Contents

1 Introduction .. 1
1.1 Problem Definition .. 1
1.1.1 Modeling Technical Systems 3
1.1.2 Definition of a System 5
1.1.3 Simulation and Simulation Environment 5
1.1.4 Vehicle Models .. 6
1.2 Complete Vehicle Model 9
1.2.1 Vehicle Models and Application Areas 11
1.2.2 Commercial Vehicle Simulation Systems 11
1.3 Outline of the Book 13
1.4 Webpage of the Book 14
References ... 14

2 Fundamentals of Mathematics and Kinematics 17
2.1 Vectors ... 17
2.1.1 Elementary Algorithms for Vectors 17
2.1.2 Physical Vectors .. 18
2.2 Coordinate Systems and Components 19
2.2.1 Coordinate Systems 19
2.2.2 Component Decomposition 19
2.2.3 Relationship Between Component Representations ... 20
2.2.4 Properties of the Transformation Matrix 22
2.3 Linear Vector Functions and Second Order Tensors 22
2.4 Free Motion of Rigid Bodies 24
2.4.1 General Motion of Rigid Bodies 24
2.4.2 Relative Motion 28
2.4.3 Important Reference Frames 30
2.5 Rotational Motion ... 31
2.5.1 Spatial Rotation and Angular Velocity in General Form 32
2.5.2 Parameterizing of Rotational Motion 32
2.5.3 The Rotational Displacement Pair and Tensor of Rotation 34
3 Kinematics of Multibody Systems

3.1 Structure of Kinematic Chains
 - Topological Modelling 43
 - Kinematic Modelling 45

3.2 Joints in Kinematic Chains
 - Joints in Spatial Kinematic Chains 46
 - Joints in Planar Kinematic Chains 47
 - Joints in Spherical Kinematic Chains 48
 - Classification of Joints 50

3.3 Degrees of Freedom and Generalized Coordinates
 - Degrees of Freedom of Kinematic Chains 50

3.4 Basic Principles of the Assembly of Kinematic Chains
 - Sparse-Methods: Absolute Coordinates Formulation 55
 - Vector Loop Methods ("LAGRANGE" Formulation) 58
 - Topological Methods: Formulation of Minimum Coordinates 59

3.5 Kinematics of a Complete Multibody System
 - Basic Concept 62
 - Block Wiring Diagram and Kinematic Networks 63
 - Relative Kinematics of the Spatial Four-Link Mechanism 64

3.6 Relative, Absolute and Global Kinematics 66
3.5.5 Example: Double Wishbone Suspension 68

4 Equations of Motion of Complex Multibody Systems

4.1 Fundamental Equation of Dynamics for Point Mass Systems 73
4.2 JOURDAIN'S Principle 75
4.3 LAGRANGE Equations of the First Kind for Point Mass Systems 75
4.4 LAGRANGE Equations of the Second Kind for Rigid Bodies 76
4.5 D'ALEMBERT's Principle 78
4.6 Computer-Based Derivation of the Equations of Motion 80
 4.6.1 Kinematic Differentials of Absolute Kinematics 80
 4.6.2 Equations of Motion 83
 4.6.3 Dynamics of a Spatial Multibody Loop 84

References 92

5 Kinematics and Dynamics of the Vehicle Body 93
 5.1 Vehicle-Fixed Reference Frame 93
 5.2 Kinematical Analysis of the Chassis 96
 5.2.1 Incorporation of the Wheel Suspension Kinematics 96
 5.2.2 Equations of Motion 99

References 100

6 Modeling and Analysis of Wheel Suspensions 101
 6.1 Function of Wheel Suspension Systems 101
 6.2 Different Types of Wheel Suspension 103
 6.2.1 Beam Axles 104
 6.2.2 Twist-Beam Suspension 105
 6.2.3 Trailing-Arm Axle 106
 6.2.4 Trailer Arm Axle 108
 6.2.5 Double Wishbone Axles 108
 6.2.6 Wheel Suspension Derived from the MacPherson Principle 110
 6.2.7 Multi-Link Axles 111
 6.3 Characteristic Variables of Wheel Suspensions 113
 6.4 One Dimensional Quarter Vehicle Models 116
 6.5 Three-Dimensional Model of a MacPherson Wheel Suspension 119
 6.5.1 Kinematic Analysis 120
 6.5.2 Explicit Solution 124
 6.6 Three-Dimensional Model of a Five-Link Rear Wheel Suspension 129
 6.6.1 Kinematic Analysis 129
 6.6.2 Implicit Solution 132
 6.6.3 Simulation Results of the Three Dimensional Quarter Vehicle Model 137

