Umwelt- und werkstoffgerechte Schutzsysteme für Magnesiumschmelzen

Von der Fakultät Maschinenbau der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation

von

Dipl.-Chem. Alexander Karger

geboren am 10.02.1970 in Kiew (Ukraine)

2006
Vorsitzender: Prof. Dr.-Ing. E. Reithmeier

1. Referent: Prof. Dr.-Ing. Friedrich-Wilhelm Bach

2. Referent: Prof. Dr.-Ing. Bernd-Arno Behrens

Tag der mündlichen Prüfung: 13.11.2006
Vorwort

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Werkstoffkunde der Universität Hannover.

Meinem Doktorvater Herrn Prof. Dr.-Ing. F.-W. Bach, dem Inhaber des Lehrstuhls und Direktor des Instituts für Werkstoffkunde der Universität Hannover, gilt mein Dank für die freundliche fachliche und persönliche Unterstützung sowie die kritische Durchsicht und Korrektur der Arbeit. Herrn Prof. Dr.-Ing. Bernd-Arno Behrens danke ich für die Übernahme des Korreferats.

Besonderer Dank gilt den Mitarbeitern des BMBF-geförderten Projektes UMaS für die erfolgreiche Zusammenarbeit und dem Bundesministerium für Bildung und Forschung für die Förderung des o. g. Projektes.

Nicht zuletzt möchte ich mich bei meiner Familie für die Unterstützung und Motivation bedanken.

Hannover, im November 2006
Inhaltsverzeichnis

1 Einleitung .. 1

2 Stand der Wissenschaft und Technik .. 3

2.1 Grundlagen der Oxidation ... 3

2.2 Magnesium .. 5

2.2.1 Werkstoffphysikalische Grundlagen .. 5

2.2.2 Verlauf der Magnesium-Oxidation ... 7

2.2.3 Einflüsse auf die Oxidation von Magnesiumlegierungen .. 9

2.2.3.1 Legierungselemente .. 9

2.2.3.2 Umgebungsatmosphäre .. 12

2.3 Schmelzbadabdeckungen für Magnesium ... 14

2.3.1 Abdeckung mit schmelzflüssigen Salzen .. 15

2.3.2 Schmelzehandhabung unter Inertgasatmosphäre ... 15

2.3.3 Schmelzehandhabung unter Reaktivgasatmosphäre .. 16

2.3.4 Neuartige Schutzsysteme .. 20

2.4 Eigenschaften von Kohlenstoffdioxid .. 24

2.5 Gießtechnische Verarbeitung von Magnesium .. 27

2.5.1 Ofentechnik .. 27

2.5.2 Gießen von Magnesiumlegierungen ... 27

2.5.3 Warmkammerdruckguss .. 29

2.5.4 Kaltkammerdruckguss ... 29

3 Ausgangssituation, Zielsetzung und Lösungsansatz .. 32

4 Versuchsmethodik ... 35

4.1 Analysemethoden .. 35

4.1.1 Lichtmikroskopische Untersuchungen .. 35

4.1.2 Rasterelektronenmikroskop (REM), Energiedispersive Röntgen-Strahlanalyse (EDX), Elektronenstrahlmikroanalyse (ESMA) ... 35

4.2 Eingesetzte Werkstoffe, Materialien und Geräte .. 36

 Kontinuierliche Gaskonzentrationsanalyse ... 36

 Thermografische Untersuchungen ... 37
Inhaltsverzeichnis

4.3 Anlagen .. 37
 4.3.1 Schmelzanlagen für Laboruntersuchungen .. 37
 4.3.2 Industrielle Schmelzanlagen ... 39

5 Experimentelle Ergebnisse und Diskussion ... 41
 5.1 Untersuchung konventioneller Schutzgassysteme .. 41
 5.1.1 Begasung mit reinem CO₂ ... 42
 5.1.2 Begasung mit reinem Stickstoff ... 49
 5.1.3 Begasung mit reinem Ar .. 53
 5.1.4 Begasung mit Ar-CO₂ bzw. N₂-CO₂-Gasgemischen ... 56
 5.1.5 Zusammenfassung der Ergebnisse ... 60
 5.2 Minimierung der freien Schmelzbadoberfläche ... 62
 5.2.1 Einsatz von Stahlhohlkugeln .. 63
 5.2.2 Einsatz keramischer Schwimmkörper .. 70
 5.3 Untersuchung der Schutzwirkung von gekühlten Medien ... 75
 5.4 CO₂-Schnee-Verfahren .. 78
 5.4.1 Auslegung der CO₂-Schneeanlage .. 79
 5.4.2 Untersuchung der Wirkungsweise des CO₂-Schnee-Verfahrens 87
 5.4.3 Zusammenfassung der Ergebnisse ... 94
 5.5 Überführung des CO₂-Schnee-Verfahrens in den industriellen Maßstab 95
 5.5.1 Entwicklung einer Handhabungstechnologie ... 95
 5.5.2 Industrielle Anwendung des CO₂-Schnee-Verfahrens ... 99
 5.5.2.1 Betriebsuntersuchungen in der Kleinserie ... 100
 5.5.2.2 Langzeituntersuchungen im Gießbetrieb ... 106
 5.5.3 Zusammenfassung der Ergebnisse ... 108

