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Chapter 1

Introduction

Beside the classical group IV semiconductor materials (Si, Ge, ...) and conventional
GaAs based III-V material systems, the III-Nitrides were intensively studied during the
last few years. III-Nitrides cover a band gap range from 0.7eV for InN to 6.2eV for
AIN. In comparison to other systems they have a much smaller lattice constant what files
them into the group of very high mechanically stable materials (figure 1.1). The wide
band gap predicts high breakdown fields. Thanks to these properties, the devices based
on ITI-Nitrides are candidates for possible applications in the field of high-temperature,
—power and —frequency electronics. GaN based devices offer a compromise between the

high frequency but low power material systems such as InP and the high power but low
frequency materials such as SiC (figure 1.2).
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Figure 1.1: Comparison of the band gap versus lattice constant for selected semi-
conductors.
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But not only the electrical behaviour of wide band gap semiconductors are of interest.
The driving force that brought the GaN-based material system into research was its
optoelectronic behaviour which allows us to produce lasers and photodetectors working
in the UV range [1,2].

This work is divided into three parts. The first one contains an introduction followed
by present status analysis and the definition of the main tasks to be accomplished.

The second part covers the theory of gallium-—nitrides, explains the formation of het-
erostructures using AlGaN/GaN including transport mechanisms and transport bound-
aries, introduces the basic principles of high electron mobility transistors (HEMTs), fol-
lowed by a discussion of special effects concerning the GaN-based material system.

The final part describes the technological processes and geometrical variations used
for device fabrication, outlines the characterisation of fabricated HEMTs, and discusses
the measured effects with respect to worldwide published data. The work is closed with

a conclusion.

100 W

N3

RF Power

10W

1 GHz 10 GHz 100 GHz
Frequency

Figure 1.2: Dependence of the rf power on the frequency for different materials.



Chapter 2

Motivation and Present Status of
AlGaN/GaN HEMTs

This chapter will motivate this work by discussing the advantages of GaN-based sys-
tems in comparison to Si—, InP— and GaAs-based structures. Furthermore, the present
status of the main high electron mobility transistor parameters is summarised. Collected

data will provide better orientation in worldwide published results.

2.1 Motivation

Advantages of AlGaN/GaN heterostructures originate in the Gallium Nitride material.
Beside this, the formation of 2DEG! based on polarisation effects makes the AlGaN/GaN
system very attractive for research. Due to the strong gradient of the polarisation at the
AlGaN/GaN interface, the 2DEG sheet densities are 3 to 10 times higher in comparison to
GaAs— and InP- based structures (see table 2.1). To reach fast transport properties, the
low-field mobility of 2DEG, the peak velocity of the bulk, and the bulk saturation velocity
are desired to be high. The AlGaN/GaN with its comparably high peak velocity and 3
times higher saturation velocity (see table 2.1) in comparison to GaAs— and InP-based
heterojunctions is major of interest in spite of its smaller low—field mobility.

As well as the quality of the AlGaN/GaN heterostructure also the used substrate
influences the device parameters. Nowadays, frequently used are sapphire, Si, and SiC
substrates, but the first native AIN and GaN substrates have been introduced also. Fig-
ure 2.1 roughly describes the substrate influences. It shows that usage of the native

substrate results in the defect density of 10 cm™2 to 10° cm ™2

in active region in contrary
to non—native substrates where the active region defect density is much higher (10'° ¢cm~2).

Detailed substrate description is given in chapter 3.

!Two dimensional gas
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Heterojunction 2DEG sheet | Low-field Peak Saturation

(barrier/channel) AEc | concentration | mobility | velocity velocity
[eV] | ng [x102em™2?] | [em?/Vs] | [x107cm/s] | [x107cm/s]

Aly3Gag7As/GaAs 0.22 1.5 8000 2.0 0.8

Alg.25Gag.r5As/Ing ,GaggAs || 0.36 3.0 7000 2.3 0.7

In0,52Alo_4gAs/In0.53Ga0,47As 0.52 4-5 10000 2.6 0.7

Aly5Gag7N/GaN 0.42 10 - 15 1400 2.5 2.0

Si - - 700 1.0 1.0

4H SiC - - 600 2.0 2.0

Table 2.1: Comparison of heterojunction parameters [70].

New record results are published frequently, indicating the steady improvement of the
growth and processing technology of GaN-based HEMTs. But what is the main reason
for such a high GaN interest during the last few years? I can determinate three main

reasons:

1. Due to very high peak velocity and good low—field mobility of AIGaN/GaN the
frequency limits of GaN-based HEMTs are high. (see figure 2.2).

2. AlGaN/GaN HEMTs have a high breakdown voltage (breakdown field of GaN is
about one order of magnitude higher than in other III-V semiconductors) and very
large sheet carrier concentration of the 2DEG and thus are predetermined for very
high output power. The comparison of published output power data of Al1GaN/GaN

with other material systems is depicted in figure 2.3.

3. Due to the big band gap of GaN-based systems (tunable from 3.4eV to 6.2¢V) it

is an appropriate candidate for fabrication of lasers and detectors working in UV

Active region
defect level

’ 10°to 10" cm™

10°to 10’ cm™ 10°to 10’ cm™

Buffer layer

quality Good ‘ \ Average ‘ ' Poor

Substrate | 124,90 cm?| | 10°to 10" cm®| |10°to 10° cm®
defect level

Native Quasibulk Foreign
substrate substrate substrate

Figure 2.1: Dependence of the defect level on the substrate [71].
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Figure 2.2: Cut-off frequency (fr) and maximum frequency of oscillation (fyaz)
of AlIGaN/GaN HEMTs as a function of the gate length [70].

range.

GaN-based devices are able to work in the frequency range above 100 GHz (see figures
2.2 and 2.3) and reach output power of above 10 W/mm. Using these properties we are
able to build very small and powerful devices what is nowadays one of the most significant
industry requirement.

But there are still open questions concerning Al1GaN/GaN heterostructures, which are
not answered yet. Often discussed is the current collapse (or dc/rf dispersion) [72-75],
appropriate surface passivation [65,66,77,79,80], the source of electrons in 2DEG [70], or
usage of field plate technology [81,82,85,87-89|.

This work should help to find answers on the given open questions. Furthermore,
improvement possibilities of static, small-signal, and large—signal properties will be in-
vestigated and the origin of still not well understood effects mentioned above will be

discussed.

2.2 GaN-based HEMTs in numbers

The growth techniques and processing technologies have been rapidly improved since
the first HEMT on AlGaN/GaN heterostructure with the saturation current of I5* =
60 mA/mm and extrinsic transconductance of g, = 27 mS/mm was introduced by Khan
et al. in 1994 [42]. The most published data summarised in this work use non—native

substrates mentioned in the previous section (Si, SiC, sapphire). The presented overview
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Figure 2.3: Output power of AIGAN/GaN HEMTs as a function of drain-source
bias [70].

shows the best values found in literature. Furthermore, the summarised data are divided
according the used channel length. Nowadays, the channel length is usually less than one

micrometre depending on the application.

High boundary frequencies are reached using small gate lengths. A transistor with the
gate length of 0.12 ym was introduced by Lu et al. [60]. The maximum cut off frequency
of fr = 101 GHz and the maximum frequency of oscillations of f,,.. = 155 GHz were
reported. The device was fabricated using AlGaN/GaN layer structure grown on SiC
substrate. The saturation current of 1.19 A/mm and the extrinsic transconductance of

217msS/mm were reported.

Devices using sapphire substrate demonstrated high boundary frequencies fr and f,,4.
of 67 GHz and 102 G H z comparable to those reached with SiC—based devices, respectively
|63]. The device showed output power of 4.2 W /mm measured at 10 GH z.

To compare these results with HEMTs fabricated on the silicon substrate, devices with
the same gate length of 0.25 um were reported by Behtash et al. showing the saturation
current of 1.1 A/mm and g, = 240mS/mm. The output power at 2 GH z was reported
to be 6.6 W/mm. The boundary frequencies of fr = 27TGHz and f,,.. = 81 GHz were
presented [43].

The published properties of HEMTs for high power applications profit from the gate
length of 0.3 um, 0.5 um, and 0.7 pm [46-48|. Used structures were growth on the SiC sub-
strate due to better thermal conductivity and higher dissipating power discussed in chap-

ter 3. The maximum output power of P,,, = 10.7W/mm at 10 GHz was reported [46].
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The device was biased at V;, = 45V what means that in class A operation the breakdown
voltage was higher than 90V. The reported dependence of the output power on the drain-
source voltage shows the saturation of the output power at Vy, = 40V. These excellent
results were reached due to high breakdown voltages of fabricated devices. The influence
of the drain-source distance on the breakdown voltage was studied by Vertiatchikh et al.
and shows a strong dependence [48].

In order to reach best performances of fabricated devices, different types of passi-
vation were studied [65,66]. An improvements, as well as degradations of behaviour
were presented after the surface passivation. A SizNy passivation layer is shown as one
of the possible candidate, but also Al;O3, SiOy, Sco0O3, and MgO are intensively stud-
ied [61,65-68,77,78,103].
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Chapter 3

Material Systems Based on GaN

3.1 Properties of GaN

The TII-Nitrides material systems allow us to use the advantage of its wide band
gap. Nowadays, Gallium Nitride (GaN) as one of the basic representative of this group
is widely studied. In this part, the selected material and electrical properties of GaN will
be introduced and compared with the other commonly used semiconductors.

First reports on GaN are dated to the year 1969 [3]. The quality of the epitaxial
growth was poor but a high n-doping background concentration of GaN layer was already
noticed. The reason of this poor quality was based on the fact that no suitable lattice
matched and thermally compatible substrate was known. In spite of an improvement of
the growth quality of GaN during the last few years the problem with suitable substrate
is still actual. Nowadays, three basic substrates for the GaN growth are used: Sapphire
substrate (AlyO3); Silicon substrate (Si); and Silicon Carbide substrate (SiC) (table 3.1).
The other possibility is to grow the GaN epitaxial layer on the GaN substrate. This
provides the lattice and the thermal match, good control of the polarity and no need of
interlayers reducing the stress. The obstacle is availability of just very small frameless

GaN substrates and its price is too high to use them widely.

Substrate GaN Al,O3 SiC Si
Thermal conductivity [W/cmK]| 1.3 0.5 3.0-3.8 1.0-1.5
Lattice mismatch [%)] - -16 +3.5 -17
Resistivity high high high mediate
Cost high low high low
Wafer size [inch] small 6" 3" 12"

Table 3.1: Comparison of substrate properties used for growth of GaN [10].
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Sapphire substrates are commonly used substrates for GaN growth with very high re-
sistivity, large area and good quality. A big disadvantage of sapphire is a lattice mismatch
to GaN (16 %) and low thermal conductivity. In spite of this is often used because of its
low costs.

Silicon substrates offer also a good possibility for GaN growth. Tts better thermal con-
ductivity in comparison to sapphire improve properties of material system but the lattice
mismatch of 17 % to GaN produce the growth problems resulting to surface cracks. Sili-
con substrates open possibility to produce GaN-based high power electronics compatible
with good developed silicon technology.

Very progressive and in the last few years often used substrate for GaN is Silicon
Carbide. Regardless its high costs, SiC has the lattice mismatch just 3.5% to GaN and
the thermal conductivity is in the range of 3.0 — 3.8 W /cm K.

The substrate choice difficulties affect also the epitaxial growth of the GaN layer.
The Gallium Nitride has two thermodynamically stable phases: cubic phase and wurtzite
phase (figure 3.1). After few studies the wurtzite phase was find out as a more suitable
phase thanks to the less concentration of defects in the GaN layer [12].

The wurtzite GaN is characterised by two lattice constants a and c and by the polarity
which can be Ga—faced or N-faced (figure 3.2). The polarity depends on the use of AIN
nucleation layer. If a thin nucleation layer is present between the substrate and the
GaN film the Gallium Nitride has a Ga—faced polarity (Gallium atoms at the top). The
N-face polarity is reached by direct growth of GaN on the substrate [12]. GaN layers
are for the device application mostly grown by three methods: Molecular Beam Epitaxy
(MBE); Metal-Organic Chemical Vapour Deposition (MOCVD); and Hybride Vapour
Phase Epitaxy (HVPE). The properties of grown films depend on used method and will

be discussed later.

Figure 3.1: Cubic phase (a) and wurtzite phase (b) of GaN epitaxial layer.
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M - face

Substrate

[0001]

Ga - face

Substrate

Figure 3.2: N-faced and Ga-faced polarity of GaN [14].

The key electrical and material properties of GaN epitaxial layer are collected in
the table 3.2 and are compared to the other semiconductors used for device fabrication.
Besides the high thermal conductivity of GaN, that is four times higher than that for
GaAs, the breakdown field is much higher in comparison to the GaAs- and Si-based
systems. Excellent electron transport properties of GaN enable it to operate in high
frequency range. These parameters of GaN-based systems allow us to produce highly

improved devices e.g. high electron mobility transistors (HEMTs), Metal-Semiconductor-

Metal Diodes (MSM), Lasers etc.

GaN | AIN | InN SiC GaAs Si
Band Gap [eV] 3.39 6.20 0.70 3.10 1.43 1.12
Electron Mobility by 300 K [cm?/Vs] 1000 135 | 3200 | <400 | 6000 | 1350
Optical Phonon Energy [meV]| 91.2 99.2 | 89.0 95.0 33.2 62.9
Electron Affinity [eV] 4.20 1.90 - - 4.07 4.05
Dielectric Constant 8.9 8.5 15.3 9.6 12.5 11.8
Saturation Velocity [x107cm/s] 2.5 1.4 2.5 2.0 1.3 1.0
Breakdown Field [MV /cm| ~25 | - - 35 | 065 | 0.6

Table 3.2: Material and electrical properties of GaN in comparison to other semi-

conductors. [3-10].
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3.2 2DEG in AlGaN/GaN Material Systems

High electron mobility transistors take advantage of the two-dimensional electron gas
(2DEG) formed in the layer structure. The two-dimensional electron gas can be defined
as the charge of carriers fixed in z-axis with the possibility to move just in two directions
x and y. This "charge plate" creates the area with very high mobility and sheet concen-
tration of carriers ( 2000cm?/Vs and ~ 1 x 10" e¢m™ for AlIGaN/GaN heterostructure
by 300K, respectively [13,14]). This part describes the origin of 2DEG formation in
AlGaN/GaN heterostructures.

A heterostructure is the layer system where two semiconductors with different band
gaps E, are grown one on the other (figure 3.3). In the thermodynamical equilibrium,
when both semiconductors are "connected" together, the Fermi-level energy (Er) of the
Semiconductor I and Semiconductor IT must be in the line what cause the discontinuity
in the conductance (F¢) and valence (Ey ) band and the band bending [11]. This results
in the formation of the triangular quantum well where carriers are fixed in one axis and
the 2DEG is formed.

Semiconductor | Semiconductor Il Semiconductor |  Semiconductor Il
E ]
E.. [ Fe=====q-- e |
--------- 4 I I
| | XI] 2DEG |
I | I
X | AE. E | AE,
E | | g ——— ) EC
c _; : EF S —_
E/ -7 T | | |
| I I
EVI | E M AEV
Vv
: AEvFiiééié? E,
a) b)

Figure 3.3: Band diagram of the heterostructure formed by lightly n-doped narrow
gap semiconductor I and heavily n-doped wide gap semiconductor II divided one
from another (a) and together in thermodynamical equilibrium. [11]

The accumulation of the charge in the quantum well in AlGaN/GaN heterostructure is
caused by the spontaneous p,, and piezoelectric p,. polarisation in strained AlGaN layer
and the spontaneous polarisation in the GaN layer. The total polarisation in AlGaN
layer is the sum of the piezoelectric and spontaneous polarisation. The piezoelectric
polarisation, present just in the AlGaN layer, originate of the tensile strain in the not
matched lattice. If the total polarisation induced charge density is positive, free electrons
will tend to compensate the polarisation induced charge resulting in the formation of a
2DEG. For the Ga—face polarity the positive polarisation induced sheet charge is found
to be in AlGaN near the bottom GaN/AlGaN interface (see figure 3.4 a) and therefore
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Figure 3.4: Polarisation induced charge in Ga-faced (a) and N-faced (b)
GaN/AlGaN/GaN heterostructure.

the 2DEG is formed in GaN close to this interface. For the N-face polarity has the total
polarisation opposite direction what results to the formation of the 2DEG in GaN close
to the top interface (figure 3.4 b) [15].

The reason why the AlGaN/GaN heterostructure is so intensively studied last years
is the fact, that the polarisation in the layer system is large enough to form 2DEG with
very high sheet carrier concentration without a necessity to have an intentionally doped
layer in the system.

The sheet carrier concentration of 2DEG is given by the band offset at the Al1GaN/GaN
interface and the polarisation induced electric field. This is connected with Al fraction
in AlGaN what changes the band gap of the layer and therefore the band offset of the
heterostructure. The change of the band gap E, with changing Al fraction is shown in
figure 3.5 [16]. Measured points are fitted using expression of alloy energy band gap:
Ey(x) = Elx + E)(1 — ) — bz(1 — ), where EJ) and E, are energy band gaps of GaN
(3.505eV at 4K) and AIN (6.20eV at 2K) binary end points, respectively, and b is the
bowing parameter. The band gap of Al,Ga(;_,)N was determined using more appropriate
photoreflectance measurements in comparison to a photoluminiscence measurements. In
spite of that the band gap determination is the main source of any notable inaccuracy

what causes that the bowing parameter in Al,Ga(;_,)N is not well established yet as figure
3.5 (b) shows.

3.3 Electron Transport in AlIGaN/GaN

The 2DEG formed without an intentional doping modulation in AlGaN/GaN het-
erostructures offers a novel phenomena that must be taken into account by the determining
of the transport properties. However, the electron mobilities in AlGaN/GaN heterostruc-
ture are still lower as in AlGaAs/GaAs 2DEG where the mobility is limited by Coulomb
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Figure 3.5: Dependence of the band gap E; on the Al fraction in AlGaN (a)
and experimental data from published works plotted as deviation from zero bowing

(b) [16].

scattering by remote ionised donors [25,26].

The electron transport in GaAs—based heterostructures is already well known and was
used as a base for the investigation of 2DEG transport properties. The scattering sources
presented in AlGaAs/GaAs heterostructure as ionised impurities, interface roughness at
the barrier, alloy scattering due to penetration of the 2DEG wavefunction into the barrier,
and phonons are included also in AlGaN/GaN heterostructure [24]. In addition, the
dislocations and charge surface donors and its effects on transport have to be accounted

for the GaN—-based heterostructure.

Ionised Impurity

As was already mentioned, the separation of the 2DEG from ionised donors in Al-
GaN/GaN heterostructure is due to the polarisation effect. This separation causes the
reduction of the scattering and improving of the electron mobility. Therefore the ionised
impurity transport scattering in this system is caused just by the background doping

concentration that is usually in the order of 10%cm™.

Interface Roughness

The interface roughness scattering could be taken to the account if the 2DEG density
is high, because the 2DEG tends to shift closer to the interface as the sheet carrier
concentration increases. For two-dimensional gas in quantum well with the thickness L

has this scattering a characteristic L% dependence [28].

Alloy Scattering
Alloy disorder scattering originates from the randomly varying alloy potential in the
barrier. This scattering influence the mobility in alloy channel heterostructures, but in

binary compounds heterostructures occurs as a result of the finite penetration of the 2DEG
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wavefunction into the barrier. In AlGaAs/GaAs heterostructures this scattering effect is
negligible but in AlGaN/GaN heterostructures, the combination of the large electron
mass, the high sheet carrier concentration, and the large alloy scattering potential make

this scattering strong.

Phonons

The phonon scattering limits the mobility in 2DEG in the rage of temperatures above
80K. The transport is affected by potential acoustic phonons, piezoelectric acoustic
phonons, and polar optical phonons. By acoustic phonons the scattering is considered
as elastic. The polar optical phonon scattering is highly inelastic and the energy of the
polar optical phonon for the wurtzite GaN crystal lattice is much higher as by the other
semiconductors (see table 3.2). The detailed treatment of this scattering is introduced
in [24].

Dislocations

After growing of a GaN epitaxial layer on the substrate (SiC, AlyOg, Si), typically
1100 x 108 cm™ of dislocations are formed due to the lattice mismatch between the GaN
and the substrate [28]. The origin of these dislocations is in the nucleation layer at the
interface. The dependence of the mobility affected just by charged scattering dislocations
as a function of the 2DEG sheet concentration and the concentration of dislocations is
depicted in figure 3.6 [28|.
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Figure 3.6: dependence of 2DEG mobility (affected by charged scattering dislo-
cations) on the 2DEG sheet carrier concentration (a) and the dislocation density
(b). [28]
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Charge Surface Donors

The question of the 2DEG electron source becomes out by the creation of the channel
with a sheet carrier concentration of 1 x 10 cm™ in the system without an intentional
doping. Mentioned background concentration is not enough high to produce a 2DEG
with so high sheet density. Therefore, as a possible source of electrons seems to be surface
donor states. The creation of the positive surface charge as a dipole with the 2DEG which
neutralises the polarisation dipole was introduced by Rizzi et al. [27]. The surface donor
states will form a source of scuttering identical to a delta—doped remote donor layer and

in the same way can be the transport scattering rate treated.

