedto force. Accordingto gure 4.8,the total number of chain
segmets N is the summation of segmeis which are sitting in the crystalline
domainsand thosein the amorphousdomains. The amorphousdomain segmets
include segmets which are exposedto deformation forcesand those segmets
sitting in the closedloops. Let 3 be the number of segmets sitting within a
crystalline domain (folded chain) in the chain. Then the total number of segmets
is given by

N = |{;} + I\If orce{'; Nloop}s , (4.20)
crystalline amorphous
chain chain
segmerts segmerts

whereN is the total number of chain segmets, Ns o ce IS the number of segmets
exposedto deformation stress,and Nqops IS the number of segmets sitting in
the force-freeclosedloops.

Both Nt orce and Nyoops have full conformational freedom. However with defor-
mation, the number of segmets exposedto force, N¢ orce iNCreasesas the folded



50 CHAPTER 4. STATISTICAL APPROACH

lamellae break. This breakage occurs at the early stagesof deformation. Con-
sequetly, many loopswill be openedand hencebecomepart of the main chain
which is exposedto force. This processcortinuesuntil all loops are openedand
all folded-parallel crystallites becomeextended. As a result, the number of seg-
merts exposedto uniaxial stressN;¢qrce, Will becomeequal to the total number
of chain segmets N.

The total length of the extendedchain of N segmets of length * is shortened
as shavn by the following equation and illustrated in gure 4.8.

3 d
L,=Lj3®+d=N(Aj —+—=): 4.21
i Li 5+ o) (4.21)
The degreeof crystallinity » is introduced by
3 mC
= = 4.22
» N el ( )

where m. is the massof the crystalline segmets, m is the total massof the
chain, and d = jdj is the distance betweenthe inlet and the exit of the chains
to the crystalline domain. This distance vector is proportional to the degreeof
crystallinity and is expressibleas

d = aN »; (4.23)
wherea = jaj is a parameter of the theory depending on the type of crystallites.

For parallel unfoldedcrystallites a = 1, and for folded or mixture type crystallites
a< 1.

Free loops

Free loops

Figure 4.8: A schematic of the proposedmodel of partially crystalline chain .
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Consequetly, the total length of the stretched and partially crystallized chain
is
L, = L@Aj »+ a»): (4.24)

The length of the crystallite is equalto the length of the extendedchain when-
ever complete crystallization exists (which, theoretically, is newver realized in
crosslinked network) and parallel crystallites with a = 1 are formed. This will be
consisten with equation (4.1) that L,-; = aL.

When the length of the amorphouschain L in equation (4.7) is replacedby
the length of the partially crystalline chain L, the parameter becomes
-2 _ ji - 2 1 .
> 2L, (1i »+ a»)
Sincethe parameter is related to the mean squaredistance of the free chain
ends by 2_% = hr?i, an increasefrom ~ to —, meansa reduction of the square

root mean of the chain by crystallization. Consequetly, a pieceof rubber with
free surfacesshrinks whenit is crystallized.

(4.25)

The crystalline domains are relatively immobile comparedto the chain seg-
merts within the amorphouschain. This meansthat 3 = N» segmets within
the crystallites are frozen. Hence,the number of conformationsof the N j 3
segmets of the amorphousremainder of the chain is then

H— Ts

P

W,(r°+ r% = K, p=

S expli 200+ 1% (4.26)

where
ro+ r%=r; d: (4.27)

As shawvn in gure 4.8, equation (4.27) is the sum of possiblestatistical shifts of
the N j 3 segmets in the amorphousrest chain for a given distancevectorr and
given distancevector d betweenthe inlet point and the exit point of the chain in
the crystallite.

The partially crystallized chain still cortains a very large number of degrees
of freedom. Therefore, Boltzmann's formula (4.8) is applicable to calculate the
conformational entropy of the chain. With equations (4.26) and (4.27) there
follows

H,(r;d)

k InW,
H_ 1

KI3In p% i SAri d)’+InK,)] (4.28)

5

K 3In(p%_/4)i 2(r?j 2rdcos®+ d?) + InK,,
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where ® is the angle betweenthe distance vector d and the distance vector r.
Evidently, the value of ® dependson the distancer = jrj of the chain end points
and the \diameter" d = jdj of the crystallite. With increasingr and d the angle
® decreasesn the mean, i.e., the crystallites in the mean are directed into the
direction of the chain endpoints aswell asby deformation and by crystallization,
respectively.

For the calculation of the meanvalue hcos®i of cos® in equation (4.28) one
needsthe probability density for the angle® asshovn in gure 4.8at xed values
of r and d. From (4.26) and (4.27) this is

W,(®;r;d) = Cexp(A cos®); A:="22rd; (4.29)

whereC is a constan that canbe determinedby the requiremen that w,(®;r; d)
is normalizedto the completesolid angle, sothat

Z 1/42 2Y4

) inh(A
W,(®r:d) sin®ded = c41/4S'nA¥ =1; (4.30)
0 0
For the meanvalue of cos® there follows then
. 1
hcos®i = L (A) = cothA j A ; (4.31)

whereL (A) denotesthe Langevin Function.

The mean value of the ertropy (4.28) over all angles® at xed valuesof r
and d is then
(TR |
i £ » — 2(,2 2
H,(rd)i = k3in pg i (" +d) (4.32)
A

o]

+,22rdL (,22rd)+ InK,, :

If oneendpoint of the chain is in the origin of a Cartesianco-ordinatesystem
andthe other endpoint is at (X1; X2; X3), thenr in equation(4.32)isto bereplaced
by

q__
r=  xX2+x3+x3: (4.33)

As a special caseof equation (4.32) the meanentropy of a chain with degree
of crystallinity »z, with one end point of the chain in the origin and the other
endat (X ; X5; X3), is asfollows

(VR |
H £ R - 2 2 2
MH,. (R;dr)i = k 3In pT_/ i rRI(R+dg) (4.34)
A

o]
+ r?2RdrL ((r%2Rdg) + InKg :
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p , : :
whereR = X2+ X2+ X2 is the end-to-enddistance betweenthe chain ends,
dr = aN »y isthe distancebetweenthe chain input and output to the crystallite,

and ;= *p »R1+ = s the radius of inertia of the partially crystallized chain of
R

For preparation of the subsequehcalculationswe needsomeformulae. These
are the approximations [1]

— 1 2. 1 4 . H .
zL (2) = 3z i 45z ;. in 0-z- 2; (4.35)
zL (z) = zj 1; in 2- 2z
for the Langevin Function, the error integral
2 z
erf(z) := Pg exp(j x?)dx; (4.36)
40

and the integrals

Z 22 pl_
xze Xdx = T/Afl(z) ;
0
Z 22 pl_
x:6 *dx = 34/“f2(z) : (4.37)
0
Z’ -
xze Xdx = 15: /#3(2) ;
% 22 pl_

. . Y,
xel*dx = 1) (1+2z%)e % =1+ 741‘4(2) ;
0

wherethe functions f(z) are given by the following expressions

fi(z) = erf(z)i pz?ze‘ z
)

fo(z) = erf(z)i pzT74z (1+ gzz)ei z (4.38)
2 2 4, .
fa(2) = erf(2)i ppz(L+ §22+ 1—524)6' z

Numerical calculation yields for large argumerts z :
fi(z)=1 forz, 4; I1=1,23: (4.39)

The entropy of the partially crystallized rubber can be calculated, if the dis-
tribution function for the number of chains is known. The number of chains is
given for the purely amorphousmaterial with nite chainlengthL = N°

Ho— T3

Zo(k) diadppdis = %2 P

. 20,2 2 2 .
T, L) expli (M + 15+ 18)] di dip dis :(4.40)
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Here f1( L) comesfrom the nite chain length concept Howewer, this equa-
tion is the sameas equation (4.10) for in nite chain length onceL ! 1 then
fi(L)=1

Sincewith crystallization no chains disappear, the number of chains in the
partially crystalline state is the sameasin the amorphousundeformedreference
state j,. Then, one necessarlyhas

Zr(Xi) dX1dX,dX3 = Zo(u) dpa dpe dis ; (4.41)

for the partially crystallized chain, of which the endpoints in the undeformed
state jr have the distanceR. Howeer, for the partially crystallized chains with
distancer in the deformedstate the following expressionis valid

Z (X)) dxpdxodxs = Zo(W) dp dpp dis - (4.42)

To getthe distribution function Zr(X;) with respectto z (x;), onemust know how
the crosslinking points (2+ 2+ 1) of the undeformedamorphousreferencestate
Jo are transformedto the crosslinking points (X 1; X,; X3) in the referencestate
jr Of the partially crystalline undeformedmaterial. Furthermore the crosslinking
points (X1; X»; X3) of the partially crystalline and deformedstate must be related
to either one,j, or jr , of the undeformedstates.

The transformation from the amorphousreferencestate j, with speci ¢ vol-
ume Vv, to the partially crystalline referencestate jg with speci ¢ volume vy is
connectedwith volume shrinkage. If crystallization takes place at constart hy-
drostatic external pressurepgr, the correspnding (atne) shift of all crosslinking
points is isotropic so that

K, s
Xi = oh (= 123); where mc= ° (4.43)
(0]
Equations (4.41) and (4.40) imply
— Ya H ° ﬂ3 £ 02 2 2 2 Q.
Zr(Xi) = .00 Py, ©Xpi (XT+ X5+ X3) ; (4.44)
with
o T
o — Vo .
=T (4.45)

The transformation from the amorphousreferencestate j, to the deformed
partially crystalline state goesvia the partially crystalline (undeformed) reference
state jgr. The total shift of the crosslinkingpoints is then

X1 = @8l ; X = Bplbglh ; X3 = Bghglk: (4.46)
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Inserting equation (4.46) into equation (4.42) with the help of equation (4.40),
the following equation can be obtained

S TR B B BRI
oyay0s fi( L) Py P of

Ya ¢ w©3 o3

(4.47)

Z; (Xi)

Now, the conformational ertropy can be calculated for a partially crystallized

network at the undeformedreferencestate jr,
2727

Skr = H"»R(R;dR)i ZR(X|) dX,dX, dX3 . (448)

Inserting equations (4.35) and (4.44) yields, after transformation to spherical
coordinates and performanceof the angular integrations,
™ Ho, T3

(L Pw

Yy
L
sinKe | R2elR) R K
dr fi( L)
VA
£ [R*i 2R3%ds L (22Rdg)Jel "R dR:
dr

The R-integration must be performedfrom the smallestpossibledistancedgr of
the crosslinkingpoints to the largestpossibledistanceLg = N (1 »g) + dg of
the partially crystalline chain. For the theoretical limit of completecrystallization
»r = 1onehasLg = dg = aN ', and the integralsin (4.49) vanish. This means,
that the conformational entropy vanishesin the completely crystallized state, as
it must do so.

