Contents

Preface ... vii
Contributors ... xix

1 Introduction .. 1
 P. J. Gramann, T. A. Osswald
 1.1 Historical Background .. 1
 1.2 The Reciprocating Screw Injection Molding Machine 9
 1.2.1 The Plasctication and Injection Unit 9
 1.2.2 The Clamping Unit 10
 1.2.3 The Mold Cavity 11
 1.3 The Injection Molding Cycle 13
 1.4 Related Injection Molding Processes 17
 References ... 18

2 Injection Molding Materials 19
 T. A. Osswald
 2.1 Historical Background .. 19
 2.2 Macromolecular Structure of Polymers 23
 2.3 Molecular Weight .. 27
 2.4 Conformation and Configuration of Polymer Molecules 30
 2.5 Thermoplastic Polymers 34
 2.5.1 Amorphous Thermoplastics 34
 2.5.2 Semi-Crystalline Thermoplastics 36
 2.5.3 Examples of Common Thermoplastics 43
 2.6 Thermosetting Polymers 46
 2.6.1 Cross-Linking Reaction 46
 2.6.2 Examples of Common Thermosets 48
 2.7 Copolymers and Polymer Blends 49
 2.8 Elastomers ... 51
 M. DeGreiff
 2.9 Efficient Vulcanizing Systems52
 2.10 Thermoplastic Elastomers 53
 G. Holden
 2.10.1 Service Temperatures 54
 2.10.2 Examples of Common Thermoplastic Elastomers 55
 References ... 61
3 Processing Fundamentals

T. A. Osswald

3.1 Processing Data
3.1.1 Temperature Settings
3.1.2 Injection and Pack-Hold Pressure Settings
3.1.3 Drying
3.1.4 Processing Data for Thermoplastic Elastomers
3.1.5 Processing Data for Thermosets
3.1.6 Processing Data for Elastomers

G. Holden

3.2 Rheology of Polymer Melts
3.2.1 Shear Thinning Behavior of Polymers
3.2.2 Simplified Flows Common in Injection Molding
3.2.3 Estimating Injection Pressure and Clamping Force (Stevenson Model)
3.2.4 Nonisothermal Flows in Polymer Processing
3.2.5 Normal Stresses in Shear Flow
3.2.6 Deborah Number
3.2.7 Rheology of Curing Thermosets
3.2.8 Suspension Rheology

3.3 Rheometry
3.3.1 The Melt Flow Indexer
3.3.2 The Capillary Viscometer
3.3.3 Viscosity from the Capillary Viscometer

3.4 Anisotropy Development During Processing
3.4.1 Orientation in the Final Part
3.4.2 Fiber Damage

3.5 Solidification and Curing Processes
3.5.1 Solidification of Thermoplastics
3.5.2 Solidification of Thermosets
3.5.3 Residual Stresses, Shrinkage, and Warpage

References

4 Plasticating

C. Rauwendaal, P. J. Gramann

4.1 The Plasticating Unit
4.1.1 The Ram Extruder
4.1.2 The Reciprocating Screw

4.2 Functions of the Plasticating Unit
4.2.1 Solids Conveying
4.2.2 Melting or Plasticating
4.2.3 Melt Conveying
4.2.4 Degassing or Devolatilization
4.2.5 Mixing

4.3 Conclusion

References
5 Clamping Unit

R. Farrell

5.1 Metal Fatigue and Its Importance in Clamp Design
5.1.1 Importance in Clamp Design
5.1.2 A Brief History of Metal Fatigue
5.1.3 The Three Phases of Metal Fatigue
5.1.4 Determination of Design Stress for Metal Fatigue
5.1.5 Determination of Survival Factor (SF)
5.1.6 Conclusion of Discussion of Metal Fatigue

5.2 Functions of the Clamping System

5.3 The Three Types of Clamping Systems
5.3.1 Hydraulic
5.3.2 Hydromechanical
5.3.3 Mechanical
5.3.4 Types of Toggle Systems

5.4 Key Elements of a Clamp
5.4.1 Platens
5.4.2 Tie Rods and Nuts
5.4.3 Toggle Pins and Bushings
5.4.4 Tie-Rod Bushings
5.4.5 Moving Platen Support
5.4.6 Shut Height Adjustment
5.4.7 Ejector Systems