3.3.1 Low Temperature Mobility

Figure 3.7 shows the low temperature mobility as a function of the 2DEG sheet carrier
density. The calculation has been done at University of California, USA, by Mishra leaded
group and considers with a dislocation density of 5 x 10% cm™, the occupancy number of
f = 0.1, background density of 10'®cm™, and surface donor density ng,; = ns. The
alloy composition is © = 0.09 and interface roughness parameters L = 10A, A = 2A.
Every source of scattering was included for the calculation. The temperature at which

the calculation has been done was not introduced.
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Figure 3.7: Dependence of the low temperature mobility on the sheet carrier
concentration of 2DEG [28].
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The maximum of total mobility is shown for a low 2DEG sheet densities (< 102cm™2)
and is bordered by background impurities, surface donors, and dislocations. By higher
densities of n, > 102 cm™2 dominate alloy scattering or interface roughness scattering,
depending on the AlGaN/GaN barrier. It means, that for 2DEG densities above 102 cm ™2
removal of charged defects (dislocations, background impurities, etc) will not improve the
total mobility. Therefore the maximum mobilities are predicted for low 2DEG densities

< 102 cem—2.

3.3.2 High Temperature Mobility

The high temperature mobility (7" > 100K) is affected by the acoustic and optical
phonon scattering as figure 3.8 shows. The comparison of measured and theoretically
calculated mobility is included in the figure. The difference at high temperature region is
caused by the parallel channel mobility which is added to the 2DEG channel mobility. At
temperature Hall effect measurements the contribution of the both mobilities is measured.
If the conduction through the parallel channel is negligible, then the measured mobility
will reach the theoretical one, that is bordered by polar optical phonon scattering [28|.
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Figure 3.8: Dependence of the 2DEG mobility on the temperature [28].
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Chapter 4

High Electron Mobility Transistor

An idea to produce high electron mobility transistor (HEMT) becomes from the fact
that the measured mobility of highly doped layers used by MESFET was three times
lower at 300K as the theoretical value of the mobility [17]. This reduction of mobility
was caused by the ionised impurity scattering and therefore in the late 70’s was presented
an idea of dopant separation from the electrons in the channel. This improvement offers
a great increase of the mobility in the channel by unchanged (very high) sheet carrier
concentration. The first HEMT was introduced by Mimura et al. (1980) and demonstrated
a dramatic enhancement in the device current and transconductance.

The same effect is also exploited by HEMTs fabricated on Al1GaN/GaN heterostructure
and this chapter presents the direct-current (dc), small-signal, and large-signal theoretical

behaviours of these devices.

4.1 Basic Principles of HEMTs

The HEMT is a three terminal device (figure 4.1) and is geometrically characterised
by the gate length L,, the gate width W,, and by the Source-Drain distance S_ D. The
electron transport provided by 2DEG is between two ohmic contacts: Drain and Source.
The current flow is controlled by applying of a bias on the middle Schottky contact (Gate).
The control principle is shown in figure 4.2. When zero bias is applied the depletion region
under the Schottky contact is just in touch with 2DEG (2DEG is not depleted) and the
structure is in the thermodynamical equilibrium (figure 4.2a). After applying a negative
bias on the Gate the depletion region starts to penetrate the 2DEG (conduction band
shifts up above the Fermi-level energy, figure 4.2b) what cause emptying of the 2DEG
and "closing" of the channel. The dependence of the 2DEG sheet carrier concentration
ns on the applied gate-source voltage V,, at small drain-source biases can be expressed
by equation [17,18]:
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Figure 4.1: Schematic draw of HEMT.

:5'0/95_‘/;]1)

ne (4.1)

where Vy, is the threshold voltage, ¢ is the electron charge, d; and ¢ are the thickness
and the dielectric permeability of the wide band gap semiconductor (in this case AlGaN),
respectively, and Ad is the effective thickness of the 2DEG. Equation 4.1 is valid in the
above threshold voltage range, where the threshold voltage is defined as the gate voltage

when the conductance of the channel drop to the zero:

Vin = Vo = V) (4.2)

where V}; is the built-in voltage and V), is called the pinch-off voltage. The capacitance

per unit area between the gate and the 2DEG channel can be identified as:

39

@+ 5 )

Co —

The extrinsic (eq. 4.4) and intrinsic (eq. 4.5) conductivity of the channel per unity

area in the linear region are given by [17]:

_ Gchi
1 + Gehi * (Rs + Rd)

Gch (44)

and

W,
Gehi = anMnL—g (45)
g

where Ry and R, are the series source and drain resistances, respectively, and pu,, is the
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Figure 4.2: The band diagram of HEMT under the gate contact in thermodynam-
ical equilibrium (a) and after applying a negative bias (b) [11].

mobility in the channel. Initially will be assumed no extrinsic source and drain resistances
R, and R, and the gate-to-channel capacitance ¢y independent of n,, then we can rewrite

equation 4.1 to the form:

gn(@) = ¢ [Vys — Vin = V()] (4.6)

where x is changing along the channel. Using the field-dependent-mobility model where

the dependence of the carrier velocity on the lateral electric field is approximated as [18]:

y = poEs
- E
1+E—(:

(4.7)

where 11 is the low-field mobility independent of the V, or ng, and E. is a critical field

at which the carrier velocity reaches half its value given by:

Vsat = ,UOEC (48)

then using equations 4.6 to 4.8 and follow-up integration between the limits 0 < 2 < L,

than the dc drain current is expressed as:

v, W, V2
(1 * ) = —4 — —ds 4.
d( + LgEc) HoCo I, (V;;‘/ds 5 ) (4.9)

where

Vo= (Vgs — Vi) (4.10)
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If the extrinsic source and drain resistances R, and Ry will be considered then the following

substitution must be included in equation 4.9:

Vo= (Vs = Vin — LaRy) (4.11)
Vs = Vés — [d(Rs -+ Rd) (4.12)

V;S and V. are the voltages applied to the external gate-source and drain-source terminals
of the device.

By assuming the saturation velocity model valid for high electric fields (short channel
HEMTSs) where v, is responsible for the current saturation the saturation current /5% can

be calculated by applying the condition:

dl,
=0 413
dVis (4.13)

and after the simplification can be expressed as [18]:

" = coWy(Vy = Val") - Viear (4.14)

where

Vit = \/(LoEe) +2L,E.V, — (LoE.) (4.15)

and then the saturation drain current versus gate voltage can be derived:

2
coL,W, 2V,
5% = S 9y E 1 v 1 4.1
d 9 VsatLic < + LgEc ) ( 6)
and simplified to:
Veat " €
I = =Wy (Vs = Vaa) (4.17)

For the long channel HEMTs the Shockley model (Constant-electron-mobility model)
should be assumed with the low field velocity:

v(E) = poE (4.18)

and the drain saturation current defined as:

- €
1 = FE W (Ve = Vi) (419
g

After these extrapolations and from equations 4.9 and 4.17 (4.19) the final model
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b)

Figure 4.3: Ideal output (a) and transfer (b) characteristics of HEMT.

dependencies of the drain current I; on the drain-source and gate biases can be plotted.
These output characteristics of the transistor are shown in figure 4.3a. The next important
parameter which can be derived from output characteristics is the breakdown voltage Vj,.
The breakdown voltage is defined as the drain-source voltage when the electric field in
the material reach the critical value E. and the breakdown begins as the consequence of
the avalanche ionisation in the material. The avalanche ionisation causes increase of the
current and therefore the temperature in the material. This increase of the temperature

cause the next increase of the current and it repeats till the material breakdown.

4.1.1 Drift Mobility

The drift mobility in the channel can be determined from the intrinsic channel con-
ductivity given by equation 4.5. It is important to stress, that this equation is valid just
for the linear region of the HEMT, i.e. for small drain—source biases (0.1 < 0.3V). Also
the influence of the extrinsic parasitics must be minimised and counted out. Then the

intrinsic conductance of the channel is calculated as [29]:

1
i = Ris — 2R. — Ry — Ry

(4.20)

where R, is the total resistance between the drain and source contacts, 2R, is the con-
tact resistance of the drain and source (when the same contact resistance for drain and
source is considered), and Ry and R, are the source-gate and drain-gate resistances,
respectively (figure 4.4). The R. and the sheet resistivity Rspeer can be determine from
TLM measurements (see chapter 5) and then Ry, and R,y are expressed as:

L

Ros = Repeot - —= 4.21
g heet Wg ( )
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2-DEG

Figure 4.4: Parasitic resistances by determination of the channel conductance.

Lgyq

Rga = Rsheet - Wg (4.22)

To minimise the influence of these resistances, the large gate transistor must be mea-
sured where the condition Ry + Ryq << th is full-filed. From the HEMT theory is also
clear, that the conductivity of the channel g.,; is dependent on applied gate voltage Vi
what has to be considered by calculation.

The sheet carrier concentration of the channel ng can be determined from the capacitance—
voltage characteristic of the gate and then the 2DEG drift mobility is defined as:

[y = Goni + =2 - (4.23)

' Wg q-ns

4.2 Small-Signal Model

The small-signal model of HEM'T allows us to evaluate parameters of the device which
predict the small-signal behaviour by different frequencies. These parameters show us the
possibility of the device to operate at high frequencies or with high switching speeds. To
characterise the frequency behaviour two basic parameters are used in praxis: the current
gain cut off frequency fr and the maximum frequency of oscillations f,,q.-

The current gain cut off frequency is defined as a frequency at which the current
gain in a common-source configuration becomes unity for short-circuit conditions at the
output [19].

The maximum frequency of oscillation is defined as a frequency at which the unilateral
power gain of the device goes to unity. A unilateral power gain is the gain from the device
in an amplifier made using only non-lossy, passive, and reciprocal matching networks.

The f,,.. is also the highest frequency at which an ideal oscillator made using this device
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Intrinsic transistor

Figure 4.5: Small-signal model of HEMT.

will still be expected to operate.

The classical small-signal model of the HEMT shown in figure 4.5 consists of an in-
trinsic device where the influence of parasitic resistances (R,, R,, Rq), inductances (L,
L, Lg), and capacitances (Cypad; Capaa) 0of pads are not included and the pads parasitic
components.

One of the most important small-signal parameter is the transconductance and under

the source-drain current saturation conditions it is defined as:

dIset
Im ="y
95 vy,

(4.24)

=const.
With the assumption that only the capacitive effect dominates, the small-signal model
can be simplified and redrawn as shows figure 4.6. From this can be derived the radial

frequency at which the current gain becomes unity:

gm

wp = ——— 4.25
T g+ Cya (4.25)
and from this the unity current gain frequency:
Im
= 4.26
Iz 21(Cys + Cya) (4.26)

If the full small-signal model is considered the approximated unity gain frequency can be

expressed as [19]:
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Figure 4.6: Simplified small-signal model of HEMT with dominating capacitive
effect and shortcut at the output [19].

Ry;+ R

-1
) + nggm(Rd + RS):| (427)
Rds

fr = g—’; [(cgs +CL) (1 n

The maximum frequency of oscillations is then [19]:
Jr

fma:}c =
Rs+Rg+Rgs C C
\/4 . +RZ+ 95 4 9. _Czi <_CZZZ + gm(Rs + Rgs)>

(4.28)

S

From equations 4.26 and 4.27 is clear, that the parasitic parameters of the device
degrade the current gain frequency of the transistor. Therefore is important to reduce

the parasitics to reach higher frequencies.

4.3 Large-Signal Model

The large-signal model helps us to predict the behaviour of the device applying a large
signal to the device (figure 4.7). The aim is to find a compromise between the working
frequency (or the input Af;, and output Af,,; frequency band width) and the maximum
output power applicable to the device. Many factors have to be taken into account but
the most important are the material layer structure and the geometry of the transistor
that have the biggest influence on the parasitics of the device.
that can be achieved from FET is esti-

mated from the dc output characteristics and the optimal load line (see figure 4.8). If we

. . dC
The maximum linear rf output power P:¢ .

consider a class A operation then the linear rf output power given by dc behaviour of the

transistor is defined as |20]:

Pdc o ]jat(‘/bT - anee)

outlin — )

(4.29)

In the region where the drain current is a squarewave and the output power saturates,

the saturation output power is defined as [20]:
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Figure 4.7: Large-signal model of HEMT.

- jat(%r - anee) . 16 _ pdc 16

dc
Poutsat - ] P outlin ' P (430)
Actually, the real rf output power P, is often different (lower) from the P, —and
P, .- The origin of the difference is in the dc/rf dispersion effect where by dc¢ mea-

surements also surface states and traps in active and buffer layers contribute to the total
current [69]. These contributions disappear by the rf power measurement because the
traps are not able to follow a quick changes of applied field.

From the measurement point of view the matching of the input and the output circuit is
important by the large-signal measurements. If the network is not fitted the reflections at
the input or output of the device occur and the measured output power is not maximum.
The field effect transistor in idealised matching network is depicted in figure 4.9. The
matching inductances L;, and L, by the frequency f,, are defined as [21]:

1
Ly = ——F—— 4.31
(27 f2)*Cin, ( )
[— (4.32)
out (27Tfm>2cout .
and the bias gain is equal to:
Vi
L = —Nin * Nout * ngL (433)
Vs

Then the power gain is defined as:
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Figure 4.8: Optimal load line for maximum output power.

Vi\? R
Gr=(2-2) =2 = (2 nin - now - gm)>Rs Ry (4.34)
Vs ) R;

where n;, and n,, are the input and output transformational ratios of the matching

tuners, respectively. If Rg = R = Ry then:

GT = (2 *Nin - Nout * Im * R0)2 (435)

From this equation follows, that the highest possible power gain can be reached when
the transconductance of the transistor g,, is as high as possible. The second factor which
influence the power gain is the breakdown voltage Vj,.. The working bias point of the device
is in the middle, between Vj,.. and V,,., as figure 4.8 shows and therefore with increasing
breakdown voltage the applicable range (Vi — Vinee) is wider, the working point moves
to higher drain-source voltages, what allows us to reach higher output power.

After the network is fitted the Power Added Efficiency can be expressed as:

Pout - Pz
Pdc

out

PAE. = (4.36)

where P;, is the rf input power and P, is the output power of transistor.
The frequency band width at input and output of the transistor can be determined

from figure 4.9 and are defined as:

1

Afin = 5
f 27Tnz2nR50,m

(4.37)

and
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The aim is to reach the widest possible frequency ranges what is connected with an
input and output capacitance of the device. With decrease of the parasitic capacitances

the input C;, and output C,,; capacitances also decrease what leads to an increase of
Afin and A fous.

4.4 Thermal Effects in Al1GalN/GaN HEMTs

In previous chapters the small-signal and large-signal models of HEMTs have been
introduced but AlGaN/GaN heterostructure presents some specific behaviours that have
not been noticed by another material systems. One of this behaviour is the thermal effect
which deforms the dc characteristics of the real device and therefore must be included in
the model of the HEMT on AlGaN/GaN material system.

The origin of this deformation is again in not thermally matched substrate (see table
3.1) what cause an increase of the channel temperature by higher applied drain-source
voltages and hence a decrease of the drain saturation current I5%. This effect is called
self-heating effect and for its modelling was created an additional sub—circuit presented
by Berroth et al. (figure 4.10) [22|. This circuit introduces an analogy between the
electrical and thermal processes in the device. The thermal current source ;, represents
the dissipating power and the voltage drop on the thermal resistance Ry, gives the channel

temperature rise defined as:

AT = Rthith (439)

Then the output dc characteristics of HEMTs fabricated on the AlGaN/GaN material
system with the self-heating effect are depicted in figure 4.11. The determination of
the channel temperature from the output dc characteristics for AlGaN/GaN HEMTs was
already presented by Kuzmik et al. [33]. The author considers with three factors that
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Figure 4.10: The thermal sub—circuit for modeling of the self-heating effect.

contribute to the reduction of the drain—source current:

1. The current reduction caused by a voltage drop on the source-gate resistance Rs(T)

which increases at elevated temperatures. The current reduction is then:

AL = I gu AR, (4.40)

2. The current drop due to a decrease of the sheet carrier concentration in the channel

and therefore the decrease of the threshold voltage V;;, expressed as:

AT = g, AV, (4.41)

3. The current drop due to a change of the saturation velocity Av,, in the channel

expressed in respect to the reference value vyy:

Z& sa
ALzt = st 2lsat (4.42)

Vsat

>V

ds

v

knee

Figure 4.11: The influence of the self-heating effect on the output dc characteris-
tics of HEMT.
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The total reduction of the drain—source current is then the sum of these partial contribu-

tions and is equal to:

I3 . Ay, Vis
+ Ly 2

Vsat Rsub

AI;at — _gm<I§at . ARgs + A‘/;fh) (443)

where Vys/Rgyp is the leakage current through the substrate. From this equation can be

easily derived the channel temperature as a function of the dc dissipating power T =
FP

out lin

) after the temperature dependencies Vi, (1), R,s(T') are expressed.
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Chapter 5

Determination of Heterostructure

Parameters

Before the processing of the grown sample is started the layer structure must be tested
for selected parameters to find out if it is suitable for the next treatment. Important
parameters of a layer structure as the sheet carrier concentration in 2DEG ng, the carrier
mobility in 2DEG pu,, the sheet resistance Rgpee;, the specific resistance p., etc. are

evaluated by different methods. These methods are introduced in this chapter.

5.1 Hall Effect Measurements

The Hall effect measurements allow us to determine independently the sheet resistance
Rgpeer of the layer structure and the 2DEG sheet carrier concentration n, in the sample.
If the current [ is flowing through the sample and the magnetic field B perpendicular to
the current flow is applied then the Hall voltage Vg is induced perpendicular to I and
B. This situation is depicted in figure 5.1. Each electron flowing in the x-direction with
velocity v, causes in the y-direction the Lorentz-force F, which is compensated by the
Hall voltage V. This can be applied just with the condition that no current is flowing in

the y-direction. Then the Lorenz-force is expressed as |11]:

F,=—q-(vxB),=qu,B (5.1)

As was mentioned the Lorentz-force must be compensated by the Hall field Ey = Vu/b

and therefore:

F, = qu,B = qF, (5.2)

With a consideration that the current is carried just by electrons the transport can be
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Figure 5.1: The principle of Hall effect measurement.

described as:

T
Jr = bd
Then the Hall field can be derived from equations 5.2 and 5.3 as:

= —nqu, (5.3)

Vu 1 B 1 1B

F —_— = —— F:E = —-—-—— 5-4
v b nqj nqg bd (54)
where Ry = —(ng)~! is the Hall constant. This constant is determined by the measure-
ment and then the corresponding carrier concentration is:
1
R (5.5)

In the case of the heterostructure the sheet carrier concentration in the 2DEG ny is
obtained by Hall effect measurement. If the sheet resistance Rgpee; is known then the
carrier mobility p, in the channel can be calculated:

by = ——— (5.6)

q- Rsheet c N

5.2 Atomic Force Microscopy

The Atomic Force Microscopy (AFM) is the method through which the nanometre
scale picture and topography information about the sample surface can be obtained. The
base of the AFM is a sharp tip fixed on the cantilever which scans the surface of the sample

(figure 5.2). The laser beam focused on the back side of the cantilever is reflected onto a
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Figure 5.2: The schematic draw of the Atomic Force Microscopy.

position-sensitive photodetector. In this arrangement a small deflection of the cantilever
will tilt the reflected beam and change the position of the beam on the photodetector.

The force between tip and the sample surface is very small, usually less than 1077,
The feedback mechanisms enables the piezoelectric scanners to maintain the tip at a
constant force (or height) above the surface. According to the interaction of the tip and
the sample surface, the AFM can be classified as repulsive (contact mode), attractive
(non-contact mode), or tapping mode. The mode must be chosen in view on the scanned
surface and the required accuracy of the measurement.

In contact mode a high resolution can be provided but the electrostatic and tension
surface forces pull the scanning tip toward the surface what can damage the sample and
distort image data. On the other side the non-contact mode provides low resolution of
the scan. The tapping mode was developed for scanning very soft and fragile samples
without inducing destructive forces and reaching high resolution of the image.

The AFM allows us not just to see the sample surface, but also to evaluate the surface
parameters as the root-mean-square roughness rms, the maximum peak hight R,,.., the
average peak height R,, etc. and helps us to predicate a suitability of the sample for the

next device processing.

5.3 Transmission Line Model (TLM)

The transmission line model is the commonly used model for the determination of the
sheet resistance Rgpeet, the contact resistance R, and the specific resistance p.. The basic
principle is in the precise measurement of the resistance R between two rectangular ohmic
contacts with different distances in between them (see figure 5.3a). After the measured

resistance R over the distance between the contacts d is plotted, the measured points can
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be fitted by the linear curve described with equation (figure 5.3 b) [40]:

Rc Rsheet
R=2-%44.
w + w

where W is the width of contacts. From this equation can be easily derived the contact

(5.7)

resistance R. and the sheet resistance Rgpee;. The specific resistance p. is then expressed
by [40]:

R:
Pe = 5.8
‘ Rsheet ( )
a) < W > b) R“ _
X - measured points />‘</ :
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Figure 5.3: The shape of TLM structures (a) and evaluation of the contact R,
and sheet Rgj..; resistance.

5.4 Capacitance-Voltage Measurements

The capacitance-voltage measurements (C-V measurements) are the final ones we use
to determine the layer structure quality. These measurements show us if the 2DEG is
formed in the structure and together with TLM measurements alow us to calculate the
sheet, carrier concentration in the 2DEG and the mobility in the channel. These results
can be afterwards compared to the Hall effect measurements.