6 Zusammenfassung und Ausblick ... 110

7 Anhang ... 112

8 Literaturverzeichnis .. 120
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm</td>
<td>Atmosphäre</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>d. h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>IMA</td>
<td>International Magnesium Association</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>log</td>
<td>Logarithmus</td>
</tr>
<tr>
<td>m%</td>
<td>Masse-Prozent</td>
</tr>
<tr>
<td>m²</td>
<td>Quadratmeter</td>
</tr>
<tr>
<td>m³</td>
<td>Kubikmeter</td>
</tr>
<tr>
<td>MAK</td>
<td>maximale Arbeitsplatz-Konzentration</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>o. ä.</td>
<td>oder ähnlich(es)</td>
</tr>
<tr>
<td>o. g.</td>
<td>oben genannte</td>
</tr>
<tr>
<td>ppc</td>
<td>parts per million</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde</td>
</tr>
<tr>
<td>Vol%</td>
<td>Volumen-Prozent</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
Chemische Formelzeichen

<table>
<thead>
<tr>
<th>Element/Verbindung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>Silber</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Ar</td>
<td>Argon</td>
</tr>
<tr>
<td>Au</td>
<td>Gold</td>
</tr>
<tr>
<td>Be</td>
<td>Beryllium</td>
</tr>
<tr>
<td>BeO</td>
<td>Berylliumoxid</td>
</tr>
<tr>
<td>BF</td>
<td>Borfluorid</td>
</tr>
<tr>
<td>BF₂</td>
<td>Bordifluorid</td>
</tr>
<tr>
<td>BF₃</td>
<td>Bortrifluorid</td>
</tr>
<tr>
<td>C</td>
<td>Kohlenstoff</td>
</tr>
<tr>
<td>C₂H₂F₄</td>
<td>1,1,1,2-Tetrafluoroethan</td>
</tr>
<tr>
<td>Ca</td>
<td>Kalzium</td>
</tr>
<tr>
<td>Element/Verbindung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>Ce</td>
<td>Cer</td>
</tr>
<tr>
<td>CF<sub>2</sub>Cl<sub>2</sub></td>
<td>Dichlordifluorkohlenwasserstoff</td>
</tr>
<tr>
<td>Co</td>
<td>Kobalt</td>
</tr>
<tr>
<td>CO</td>
<td>Kohlenstoffmonoxid</td>
</tr>
<tr>
<td>CO<sub>2</sub></td>
<td>Kohlenstoffdioxid</td>
</tr>
<tr>
<td>Cr</td>
<td>Chrom</td>
</tr>
<tr>
<td>Cu</td>
<td>Kupfer</td>
</tr>
<tr>
<td>F</td>
<td>Fluor</td>
</tr>
<tr>
<td>Fe</td>
<td>Eisen</td>
</tr>
<tr>
<td>FeF<sub>2</sub></td>
<td>Eisen (II)-fluorid</td>
</tr>
<tr>
<td>FeO</td>
<td>Eisen (II)-oxid</td>
</tr>
<tr>
<td>H<sub>3</sub>BO<sub>3</sub></td>
<td>Borsäure</td>
</tr>
<tr>
<td>HF</td>
<td>Fluorwasserstoff</td>
</tr>
<tr>
<td>HFC – 134a</td>
<td>1,1,1,2-Tetrafluoroethan</td>
</tr>
<tr>
<td>Ir</td>
<td>Iridium</td>
</tr>
<tr>
<td>K</td>
<td>Kalium</td>
</tr>
<tr>
<td>KBF<sub>4</sub></td>
<td>Kaliumtetrafluoroborat</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>KF</td>
<td>Kaliumfluorid</td>
</tr>
<tr>
<td>La</td>
<td>Lantan</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>Mg(OH)<sub>2</sub></td>
<td>Magnesiumhydroxid</td>
</tr>
<tr>
<td>Mg<sub>3</sub>N<sub>2</sub></td>
<td>Magnesiumnitrid</td>
</tr>
<tr>
<td>MgCl<sub>2</sub></td>
<td>Magnesiumchlorid</td>
</tr>
<tr>
<td>MgCO<sub>3</sub></td>
<td>Magnesiumcarbonat</td>
</tr>
<tr>
<td>MgF<sub>2</sub></td>
<td>Magnesiumfluorid</td>
</tr>
<tr>
<td>MgO</td>
<td>Magnesiumoxid</td>
</tr>
<tr>
<td>MgS</td>
<td>Magnesiumsulfid</td>
</tr>
<tr>
<td>MgSO<sub>4</sub></td>
<td>Magnesiumsulfat</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdän</td>
</tr>
<tr>
<td>Element/Verbindung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>N₂</td>
<td>Stickstoff</td>
</tr>
<tr>
<td>Na</td>
<td>Natrium</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NH₄BF₄</td>
<td>Ammoniumfluoroborat</td>
</tr>
<tr>
<td>NH₄F</td>
<td>Ammoniumfluorid</td>
</tr>
<tr>
<td>NH₄HF₂</td>
<td>Ammoniumhydrogenfluorid</td>
</tr>
<tr>
<td>(NH₄)₂SiF₆</td>
<td>Ammoniumfluorosilikat</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>O₂</td>
<td>Sauerstoff</td>
</tr>
<tr>
<td>Os</td>
<td>Osmium</td>
</tr>
<tr>
<td>Pb</td>
<td>Blei</td>
</tr>
<tr>
<td>Pt</td>
<td>Platin</td>
</tr>
<tr>
<td>Ru</td>
<td>Ruthenium</td>
</tr>
<tr>
<td>S</td>
<td>Schwefel</td>
</tr>
<tr>
<td>S₂O</td>
<td>Dischwefelmonoxid</td>
</tr>
<tr>
<td>SF₄</td>
<td>Schwefeltetrafluorid</td>
</tr>
<tr>
<td>SF₆</td>
<td>Schwefelhexafluorid</td>
</tr>
<tr>
<td>Si</td>
<td>Silicium</td>
</tr>
<tr>
<td>SiF₄</td>
<td>Siliciumtetrafluorid</td>
</tr>
<tr>
<td>Sn</td>
<td>Zinn</td>
</tr>
<tr>
<td>SO</td>
<td>Schwefelmonoxid</td>
</tr>
<tr>
<td>SO₂</td>
<td>Schwefeldioxid</td>
</tr>
<tr>
<td>SO₂F₂</td>
<td>Sulfurylfluorid</td>
</tr>
<tr>
<td>SO₃</td>
<td>Schwefeltrioxid</td>
</tr>
<tr>
<td>Tl</td>
<td>Thallium</td>
</tr>
<tr>
<td>W</td>
<td>Wolfram</td>
</tr>
<tr>
<td>Zn</td>
<td>Zink</td>
</tr>
</tbody>
</table>
Abstract