5.5 A Special Discussion of Tie-Rod Design
5.5.1 Why This Element Is So Important
5.5.2 Thread Load Distribution
5.5.3 Thread Bending Stress
5.5.4 Thread Axial Stress
5.5.5 Combined Stresses
5.5.6 Mitigating Factors
5.5.7 Ways to Improve the Design

5.6 Understanding Clamp Spring Rate (Stiffness)
5.6.1 How to Determine Clamp Spring Rate
5.6.2 The Importance of Clamp Spring Rate
5.7 Math Model for a Toggle Clamp
5.8 The Farrell Square Root Rule
5.8.1 Relationships That Follow from the Farrell Square Root Rule
5.8.2 The Whole Machine Can Follow the Square Root Rule

References

6 Mold Design

J. Beaumont

6.1 Standard Mold Assembly
6.2 Cold Runner Molds
6.2.1 Two-Plate Cold Runner Mold
6.2.2 Three-Plate Cold Runner Mold
6.3 Hot Runner Molds
6.3.1 Externally Heated Manifold and Drops
8 Statistical Process Control

C. Rauwendael

8.1 Statistical Process Control
8.1.1 Implementing Statistical Process Control
8.1.2 Basic Statistical Concepts
8.2 Control Charts
8.2.1 Introduction
8.2.2 Control Charts for Variables Data
8.2.3 Control Charts for Attributes Data
8.3 Process Capability and Special SPC Tools for Molding
8.3.1 Introduction
8.3.2 Capability Indexes
8.3.3 Use of Computers
8.3.4 Special SPC Techniques for Injection Molding

