Lubricants and Lubrication

Edited by
Theo Mang and Wilfried Dresel

Second, Completely Revised and Extended Edition
Contents

List of Contributors V

Preface, Foreword 2nd edition XXXIII

A Word of Thanks XXXV

List of Abbreviations XXXVII

1 Lubricants and their Market 1
 Theo Mang
 1.1 Preface 1
 1.2 Lubricant Sales 2
 1.3 The Lubricants Industry 3
 1.4 Lubricant Systems 5

2 Lubricants in the Tribological System 7
 Theo Mang
 2.1 Lubricants as Part of Tribological Research 7
 2.2 The Tribological System 8
 2.3 Friction 8
 2.3.1 Types of Friction 9
 2.3.1.1 Sliding Friction 9
 2.3.1.2 Rolling Friction 10
 2.3.1.3 Static Friction 10
 2.3.1.4 Kinetic Friction 10
 2.3.1.5 Stick-Slip 10
 2.3.2 Friction and Lubrication Conditions 12
 2.3.2.1 Solid Friction (Dry Friction) 12
 2.3.2.2 Boundary Friction 12
 2.3.2.3 Fluid Friction 13
 2.3.2.4 Mixed Friction 13
 2.3.2.5 Solid Lubricant Friction 13
Contents

2.3.2.6 Stribeck Diagram 14
2.3.2.7 Hydrodynamic Lubrication 14
2.3.2.8 Elasto–Hydrodynamic Lubrication (EHD Regime) 15
2.3.2.9 Thermo-elasto-hydrodynamic Lubrication (TEHD) 15

2.4 Wear 17

2.4.1 Wear Mechanisms 17
2.4.1.1 Abrasion 17
2.4.1.2 Adhesion 17
2.4.1.3 Tribochemical Reactions 17
2.4.1.4 Surface Fatigue 17
2.4.1.5 Erosion 18
2.4.1.6 Fretting 18
2.4.1.7 Cavitation 18
2.4.2 Types of Wear 18
2.4.3 The Wear Process 18
2.4.4 Tribomutation 19
2.4.5 Nanotribology 20
2.4.6 Tribosystems of Tomorrow 22

3 Rheology of Lubricants 23
Theo Mang

3.1 Viscosity 23
3.2 Influence of Temperature on Viscosity (V–T Behavior) 25
3.2.1 Viscosity Index 26
3.3 Viscosity–Pressure Dependency 27
3.4 The Effect of Shear Rate on Viscosity 28
3.5 Special Rheological Effects 30
3.5.1 Greases 31
3.6 Viscosity Grades 31
3.6.1 ISO Viscosity Grades 32
3.6.2 Other Viscosity Grades 32
3.6.2.1 Engine Oils 32
3.6.2.2 Automotive Gear Oils 32
3.6.2.3 Industrial Gear Oils 32
3.6.2.4 Viscosity Grades for Base Oils 33
3.6.2.5 Comparison of Viscosity Grades 33

4 Base Oils 34
Theo Mang and Georg Lingg

4.1 Base Oils – A Historical Review and Outlook 34
4.2 Chemical Characterization of Mineral Base Oils 35
4.2.1 Rough Chemical Characterization 35
4.2.1.1 Viscosity–Gravity Constant (VGC) 35
4.2.1.2 Aniline Point 35
4.2.2 Carbon Distribution 36
4.2.3 Hydrocarbon Composition 36
4.2.4 Polycyclic Aromatics in Base Oils 36
4.2.4.1 Aromatics in White Mineral Oils 37
4.3 Refining 38
4.3.1 Distillation 39
4.3.2 De-asphalting 39
4.3.3 Traditional Refining Processes 40
4.3.3.1 Acid Refining 41
4.3.3.2 Solvent Extraction 41
4.3.4 Solvent Dewaxing 43
4.3.5 Finishing 44
4.3.5.1 Lube Crudes 44
4.4 Base Oil Manufacturing by Hydrogenation and Hydrocracking 45
4.4.1 Manufacturing Naphthenic Base Oils by Hydrogenation 46
4.4.2 Production of White Oils 48
4.4.3 Lube Hydrocracking 49
4.4.4 Catalytic Dewaxing 50
4.4.5 Wax Isomerization 52
4.4.6 Hybrid Lube Oil Processing 52
4.4.7 All-Hydrogen Route 53
4.4.8 Gas-to-Liquids Conversion Technology 55
4.5 Boiling and Evaporation Behavior of Base Oils 55
4.6 Base Oil Categories and Evaluation of Various Petroleum Base Oils 59

5 Synthetic Base Oils 63
Wilfried Dresel

5.1 Synthetic Hydrocarbons 64
5.1.1 Polyalphaolefins 65
5.1.2 Polynmethalolefins 67
5.1.3 Polybutenes 68
5.1.4 Alkylated Aromatics 69
5.1.5 Other Hydrocarbons 70
5.2 Halogenated Hydrocarbons 71
5.3 Synthetic Esters 71
5.3.1 Esters of carboxylic acids 71
5.3.1.1 Dicarboxylic Acid Esters 72
5.3.1.2 Polyl Esters 73
5.3.1.3 Other Carboxylic Esters 74
5.3.1.4 Complex Esters 75
5.3.1.5 Fluorinated Carboxylic Acid Esters 76
5.3.2 Phosphate Esters 76
5.4 Polyalkylene Glycols 77
5.5 Other Polyethers 79
Contents

5.5.1 Perfluorinated Polyethers 79
5.5.2 Polyphenyl Ethers 80
5.5.3 Polysiloxanes (Silicone Oils) 81
5.6 Other Synthetic Base Oils 83
5.7 Comparison of Synthetic Base Oils 87
5.8 Mixtures of Synthetic Base Oils 87

6 Additives 88

Jürgen Braun

6.1 Antioxidants 89
6.1.1 Mechanism of Oxidation and Antioxidants 89
6.1.2 Compounds 91
6.1.2.1 Phenolic Antioxidants 91
6.1.2.2 Aromatic Amines 91
6.1.2.3 Compounds Containing Sulfur and Phosphorus 92
6.1.2.4 Organosulfur Compounds 92
6.1.2.5 Organophosphorus Compounds 93
6.1.2.6 Other Compounds 93
6.1.2.7 Synergistic Mixtures 93
6.1.3 Testing of the Oxidation Stability 93
6.2 Viscosity Modifiers 94
6.2.1 Physical Description of Viscosity Index 94
6.2.2 VI Improvement Mechanisms 94
6.2.3 Structure and Chemistry of Viscosity Modifiers 96
6.3 Pourpoint Depressants (PPD) 97
6.4 Detergents and Dispersants 99
6.4.1 Mechanism of DD Additives 100
6.4.2 Metal-containing Compounds (Detergents) 100
6.4.2.1 Phenates 100
6.4.2.2 Salicylates 100
6.4.2.3 Thiophosphonates 101
6.4.2.4 Sulfonates 102
6.4.3 Ashless Dispersants (AD) 103
6.5 Antifoam Agents 105
6.5.1 Silicon Defoamers 105
6.5.2 Silicone-free Defoamers 106
6.6 Demulsifiers and Emulsifiers 106
6.6.1 Demulsifiers 106
6.6.2 Emulsifiers 106
6.7 Dyes 107
6.8 Antiwear (AW) and Extreme Pressure (EP) Additives 107
6.8.1 Function of AW/EP Additives 107
6.8.2 Compounds 108
6.8.2.1 Phosphorus Compounds 108
6.8.2.2 Compounds Containing Sulfur and Phosphorus 109
6.8.2.3 Compounds Containing Sulfur and Nitrogen 110
6.8.2.4 Sulfur Compounds 111
6.8.2.5 PEP Additives 112
6.8.2.6 Chlorine Compounds 112
6.8.2.7 Solid Lubricating Compounds 113
6.9 Friction Modifiers (FM) 113
6.10 Corrosion Inhibitors 114
6.10.1 Mechanism of Corrosion Inhibitors 114
6.10.2 Antirust Additives (Ferrous Metals) 115
6.10.2.1 Sulfonates 115
6.10.2.2 Carboxylic Acid Derivatives 115
6.10.2.3 Amine Neutralized Alkylphosphoric Acid Partial Esters 116
6.10.2.4 Vapor Phase Corrosion Inhibitors 116
6.10.3 Metal Passivators (Non-ferrous Metals) 117