Auf der Basis von Untersuchungen konventioneller Schutzgase wird ein neues Verfahren zum Schutz von Magnesiumschmelzen entwickelt. CO\textsubscript{2}-Schnee, der sich durch Expansion aus der flüssigen Phase bildet, scheidet sich auf dem Schmelzbad ab und senkt die Oberflächentemperatur. Dies führt einerseits zur Verringerung der Abdampfgeschwindigkeit des Magnesiums, andererseits zur Verdrängung der sauerstoffhaltigen Atmosphäre durch das entstandene CO\textsubscript{2}-Gas. Ausgehend von den Laboruntersuchungen, welche der Qualifizierung des CO\textsubscript{2}-Schnee-Verfahrens dienen, wird die Eignung dieser Methode über den gesamten Gießzyklus nachgewiesen. Eine für die industrielle Umsetzung notwendige Handhabungstechnologie wurde entwickelt und an konventionellen Schmelzöfen realisiert.

Das im Rahmen der vorliegenden Arbeit entwickelte Verfahren bietet eine nachhaltige, umwelt- und werkstoffgerechte Lösung zur Reduktion des CO\textsubscript{2}-Ausstoßes.

Schlagwörter: Magnesium, Giessen, SF\textsubscript{6}, Schutzgas.
Abstract

A special danger of environmental pollution occurs from the usage of protective gases for molten magnesium /ALB02/. The protective gas SF$_6$, which is widely used nowadays, increases the greenhouse effect due to its GWP of approximately 23900 relative to CO$_2$. By signing the Kyoto Protocol the countries of the European Union have committed themselves to reducing the emission of greenhouse gases by 8 %. From 1 January 2007, the use of sulphur hexafluoride in magnesium casting will be prohibited, unless the used amount is below 500 kg annually /EUR04/. The only industrially feasible alternative is toxic sulphur dioxide (SO$_2$).

The environmentally friendly alternatives are being examined by the author of this work. At first the gases CO$_2$, N$_2$ and Ar as well as their mixtures were examined in order to verify a possible usage of those gases for magnesium melt protection. The experimental results show a certain potential of CO$_2$-gas, especially at lower temperatures (under 640 °C). Based on these results a new protective method was developed, the so called CO$_2$-snow technique. The CO$_2$ snow precipitates at the bath surface, lowering the surface temperature of the bath (at −78°C CO$_2$ has a cooling effect of 573 kJ/kg). This reduces the magnesium’s proneness to evaporation. Moreover, sublimated CO$_2$ snow causes the gas to expand and displace all oxygen from the bath surface area.

The method was investigated in series of laboratory experiments in order to collect a broad data spectrum concerning its mode of action. The necessary handling technique was developed for employing this new technique in industrial magnesium diecasting. Tests in the experimental foundry at Audi AG and in the Laukötter Gusstechnik foundry proved the appropriateness of this technique for magnesium diecasting.

As CO$_2$ defines the GWP factor of 1, covering magnesium melts with CO$_2$ snow is an environmentally friendly and safe alternative compared to the usage of SF$_6$.