The C-V techniques are based on the fact that the depletion region width w of the
reverse biased semiconductor junction depends on the reverse applied voltage. If we
consider the Schottky contact (figure 5.4 a) where the dc reverse bias V. is applied, then
the capacitance under the metal of the Schottky contact can be defined as [40]:

dQs
=0 (5.9)

where (), is the semiconductor charge. The capacitance is determine by the superposing
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Figure 5.4: The analogy between a vertical (a) and a horizontal Schottky diode
with 2DEG (b).

of a small amplitude ac voltage v,. on the reverse dc voltage Vy.. The amplitude of the
ac voltage is usually in the range of 10 to 20mV and the frequency is 1M Hz [40]. Then

the semiconductor charge increment d(), is given by:

dQs = —q-A- Np(w) - dw (5.10)

where A is the area under the Schottky contact and Np is the ionised donor density. The

capacitance of the Schottky contact derived from equations 5.9 and 5.10 is:

c -4 (5.11)

w

As an analogy to the situation displayed in figure 5.4a, the heterostructure with
formed 2DEG and Schottky contact on the top can be used (figure 5.4b). If the 2DEG
is considered as a conductive plane connected to the ohmic contact, then the capacitance
between the metallic Schottky contact and the 2DEG can be determine. After the zero
bias is applied to the Schottky contact and we consider that the depletion region is in touch
with 2DEG due to the built-in voltage Vj;, the capacitance can be calculated according
equation 5.11 where the depletion region width w is substituted for the depth of the 2DEG
d;:

A
C = 5d—i (5.12)
In ideal case the capacitance C'is constant with decreasing reverse bias down to V;;, where

the depletion region starts to penetrate through the channel (figure 5.5). After the whole
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channel is depleted (reverse bias > Vj;) the final capacitance of the Schottky contact is
the series combination of the depletion region capacitance C' and the capacitance of the
depleted 2DEG Cypge. Due to very small channel capacitance Coppg [41] in comparison
to the depletion region capacitance C, an abrupt decrease in CV characteristics of the
diode is observed (figure 5.5).

Then the sheet carrier concentration of the channel can be calculated using equation
5.10:

Vbi
1
= / C(V)-dv (5.13)
Vin
where
Vi
Qs = /C(V) -dV (5.14)
Vin

If the sheet resistance R, is determined from the TLM measurements, the carrier mobility
in the channel can be obtained in the same way as by Hall effect measurements from

equation 5.6.
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Figure 5.5: The ideal capacitance-voltage characteristic of the horizontal Schottky
diode with 2DEG.



Chapter 6
Processing Technology

In recent years the processing technology of HEMTs based upon various material
systems has been established in research and industrial institutions around the world as
well as in our institute. Nevertheless, adaptation of the standard process to AlGaN/GaN
material system was a crucial task yet to be accomplished. P.Javorka et al. began the
process of HEMT technology adaptation to GaN-based systems in 1999 at our institute
[10]. During his diploma and PhD studies the basic AlGaN/GaN HEMT technology
process has been successfully developed for sapphire and silicon substrate.

Within the bounds of my PhD work the process technology was improved and modified
to enable the fabrication of AlGaN/GaN HEMTs on SiC substrate and MOSHFETs'.
Besides of this, additional technology steps were developed to improve dc, frequency, and
power performances of the devices.

This chapter gives an insight into the standard Al1GaN/GaN HEMT technology process
(6.1), shows up the differences between standard and MOSHFET technology process (6.2),
introduces the air bridge technology (6.3) and the application of passivation layers (6.4),
gives an overview on the field plate technology (6.5) and describes the masks used for

lithographical processes.

6.1 Standard AlGalN/GaN HEMT technology process

The process of classical HEMT fabrication consists of four steps, involving definition of
mesa islands (mesa insulation), ohmic contacts fabrication (drain and source of HEMTs),
Schottky contacts definition (gate electrodes), and contact pads fabrication.

A common approach in fabrication of semiconductor devices is to process many devices
on the same wafer in parallel. The mesa insulation applies a technique to isolate the

individual devices (transistors, diodes, MSM’s, etc.) from each other in order to minimise

I'Metal-Oxid—Semiconductor—Heterostructure—Field—Effect—Transistors
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influences of devices in between. Isolation is reached by removing the conducting regions
between the devices, i.e. the 2DEG must be removed to exclude conductive connections.
The depth of the insulation etching in HEMTs depends on the depth of the AlGaN/GaN
interface where the 2DEG is formed (cca. 20-50nm for conventional layer structure).
Afterwards, ohmic contacts are fabricated. They ensure best connection to 2DEG with
the lowest possible resistance. Schottky contact is formed between source and drain ohmic
contacts as the electrode which allows to control the drain current flow (see chapter 4).
Finally, pads are introduced to give the possibility to measure the fabricated device with
contact needles or bonding connections.

A picture of a HEMT fabricated in our labs taken by Secondary Electron Microscopy
(SEM) with typical dimensions is shown in figure 6.1.

Figure 6.1: SEM picture of AlGaN/GaN HEMT with the gate width W, of 200um,
the gate length L, of 0.3um, and the source—drain distance S_ D of 3um fabricated
in our labs.

6.1.1 Definition of mesa islands

The definition of mesa islands in AlGaN/GaN layer systems necessitates the devel-
opment of special processes due to the very strong bond energies in [II-nitrides in com-
parison to other compound semiconductors. Often used wet chemical etching was found
not to be suitable because of small etching rates (10nm/min), roughness surface, inhomo-
geneous depth and rough sidewalls with negative slope [10,13]. Therefore, two dry etch
processes; Electron Cyclotron Resonance Reactive Ion Etching (ECR RIE) and milling
with Ar" ions (Ar™ sputtering) were applied as suitable methods for etching GaN-based
layer structures.

The ECR RIE technique applies a Cly—based inductively coupled plasma that has

plasma density of two to four orders higher magnitude in comparison to conventional



6.1. Standard AlGaN/GaN HEMT technology process 41

RIE. The composition of gases Ar (5sccm) / CH, (5scem) / H, (15scem) / Cl, (2scem)
leads to relatively high etching rates of 70-100 nm/min. Cly-based RIE in combination
with a lithography process using hardened resists results in suitable but rough edges (see
figure 6.2a).

Compared to Cly-based RIE the Ar™ sputtering technology used in our lab yields
even better results. This special type of Ion Beam Etching (IBE) etches the free surface
of the sample by bias accelerated Ar* ions [10]. In our system we use an acceleration bias
of 500V and the density of ions is given by the current density of 0.5mA /cm?. These
parameters result in an etching rate of 25-35nm/min depending on the composition of AIN
in Al,Ga;_,N layer. The etched surface is shown in figure 6.2b. Due to the very smooth,
homogenous edges and not observable influences on the HEM'Ts electrical behaviour this
technique was chosen as the standard etching technique. Suitable depths of the etched
mesa profile reaches from 250 to 350nm depending on the layer structure. Obtained

results are consistent with results published in my diploma thesis [90].

™

a) b)

Figure 6.2: Comparison of AlGaN/GaN HEMTs etched by ECR RIE (a) and Ar*
sputter (b) manufactured in our labs.

6.1.2 Ohmic contacts

Fabrication of ohmic contacts is the next important step which influences device prop-
erties. The contacts are applied by standard photolithography process followed by deposi-
tion of multilayered metals (for details see Appendix A). After the resist and the rests of
metals have been removed by lift—off technique the contacts undergo a special annealing
process. In order to reach ohmic behaviour annealing of the metallic layer in Al1GaN/GaN

systems requires a very high temperature, typically between 700°C and 900°C. The ohmic
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a) b)

Figure 6.3: Ohmic contacts of AlGaN/GaN HEMT before (a) and after (b) an-
nealing done in our labs.

contacts are visibly rougher after the annealing process. This result is typical for GaN-
based materials and does not degrade the electrical behaviour of the device (see figure
6.3). The study of alternative ohmic contact types and a literature overview is to be found
in my diploma thesis [90].

For fabrication of ohmic contacts we have used a Ti (35nm) / Al (200nm) / Ni (40nm)
/ Au (100nm) multilayer annealed at 850°C for 30 seconds in a Nay-rich atmosphere.
The composition of metallic layers and annealing procedure was intensively studied at
our institute by P.Javorka et al. and the results of this study are published in [10,
91]. The annealing process involves use of a computer controlled AET Addax Rapid
Thermal Processing system. By means of the RTP system annealing temperature was
well controllable over time, as illustrated by the temperature—time—function in figure 6.42.
Electrical parameters of ohmic contacts were evaluated by TLM measurements introduced

in chapter 5 and are summarised in section AlGaN/GaN layer structures of chapter 7.

6.1.3 Schottky contacts

For manufacturing of suitable Schottky contacts on top of GaN (AlGaN) layer the
appropriate metals must be chosen. It is important to create contacts with good rectifying
behaviour of the metal-semiconductor interface, i.e. with a high Schottky barrier and low
reverse (leakage) currents. Rectifying behaviour for n-GaN has been observed using Pt,
Ni, Pd, Au, Co, Cu, and Ag contacts [13]. Some typical measured values of barrier heights
for different metals and of the thermal stability, which is critical for real device operation,

are collected in table 6.1.

2Used pyrometer is capable of measuring temperature above a 350°C.
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Figure 6.4: Temperature over time during the annealing process of ohmic contacts.

Metal | Barrier height | Thermal limits

Pt 1.00-1.10eV 400°C
Au 0.91-1.156V 575°C
Ti 0.10-0.60 6V -
Pd 0.94-0.95 eV 300°C
Ni 0.66-0.99 eV 600 °C
Ag 0.90 eV -
Ni/Au 1.046V -

Table 6.1: Published heights of Schottky barriers and thermal limits on GaN [13,38,92].

There are two possibilities of Schottky contacts fabrication depending on the required
pattern dimensions. The standard photolithography process is used for the fabrication
of gate length longer as 1 um. Gate lengths shorter than 1 um are usually patterned by
Electron Beam Lithography (E-beam) using a combination of PMMA resists (for details
see Appendix A). The E-beam processing allows us to reach higher accuracy, better
positioning, and higher resolution of patterned structures and was used as the standard
technology step for definition of Schottky contacts. After pattern definition the Ni/Au
metal layer is deposited. The detailed study of Schottky contacts on GaN-based structures

and their behaviour was introduced in my diploma thesis [90].

6.1.4 Contact Pads

The final step in processing standard high electron mobility transistor is the fabrication
of contact pads. The standard photolithography process followed by Ti/Au metallisation

is used.
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6.2 MOSHFET technology process

This section describes the MOSHFET fabrication technology process developed within
the bounds of this work and shows up the differences to standard HEMT processing.

The major difference between HEMTs and MOSHFETs consists of a thin isolating
layer that is placed in between semiconducting layer and metal electrode forming a MOS—
structure. Figure 6.5 displays this characteristic difference. Strict requirements regarding
the thickness of isolation layer are given for standard MOSFETs as well as for MOSHFETs.
The thicknesses of this layer found in literature are beneath 15 nm but in general should be
as thin as possible. SiOy, SigNy, SiOs/SizN,/SiO,, and Al,O3 [93-96] layers were already
presented as suitable solutions.

The fabrication process of MOSHFETS consists of five steps; definition of mesa islands,
ohmic contacts fabrication, contact pads fabrication, deposition of isolation layer, and
Schottky contacts definition.

The definition of mesa islands and fabrication of ohmic contacts is identical to standard
HEMT processing. After these two steps have been performed contact pads are fabricated.
It is important not depositing contact pads on top of the isolation layer. This might cause
an additional parasitic capacitance due to relative large pad surface. After the contact
pads have been applied the isolation layer is deposited. In our case a 10nm thick SiO,
layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD) at 300 °C is
used. The used deposition rate of 5.7nm/min is the lowest possible rate of our PECVD
machine. After the isolation layer has been deposited on the sample surface the contact
pads need to be opened up again. This is done by means of Reactive Ion Etching (RIE)
in Oy plasma atmosphere (for details see Appendix B). Finally, the gate electrodes are
processed by E-beam lithography as in standard HEMT process.

After processing the MOSHFET the thickness of the isolation layer is controlled by
CV measurements on Schottky diodes and by ellipsometry.

Thin isolation layer

S G D s G / p

a) b)

Figure 6.5: Differences between standard HEMT a) and MOSHFET b) structure.
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6.3 Air Bridge technology

Air bridge technology is crucial to fabricate multiple finger devices with high power
characteristics. It enables construction of conducting interconnections of source regions
by bridging gate and drain regions. The fabrication of such a connection is challenging
and therefore this technological step is used just when necessary.

The process developed at our institute has been already used a few years ago but,
now for the first time it is adapted and applied to the AIGaN/GaN HEMTs. This process
enables production of HEMTs with 4, 8 and 16 parallel gate fingers. Gate and drain
electrodes are connected as in standard technology process while the source electrodes are
connected using Air Bridge technology. Detailed description of the process is introduced
in appendix C. A typical device using Air Bridge technology fabricated in our labs is
shown in SEM picture 6.6.

=

Figure 6.6: SEM picture of HEMT with Air Bridge technology fabricated in our
labs (a); detailed view of the Air Bridge (b).

6.4 Passivation layers and materials

A passivation layer is a non—conductive layer deposited on the active area of a de-
vice. Usually the passivation layer protects the device from surrounding influences but
this is not the only function by AlGaN/GaN heterostructures. As known, close to the
AlGaN/GaN interface a polarisation induced charge (2DEG) is formed with very high
electron density. It is not entirely clear until now what is the source of these electrons.
A widely accepted explanation is that natural donor—like surface states are the source
of the electrons [70] and due to this the change of the surface states are mirrored into

the concentration of the 2DEG. The surface donor—like states can be easily affected by a
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surface passivation layer and therefore in A1GaN/GaN heterostructures the sheet carrier
concentration of 2DEG can be directly influenced by the passivation layer. Due to this
reason it is very important to choose suitable passivation which does not degrade the

device properties.

Many different types of surface passivation as AlyO3, SigNy, SiOg, ScaO3 and MgO have
been tested to reach the best device behaviours [61,65-68,77,78,103]. Influence of SizNy
and SiO, passivation has been investigated in our laboratories. The passivation layer was
deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD) at temperatures
from 150°C to 350°C. The measured thickness of layers was in the range from 10nm to

150 nm. The thickness of the deposited layer was measured by ellipsometry.

Passivation
layer

AlGaN

GaN - 2pDEG

Figure 6.7: The principle of the field plate technology.

6.5 Field plate technology

Field plate technology is known since 1969 and is successfully used to increase the
breakdown voltage of Field Effect Transistors (FETs). In AlGaN/GaN HEMT technology
it is used since 2003 [87]. The field plate technology means fabrication of two gates, one
above the other, separated by a passivation layer in between and connected by a pad (see
figure 6.7). The passivation layer and the second gate electrode fabrication process is
identical to standard process described above. It is important to place the second gate
closer to the drain electrode which reduces the peak of electrical field under the first gate.
The SEM pictures of a typical HEMT fabricated with field plate technology in our labs
is shown in figure 6.8. The physical principle of this technology and the achieved results

are described and simulated in chapter 10.
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Figure 6.8: SEM picture of AlGaN/GaN HEMT with field plate technology done
in our labs a) and the detailed view of the field plated gate electrode b).

6.6 Masks

The description of the lithography mask is the final part which is needed to have
a complete picture of the used technology process. Two mask sets have been used for
fabrication of HEMTs in this work: "Mega HEMT" mask set and "Power2" mask set.
The first set (Mega HEMT) was designed by M. Marso et al. and the second (Power2)
was optimised for requirements within the bounds of this work.

An overview of "Mega HEMT" mask is to be found in figure 6.9. Each mask set consists
of 4 basic fields which are repeated periodically. Fields 1, 2, and 4 are identical while field
3 contains Van der Pauw pattern instead of two MSM structures and FAT-FET devices.
This design has been chosen to have the possibility to control the material properties of
each sample by Hall effect measurements. HEMTs with gate width from 100 pm to 300 pm
and gate length from 0.3 pm to 0.9 pum have been processed. The source-drain distance
was designed from 2 pym to 5 um for HEMTs and from 13 um to 54 um for FAT-FETs.
The lateral Schottky diodes have a surface area of 25x25 um?, 50x50 um?, 100x 100 pm?,
and 200x200 um? with a 5 um lateral distance from the ohmic contact.

The layout of the "Power2" mask set is shown in figure 6.11. Main difference between
the "Power2" and "Mega HEMT" set is the introduction of the field plate technology
in the "Power2" mask set and the eccentric positioning of the gate electrode (closer to
the source contact) of the devices marked as Q, R, S, T U, V. Also the variation of
the gate length and the source—drain distance was increased. The exact dimensions are
documented in tables 6.2 and 6.3.
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Figure 6.9: Overview of the 4 basic fields creating "Mega HEMT" mask set.
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Device Gate Width | Gate Length | S D distance
Wy (pm) Ly (pm) S_D (pm)
A B, C | HEMT 2x50 0.3 3.0
D HEMT 2x50 0.5 5.0
E HEMT 2x50 0.7 5.0
F FAT-FET 2x50 2.0 6.0
G FAT-FET 2x50 10.0 14.0
H FAT-FET 2x50 50.0 54.0
I HEMT 2x100 0.3 3.0
J HEMT 2x100 0.5 3.0
K HEMT 2x100 0.7 3.0
L TEST 2x100 N/A N/A
M HEMT 2x100 0.3 2.0
N FAT-FET 2x100 10.0 14.0
O MSM 1x50 2.0 1.0
P MSM 9%50 1.0 1.0
Q,R,S | HEMT 4% 100 0.3 3.0
T HEMT 2x150 0.3 3.0
U MSM 1x50 0.5 0.5
A% MSM 1x50 0.5 1.0
W HEMT 8x100 0.3 3.0
X HEMT 16x100 0.3 3.0
Y, Z Round HEMT 150 0.7 5.0
AA, AB | Round HEMT 150 0.3 5.0
AC, AD | Round HEMT 150 0.3 3.0

Table 6.2: "Mega HEMT" mask set description.
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Device Gate Width | Gate Length Distances
Wy (pm) Ly (pm) | S_D (pm) | S_G (um) | G_D (um)
A | HEMT 2x100 0.3 2.0 0.85
B | HEMT 2x100 0.5 2.0 0.75
C | HEMT 2x100 0.7 2.0 0.65
D | HEMT 2x100 0.5 4.0 1.75
E | HEMT 2x100 0.7 4.0 1.65
F | FAT-FET 2x100 2.0 5.0 1.50
G | FAT-FET 2x100 10.0 13.0 1.50
H | FAT-FET 2x100 50.0 54.0 2.00
I HEMT 2x100 0.7 2.5 0.90
J HEMT 2x100 0.7 3.0 1.15
K | HEMT 2x100 0.9 3.0 1.05
L | HEMT 2x100 0.9 3.5 1.30
M | HEMT 2x100 0.9 4.0 1.55
N | TEST 2x100 N/A N/A N/A
O | MSM 1x50 2.0 1.0 N/A
P | MSM 9x50 1.0 1.0 N/A
Q |HEMT 2x100 0.5 3.0 1.0 1.5
R | HEMT 2x100 0.5 3.0 1.2 1.3
S HEMT 2x100 0.5 3.5 1.0 2.0
T HEMT 2x100 0.5 3.5 1.2 1.8
U | HEMT 2x100 0.7 4.0 1.0 2.3
V | HEMT 2x100 0.7 4.0 1.2 2.1
W | MSM 1x50 0.5 0.5 N/A
X | MSM 1x50 0.5 1.0 N/A
Y | HEMT 4x100 0.5 3.0 1.25
Z | HEMT 8x100 0.5 3.0 1.25
AR | HEMT 2x150 0.5 3.0 1.2 1.3
AT | HEMT 2x150 0.5 3.5 1.2 1.8
AV | HEMT 2x150 0.7 4.0 1.2 2.1

Table 6.3: "Power2" mask set description.
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Chapter 7

AlGaN/GaN Layer Structures on SiC

The layer structure of AlGaN/GaN HEMTs is a frequently discussed topic. The layer
composition and thickness has to be chosen with respect to the used substrate. We
have investigated AlGaN/GaN HEMTs grown on SiC substrate what makes the task
much easier compared to sapphire or Si substrates. This is due to the very small lattice
mismatch of SiC to GaN and the very good thermal conductivity (see chapter 3 and table
3.1). This chapter describes the composition of layers, the simulation of band diagrams,

and the characterisation of layer structures used in this work.

7.1 Composition of Layers

All layer structures grown on SiC substrate were produced by CREE Inc. (former
ATMI Inc.) by Metal Organic Vapour Phase Epitaxy (MOVPE) according to our speci-

fications. Generally, the used layer structures can be divided into four categories:

e non intentionally doped (n.i.d.),
e Si doped,
e with GaN cap layer,

e without GaN cap layer,

and combination of these four categories. An overview of processed samples and their
layer structures is given in figure 7.1 and table 7.1.

From bottom to top the layers are as follows: On top of the SiC substrate a thin AIN
layer is grown to reach Ga-face polarity of the n.i.d. 3 pm thick GaN layer. On top of
this either a 30nm thick n.i.d. AlyosGag7oN layer is grown for undoped samples or a
stack of a 10nm n.i.d. AlgosGag7oN, a 10nm Si doped Al 25Gag 72N, and a 5nm n.i.d.
Alg2sGag 7oN layers for the doped ones. Optionally, a 3nm thin GaN cap layer is created
on top, as on samples F1435, F1438, F1749, and F1750 (see table 7.1).
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Sample | Substrate Doping GaN cap
52661 SiC n.i.d. no
F1435 treated SiC n.i.d. yes
F1438 SiC n.i.d. yes
F1749 SiC Si: 2 x 10'® cm ™3 yes
F1750 SiC Si: 5 x 10'® cm ™3 yes

Table 7.1: Description of layer structures and differences in between.