References 141

7 Modeling of the Road-Tire-Contact 143
 7.1 Tire Construction 144
 7.2 Forces Between Wheel and Road 145
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Spring and Damper Components</td>
<td>212</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Spring Elements</td>
<td>212</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Damper Elements</td>
<td>213</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Force Elements Connected in Parallel</td>
<td>214</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Force Elements in Series</td>
<td>214</td>
</tr>
<tr>
<td>9.5</td>
<td>Anti-Roll Bars</td>
<td>216</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Passive Anti-Roll Bars</td>
<td>216</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Active Anti-Roll Bars</td>
<td>219</td>
</tr>
<tr>
<td>9.6</td>
<td>Rubber Composite Elements</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>221</td>
</tr>
<tr>
<td>10</td>
<td>Single Track Models</td>
<td>223</td>
</tr>
<tr>
<td>10.1</td>
<td>Linear Single Track Model</td>
<td>223</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Equations of Motion of the Linear Single Track Model</td>
<td>224</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Stationary Steering Behavior and Cornering</td>
<td>229</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Instationary Steering Behavior: Vehicle Stability</td>
<td>232</td>
</tr>
<tr>
<td>10.2</td>
<td>Nonlinear Single Track Model</td>
<td>234</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Kinetics of the Nonlinear Single Track Model</td>
<td>234</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Tire Forces</td>
<td>237</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Drive and Brake Torques</td>
<td>240</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Equations of Motion</td>
<td>241</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Equations of State</td>
<td>243</td>
</tr>
<tr>
<td>10.3</td>
<td>Linear Roll Model</td>
<td>244</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Equation of Motion for the Rolling of the Chassis</td>
<td>245</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Dynamic Tire Loads</td>
<td>249</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Influence of the Self-steering Behavior</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>253</td>
</tr>
<tr>
<td>11</td>
<td>Twin Track Models</td>
<td>255</td>
</tr>
<tr>
<td>11.1</td>
<td>Twin Track Model Without Suspension Kinematics</td>
<td>255</td>
</tr>
<tr>
<td>11.1.1</td>
<td>NEWTON's and EULER's Equations for a Basic Spatial Twin Track Model</td>
<td>258</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Spring and Damper Forces</td>
<td>260</td>
</tr>
<tr>
<td>11.1.3</td>
<td>NEWTON's and EULER's Equations of the Wheels</td>
<td>262</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Tire-Road Contact</td>
<td>263</td>
</tr>
<tr>
<td>11.1.5</td>
<td>Drivetrain</td>
<td>265</td>
</tr>
<tr>
<td>11.1.6</td>
<td>Brake System</td>
<td>267</td>
</tr>
<tr>
<td>11.1.7</td>
<td>Equations of Motion</td>
<td>267</td>
</tr>
<tr>
<td>11.2</td>
<td>Twin Track Models with Kinematic Wheel Suspensions</td>
<td>269</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Degrees of Freedom of the Twin Track Model</td>
<td>269</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Kinematics of the Vehicle Chassis</td>
<td>272</td>
</tr>
</tbody>
</table>
11.2.3 Generalized Kinematics of the Wheel Suspension 274
11.2.4 Wheel Suspension with a Trailing Arm 278
11.2.5 Kinematics of the Wheels While Using a Semi-Trailing Arm Suspension 283
11.2.6 Tire Forces and Torques 286
11.2.7 Suspension Springs and Dampers 287
11.2.8 Aerodynamic Forces 288
11.2.9 Steering 288
11.2.10 Anti-roll Bar 289
11.2.11 Applied Forces and Torques 290
11.2.12 NEWTON's and EULER's Equations 291
11.2.13 Motion and State Space Equations 294
11.3 Simplified Driver Model 294
11.3.1 Controller Concept 295
11.4 Parameterization 298
References 298

12 Three-Dimensional Complete Vehicle Models 299
12.1 Modeling of the Complete Vehicle 299
12.1.1 Kinematics of a Rear-Wheel Driven Complete Vehicle Model 300
12.1.2 Kinematics of Front- and Four-Wheel Driven Complete Vehicle Models 309
12.1.3 Dynamics of the Complete Vehicle Model 321
12.2 Simulation of Motor Vehicles 324
12.2.1 Setup and Concept of FASIM_C++ 325
12.2.2 Modular Structure of a Vehicle Model 327
12.2.3 Construction of the Equations of Motion 333
12.2.4 Numeric Integration 337
12.2.5 Treatment of Events 340
References 341

13 Model of a Typical Complex Complete Vehicle 343
13.1 Modeling of the Complete Vehicle 343
13.2 Model Verification and Validation 346
13.2.1 Verification 346
13.2.2 Validation 347
13.3 Parameterized Vehicle Model 354
13.3.1 Definition of a Reference Model 355
13.3.2 Comparison of Parameterized Versus Validated Models 359

References 362
14 Selected Applications 363

14.1 Simulation of a Step Steering Input (ISO 1989) 363

14.2 Simulation of Vehicle Rollover 365

14.2.1 Virtual Proving Grounds 369

14.2.2 Results of the Simulation 373

14.3 Control of the Roll Dynamics Using Active Anti-Roll Bars 384

14.3.1 Passive Anti-Roll Bar 384

14.3.2 Stiffness Distribution Between Front- and Rear Axle 385

14.3.3 Adjustment of the Roll Dynamics by Means of Active Anti-Roll Bars 388

14.3.4 Control Unit Design 388

14.3.5 Response and Disturbance Reaction 391

14.3.6 Roll Torque Distribution with Fuzzy Logic 391

14.3.7 Active Principle 392

14.3.8 Potential of a Roll Torque Distribution 394

References 395

Index 397