Keywords: magnesium, casting, SF$_6$, protective gas.
Wachsende Umweltbelastungen, strikte Umweltauflagen und -gesetze sowie die zunehmende Verknappung natürlicher Rohstoffe fordern den verstärkten Einsatz von neuen verarbeitungs- und recyclingfreundlichen Werkstoffsystemen mit optimierten technologischen Eigenschaften /JUH99/. Ferner lassen die harten Forderungen nach Treibstoffersparnis die Automobilhersteller verstärkt nach dichtereduzierten Werkstoffen forschen /BIE05/. Hier prädestiniert sich vor allem der Werkstoff Magnesium durch seine Eigenschaften wie:

- geringe Dichte, je nach Legierungszusammensetzung zwischen 1,3 und 1,95 g/cm³,
- positive gewichtsspezifische mechanische Kennwerte,
- Recyclingfähigkeit,
- nahezu unbeschränkte Rohstoffverfügbarkeit,
- gute Zerspan- und Schweißbarkeit;
- gute Dämpfungseigenschaften.

Die angestrebte umweltgerechte und nicht zuletzt sichere Verarbeitung von hoch- und höchstreaktiven Magnesiumlegierungen lässt eine erhöhte Akzeptanz dieses Werkstoffes im Gießereibetrieb erwarten. Hierdurch wird dem Konstruktionswerkstoff Magnesium der Zugang zu einer breiteren Anwendung eröffnet, welcher auf Grund der guten gewichtsspezifischen und elektromagnetischen Eigenschaften schon jetzt von der Automobil-

Vor dem Hintergrund der durch Gewichtsreduzierung möglichen signifikanten Energieeinsparungen bei der Verwendung von Magnesiumkomponenten einerseits und der Schutzgasproblematik bei der Magnesiumschmelzeverarbeitung andererseits ist das Ziel dieser Arbeit die Entwicklung, Untersuchung und Umsetzung eines geeigneten Schmelzeschutzkonzeptes für die Handhabung von Magnesiumschmelzen. Dieses soll unter ökologischen und werkstofftechnischen Gesichtspunkten zu einer zufriedenstellenden umwelt- und werkstoffgerechten Magnesiumgießtechnik in der Industrie führen.
2 Stand der Wissenschaft und Technik

2.1 Grundlagen der Oxidation

Die Korrosion der Metalle bei hohen Temperaturen wird im Allgemeinen als Oxidation bezeichnet. Dabei ist es für die Stabilität der Metalle besonders wichtig, mit welcher Geschwindigkeit der Oxidationsprozess abläuft.

Die Geschwindigkeit der Oxidation ist von den folgenden Faktoren abhängig /TOM65, CRA91/:
1. Sauerstoffkonzentration an der Metalloberfläche,
2. Temperatur,
3. Diffusionsrate der reagierenden Ionen durch die gebildete Oxidschicht,
4. Absorptionsgeschwindigkeit des Sauerstoffs an der Oberfläche,

Hinsichtlich ihres Verhaltens beim Erhitzen an Luft oder Sauerstoff können die Metalle grundsätzlich in verschiedene Klassen eingeteilt werden /EVA39/:
1. Edelmetalle (Au, Ag, Pt).
 Diese Metalle bilden Oxide, die sich beim Erhitzen zersetzen.
2. Metalle mit flüchtigen Oxiden (Mo, Os, Ir, Ru).
3. Die schweren unedlen Metalle (Fe, Cu, Ni, Pb, Co, W).
 Sie bilden nichtporöse Oxidfilme, die bis zu einem gewissen Grade schützend wirken.
4. Die unedlen Metalle (Zn, Si, Al, Cr, Ti).

Diese Metalle bilden dichte Oxidschichten, die auch bei höheren Temperaturen stabil bleiben und schützend wirken.

5. Die ultraleichten Metalle (K, Na, Ca, Mg).

Die zu dieser Gruppe gehörenden Metalle bilden beim Erhitzen eine Oxidschicht, die nicht das ganze Volumen einnehmen kann, welches vorher von dem zerstörten Metall eingenommen worden ist. In diesem Fall ist die Oxidschicht porös.

Das Wachstum der Oxidschicht kann mit Hilfe von drei Gesetzen beschrieben werden:

1. **Lineares Gesetz**

\[\Delta M = k_1 t + c \]

Gl. 2.1.1

wobei \(\Delta M \) – die Gewichtszunahme der Oxidationsschicht,
\(t \) – die Oxidationszeit,
\(k_1, c \) – Konstanten sind.

Ein lineares Wachstumsverhalten wird beobachtet, wenn das Oxid an der Oberfläche keine dichte Schutzschicht bildet.

2. **Parabolisches Gesetz**

\[(\Delta M)^2 = k_2 t + c \]

Gl. 2.1.2

wobei \(k_2 \) und \(c \) – Konstanten sind.

Ein parabolisches Wachstumsverhalten wird beobachtet, wenn eine dichte, schützende Schicht gebildet wird.

3. **Logarithmisches Gesetz**

\[\Delta M = k_3 \log(at + t_0) \]

Gl. 2.1.3

wobei \(k_3, a \) und \(t_0 \) – Konstanten sind.