The non intentionally doped (n.i.d.) GaN and AlGaN layers have the background
n-type concentration of 1 x 10'® cm™3, determined by producer. By means of Si dopant
the n—type doping of specified AlGaN layers can be increased. Two of five layer structures
used contain Si doping of 2 x 10'® cm™3 (F1749) and 5x 10'® ¢cm ™2 (F1750). The structure
compositions and thicknesses were chosen to yield the possibility to compare them with
each other, i.e. n.i.d. samples can be compared with and without GaN cap layer (52661
and F1438), the influence of the doping between n.i.d. sample, 2x 10, and 5 x 10'8 cm ™3
doped samples (F1438, F1749, and F1750) can be investigated, and finally the influence
of additional SiC substrate cleaning done by CREE Inc. (F1435 and F1438) can be

examined.

S2661 F1435 F1749
F1438 F1750
n.i.d n.i.d Si doped
without GaN cap with GaN cap with GaN cap
snm A GaN cap: n.l.d. GaN cap: n.i.d. A 3nm
Aly,6Gap,,N:nid. [ | 5nm
30nm Al, Ga,,,N: doped [IERIRCIL
AlyzsGa, 7, N: n.i.d. Alyz5Ga, 7, N: n.i.d. Aly,Ga, ,,N: n.i.d. 10nm
3um 3um
Y GaN buffer: n.i.d. GaN buffer: n.i.d. GaN buffer: n.i.d. Y
SiC substrate SiC substrate SiC substrate

Figure 7.1: Overview of layer structures used.
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7.2 Energy band diagram simulations

Simulation of the energy band diagram yields important information about the layer
structure and the carrier concentrations which can help to prove suitability of the chosen
layer structure for the fabrication of HEMTs. For this purpose we have used the WinGreen
software package developed at our institute by K.M. Indlekofer and J. Malindretos [76].
The calculation of energy levels and charge distributions is based on realtime Green’s
functions and self-consistent solution of Schrodinger and Poisson equations.

The simulation of GaN-based heterojunctions requires knowledge of various constants.
Besides the standard material parameters as the lattice constants, relative permittivity,
band gap, and effective electron and whole masses also the polarisation induced charge
density near the AlGaN/GaN interfaces is required. For simulation, this charge density is
modelled as a fixed sheet charge (fully ionised donors and/or acceptors) near the interface.
The vertical position of this charge density depends on the polarity conditions of layers
to be simulated (see chapter 3). Due to Ga—faced structures to be simulated we have
positioned the sheet polarisation induced charge density above the AlGaN/GaN interface
(figure 3.4). The sheet carrier concentration calculated by Ambacher et al. [14,15] of
1.63x10' cm~2 and the GaN and AlGaN background concentration of 1.0x 101® cm ™ were
used for modelling. The used material parameters are summarised in table 7.2. Figure 7.2
shows the simulated band diagrams and the charge densities for all layer structures using
Fermi level pinning at the surface of 1.1eV and zero buffer potential. The influence of
the GaN cap layer is evident from this simulation: Besides a decrease of the sheet carrier
concentration in 2DEG an additional barrier is formed near the surface (GaN cap/AlGaN
interface) which is a crucial issue to reduce the gate leakage current. This is important
especially for doped structures where higher gate leakage is expected due to additionally
doped AlGaN layer. On the other side, an increase of the doping level increases the sheet
carrier concentration of the 2DEG as can be seen from the simulation results of samples
F1749 and F1750.

The simulated results will be compared with experimental results in section "Electrical

characterisation of layer structures".

Parameter GaN AIN
(wurtzite)
Relative permittivity Er 9.5 8.5
Energy band gap Eg (eV) 3.440 6.202
Effective electron mass Me 0.228 mg 0.480 mg
Effective hole mass mp, 0.800 myg 1.000 mg

Table 7.2: Material parameters used for WinGreen simulation at room temperature (300 K).
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Figure 7.2: Simulation of energy bands and charge densities in used layer structures
by means of WinGreen.

7.3 Atomic Force Microscopy (AFM)

Fabrication of HEMT devices depends on the technological process as well as on the
quality of the semiconducting layers. One of the layer properties which has to be controlled
properly by the growth process is the surface roughness. A frequently used method to
determine the surface roughness is Atomic Force Microscopy (AFM). The principle of this
method is described in chapter 5.

The surface roughness of all introduced samples has been controlled by AFM bhefore



7.3. Atomic Force Microscopy (AFM) 57

Before treatment After treatment

S2661 (AlGaN surface)

X (um)

F1438 (GaN surface)

0 1.00 2.00 1.00
X (um) X (um)

Figure 7.3: AFM scans of AlGaN (a and b) and GaN (c and d) surface before
(left) and after (right) cleaning procedure.

processing. The root-mean-square roughness has been determined to be in the range of
0.12nm — 0.22nm for all probes. This is comparable with the best results published in
literature [97,98|.

But also the processing technology, especially the surface cleaning and treatment in
acids, can influence the roughness. Therefore we have made additional AFM scan in
cooperation with Dr. T. Stoica before and after standard treatment to find out about the

surface changes. The cleaning procedure consists of:

e Acetone & Propanol cleaning,
e HF(1) : H,O(2) for 2min,
e HCI(1) : HyO(2) for 2min,

e Hy0,(1) : NH;(2) for 10 min.
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The AFM-scans before and after cleaning and the evaluation procedure of AFM-data
have been done by Dr.T. Stoica and are shown in figure 7.3.

The scans have been analysed and the root—mean—square roughness (rms) has been
calculated using Nanoscope 111 software package. Both, n.i.d. GaN and n.i.d. Aly2sGag 7N,
surfaces typically show terraced—like shape. Important to note is the occurrence of deeper
pits at the beginning and/or the end of some terraces which have been also taken into

account in rms calculation.
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Figure 7.4: The cross section of the n.i.d. Al 23Gag 72N surfaces used for device
fabrication before and after surface treatment.

The AlGaN surface shows less defined steps and shallower pits after the treatment
(see figure 7.4) and a small increase of the rms roughness from 0.13 nm to 0.16 nm before
and after cleaning procedure, respectively. A 1 x 1 um? surface area has been measured
including atomic steps.

The GaN surface, in contrast to the AlGaN surface, shows deeper pits and a decrease
of rms from 0.14nm to 0.12nm after the treatment (also measured for a surface area of
1 x 1 um?). The cross section of the analysed surface is illustrated in figure 7.5.

Summary, the results show very small surface roughness and insignificant surface

changes after the treatment.

7.4 Electrical characterisation of layer structures

After the layer structures have been investigated by Atomic Force Microscopy elec-

trical characterisation of layer structures is the second step needed to be done before
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Figure 7.5: The cross section of the n.i.d. GaN surfaces used for device fabrication
before and after surface treatment.

device processing. This characterisation consists of Hall effect, capacitance-voltage, and
Transmission Line Model (TLM) measurements as theoretically introduced in chapter 5.
The Hall effect measurements have been performed using two types of Van der Pauw

2 area size was used for material

patterns. The first Van der Pauw pattern of 5 x 5mm
characterisation at room temperature (300 K) and at 77 K. The aim was to confirm the
2DEG formation near the AlGaN/GaN interface. The second Van der Pauw pattern of
0.3 x 0.3 mm? area size was used for an exact material characterisation as close as possible
to the fabricated devices and for investigation of passivation influences on the material
properties at room temperature. Chapter 6 gives detailed introduction to the latter Van
der Pauw pattern.

The capacitance—voltage (CV) measurements of Schottky diodes with different surface
area were performed by means of Agilent 4294A parameter analyser at 1 MHz. From mea-
surement data the sheet carrier concentration ny can be derived using equations 5.9 and
5.10. In combination with sheet resistance Rgpe.; determined from TLM measurements
the channel mobility u, can be calculated from equation 5.6. CV curves for all samples
are documented in figure 7.6. Zero voltage capacitance ¢y corresponding to the distance
between the Schottky interface and 2DEG (d; + Ad) (eq. 4.3) is in a good agreement with
layer structures. Also the threshold voltage V;;, (where the capacitance decrease abruptly)
well corresponds to the sheet carrier concentration of electrons in channel for each struc-
ture. Measured Hall effect results compared with results from capacitance-voltage and
TLM measurements are summarised in table 7.3.

The sheet carrier concentration ng and the mobility p, calculated from CV and TLM



60 CHAPTER 7. AlGaN/GaN Layer Structures on SiC

measurements are in a good agreement with Hall effect measurements and WinGreen
simulations. The sheet carrier concentration of the n.i.d. samples with GaN cap (F1435,
F1438) is smaller in comparison to the n.i.d. sample without GaN cap (S2661). This can
be explained as a consequence of the additional barrier at the GaN(cap)/AlGaN interface
which rises up the conduction band relatively to the Fermi level in the quantum well area.
The rise up of the conduction band of the samples with GaN cap explains the decrease of
the sheet carrier concentration in the quantum well. With increased doping concentration
of the AlGaN barrier layer the sheet carrier concentration of 2DEG increased from ~
7.5 % 102 cm™2 for n.i.d. sample to ~ 1 x 10" ¢cm~=2 for 5 x 10*® cm ™2 doped sample while
the channel mobility slightly decreased from ~ 1900 cm?/Vs to ~ 1663 cm?/Vs for n.i.d
and 5 x 10'"® cm™3 doped sample, respectively. The sheet resistance Rgpce; decreased with
increasing doping concentration. Very high mobility in the range of 3745 — 9755 cm?/Vs
measured at 77 K confirmed the 2DEG formation.

Schottky diodes
Area: 50 x 50 um’

10.0p z
F1750 (5¢18 cm™ doped with cap) . /
__ 8opf Lo FE [ S
&’ '/ /, _ T -
[¢}] / I' ;
(8) fel
c 6.0p I : F1749 (218 cm™ doped with cap)
_..g : ;
& [k ' $2661 (n.i
o 4.0p ! . : (n.i.d. w/o cap)
® : |
Q | /
3 D F1435 (n.i.d. with cap)
2.0p .
[ F1438 (n.i.d. with cap)
0_0_._._1_._h._..(|"....|....|....|....

-5 -4 -3 2 -1 0
reverse bias (V)

Figure 7.6: CV measurements of Schottky diodes on investigated layer structures
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Chapter 8

Unpassivated AlGalN/GaN
HEMTs on SiC

After having characterised the semiconducting layers in the previous chapter the at-
tention is now drawn towards the HEMT devices themselves. In particular, a static
characterisation of the AlGaN/GaN HEMTs is performed followed by a discussion of the
drift mobility issue which precedes the treatment of thermal effects. After these issues
a rf characterisation and pulse measurements are performed. A consideration of output

power performance concludes this chapter.

It has to be noted that this chapter exclusively treats unpassivated devices.

8.1 Static characterisation

Measurement of the output and the transfer characteristic is the basic method for
HEMT characterisation, while breakdown measurements can be considered as an im-
portant method to gather information regarding limits of the device. Using these mea-
surements the functionality of the device and the quality of the layer structure can be

analysed.

All measurements are performed by means of Agilent E5270A semiconductor analyser
controlled by a computer. The measurement system allows to measure in the bias range
of 200V to +200V and the current range is up to 1 A with femto-amp accuracy. The
gate-source and the drain-source biases are controlled simultaneously and the gate and
drain currents are read subsequently. The schematic draw of the measurement system is

shown in figure 8.1.
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Figure 8.1: Measurement system used for dc characterisation of AlGaN/GaN HEMTs.

8.1.1 Static output and transfer characteristics

The measured output and transfer characteristics were used for evaluation of parame-
ters as the maximum drain current I5%, threshold voltage V;;,, extrinsic transconductance
gm and leakage currents. The typical output and transfer characteristics measured for
5 x 10® cm™ doped sample are shown in figure 8.2. Well known AlGaN/GaN HEMT
behaviour is observable by output characteristics, i.e. decreasing drain current with in-
creasing drain-source bias in saturation region. This is caused by self heating effects and
is dependent on the thermal conductivity of the used substrate.

A comparison of HEMT parameters fabricated using different layer structures can
be found in figure 8.3 and important parameters are collected in table 8.1. Devices
fabricated on doped layer structures exhibit better dc performances in comparison to
undoped ones. The drain saturation current I3* increases with increasing doping level
while the threshold voltage is shifted to more negative values. This is in agreement
with Hall measurements collected in table 7.3 where the doped samples exhibit higher
sheet carrier concentrations in the 2DEG in comparison to undoped samples. Better
performance of the doped samples can be explained as the doping of the buffer layer acts as
an additional source of electrons for the 2DEG, increasing the sheet carrier concentration
of the 2DEG. It is necessary to stress again, that until now it is not clear what the
source of such a high sheet concentration of electrons in the 2DEG might be. An already
mentioned and widely accepted explanation is that natural donor-like surface states are
the source of electrons.

But doping of AlGaN/GaN HEMTs gives rise for negative influences as well. As is
shown in table 8.3 and will be discussed in the next part, an increasing doping level

increases the gate leakage current markedly from ~ 2 x 1072 A /mm to 1.5 x 1075 A /mm.
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Figure 8.2: Typical output (a) and transfer (b) characteristics of 5 x 10'® doped HEMT.

Sample | Doping | GaN Isot Gm Vi | gate leakage
(cm™3) cap (A/mm) | (mS/mm) (V) (A/mm)
S2661 no no 0.67 174 -3.48 | 230 x 1077
F1435 no yes 0.69 180 -3.10 | 2.07x 1078
F1438 no yes 0.73 185 -3.32 | 4.65x107°
F1749 2 x 10" | yes 1.06 214 454 | 1.27x 1077
F1750 5x 108 [ yes 1.12 207 -5.18 | 1.51x 107

Table 8.1: Important parameters evaluated from dc measurements on fabricated
HEMTs with Ly = 0.9um and Sp = 4.0um. Leakage current was evaluated at
Vgs = —6V and Vg, = OV

This is directly connected to the breakdown voltage of the transistor which decreases with

increasing doping level.

8.1.2 Breakdown voltage

Breakdown voltage and its relationship to leakage currents needs to be discussed be-
cause of its influence on output power. As was already shown in figure 4.8 and according
to equation 4.30, the parameters which basically limit the output power are the drain
saturation current I3 and the breakdown voltage Vj,. For maximum output power a
maximum [ and V},. are needed. We have already shown the dependence and improve-
ment of I5* by additional doping of AlGaN buffer layer. This section will introduce a
non-destructive Current-injection measurement technique for breakdown voltage determi-
nation. Possibilities to improve breakdown voltage will be discussed also.

The Current—injection technique is based on dc measurement under exact conditions
where the source is grounded and a fixed predefined current is injected into the drain. The
gate-source bias is ramped down from on-state to below threshold bias and the drain-

source bias with the gate current are monitored [10,105]. The drain-source breakdown
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Figure 8.3: Comparison of output characteristics (a) and extrinsic transconduc-
tance (b) of all fabricated samples.

Vi is obtained as a maximum measured Vg, irrespective of V. The gate-drain voltage

dependence on V,, can be expressed by equation:
Vaa = Vs — Vs, (8.1)

where V4 is the gate-drain bias. From this equation the gate-drain breakdown bias
V})id can be determined as a bias where the magnitude of the measured drain current is
equal to gate current: I; = —I, (see figure 8.4 a). Injected drain current for off-state
breakdown condition depends on the drain leakage current and is typically ~ 1mA/mm.
In our case, an injected drain current was chosen to be of 25 mA/mm. Smaller injected
currents could distort evaluation of the breakdown voltage due to very smooth knee of

the current—voltage curve before breakdown.
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Figure 8.4: Principle of breakdown voltage evaluation (a) and measured drain-
source breakdown voltage dependence on the source—drain distance for undoped
and doped samples (b).
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Figure 8.5: Dependence of the gate leakage current and the breakdown voltage on
the barrier doping level.

The breakdown voltage was always derived statistically from measurements of various
identical devices. All results published in this work are mean values from these mea-
surements. The dependence of the source-drain breakdown voltage on the source-drain
distance is shown in figure 8.4b. With increasing S D distance the breakdown voltage
rises. Figure 8.4 b also introduces the comparison of undoped and intentionally doped
sample. As was expected, the doped sample showed smaller breakdown voltages in com-
parison to undoped ones due to higher gate leakage currents. The correlation between gate
leakage current and source—drain breakdown voltage for fabricated undoped and doped
structures is shown in figure 8.5. With increasing gate leakage current the breakdown
voltage decreases. It becomes clear, that reducing the gate leakage current by techno-
logical advances not only aims to reduce power consumptions but also tries to increase

breakdown voltages.

8.2 Drift mobility of HEMTs

Until now the heterostructures used for device fabrication were characterised by stan-
dard Hall effect measurements. Hall characterisation shows the mean mobility of the
carriers and does not allow us to determine the mobility distribution or existence of a
parallel conductive layer. Mobility distribution can be determined by channel conduc-
tivity measurements on HEMTs with large gate length, in combination with capacitance
measurements. The channel conductivity measurements were done at our institute by
M. Marso et al. and aimed to compare non-intentionally doped, 2 x 10'® cm ™2 doped, and
5 x 10'® cm ™2 doped samples with GaN cap with each other. Measured devices are named
in the mask layout as FAT-FETs (see figure 6.2). To evaluate the drift mobility, the
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Figure 8.6: Dependence of the average (a) and local (b) mobility on doping con-
centration of the layer structure and the gate-source bias [30].

channel conductance g.; has to be determined according to equation 4.20 and from linear
region measurements of HEM'T at drain—source biases of 0.1 to 0.3 V. The measured value
of the channel conductance must be corrected for the series source and drain resistances.
These were measured on HEMTs with 2 um gate length using the charge control model
and were always less than 10% of the channel resistance of HEMTs with the gate length of
50 um. The average drift mobility u, is then evaluated using equation 4.23 where a good
agreement, of the mobility obtained by Hall effect measurements and the average drift
mobility by zero gate—source bias measured by channel conductance method is obtained
(see table 8.2).

Additionally, the local mobility .. defined as the mobility of carriers that are added

into channel with gate voltage increase, expressed by [30,109]:

2

liioe = Lg'—AgChi’ (8.2)
Cgs . Avas

was evaluated from measurements. Ag.,; represents the change of the channel conduc-

tance caused by the change of the gate—source bias AV.

Sample | Doping | Hall effect determ. | Channel conductivity determ.
(cm™3) pn (cm?/Vs) i (cm?/Vs) by Ve =0V

F1438 n.i.d. 1930 1800

F1749 2 x 108 1780 1670

F1750 5 x 10!8 1663 1620

Table 8.2: Comparison of electron mobility and sheet carrier density of layer struc-
tures determined by Hall effect measurements and channel conductivity method.
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Figure 8.7: Dependence of the average and local mobility on the sheet carrier
concentration for different doping level [106].

Peak average and local mobilities of 1825cm?/Vs and 2100 cm?/Vs were measured, re-
spectively, independent of the doping concentration of the supply layer (see figures 8.6
and 8.7). This confirms, that channel electron mobility is not influenced by the donor
atoms in the AlGaN carrier supply layer. The maximum local mobility of 2100 ¢cm?/Vs
was determined by the sheet carrier concentration of 3 x 102 em~2. The activation of the
parallel channel in the carrier supply layer was observed above 10 ¢cm™2 (sharp drop of
the local mobility). Similar results were published by Ridley et al. [110,111], where the
upper limit of AlGaN/GaN heterostructure of 2000 cm?/Vs by 2 x 102 cm™2 is shown.

8.3 Thermal effects — Channel temperature

It is well known, that GaN-based materials are extremely stable at very high temper-
atures. For practical application, it is important to know about the behaviour of HEMTs
for elevated temperatures and what is the maximum temperature for which devices are
still working.

Therefore, we have investigated the dc behaviour of AlGaN/GaN HEMTs on SiC
substrate at elevated temperatures. Obtained data were compared with those published
on AlGaN/GaN HEMTs with sapphire and silicon substrates. Using thermal effects theory
introduced in chapter 4 the channel temperature dependence on the dissipation power was
calculated and compared with other used substrates.

Devices were characterised by Agilent E5270A semiconductor analyser using the same
scheme as before. The wafer with fabricated HEMTs was placed in a cryostat with the
tunable temperature from 77 K to 540 K. The devices were tested for elevated tem-

peratures in the range from 300 K to 540 K. From the measured characteristics the
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Figure 8.8: Temperature dependence of the serial resistance and the threshold
voltage for the sample grown on SiC substrate.

temperature dependencies of the drain saturation current 5% (figure 8.9 a), the thresh-
old voltage Vjj,, and the serial resistance R (figure 8.8) were evaluated. The non—linear
temperature dependencies of V;;, and R, were polynomially fitted and used for the chan-
nel temperature calculation according equation 4.43. The drain current dependence on
the saturation velocity change Av,, was assumed to be constant. This was done due
to theoretical calculations which shows considerably smaller temperature sensitivity of
Vsat in GaN in comparison to other ITI-V material systems. Also strong polarisation
fields in AlGaN/GaN quantum well further eliminate electron mobility dependence on

temperature [33].