7 Lubricants in the Environment 119
Rolf Luther

7.1 Definition of 'Environmentally Friendly Lubricants' 119
7.2 Current Situation 120
7.2.1 Statistical Data 120
7.2.2 Economic Consequences and Substitution Potential 121
7.2.3 Agriculture, Economy, and Politics 123
7.2.4 Political Initiatives 124
7.3 Tests to Evaluate Biotic Potential 125
7.3.1 Biodegradation 125
7.3.2 Ecotoxicity 126
7.3.3 Emission Thresholds 127
7.3.4 Water Pollution 127
7.3.4.1 The German Water Hazardous Classes 127
7.3.4.2 German Regulations for Using Water-endangering Lubricants (VAwS) 128
7.4 Environmental Legislation 1: Registration, Evaluation and Authorization of Chemicals (REACh) 130
7.4.1 Registration 132
7.4.2 Evaluation 132
7.4.2 Authorization 133
7.4.2 Registration Obligations 135
7.5 Globally Harmonized System of Classification and Labeling (GHS) 136
7.6 Environmental Legislation 2: Dangerous Preparations Directive (1999/45/EC) 139
7.7 Environmental Legislation 3: Regular use 140
7.7.1 Environmental Liability Law 141
7.7.2 The Chemicals Law, Hazardous Substances Law 141
7.7.3 Transport Regulations 142
7.7.4 Disposal (Waste and Recycling Laws) 142
7.7.5 Disposal Options for 'Not water pollutant' Vegetable Oils 143
7.8 Environmental Legislation 4: Emissions 144
7.8.1 Air Pollution 144
7.8.2 Water Pollution 144
7.8.3 German Law for Soil Protection 145
7.8.4 German Water Law 146
7.8.5 Waste Water Charges 147
7.8.6 Clean Air: German Emissions Law 147
7.8.7 Drinking Water Directive 147
7.9 Standardization of Environmentally Compatible Hydraulic Fluids 148
7.9.1 The German Regulation VDMA 24568 148
7.9.2 ISO Regulation 15380 148
7.10 Environmental Seal 153
7.10.1 Global Eco-labeling Network 153
7.10.2 European Eco-label 153
7.10.3 The German 'Blue Angel' 157
7.10.4 Nordic countries (Norway, Sweden, Finland, Iceland) – 'White Swan' 158
7.10.4.1 Requirements Concerning Renewable Resources 160
7.10.4.2 Requirements Concerning Re-refined Oil 160
7.10.4.3 Requirements Concerning Environmentally Harmful Components 160
7.10.4.4 Requirements for Hydraulic Fluids, Mould Oil, Metalworking Fluids 160
7.10.5 The Canadian 'Environmental Choice' (Maple Leaf) 160
7.10.6 Other Eco-labels 162
7.10.6.1 Austria 162
7.10.6.2 France 162
7.10.6.3 Japan 163
7.10.6.4 USA 163
7.10.6.5 The Netherlands 163
7.11 Base Fluids 164
7.11.1 Biodegradable Base Oils for Lubricants 164
7.11.2 Synthetic Esters 165
7.11.3 Polyglycols 166
7.11.4 Polyalphaolefins 166
7.11.5 Relevant Properties of Ester Oils 166
7.11.5.1 Evaporation Loss 166
7.11.5.2 Viscosity–Temperature Behavior 166
7.11.5.3 Boundary Lubrication 167
7.12 Additives 167
7.12.1 Extreme Pressure/Antiwear Additives 167
7.12.2 Corrosion Protection 168
7.12.3 Antioxidants 168
7.13 Products (Examples) 168
7.13.1 Hydraulic Fluids 169
7.13.2 Metal Working Oil 169
7.13.3 Oil-refreshing System 170
7.14 Safety Aspects of Handling Lubricants (Working Materials) 171
7.14.1 Toxicological Terminology and Hazard Indicators 171
7.14.1.1 Acute Toxicity 171
7.14.1.2 Subchronic and Chronic Toxicity 172
7.14.1.3 Poison Categories 172
7.14.1.4 Corrosive, Caustic 172
7.14.1.5 Explosion and Flammability 172
7.14.1.6 Carcinogenic 173
7.14.1.7 Teratogens, Mutagens 173
7.14.2 MAK (Maximum Workplace Concentration) Values 173
7.14.3 Polycyclic Aromatic Hydrocarbons (PAK, PAH, PCA) 174
7.14.4 Nitrosamines in Cutting Fluids 174
7.14.5 Law on Flammable Fluids 175
7.15 Skin Problems Caused by Lubricants 176
7.15.1 Structure and Function of the Skin 176
7.15.2 Skin Damage 177
7.15.2.1 Oil Acne (Particle Acne) 177
7.15.2.2 Oil Eczema 178
7.15.3 Testing Skin Compatibility 179
7.15.4 Skin Function Tests 180
7.15.5 Skin Care and Skin Protection 182

8 Disposal of Used Lubricating Oils 183
Theo Mang
8.1 Possible Uses of Waste Oil 184
8.2 Legislative Influences on Waste Oil Collection and Reconditioning 184
8.3 Re-refining 185
8.3.1 Sulfuric Acid Refining (Meinken) 185
8.3.2 Propane Extraction Process (IFP, Snamprogetti) 186
8.3.3 Mohawk Technology (CEP–Mohawk) 187
8.3.4 KTI Process 187
8.3.5 PROP Process 187
8.3.6 Safety Kleen Process 188
8.3.7 DEA Technology 189
8.3.8 Other Re-refining Technologies 190

9 Lubricants for Internal Combustion Engines 191
Manfred Harperscheid and Jürgen Omeis
9.1 Four-stroke Engine Oils 191
9.1.1 General Overview 191
9.1.1.1 Fundamental Principles 192
9.1.1.2 Viscosity Grades 193
9.1.1.3 Performance Specifications 195
9.1.1.4 Formulation of Engine Oils 196
9.1.1.5 Additives 196
9.1.1.6 Performance Additives 196
9.1.1.7 Viscosity Improvers 197
9.1.2 Characterization and Testing 197
9.1.2.1 Physical and Chemical Testing 198
9.1.2.2 Engine Testing 198
9.1.2.3 Passenger Car Engine Oils 200
9.1.2.4 Engine Oil for Commercial Vehicles 201
9.1.3 Classification by Specification 202
9.1.3.1 MIL Specifications 202
9.1.3.2 API and ILSAC Classification 203
9.1.3.3 CCMC Specifications 205
9.1.3.4 ACEA Specifications 206
9.1.3.5 Manufacturers’ Approval of Service Engine Oils 209
9.1.3.6 Future Trends 214
9.1.3.7 Fuel Efficiency 214
9.1.3.8 Long Drain Intervals 216
9.1.3.9 Low Emission 217
9.2 Two-stroke Oils 218
9.2.1 Application and Characteristics of Two-stroke Oils 218
9.2.2 Classification of Two-stroke Oils 220
9.2.2.1 API Service Groups 220
9.2.2.2 JASO Classification 220
9.2.2.3 ISO Classification 221
9.2.3 Oils for Two-stroke Outboard Engines 222
9.2.4 Environmentally Friendly Two-stroke Oils 223
9.3 Tractor Oils 224
9.4 Gas Engine Oils 225
9.4.1 Use of Gas Engines—Gas as a Fuel 226
9.4.2 Lubricants for Gas Engines 226
9.5 Marine Diesel Engine Oils 227
9.5.1 Low-speed Crosshead Engines 227
9.5.2 Medium-speed Engines 228
9.5.3 Lubricants 229