SKR

e -
443 1In(ps) i TR2d3
Vi

(197_/4)3 452 (4.49)

The conformational ertropy of the purely amorphousreferencestate |, is the
other limiting case. This is obtained, if »x = 0 and vg = Vv, is chosen. With
equations(4.40) or (4.44) and equation (4.23) we then obtain (d= 0,° = )

w PV - Al
S, = = p= M 3In(pX) + InK, R% ‘R°dR (4.50)
f.(CL) " T 7 o
w P -V 20 -
. 172 4, T2R .
D P 45 O R%e dR :

In the statistical theory of amorphousrubber one normally replacesthe upper
integration limit L = N~ by 1 . We will not do that, in order to have a smaoth
connectionto the partially crystallized referencestate.

The integrationsfor the conformationalentropy in the undeformedamorphous
state j, can alsobe performedwith the result
PO N S el

= 3 ¢ 3 —
So=% 3In 9T74 +InKgy i /4k2 0D -

(4.51)
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In the following we insert the approximations (4.35) for the Langevin Func-
tion into equation (4.49). Separatingthe integration interval in domainsdg -
R - 72d and = - R - Lg and performingthe integrationsyieldsfor the con-
_guratlonal ertropy of the undeformedand partially crystalline referencestate?
Jr

' (VR .
YK _
Skr = 00 31n 9%4 i R2dZ+ INKgr [f1(°LR)i f1(°dR)]

% 3

1( L)202 [fz( LR)| f2( dR)] (452)
Ik 37274

1( L)He(dR : DR)EO—F; é_deé [f2(°Dr) i f2(°dr)]
6d4 a

[ 5 R R [f3(°DRr) i fa(°dr)]
1
——=—~HeDr - Lr) [f1(°Lr)i f1(°Dr)]
3/4
[f4a(°Lr)i fa(°DRr)]

YK
fa(L)
ZdR

with

s 1 ¢ Ya
_ _ or Xy
He(x-y) := 0 for x>y ’

Dr = D0OR):= 0_'»rlf_1 _zdR;
R

where He(x - y) is the Heaviside unit jump that is usedto distinguish both
integration intervals of the Langevin function for its approximation shonvn by
equation (4.35).

It is pointed out, that the parameteriIn K, besidesthe parametersN and
", dependsin addition on the macroscopicvariables»g; Tr; pr. The form of this
dependenceis not given by the statistical theory. We have to determinethis by
reasonablemacroscopicrequiremernts. This will be donelater on.

The purely amorphouslimit of equation (4.51) results as a special casefor
= 0andvg = V, if In KR,-»R=0 = InK,. The theoretical limit of complete

1The computations of equation (4.52) have been done analytically and they are available
upon request.
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The conformational ertropy of

=1 "

crystallization is dr;, ., = Lr;, ., = Drj,_
equation (4.52) is then zero, asit must be.

In the sequel,the conformational ertropy in the deformedand partially crys-
tallized state of crystallinity » is calculatedstarting from the following expressions
ZZ7ZZ

Sk = hH,(r;d)iz (x;) dx.dx,dxs (4.53)

If oneinsertsthe expressionsn (4.32) for the meanconformationalertropy of one
chain and (4.47) for the distribution of the chain end points and if oneintroduces
the isochoric deformationsalong the eigen-axesf deformation,

V. .1 .
Li = (=)' 3., (i=2123); ,1,2.3=1; (4.54)
VR

then the following can be obtained
. - 3k UiﬂgzZZ-Slnu—»ﬂ._2(r2+d2)+an
K - f]_(_l_) pT—/4 p: | » »
2

2 5
+722rdL (22rd) exp § 2L+ X2+ X3 dx, dx, dxs; (4.55)
>l >2 s 3

where+ is the abbreviation

£ (505 (4.56)
v
To incorporate the integration limits sphericalcoordinates Xx; = r cos#; X, =
r sin# cos ; Xz =r sin# sin' areintroduced. The integration limits arethe
d- r- L,=N(@Qj »+d;0- #- % 0- "' - 2% For the ertropy thence
follows
3/1( Z Ya Z 2Ya Z L,
Sk = (19—)3 d# d dr r? sin# £ exp(j +*'r ?) (4.57)
fa(L) 0 0 d

£
£ 3In(pT_/)| T2(r2+ )+ 22rdL (C22rd)+ InK» ;
A

wherel is the abbreviation

cog# sinP# cof'  sin# sint'
YA L) = 5 + > (4.58)
s 1 5 2 5 3
and
—,Vo.1 — — 1
+= —)3 = = R 4.
2 Poivra (4:59)

2In crosslinked high polymers; complete crystallization is not possible due to steric hin-
drancesof the chemical bonds around the crosslinks (excluded volume). The degreeof crys-
tallinit y varies consequetly betweenQ - » - »na < 1.
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The rj integration can be performedat onceusing the approximation (4.35)
for the Langevin function and using the relations (4.37). After somecalculation
oneobtains®

VIS | .
3
Sk = fl(_L_) 3In pT/4 i _§d2+ INK, [Fa(#L,;, i) i Fa(zd;, )]
¥k 3 2
l( L) 2 +2 [FZ(—I—»y 5 I) i /F2(+d1, I)] (460)
¥k 37 T4,y . .
( L) He(d D») 2 +2 3 » d [FZ(iD»as i) | FZ(id’s I)]
—644 a
8
i 5 + »;,i) i F?:(ﬂ’,l)]
+ 1,
YK

H e(D» " L») [Fl(iL») 5 i) | Fl(iD»; 5 |)]
f.(CL)
—24 ¥
_” [Fa(£L,;, i) i Fa(2D,;, )]

with
Yo 1 Ya
- or X-y
He(x - y) = 0 for x>y
o)
in
D» - D(») = 0 »- 1 _—Zd;
The functions F3; F,; F3; F4 are given by the integrals
1 Z 1/4Z 2Y 1 12 )
Fi(®,;) = Y o T35 [1(® ) sin# d#d' ;
1 Z 1/4Z 2Y4 1
Fo(®,1) = - o f2(&?) sin# d#d' ; (4.61)
4/4 0 0
1 Z 1/4Z 2Ya 1 )
— 1= H [
F(®,i) = . o 17—:21:3(®1 ) sin# d#d' ;
1 Z 1/4Z 2Ya 1 1=
Fa(® i) = . . f4(® 72) sin# d#d'

for®= L, or ®= #d or ®= 1D,,.
For the undeformed, partially crystallized referencestate jg with » = »; and

3The computations of equation (4.60) have been done analytically and they are available
upon request.
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i=1(i=123)aret =1,t=°, d=dg, »= r,andD, = Dg. Then,
Fa(®;1) = fa(®) (a= 1,23,4)for ®& = °Lr; @k = °dr; ® = °Dg,
respectively.

The major problem is now the performanceof the integrations (4.61). For
simpli cation we consideruniaxial extension. If |, , 1 is the isochoric length
ratio in the direction of extension,then

.27 ,3% P=" (4.62)

s 1
According to equation (4.58),* is then independen of the angle' and given by

. . :
1= .1 1j (i S)cos# (4.63)
s 1

The' -integration in equation(4.61) canbe performeddirectly. After substitution
of

= (1 %)co§# (4.64)

s 1

and integration by parts in ! , using the relations

1 d _
Ti 1y - d (@ 1)
1 d | P
@ 9= T A @ (9= C 1= (4.65)
1 _d v 4t 8 L
(1i '2)72 — dt (1 !'252  3(1j 1232 3(1j !2)r2 °
1 1d ! .
- = - | :
i 122 - 2d @ 1y aennt)
1 d
m = d—| [artanh(! )] ;
Z e,
ei ®2, 1(1i! 2) = 1| (1 l | 2) ei (1! 2) d_’

0

the further substitution of y = ®, 1! 2 and integration by parts oncemore using
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equations(4.38) and (4:37), ,then yields

Z P——5
®  2® ;% 2 1 o P,
Fi1(® = fi(—)+p=—e€ -1 p= — e V1 e d
1(®, 1) 1(’1) pT/4,1e 1 97/4?569 . X

i ®2

® 2 1 e P
= erf(—)i P= —e 1 D(® D) ;
(,1)| pT/“,i_:ZﬁB (® ,.D)