Figure 8.9a shows much better dc performance of AlGaN/GaN HEMTs fabricated
on SiC substrates at elevated temperatures in comparison to sapphire substrate where
at 250°C the drain saturation current decreased to 73 % of its room temperature value
on SiC contrary to 39 % on sapphire. This confirmed better thermal conductance of SiC
substrate. The comparison of SiC and silicon substrates did not show any considerable
difference in the change of the drain saturation current with the temperature. The channel
temperature evaluated from temperature measurements on different substrates is shown in
figure 8.9b. The data for sapphire and silicon substrates were published in literature [33]
while our measurements on SiC were added in advance. One can see that AlGaN/GaN
HEMTs on SiC substrate exhibit markedly smaller channel temperatures in comparison
to sapphire and Si substrates. Lower channel temperature of HEMTs on SiC substrate in
comparison to Si substrate originates from smaller temperature dependence of the serial
resistance and the threshold voltage. For the dissipation power of 6 W/mm the channel
temperature of 320°C, 95°C', and 62.2°C were examined for sapphire, silicon, and SiC,

respectively. This indicates smaller temperature dependence, higher stability, and smaller
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Figure 8.9: Normalised temperature dependence of the drain saturation current (a)
and channel temperature dependence on the dissipation power (b) of AlGaN/GaN
HEMTs with sapphire, silicon, and SiC substrates (values for sapphire and silicon
substrates are from literature [33,34]).

degradation of structures using SiC substrate. From these results we can expect better

power performances without necessity of additional device cooling.

8.4 RF characterisation

Boundary frequencies are additional parameters investigated in our labs. As was
introduced in the theoretical part, fr and f,., frequencies define the frequency range
where the HEMT shows amplifying behaviour. This is important information to be used
for power measurements.

The boundary frequencies were evaluated from s—parameter measurements using for-

ward current gain ho; and maximum unilateral transducer power gain Gu, defined as:

—S21
hot = 8.3
21 (1 — 811) . (1 -+ 522) + 512 * S21 ( )

|S21|2
(1 —1s11/?) - (1 — [s22]?)

fr is then determined as the frequency where h3, = 0, and f,. is the frequency where
Gu = 0 (see figure 8.10).

Gu =

(8.4)

S—parameter measurements were done in a frequency range up to 110 GH z using a HP
8510C Network Analyzer. Devices were measured for gate-source bias (V) in the range
from +1V to Vj;, and drain—source bias (Vys) in the range from 0 to 20 V. Afterwards,

the peak cut—off frequency was evaluated. The gate-source bias, resulting in maximum
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Figure 8.10: h3, = f(frequency) and Gu = f(frequency) functions evaluated
from s—-parameter measurements of HEMT with L, = 0.3um fabricated on undoped
structure (F1435).

fr from rf measurements, was in good agreement with the gate—source bias yielding peak
extrinsic transconductance g, evaluated from dc measurements. An example of evaluated
fr and fp,q from s-parameter measurements on undoped sample for V,;, = —2,5V and
Vis = 20V is shown in figure 8.10.

RF measurements of fabricated samples show differences in cut—off frequencies between
undoped samples F1435, F1438 and also between undoped and doped samples (see figure
8.11). Contrary to this, the drift—-mobility results obtained in the previous section exhibit
no influence of modulation doping on channel mobility and therefore similar rf behaviour
for all samples was expected. Due to this discrepancy we assumed that additional effects
have to be involved influencing rf behaviour. Therefore, we decided to investigate the
gate-source capacitance Cys and saturation velocity vy, of HEMTs with sub-micro gate
length to determine the reason for such difference in fr.

Gate—source capacitances were evaluated using the TOPAS software package devel-
oped by IMST GmbH. This package helps us to evaluate intrinsic parameters of HEMT
from s—parameter measurements according to the small-signal model of HEMT introduced
in figure 4.5. Evaluation resulted in more that two times higher gate-source capacitance
of the F1435 sample in comparison to the other, undoped and doped structures, shown
in figure 8.12a. This explains difference in cut—off frequencies between the undoped sam-
ples F1435 and F1438 (see figure 8.11a). The cut—off frequency of undoped samples is
affected due to different C,, according equation 4.26 and therefore the sample F1435 with

higher gate—source capacitance exhibits smaller fr in comparison to F1438 with consider-
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Figure 8.11: Cut—off frequency comparison of devices fabricated on differently
treated SiC substrates (a) and undoped and doped layer structures (b).

ably smaller Cy,. The higher gate-source capacitance of sample F1435 can be explained
by higher parasitic interface charge under the gate electrode which can be influenced by

suitable technological process.

But the gate—source capacitance does not explain the rf differences between samples
F1438 and F1750 which exhibit nearly the same C,,. Therefore, an evaluation of the

saturation velocity was done to identify if this could be the reason for different fr.

To evaluate the saturation velocity vy, from rf measurements the total delay time
T = 1/2m fr was plotted as a function of the inverse of the drain current 1/1; at constant
Vis [106-108] (figure 8.12b). The total delay time 7 is defined as the sum of the transit
time and the parasitic channel charging time. The parasitic channel charging time, which
is proportional to the channel resistance, is inverse by proportional to the drain current
I;. Therefore, with increasing I, the total delay time 7 decreases linearly (true for low
drain currents). Then the extrapolated intersect at 1/I; = 0 corresponds to the transit

time Ty.qnsie Under the gate, defined as:

Ly (8.5)

Vsat

Teransit =

From evaluation of the transit time the 5x 10'® cm ™3 doped sample (F1750) shows reduced
saturation velocity of 18 % in comparison to the undoped (F1438). We consider this as
the reason for slightly dropped boundary frequencies of the doped sample F1750 where
the doped barrier layer does not influence the electron mobility in 2DEG but reduces the

saturation velocity.

Finally, the f,.q./fr ratio of fabricated HEMTs on SiC substrate was evaluated. It is

known from theory, that parasitic conduction of the substrate causes an abrupt decrease
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Figure 8.12: Gate-source capacitance of fabricated samples evaluated by Topas
from s—parameter measurements (a) and the transit time of our HEMTs (b) [106].

of the fq: and also of the f,,q./fr ratio [10]. To show that SiC substrates yield HEMTs
of better quality and higher resistance, we compared our results with HEMTs based on
sapphire and silicon substrates that were either published in literature or fabricated in
our labs (figure 8.13a). Measurements showed comparable ratios of f,.../fr of SiC and
sapphire in the range of 1.7 to 3.5 depending on the gate length. Silicon substrate with
its high parasitic conductance exhibits evidently smaller values of f,../fr of 0.7 to 1.1.
Obtained rf results of our HEMTs fabricated on SiC substrate and published data are fully
comparable, as shown in figure 8.13b. This proves high quality and good functionality of

our devices.
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Figure 8.13: faz/fr ratio (a) and fr (b) of AlGaN/GaN HEMTs on SiC fabri-
cated in our labs and published data on Si and sapphire substrates [10,112].



8.5. Pulse measurements 75

8.5 Pulse measurements

Often discussed phenomenon in the context of AlGaN/GaN HEMTs is called current
collapse or dc/rf dispersion: When applying higher frequencies (>100MHz) or stress’ on
HEMTs, the saturation drain current rapidly decreases. Recovery times for GaN-based
devices were ohserved to be in the range of ms to minutes. By applying UV light the
device can be fully recovered immediately [75]. Due to the slow parasitic transient, the cur-
rent collapse can deteriorate significantly the rf behaviours and output power of HEMTs.
Therefore, determination of the recovery time and the current collapse magnitude is very

important for AlGaN/GaN heterostructures and was performed also in our labs.

[] R.= 120
DUT
D
G dc source
Agilent
s Oscilloscope G_ E5270A

Agilent 54616B
Pulse generator |:|
HP 8116A

Figure 8.14: Scheme of pulse measurement system.

The current collapse was determined by gate lag measurements as the decrease of
the pulsed drain current Ig"lse in comparison to dc drain current I;. The pulsed gate—
source bias was generated by a HP 8116A pulse generator using frequencies of 0.2, 2.0,
and 20kHz. The utilised duty-cycle of 10 % resulted in pulse widths of ¢,= 500, 50, and
5 us and eliminated the self-heating effects at higher drain-source voltages. The drain—
source bias was applied by Agilent E5270A Semiconductor Analyzer. A 122 resistor was
inserted in the drain circuit that was used for determination of the drain current by a two—
channel digital oscilloscope Agilent 54616B. All devices were controlled by a computer.
The principle scheme of our measurement system is shown in figure 8.14.

The measured dc and pulsed characteristics of a HEMT fabricated on an undoped
sample without GaN cap is shown in figure 8.15a. For better transparency, the pulsed
output characteristics at V,o = +1V are only shown. One can see, that with increasing
frequency (decreasing pulse width) a higher drain current collapse is observed. This causes

a discrepancies between calculated dc output power P%, . and measured rf power which

out sat

decreases due to the decrease of the saturation drain current.

But our measurements indicate that the current collapse can be effectively diminished

device is biased for e.g. 24 hours by Vs = Vi, and Vs = 20V
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Figure 8.15: Output dc and pulsed characteristics of an undoped S2661 sample
(a) and comparison of the normalised drain dc current with measured current pulses
of undoped and doped samples (b).

by doping of the barrier layer. Figure 8.15b shows, that the undoped sample exhibits a
current collapse of 65 % at 5 us pulse width contrary to 77 % current collapse measured
on the 5 x 10 cm™2 doped sample at the same pulse width. Despite of this success
the current collapse in GHz range is still an obstacle which does not alow AlGaN/GaN
HEMTs to be fully integrated in praxis. Furthermore, the doping of the barrier layer
causes higher gate leakage currents, as was already discussed before (table 8.1). Many
approaches were published in literature to explain the current collapse, as the virtual gate
or various trapping effects [113-116]. They were mostly connected with the growth of the
layer structure but until now a satisfying explanation for this phenomena was not found.
Our further work was also focused on this problem and we have succeeded to eliminate
the drain current collapse using modifications in our technology process. These results

are introduced in chapter 11.

8.6 Output power

The final part of unpassivated AlGaN/GaN HEMTs characterisation consists of output
power measurements. Here, the dependence of the output power P,,; on the input power
P;, is measured and subsequently the gain and the power added efficiency was evaluated.
The devices were measured using a load—pull on—wafer measurement system developed by
Focus Microwave (figure 8.16). Before the device is measured, it is important to calibrate
the system and determine losses of each circuit part connected to the network what is
likely to affect the accuracy of the whole system. After the device is connected and biased,

the network was fit to 50 €2 resistance by means of computer controlled tuners. Then the
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Figure 8.16: Principle scheme of the on—wafer load—pull measurement system used
for output power determination.

device was measured in a defined input power frequency range.

The gate—source bias Vg, was chosen in correspondence to the peak extrinsic transcon-
ductance. The drain—source bias was varied up to a half of the breakdown voltage
(Vjner = Vi, /2). Measured output power, gain, and power added efficiency at 7TGHz
for 5 x 10"%cm™® doped sample with L, = 0.7um is shown in figure 8.17. As expected,
an increased drain—source bias lead to higher output power. Figure 8.18 a illustrates
the dependence of the measured output power and power added efficiency (P.A.E.) on the
doping of the barrier layer. As is shown, the output power increases with increased doping
concentration. This corresponds to our pulse measurement results, where the structures
with higher doping level exhibit smaller dc/rf dispersion (current collapse) and therefore

higher output power was to be expected.
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Figure 8.17: Output power measured on the 5 x 10*¥¢cm~2 doped sample with
Ly =0.7um, Wy = 200pm, and S_D = 3um .
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Figure 8.18: Dependence of the output power (a) and power added efficiency (b)
on applied drain-source bias for undoped and doped samples.

The measured values of 2.95 W/mm (2.15W/mm), 4.45 W /mm, and 7.58 W/mm for un-
doped (F1435, F1438), 2 x 10"¥cm™2 doped (F1749), and 5 x 10%¢m™ doped (F1750)
samples, respectively, at 7GHz are fully comparable with those published in literature
|46, 47,49, 51-55]. Output power exhibits also strong dependence on geometric dimen-
sions of HEMTs. The best values of output power were measured on devices with a wide
gate length (0.9 um) as well as small source—drain distances (in our case 3.0 um, shown
in figure 8.18). With decreasing gate length the output power decreased.

In spite of that, a saturation of output power was not observed in measured drain—
source bias range what indicates higher possible power densities at higher drain—source
biases. In our case the maximum Vj, is limited by the breakdown voltage of HEMTs.
Although significantly lower measured output power in comparison to calculated values
shows introduction of the current collapse (table 8.3). Therefore, the next technological
steps will be focused on an increase of the breakdown voltage and thus on an increase of

the output power and elimination of the current collapse.

Sample I5 Vinee | Vir | PX, .., calc. | P, meas.
(A/mm) | (V) | (V) | (W/mm) (W/mm)
F1435 0.76 4.0 69.5 10.10 2.95
F1438 0.81 4.0 71.5 11.09 2.15
F1749 1.06 5.0 - - 4.45
F1750 1.22 5.0 494 10.99 7.58

Table 8.3: Comparison of calculated and measured output power.



Chapter 9

Influence of Surface Passivation on

Device Performance

Natural donor—like surface states are supposed sources of electrons collected in 2DEG
and need to be stabilised for proper function of devices. Surface passivation was found to
be an effective method to make devices stable and to improve device properties. Neverthe-
less, not every passivation layer is suitable for GaN-based systems and leads to improved
behaviour. Different passivation layers such as Al,O3, SiOs, SiO, ScyOs3, SisN4 and MgO
have been already tested [61,65-68,77,78,103]. Published data differ not only in use of dif-
ferent passivation layer but are also controversial with regards to published improvement
or degradation of HEMT behaviours. The influence of SiO, and SizN, passivation layers
on AlGaN/GaN/Si heterostructure was tested [118-120,126] and SizN, passivation found
as favourable in comparison with SiO,. Due to this reason, this chapter only introduces

results obtained using SizN, passivated devices with SiC substrate fabricated in our labs.

9.1 Static and small-signal properties

Using device surface passivation improved stability, reliability, and device properties
are expected. We investigated the influence of deposition temperature, thickness, and
type of passivation layer (SizNy or SiOs) on device properties in cooperation with the
Slovak Academy of Science in Bratislava and the International Laser Centre in Bratislava.
Experiments lead to a 150nm thick SizN, passivation layer deposited by 300°C with
high quality deposition and best improvement of the device performance (published by
D. Gregusova et al. [127]). At the beginning, I would like to stress that measurements
before and after passivation were always done on exactly the same devices firstly measured
as unpassivated, afterwards passivated, and again measured as passivated HEMTs. This

method eliminates errors due to possible inhomogeneity of the layer structure.
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Sample | Doping | Passivation Ng Ln R
(cm™?) (cm™?) (cm?/Vs) | (Q/sq)
S2661 n.i.d. 1no 7.94 x 10"? 1695 464
yes 10.1 x 10™ 1450 427
F1435 n.i.d. no 7.77 x 1012 1900 423
yes 9.36 x 10™? 1725 387
F1438 n.i.d. no 6.95 x 10'? 1930 466
yes 8.21 x 10" 1773 430
F1749 2 x 1018 no 8.19 x 102 1780 428
yes 9.77 x 10" 1730 370
F1750 5 x 1018 no 9.72 x 10'2 1663 387
yes 11.6 x 10™ 1440 374

Table 9.1: Sheet carrier density, electron mobility, and sheet resistivity of Al-
GaN/GaN heterostructures on SiC substrates before and after passivation.

The first investigation we performed aimed at the influence of the passivation on
2DEG properties evaluated by Hall effect measurements on 0.3 x 0.3 um? Van der Pauw
patterns fabricated simultaneously with the devices (see figure 6.9). The measured results
collected in table 9.1 show an increase of the sheet carrier concentration in 2DEG after
passivation and a slight decrease of the carrier mobility for all tested samples. Observable
is also the influence of the doping concentration where the doped samples exhibit smaller
passivation induced charge in comparison to undoped ones. These result are consistent
with those measured on layer structures with Si substrate investigated in our labs (figure
9.1). Improvement of 2DEG properties after surface passivation supports the theory, that
surface states can be the source of electrons collected in 2DEG where the passivation of
surface traps change the surface state concentration resulting in a change of the 2DEG

properties.
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Figure 9.1: Influence of the SiN passivation on the channel conductivity of undoped and
doped layer structures grown on Si and SiC substrates investigated on Van der Pauw patterns.
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The smaller influence of the surface passivation on 2DEG using doped layer structure can
be explained with the shielding of surface changes by an intentionally doped layer placed
between the surface and the 2DEG. Increased doping density of the barrier layer makes the
shielding effect more remarkable and therefore the change in 2DEG due to passivation is
smaller (see figure 9.1). The improved properties of 2DEG after SigN4 passivation resulted
in improved dc HEMT properties shown in figures 9.2 and 9.3. The improvement was
more pronounced for undoped samples as for doped ones, which is in a good agreement
with Hall effect data (see table 9.2). The shift of the threshold voltage to more negative
values observable on both undoped and doped structures after passivation points to an
increased sheet carrier concentration in channel under the gate electrode.

The gate leakage currents and breakdown voltages investigated on passivated samples
differed just slightly from those measured on unpassivated samples (see figure 9.4). Typ-
ically, higher gate leakage currents were measured for doped samples in comparison to

undoped ones.
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Figure 9.2: Comparison of output (a) and transfer (b) characteristics of undoped
sample (S2661) before and after passivation.
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Figure 9.3: Comparison of output (a) and transfer (b) characteristics of 5 x
10*® cm~3 doped sample (F1750) before and after passivation.
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Sample | Doping | Passivation I jat Im Vin,
(ecm™3) (A/mm) | (mS/mm) (V)
S2661 n.i.d. no 0.69 193 -3.47
yes 0.93 219 -3.69
F1750 5 x 10'8 no 1.22 227 -5.35
yes 1.30 226 -5.57

Table 9.2: Comparison of undoped and doped HEMT parameters before and after
passivation (Lg, = 0.7um, Wy = 200pum, Sp = 3.0pum).

The rf measurements show just slight increase of the cut-off frequency fr after passi-
vation from 33.5 GHz to 35.0 GHz for L, = 0.5m on undoped sample (52661) and from
32.0 GHz to 35.3 GHz for 5 x 10'® doped sample (F1750) with the same L,. The maximum
frequency of oscillation f,,,, was unchanged for both, undoped and doped samples.

These results indicate markedly improved dc and slightly improved rf behaviours after
SigN, passivation, which should lead to higher output power according to the already
discussed equations 4.29 and 4.30. To confirm this hypothesis, gate lag and output power

measurements are performed and evaluated in next sections.
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Figure 9.4: Comparison of the gate current before and after passivation for un-
doped and doped sample measured by Vs = 0V.

9.2 Pulse measurements

The gate lag measurements (or pulse measurements) were done in the same way as
described in chapter 8. The current collapse is evaluated as the decrease of pulsed drain
current relative to its dc value. A frequency of 20kHz with the pulse width of 5us was

applied and the pulsed drain current 2 was extracted 4 us after the lead edge of the
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Figure 9.5: Static and pulsed output characteristics of undoped (a) and doped (b)
sample by Vg, = +1V.

pulse. The dc and pulse output characteristics shown in figure 9.5 measured before and
after passivation exhibit a decrease of the current collapse from 25 % to 14 % in undoped,
and from 23 % to 11 % in the doped sample after the passivation (figure 9.6). Improvement
of the dc behaviour and diminishing of the current collapse after surface passivation was
observed on all AlGaN/GaN HEMTs fabricated in our labs independent of the doping level
of the barrier layer or the introduction of the GaN cap. This remarkable improvement of
AlGaN/GaN HEMT behaviour implies again the connection between surface states and
current collapse and highlights that the under—gate and beside—gate regions of HEMTs
play a significant role in the dispersion process. The responsibility of surface states for

dispersion effects was published also by other groups [55,117].

Frequency: 20kHz ; Duty: 10%
Gate-source bias: +1V
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Figure 9.6: Comparison of normalised pulse to dc drain current measured on
undoped and doped structures before and after passivation.
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9.3 Output power

Output power measurement is the last characterisation method used for determina-
tion of the passivation influence on the AlIGaN/GaN HEMT behaviour. Improved dc and
pulsed properties using surface passivation lead to higher theoretically calculated dc power

values Pde

o <at- Due to this, we expected to measure higher real output power values of fab-

ricated devices. Our expectations were confirmed by measurement shown in figure 9.7 a.
The output power measured at Vs = 27V increased from 3.81 W/mm to 7.16 W/mm
(88 % improvement) for undoped structure and from 4.70 W/mm to 6.94 W /mm (48 %
improvement) for the 5 x 10'® cm™3 doped structure. This corresponds very well with im-
provement of dc behaviour of undoped sample after passivation in comparison to doped
one (see table 9.2) and our investigations of AlGaN/GaN HEMTs on Si substrate done by
P. Javorka et al. [10] which observed the same tendency. Measured output power value of
9.04 W/mm on passivated AlGaN/GaN/SiC HEMTs at 7GHz is fully comparable with
the best published results in the last few years (figure 9.7b).
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Figure 9.7: Output power measured on unpassivated and passivated samples (L, =
0.7um, Wy = 200um, Sp = 2.5um (a) and output power trade line over years
(b) [43-64] .

Improvement of AlGaN/GaN HEMT properties after surface passivation was published
also by other groups [67,68]. The increase of the drain current and the decrease of the
current collapse using suitable surface passivation is not the only possibility for output
power improvement. The next opportunity lies in the increase of the breakdown voltage
which allows us to move the working point of the device to higher drain—source biases.
Another big challenge is the elimination of the current collapse in AlGaN/GaN HEMTs
and the explanation of the physical fundament. Both problems were intensively studied

in our institute and our answers to these questions are introduced in the next chapters.
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9.4 Modelling of surface passivation effects

To understand influence of the surface passivation on AlGaN/GaN heterostructure and
high electron mobility transistor behaviour a model with possible physical explanation is
described. This model is just phenomenological and is based on results of our institute
research.