10 Gear Lubrication Oils 230
Thorsten Bartels

10.1 Introduction 230
10.2 Requirements of Gear Lubrication Oils 231
10.3 Tribology of Gears 233
10.3.1 Friction Conditions of Gear Types 234
10.3.1.1 Toothed Wheels 234
10.3.1.2 Load and Speed Conditions during Tooth Engagement 234
10.3.1.3 Static and Dynamic Load Distribution within Tooth Engagement 236
10.3.1.4 Lubrication Film Generation within Tooth Contact 236
10.3.1.5 Lubrication Conditions 238
10.3.2 Specific Gear and Transmission Failure 240
10.3.2.1 Wear 240
10.3.2.2 Scuffing and Scoring 241
10.3.2.3 Micro-Pitting 242
10.3.2.4 Pitting 244
10.3.2.5 Tooth Fracture 245
10.4 Gear Lubrication Oils for Motor Vehicles 245
10.4.1 Driveline Lubricants for Commercial Vehicles 246
10.4.2 Driveline Lubricants for Passenger Cars 250
10.4.3 Lubricants for Automatic Transmissions and CVTs 254
10.4.3.1 Fluid Requirements for Hydrodynamic Transmissions 256
10.4.3.2 Fluid Requirements for Wet Clutches and Brakes 257
10.4.3.3 Fluid Requirements for CVT Applications 259
10.4.3.4 B-CVT Push Belt and Link Chain Drives 259
10.4.3.5 T-CVT Traction Drives 261
10.4.3.6 H-CVT Hydrostatic Dynamic Powershift Drives 262
10.5 Multifunctional Fluids in Vehicle Gears 262
10.6 Gear Lubricants for Industrial Gears 264
10.6.1 Viscosity-Temperature Characteristics 266
10.6.2 Fluid Shear Stability 267
10.6.3 Corrosion and Rust Protection 267
10.6.4 Oxidation Stability 268
10.6.5 Flash Point and Pour Point 268
10.6.6 Demulsibility and Water Separation 268
10.6.7 Air Release 266
10.6.8 Paint Compatibility 269
10.6.9 Seal Compatibility 269
10.6.10 Foaming 269
10.6.11 Miscibility with Mineral Oils 269
10.6.12 Environmental and Skin Compatibility 269
10.6.13 Open gear drives 270
10.7 Cost-to-benefit Ratio of Gear Lubrication Oils 270
11.3.1 Elements of a Hydraulic System 276
11.3.1.1 Pumps and Motors 276
11.3.1.2 Hydraulic Cylinders 277
11.3.1.3 Valves 279
11.3.1.4 Circuit Components 279
11.3.1.5 Seals, Gaskets and Elastomers 279
11.4 Hydraulic Fluids 281
11.4.1 Composition of Hydraulic Fluids (Base fluids, additives) 281
11.4.1.1 Base Oil, Base Fluid 281
11.4.1.2 Hydraulic Fluid Additives 281
11.4.2 Primary, Secondary and Tertiary Characteristics of a Hydraulic Fluid 282
11.4.3 Selection Criteria for Hydraulic Fluids 283
11.4.4 Classification of Hydraulic Fluids – Standardization of Hydraulic Fluids 286
11.4.4.1 Classification of Hydraulic Fluids 286
11.4.5 Mineral Oil-Based Hydraulic Fluids 286
11.4.5.1 H Hydraulic Oils 287
11.4.5.2 HL Hydraulic Oils 288
11.4.5.3 HLP Hydraulic Oils 288
11.4.5.4 HVLP Hydraulic Oils 288
11.4.5.5 HLPD Hydraulic Oils 294
11.4.6 Fire-Resistant Hydraulic Fluids 294
11.4.6.1 HFA Fluids 295
11.4.6.2 HFB Fluids 295
11.4.6.3 HFC Fluids 295
11.4.6.4 HPD Fluids 296
11.4.7 Biodegradable Hydraulic Fluids 296
11.4.7.1 HETG: Triglyceride, Vegetable-Oil Types 296
11.4.7.2 HEES: Synthetic Ester Types 298
11.4.7.3 HEPG: Polyglycol Types 299
11.4.7.4 HEPR: Polyalphaolefin and Related Hydrocarbon Products 299
11.4.8 Food-Grade Hydraulic Fluids 299
11.4.8.1 NSF H2 Lubricants 300
11.4.8.2 NSF H1 Lubricants 303
11.4.9 Automatic Transmission Fluids (ATF) 303
11.4.10 Fluids in Tractors and Agricultural Machinery 303
11.4.11 Hydraulic Fluids for Aircraft 303
11.4.12 International Requirements on Hydraulic Oils 304
11.4.13 Physical Properties of Hydraulic Oils and Their Effect on Performance 306
11.4.13.1 Viscosity, V–T Behavior 307
11.4.13.2 Viscosity–Pressure Behavior 307
11.4.13.3 Density 308
11.4.13.4 Compressibility 310
11.4.13.5 Gas Solubility, Cavitation 312
11.4.13.6 Air Release 314
11.4.13.7 Foaming 314
11.4.13.8 Demulsification 315
11.4.13.9 Pour-point 315
11.4.13.10 Copper Corrosion Behavior (Copper-Strip Test) 316
11.4.13.11 Water Content (Karl Fischer method) 316
11.4.13.12 Aging Stability (Baader method) 316
11.4.13.13 Aging Stability (TOST test) 317
11.4.13.14 Neutralization Number 317
11.4.13.15 Steel/Ferrous Corrosion Protection Properties 317
11.4.13.16 Wear Protection (SHELL four-ball apparatus; VKA, DIN 51 350) 317
11.4.13.17 Shear Stability of Polymer-containing Lubricants 318
11.4.13.18 Mechanical Testing of Hydraulic Fluids in Rotary Vane Pumps (DIN 51 389-2) 318
11.4.13.19 Wear Protection (FZG Gear Rig Test; DIN 51 354-1 and -2) 318
11.5 Hydraulic System Filters 319
11.5.1 Contaminants in Hydraulic Fluids 319
11.5.2 Oil Cleanliness Grades 320
11.5.3 Filtration 321
11.5.4 Requirements of Hydraulic Fluids 322
11.6 Machine Tool Lubrication 322
11.6.1 The Role of Machine Tools 322
11.6.2 Machine Tool Lubrication 322
11.6.3 Machine Tool Components—Lubricants 323
11.6.3.1 Hydraulic Unit 323
11.6.3.2 Slideways 326
11.6.3.3 Spindles (Main and Working Spindles) 327
11.6.3.4 Gearboxes and Bearings 327
11.6.4 Machine Tool Lubrication Problems 328
11.6.5 Hydraulic Fluids – New Trends, New Developments 328
11.6.5.1 Applications 328
11.6.5.2 Chemistry 328
11.6.5.3 Extreme Pressure and Anti-wear Properties 330
11.6.5.4 Detergent/Dispersant Properties 330
11.6.5.5 Air Release 331
11.6.5.6 Static Coefficient of Friction 332
11.6.5.7 Oxidation Stability 332
11.6.5.8 Shear Stability 332
11.6.5.9 Filtration of Zn and Ash-free Hydraulic Fluids 333
11.6.5.10 Electrostatic Charges 333
11.6.5.11 Micro Scratching 334
11.6.5.12 Updated Standards 335
11.6.5.13 Conclusion 335
11.7 Summary 336
Compressor Oils