1 2 ® 220 i 1 2. 1°
Fo(®; = Z(%2+ D)f(—)+ p==—e 1 ®&F(1+ =)+ —
2( 51) 3(:1 51) 2(51) pT/A,Sbl lz p3( ’%) bl
2 2 1° 1 . ®.ib
i P @+ — ——p—e @ e dx
liE)T/43 [ s 1 ’izz D 0
MU 2
1 2 ® 21 i
= 3 %"'_1 erf(—l)i 9774:—3@,19"_%
2 2 1 1 LN s
ipT—/4§(®2+—l)@P%eTD(® .1D)
> s 1
1 4 81 ®
Fs(®,1) = g(,i+§,l+§_2)f3(_l) (4.66)
bl 5
2 4® i% @ 41 81“ s ™ 1ﬂ
+p=———e'1 — 1+ -+ | =— 1i =
Y415, 1 5 Bbf 3,? 3.1 %
U 1.
12 e L
s 1 s 1 u ﬂ Z p
2 4 2 1" 1 ®.i0 ,
0o T @+ L @+ — P g &1 e dx
' PYis .1 1 7D 0
_1,, 4 81 ®
= g(,l 31 éz) erf(:)
2 2 4 ,° %
N + —(1+ -
'pT/415®1 ®? (1 31
2 4 2 1 1 NN « J—
D — + (R + — : .
Py @ @) =PE © 1D(® .aD)
n o , #
2 1 fn [ 4fee 1 p_
Fi®,1) = p=—P— ey g dx dyj = artanh( D)
]/4>% D 0 0 2
Z P—
2 . 1% 2 ®e®:17®.iD
1Py 1 Py P=F X
1 P— ® 2 1 p_—
= —Derf D:—)i _ — artanh( D
p—,lD (1 .1 ’l)l 97/4—9—255 D ( D)
2 1 ¥ 2 ® Lo P—
. _’_ . H _ N D® D
|F’T/4291 i F’T/A’—lpﬁel ( ,1D)

4The cumbersome computations of equations (4.66) have been done analytically and are
available upon request.
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wherethe abbreviation

D= 1j 13 (4.67)
5 1
hasbeenused,and D(z) denotesthe Dawson-Irtegral [1]
Z z
D(z) =% e“dx : (4.68)

0

Moreover, Derf(b; z) is a modi ed error function [57, 44], which is modi ed with

the Dawson-Irtegral,
2~
Derf(b 2) := p%,  D(bxe *dx (4.69)
40

If ., =1, then
Fi(®1) = fj(® (i =1234) : (4.70)

Therefore the conformational entropy at the undeformed partially crystallized
referencestate jr, calculatedby equation (4.60), is reducedto equation (4.52)in
the limiting caseof » = »g.

On the other hand, the conformational ertropy of the totally amorphousma-
terial in the deformedstate is alsoincluded in equation (4.60). It is obtained if

onesets»=0,v=Vv,, = ,L,=L,andd=0. For®= H,= L and
®= +d = 0, respectively, one obtains from equation (4.66)
_ A J—
_ |_ 2 1 .21 2 L .1D 2
F.(L: = erf(—)i p=— —e L1 e dx
(L) = el i Fy e 0 X
_ 1 2 L 2 1. 2
Fo(L; = Z( 2+ erff(—)i p—== L, e -1 4.71
(L0 = 5CEr el i Pzl ] (4.71)
N ¢ J—
2 2_2 2 1 1 L T2 2 Lo.D 2
. —__ L + — | s 1 é( d "
| 197/43( d)—p—, =2 5e ) X
F1(0;,1) = 0
F2(0;,1) = 0

and with this, (4.60) and (4.70) imply

CR(LL Y L, 3F(L )

=3 _cy 7' 27
Sa= ¥k 3In(Pp)+ Ky £ 2 peii WG s (472)

For the undeformedamorphousmaterial im ., 1S, = S;. As a consequencejue
to (4.70),

Ka= Ko: (4.73)
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Hencefrom (4.51) and (4.70) follows the entropy of the totally amorphousmate-
rial

3F( Ly, )i Fo L31)

Sai So = i WK< = + IK[3 | =)+ InK
a | (o] | /k2 Fl( L;l) /k[ n(F’TA) n 0]
Fi( L a)i Fu(CL;1)
£ — : 4.74
Fo( L 1) #.74)
For cortrol aveg)nsiderthe in nitely long chain. Accordingto (4.1) and (4.7) we
have "L = 3N. Furthermore, since
lim Fy( L)=1; lim Fy( L) = }( 2+ E) : (4.75)
L1t I A 3¢t '

the entropy di®erenceg4.74) is

. 1 ,, 2. .
Ilrln (Sai So) =i %(E L1+ —)i 3 ; (4.76)
,1! 1

5

the classicalresult, asgivenin (4.16) and (4.17).

So far, we consideredonly the conformational entropy of the chains. The
crystalline regionsthemsehes, howewer, also have ertropy. That is due to the
fact that, when the transformation occurs from the partially crystallized state
to the amorphousstate, the ertropy increasesby the melting entropy ¢ S. The
ertropy of the partially crystallized rubber is then reducedas comparedto the
amorphousstate (referencestate), by the melting entropy

Si So=Si Spi ¢S: 4.77)

Let s, = Sa(» = 0; T) be the speci c ertropy of the undeformed,totally amor-
phous material, s¢(T) the speci ¢ ertropy of the crystalline domain, and m, the
massof a statistical segmeh Then the melting entropy per segmen is

Su(T) = Mo[So(T) i sc(T)] : (4.78)

The melting entropy of the rubber is obtained by multiplication with the number
of total segmets in the network 32 = ¥N», which is boundedin the crystalline
domains

¢S=¥N»SyT): (4.79)

The entropy of the partially crystallized rubber® follows from equations(4.77) to

5The computations of equation (4.80) have been done analytically and are available upon
request.
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(4.79) and equations(4.60) and (4.59):

Fo(T:1 ' - ’
Si S = if‘=/1\|»53/4+:‘=/1<§ 2 )i % 3In(pg)+ InKg
A

2F1( ;1)
Fl(_»l—»; 5 1) | Fl(_»d; 5 1)
Fi( L;1)

+K[B In(pL) i 0+ InK,]
A

3 FZ(_»I—»; 5 1) | FZ(_»d; 5 1)

- 3 —
|7 F(CL;1)

(4.80)

Yo

+3%k H e(d D )2—2d2 FZ(_»D»; 5 1) i FZ(_»d; R l)

F,%(_L; 1)
— — 4
. g—2d2 F3( »D»; 5 1) i F3( »d; 5 1)
'3 Fy L)
F _»I—»; i F _»D»;
i Y%k He(D, - L,) 1( ’1)l .1( . 1)
F4(_>>L>>; 5 1) | F4(_»D»; 5 1)

i 2 ,d

Fi( L;1)

The entropy di®erenceSg | S, of the partially crystallized referencestate jr
for»=», ,= R, L,=Lg,d=dr, T = Tg,and,; = lisincluded asa
special case.Both ertropy di®erencesre smalleror equalto zeroSj S, - 0and
SrRi So- 0. The ertropy of the rubber decreasesvith crystallization aswell as
with deformation by increasingthe state of ordering and orientation, asit must
do so.

For the calculation of the stressone needsthe free energy and for this the
internal energy We assumenow that within the molecularchain, apart from the
kinetic and binding energieswithin the crystalline domains, no internal energy
of deformation can be stored. This correspndsto the model of Kuhn (simply
and freely joint chains). We refer again to the undeformedtotally amorphous
state as a referencestate for the energy Thus the binding energyis just melting
energy Consequetly, the changeof the internal energywith crystallization and
deformation is

Uj Us=jCU=j IN»UgT); (4.81)
where Uy(T) is the melting energyper segmen This is given by
UsfT) = Mo[uo(T) i uc(T)] ; (4.82)

where u,(T) is the speci c (thermal) internal energy of the amorphousunde-
formed material and u.(T) is the speci ¢ internal energy of the crystalline do-
mains, both at temperature T.
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The free energyrelated to the undeformedtotally amorphousstate at tem-
perature T is given by

Fi Fo=Uj Usi T(Si So); Fo(T) = Uo(T) i T So(T): (4.83)
For the calculation of the nominal stressfor uniaxial extensionwe needthe

derivative of the free energy with respect to ,; for xed valuesof » and T.
According to equations(4.81) and (4.82),

@ @
=i T X 4.84
@ e (.89
sinceU; U,; S, and F, are independert of , ;. The nominal stressis
1 VR 1=3 @
Y= —(— — 4.85
4 VR(Vo) ; (4.85)

Dividing by the total massof the rubber ¥ N m, and using the relations
= = () and & = (2)*°, following from equation (4.59), for the volume
ratios, (4.85) takesthe form

_)) 1 @ _)) T @

— = W —_—
R INm, @1 I R ANM, @,

Y, = Ly (4.86)

Let N_ be the Losdimidt-Av ogadro number; then R = kN_ is the universal
gasconstart and M, = N m, is the molecularweigh of the statistical segmen

Using (4.80) the nominal stressin uniaxial extensionthus becomes

, RT 1
3 = 16 7
A R NML R L)
_» — ’ @ — —
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The derivativesof the functions F; (®;, 1); (j = 1;2; 3;4) areobtainedfrom (4.66).
After somelengthy calculationsand appropriate rearrangemen one obtains

F@,) _ 2" 1 96 :
——— = = ,1i 5 i 5,—Ru®,1) ;
® 2 1 ® 2@
@A®, ) = - ,1i -5 ef — | —Rx(®, 1) ; (4.88)
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We insert now the expressionsof equation (4.88) into equation (4.87), by
identi cation of ®with ,L,; ,d;and ,D,, respectively. For the nominal stress
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we obtain the expression
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4.2.3 Mo oney represen tations

The phenomenologicatheory of Mooney [52] has played a dominant part in
the eld of large elastic deformation.

Mooney's theoretical assumptions,as has been noted earlier in connection
with the statistical theory, is that the rubber is incompressible,and that it is
isotropic in the unstrained state. Mooney formula is presened as follows:

1 2C
Y= (11 —)(2C1+ —12); (4.91)
5 1

5
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where ¥ is the nominal (engineering) stress(force per unit undeformedarea),
and C;; C, are empirical constarts. We now write equation (4.91) in the form

3
L =2C, + &: (4.92)
(i ) s 1

I‘;I\J|H

Figure 4.9: Mooney-Rivlin represemation for cross-linked natural rubber, where
f ° equalsto ?/‘1 and ® ! equals+.