Bei manchen Metallen entspricht das Verhalten einer Kombination aus den oben genannten Gesetzen. So kann eine Oxidation zuerst parabolisch verlaufen und anschließend in eine lineare übergehen. Das ist z. B. der Fall, wenn die geschlossene Oxidschicht durch Rissbildung zerstört wird /SID89/.

2.2 **Magnesium**

2.2.1 **Werkstoffphysikalische Grundlagen**

Deckschichtbildung

\[
PBV = \frac{(M_{ox}) \cdot (\rho_{met})}{(M_{met}) \cdot (\rho_{ox})}
\]

Gl. 2.2.1

Die Metalle lassen sich dementsprechend in drei Gruppen einteilen:
- Bei einem PBV<1 hat die Deckschicht ein geringeres Volumen als das bei der Oxidbildung zerstörte Metall. Es kommt in der gebildeten Oxidschicht zu Zugeigenspannungen und zum Aufreißen der Deckschicht. In diesem Falle bildet sich eine poröse, sauerstoffdurchlässige Schicht.

- Liegt das PBV zwischen 1 und 2, so bildet sich eine dichte, schützende Schicht, die eine weitere Oxidation verhindert.

- Bei einem PBV>2 nehmen die Oxide ein so großes Volumen ein, dass diese durch entstehende Druckeigenspannungen von der Oberfläche abplatzen und eine weitere Oxidation des Metalls zulassen.

<table>
<thead>
<tr>
<th>PBV</th>
<th>K</th>
<th>Mg</th>
<th>Al</th>
<th>Be</th>
<th>Cr</th>
<th>V</th>
<th>W</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,46</td>
<td>0,81</td>
<td>1,26</td>
<td>1,68</td>
<td>1,99</td>
<td>3,18</td>
<td>3,4</td>
<td>3,4</td>
<td></td>
</tr>
</tbody>
</table>

Bild 2.2.1: Pilling–Bedworth-Verhältnis von Metallen /PIL23/.

Bei Magnesium beträgt das \(PBV \) 0,81 (Bild 2.2.1), so dass der Oxidfilm porös und nicht schützend ist.

Dampfdruck

Die Freisetzung von Magnesiumdampf führt dazu, dass Magnesium schon bei Temperaturen unterhalb des Schmelzpunkts unter Schutzgas gehandhabt werden sollte, und Magnesiumschmelzen, insbesondere für längere Bevorratung, durch spezielle Maßnahmen abgedeckt werden müssen. Eine Handhabung unter Vakuum ist auf Grund der Erhöhung des
Partialdruckes und der Steigung der Abdampfgeschwindigkeit nicht praktikabel (Kapitel 2.3.2).

2.2.2 Verlauf der Magnesium-Oxidation

Die Oxidation des Magnesiums in einem Temperaturbereich von 400 °C bis 500 °C wurde in /GUL45/ untersucht. Der bei einer Temperatur von 400 °C an der Metalloberfläche gebildete Oxidfilm verhindert sowohl die Oxidation als auch das Abdampfen des Magnesiums und bleibt bis 450 °C stabil, so dass die Oxidation nach dem parabolischen Gesetz verläuft.

In einer weiteren Studie /LEO46/ wurde das Oxidationsverhalten von Magnesium und einigen seiner Legierungen in einem Temperaturbereich von 412 °C bis 575 °C erforscht. Die Oxidationsgeschwindigkeiten wurden durch die zeitliche Veränderung des Probengewichtes bestimmt. Es wurde nachgewiesen, dass die Oxidation im Temperaturbereich von 500 °C bis 575 °C dem linearen Oxidationsgesetz entspricht. Die Annahme der Autoren war, dass bei der Oxidation zuerst eine dünne Schutzschicht ausgebildet wird, die mit steigender Temperatur immer dicker wird, bis ein kritischer Punkt erreicht wird und die Schutzschicht zusammenbricht. Die so entstandene Schicht ist nicht mehr schützend und lässt die Reaktion zwischen der Oxidationsatmosphäre und dem Metall zu. Bestätigt wurde diese Hypothese durch die Bildung einer porösen, pulverförmigen Oxidschicht bei Temperaturen oberhalb von 450 °C.

Ein anderer Mechanismus der Oxidation von Magnesium bei hohen Temperaturen wurde von Evans /EVA39/ aufgestellt. Nach Meinung des Autors ist die Annahme von Pilling und Bedworth, dass Oxide mit größerem Volumen als dem des Metalls immer schützend, Oxide mit geringerem Volumen grundsätzlich nicht schützend seien, nur bis zu einem gewissen Grade richtig. Obwohl die seitliche Kompression im Film die Bildung von Poren verhindert, verhält sich der Film wie eine gespannte Feder, deren auf die Fläche bezogene Spannungen etwa proportional zur Dicke zunimmt. Da die Haftkräfte zwischen Film und Metall praktisch unabhängig von der Schichtdicke sind, werden sie bei einer bestimmten Dicke von den mechanischen Spannungen im Film übertroffen. Die Schicht reißt ab und die schützende Wirkung lässt plötzlich nach.