12 Compressor Oils

Wolfgang Bock and Georg Lingg

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Air Compressor Oils</td>
<td>338</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Displacement Compressors</td>
<td>340</td>
</tr>
<tr>
<td>12.1.1.1</td>
<td>Reciprocating Piston Compressors</td>
<td>340</td>
</tr>
<tr>
<td>12.1.1.2</td>
<td>Lubrication of Reciprocating Piston Compressors</td>
<td>340</td>
</tr>
<tr>
<td>12.1.1.3</td>
<td>Rotary Piston Compressors (Single Shaft, Rotary Vane Compressors)</td>
<td>341</td>
</tr>
<tr>
<td>12.1.1.4</td>
<td>Lubrication of Rotary Piston Compressors</td>
<td>341</td>
</tr>
<tr>
<td>12.1.1.5</td>
<td>Screw Compressors</td>
<td>342</td>
</tr>
<tr>
<td>12.1.1.6</td>
<td>Lubrication of Screw Compressors</td>
<td>342</td>
</tr>
<tr>
<td>12.1.1.7</td>
<td>Roots Compressors</td>
<td>343</td>
</tr>
<tr>
<td>12.1.1.8</td>
<td>Lubrication of Roots Compressors</td>
<td>343</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Dynamic Compressors</td>
<td>343</td>
</tr>
<tr>
<td>12.1.2.1</td>
<td>Turbo Compressors</td>
<td>343</td>
</tr>
<tr>
<td>12.1.2.2</td>
<td>Lubrication of Turbo Compressors</td>
<td>344</td>
</tr>
<tr>
<td>12.1.3</td>
<td>Preparation of Compressed Air</td>
<td>344</td>
</tr>
<tr>
<td>12.1.4</td>
<td>Lubrication of Gas Compressors</td>
<td>344</td>
</tr>
<tr>
<td>12.1.4.1</td>
<td>Oxygen Compressors</td>
<td>344</td>
</tr>
<tr>
<td>12.1.4.2</td>
<td>Acid Gas Compressors</td>
<td>344</td>
</tr>
<tr>
<td>12.1.4.3</td>
<td>Inert Gas Compressors</td>
<td>344</td>
</tr>
<tr>
<td>12.1.4.4</td>
<td>Hydrocarbon Compressors</td>
<td>345</td>
</tr>
<tr>
<td>12.1.4.5</td>
<td>Vacuum Pump Lubrication</td>
<td>345</td>
</tr>
<tr>
<td>12.1.5</td>
<td>Characteristics of Compressor Oils</td>
<td>345</td>
</tr>
<tr>
<td>12.1.6</td>
<td>Standards and Specifications of Compressor Oils</td>
<td>345</td>
</tr>
</tbody>
</table>

12.2 Refrigeration Oils

Wolfgang Bock

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2</td>
<td>Refrigeration Oils</td>
<td>353</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Introduction</td>
<td>353</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Minimum Requirements of Refrigeration Oils</td>
<td>354</td>
</tr>
<tr>
<td>12.2.2.1</td>
<td>DIN 51 503-1: Refrigeration oils, Minimum requirements (1997)</td>
<td>354</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Classifications of Refrigeration Oils</td>
<td>355</td>
</tr>
<tr>
<td>12.2.3.1</td>
<td>Mineral Oils (MO) – Dewaxed Naphthenic Refrigeration Oils</td>
<td>355</td>
</tr>
<tr>
<td>12.2.3.2</td>
<td>Mineral Oils (MO) – Paraffinic Refrigeration Oils</td>
<td>355</td>
</tr>
<tr>
<td>12.2.3.3</td>
<td>Semi-Synthetic Refrigeration Oils – Mixtures of alkylbenzenes and mineral oils (MO/AB)</td>
<td>356</td>
</tr>
<tr>
<td>12.2.3.4</td>
<td>Fully Synthetic Refrigeration Oils – Alkylbenzenes (AB)</td>
<td>357</td>
</tr>
<tr>
<td>12.2.3.5</td>
<td>Fully Synthetic Refrigeration Oils – Polyalphaolefins (PAO)</td>
<td>357</td>
</tr>
<tr>
<td>12.2.3.6</td>
<td>Fully Synthetic Refrigeration Oils – Polyol esters (POE)</td>
<td>357</td>
</tr>
<tr>
<td>12.2.3.7</td>
<td>Fully Synthetic Refrigeration Oils – Polyglycols (PAG) for R 134a</td>
<td>359</td>
</tr>
<tr>
<td>12.2.3.8</td>
<td>Fully Synthetic Refrigeration Oils – Polyglycols for NH₃</td>
<td>359</td>
</tr>
<tr>
<td>12.2.3.9</td>
<td>Other Synthetic Fluids</td>
<td>360</td>
</tr>
<tr>
<td>12.2.3.10</td>
<td>Refrigeration Oils for CO₂</td>
<td>360</td>
</tr>
<tr>
<td>12.2.3.11</td>
<td>Copper Plating</td>
<td>360</td>
</tr>
</tbody>
</table>
12.2.4 Types of Compressor 362
12.2.5 Viscosity Selection 362
12.2.5.1 General Overview 362
12.2.5.2 Mixture Concentration in Relationship to Temperature and Pressure
(RENISO Triton SE 55–R 134a) 365
12.2.5.3 Mixture Viscosity in Relationship to Temperature, Pressure and
Refrigerant Concentration (RENISO Triton SE 55–R 134a) 365
12.2.5.4 Mixture Density in Relationship to Temperature and Refrigerant
Concentration (RENISO Triton SE 55–R 134a; Fig. 12.9) 365
12.2.5.5 Miscibility Gap, Solubility Threshold (RENISO Triton Series with R 134a,
Fig. 12.10) 365
12.2.6 Summary 366

13 Turbine Oils 367
Wolfgang Bock
13.1 Introduction 367
13.2 Demands on Turbine Oils—Characteristics 367
13.3 Formulation of Turbine Oils 368
13.4 Turbine Lubricants—Specifications 369
13.5 Turbine Oil Circuits 374
13.6 Flushing Turbine Oil Circuits 379
13.7 Monitoring and Maintenance of Turbine Oils 380
13.8 Life of (Steam) Turbine Oils 380
13.9 Gas Turbine Oils—Application and Requirements 381
13.10 Fire-resistant, Water-free Fluids for Power Station Applications 382
13.11 Lubricants for Water Turbines and Hydroelectric Plants 383