(1i %)
1

It is clearthat plotting i 1?/‘1%) againsti1 shouldyield a line of slope 2C,, with

> 1
intercept 2(C; + C,) on the vertical axis of £ = 1. Thus more details about the
stresscoexcients canbe obtained usingthis formula. A largeincreasen modulus
at high elongationis illustrated by gure 4.9 for natural rubber [50, 20] in the
Mooney-Rivlin represemation. This increasen the modulusis generallyobsened
in crystallizable networks with chemicalcross-linkingthat undergostrain-induced
crystallization.

This is included in the presen statistical model, in which these stresscoef-
“cients C; and C, are functions of (, 1;»). Identi cation of (4.90) with (4.91)
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yields for the Mooney coexcients:

» RT 1

2C1 = 1/&_— —
%RNM"_F%L’D TR
£ ef 22 jerf 2

5 1 . 5

4—2 2 l‘il._»D»ﬂ H_ TL
i He(d D») - »d erf i el’f
3 5 1 . s 1

. 0
+He(d- D,) E_“d“ 2(, 2+ g%) erf( [l)) i erf(
éb 5 o

15 )).
— 3+ D p —~ »I—»
»d D)= Derf(,1 ,1D;
) - ,Ahg}‘l .1
i Derf(,1 ,1D;->2=22) ,
, 1

o

i He(D» ' I—»)

)

» RT 1
2C = 1/§_— —
* 7 T,RNMo Fi(LiD)

£ i [BIn(ps)i 2+ InkK,]
Vi

3, — - _ — .
£ é h »I—» Rl( »I—»; 5 l) i »d Rl( »d; 5 l)l
I — — — .
i é h »I—» RZ( »I—»; 5 1) | »d RZ( »d; 5 1)'

4

_ A
))d ’
)

5

(4.93)

EC I — — — .
+ He(d ' D») é fdzé h »D» RZ( »D»; s 1) | >>d RZ( >>d; 5 1)'

8_ _ — — — .
+H e(d : D») 1_5 :}d4 h »D» R3( »D»; 5 1) i »d R3( »d; 5 1)'
3 — — — .
i H e(D» ' I—»)i h »L» Rl( »I—»; 5 l) | »D» Rl( »39»; s 1)'
A

+H e(D» ) I—») _»d H?4(_»|—»; 5 1) i R4(_»D»; 5 l)l



Chapter 5

Mo del Application

5.1 Mo del Parameters

Three crucial parametersare included in our proposedstatistical theory of
deformation induced crystallization: the degreeof crystallinity », the number of
segmelts which are exposedto the deformation stressNs o, the parameter a,
and the entropy constant K, of partially crystallized rubber. Besides,we need
the total number of N of chain segmets and their length ".

5.1.1 Degree of crystallinit y »

The degreeof crystallinity is a vital parameterto our statistical model. In
Chapter 3, amathematicalmodel hasbeendewelopedto simulate the deformation-
inducedcrystallization at di®eren parameters(e.g. temperature and strain rate).

The relaxation time ¢, for loading and unloading deformation, is greatly af-
fected by temperature as it is evidert by equations(3.14) and (3.19), and the
strain rates. The e®ectof strain ratesis summarizedby the following tables 5.1,
5.2 for both polyisoprenerubber and polyethylene-butenecopolymer as well*.

Table5.1: E®ectof strain rate on the constarts of the relaxation time for loading-
unloading polyisoprenerubber at all temperatures

| Strain rate [min '] [ a_ [s] | b.[J=mole] | ay [s] | by[J=mole] |
0.039 0.050 15000 0.005 15000
2.340 0.004 15000 0.002 15000

1Theseconstarts were tted using Mathematica tting technique.
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Table5.2: E®ectof strain rate on the constarts of the relaxation time for loading-
unloading of the thermoplastic elastomer(both types) at all temperatures

| Strain rate [min 1] | a_[s] | b.[J=mole] | ay[s] | by[J=mole] |
0.09 0.050 15000 0.0250 15000
5.40 0.001 15000 0.0002 15000

From the above tables, it is clearthat a, and ay are dependen on both strain
rates. Unfortunately, few experimerts have beenperformedwith respectto strain
rates, however, this is not sucient to perform tting for this dependence.

The degreeof crystallinity is calculatedfor both loading and unloading, from
equations(3.15) and (3.20), respectively. Then they are insertedinto the stress-
strain equation (4.90) asan input parameter. To meetagreemeh with the mea-
suremen data, the parameter a must be properly chosen. This is discussedn
the following section.

5.1.2 Parameter a

The parametera asintroducedby equation(4.23)and gure 4.8,is a measure
for the type of crystallite attributed to our molecularchain. Its value changesde-
pendingon the type of crystallites, whether extendedor folded or mixed. Within
the context of the statistical theory, the value of a is unknown. It must be
determined by tting of statistical stress-strainrelation (4.90) to the measured
stress-straincurvesfor isothermal (and isobaric) uniaxial extension.

It turns out, that the parametera dependson temperature, on deformation
speed and, of course,on the rubber-elastic and crystallizable materials consid-
ered. Moreover, chain parametera may depend on deformation , ; for uniaxial
extension.

The best t to the stress-strainloading curvesis obtained with the constart
chain parametera, independen of deformation, ;.

This re°ectsthe physical expectation that during loading the extensionaltype
of crystallinity is favoured. Best t valuesfor the polyisopreneare givenin table
5.3 for di®eren temperature and two loading speeds. Correspnding valuesfor
the two thermoplastic elastomersENX-7086 and ENX-7256 are given in tables
5.4 and 5.5, respectively?.

2The constarts shovn in Tables 5.3, 5.4, and 5.5 were tted using Mathematica “tting
technique.
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For unloading the crystallization behaviour is more complex. Besidesthe
extendedtype of crystallization the folded type dewelopsin unloading using the
extended type as a nuclei for growing perpendicular to this to a shish-kebab
structure.The formation of thesecrystallites requiresrelaxation of chain ordering,
for which , ; is a measure. Consequetly, the chain parametera dependson | ;
for unloading. With the following expression:

q__
a(T)= ap+ ay, 1+ &, 2+ ag, 3+ acosh i'+asel; (5.1)
and perfect tting of the unloading curves can be obtained. The temperature
dependen tting parametersay;as; ay; as; as; and as obtained by Mathematica
curves- tting technique are tabulated in Appendix A for two given strain rates,
and the three consideredrubber-like materials.

Table 5.3: Parameter a valuesfor loading processof polyisoprene

| Temperature [*C] | strain rate [mini ]| a |

21 0.039and 2.34 | 0.261
50 0.039and 2.34 | 0.375
80 0.039 0.490

Table 5.4: Parameter a valuesfor loading processof ENX-7086

| Temperature [*C] | strain rate [min' '] | a |

23 0.09 0.280
23 5.40 0.150
50 0.09 0.370
50 5.40 0.380

Table 5.5: Parametera valuesfor loading processof ENX-7256

| Temperature [*C] | strain rate [mini ] | a |
23 0.09 0.240
23 5.40 0.250
50 0.09 0.300
50 5.40 0.150

3This formula has beentted using Mathematica curves- tting technique.
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5.1.3 Num ber of segments exposed to deformation, Nt grce

As has beendiscussedn equation (4.20), N¢ orce iNcreaseswith deformation
during loading extensionuntil it readhesthe total number of chain segmets N.
This is expresseds’

h ,
Niorce(, 1) = b+ by, 1+ by, 2+ by, 3+ by, 4+ bye W20 5 1, (5.2)

where by; by; bp; bs; by; and bs are adjustable tting parametersof the model de-
pending on temperature. The values of these tting parametersobtained by
Mathematica curve- tting technique are tabulated in Appendix B.

Howewer for unloading, sinceall lamellae of the folded chain crystallites are
split and becomeextended,N; orce Will equalto the total number of chain segmets
as follows

Nforce: N . (5.3)

(The total number of segmeis per chain N can be obtained, if a reasonable
assumptionis madeabout the molecularweight M, of the segmen For this it is
obsened, that the identit y unit of the moleculecortains v e carbon singlebonds,
around which almost iso-energetiaotations can take place. At a 1.5-fold length,
e.g. 7.5 carbon singlebonds, the end point of the 1.5-foldidentit y unit canread
almost all positionsin spaceif oneendis held xed. Thus the poly-cis-isoprene
moleculehasthe molecularweigh of 183g=mole and a total number of segmets
peronechain N = 55. Howeer, the Ethylene-butenemoleculehasthe molecular
weight of 120g=mole and a total number of segmets per onechain N = 63.

It shouldbe remarked, that the idertit y unit of the poly-cis-isoprenanolecule
and ethylene-butenemoleculewithout attacking the valenceanglesof the carbon-
carbon distancesin the extendedstate of the chain has a length of 8:8A. The
length of the extendedsegmeh without attacking the valenceangleis then = =
1:5£ 8:8A = 132A)°.

5.1.4 Entropy constant K, of partially crystallized chains

Now the ertropy constart K, of the conformational ertropy of the partially
crystallized state is proposedasthe expression

K,= ee°Ns: (5.4)

4This formula has beenited using Mathematica curves- tting technique.
5These informations have been obtained by personal communication with Prof. Dr. Rolf
Hosemann,Bundesanstalt fédv Materialpr éifung BAM-Berlin.
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where°, is an adjustable parameter. Ng is the number of free conformational
uncrystallized segmets determinedby

Ns=N(@Lj »=Nj 3: (5.5)

°, is found to be temperature dependen for ead material. The valuesof this
parameter, depending on the material, are shovn in Table 5.6°.

Table 5.6: Valuesof °, for three di®eren polymeric materials.
| T(*C) | polyisoprenerubber | °o(ENX j 7086)| °(ENX | 7256)|

21 0.75 { {
23 { 2.75 1.50
50 0.60 1.65 0.53
80 0.50 { {

5.2 Application of the Mo del

With the above proposedmodel we arenow in the position with this statistical
theory of deformationinducedcrystallization to descrike in an analytical way the
pseudo-plastice®ectand hysteresisin cross-linked rubber, elastomersand high
polymers.