Der typische Oxidationsverlauf des festen Magnesiums im trockenen Sauerstoff ist in Bild 2.2.2 dargestellt /EML66/.
Zuerst folgt die Oxidation dem parabolischen Gesetz (O-X) bis zu einem Punkt X, wo eine „Break-away-Oxidation“ erfolgt. Es bildet sich eine weiße Oxidschicht, die sich nach und nach über die ganze Oberfläche ausbreitet (bis zu Punkt A). Danach folgt die lineare Oxidation (die Oxidationsgeschwindigkeit beträgt beispielweise 0,18 mg/cm2/h bei 550 °C /EVA65/) bis zu einem Punkt B, wo eine zweite „Break-away-Oxidation“ mit einer zehnmal so großen Reaktionsgeschwindigkeit folgen kann (B-C). Das Zustandekommen der zweiten „Break-away-Oxidation“ hängt in erster Linie davon ab, ob Spuren von Feuchtigkeit in der Gasatmosphäre vorhanden sind. Das gebildete Oxid ist braun und unterscheidet sich in der Textur von dem weißen Oxid. Magnesiumdampf bricht die weiße Oxidschicht durch und verbrennt außen.

Die Arbeiten von Gregg /GRE59/ haben den Beweis erbracht, dass die zweite „Break-away-Oxidation“ nicht erfolgt, wenn der Sauerstoff sorgfältig getrocknet wird.

Entzünden von Magnesium

Die hohe Bildungsenthalpie des Oxides ($\Delta H = -602 \text{ kJ/mol}$) /BAR77/ führt zu einer schnellen Reaktion mit dem Sauerstoff der Luft an der Schmelzbadoberfläche. Wenn die Oxidationsgeschwindigkeit so hoch wird, dass die entstehende Wärme nicht mehr abgeführt werden kann, entzündet sich die Schmelze und verbrennt unter Abgabe eines intensiven, weißen Lichtes zu Magnesiumoxid. Bei Magnesiumbränden treten Temperaturen von etwa 3000 °C auf /GME37/. Die Zündtemperatur des reinen Magnesiums hängt von dem Verhältnis der Oberfläche zur Masse ab (s. Tabelle 2.2.1).
<table>
<thead>
<tr>
<th>Form</th>
<th>Zündtemperatur, °C</th>
<th>Literaturstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>feines Pulver</td>
<td>500-550</td>
<td>GME37</td>
</tr>
<tr>
<td>grobes Pulver</td>
<td>550-600</td>
<td>GME37</td>
</tr>
<tr>
<td>Späne</td>
<td>über 600</td>
<td>GME37</td>
</tr>
<tr>
<td>kompaktes Metall</td>
<td>623</td>
<td>TIM64a</td>
</tr>
<tr>
<td></td>
<td>633</td>
<td>MCI56</td>
</tr>
<tr>
<td>flüssiges Metall</td>
<td>667</td>
<td>BUL47</td>
</tr>
</tbody>
</table>

Tabelle 2.2.1: Zündtemperaturen von Magnesium.

2.2.3 Einflüsse auf die Oxidation von Magnesiumlegierungen

Die Oxidationsgeschwindigkeit und somit das Oxidationsverhalten von Magnesium und seinen Legierungen werden nicht nur von der Temperatur und dem Verhältnis der Oberfläche zur Masse beeinflusst, sondern auch von der Legierungszusammensetzung und der Umgebungsatmosphäre /CZE04/.

2.2.3.1 Legierungselemente

Die Abhängigkeit der Oxidationsgeschwindigkeit von den Legierungselementen wurde in der Arbeit von Leontis /LEO46/ untersucht. Es wurde festgestellt, dass Legierungszusätze wie Cu, Ni, Sn die Oxidationsgeschwindigkeit von Magnesium erhöhen, während bei anderen (In, Cd, Ag, Tl) keine Beeinflussung der Oxidationsgeschwindigkeit feststellbar war. Lediglich Elemente wie Ce und La zeigten eine hemmende Wirkung. Die Erhöhung der Oxidationsgeschwindigkeit bei einigen Legierungszusätzen ist auf die steigende Anzahl der Gitterdefekte und somit auf Stabilitätsabnahme in der Oxidschicht zurückzuführen /TIM64b/.
Zur Verringerung der Oxidationsgeschwindigkeit von Magnesium durch ein Legierungselement, das in der binären Legierung in fester Lösung vorliegt, müssen die beiden Metalle auf der Oberfläche der Legierung eine Schicht bilden, die aus gegenseitig löslichen Oxiden besteht. Im Allgemeinen kann man sagen, dass zuerst in einem größeren Ausmaß nur das stabilere Oxid entsteht. Der Maßstab der Stabilität ist der Wert der freien Enthalpie des gegebenen Oxids. Da es in der OberflächenSchicht der Legierung zu einer Verarmung des bevorzugt oxidierten Metalls kommt, ist der weitere Ablauf der Oxidation durch das Verhältnis der Diffusionskoeffizienten der einzelnen in der Legierung anwesenden Metalle bestimmt. Ein wichtiger Faktor, der die Oxidationsgeschwindigkeit von Magnesiumlegierungen beeinflusst, liegt in der gegenseitigen Löslichkeit der sich bildenden Oxide der Legierungselemente und in deren Einfluss auf die Diffusion durch die Oxidschicht /

Beryllium

Eine hemmende Wirkung auf die Oxidationsgeschwindigkeit zeigt vor allem Beryllium. Es wurde nachgewiesen, dass Beryllium schon in Mengen von 0,003 m% die Oxidationsgeschwindigkeit der Magnesiumlegierungen an der Luft und im technischen Kohlenstoffdioxid erheblich herabsetzt /SID62/. Ein Gehalt von 0,005-0,01 m% Be führt zu einem außerordentlich starken Oxidationsschutz des flüssigen Magnesiums /BEC39/.