References

9 Special Injection Molding Processes

L.-S. Turng

9.1 Coinjection (Sandwich) Molding
9.1.1 Process Description
9.1.2 Process Advantages
9.1.3 Process Disadvantages
9.1.4 Applicable Materials
9.1.5 Typical Applications
9.2 Fusible (Lost, Soluble) Core Injection Molding
9.2.1 Process Description
9.2.2 Process Advantages
9.2.3 Process Disadvantages
9.2.4 Applicable Materials
9.2.5 Typical Applications
9.3 Gas-Assisted Injection Molding
9.3.1 Process Description
9.3.2 Process Advantages
9.3.3 Process Disadvantages
9.3.4 Applicable Materials
9.3.5 Typical Applications
9.4 Injection-Compression Molding
9.4.1 Process Description
9.4.2 Process Advantages
9.4.3 Process Disadvantages
9.4.4 Applicable Materials
9.4.5 Typical Applications
9.4.6 Computer Simulation for Injection-Compression Molding
9.5 In-Mold Decoration and In-Mold Lamination
9.5.1 Process Description
9.5.2 Process Advantages
9.5.3 Process Disadvantages
9.5.4 Mold Design and Processing Considerations
<table>
<thead>
<tr>
<th>9.5.5</th>
<th>Applicable Materials</th>
<th>406</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.6</td>
<td>Typical Applications</td>
<td>407</td>
</tr>
<tr>
<td>9.6</td>
<td>Insert and Outsert Molding</td>
<td>409</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Insert Molding Process Description</td>
<td>409</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Outsert Molding Process Description</td>
<td>410</td>
</tr>
<tr>
<td>9.7</td>
<td>Lamellar (Microlayer) Injection Molding</td>
<td>412</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Process Description</td>
<td>412</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Process Advantages</td>
<td>412</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Process Disadvantages</td>
<td>415</td>
</tr>
<tr>
<td>9.7.4</td>
<td>Applicable Materials</td>
<td>415</td>
</tr>
<tr>
<td>9.7.5</td>
<td>Typical Applications</td>
<td>416</td>
</tr>
<tr>
<td>9.8</td>
<td>Low-Pressure Injection Molding</td>
<td>416</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Process Description</td>
<td>416</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Process Advantages</td>
<td>420</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Process Disadvantages</td>
<td>420</td>
</tr>
<tr>
<td>9.8.4</td>
<td>Applicable Materials</td>
<td>420</td>
</tr>
<tr>
<td>9.8.5</td>
<td>Typical Applications</td>
<td>420</td>
</tr>
<tr>
<td>9.9</td>
<td>Microinjection Molding</td>
<td>421</td>
</tr>
<tr>
<td>9.9.1</td>
<td>Process Description</td>
<td>421</td>
</tr>
<tr>
<td>9.9.2</td>
<td>Process Advantages</td>
<td>426</td>
</tr>
<tr>
<td>9.9.3</td>
<td>Process Disadvantages</td>
<td>426</td>
</tr>
<tr>
<td>9.9.4</td>
<td>Applicable Materials</td>
<td>427</td>
</tr>
<tr>
<td>9.9.5</td>
<td>Typical Applications</td>
<td>427</td>
</tr>
<tr>
<td>9.10</td>
<td>Microcellular Molding</td>
<td>427</td>
</tr>
<tr>
<td>9.10.1</td>
<td>Process Description</td>
<td>427</td>
</tr>
<tr>
<td>9.10.2</td>
<td>Process Advantages</td>
<td>430</td>
</tr>
<tr>
<td>9.10.3</td>
<td>Process Disadvantages</td>
<td>431</td>
</tr>
<tr>
<td>9.10.4</td>
<td>Applicable Materials</td>
<td>431</td>
</tr>
<tr>
<td>9.10.5</td>
<td>Typical Applications</td>
<td>431</td>
</tr>
<tr>
<td>9.11</td>
<td>Multicomponent Injection Molding (Overmolding)</td>
<td>431</td>
</tr>
<tr>
<td>9.11.1</td>
<td>Process Description</td>
<td>432</td>
</tr>
<tr>
<td>9.11.2</td>
<td>Process Advantages</td>
<td>433</td>
</tr>
<tr>
<td>9.11.3</td>
<td>Process Disadvantages</td>
<td>434</td>
</tr>
<tr>
<td>9.11.4</td>
<td>Applicable Materials</td>
<td>434</td>
</tr>
<tr>
<td>9.11.5</td>
<td>Typical Applications</td>
<td>435</td>
</tr>
<tr>
<td>9.12</td>
<td>Multiple Live-Feed Injection Molding</td>
<td>436</td>
</tr>
<tr>
<td>9.12.1</td>
<td>Process Description</td>
<td>436</td>
</tr>
<tr>
<td>9.12.2</td>
<td>Process Advantages</td>
<td>438</td>
</tr>
<tr>
<td>9.12.3</td>
<td>Process Disadvantages</td>
<td>440</td>