5.2.1 Polyisoprene crosslink ed rubb er

The old term Cauotchoud was taken from the word Cauo-Chu meaningthe
"weepingtree". Many useful objects are madefrom the milk of the weepingtree.
Batonists gave it the nameHeve Brasiliensis The milk producedis an aqueous
emulsion or dispersion of oils, fats, waxes, resins, starch, proteins. The main
componert is polyisoprenethat is described by the chemical formula (CsHg),,.
CsHg is called an isopreneand natural rubber is built up of regular sequences
of isoprene,which are arrangedin cis-con guration, forming long chains of high
elasticity, see gure 5.1. The chainsarelinkedand lie in the material like agitated
snales, they are perfectly regular in the badkbone and have freely rotating links
at given distance.

6These constarts were tted using Mathematica software.

"This complicated French word is said to stem from the Indian word Ca-hu-chu which means
\w eepingtree". Others maintain that it comesfrom the Kechuan languagewhere caucu means
\he who caststhe evil eye"; they nd that notion appropriate becauseof the atrociousconditions
under which the Indians were forcedto collect rubber. Sowe may safely assumethat the origin
of the word is unknown. As cauco, caucciuand Kautschuk it provides the sciertic name for
rubber in Spanish, Italian and German.
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Figure 5.1: Structural formula of oneisoprenemolecule.

Rubber at that time was called India rubber becauseit came from India
discovered by Columbus. There were problemsthough with India rubber: The
"Macintouchs" were sti® in cold weather and sticky whenit waswarm sincethe
raw rubber is non-crosslinled. Somethinghad to be doneand Charles Goodyear
in 1839 found out what; he invented the processof vulcanization of rubber.
Rubber was mixed with sulphur and heated. Through a changein its chemical
structure (i.e. crosslinking), it is corverted to a condition in which the elastic
properties are conferred or re-establishedor improved. In this manner rubber
becamea dry °exible material largely una®ectedby temperature changesin the
normal range[70, 62, 63]

5.2.1.1 Crystallization results for the statistical model

It is well known that natural and synthetic rubbers crystallize upon the ap-
plication of stressat room temperature, and this has beenstudied in both the
stretched and the unstretched condition at various temperatures. At low tem-
peratures, the e®ectof strain on crystallization has beenstudied by Gent [26],
Kim and Mandelkern [40], and Stevenson[65, 66]. In general,an applied strain
increaseghe rate of crystallization.

In this work, it is apparert that the equationsobtained permit prediction of
crystallinity at any strain rate or temperature within the studiedrange. Howeer,
it would alsobe interesting to usetheseequationsto predict e®ectsof changing
the valuesof strain rate and temperature beyond the rangeexaminedsofar, even
though the validity of the results would be uncertain.

The crystallization during stretching is lessthan that during an unloading
retraction process.Investigation of the in°uence of the draw temperature on the
crystallinity dewelopmen hasbeenperformedat two di®eren strain rates, and it
is obsened that increasingtemperature always decreaseshe crystallinity values
in both loading stretching and unloading retraction processesAt low strain rate
(= 0:039 mini 1) this behaviour is con'rmed as shavn for examplein "gure
5.2. This is so, sincethe maximum saturated value of crystallinity is inversely
temperature dependent.
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Figure 5.2: Theoretical results which shov the e®ectof temperature on crys-
tallization of polyisoprenerubber at low strain rate of 0.039mini ! during the
loading process.

Also, the crystallization during retraction is di®eren from the crystallization
during stretching; this is apparert at relatively low temperature (T= 21*C) in
‘gure 5.3. At moderate temperature (e.g. 50°C), deviation will be noticed as
shavn in gure 5.4. Howeer, crystallization deviation in stretching-retraction
processess diminished with increasingtemperature and at low strain rates. For
exampleat T= 80°C, it is clearthat crystallizations are compatiblein loadingand
unloading processesvith somedeviation at a strain ratio , ; = 4:75asshown in
“gure 5.5. In aretraction procesghe curve goesbad to the origin which indicates
that melting of crystallites will occur at high temperature. This, the only type
of crystallite which will survive the high temperature is only the medanically-
induced-type (the extendedone).

At low strain rate (= 0:039mini 1), the processis almost closeto the equilib-
rium state, and the deviation of crystallization during stretching and retraction
disappears at high temperatures. According to equation (3.8), the relaxation
time ¢, plays a vital role on the deviation of crystallization from the equilibrium
values,while at high temperature, the relaxation time has a rather small value,
which enablesthe processto be closeto the equilibrium state, see gures 5.3,5.4
and 5.5.

The e®ectof strain rate hasalso beeninvestigatedand it was found, that at
low strain rate the crystallinity valuesare closeto the equilibrium state and no
large hysteresisloops are obsened in a loading-unloadingprocess.On the other
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Figure 5.3: Theoretical results which show the crystallization of polyisoprene
rubber at 21*C and di®eren strain rates during the loading-unloadingprocesses
(arrows indicate load path direction).

hand, at high strain rate the valuesof crystallinity keepincreasingduring retrac-
tion while the changein crystallinity during stretching is low. It is approved that

0,24 4
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o
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o o

= =

N [«2}
L L
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Crystallinity [1]
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Figure 5.4: Theoretical results which showv the crystallization of polyisoprene
rubber at 50°C and di®eren strain rates during the loading-unloadingprocesses
(arrows indicate load path direction).
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Figure 5.5: Theoretical results which show crystallization of polyisoprenerub-
ber at 80*C and low strain rates during the loading-unloadingprocessegarrows
indicate load path direction).

the type of crystallites during retraction is di®erern from thosein the stretching
process.Consequetly, a residualcrystallinity will exist at the end of the unload-
ing retraction process,and this residual amourt of crystallinity will causethe
thermodynamical irreversibility.

5.2.1.2 Exp erimental part

Polyisoprenerubber probes(¥.= 0:9392Z)=cn?®) have beenmadeby Dr. Eisele
at Bayer AG, Leverkusenhoweer, the tensile experimerts have beenperformed
at the Bundesanstaltfér Materialpréfung BAM-Berlin by Prof. Dr. Rolf Hose-
mann. In these experimerts, rectangular-shagd polyisoperenerubber samples
were cut from the sheet. The tensile test devicewas employed to stretch and re-
tract the samplesat a certain chosenspeedand temperature. Wide Angle X-ray
Di®raction (WAXD) patterns were measuredn the undeformedstate and at the
end of the loading state.

5.2.1.3 Uniaxial stress-strain results

For the stress-strainmeasuremets, the samplewas stretched and allowed to
retract by the samestrain rate. Generally both sequetial and simultaneous
measuremets of stress-strainand birefringence were made in order to under-
stand and investigate what occurred during stretching loading and retraction
unloading processesnd at di®erern temperatures[68, 69,53, 67]. Theseauthors
shoved that the birefringenceduring retraction is morethan that deweloped dur-
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ing stretching, but the stressduring retraction is lessthan that deweloped during
stretching. This indicates that a substartial portion of the total orientation of
the amorphousand crystalline regionsis delayed until the retraction stage. The
induced crystalline order itself can be analyzeddirectly by Wide Angle X-Ray
techniques.

In what follows, we compareour predicted resultswith the experimertal uni-
axial extensiontests of crosslinkedisoprenerubbers. Both the stress-straincurves
and the ewlution of the degreeof crystallinity are preserted at di®eren model
parameterssud astemperature and strain rate.

The increaseof stresswith temperatureis dueto rubber elasticity. This elastic
forceis ertirely dueto ertropic e®ectsspeci cally, the tendency of the network
chains to increasetheir ertropy by retracting to more random conformations.
This ideal situation would occur whenintermolecularinteractions do not depend
on deformation (one of the major assumptionsof molecular theories: absence
of energy e®ects). As can be seenin the nal statistical formula of stress, see
equation (4.90), the force or stressat constart length is then proportional to the
absolute temperature. This e®ectis clearly shavn in gure 5.6a, while stress
strain curvesare shown at three di®eren temperatures. As the temperature is
raised, the Brownian-type wriggling of the polymer is intensi ed, so that the
material seeksmore vigorously to assumeits random high-ertropy state. From
another view point, oncethe temperature is raisedthe crystalline portion of the
chain starts to melt, thus the end-to-enddistancesfor the remaining amorphous
portions of the chain areincreasedand, dueto that, the entropic e®ecis increased
aswell. Figure 5.6b shaws the e®ectof the temperature on crystallization.

The stress-straincurve shaws high upturn with a signi cant hysteresis.Hys-
teresisof rubber is de ned asthe amourt of medanical free energydissipatedor
part of it cornverted into heat and other forms of energyduring cyclic deforma-
tion. So,the rate of heat generation(dissipated deformation energy)is expected
to increasewith an increaseof the hysteresisloops[35, 36].