After appropriate passivation we observed two main influences on the HEMT struc-
tures: increase of the sheet carrier concentration in 2DEG, and decrease of the dc/rf
dispersion. Figure 9.8 shows possible situation in unpassivated GaN cap/AlGaN/GaN
heterostructure. In thermodynamical equilibrium the sheet carrier concentration of 2DEG
ng is proportional to concentration of surface states n,,. The difference between n, and
nss are electrons in 2DEG originating from other sources as the Si doped AlGaN layer or
background GaN buffer.

After applying drain—source bias some electrons from the gate are trapped at the
surface states of unpassivated GaN and form virtual gate causing current collapse. Simul-
taneously, electrons from valence band at AIGaN/GaN cap interface are trapped through
very thin GaN cap layer and fill empty surface states. Subsequently, the holes generated

in valence band are neutralised by electrons in surface state.

Transfer of electrons from Surface States to 2DEG.
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Figure 9.8: Model of possible trapping effect in HEMT.
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Appropriate surface passivation builds additional positive charge formed at the GaN
cap/Passivation layer interface which force additional electrons transfer from surface states
to 2DEG and increases the sheet carrier concentration in channel after passivation. Fur-
thermore, passivation of surface states prevent trapping of electrons from valence band
through GaN cap to surface states and with it reduces the current collapse in HEMTs.

This explains an increase of the sheet carrier concentration in 2DEG and reduction of

the dc/rf dispersion after adding passivation layer on top of AlGaN/GaN heterostructure.



Chapter 10

Field Plate Technology

The previous chapter presented improvements of dc and power properties using suit-
able surface passivation. Nevertheless, this is not the only possibility and further improve-
ment regarding output power is feasible by extending the breakdown voltage. There are
two possibilities of how to do it: Increase of the source-drain distance S D or application
of the field plate technology. Wider source-drain distances lead to a degradation of dc and
transport properties and therefore are not frequently used. On the other side, field plate
technology introduces an advantage of keeping small S D and profiting from a change of
the electric field distribution in the gate—drain region. Improvement of breakdown voltage
using a field plated gate is known since 1969 [128] and is successfully exploited in Si— and
GaAs—based materials. In AlGaN/GaN processing technology it was presented in the
year 2003 for the first time and since that time it is used as a standard tool for breakdown

voltage improvement.

10.1 Electric field simulations

Field plate technology means fabrication of a second wider gate electrode above the
first one separated by a passivation layer (see chapter 6). The top gate electrode is
extended to the drain contact and is electrically connected with the first gate on the pad.
It is favourable to fabricate the first gate asymmetrically shifted in direction of the source
contact what improves breakdown voltage and provides space for the top gate electrode
(see figure 6.7). It is important to understand the electrical and physical influences of
the field plate technology. Before the fabrication process was started, simulation of the
influences of the second gate electrode were modelled. For this purpose, the commercially
well known ATLAS simulation package from Silvaco International was used.

ATLAS simulation package allows to build up any layer structure using pre-defined

material systems. Parameters of materials can be arbitrarily changed and subsequently
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Parameter | ATLAS Unit GaN | AlGaN
parameter

affinity affinity (eV) - 3.82
E, eg300 (eV) 3.40 3.96
alignment align 0.80 0.80
Er permittivity 9.5 9.5
L mun (em?/Vs) | 900 600
Lp mup (cm?/Vs) 10 10
Vsat vsat (cm/s) 2.0 -
Nc¢ nc300 (cm—3) 1.07 2.07
Ny nv300 (cm™3) 1.16 1.16

Table 10.1: Material parameters used in ATLAS simulation [88].

simulated. In our case the two—dimensional AlGaN/GaN layer structure of the S2661
sample was modelled using material constants published in literature and summarised in
table 10.1 [88]. The 2DEG was modelled as a sheet charge density collected near the
AlGaN/GaN interface, similarly to WinGreen band structure modelling.

Three types of simulation were performed to see differences in electric field distri-
bution under the gate electrode: simulation of standard HEMT, simulation of HEMT
passivated with a 50nm thick SizNy layer, and simulation of HEM'T with applied field
plate technology (figure 10.1). Using these structures, the electric field in between the
source and drain electrodes at off-state conditions of HEMT (V,; = —2.8V, Vs = 50V)
was calculated. As figure 10.2 shows, the most critical place with a peak electric field
is on the drain side underneath the gate electrode highlighted with arrows. This peak
is caused by very high potential difference between the gate and drain contact. Only a
small 9% decrease of the peak was calculated using passivation layer due to additional
positive charge in passivation layer. A considerable peak decrease of 31 % and optimised
electric field distribution was calculated using the second gate electrode (G3) electrically
connected with the first one (G7). This allows us to apply higher drain—source biases and
hereby to increase the output power without degradation of rf properties due to identical

dimension of the active gate length.

10.2 Real structure measurements

Simulated data were used for fabrication of HEMTs with the field plate technology
using S2661 (undoped) and F1750 (5 x 10'® em ™ doped) layer structures. Devices Q, R,
S, T, U, and V were designed for this purpose on the "Power 2" mask set. Fabrication
process is described in chapter 6 and appendix A.

Using the field plate technology improvements of dc, rf, and pulsed properties identical
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Figure 10.1: Overview of structures simulated by ATLAS.

to improvements after surface passivation introduced in chapter 9 have been determined.
This is consistent with our expectations regarding the application of the same isolation
layer (Si3N,) and having the same passivating influences on the surface. In the case of field
plate technology, improvements of the breakdown voltage can not be determined using the
Current—induction technique. This technique takes into account off-state changes of the
drain—source leakage current while the on—state electric field distribution in undersurface
region, which does not influence the off-state drain—source leakage, is not covered. There-
fore, improvement of breakdown voltage was tested directly by output power measurement
using higher drain—source biases.

The comparison of measured output power on undoped and doped sample is shown in
figure 10.3 a. Positive influence of the field plate technology is proven by higher measured
output power of 11.9 W/mm for undoped and 12.0 W/mm for the doped sample in com-
parison to 7.2 - 9.0 W/mm on passivated samples. The measured output power of HEMTs
with the field plate technology was considerably higher also at devices with small gate
lengths of 0.5 um contrary to unpassivated HEMTs where the maximum output power

exhibited devices with longer gate length.
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Figure 10.2: ATLAS simulation of electric field in AlGaN/GaN HEMT device
under the gate electrode for different technological processes.



90 CHAPTER 10. Field Plate Technology

Lg= 0.5um; Wg= 200pm; S_D= 3.0pm f=2-10GHz
20 ¢ ;
14F @7GHz [ o SiC, Publ. T
18F « SiC Field Plate, Publ. L eakin
i3 F1750 E E & si Publ % Technology
- E = c [ " . v
(5618 cm doped) - 5 (’, £ 16 [ o Sapphire, Publ. ;‘/
— ) - S 14 F =  SiC - this work :
g 10p ® o — ; [ * SiC Field Plate - this work ;
£ P = T 2 B
2 sf g~ 52661 2 0b Y
- e o E :
5 4 o= (undoped) F H [m] .
o’ 6Ff -"/ ; 2' 8 Og i L
5 f o~ ol By
o gfF P |
4L *5 £ - * o
o 4 B e
oL —o— —=— G_S distance 1.0um 2 E o io.
o e G_S distance 1.2um e 2 O
0L L L L L | L . o) . o o P T P b
16 20 24 28 32 36 40 44 48 2000 2001 2002 2003 2004 2005
drain-source bias (V) Year
a) b)

Figure 10.3: Output power measured on HEMTs with applied field plate technol-
ogy (a) and comparison with results published in literature (b) [81-87].

Important is also the fact, that the doped sample reached an output power of 12 W /mm
at the drain—source bias of 30V contrary to 46V for the undoped sample. Nevertheless,
the doped sample suffers from markedly smaller breakdown voltage and can not reach
drain—source bias higher than 37V without breaking. The HEMTs manufactured on the
undoped sample are able to work above V;, = 46V without breakdown, what was the
top bias boundary of our measurement setup, and could possibly work at even higher
drain—source biases that might result in higher measured output power values.

Finally, worldwide published results are compared to the output power measured on
undoped and doped devices presented in this work. An overview is given in figure 10.3 b.
Results are categorised according to the used substrate and field plate technology. It
shows an extreme rise up after field plate technology introduction. This is in a agreement

with our own output power data which can compete to the best published values.



Chapter 11

Influence of Technology Process on

Current Collapse

The previous chapters demonstrated that HEM'T properties can be improved consid-
erably using surface passivation and field plate technology resulting in very high out-
put performance power of 12W/mm. Regardless these excellent results, all presented
samples suffer from relatively high current collapse (or dc/rf dispersion) at high frequen-
cies. The current collapse elimination leads to improved rf behaviour and reliability of
HEMTs [72,117]. Therefore, additional investigation regarding dc/rf dispersion elimina-

tion were performed and results are discussed in this chapter.

11.1 Elimination of current collapse

The effect of current collapse has been already introduced in chapters 8 and 9 and is
the most discussed phenomena regarding GaN-based heterostructures. A many various
observed trapping effects, especially trapping at the surface, in the access region between
gate and drain, are considered to be primarily responsible for current collapse and high
frequency dispersion [113,114]. Another explanation of current collapse is based on charge
trapping in the high-field region underneath the gate [115]. All these phenomena were
investigated in our labs resulting in successful elimination of current collapse up to giga—
hertz frequency range using the technological process described in this section.

HEMTs presented in the previous chapters exhibit high sensitivity on surface changes
in between the drain and source region. However, only the free-standing surfaces beside
the gate electrode was influenced using surface passivation until now. Passivated samples
showed diminished dc/rf dispersion at 4us pulses but the current collapse could not be
completely eliminated (refer to chapter 9). Considering these findings, the additional

possible source of instabilities in fabricated devices may be located underneath the gate
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Figure 11.1: Comparison of current densities over applied bias on Schottky diodes
fabricated using standard (a) and advanced (b) technology process .

region (metal-semiconductor interface) formed during the gate metal deposition process.
Therefore, next investigation was focused on the gate (Schottky) metallisation process
and treatment procedure prior to metallisation.

The standard technology process concerning gate electrode fabrication consists of
Hsec. pre-treatment using HCI(1) : HyO(2) solution (HCI dip) and standard Ni(25nm) /
Au(100nm) metallisation. Pre-treatment removes native oxide from AlGaN(GaN) surface
which is built up during the technological processes. The standard length of HCI dip was
settled to be 5sec. However, our further investigation using Schottky diodes, processed
simultaneously with HEMTs, indicates that a very thin oxide layer is still present in be-
tween metal and semiconductor. IV measurements show that the current does not scale
with the device area for samples with 5sec. long HCI treatment. This is demonstrated
in figure 11.1a, in which the current density as a function of reverse bias is shown for
three diodes with different contact area. The saturated reverse current density differs
more than three orders of magnitude. This points to highly inhomogeneous current flow
through the diode which might be due to a higher probability of leaks in the interfacial
layer. Currents relatively well proportional to the diode area (figure 11.1b) were achieved
using longer, 15sec., HCI treatment prior to gate metallisation indicating qualitatively
better Schottky interfaces without leaks. A higher reverse current densities of diodes pre-
pared using longer HCI treated can be due to the surface conduction mechanisms and/or
the electron traps in GaN cap layer.

Additionally, the gate metallisation process was investigated and was found to in-
fluence significantly current collapse elimination. For metal deposition a conventional
electron beam evaporation system was used. Electron beam evaporation is a well estab-
lished technique extensively used both in industries and in research laboratories for the

deposition of optical materials, metals and semiconductors. The use of multi—crucible
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Figure 11.2: Overview of non—collapsed Schottky contact deposition over time.

electron beam sources allows the deposition of multilayers of up to four materials. A
quartz crystal thickness controller is used for programming multilayers as well as for the
automatic control of the thickness and of the deposition rate in each layer.

The most crucial process—phase is the first contact of evaporated metal atoms with the
semiconductor surface during the evaporation process. It is important to reach smooth
evaporation of the first atomic layers with the smallest deposition rate possible. Otherwise,
the surface can be hit by high—energy atoms resulting to formation of defect donors [136].
Smooth deposition can be achieved using careful adjustment of the electron beam power
prior to deposition (figure 11.2). P; is the power setting up the melting point of the metal
to be evaporated. Between t,,; and t,,2 the metal is melted in crucible. Melting time
has to be long enough to clear away all impurities absorbed by the metal from chamber
atmosphere. Afterwards, P, has to be adjusted to reach the required deposition rate.
This is the most important step, since the run should not exceed the P, value. Exceeding
P, leads to higher deposition rates of the first atomic layers producing donor defects at
the Schottky interface. Also, the stabilisation time before shutter opening has to be long
enough, usually up to a few minutes, to reach a constant deposition rate even for the first
metal atomic layers and not to deposit rests of impurities usually collected on top of the

melted metal.

11.2 Static and rf properties of non-collapsed HEMTs

The achieved improvements of technology process were utilised for fabrication of the
second set of HEMTs using the wafers F1435, F1438, and F1750 as in chapters 8 and 9.
The TLM measurements of the second set with longer HCl dip and adjusted metal de-
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Figure 11.3: Comparison of output and transfer characteristics (a) and gate cur-
rents (b) of collapsed and non-collapsed unpassivated samples.

position yielded similar sheet resistance, contact resistance, and specific resistivity values
compared to the first set. Considering this, the same ohmic contact behaviour of both sets
is considered. I would like to stress, that all presented data in this section were measured
on unpassivated samples.

Static measurements on GaN/AlGaN/GaN HEMTs with similar geometry from both
sets showed nearly identical output and transfer characteristics. This is demonstrated in
figure 11.3 a, in which typical IV and transconductance characteristics of undoped HEMTs
with a gate length of 0.7 um are shown. The saturation drain current (at V,; = 1V)
and the peak extrinsic transconductance were 0.73 A/mm and 185 mS/mm, respectively.
Devices on 5 x 10'® em ™ doped heterostructure exhibited partially higher values, 5% =
1.3A/mm and g, = 255mS/mm, which is in agreement with Hall effect data. The
threshold voltage of devices prepared with longer dip was systematically slightly higher
than for short-dip devices (AV;, = 0.25V). Figure 11.3b shows the two-terminal gate-
source leakage currents typical for undoped and doped GaN/AlGaN/GaN HEMTs from
both sets. Partially higher leakage currents for doped devices compared to undoped
ones are observed. However, remarkable higher leakage currents (about four orders of
magnitude) were measured on devices with longer surface treatment before the gate metal
was deposited. This might indicate again, that an interfacial insulating oxide is still
present in samples with short dip.

Small-signal microwave measurements yielded current-gain and power-gain cutoff fre-
quencies (fr and f,.., respectively) typical for AlGaN/GaN HEMTs. For example,
fr =20GHz and f,,4, = 45 GHz were measured on devices with a 0.7 x 200 um? gate.
No significant difference was found between devices with different surface treatment.

Presented dc results show, that there is no possibility to determine the presence of

current collapse in HEMTs from dc output and transfer characteristics or rf properties.
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Figure 11.4: Gate lag measurements on unpassivated undoped (Vys = 6V) and
5x 10 cm =2 doped (Vs = 8V') sample with short and longer HCI dip applying 5 s
gate—pulse width (a) and with longer HCI dip applying pulse width down to 50 ns.

The dc parameter which can indicate the presence of current collapse is the gate leakage

current. This fact is supported with gate lag measurements presented in next section.

11.3 Pulse measurements

Gate lag measurements in gate turn—on pulsing mode were performed to investigate
the current collapse. The gate-source voltage was pulsed from pinch-off to different
on-state Vi, values and the pulse width was from 5pus down to 50 ns (frequency range
0.2 — 20 M Hz). Gate lag measurements in the nano—second range were done in co—
operation with Prof. G.Meneghesso at the University of Padova in Italy and confirmed
our gate lag measurements in micro—second range.

Significantly different behaviour between devices from the two sets was observed. For
devices with short HCI treatment, the pulsed drain currents were much lower than corre-
sponding static values. In contradiction to that, the devices with longer HCI treatment
show negligible current collapse. This observation was similar for devices on doped and un-
doped structures. The obtained results are summarised in figure 11.4 a, in which recorded
pulses of the drain current are normalised to its static value. The devices were switched
from pinch-off state to V,; = 1V. Significant collapse (35% for undoped and 23% for
doped) was measured on devices with short surface treatment. In contradiction to that,
devices with longer HCI treatment show only negligible, if any, current collapse. These
longer—treated devices (undoped and doped) were also tested applying pulse widths down
to 50ns. The drain current collapse measured at 50 ns turn—on gate voltage pulse, showed
in figure 11.4 b, was less than 8% for undoped sample and the doped sample exhibits no

collapse of the drain current. The drain current of the doped sample in pulsed mode
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Figure 11.5: Dependence of the current collapse on gate leakage current.

was measured to be higher due to smaller self-heating in comparison to its static value
resulting to [7*"*° /I, ratio over 100%. Error bars represent the results obtained from 10
measured devices with L, = 0.3 um.

Measured dc/rf dispersion in undoped and doped samples depicted over the gate leak-
age current shows a clear dependence illustrated in figure 11.5. Here it is confirmed, that
current collapse is directly dependent on the gate leakage current where with smaller dc¢/rf
dispersion the gate leakage current is higher. This can be attributed to the presence of
electron traps within the GaN cap layer and/or to surface conduction mechanisms. A
higher conductivity between gate and drain/source contacts reflects into a large carrier
population within the cap layer, hence faster surface charge modulation (i.e. smaller dis-
persion at a given pulse width) is observed. However, the reduction or elimination of
the de/rf dispersion at certain frequency does not mean reduction (or elimination) of the
current collapse in the whole frequency range. It means a shift of a boundary frequency
where the current collapse starts to be observable towards higher frequencies. Our aim is

to move the boundary frequency of the current collapse above the work frequency range
of the HEMT.

11.4 Stress measurements

In order to investigate the reliability of these low-dispersion devices, long-term bias
stress measurements were performed. The output characteristics were measured by means
of a HP4142B semiconductor parameter analyzer before and after stress. Devices were

stressed for 12 hours at fully closed state of HEMTs (the gate-source bias was equal to
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Figure 11.6: Static output characteristics of unpassivated undoped (a) and 5 x
10*® ¢cm~3 doped (b) samples before and after 12h bias stress.

Viinech—off), the drain-source bias was chosen to be Vy, = 20V. The maximum drain
current value before/after stress was 0.76/0.73 A/mm and 1.31/1.30 A/mm for undoped
and 5 x 10'® em ™3 doped samples, respectively. This corresponds to a maximum decrease
of 3.9% for undoped sample and of 1.2% for 5 x 10®¥ cm™ doped samples (see figure
11.6). This is a significantly lower degradation compared to 37% decrease of maximum
drain current published by H. Kim et al. on AlGaN/GaN/SiC HEMTs stressed for 12h at
the same bias conditions of Vs = 20V and V,, = —6V [117]. A decrease of the extrinsic
transconductance of 4.9% and 2.3% (undoped and 5 x 10'® cm™ doped, respectively) after

the stress confirms the results of drain current decrease. The rf and large signal perfor-
mances of undoped samples were also investigated and show insignificant degradation of
less than 5% after the stress.

In order to evaluate the drain current compression (C'C)), consecutive current sweeps
before and after long—term stress were measured. Two dc sweeps, one directly after
another, were measured before and after the stress was applied. Figure 11.7 shows the
detailed view on sweeps measured at Vs = +1V before an after stress. The current
compression was evaluated as the maximum percentage current decrease between two
consecutive sweeps (CC = (I5{" — I55%)/I5{"). A maximum drain-current decrease of 0.1-
1.2% before and after stress, independently on the doping level, was measured. This
is a one order of magnitude lower decrease in comparison to published data for MBE
grown AlGaN/GaN/SiC HEMTs with a decrease of 1-41% after 16 h stress measured at
Vis = 30V and I; = 200mA/mm |72].

The negligible degradation of static output and transfer characteristics after 12 hours
of bias stress supports the thesis of performance improvements of devices with longer

HCIl treatment and using adjusted gate metal deposition. These results also demonstrate

20
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Figure 11.7: Drain current compression of unpassivated undoped (a) and 5 x
10'® cm =2 doped (b) samples before and after 12h bias stress.

that surface treatment under the Schottky contact is a crucial processing step in the

preparation of reliable GaN-based HEMTs.

Properties of AlGaN(GaN) Schottky interfaces, applying different surface treatment

before gate deposition have been reported also by other groups [129-133]. Various effects

like an increase of surface Ga(Al)/N ratio, i.e. creation of N vacancies [129-131]| or inter-

face oxides [132,133] and models like defect-assisted tunnelling [134], hopping conduction

through threading dislocation [135] and field emission through thin surface barrier [131]

are discussed as a possible current collapse reason. We believe that the existence of a

thin interfacial oxide layer lowers the gate leakage but the trapping effects at the interface

and/or within the GaN cap layer are responsible for larger current collapse. However,

trapping effects and conduction mechanisms at the surface apart from the gate can play

an additional role.