Kalzium

Seit den 30er Jahren ist die Eignung von Kalzium-Zugaben (bereits einige 0,1m%) zur Verringerung der Oxidationsfähigkeit des geschmolzenen Metalls bekannt /BEC39, EML66/. Der Effekt des Kalziumzulegierens wurde in zahlreichen Veröffentlichungen /CHA98, CHO03, YOU03/ untersucht. Es wurde festgestellt, dass durch die Kalziumzugabe in Kombination mit anderen Elementen die Zündtemperatur beträchtlich erhöht wird und somit der Schmelzeschutz verbessert wird (s. Tabelle 2.2.2).

<table>
<thead>
<tr>
<th>Legierungselement, m%</th>
<th>Zündtemperatur, °C</th>
<th>Literaturstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>nur Zr</td>
<td>650 (kein Effekt)</td>
<td>CHA98</td>
</tr>
<tr>
<td>0,5 Ca</td>
<td>690</td>
<td>CHA98</td>
</tr>
<tr>
<td>0,5 Ca + 1,6 Zr</td>
<td>750</td>
<td>CHA98</td>
</tr>
<tr>
<td>1,3 Ca + 1,4 Zr</td>
<td>810</td>
<td>CHA98</td>
</tr>
<tr>
<td>2 Ca</td>
<td>700</td>
<td>CHO03</td>
</tr>
<tr>
<td>2 Ca + 0,3 Al</td>
<td>über 750</td>
<td>YOU03</td>
</tr>
<tr>
<td>2 Ca + 0,3 Y</td>
<td>über 750</td>
<td>YOU03</td>
</tr>
</tbody>
</table>

Tabelle 2.2.2: Änderung der Zündtemperaturen bei Ca-Zugaben.

Die Erhöhung der Zündtemperatur beruht, wie im Falle von Be, auf der Bildung einer passivierenden Deckschicht aus Ca- und Mg-Oxiden (PBV > 1). Die Bildung dieser Schicht wird durch die hohe thermodynamische Stabilität des Ca-Oxids begünstigt.

Als Nachteil erwies sich die starke Zunahme der Warmrissneigung und der Klebneigung oberhalb 0,8 m% Ca /EML66/.
2.2.3.2 Umgebungsatmosphäre

Sauerstoff

Das hohe Reaktionspotential von Magnesiumschmelzen mit Luftsaerstoff, insbesondere bei höheren Temperaturen, ist hinreichend bekannt /BÜC90/. Die reaktive Umsetzung von Mg zu Magnesiumoxid durch

$$2Mg + O_2 \rightarrow 2MgO$$ \hspace{1cm} \text{Gl. 2.2.2}

erfolgt stark exotherm unter Freisetzung von weißem, ultraviolettreichen Licht /HOL85/.

Luftfeuchtigkeit

Bei Kontakt von Magnesium mit Wasser bei niedrigeren Temperaturen bilden sich Wasserstoff und Magnesiumhydroxid, welches bis 350 °C stabil bleibt

$$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$$ \hspace{1cm} \text{Gl. 2.2.3}

$$Mg + H_2O \rightarrow MgO + H_2$$ \hspace{1cm} \text{Gl. 2.2.4}

$$2H_2 + O_2 \rightarrow 2H_2O$$ \hspace{1cm} \text{Gl. 2.2.5}

Die aus MgO gebildete Schutzschicht bleibt nur bis 350-380 °C stabil (bei trockener Luft bis 450 °C) /GRE59/. Das Vorhandensein von 1,8 % Wasserdampf in der Ofenatmosphäre setzt beispielweise die Zündtemperatur bis auf 610 °C herab /AYL59/.

Kohlenstoffdioxid

In Gegenwart von CO\(_2\) verringert sich die Oxidationsgeschwindigkeit erheblich /LEO46/. Beim Erhitzen von Magnesium in strömendem CO\(_2\) findet eine Reaktion statt, ohne dass eine Entzündung erfolgt /GME37/. Zuerst bildet sich an der Oberfläche hauptsächlich MgCO\(_3\), welches bis 420 °C stabil bleibt; bei höheren Temperaturen besteht die Oxidationsschicht aus MgO und C /BOU59/.
Delavault /DEL34/ stellte fest, dass der Oxidationsvorgang in den trockenen Atmosphären von CO und CO₂ erheblich verzögert wird. Die Oberfläche überzieht sich mit einer schwärzlichen Schicht und es bildet sich CO. Bei Anwesenheit von Feuchtigkeit in CO₂ findet eine Zündung der Magnesiumschmelze bei 700 °C innerhalb von 20 min, bei Spuren von Sauerstoff bereits bei 650 °C statt. Der Mechanismus beruht auf zwei Faktoren:
- Grenzschichtbildung von CO an der Oxid/Gas-Trennfläche;
- Ausbildung einer Schicht aus MgO und C.