Figures 5.7, 5.8, 5.9 show the expected behaviour of the dependenceof the
hysteresidoopson strain rate and temperature (i.e., the hysteresisdecreasesvith
an increasein temperature and with a decreasedn strain rate). It is clear, that
the stressduring retraction is much smaller than the stressduring the stretch-
ing loading process. In the unloading retraction process,the sampleis allowed
to retract after being stretched to a maximum strain, then the stressdecreases
drastically but the degreeof the strain-induced crystallinity is still increasing
during the unloading process. Therefore, the degreeof crystallinity during an
unloading retraction processis higher than that during loading stretching. Bire-
fringencemeasuremets [68, 53, 67, 69 have shavn that the birefringenceduring



5.2. APPLICATION OF THE MODEL 79

retraction is higher than that during stretching. This di®erencemay be due to
the fact that the birefringencerepreseis a measureof total orientation of amor-
phousand crystalline chains. Thus, the secondarycrystallites with folded-dain
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Figure 5.6: Temperature e®ectat 0:039mini ! strain rate on, (a) stress-strain
curves for uniaxial loading of polyisoprenerubber (theoretical results are rep-
resenied by the solid line, while the experimenrtal results by points) and, (b)
crystallinity for uniaxial loading of polyisoprenerubber (theoretical results).
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lamellaedewelop during retraction and causethe stressrelaxation. Consequetly,
the hysteresisof the stress-straincurve is attributed to the formation of the stress

CHAPTER 5. MODEL APPLICATION

induced crystallites and their transformation.
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Figure 5.7: E®ect of strain rates on uniaxial loading-unloading of polyiso-
prene rubber for, (a) stress-lysteresisat 21*C (theoretical results are repre-
sented by solid and dashedlines, while the experimertal results by points) and,
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Crystallization kinetics in stretching and retraction processegletermine the
amourt of hysteresisof the stress-straincurves. Comparing the total cyclesin
“gures 5.7,5.8, 5.9 for the low strain rate, we recognisethat the hysteresisloops
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Figure 5.8: E®ectof strain rates on uniaxial loading-unloadingof polyisoprene
rubber for, (a) stress-lysteresisat 50°C (theoretical results are represeted by
solid and dashedlines, while the experimertal results by points) and, (b) crys-
tallization at 50*C (arrows indicate load path direction).
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are getting narrower with increasingtemperature, and dissappear at 80*C. This
is due to the fact that crystallinity formation decreasesvith increasingtemper-
ature. This is alsorelated to the relaxation time which has smaller value when
the temperature is lower. This explains qualitativ ely the di®eren widths of the
hysteresisloops. The disappearanceof the hysteresisloop at 80*C is due to the
fact, that at 80°C the crystallinity is assumedo be "momentarily" at its equilib-
rium value >1>(P;T = 80°C;r(t)), sono further crystallization formation occurs
during the retraction unloading process.

For high strain rate, it is apparert that the hysteresisloops are always much
broader than for low strain rate. This phenomenonis interpreted as follows:
For high strain rate, the degreeof crystallinity is always (for both loading and
unloading) far away from its equilibrium value 3(P; T;@(t)). Howewer, during
loading the degreeof crystallinity formation is too small while its formation is
relatively large during the retraction unloading process. Therefore, stresshas
high valuesduring stretching, and in the unloading processit haslow valuesin
comparisonwith the equilibrium values. Accordingto this, two limiting casesare
mertioned for which no hysteresisloops are formed:

() In nitely quick loading and unloading processegin nitely large strain
rate); in this casethe crystallinity cannot follow the changesof the loading and
soit will be kept frozento the starting referencevalue »z. As aresult, the loading
and unloading stresscurveswill be the same.

(i) In nitely sluggishloading and unloading processegin nitely small strain
rates): in this casethe crystallinity will changethrough a sequencef equilibrium
states» = »(P;T;_ 1(t)).

Pseudo-plasticresidual deformation is obsened in the unloading retraction
processas a result of the transformation of crystallites and the formation of
ShishKehab [45] structure, asshovn in gure 5.10,dueto stressrelaxation during
unloadingretraction process.This isclearin gures5.7and5.8. At atemperature
of 80*C, the stressduring stretching and that during retraction coincidetowards
the origin, the strain induced crystallites are totally molten or equalto the state
crystallinity of the reference.This can be noticed in gure 5.9.

Two X-ray pictures have beenobtained for polyisoprenerubber sample,one
in the undeformedstate (, ; = 1) and the other at the maximum elongationratio
of the loading process(, ; = 5). As shown in gure 5.11the undeformedstate
picture, there appear no oriented crystalline re°ection peaks. Howewer, at , ; = 5,
the sampleis obsened to be well oriented with sharp re°ections on the equator
and on the rst layer.



84 CHAPTER 5. MODEL APPLICATION

Figure 5.10: Shish-Kebabstructure of a polyisoprenerubber sample.

(a) (b)

Figure 5.11: WAXD of polyisoprenerubber at 21*C and high strain rate 2.34
mini 1, provided by Prof. T. Alts, for, (a) an undeformedstate (, ; = 1) and, (b)
maximum deformationratio (, 1 = 5).

5.2.1.4 Mo oney representation results

The Mooney represemations of our stress-strainmeasureddata, will be dis-
cussedas follows:

Ya

(, 1i ’—1%)
and an intercept with value 2(C, + C,) on the vertical axis where X = 1. Thus
more details about stresscoe+cients can be obtained using this formula. A large
increasein modulus at high elongation; is illustrated by gure 4.9 for natural
rubber in the Mooney-Rivlin represemation. This increasein modulus is gener-
ally obsenedin crystallizable networks with chemical cross-linkingthat undergo
strain-induced crystallization.

It is clear that plotting against il should yield a line of slope 2C,,
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At temperaturesof 21*C and 50*C and at two di®eren strain rates(0:039,and
2.34mini 1), the loading curvesfor small deformationup to |, = 2:5 are inclined.
Howeer, the intersectionsand inclinations are di®erern. At least, howewer, the
existenceof this inclined line means,that in the loading casethe stresscoexcients
are constarts. This means,sinceC; and C, are functions of » and that the degree
of crystallinity doesnot changeduring loading in this deformation interval (up
to, = 2:5).

Quialitativ ely, this e®ectcan be understood asfollows: For loading crystallites
of the folded chain type (lamellae) are destroyed at small deformation, and then
many of the chain segmeis will becomeexposedto deformationstress. For larger
deformation, crystallites of extended type are formed. According to Avrami
[10, 11, 12] nucleation and growth in uniaxial extensionare linear with time. As
deformation proceeds,a departure from linearity will ariseand an upturn of the
loading curve will occur as a result of deformation-inducedcrystallization.

To validate this view, Kuhn's model is included in our statistical model as a
special case,if we assume,that no state quartity dependson crystallinity and.
If possibly existing crystallinity », doesnot changeat all, then linear horizortal
lines will be achieved as shovn in gures 5.12,5.13 and represered by dashed
line. This can be comparedto our model where formation of crystallinity with
deformationis included. Thus, inclined lines will be achieved from our statistical
model for the Mooneystress. For unloading, hysteresisis obsened, dueto further
formation and transformation of crystallinity asit hasbeenfound and discussed
for stress-straincurves. Hysteresisdecreaseswith an increaseof temperature,
and with the decreasean strain rate as showvn in gures 5.12,5.13.

At high temperature (i.e. 80°C), loading and unloading curvesare compatible
and only a very small hysteresisat the beginning of unloading is obsened, as
shown in gure 5.14.
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Figure 5.12: Mooney-represetation for uniaxial loading-unloading of polyiso-
prene rubber at 21*C (theoretical results are represeted by solid the line, the
experimertal results by points , while the dashedline is Kuhn's model when no
changein crystallinity is assumedn our statistical model) for, (a) low strain rate
= 0.039(min' 1) and, (b) high strain rate = 2.34(mini 1).
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Figure 5.13: Mooney-represetation for uniaxial loading-unloading of polyiso-
prene rubber at 50°C (theoretical results are represeted by the solid line, the
experimenrtal results by points , while the dashedline is Kuhn's model when no
changein crystallinity is assumedn our statistical model) for, (a) low strain rate
= 0.039(min' 1) and, (b) high strain rate = 2.34(mini 1).
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Figure 5.14: Mooney-represetation for uniaxial loading-unloading of polyiso-
prene rubber at 80*C (theoretical results are represered by the solid line, the
experimental results by points , while the dashedline is Kuhn's model when no
changein crystallinity is assumedin our statistical model) for low strain rate =
0.039(mini ).

5.2.1.5 Volume change

According to equation (3.6), for a semi-crystalline polymer, the equilibrium
volumeincreasesrst with deformationsincea destruction of lamellae(spherulite)
occursinitially and a decreasen volumeis obtained for large deformation due to
the formation of extended crystallites or orientation of both amorphouschains
and destroyed lamellaeparts. A linear relationship betweenvolume changeand
strain was found up to large extensionratios. On the basisof an atne deforma-
tion, one calculatesa dependencewhich is proportional to , i 1[25, 16, 30.

As shovn in gure 5.15strain rateshave a drastic impact on volume changeat
certaintemperatures. In our statistical theory, accordingto equation(3.6), agood
approximation is achieved to predict the changeof volume due to deformation-
induced crystallization.
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5.2.2 Polyole n thermoplastic elastomers

Thermoplastic elastomersdi®er from the usual cross-linked elastomersin so
far as the cross-linksare not covalent bonds but physical links, e.g. consisting
of crystallized chain segmets. Thesecan be molten by heating, thus allowing
thermoplastic processing1§].

The two polyole n elastomersthat have beenusedin this study, are copoly-
mers of ethylene-butenewith two di®eren degreesof crystallinity as shown in
table 5.7.

Table5.7: Physical and chemical properties of the thermoplastic ethylene-butene
copolymer

| Copolymer type | Density [g/cm?] | % Total Crystallinity | T [*C] | T4 [*C] |
ENX-7256 0.885 21.5 70 -48
ENX-7086 0.902 32.4 94 -39

Ethylene-butenecopolymers have the chemical structure as shovn in gure
5.16. ENX-7256 has a unique broader molecularweight distribution with higher
branching levelsthat o®ersexcellen clarity, processingand performancein foams
and extrusion applications suc as tubing, pro les, wire and cable insulations.
ENX-7086 has much higher levels of long chain branching than other commer-
cially available polyole n elastomers. It is suited for blow molding, extrusion
and thermoforming applicationswherehigh level of shearthinning and high melt
strength may be required.

Figure 5.16: Chemical structure of ethylene-butenecopolymer.

5.2.2.1 Crystallization results for the model

This di®erencdn crystallinities may be recalledfrom the copolymer crystal-
lization theoriesthat the co-unitspresen in a copolymer may either be completely
rejectedfrom the crystal (exclusion) or uniformly included as an equilibrium re-
quiremert (inclusion) [21, 23, 59, 60, 2, 3].
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Flory's prediction is that all brancheslonger than methyl are excludedfrom
the crystal lattice [33, 4]. Thus, ethyl and butyl side chains are excludedfrom
the crystal lattice. Therefore,the morphologyin more branched copolymersmay
involve fringed-micellelike crystals.