14 Metalworking Fluids 384
Theo Mang, Carmen Freiler and Dietrich Hörner
14.1 Action Mechanism and Cutting Fluid Selection 385
14.1.1 Lubrication 386
14.1.2 Cooling 387
14.1.3 Significance of Cutting Fluid with Various Cutting Materials 389
14.1.3.1 High-speed Steels 389
14.1.3.2 Cemented Carbide Metals 390
14.1.3.3 Coated Carbide Metals 390
14.1.3.4 Ceramic Materials 390
14.1.3.5 Cubic Boron Nitride (CBN) 390
14.1.3.6 Polycrystalline Diamond (PCD) 391
14.1.3.7 Coatings 391
14.1.4 Cutting Fluid Selection for Various Cutting Methods and Cutting
Conditions 391
14.2 Friction and Wear Assessment Method for the Use of Cutting Fluids 393
14.2.1 Tool Life and Number of Parts Produced by the Tool as Practical Assessment Parameters 394
14.2.2 Measuring Cutting Forces in Screening Tests 394
14.2.3 Feed Rates at Constant Feed Force 395
14.2.4 Measuring Tool Life by Fast-screening Methods 395
14.2.5 Cutting Geometry and Chip Flow 396
14.2.6 Other Fast Testing Methods 397
14.2.6.1 Temperature Measurement 397
14.2.6.2 Radioactive Tools 397
14.2.6.3 Surface Finish 397
14.3 Water-miscible Cutting Fluids 397
14.3.1 Nomenclature and Breakdown 398
14.3.2 Composition 400
14.3.2.1 Emulsifiers 400
14.3.2.2 Viscosity of Emulsions 406
14.3.2.3 Phase Reversal, Determination of the Type of Emulsion 407
14.3.2.4 Degree of Dispersion 408
14.3.2.5 Stability 409
14.3.2.6 Corrosion Inhibitors and other Additives 411
14.3.2.7 Cutting Fluids Containing Emulsifiers 413
14.3.2.8 Coolants Containing Polyglycols 415
14.3.2.9 Salt Solutions 415
14.3.3 Corrosion Protection and Corrosion Test Methods 416
14.3.4 Concentration of Water-mixed Cutting Fluids 417
14.3.4.1 Determination of Concentration by DIN 51 368 (IP 137) 417
14.3.4.2 Concentration Measurement Using Hand-held Refractometers 418
14.3.4.3 Concentration Measurement Through Individual Components 418
14.3.4.4 Determination of Concentration by Titration of Anionic Components 418
14.3.4.5 Determination of Concentration Through Alkali Reserve 419
14.3.4.6 Concentration after Centrifuging 419
14.3.5 Stability of Coolants 419
14.3.5.1 Determination of Physical Emulsion Stability 419
14.3.5.2 Electrolyte Stability 420
14.3.5.3 Thermal Stability 421
14.3.5.4 Stability to Metal Chips 422
14.3.6 Foaming Properties 422
14.3.6.1 Definition and Origin of Foam 423
14.3.6.2 Foam Prevention 424
14.3.7 Methods of Determining Foam Behavior 424
14.3.7.1 Metalworking Fluid Microbiology 425
14.3.7.2 Hygienic and Toxicological Aspects of Microorganisms 427
14.3.7.3 Methods of Determining Microbial Count 427
14.3.7.3 Determination of the Resistance of Water-miscible Coolants Towards Microorganisms 428
14.3.7.4 Reducing or Avoiding Microbial Growth in Coolants 428
14.3.8 Preservation of Coolants with Biocides 430
14.3.8.1 Aldehydes 434
14.3.8.2 Formaldehyde Release Compounds 434
14.3.8.3 Phenol Derivatives 434
14.3.8.4 Compounds Derived from Carbon Disulfide 435
14.3.8.5 Isothiazoles 435
14.3.8.6 Fungicides 435
14.3.8.7 Hypochlorites 435
14.3.8.8 Hydrogen Peroxide, H_2O_2 435
14.3.8.9 Quaternary Ammonium Compounds 436
14.4 Neat Cutting Fluids 436
14.4.1 Classification of Neat Metalworking Oils According to Specifications 436
14.4.2 Composition of Neat Metalworking Fluids 437
14.4.2.1 Base Oils and Additives 437
14.4.2.2 Significance of Viscosity on the Selection of Neat Products 438
14.4.3 Oil Mist and Oil Evaporation Behavior 439
14.4.3.1 Evaporation Behavior 439
14.4.3.2 Low-Misting Oils 440
14.4.3.3 The Creation of Oil Mist 440
14.4.3.4 Sedimentation and Separation of Oil Mists 441
14.4.3.5 Toxicity of Oil Mist 441
14.4.3.6 Oil Mist Measurement 443
14.4.3.7 Oil Mist Index 444
14.4.3.8 Oil Mist Concentration in Practice 444
14.5 Machining with Geometrically Defined Cutting Edges 447
14.5.1 Turning 447
14.5.2 Drilling 447
14.5.3 Milling 448
14.5.4 Gear Cutting 449
14.5.5 Deep Hole Drilling 450
14.5.5.1 Deep Hole Drilling Methods 450
14.5.5.2 Tasks to be Fulfilled by the Cutting Fluid 451
14.5.6 Threading and Tapping 452
14.5.7 Broaching 453
14.6 Machining with Geometric Non-defined Cutting Edges 454
14.6.1 Grinding 454
14.6.1.1 High-speed Grinding 455
14.6.1.2 Grinding Wheel Abrasive Materials and Bondings 456
14.6.1.3 Requirements for Grinding Fluids 456
14.6.1.4 Special Workpiece Material Considerations 457
14.6.1.5 CBN High-speed Grinding 457
Contents

14.6.1.6 Honing 458
14.6.1.7 Honing Oils 460
14.6.1.8 Lapping 461
14.6.1.9 Lapping Powder and Carrier Media 461
14.7 Specific Material Requirements for Machining Operations 462
14.7.1 Ferrous Metals 462
14.7.1.1 Steel 462
14.7.1.2 Tool Steels 462
14.7.1.3 High-speed Steels (HSS) 463
14.7.1.4 Stainless Steels 463
14.7.1.5 Cast Iron 463
14.7.2 Aluminum 464
14.7.2.1 Influence of the Type of Aluminum Alloy 464
14.7.2.2 The Behavior of Aluminum During Machining 465
14.7.2.3 Tool Materials 467
14.7.3 Magnesium and its Alloys 468
14.7.4 Cobalt 469
14.7.4.1 The Health and Safety Aspects of Carbides 469
14.7.4.2 Use of Cutting Oils in Carbide Machining Processes 470
14.7.5 Titanium 470
14.7.6 Nickel and nickel alloys 471
14.8 Metalworking Fluid Circulation System 472
14.8.1 Metalworking Fluid Supply 472
14.8.1.1 Grinding 474
14.8.2 Individually-filled Machines and Central Systems 475
14.8.3 Tramp Oil in Coolants 476
14.8.4 Separation of Solid Particles 477
14.8.4.1 Swarf Concentration and Filter Fineness 477
14.8.4.2 Full, Partial or Main Flow Solids Separation 478
14.8.4.3 Filtration Processes 479
14.8.4.4 Solids Separation Equipment 482
14.8.5 Plastics and Sealing Materials in Machine Tools—Compatibility with Cutting Fluids 487
14.8.6 Monitoring and Maintenance of Neat and Water-miscible Cutting Fluids 488
14.8.6.1 Storage of Cutting Fluids 488
14.8.6.2 Mixing Water-miscible Cutting Fluids 489
14.8.6.3 Monitoring Cutting Fluids 489
14.8.6.4 Cutting Fluid Maintenance 491
14.8.6.5 Corrective Maintenance for Neat and Water-miscible Cutting Fluids 493
14.8.7 Splitting and Disposal 495
14.8.7.1 Disposal of Cutting Fluids 495
14.8.7.2 Evaluation Criteria for Cutting Fluid Water Phases 496
14.8.7.3 Electrolyte Separation 497
14.8.7.4 Emulsion Separation by Flotation 499
14.8.7.5 Splitting of Emulsions with Adsorbents 499
14.8.7.6 Separating Water-miscible Cutting Fluids by Thermal Methods 500
14.8.7.7 Ultrafiltration 500
14.8.7.8 Evaluation of Disposal Methods 502
14.9 Coolant Costs 503
14.9.1 Coolant Application Costs 503
14.9.1.1 Investment Costs (Depreciation, Financing Costs, Maintenance Costs) 503
14.9.1.2 Energy Costs 504
14.9.1.3 Coolant and Coolant Additives 504
14.9.1.4 Coolant Monitoring 504
14.9.1.5 Other Auxiliaries 504
14.9.1.6 Coolant Separation and Disposal 504
14.9.2 Coolant Application Costs with Constant System 504
14.9.2.1 Specific Coolant Costs 504
14.9.2.2 Optimization of Coolant use by Computer 508
14.10 New Trends in Coolant Technology 530
14.10.1 Oil Instead of Emulsion 510
14.10.1.1 Fluid Families and Multifunctional Fluids for Machine Tools 511
14.10.1.2 Washing Lines 512
14.10.1.3 De-oiling of Chips and Machined Components 512
14.10.1.4 Future Perspectives – Unifluid 513
14.10.2 Minimum Quantity Lubrication 533
14.10.2.1 Considerations When Dispensing with Coolants 514
14.10.2.2 Minimum Quantity Lubrication Systems 515
14.10.2.3 Coolants for Minimum Quantity Lubrication 516
14.10.2.4 Oil Mist Tests with Minimum Quantity Lubrication 518
14.10.2.5 Product Optimization of a Minimum Quantity Coolant Medium for Drilling 520