Chapter 12
Gate Leakage Current Reduction

The previous chapters showed considerable improvement of the static and output
power properties using surface passivation, an increase of the breakdown voltage using
field plate technology, and remarkable elimination of the current collapse by improvement
of our technology process. Results showed, that with elimination of the current collapse
the gate leakage current increases, which is contrary to our requirements of the smallest
gate leakage possible (see chapter 11). A possible solution for the gate leakage current
reduction is the fabrication of MISHFET devices using a thin insulation layer applied
under the gate electrode. This layer acts as an additional barrier which decreases the
leakage current and has also the function to passivate the surface. The thickness of this

layer used to be less then 15nm not to loose the gate control function.

Within the bounds of this work a technology process was developed to fabricate
MOSHFETs, which was presented in chapter 6. As an insulator, a 10nm thin SiO,
layer was used deposited by PECVD on top of the undoped layer structure without GaN
cap (52661). HEMTs and MOSHFETS were fabricated simultaneously to have the possi-
bility to compare them in between. The thickness of the oxide layer was evaluated using

the measured CV characteristics shown in figure 12.1 and utilizing equation:

1 1 1
+ (12.1)

Cros Cus | Cox

where Ch0s is the measured capacitance of the planar MOS diode at zero bias, Cysg
is the measured capacitance of the planar Schottky diode at zero bias on the same layer
structure, and Cpx is the oxide capacitance required for evaluation of the oxide thickness.

Then the thickness of the oxide is given by:

ox ox
dox = CA—-—— . A 12.2
OX ™ Cuos Cus (12.2)

for the Schottky diode with the surface area A. The calculated thicknesses of the AlGaN
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Figure 12.1: Comparison of CV characteristics measured on MOS structure and
Schottky diode using the same layer structure.

buffer layer and the SiO, layer are 29.54nm and 11.62nm, respectively, using relative
permittivities of € 4.y = 9.2 and eox = 3.9 [103,104]. This is in a good agreement, with
nominal values of 30 nm and 10 nm given for AlGaN buffer and SiO, layer, respectively.

The output characteristics of MOSHFETSs showed 30 % increase of drain saturation
current in comparison to HEMT structures (see figure 12.2). This is due to the influence
of the SiO, insulation layer as a surface passivation confirmed also by Hall effect measure-
ments where the MOS-structures exhibit an increase of 1.3x 102 cm ™2 for the 2DEG sheet
carrier concentration in comparison to unpassivated structures. Due to the considerable
decrease of the gate capacitance (shown by CV measurements) and slightly decreased
extrinsic transconductance, an increase of the cut—off frequency fr is expected resulting
from equation 4.26. The g,, parameter would be expected to decrease in MOSHFET
rapidly, however the increased sheet carrier concentration in the channel and increased

I5* pushed the extrinsic transconductance up.
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Figure 12.2: Comparison of output (a) and transfer (b) characteristics of MOSH-
FETs and HEMTs simultaneously fabricated on the same layer structure.
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This was confirmed by rf measurements where the device with the gate length of 0.7 um
and the source-drain distance of 3 um exhibits fr = 20.2 GH z for MOSHFET in compar-
ison to 15.2 GHz for standard HEMT.

But the main reason for the MOSHFET development was a reduction of the gate
leakage currents. Therefore, two terminal gate-source IV characteristics of MOSHFETs
were measured and compared to the IV characteristics of HEMTs (shown in figure 12.3).
Measurements showed a rapid decrease of the gate leakage current from 2.99 x 107¢ A /mm
to 8.74 x 107'% A /mm, measured at Vs = 0V and V,; = =5V, using MOSHFET process-
ing technology. Beside an increase of the drain saturation current and the current gain
frequency this is the most important improvement of our device. But still, additional
investigation is needed to improve the long-term reliability and to eliminate MOSHFETs
degradation which involves the development of very thin high—x insulators suitable for
AlGaN/GaN heterostructures.

L,=0.9um, W =200um, S_D=4.0um
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Figure 12.3: Two terminal gate-source IV characteristics of MOSHFET vs.
HEMT.
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Chapter 13

AlGaN/GaN HEMT

"Made in Forschungszentrum Julich"

An increasing interest in AIGaN /GaN heterostructures lead to an assembly of MOVPE
grown GaN-based layer structures under leadership of Dr. H. Hardtdegen at our institute.
During the last period, suitable AlIGaN/GaN growth process was developed and improved.
This resulted in the successful growth of GaN/AlGaN/GaN/Sapphire heterostructure
[99,100]. The grown layer structure consists of n.i.d. GaN buffer layer followed by a
30nm thin n.i.d. Aly3GagrN and covered by a 3nm n.i.d. GaN cap. The sheet carrier
concentration of 7.82 x 1012 cm ™2 and the mobility of 1738 cm?/Vs were measured by room
temperature using Van der Pauw patterns with area of 0.3 x 0.3mm?. The sheet carrier
concentration and mobility of 8.81 x 102 ecm™2 and 1753 cm?/Vs, respectively, evaluated
from CV and TLM measurements are in a good agreement with Hall effect measurements.
The standard HEMT technology process described in appendix A was used for device
fabrication. The ohmic contact resistance and the sheet resistance evaluated using TLM
pattern yielded 5.89 Q2mm and 393€)/sq., respectively. All results showed very good

homogeneity and planarity of the layer structure.

Output characteristics showed in figure 13.1 exhibit the saturation drain current of
0.77 A/mm, the extrinsic transconductance of 185 mS/mm, and the threshold voltage of
—4.5V. These results are comparable with published results using AlIGaN/GaN /Sapphire
HEMTs where I35 from 0.46 A/mm to 0.95 A/mm and g, from 150 m.S/mm to
236 mS/mm were published [10,61,62,101,102]. The gate leakage currents were measured
to be 2.71 x 1075 mA/mm at Vs = —6V and Vy, = 0V, respectively. The dependence
of the current gain frequency fr and maximum frequency of oscillation f,,., on the gate
length of HEMTs is shown in figure 13.2. The device with the gate length of L, = 0.3 um

showed a maximum cut—off frequency of 38.6 GH z.

These results show that we are able to produce GaN-based devices beginning with the
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Figure 13.1: Output (a) and transfer (b) characteristics of HEMTs "Made in
FZ-Juelich".

growth process, going on with the application of the device technology down to sub-micron
dimensions, and ending with the device measurement and characterisation. Nowadays,
the growing procedure of AlGaN/GaN heterostructures with alternative substrates is
under development at our institute. HEMT and MOSHFET processing technology will
be introduced using these structures with the aim to eliminate negative influences of the

substrate mismatch.
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Chapter 14
Conclusion

The III-Nitrides were intensively studied during the last few years due to its tunable
band gap range from 0.7eV for InN to 6.2¢eV for AIN. In comparison to other systems
[TI-Nitrides have a much smaller lattice constant and therefore are mechanically stable
materials with high breakdown fields. Thanks to these properties are good candidates for
possible applications in the field of high—temperature, —-power and —frequency electronics.

Aim of this work was to investigate physical properties and technological parameters
of AlGaN/GaN HEMTs on SiC substrate. By means of optimisation of the technology
process and the geometry of devices the better static, small-signal, and large—signal prop-
erties should be reached. Characterisation of fabricated HEMTs required good knowledge
of standard as well as novel measurement techniques adapted for AlGaN/GaN material
system connected with the investigation of various effects, special for GaN-based het-
erostructures.

This work was divided into three parts. The first one contains an introduction fol-
lowed by present status analysis and the definition of the main tasks to be accomplished.
The second part covers the theory of gallium-nitrides, explains the formation of het-
erostructures using AlGaN/GaN, introduces the basic principles of high electron mobility
transistors, followed by a discussion of special effects concerning the GaN-based material
system. The final part consists of chapters 6 to 13 describing the technological processes
and geometrical variations used for device fabrication, outlines the characterisation of fab-
ricated HEMTs, and discusses the measured effects with respect to worldwide published
data. This part is the most important part of the work. Finally, the work is closed with

a conclusion.

The technological process developed in this work was derived from a HEMT fabrication
process already established at our institute. After forming the mesa islands using Ar*
sputtering the ohmic contacts were prepared by rapid-thermal annealing of Ti/Al/Ni/Au
multilayer at 850°C for 30s. The Ni/Au Schottky contacts were patterned by e-beam
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lithography. Devices with a gate length of 0.3—0.9 um and a gate width of 50—300 um (two
fingers) were prepared. Van der Pauw patterns with an active area of 0.3 x 0.3 mm? were
processed simultaneously with the HEMT devices. The standard process was improved
within the bound of this work by additional processes containing MOSHFET processing,
surface passivation, air bridge technology, and field plate processing. The mask layout
called "Mega HEMT" was specially designed for the purposes of this work. Using this
mask, HEMTs on undoped and doped layer structures were manufactured. Later, the new
mask set with changed geometrical dimensions of HEMTs called "Power 2" was developed.
This new layout enabled us to investigate the field plate technology resulting in higher
output power of HEMTs.

The used layer structures were grown on SiC substrates using Metal Organic Vapour
Phase Epitaxy (MOVPE) according to our specifications. Layer structures were divided
into two main categories: non—intentionally doped (n.i.d. or undoped), and intentionally
doped structures. The doping level of the doped structures was chosen to be 2 x 10*® cm =3
and 5 x 10 cm™ using Si as N—type dopant. The layer structures were characterised

using standard characterisation methods such as Hall effect, TLM, and CV measurements.

Improved properties of intentionally doped structures in comparison to undoped ones
were observed using Hall effect measurements [118]. Increasing sheet carrier concentration
in 2DEG of ~ 7.0 x 102cm™2, ~ 8.2 x 102 e¢m™2, and ~ 9.7 x 102 cm~2 were measured
for undoped, 2 x 10" cm™ doped, and 5 x 10'® cm™ doped samples, respectively. The
mobility of electrons was determined to be 1930 cm?/Vs, 1780 cm?/Vs, and 1663 cm?/Vs
for undoped, 2 x 10'® em~2 doped, and 5 x 10'® cm~2 doped samples, respectively. These
results confirmed that layer structures were well grown with high mobility and high sheet

carrier concentration in two—dimensional gas.

Static (dc) measurements on unpassivated devices exhibited improved properties of
HEMTs fabricated on doped layer structure which is in agreement with Hall effect mea-
surements [121]. Devices on undoped structure yielded values of I5* = 0.73 A/mm and
gm = 185mS/mm. In comparison, 2 x 10 cm™3 doped layer structures showed values
of I5% = 1.06 A/mm and g,, = 214mS/mm and 5 x 10" cm™3 doped layer structures
resulted in values of I3 = 1.12 A/mm and g,, = 207mS/mm. On the other side, the
doped structures exhibited lower breakdown voltage connected with higher gate leakage
current.

The small-signal measurements showed advantageous behaviour of undoped layer
structures. The HEMTs with the gate-length of 0.3 um (W, = 200 um, S_D = 3 um)
fabricated on undoped layer structure exhibited a cut—off frequency of 42.6 GHz in com-
parison to 35.8 GHz and 30.8 GHz measured on 2 x 10'® cm~2 doped and 5 x 10*® cm ™3

doped layer structures, respectively.
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The current collapse phenomenon was investigated using gate lag measurements for
undoped and doped samples. All unpassivated devices showed drain current collapse
(or de/rf dispersion) between 35% and 23 % at 5 pus pulse width. The drain current in
pulse mode was found to be dependent on the doping concentration of the barrier layer
where with increased doping level the current collapse decreased. This collapsed behav-
iour was confirmed by output power measurements at 7 GHz where the output power
of 2.95W/mm, 4.45W/mm, and 7.58 W/mm was measured on undoped, 2 x 10'® cm™
doped, and 5 x 10'® cm~2 doped layer structures, respectively. These values are far below
the theoretically expected values of 12 W/mm calculated for Al1GaN/GaN heterostructure.

Further improvement of static and large-signal properties was achieved using a 150 nm
thick SisNy surface passivation layer. Hall effect measurements showed a higher sheet
carrier concentration in the channel and a slightly lower decrease of electron mobility [118].
The increase of the product ns x u, in undoped layer structures was more pronounced
(8.9%) in comparison to doped layer structures (3.4 % for 5 x 10" cm ™2 doped structure).
These results were in good agreement with the drain current increase and the shift of the

threshold voltage to more negative values.

The positive influence on the surface states in between drain and source electrode
using surface passivation resulted in a decrease of the current collapse at 5 us pulse width
to 14 % and 11 % for undoped and 5 x 10'® cm™3 doped structure, respectively. An exact
explanation of the phenomenon is not entirely clear until now but a widely accepted
explanation is that natural donor—like surface states are the source of electrons collected
in the 2DEG. Therefore, a change in surface states is mirrored into a change of the ng
in the 2DEG. Nevertheless, the non—collapsed samples suffered from high gate leakage
currents. Developed MOSHFETS provided a suitable solution of this problem with better
static and rf behaviour in comparison to HEMTs and four orders of magnitude lower gate
leakage current in comparison to HEMTs [122]. However, further investigation is required

for improved characterisation of MOSHFETSs properties.

Improvement of the static and pulse behaviour resulted to remarkably improved output
power. A 88 Y% increase of the output power for passivated undoped samples, and a 48 %
increase for 5 x 10'® em™3 doped samples was measured. This represents a maximum
output power of ~ 9 W /mm measured on 5 x 10'® cm™ doped sample. This value is fully

comparable with worldwide published results.

Surface passivation was not the only investigated approach for improvements. A bar-
rier to further output power increase is still the low breakdown voltage. Using the ATLAS
simulation package the location of peak electric field in the under gate region was found

and eliminated using field plate technology. A 31 % decrease of the electric field peak was
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simulated and the breakdown voltage improvement in real HEMT was measured. This
resulted in further output power increase with an excellent measured value of 12 W /mm
in undoped and doped samples. This is an improvement of over 300 % for undoped and

almost 60 % for 5 x 10'® ecm™3 doped samples in comparison to unpassivated samples.

In spite of these remarkable results, current collapse was still present in measured
samples. Detailed study of our technological process, specifically the gate contact process-
ing and pre—deposition surface cleaning, were found to be crucial regarding the current
collapse. An extended HCI treatment prior to metal deposition and adjusted metal depo-
sition resulted to samples with negligible, if any, current collapse down to GH z frequency
range (ns pulses) [121,123]. The undoped samples exhibit a current collapse of under 8 %
while the 5 x 10'® em 2 doped sample have no current collapse at all at 50 ns pulse width.
Furthermore, a direct dependence of the gate leakage current on the current collapse was
observed: With decreasing current collapse (better rf performances) the gate leakage cur-
rent increased [125]. This can be attributed to the presence of electron traps within the
GaN cap layer and/or to surface conduction mechanisms. A higher conductivity between
gate and drain/source contacts reflects into a large carrier population within the cap layer,
hence faster surface charge modulation (i.e. smaller dispersion at a given pulse width) is
observed.

The long term reliability of the devices was also tested on non—collapsed samples.
Negligible degradation below 3.9 % was measured after 12 hours off-state bias stress what
was a one order of magnitude smaller degradation in comparison to data of recently

published papers applying the same stress conditions [124].

Finally, the GaN-based research culminated in the fabrication of AlGaN/GaN HEMTs
including MOVPE growth of undoped AlGaN/GaN heterostructure on sapphire substrate
at our institute. The process consisted of the growth of layer structure, manufacturing
of devices, and finally the electrical characterisation. Results showed fully comparable
behaviour of these HEMTs with those worldwide published in literature.

Even though this work presents a major progress in GaN-based material system and
processing there are still questions related especially to long term reliability (in months and
years) which have to be answered. The reliability also seems to be the last barrier before
industrial production of AlIGaN/GaN HEMTs. By now, industrial companies announced
wholesale production for the year 2006 what presents the AlGaN/GaN material system

as a future candidate for research and industry.



Chapter 15
Zusammenfassung

Gruppe IlI-Nitride sind in der letzten Zeit besonders untersucht worden wegen ihres
einstellbaren Bandabstandes von 0,7 eV fiir InN bis 6,2 eV fiir AIN. Im Vergleich zu an-
deren Systemen haben Gruppe III-Nitride einen deutlich kleineren Gitterabstand, und
darum sind sie mechanisch stabiler und haben héhere Durchbruchfelder. Aus diesen
Grund sind Gruppe III-Nitride geeignete Kandidaten fiir Hochtemperatur-, Leistungs-,
und Frequenz-Anwendungen.

Das Ziel dieser Arbeit ist die Untersuchung von bauelementphysikalischen und prozess-
technologischen Parametern von AlGaN/GaN- High Electron Mobility” Transistoren
(HEMTs) auf SiC-Substraten. Durch eine Optimierung des Technologie Prozesses und der
Geometrie der Bauelemente sollen damit das elektrische (dc), das Klein-Signal-Verhalten
und die Grofs-Signal Eigenschafen verbessert werden. Messung und Charakterisierung
der Parameter der hergestellten Transistoren erfordern gute Kenntnisse von etablierten
und von neuen, auf das AlGaN/GaN Materialsystem angepassten Messtechniken. Damit
ist es moglich, unterschiedliche Effekte, die speziell bei GaN-basierte Heterostrukturen
auftreten, zu untersuchen.

Die Arbeit besteht aus drei Hauptteilen. Der erster Teil umfasst die Einleitung, die
Analyse des derzeitigen Status der Forschung und stellt die Ziele der Arbeit vor. Der
zweite Teil beschreibt theoretisch Gallium-Nitrid (GaN), die Entstehung des Zweidimen-
sionalen Gases (2DEG) in Al1GaN/GaN Heterostrukturen und das Grundprinzip von ,High
Electron Mobility” Transistoren. Diskutiert werden auch Effekte, die speziell bei GaN-
basierten Materialsystemen auftreten. Der letzter Teil stellt die Technologie Prozesse
und die einzelnen Transistoren vor, beschreibt die Messungen und diskutiert die ermittel-
ten Daten. Diese werden im Anschluss mit Daten aus der internationalen Fachliteratur

verglichen. Eine Zusammenfassung beschliefit die Arbeit.

Die Prozesstechnologie, die im Rahmen dieser Arbeit entwickelt wurde, ist von der in

unserem Institut etablierten Standard-HEMT-Prozesstechnologie abgeleitet. Die Mesa—
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Inseln wurden mittels Ar™ Sputtern definiert, gefolgt von der Einlegierung der Ohmschen
Kontakten aus Ti/Al/Ni/Au bei 850 °C' fiir 30s. Schottky Kontakte (Ni/Au) wurden mit
Hilfe der Elektronenstrahl Lithographie definiert. Auf diese Weise wurden Gate—Léngen
von 0,3 — 0,9 um und Gate-Breiten von 50 — 300 um (zwei Finger) hergestellt. Van
der Pauw Muster mit einer aktiven Fliche von 0,3 x 0,3mm? wurden zusammen mit
den HEMT-Bauelementen produziert. Diese Standard-Prozesstechnologie wurde spéiter
um die MOSHFET! Prozesstechnologie, Oberfliichen-Passivierungsprozesse, Luftbriicken-
Technologie und ,Field plate”™Prozesstechnologie erweitert. Um die Prozesstechnolo-
gie durchzufiihren, war eine Maskensatz fiir optische und Elektronenstrahl Lithographie
notwendig. Der Maskensatz ,MegaHEMT” ist speziell fiir diese Arbeit entwickelt und fiir
die Herstellung von nicht-dotierten und dotierten HEMT genutzt worden. Spater wurde
ein neuer, optimierter Maskensatz ,,Power 2”7 entwickelt, mit dessen Hilfe die HEMT-
Eigenschaften verbessert und die Realisierung der ,Field plate™Technologie erméglicht
wurde.

Wie schon erwdhnt wurde, fiir die Herstellung und die Experimente wurden nicht-
dotierte und dotierte Strukturen benutzt. Die von uns definierten AlGaN/GaN Schichten
wurden auf SiC-Substraten durch die ATMI Inc. mittels MOVPE? Epitaxie epitaktisch
deponiert. Hierbei ist eine Dotierung mit Silizium als n-Dotierungstyp von 2 x 10*® ¢m ™3
und 5 x 10 cm ™3 gewihlt worden.

Die epitaktisch deponierten Schichtstrukturen wurden mit Hall Messungen, TLM-3
und CV-*Messungen charakterisiert. Die Hall-Effekt-Mefergebnisse wiesen auf verbesserte
Eigenschaften der dotierten Strukturen im Vergleich zu nicht-dotierten hin [118]. Die
gemessene Elektronendichte im 2DEG war ~ 7,0 x 102 ¢cm~? fiir nicht-dotierte, ~ 8,2 x
102 cm™2 fiir 2 x 10'¥ em ™2 dotierte, und ~ 9,7 x 102 em=2 fiir 5 x 10® cm ™3 dotierte
Proben. Die Beweglichkeit der Elektronen im Kanal war 1930 cm?/Vs fiir nicht-dotierte,
1780 cm?/ Vs fiir 2 x 10'® cm ™ dotierte, und 1663 cm?/Vs fiir 5 x 10'® em ™ dotierte Struk-
turen. Eine hohe Elektronendichte und hohe Beweglichkeit im Kanal bestétigten die gute
Qualitédt der Proben.

Gleichstrom-Untersuchungen der nicht-passivierten Transistoren haben bestétigt, dass
dotierte Proben im Vergleich zu nicht-dotierten bessere Eigenschaften aufweisen [121]. Bei
nicht-dotierten Strukturen wurde 5% = 0,73 A/mm und g,, = 185mS/mm gemessen,
im Vergleich zu 2 x 10®¥ cm™3 und 5 x 10'® cm ™3 dotierten Strukturen, wo bessere Gle-
ichstromwerte I3 = 1,06 A/mm, g, = 214mS/mm und I3* = 1,12A/mm, ¢, =
207mS/mm gemessen wurden. Gleichwohl wurden niedrigere Durchbruchspannungen

und hohere ,Gate Leakage” Strome fiir dotierte Strukturen beobachtet, was die Eigen-

'HEMT mit MOS gate

2Metal Organic Vapour Phase Epitaxy
3Transmission Line Model
4Kapazitit-Spannung
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schaften verschlechtert.