Deformation-induced crystallization in polyethylene-plybutene copolymers
depends on temperature and strain rate in a similar way as does polyisoprene
rubber, although the molecularrearrangemets taking placeare di®eren. In the
early stagesof drawing an unoriented crystalline polymer, spherulites become
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Figure 5.17: Theoretical crystallization of ENX-7256 at di®eren strain rates for

two temperaturesof, (a) at 23"*C, and (b) at 50*C.
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elongatedin the draw direction. Then, chain slipping occurswithin the lamellae
(chain-foldal crystals) and the lamellaebreak up into small crystallites connected
to ead other by uncrystallized tie molecules.[58

Due to this fact, crystallization is kept constart up to , ; = 2 sincebreaking
the lamellae enhanceghe reoriertation of thesesmall broken crystallites in the
drawing direction. This is obviously shovn in gures 5.17 and 5.18 during the
loading stretching process.
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Figure 5.18: Theoretical crystallization of ENX-7086 at di®eren strain rates for

two temperaturesof, (a) at 23"*C, and (b) at 50*C.
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The same gures shav the e®ectof strain rate on the ewlution of crystallinity
as a function of the deformation. In fact, it is clear that both materials do not
shaw drastic changesof crystallinity causedby changing strain rates at a certain
temperature during the loading process.This is clearly shovn in "gures 5.17and
5.18for both copolymers.

The e®ectof temperature on crystallization is an important factor. An in-
creasein temperature accelerateghermally activated processesnd reducesre-
laxation times. Consequetly, the hysteresisbetweenthe loading and unloading
processis reduced.

5.2.2.2 Experimental part

We areindebtedto Rieter Automative Germary GmbH for providing us with
ethylene-butenecopolymer materials. Also another acknowledgmert is to Ger-
man Polymer Institute DKI -Darmstadt for their highly appreciatedcooperation
and help with the preparations of samplesand running of the tensile loading-
unloading experimerts.

For the preparation for the experimerts, two ethyleng butene copolymers
(ENX-7086, ENX-7256) weredried under vacuumat 80°C, extruded by twin mi-
croextruder, and pressedo form a thin sheetby the following sequenceheating
1 min at 1 bar and 150:C, pressing2 min at 36 bar and 150:C , and cooling
2 min at 36 bar and 23*C. Then the sampleswere cut into a certain form (1.5
mm thickness,27.7 mm length, and 4 mm width) from the pressedsheetusing
a standard cutting madhine. A tensile madine (Zwick-020TH2A) was equipped
with an environmental chamber that was usedfor performing the loading and
unloading tests. To correct for shrinkage at high temperatures (50*C), sample
length correction was used for deformation of the samplesunder constart tem-
perature and humidity. Eadh samplewas drawn up to , ; = 7 at two di®eren
temperatures,23*C and 50°C, and two di®eren deformation speeds,2.5mm/min
and 150 mm/min.

5.2.2.3 Uniaxial stress-strain results

Sincethese ethylene-butenecopolymers have a degreeof crystallinity in the
undeformedstate of the order of 20-30%,deviation from rubbery behaviour is well
expectedat leastin the small deformation region. Copolymer preparationswith
a density of lessthan 0:9 gcmi 3 shaw increasingly fringed micellesas the dom-
inant but not exclusiwe crystal morphology and exhibit medanical and thermal
properties that are not found in standard polyethylene [13, 14].

Crystallization of copolymersis predominately by branching statistics. How-
ewver, in homopolymersit is largely in°uenced by the chain length and its distri-
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bution, the extent of entanglemen of chainsin the melt and the undercoling. It
wasobsenedthat the lamellar thicknessat a selectedcrystallization temperature
increasedinearly with decreasingcomonomercortent (this is fully discussedn
chapter two).

Sofar we consideredthe stress-strainresponseof amorphouschains (with low
degreeof crystallinity at the origin) that crystallize in the courseof deformation.
Stress-inducedrientation reduceshe energybarrier betweenthe amorphousand
crystalline state, permitting crystallization at temperatures where none would
occur in the unoriernted state.

Induction of crystallinity levelsin the undrawn polymer canresultin a brittle
behaviour that is dixcult to draw. In general, increasingcrystallinity in any
unorierted state increasesthe stressrequired for deformation, and shifts the
stress-strainresponsetowards brittle deformation.

Some copolymers with high levels of unoriented crystallinity can, howewer,
be readily drawn. An unoriented, semicrystallinecopolymer generally consistsof
lamellaestructures. Chainsfold bad at the surfaceof eat lamella.

The stress-strainresponseof a semicrystallinechain dependson temperature
and strain rate in a similar way as do amorphouschains e.g. in polyisoprene
rubber (negligibledegreeof crystallinity at the referencestate). In the early stages
of drawing an unoriented semi-crystallizedchain, stressconceitrates initially on
spherulite which becomeselongatedin the draw direction [32, 15, and in the
regionof , = 2 2:5; chain tilting and slipping occur within the lamellae of the
chain-folded crystals.

Neds begin to form in regionsof stressconcerration or in a region whee
there are fewer molecular entanglement This leadsto dramatic local orientation
of the amorphouschain, and dramatic local deformation of the spherulitesand
lamellaein the crystallized portion of the chain.

Eventually, the plastic deformation of the spherulitesinducesthe breaking
of the lamellaeinto small crystallites connectedto ead other by conformational
tie segmeis. Spherulite deformation under uniaxial tension has been studied.
Resultsindicate that the rst deformation everts occur near the certer [73, 74].
Howe\er, other researbiesshaved, that the deformationstarts from the equatorial
regimeand proceedstowards the polar regime of the spherulites[61].

Although stress-strainresponse is temperature and strain rate dependen,
di®eren results can be identi ed theoretically and experimertally for the two
materialsbasedon their di®erencen the degreeof crystallinity in the undeformed



5.2. APPLICATION OF THE MODEL 95

(a)
18
16 T=23°C
A
=0.09 1/min
— 14 1
g
| ENX-7086
E 12
— 10 A 7
ENX-7256
0 8 0
)
o 6
P -
o
0p} 4
2 |
0 o T T
1 2 3 4 5 6 7
Strain [1]
(b)
12
10 | T=50°C A
o] = 0.09 1/min ENX-7086
o
= 89
—
6 ENX-7256
")
)
O 4
s i
n
2 -
0 #

3 4
Strain [1]

Figure 5.19: E®ectof temperature on stress-strainloading curvesat 0.09(min' 1)
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origin state.

ENX-7086 has a total degreeof crystallinity at the referencestate of »; =
0:332,while ENX-7256has»g = 0:221. As a result one obseneswithin a certain
temperature range and regardlessof the range of strain rate: The higher the
referencecrystallinity is the higher is also the medanical energy required to
break up and reoriert the crystals. This is clear from gure 5.19; ENX-7086
(» = 0:332) has higher stressvaluescomparedto ENX-7256 (»g = 0:221).

Sincethe referencecrystallinity decreasesvith temperature, sothe reference
crystallinity equally decreasest high temperatures(i.e. 50:C) and due to that,
the stressrequiredinitially will be lessthan that at room temperature (i.e. 23*C).
Howewer, the number of segmets that aresitting in the crystalline lamellaestate
will be lessand the required medanical energyto break up the lamellae will
decrease.This is obviously shavn in gure 5.20.

The e®ectof the strain rate is not soconspicuousasit is in polyisoprenerub-
ber. For example,at a certain temperature, increasingthe strain rate increases
the initial stressrequiredto deform the lamellae domain. Howewer a slight dif-
ferencein stressvalue is found in the deformationrange, = 2 7 asshaown in
“gure 5.21.

For the hysteresis,di®eret loading-unloadingprocessesiave beenperformed
to investigatethe e®ectof temperature and strain rate on hysteresis.

As expected, the hysteresisdecreasewith increasingtemperature for both
materials, ENX-7086 and ENX-7256. It is found that further crystallization for-
mation proceedsduring undeformingcausingpseudoplastic residualdeformation
(strain residuals)as showvn in gure 5.22.

The e®ectof strain rates on the hysteresisis shovn for both materialsin gure
5.22. Increasingthe strain rate will increasethe hysteresisas well.

Three ENX-7256 (»r = 0:221) sampleswere deformedup to three maximum
di®erenn deformationratios (, ¢+ = 5;6;7) after which they were unloaded. This
was doneto explain the behaviour of the material. As shavn in gure 5.23the
three loading curvesare compatible with certain rangeswhile ead samplehasa
certain di®eren residual strain after completing the unloading process.Residual
strains for these,are causedby di®eren crystallizations during unloading.

Doubts that hysteresismight have occurred due to somebreakage and de-
struction of the sample'sstructure can be removed oncethe sampleswith certain
residuallengthsare heated. Then a full shape recovery is achieved for all samples
(the sampleregainsits original dimensionsasin the referencestate).
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Figure 5.20: Stress-straincurves at 5.4 (mini ) strain rates for, (a) ENX-7086
and, (b) ENX-7256 (theoretical results are represeted by the solid line, while

the experimertal results by points).
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Figure 5.21: E®ectof strain rate on stress-straincurvesat 23*C for, (a) ENX-7086
and, (b) ENX-7256 (theoretical results are represeied by solid and dashedlines,
while the experimertal results by points. Arrows indicate load path direction).
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Figure 5.23: Three deformation cyclesat three maximum strains for ENX-7256
at 23*C and 5.4 mini ! strain rate: (a) stress-straincurves(b) crystallinity-strain
curves (theoretical results are represeted by solid and dashedlines, while the
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CHAPTER 5. MODEL APPLICATION
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experimenrtal results by points. Arrows indicate load path direction).
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5.2.2.4 Mo oney represen tations

For crystallizable networks, there is frequertly a downturn in the reduced
stressprior to its upturn [20, 50].