</tr>
<tr>
<td>9.12.4</td>
<td>Applicable Materials</td>
<td>441</td>
</tr>
<tr>
<td>9.12.5</td>
<td>Typical Applications</td>
<td>441</td>
</tr>
<tr>
<td>9.13</td>
<td>Push-Pull Injection Molding</td>
<td>441</td>
</tr>
<tr>
<td>9.13.1</td>
<td>Process Description</td>
<td>441</td>
</tr>
<tr>
<td>9.13.2</td>
<td>Process Advantages and Disadvantages</td>
<td>442</td>
</tr>
<tr>
<td>9.13.3</td>
<td>Applicable Materials</td>
<td>442</td>
</tr>
<tr>
<td>9.13.4</td>
<td>Typical Applications</td>
<td>444</td>
</tr>
<tr>
<td>9.14</td>
<td>Powder Injection Molding</td>
<td>444</td>
</tr>
<tr>
<td>9.14.1</td>
<td>Process Description</td>
<td>445</td>
</tr>
<tr>
<td>9.14.2</td>
<td>Process Advantages</td>
<td>447</td>
</tr>
<tr>
<td>Section</td>
<td>Process Description</td>
<td>Process Advantages</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>9.14.3</td>
<td>Process Disadvantages</td>
<td>447</td>
</tr>
<tr>
<td>9.14.4</td>
<td>Typical Applications</td>
<td>448</td>
</tr>
<tr>
<td>9.15</td>
<td>Reaction Injection Molding</td>
<td>448</td>
</tr>
<tr>
<td>9.15.1</td>
<td>Process Description</td>
<td>448</td>
</tr>
<tr>
<td>9.15.2</td>
<td>Process Advantages</td>
<td>450</td>
</tr>
<tr>
<td>9.15.3</td>
<td>Process Disadvantages</td>
<td>450</td>
</tr>
<tr>
<td>9.15.4</td>
<td>Applicable Materials</td>
<td>450</td>
</tr>
<tr>
<td>9.15.5</td>
<td>Typical Applications</td>
<td>451</td>
</tr>
<tr>
<td>9.16</td>
<td>Resin Transfer Molding and Structural RIM</td>
<td>451</td>
</tr>
<tr>
<td>9.16.1</td>
<td>Process Description</td>
<td>451</td>
</tr>
<tr>
<td>9.16.2</td>
<td>Process Advantages</td>
<td>453</td>
</tr>
<tr>
<td>9.16.3</td>
<td>Process Disadvantages</td>
<td>453</td>
</tr>
<tr>
<td>9.16.4</td>
<td>Applicable Materials</td>
<td>453</td>
</tr>
<tr>
<td>9.16.5</td>
<td>Typical Applications</td>
<td>453</td>
</tr>
<tr>
<td>9.17</td>
<td>Rheomolding</td>
<td>454</td>
</tr>
<tr>
<td>9.17.1</td>
<td>Process Description</td>
<td>455</td>
</tr>
<tr>
<td>9.17.2</td>
<td>Process Advantages</td>
<td>456</td>
</tr>
<tr>
<td>9.17.3</td>
<td>Process Disadvantages</td>
<td>457</td>
</tr>
<tr>
<td>9.18</td>
<td>Structural Foam Injection Molding</td>
<td>457</td>
</tr>
<tr>
<td>9.18.1</td>
<td>Process Description</td>
<td>457</td>
</tr>
<tr>
<td>9.18.2</td>
<td>Process Advantages</td>
<td>460</td>
</tr>
<tr>
<td>9.18.3</td>
<td>Process Disadvantages</td>
<td>461</td>
</tr>
<tr>
<td>9.18.4</td>
<td>Applicable Materials</td>
<td>461</td>
</tr>
<tr>
<td>9.18.5</td>
<td>Typical Applications</td>
<td>464</td>
</tr>
<tr>
<td>9.19</td>
<td>Thin-Wall Molding</td>
<td>464</td>
</tr>
<tr>
<td>9.19.1</td>
<td>Process Description</td>
<td>464</td>
</tr>
<tr>
<td>9.19.2</td>
<td>Process Advantages</td>
<td>466</td>
</tr>
<tr>
<td>9.19.3</td>
<td>Process Disadvantages</td>
<td>466</td>
</tr>
<tr>
<td>9.19.4</td>
<td>Applicable Materials</td>
<td>468</td>
</tr>
<tr>
<td>9.19.5</td>
<td>Typical Applications</td>
<td>468</td>
</tr>
<tr>
<td>9.20</td>
<td>Vibration Gas Injection Molding</td>
<td>468</td>
</tr>
<tr>
<td>9.20.1</td>
<td>Process Description</td>
<td>468</td>
</tr>
<tr>
<td>9.21</td>
<td>Water Assisted Injection Molding</td>
<td>469</td>
</tr>
<tr>
<td>9.21.1</td>
<td>Process Description</td>
<td>469</td>
</tr>
<tr>
<td>9.21.2</td>
<td>Process Advantages</td>
<td>470</td>
</tr>
<tr>
<td>9.21.3</td>
<td>Process Disadvantages</td>
<td>471</td>
</tr>
<tr>
<td>9.21.4</td>
<td>Applicable Materials</td>
<td>471</td>
</tr>
<tr>
<td>9.22</td>
<td>Rubber Injection</td>
<td>471</td>
</tr>
<tr>
<td>9.22.1</td>
<td>Rubber Molding Processes</td>
<td>471</td>
</tr>
<tr>
<td>9.22.2</td>
<td>Curing Systems in Rubber Injection Process</td>
<td>474</td>
</tr>
<tr>
<td>9.23</td>
<td>Injection Molding of Liquid Silicone Rubber</td>
<td>476</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>478</td>
<td>478</td>
</tr>
<tr>
<td>References</td>
<td>479</td>
<td>479</td>
</tr>
</tbody>
</table>
10 Part Design .. 483
J. Beaumont