Bei den Kleinsignal Messungen konnten hohere ,cut-off” Frequenzen fiir nicht-dotierte
Proben nachgewiesen werden. 42,6 GHz wurde fiir nicht-dotierte Proben mit L, =
0.3um, Wy = 200pum, S_D = 3 um gemessen, im Vergleich dazu wurden 35,8 GHz
und 30,8 GH z fiir 2 x 10®¥ ¢cm™3 und 5 x 108 cm =2 dotierte Proben gemessen.

Das unerwiinschte Kollabieren des Drain Stromes, typisch fiir AlGaN/GaN-Hete-
rostrukturen, wurde mit der ,GGate lag” Messmethode untersucht. Nicht passivierte Proben
zeigten einen Kollaps zwischen 35 % und 23 % fiir 5 s lange Pulse. Es konnte gezeigt wer-
den, dass der Kollaps abhéingig von der Dotierung der Barrierenschicht ist. Mit erhéhter
Dotierung der Barrierenschicht sinkt der Kollaps, was auch durch Leistungs-Messungen
bestétigt werden konnte. Die Leistung bei 7 GHz war 2,95 W /mm fiir nicht-dotierte,
4,45 W/mm fiir 2 x 10" em ™2 dotierte, und 7,58 W/mm fiir 5 x 10'® cm~3 dotierte Struk-
turen. Dennoch lagen die gemessenen Leistungen tief unter dem theoretisch zu erwartete
den Wert von 12 W/mm.

Eine weitere Verbesserung der Gleichstrom- und Leistungs-Kennzahlen konnte durch
die Passivierung der Oberflichen mit einer 150 nm dicken SizN, Passivierungsschichte er-
reicht werden. Die Hall-Effekt-Messungen wiesen eine héhere Konzentration von Ladungs-
tragern im Kanal und nur eine kleine Senkung der Elektronen-Mobilitdt nach [118|.
Das Produkt n, x p, war deutlich um 89% in nicht-dotierte Strukturen verbessert,
im Vergleich zur Verbesserung um 3,4% in 5 x 10 ecm ™2 dotierten Strukturen. Diese
Ergebnisse stimmen mit der Vergroferung des Drain-Stromes und der Verschiebung den

Schwellenspannung iiberein.

Die Oberflichenpassivierung beeinflusst die Oberflichenzustdanden und fiithrt zur Sen-
kung des Stromkollapses bei 5us Pulsen auf 14 % fiir nicht-dotierte und auf 11 % fiir
5 x 10¥ em~3 dotierte Strukturen. FEine exakte Erklirung des Phinomens ist derzeit
auch in einschligiger Literatur nicht zu finden. Wir denken, dass Anderungen der Ober-
flichenzustinde sich in Anderungen der Konzentrationsdichte von Elektronen im Kanal
wiederspiegeln. Dies stimmt mit der breit akzeptierten Erklirung iiberein, dass Donator-
Zustande an der Oberfliche die Quelle von Kanalelektronen sind. Auf der anderen Seite
weisen Bauelemente mit kleinem Stromkollaps hohere Gate-Strome auf. Die untersuchten
MOSHFET-Strukturen wiesen bessere Gleichstrom- und Hochfrequenz-Eigenschaften auf
im Vergleich zu normalen HEMTs. Der Gate-Strom von MOSHFET-Strukturen war
vier Grokenordnungen kleiner als der von normalen HEMTs [122]. Aber die vollstidndige
Charakterisierung von MOSHFETs ist noch nicht beendet und erfordert weitere Unter-

suchungen.

Eine Verbesserung von Gleichstrom- und Puls-Eigenschaften fiihrt zur Verbesserung

der Leistungseigenschaften um 88 % in der nicht-dotierten Proben und um 48 % in der
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5 x 10" cm™ dotierten Proben. In absoluten Zahlen bedeutet dies 9 W/mm fiir die
5 x 108 cm ™2 dotierten Proben. Den Wert ist vergleichbar mit weltweit verdffentlichten

Leistungen.

Die Oberflichenpassivierung ist nicht der einzige Ansatz, der untersucht wurde. Ein
weiteres Hindernis fiir eine verbesserte Ausgangs-Leistung ist die immer noch relativ
kleine Durchbruchspannung. Mit dem ATLAS-Simulationsprogramm konnten die Max-
ima des elektrischen Feldes, die den Durchbruch verursachen, in der Region unter dem
Gate lokalisiert und mit der ,field plate”-Prozesstechnologie eliminiert werden. Die Max-
ima des elektrischen Feldes sind laut Simulation um 31% gesunken und damit konnte
die Durchbruchspannung erhéht werden. In der folge sind die exzellenten Werte von
12W/mm Ausgang-Leistungen bei nicht-dotierten und dotierten Proben erreicht wor-
den. Das bedeutet eine Verbesserung von 300 % bei nicht-dotierten und fast 60 % bei

dotierten Proben im Vergleich zu nicht passivierten Bauelementen.

Trotz der vorgestellten, positiven Ergebnisse zur Minimierung des Stromkollaps, war
er immer noch in den Strukturen vorhanden. Unsere detaillierten Untersuchungen zielten
daher auf eine weitere Verbesserung des Technologieprozesses, speziell der Aufdampfung
des Gate-Kontaktes und der Reinigungsprozedur der Oberfliche vor der Aufdampfung.
Eine lingere Behandlung in Salzsdure kurz vor der Aufdampfung des Metalls fiihrt zu
Transistoren mit vernachléssigbar kleinem oder gar keinem Strom-Kollaps bis in den
GH z Frequenzbereichs (ns Pulses) [121,123]. Bei undotierten Proben wurde ein Kol-
laps von 8 % nachgewiesen, und bei 5 x 10'® cm™ dotierten Proben konnte kein Kollaps
bei 50 ns Pulsbreite beobachtet werden. Dariiber hinaus wurde folgende Abhéangigkeit des
Strom-Kollapses von den Gate Stromen beobachtet: mit sinkendem Kollaps (bessere rf
Eigenschaften) sind die Gate-Strome gestiegen [125]. Das kann durch Defekte in der ,GaN
Cap” Schicht und/oder durch Leitungsmechanismen an der Oberfliche verursacht worden
sein. Eine hohere Leitfahigkeit zwischen Gate- und Source/Drain-Elektroden fithrt zu
einer schnelleren Besetzung der Zustidnde innerhalb der ,Cap”Schichten und damit zu

einer schnelleren Ladungsmodulation (kleinere ,Dispersion”).

Die Zuverlassigkeit der hergestellten Bauelemente iiber lingere Zeitrdume wurde an
Proben ohne Kollaps getestet. Die Strukturen wurden fiir 12 Stunden bei ,,Pinch-off” Be-
dingungen unter Spannung gesetzt. Nach dem Zyklus konnten fiir die HEMTs nur eine
geringe Degradierung unter 3,9 % nachgewiesen werden. Das ist eine um eine Groéfenord-
nung kleinere Degradierung als bei veroffentlichten Daten mit den selben Stress Bedin-
gungen [124].

Das ganze auf AlGaN/GaN/Saphire Heterostrukturen basierte Bauelement kann an
unserem Institut hergestellt werden. Der Prozess umfasst das AlGaN/GaN Wachstum,
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die Herstellung von HEMTs und die elektrischen Charakterisierung. Die gemessenen
Ergebnisse sind in jeder Beziehung mit verdffentlichten Daten vergleichbar, was auf die
gute Qualitit des gesamten Prozesses hindeutet.

Diese Arbeit prasentiert wichtige neue Entwicklungsschritte in GaN-basierten Prozessen
und Technologien fiir die HEMT-Herstellung. Jedoch gibt es noch offene Fragen, speziell
zur Langfrist—Zuverlissigkeit, die beantwortet werden miissen. Die Langfrist—Zuverléssig-
keit scheint die letzte Barriere zu sein fiir die industrielle Produktion von AlGaN/GaN
HEMTs. Jetzt schon kiindigt die Industrie die Produktion fiir 2006 an, damit bleibt das
AlGaN/GaN Material System ein guter Kandidat fiir zukiinftige Produktionstechniken.
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Appendix A

Standard HEMT Processing

A.1 Mesa etching

[y

. Sample Drying (Plate, Temperature: 180°C)

2. Photo-resist Deposition

(a) Resist: AZ5214, 4000rev./min
(b) Harden: 90°C, Time: 5min

3. Removing of the Side Resist

(a) Exposure
(b) Development: AZ400K (1) : HyO(4)

4. Mesa definition

(a) Exposure
(b) Development: AZ400K (1) : HoO(4)
(c) Resist hardening

ot

. Etching: Ar" (Bias: 500V, Current density: 0.5mA /mm?)

A.2 Ohmic Contacts Fabrication

1. Sample Cleaning (Acetone-+Propanol, Oxygen Plasma, HF solution,
HCI solution, N Hj

2. Photo-resist Deposition
3. Removing of the Side Resist

4. Ohmic Contacts Definition
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(a) Exposure

(b) Development: AZ400K (1) : H,O(4)
5. HCI Dip
6. Metallisation: Ti(35nm) / Al(200nm) / Ni (40nm) / Au (100nm)
7. Lift-off

8. Thermal Annealing (Temperature: 900°C, Time: 30sec, Atmosphere: Ny)

A.3 Schottky Contact Fabrication

1. Resist Deposition

(a) Resist: PMMA 600
(b) Resist: PMMA 200
(c) Resist: PMMA 600

E-Beam Photo-Lithography
E-Beam development

HCI Dip
Metallisation: Ni(25nm) / Au(100nm)

S A

Lift-off

A.4 Pads Fabrication

1. Photo-resist Deposition
Removing of the Side Resist
Pads Definition

Metallisation: Ti(50nm) / Au(300nm)

A

Lift-off
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MOSHFET Processing

B.1 Mesa etching
B.2 Ohmic Contacts Fabrication
B.3 Pads Fabrication

B.4 Deposition of isolation layer

1. PECVD deposition of the SiO5 (10nm, 300°)
Photo-resist Deposition

Removing of the Side Resist

Definition of the Windows to be Open

RIE in O5 plasma

S A

Removing of the resist (Acetone & Propanol)

B.5 Schottky Contact Fabrication
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Appendix C
Air Bridge Technology

1. First Photo-resist Deposition (AZ4562, 5000rev./min) and Harden (90°C)
2. Removing of the Side Resist
3. First Resist Layer Pattern (Mask Air-Bridge 1):

(a) Exposure

(b) Development: AZ400K (1) : HyO(4)

Harden: 120°C

Metallisation: Au(100nm) / Ti(20nm)

Second Photo-resist Deposition (AZ4562)
Removing of the Side Resist

Second Resist Layer Pattern (Mask Air-Bridge 2)

R

Harden: 110°C

10. Removing of the Ti Layer: HF (1) : H,O(2)

11. Galvanisation (I=25mA, T=60°C, t=25min)

12. Removing of the Second Resist (AZ100 remover)
13. Removing of the 100nm thin Au layer

14. Removing of the First Resist (AZ100 remover)
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Appendix D

ATLAS Simulation Programmes

D.1 AlGaN/GaN HEMT simulation

go atlas

#

# AlGaN/GaN HEMT

#

# SECTION 1: Mesh input
#

mesh

x.mesh loc=0.0 spac=0.5
x.mesh loc=4.0 spac=0.01
.mesh loc=5.5 spac=0.01
.mesh loc=10 spac=0.b

.mesh 1o0c=0.0 spac=0.05
.mesh 1loc=0.030 spac=0.0001

.mesh loc=0.1 spac=0.0b

SECTION 2: Structure Specification

H O H O H < <9< < H MK M

region num=1 material=GaN y.min=0.03

region num=2 material=AlGaN y.max=0.03 x.comp=0.3

#

elec num=1 name=source x.min=0.0 x.max=3 y.min=0.0 y.max=0.0

elec num=2 name=gate x.min=4 x.max=4.5 y.min=0.0 y.max=0.0
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elec num=3 name=drain x.min=7 x.max=10 y.min=0.0 y.max=0.0
#
doping region=1 uniform n.type conc=1.0elb

doping region=2 uniform n.type conc=1.0el6

#

interface charge=-1.00e13 s.s y.min=0.030
#

# SECTION 3: Material Models

#

material material=A1GalN align=0.8

material material=GaN align=0.8

#

material material=A1GalN affinity=3.82 eg300=3.96 permittivity=9.5 mun=600 mup=10
nc300=2.07e18 nv300=1.16e19

material material=GalN eg300=3.40 permittivity=9.5 mun=900 mup=10 nc300=1.07e18
nv300=1.16e19 vsat=2e7

#

models fixed.fermi calc.fermi
#

contact name=gate workfunction=4.5
#

# SECTION 4: 1Initial solution
#

solve init

#

# SECTION 3: Bias gate, drain
#

method gummel newton block
output e.field val.band con.band
solve vgate=-2.8 vdrain=50.0
save outf=hemt-2deg.str

tonyplot hemt-2deg.str

#

quit
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D.2 Simulation of AlGalN/GaN HEMT with 50 nm SisN,

passivation layer

go atlas

#

# Si3N4 passivated AlGaN/GaN HEMT
#

# SECTION 1: Mesh input

#

mesh

x.mesh loc=0.0 spac=0.5
x.mesh loc=4.0 spac=0.01

>

.mesh loc=5.5 spac=0.01
.mesh loc=10 spac=0.5

.mesh loc=-0.05 spac=0.05
.mesh 1o0c=0.0 spac=0.05
.mesh 1loc=0.030 spac=0.0001
.mesh loc=0.1 spac=0.0b

SECTION 2: Structure Specification

H O H O HEHY 9 <9 < H M

region num=1 material=GaN y.min=0.03

region num=2 material=AlGaN y.max=0.03 x.comp=0.3

region num=3 material=Si3N4 y.min=-0.05 y.max=0.0

#

elec num=1 name=source x.min=0.0 x.max=3 y.min=-0.05 y.max=0.0
elec num=2 name=gate x.min=4 x.max=4.5 y.min=0.0 y.max=0.0
elec num=3 name=drain x.min=7 x.max=10 y.min=-0.05 y.max=0.0
#

doping region=1 uniform n.type conc=1.0elb

doping region=2 uniform n.type conc=1.0el6

#

interface charge=-1.00e13 s.s y.min=0.030

#

# SECTION 3: Material Models

#
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material material=AlGaN align=0.8

material material=GaN align=0.8

#

material material=Al1GaN affinity=3.82 eg300=3.96 permittivity=9.5 mun=600 mup=10
nc300=2.07e18 nv300=1.16e19

material material=GaN eg300=3.40 permittivity=9.5 mun=900 mup=10 nc300=1.07e18
nv300=1.16e19 vsat=2e7

#

models fixed.fermi calc.fermi
#

contact name=gate workfunction=4.5
#

# SECTION 4: Initial solution
#

solve init

#

# SECTION 3: Bias gate, drain
#

method gummel newton block
output e.field val.band con.band
solve vgate=-2.8 vdrain=50.0
save outf=hemt-2deg-SiNb0.str
tonyplot hemt-2deg-SiN50.str

#

quit
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D.3 Simulation of AlGalN/GaN HEMT with Field-Plate

Technology
go atlas
#
# AlGaN/GaN HEMT, Field-Plate
#
# SECTION 1: Mesh input
#
mesh

x.mesh loc=0.0 spac=0.5
x.mesh loc=4.0 spac=0.01

>

.mesh loc=5.5 spac=0.01
.mesh loc=10 spac=0.5

.mesh loc=-0.05 spac=0.05
.mesh 1o0c=0.0 spac=0.05
.mesh 1loc=0.030 spac=0.0001
.mesh loc=0.1 spac=0.0b

SECTION 2: Structure Specification

H O H O HEHY 9 <9 < H M

region num=1 material=GaN y.min=0.03

region num=2 material=AlGaN y.max=0.03 x.comp=0.3

region num=3 material=Si3N4 y.min=-0.05 y.max=0.0

#

elec num=1 name=source x.min=0.0 x.max=3 y.min=-0.05 y.max=0.0
elec num=2 name=gatel x.min=4 x.max=4.5 y.min=0.0 y.max=0.0
elec num=3 name=gate2 x.min=4 x.max=5.0 y.min=-0.05 y.max=-0.05
elec num=4 name=drain x.min=7 x.max=10 y.min=-0.05 y.max=0.0

#

doping region=1 uniform n.type conc=1.0elb

doping region=2 uniform n.type conc=1.0el6

#

interface charge=-1.00e13 s.s y.min=0.030

#

contact name=gate2 common=gatel
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#

# SECTION 3: Material Models

#

material material=AlGaN align=0.8

material material=GaN align=0.8

#

material material=Al1GaN affinity=3.82 eg300=3.96 permittivity=9.5 mun=600 mup=10
nc300=2.07e18 nv300=1.16e19

material material=GaN eg300=3.40 permittivity=9.5 mun=900 mup=10 nc300=1.07e18
nv300=1.16e19 vsat=2e7

#

models fixed.fermi calc.fermi
#

contact name=gate workfunction=4.5
#

# SECTION 4: TInitial solution
#

solve init

#

# SECTION 3: Bias gate, drain
#

method gummel newton block
output e.field val.band con.band
solve vgate=-2.8 vdrain=50.0
save outf=hemt-2deg-FP50.str
tonyplot hemt-2deg-FP50.str

#

quit
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List of Symbols

Symbol Description Unit

a Lattice constance (x-axis) A

c Lattice constance (z-axis) A

C Capacitance F

Co Capacitance per unit area F/m?
E Energy eV

Er Fermi energy level eV

Ec Bottom of conduction band eV

Ey Top of valence band eV

E, Energy band gap eV

Eyue Vacuum energy level eV

L Thickness of quantum well A

A Correlation length A

T Absolute temperature K

f Occupancy number

Me Effective electron mass mg

my, Effective hole mass mg

L, Electron mobility cm? Vs
Ly Hole mobility em?/Vs
Lo Low-field electron mobility em? Vs
n Density of free electrons m=3

N Sheet density of electrons m=2
Np Ionised donor density m=3
Nyis Dislocation density m 2
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Symbol Description Unit
L, Gate length of HEMT um
Lgs Gate-source distance um
Lgq Gate-drain distance wm
W, Gate width of HEMT wm
Sp Source-drain distance of HEMT m
V Voltage V
Vs Gate-source voltage \Y
Vs Drain-source voltage Vv
Vin Threshold voltage Vv

Vii Built-in voltage A%

V, Pinch-off voltage \Y%
Vir Breakdown voltage A%
Vienee Knee voltage Vv
Vi Hall voltage Vv
Ve dc voltage Vv
Ve ac voltage A%

q Magnitude of electronic charge C

€ Permittivity (g - &,) F/m
€0 Permittivity in vacuum F/m
Ep Relative permittivity

d; Thickness of wide band gap semiconductor wm
Ad Effective thickness of 2DEG m
Jeh Extrinsic conductivity of 2DEG S
Jehi Intrinsic conductivity of 2DEG S

Pe Specific resistance Q-mm
R Resistance Q

R, Source resistance Q

Ry Drain resistance Q

R, Gate resistance Q

R, Contact resistance Q-mm
Ry, Drain-source resistance Q
Rpeet Sheet resistivity - square
Ry, Thermal resistance Q
R.up Substrate resistance Q
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Symbol Description Unit
L, Drain inductance nH
Lg Source inductance nH
L, Gate inductance nH
Cy.pad Gate pad capacitance pF
Ca.pad Drain pad capacitance pF
Cys Gate-source intrinsic capacitance pF
Cyd Gate-drain intrinsic capacitance pF
CopEa 2DEG capacitance pF

v Carrier velocity cm/s
Vsat Saturation carrier velocity cm/s
E Electric field V/em
E, Hall field V/em
E. Critical electric field V/cm
1 Current A

1, Drain-source current A
I50 Saturation drain-source current A

J Current density A/m?
fr Current gain cut off frequency Hz
frmaz maximum frequency of oscillations Hz
Im Transconductance mS
wp Current gain radial frequency Hz
P, . linear rf output power W
P, . saturation output power W
P rf output power W
P.AE. Power added Efficiency %

B Magnetic field T

F, Lorenz-force N

Ly Effective length of ohmic contact um
Q Electric charge C

Qs Semiconductor charge C

A Cross section 2

w Depletion depth wm
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Appendix F

Physical Constants

Quantity Symbol/Unit  Value

Angstrom unit A 1A= 10"'nm = 107 19m
Avogadro constant Navo 6.02204 x 10%mole™*
Boltzmann constant k 1.38066 x 10723J/ K
Elementary charge q 1.60218 x 10~1°C

Electron rest mass mo 0.91095 x 10=3%%g

Electron volt eV leV = 1.60218 x 1071.J
Permeability in vacuum Lo 1.25663 x 1078 H /cm (47 x 1079)
Permittivity in vacuum €0 8.85418 x 107" F/em (1/poc?)
Planck constant h 6.62617 x 10734 Js

Reduced Planck constant 1.05458 x 10734Js (h/27)
Speed of light in vacuum c 2.99792 x 10%m/s

Standard atmosphere 1.01325 x 10°Pa

Thermal voltage at 300K kT /q 0.0259V

Wavelength of 1eV quantum A 1.23977um
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