Mooney-Rivlin represeations of the stress-straincurves do not showv the
upturn in the isothermup to this value of the deformationratio, , ; = 7. Howewer,
the initiation of strain-induced crystallization is evidencedby the departure of
the isotherm from linearity.

We beliewe if the sample had beendeformedup to ,; = 9 10, then an
upturn in the isotherm would be obtained. The following gures shav Mooney-
Rivlin represemations for crystallizable chains of thesetwo copolymer elastomers
ENX-7086 and ENX-7256. This is shovn in gures 5.24,5.25,5.26and 5.27.
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Figure 5.24: Mooney-represetation of stress-strainfor ENX-7256at 23*C for, (a)
low strain rate = 0.09(mini 1) and, (b) high strain rate = 5.4(min' 1) (theoretical
resultsarerepreseted by the solid line, the experimertal resultsby points , while
the dashedline is Kuhn's model when no changein crystallinity is assumedin
our statistical model. Arrows indicate load path direction).
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Figure 5.25: Mooney-represetation stress-strainfor ENX-7256 at 50*C for, (a)
low strain rate = 0.09(mini 1) and, (b) high strain rate = 5.4 (min' 1) (theoretical
resultsarerepreseted by the solid line, the experimertal resultsby points , while
the dashedline is Kuhn's model when no changein crystallinity is assumedin
our statistical mode. Arrows indicate load path directionl).
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Figure 5.26: Mooney-represetation of stress-strainfor ENX-7086at 23*C for, (a)
low strain rate = 0.09(mini 1) and, (b) high strain rate = 5.4 (min' 1) (theoretical
resultsarerepreseted by the solid line, the experimertal resultsby points , while
the dashedline is Kuhn's model when no changein crystallinity is assumedin
our statistical model. Arrows indicate load path direction).
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Figure 5.27: Mooney-represetation of stress-strainfor ENX-7086at 50-C for, (a)
low strain rate = 0.09(mini 1) and, (b) high strain rate = 5.4 (min' 1) (theoretical
resultsarerepreseted by the solid line, the experimertal resultsby points , while
the dashedline is Kuhn's model when no changein crystallinity is assumedin
our statistical model. Arrows indicate load path direction).
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Chapter 6

Conclusions and
Recommendations

6.1 Conclusions

An overview about the thermodynamics of rubber-like high polymersis ob-
tained and simpli ed by employing someapproximations and internal constrairts.
Uniaxial extensionat constart temperature and constart external pressureis
discussedn the thermodynamic constitutive theory. Cortinuum theory is inad-
equateto explicitly show the dependenceof stresscoetcients on the degreeof
crystallinity.

The crystallization formulation, which is basedon irreversiblethermodynam-
ics, is adoptedto describe the crystallization induced by deformation at di®erer
rangesof the temperature and strain ratesand for uniaxial loading-unloadingpro-
cesses.Relaxation behaviour and its e®ecton crystallization kinetics has been
explainedin the context of the formulation of limiting cases.

The crystallization during stretching is lessthan that during unloading re-
traction processes.The important portion of crystallites, that are induced by
deformation, are extended-dain crystallites that develop during the loading pro-
cesswhile during unloading other secondarycrystallite types(folded-dain crys-
tallites, shish-kebab structure) are formed.

Strain inducedcrystallization hasbeensuccessfullynodeledby the statistical
approad in which the shortcomingsof Flory's theory have been corrected. A
modi ed Gaussiandistribution is employed for chainsof nite lengthsto describe
the end-to-end vector distribution function. The cortribution of the chain to
crystallinity basedon atne deformation of the network of nite chain lengths
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has been fully described. The dependenceof stress coetcients Ce(® = 1;2)
on the degreeof crystallinity has beenderived within the statistical framework.
A good approximation is adhieved to predict the change of volume due to the
deformation-inducedcrystallization phenomena.

Stress-straincurves and their Mooney represetations are introducedin our
theory and comparedto the experimertal data. Stress-straincurvesshow high
upturn with signi cant hysteresis. Hysteresisloops are attributed to the forma-
tion of deformation induced crystallites and their transformation.

Pseudo-plasticresidual deformation is obsened in the unloading retraction
processas a result of the formation of the shish-kebab structures due to stress
relaxation. This is obvious at high strain rates and low temperature (i.e. above
the glasstransition temperature). Hysteresisloops and inelastic deformation do
not shawv up at in nitely quick or in nitely sluggishloading-unloadingprocesses.

The upturn in the Mooney represemation curvesat high deformation ratios
is clearly showvn in polyisoprenerubber experimerts. Howewer, for ethylene-
butene copolymer experimernts, the initiation of strain induced crystallization is
evidencedby departure of the isotherm from linearity. The modeledresults are
comparedto experimerts and fair agreemetn is found.

Ethylene-butene copolymer behaviour deviates from rubbery behaviour at
least in the small deformation region, sincethey have a certain degreeof crys-
tallinit y in the undeformedstate. Although their stress-strainresponseis tem-
perature and strain dependert in a similar way asamorphouschainse.g. polyiso-
prenerubber, di®eren results have beenidenti ed theoretically and experimen-
tally basedon their di®erencein the degreeof crystallinity in the undeformed
original state.

6.2 Recommendations

From the theoretical and experimertal works undertaken in this study, some
recommendationscan be made. It is imperative to do the further:

Our model parameters,of which somewere obtained by di®eren curve- tting
techniques, are by no meansunique. Di®eren tting techniqueswill lead to
equally valid results.

Extension of the theory for biaxial and triaxial stressare required to meet
some industrial processessucd as blow molding. This will be a complicated
mission, but with the recent numerical softwaresnothing is impossible. All-side
compressioncan be included.
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In-situ study of deformation-inducedcrystallization inside the polymer struc-
ture with enlargemen of the temperature range and extensionof the strain rate
rangeswill allow to meetthe conditions for achieving tougher b ersin the ber

spinning process.

Our statistical model allows further to predict the heat e®ectfor loading of
rubbery samples. Deformation experimerts should be performed inside a de-
formation calorimeter to study heat e®ectsand the crystalline binding energy
Besidesloading also unloading should be studied. [6, 7, 17, 19
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App endix A

TableA.1: Parametera: Valuesof adjustable constarts during unloading process
for polyisoprenerubber:

| TI*C] [ 2[mini 1] & & a as a as |
21 0.039 5.6740 -1.9490 0.4850 -0.0412 -2.4574 8.47F10 B
21 2340 -3.5450 0.9460 -0.2490 0.0263 2.1090 -1.62F 10 2
50 0.039 3.96843 -1.0537 0.2007 - 0.0119 2.6702 -3.90F 10 3
50 2340 -3.4050 0.6340 -0.1602 0.0173 2.3570 -1.67E10 2
80 0.039 -0.6490 0.3308 -0.077 0.0069 0.5020 -6.28F 10 *

Table A.2: Parametera: Valuesof adjustable constarts during unloading process
for ENX-7256 elastomer:

‘ T [*C] ‘ 2 [mini 1] Qo a a as a4 as ‘
21 0.09 1.4790 -0.5740 0.1220 -0.0077 -0.3370 -1.01¥ 10 #°
21 540 -1.0872 -0.0463 0.0137 -0.0002 1.2130 -1.01¥E 10 %
50 0.09 1.9815 -0.7783 0.1638 -0.0109 -0.3180 -8.92F 10' #
50 5.40 6.4008 -1.725 0.3287 -0.0208 -2.6570 -1.41F 10

Table A.3: Parametera: Valuesof adjustable constarts during unloading process
for ENX-7086 elastomer:

| TFCI[2[mini ] & a a as N as |
21 0.039 0.4650 -0.0598 -0.0063 0.0020 0.2026 -2.70& 10 2
21 2.340 -0.7140 0.1339 -0.0446 0.0050 0.9742 -3.35E 10 2
50 0.039 3.0470 -0.8500 0.17210 -0.0100 -0.9580 -2.44E 10 2
50 2340 6.2010 -1.7700 0.3640 -0.0230 -2.5100 -2.15E 10 2
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App endix B

Table B.1: N¢oce: Values of adjustable constarts during loading processfor

polyisoprenerubber:

| T [FC] [ Z[min 1] b, by b bs by bs |
21 0.039 -13.1890 87.3690 -41.5650 8.3930 -0.6110 04.41
21 2.340 10.5900 49.9100 -22.1000 4.2480 -0.2980 -99.00
50 0.039 26.2251 47.3980 25.9200 5.6220 -0.4260 -545.32
50 2.340 54.0045 -02.8210 00.9250 -0.0720 -0.0030 -485.09
80 0.039 27.1387 32.131 -13.492 2.3590 -0.1490 -959.78

Table B.2: N¢oce: Values of adjustable constarts during loading processfor
ENXj 7256¢elastomer:

| T [*C] [ 2 [min' ] b by by bs by b |
21 0.09 -03.8753 07.6210 0.4370 0.256 -0.041 -013.730
21 5.40 5.69468 -03.0910 4.0500 -0.2590 -0.0130 -098.531
50 0.09 32.5786 -13.1900 6.9700 -0.8330 0.0260 -533.660
50 5.40 -07.4905 22.867 -5.7880 1.1470 -0.0840 -162.590

Table B.3: Niqce: Values of adjustable constarts during loading processfor
ENXj 7086elastomer:

| T [*C] [ 2 [min' ] b by b bs by b |
21 0.09 -16.1380 17.2300 -2.7958 0.5860 -0.0451 167.99
21 5.40 -13.15 14.817 -2.2043 0.5017 -0.0394 103.24
50 0.09 -07.536 10.643 -0.0554 0.0149 -0.0114 095.63
50 5.40 -06.543 08.7738 0.3945 0.0862 -0.0183 039.98
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