15 Forming Lubricants

15.1 Sheet Metal Working Lubricants 522

Theo Mang, Franz Kubicki, Achim Losch and Wolfgang Buss

15.1.1 Processes 523
15.1.2 Basic Terms in Forming Processes 523
15.1.2.1 Lattice Structure of Metals 523
15.1.2.2 Yield Strength 524
15.1.2.3 Strain 524
15.1.2.4 Flow Curve 524
15.1.2.5 Efficiency of Deformation, Resistance to Forming, Surface Pressure 526
15.1.2.6 Strain Rate 526
15.1.2.7 Anisotropy, Texture, R value 526
15.1.3 Deep drawing 527
15.1.3.1 Friction and Lubrication in the Different Areas of a Deep Drawing Operation 527
15.1.3.2 Significance of Lubrication Dependent upon Sheet Metal Thickness, Drawn-part Size and the Efficiency of Deformation 531
15.1.3.3 Assessment of the Suitability of Lubricants for Deep Drawing 533
15.1.4 Stretch Drawing and a Combination of Stretch and Deep Drawing 534
15.1.5 Shear Cutting 535
15.1.5.1 Stamping 536
15.1.5.2 Fineblanking 539
15.1.6 Material and Surface Microstructure 541
15.1.6.1 Material 541
15.1.6.2 Surface Microstructure 542
15.1.7 Tools Used in Sheet Metal Forming Operations 543
15.1.8 Lubricants for Sheet Metal Forming 545
15.1.8.1 Before Forming 545
15.1.8.2 Lubricant Behavior During Forming 548
15.1.8.3 After Forming 548
15.1.8.4 Trends in Sheet Metal Forming Lubricants 549
15.1.9 Corrosion Protection 550
15.1.9.1 Corrosion Mechanisms 550
15.1.9.2 Temporary Corrosion Protection 551
15.1.9.3 Corrosion Tests 553
15.1.10 Removal of Forming Lubricants—Industrial Cleaners 553
15.1.10.1 Intermediate Cleaning in Mechanical Manufacture 554
15.1.10.2 Cleaning Before Heat Treatment and Surface Coating 554
15.1.10.3 Cleaning During Maintenance 555
15.1.10.4 Cleaning Methods and Agents 555
15.1.10.5 Systematization of Cleaners 556
15.1.11 Testing Tribological Characteristics 563
15.1.12 Sheet Metal Forming in Automobile Manufacturing 565
15.1.12.1 Prelubes 565
15.1.12.2 Skin Passing 567
15.1.12.3 Coil Oiling 567
15.1.12.4 Transport and Storage of Sheet Metal 567
15.1.12.5 Washing of Steel Strips and Blanks 567
15.1.12.6 Additional Lubrication 568
15.1.12.7 Pressing 568
15.1.12.8 Transport and Storage of Pressed Parts 570
15.1.12.9 Welding and Bonding 570
15.1.12.10 Cleaning and Phosphating 570
15.1.12.11 Cataphoretic Painting 571
15.1.12.12 Savings Potential using Prelubes 571
15.1.12.13 Dry-film Lubricants 571
15.2 Lubricants for Wire, Tube, and Profile Drawing 573

Theo Mang and Wolfgang Buss

15.2.1 Friction and Lubrication, Tools, and Machines 573
15.2.1.1 Forming Classification 573
15.2.1.2 Friction and Lubrication, Machines and Tools when Wire Drawing 574
15.2.1.3 Drawing Force and Tension 575
15.2.1.4 Drawing Tool and Wear 577
15.2.1.5 Wire Cracks 579
15.2.1.6 Hydrodynamic Drawing 579
15.2.1.7 Wire Friction on Cone 579
15.2.1.8 Lubricant Feed in Wet Drawing 582
15.2.1.9 Dry Drawing 582
15.2.1.10 Applying Lubricant as Pastes or High-viscosity Products 583

15.2.2 Drawing Copper Wire 583
15.2.2.1 Lubricants 584
15.2.2.2 Lubricant Concentration 585
15.2.2.3 Solubility of Copper Reaction Products 586
15.2.2.4 Water Quality and Electrolyte Stability 586
15.2.2.5 Laboratory Testing Methods 587
15.2.2.6 Lubricant Temperature 588
15.2.2.7 Influence of the Lubricant on Wire Enameling 588
15.2.2.8 Circulation Systems, Cleaning and Disposal of Drawing Emulsions 588