10.1 The Design Process .. 483
10.2 The Four Building Blocks of Plastics Part Design 487
 10.2.1 Material .. 487
 10.2.2 Product Design 497
 10.2.3 Mold Design and Machining 499
 10.2.4 Process ... 501

10.3 Part Design Guidelines for Injection Molded Plastic Parts ... 514
 10.3.1 Designing the Primary Wall 516
 10.3.2 Ribs, Gussets, and Bosses 519
 10.3.3 Bosses .. 522
 10.3.4 Corners, Fillets, and Radii 525
 10.3.5 Taper and Draft Angles 526
 10.3.6 Undercuts and Holes 526
 10.3.7 Gating and Process Considerations 529
 10.3.8 Cores .. 530
 10.3.9 Avoid Picture Frame Features 531
 10.3.10 Integral Hinges .. 531

10.4 Sample Part Design .. 533

10.5 Estimating Part Costs 536

References ... 539

11 Simulation in Injection Molding 541
B. A. Davis, A. C. Rios, V. Yang

11.1 Introduction ... 541
11.2 History ... 542

11.3 Governing Equations 545
 11.3.1 Flow Models .. 545
 11.3.2 Orientation Models 548
 11.3.3 Heat Transfer Models 549
 11.3.4 Constitutive Equations 551

11.4 Numerical Methods .. 553
 11.4.1 Finite Difference Method 554
 11.4.2 Finite Element Method 554
 11.4.3 Boundary Element Method 555
 11.4.4 Finite Volume Method 556

11.5 Simplified Calculations 557
 11.5.1 Finite Difference Based Calculations 557
 11.5.2 Midplane Model-Based Calculations 558
 11.5.3 Solid Model-Based Calculations 559
 11.5.4 True 3-D Calculations 563

11.6 Advanced Calculations 564
 11.6.1 Commercial Software 565
 11.6.2 Specialty Calculations 570

11.7 Injection-Compression Molding 574
 11.7.1 IC Molding of Thermoplastic Materials 576
 11.7.2 IC Molding of Thermoset Materials 577
11.8 Molding Process Optimization .. 578
 11.8.1 Optimal Gating ... 578
 11.8.2 Active Process Control .. 578
11.9 Conclusions ... 579
Acknowledgements ... 580
References .. 580

12 Process Troubleshooting ... 581
12.1 Introduction to Troubleshooting 581
 J. Wickman, T. Springett, and R. Vadlamudi
12.2 Troubleshooting Guide .. 586
 12.2.1 Troubleshooting Table ... 586
 J. Bozzelli
 12.2.2 Troubleshooting on Injection Molding of Rubber 627
 M. DeGreiff
 12.2.3 Important Troubleshooting Considerations 631
 T. Osswald
12.3 Technology and Process Troubleshooting 632
 J. Wickman, T. Springett, and R. Vadlamudi
 12.3.1 Technology Implications ... 633
 12.3.2 Injection Molding Process and Sensors 634
 12.3.3 Pressure Sensors ... 636
 12.3.4 Temperature Sensors ... 638
 12.3.5 Process Monitoring .. 638
 12.3.6 Automatic Troubleshooting 638
 12.3.7 Design of Experiments .. 639
 12.3.8 Factorial Design of Experiments 640
12.4 Conclusions ... 642
 J. Wickman, T. Springett, and R. Vadlamudi
References .. 642

13 Materials Troubleshooting .. 645
 M. Sepe
13.1 Composition Problems ... 646
 13.1.1 Diagnostic Tools for the Polymer 647
 13.1.2 Diagnostic Tools for Fillers and Reinforcements 668
 13.1.3 Diagnostic Tools for Additives 675
13.2 Molecular Weight Problems ... 682
13.3 Performance Problems .. 708
 13.3.1 Material Selection Process ... 708
 13.3.2 Use of Fillers .. 715
 13.3.3 Deflection Temperature Under Load 717
 13.3.4 Impact Properties .. 720
13.4 A Brief Discussion of Viscoelasticity 725
13.5 Conclusion ... 754
References .. 754
Index ... 755