15.2.3 Drawing of Steel Wire 589
15.2.3.1 Requirements 589
15.2.3.2 Lubricant Carrier Layers 590
15.2.3.3 Lime as a Lubricant Carrier 590
15.2.3.4 Borax as Lubricant Carrier 590
15.2.3.5 Phosphate as Lubricant Carrier 590
15.2.3.6 Oxalate Coatings and Silicates 591
15.2.3.7 Lubricants for Steel Wire Drawing 591
15.2.4 Drawing Aluminum Wire 593
15.2.4.1 Drawing Machines and Lubrication 593
15.2.4.2 Lubricants for Aluminum Wire Drawing 593
15.2.5 Wire from Other Materials 594
15.2.5.1 Stainless Steel 594
15.2.5.2 Nickel 594
15.2.5.3 Tungsten 595
15.2.6 Profile Drawing 595
15.2.6.1 Lubricating Tasks in Profile Drawing 596
15.2.6.2 Pretreatment and the Use of Lubricant when Profile Drawing Steel 596
15.2.7 Tube Drawing 596
15.2.7.1 Tube-drawing Methods 597
15.2.7.2 Tools and Tool Coatings 597
15.2.7.3 Lubricants and Surface Pretreatment for Tube Drawing 599
15.2.8 Hydroforming 601
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2.8.1 Process Principle</td>
<td>602</td>
</tr>
<tr>
<td>15.2.8.2 Process Configuration</td>
<td>603</td>
</tr>
<tr>
<td>15.2.8.3 Tribological Aspects of Hydroforming</td>
<td>603</td>
</tr>
<tr>
<td>15.2.8.4 Lubricants for Hydroforming</td>
<td>605</td>
</tr>
<tr>
<td>15.3 Lubricants for Rolling</td>
<td>606</td>
</tr>
<tr>
<td>Theo Mang and Wolfgang Buss</td>
<td></td>
</tr>
<tr>
<td>15.3.1 General</td>
<td>606</td>
</tr>
<tr>
<td>15.3.1.1 Rolling Speed</td>
<td>607</td>
</tr>
<tr>
<td>15.3.1.2 Rationalization</td>
<td>607</td>
</tr>
<tr>
<td>15.3.1.3 Surface and Material Quality</td>
<td>607</td>
</tr>
<tr>
<td>15.3.1.4 Hygienic Commercial Requirements</td>
<td>607</td>
</tr>
<tr>
<td>15.3.2 Friction and Lubrication when Rolling</td>
<td>608</td>
</tr>
<tr>
<td>15.3.3 Rolling Steel Sheet</td>
<td>611</td>
</tr>
<tr>
<td>15.3.3.1 Hot Rolling</td>
<td>611</td>
</tr>
<tr>
<td>15.3.3.2 Sheet Cold Rolling</td>
<td>613</td>
</tr>
<tr>
<td>15.3.3.3 Finest Sheet Cold Rolling</td>
<td>617</td>
</tr>
<tr>
<td>15.3.3.4 Cold Rolling of High Alloy Steel Sheet</td>
<td>618</td>
</tr>
<tr>
<td>15.3.4 Rolling Aluminum Sheet</td>
<td>620</td>
</tr>
<tr>
<td>15.3.5 Aluminum Hot Rolling</td>
<td>620</td>
</tr>
<tr>
<td>15.3.6 Aluminum Cold Rolling</td>
<td>621</td>
</tr>
<tr>
<td>15.3.7 Rolling Other Materials</td>
<td>622</td>
</tr>
<tr>
<td>15.4 Solid Metal Forming Lubricants (Solid Forming, Forging and</td>
<td>623</td>
</tr>
<tr>
<td>Extrusion)</td>
<td></td>
</tr>
<tr>
<td>Theo Mang and Wolfgang Buss</td>
<td></td>
</tr>
<tr>
<td>15.4.1 Processes</td>
<td>623</td>
</tr>
<tr>
<td>15.4.1.1 Upsetting</td>
<td>623</td>
</tr>
<tr>
<td>15.4.1.2 Extrusion</td>
<td>624</td>
</tr>
<tr>
<td>15.4.1.3 Impression Die Forging</td>
<td>624</td>
</tr>
<tr>
<td>15.4.1.4 Open Die Forging</td>
<td>624</td>
</tr>
<tr>
<td>15.4.2 Forming Temperatures</td>
<td>624</td>
</tr>
<tr>
<td>15.4.2.1 Cold</td>
<td>624</td>
</tr>
<tr>
<td>15.4.2.2 Warm</td>
<td>625</td>
</tr>
<tr>
<td>15.4.2.3 Hot</td>
<td>625</td>
</tr>
<tr>
<td>15.4.3 Friction and Lubrication with Cold Extrusion and Cold Forging</td>
<td>625</td>
</tr>
<tr>
<td>15.4.3.1 Friction and Lubricant Testing Methods</td>
<td>626</td>
</tr>
<tr>
<td>15.4.3.2 Selection Criteria for Lubricants and Lubrication Technology</td>
<td>628</td>
</tr>
<tr>
<td>15.4.3.3 Lubricating Oils for Cold Extrusion of Steel (Extrusion Oils)</td>
<td>629</td>
</tr>
<tr>
<td>15.4.3.4 Phosphate Coatings and Soap Lubricants for Cold Extrusion of</td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td>631</td>
</tr>
<tr>
<td>15.4.3.5 Solid Lubricants for Cold Extrusion of Steel</td>
<td>634</td>
</tr>
<tr>
<td>15.4.4 Warm Extrusion and Forging</td>
<td>636</td>
</tr>
<tr>
<td>15.4.4.1 Temperature Range up to 350 °C</td>
<td>638</td>
</tr>
<tr>
<td>15.4.4.2 Temperature Range 350 to 500 °C</td>
<td>638</td>
</tr>
</tbody>
</table>
15.4.4.3 Temperature Range 500 to 600 °C 638
15.4.4.4 Temperature Range > 600 °C 638
15.4.5 Lubrication when Hot Forging 639
15.4.5.1 Demands on Hot Forging Lubricants 640
15.4.5.2 Lubricant Testing Methods 641
15.4.6 Hot Forging of Steel 641
15.4.6.1 Lubricants 641
15.4.7 Aluminum Forging 643
15.4.8 Isothermal and Hot Die Forging 644
15.4.9 Application and Selection of Lubricant 645

16 Lubricating Greases 648
Wilfried Dresel and Rolf-Peter Heckler

16.1 Introduction 648
16.1.1 Definition 648
16.1.2 History 648
16.1.3 Advantages over Lubricating Oils 649
16.1.4 Disadvantages 649
16.1.5 Classification 650
16.2 Thickeners 651
16.2.1 Simple Soaps 651
16.2.1.1 Soap Anions 651
16.2.1.2 Soap Cations 651
16.2.1.3 Lithium Soaps 652
16.2.1.4 Calcium Soaps 653
16.2.1.5 Sodium Soaps 654
16.2.1.6 Other Soaps 655
16.2.1.7 Cation Mixed Soaps M_1X/M_2X 655
16.2.1.8 Anion Mixed Soaps MX_1/MX_2 656
16.2.2 Complex Soaps 656
16.2.2.1 Lithium Complex Soaps 656
16.2.2.2 Calcium Complex Soaps 658
16.2.2.3 Calcium Sulfonate Complex Soaps 659
16.2.2.4 Aluminum Complex Soaps 659
16.2.2.5 Other Complex Soaps 660
16.2.3 Other Ionic Organic Thickeners 660
16.2.4 Non-ionic Organic Thickeners 660
16.2.4.1 Diureas and Tetraureas 661
16.2.4.2 Other Non-ionic Organic Thickeners 662
16.2.5 Inorganic Thickeners 662
16.2.5.1 Clays 662
16.2.5.2 Highly Dispersed Silicic Acid 662
16.2.6 Miscellaneous Thickeners 663
16.2.7 Temporarily Thickened Fluids 663
16.3 Base Oils 664
16.3.1 Mineral Oils 665
16.3.2 Synthetic Base Oils 665
16.3.2.1 Synthetic Hydrocarbons 665
16.3.2.2 Other Synthetic Base Oils 666
16.3.2.3 Immiscible Base Oil Mixtures 666
16.4 Grease Structure 666
16.5 Additives 667
16.5.1 Structure Modifiers 668
16.5.2 Antitrust Additives (Corrosion Inhibitors) 668
16.5.3 Extreme Pressure and Anti-Wear Additives 668
16.5.4 Solid Lubricants 669
16.5.5 Friction Modifiers 669
16.5.6 Nanomaterials 670
16.6 Manufacture of Greases 670
16.6.1 Metal Soap-Based Greases 670
16.6.1.1 Batch Production with Preformed Metal Soaps 670
16.6.1.2 Batch Production with Metal Soaps Prepared In-situ 671
16.6.1.3 Continuous Production 672
16.6.2 Oligoureia Greases 673
16.6.3 Gel Greases 673
16.7 Grease Rheology 674
16.8 Grease Performance 674
16.8.1 Test Methods 677
16.8.2 Analytical Methods 678
16.9 Applications of Greases 679
16.9.1 Rolling Bearings 679
16.9.1.1 Re-lubrication Intervals 680
16.9.2 Cars, Trucks, Construction Vehicles 683
16.9.3 Steel Mills 685
16.9.4 Mining 686
16.9.5 Railroad, Railway 687
16.9.6 Gears 687
16.9.7 Food-Grade Applications 688
16.9.8 Textile Machines 688
16.9.9 Application Techniques 688
16.9.10 Special and Lifetime Applications 689
16.9.11 Applications with Polymeric Materials 689
16.10Grease Market 690
16.11 Ecology and the Environment 691
16.12 Grease Tribology 693
17 Solid Lubrication 694

Christian Busch

17.1 Classification of Solid Lubricants 694
17.1.1 Class 1: Structural Lubricants 695
17.1.2 Class 2: Mechanical Lubricants 696
17.1.2.1 Self-Lubricating Substances 696
17.1.2.2 Substances with Lubricating Properties that Need a Supporting Medium 698
17.1.2.3 Substances with Indirect Lubricating Properties Based on their Hardness (Physical Vapor Deposition (PVD), Chemical Vapor Deposition (CVD), and Diamond-like Carbon (DLC) layers) 699
17.1.3 Class 3: Soaps 699
17.1.4 Class 4: Chemically Active Lubricants 699
17.2 Characteristics 700
17.2.1 The Crystal Structures of Lamellar Solid Lubricants 700
17.2.1.1 Graphite 700
17.2.1.2 Molybdenum Disulfide 700
17.2.2 Heat Stability 701
17.2.3 Melting Point 701
17.2.4 Thermal Conductivity 701
17.2.5 Adsorbed Films 702
17.2.6 Mechanical Properties 702
17.2.7 Chemical Stability 702
17.2.8 Purity 702
17.2.9 Particle Size 703
17.3 Products Containing Solid Lubricants 703
17.3.1 Powders 703
17.3.1.1 Solid Lubricants in Carrying Media 704
17.3.2 Dispersions and Suspensions 704
17.3.3 Greases and Grease Pastes 704
17.3.4 Pastes 706
17.3.5 Dry-Film Lubricants 706
17.4 Industrial Uses of Products Containing Solid Lubricants 710
17.4.1 Screw Lubrication 711
17.4.2 Roller-Bearing Lubrication 712
17.4.3 Slide Bearing, Slide Guideway, and Slide Surface Lubrication 713
17.4.4 Chain Lubrication 713
17.4.5 Plastic and Elastomer Lubrication 713

18 Laboratory Methods for Testing Lubricants 715

Siegfried Noll and Roman Müller

18.1 Introduction 715
18.2 Density 715
18.3 Viscosity 716
18.3.1 Capillary Viscometers 716
18.3.2 Rotary Viscometers 716
18.4 Refractive Index 717
18.5 Structural Analyses 717
18.6 Flash Point 717
18.7 Surface Phenomena 718
18.7.1 Air Release 718
18.7.2 Water Separation and Demulsibility 718
18.7.3 Foaming Characteristics 719
18.8 Cloud Point, Pour Point 719
18.9 Aniline Point 719
18.10 Water Content 719
18.11 Ash Content 720
18.12 Acidity, Alkalinity 720
18.13 Aging Tests 721
18.14 Hydrolytic Stability 721
18.15 Corrosion Tests 722
18.16 Oil Compatibility of Seals and Insulating Materials 723
18.17 Evaporation Loss 723
18.18 Analysis and Testing of Lubricating Greases 724
18.18.1 Consistency 724
18.18.2 Dropping Point 724
18.18.3 Oil Separation 724
18.18.4 Shear Stability of Greases 724
18.18.4.1 Prolonged Grease Working 724
18.18.4.2 Roll Stability of Lubricating Greases 725
18.18.5 High-temperature Performance 725
18.18.6 Wheel Bearing Leakage 725
18.18.6.1 Leakage Tendency of Automotive Wheel Bearing Greases 725
18.18.6.2 Wheel-bearing Leakage Under Accelerated Conditions 725
18.18.7 Wheel-bearing Life 726
18.18.8 Water Resistance 726
18.18.8.1 Water Washout Characteristics 726
18.18.8.2 Water Spray-off Resistance 726
18.18.9 Oxidation Stability of Lubricating Greases by the Oxygen Pressure-vessel Method 726
18.18.10 Corrosion-preventive Characteristics 727
18.18.10.1 Rust Test 727
18.18.10.2 EMCOR Test 727
18.18.10.3 Copper Corrosion 727
18.19 List of Equivalent Standardized Methods for Testing Lubricants 728
19 Mechanical–Dynamic Test Methods for Lubricants 736
Thorsten Bartels

19.1 Tribological System Categories within Lubricant Tests 736

19.2 Simple Mechanical–Dynamic Lubricant Test Machines 737
19.2.1 Four-ball Apparatus 737
19.2.2 Reichert’s Friction-wear Balance, Brugger Apparatus 740
19.2.3 Falex Test Machines 741
19.2.3.1 Falex Block-on-ring Test Machine 741
19.2.3.2 The Falex Pin and Vee Block Test Machine 742
19.2.3.3 Falex High-performance Multispecimen Test Machine 743
19.2.3.4 Falex Tapping Torque Test Machine 743
19.2.4 Timken Test Machine 744
19.2.5 High-frequency Reciprocating Test Machines 745
19.2.5.1 High-frequency Reciprocating Rig (HFRR) 745
19.2.5.2 High-frequency, Linear-oscillation Test Machine (SRV) 746
19.2.5.3 Mini Traction Machine (MTM) 747
19.2.6 Low-velocity Friction Apparatus (LVFA), Tribometer 748
19.2.7 Diesel Injector Apparatus 748
19.3 Performance Tests for Gear Oil Applications 749
19.3.1 FZG Gear-test Rig 750
19.3.1.1 FZG EP Tests – Scuffing 750
19.3.1.2 FZG High-EP Tests – Scuffing Load Capacity 753
19.3.1.3 FZG Pitting Tests 753
19.3.1.4 FZG Micro-Pitting Tests 754
19.3.1.5 FZG Wear Tests 755
19.3.1.6 FZG Gear-efficiency Tests 756
19.3.1.7 FZG Synthetic Oil Ageing Tests 757
19.4 Performance Tests for Roller Bearing Applications 758
19.4.1 FAG Roller Bearing Test Apparatus FE8 758
19.4.2 FAG Roller Bearing Test Apparatus FE9 760
19.5 Performance Tests for Synchronizer Applications 762
19.5.1 Area of Application 762
19.5.2 Function of the Synchronizer 762
19.5.3 Standardized Test Rigs and Test Methods 763
19.5.3.1 μ-Comb Synchronizer Testing Machine 764
19.5.3.2 FZG SSP180 Synchronizer Testing Machine 766
19.6 Performance Tests for Automatic Transmissions 768
19.6.1 Area of Application 768
19.6.2 Function of Friction Disks and Fluid 768
19.6.3 Standardized Test Rigs and Test Methods 770
19.6.3.1 SAE 2 Machine 770
19.6.3.2 DKA Machine 770
19.6.3.3 ZF GK Test Bench 2 772
19.7 Performance Tests for Continuously Variable Transmissions 774
Contents

19.7.1 Field of Application 774
19.7.2 Function of Chain, Push-Belt and Fluid 774
19.7.3 Standardized Test Rigs and Test Methods 775
19.7.3.1 ZF Universal Variator Test Bench 775
19.7.3.2 Van Doorne Test Bench 777
19.8 Performance Tests for Hydraulic Fluid Applications 777
19.8.1 Field of Application 777
19.8.2 Function of Vane Pumps 778
19.8.3 Standardized Vane Pump Test Machines and Test Methods 778
19.8.4 Function of Axial Piston Pumps 779
19.8.5 Standardized Axial Piston Pump Test Machines and Test Methods 780
19.8.6 Nonstandardized Specialized Testing, Efficiency Tests 782
19.8.7 Hybrid Pump Testing 782
19.9 Other Standardized and Non-Standardized Test Methods and Test Machines for Lubricants 783
19.10 Interpretation and Precision of Lubricant Tests 784

References 786

Subject Index 837