Über eine Zündtemperatur von 870 °C im trockenen CO₂ wird in /FRU70/ berichtet. 1,2 % Wasserdampf in CO₂ hingegen führt zur Herabsetzung der Zündtemperatur bis auf 650 °C /BOU57/.

Stickstoff

Verbrennt Magnesium bei ungenügendem Luftzutritt, so entsteht neben Magnesiumoxid MgO auch Magnesiumnitrid Mg₃N₂. Diese Reaktion wird durch erhöhte Temperaturen begünstigt:

\[
3\text{Mg} + \text{N}_2 \rightarrow \text{Mg}_3\text{N}_2
\]

Gl. 2.2.5

Obwohl Stickstoff hauptsächlich als Trägergas für SF₆ bzw. SO₂ verwendet wird, wurde auch über eine kommerzielle Anwendung von Stickstoff als Schutzgas berichtet /KRO68/.

Weitere gasförmige Inhibitoren

Delavault /DEL34, BUL47/ experimentierte mit verschiedenen Inhibitoren wie F₂, Cl₂, NH₄HF₂, BF₃, SiF₄, NH₄BF₄, (NH₄)₂SiF₆ und SO₂. Es wurde u. a. gezeigt, dass eine Konzentration von 0,5 m% BF₃ oder SiF₄ in der Luft einen zuverlässigen Brandschutz bis zu 700 °C ermöglicht. Sogar eine geringe Zugabe von 0,001 m% BF₃ war ausreichend um eine Zündung der Magnesiumschmelze bei 850 °C um einige Minuten zu verzögern. Durch das Beimischen von 0,04 m% BF₃ zu einem Trägergas konnte ein Magnesiumbrand verhindert werden.

Stoffe wie Oxalate, Harnstoff, Hydrogencarbonate und H$_3$BO$_3$, welche sich zum Schutz der Magnesiumschmelze gegen Oxidation eignen, wurden bereits in den 20er Jahren patentrechtlich geschützt /AMC28/.

2.3 Schmelzbabadeckungen für Magnesium

Der unedle Charakter des Magnesiums und das niedrige Standardelektrodenpotential führen zu der hohen Affinität von Magnesiumschmelzen zu Sauerstoff und Stickstoff /HOL85, RID99/. Wie bereits erwähnt, beträgt das Pilling-Bedworth-Verhältnis für Magnesium 0,81, so dass keine dichte Oxidschicht gebildet wird und das Metall ständig weiter angegriffen wird.

Um das Risiko eines Magnesiumbrandes einerseits und der Verunreinigung der Schmelze durch entstehende Oxidationsprodukte andererseits möglichst gering zu halten, ist die Handhabung der Schmelze unter einem geeigneten Abschluss gegen Umgebungsluft unerlässlich /HAN71, BAC02/.

Grundsätzlich stehen für die Abdeckung von Magnesiumschmelzen folgende Verfahren zur Verfügung /LIN00, HOL02/:

1. Abdeckung mit schmelzflüssigen Salzen bzw. Salzgemischen /EML66/,
2. Schmelzehandhabung unter Inertgasatmosphäre /EML66, FRU69/,

Eine unterstützende Maßnahme zur Verhinderung von Magnesiumbränden im Druckgussbetrieb ist die Zugabe geringer Anteile deckschichtbildender Elemente /MUH76, WIK78/. Hierzu sind Beryllium und Kalzium zu nennen (siehe Kapitel 2.2.3.1).

2.3.1 Abdeckung mit schmelzflüssigen Salzen

Die Abdecksalze bilden auf Grund ihres deutlich unter dem des Magnesiums liegendem Schmelzpunkt auf der Badoberfläche eine geschlossene Schicht und damit einen guten Schutz gegen die Einflüsse der Atmosphäre. Die Schutzwirkung von Abdecksalzen reicht bis ca. 800 °C /BEC39/.

In Deutschland werden üblicherweise die Salze auf Karnallitbasis eingesetzt, entsprechend einem niedrigschmelzenden, eutektischen Gemisch aus MgCl₂, KCl und NaCl, das bereits bei Temperaturen unter 400 °C aufschmilzt /EML66/.

Die vergleichsweise schwierige Handhabung, die starke Verunreinigung der Metallschmelze mit korrosionsfördernden Chloriden /MER93/ und die Bildung von Salzsäuregas in Kontakt mit Luftfeuchtigkeit führten dazu, dass dieses Verfahren nur für Einzelabgüsse und kleine Stückzahlen im Sandguss eingesetzt wird, obwohl es bis zum Ende 60er Jahre weit verbreitet war /LIN99/.

2.3.2 Schmelzhandhabung unter Inertgasatmosphäre

Die gleichen Risiken bringt die Verwendung von Helium /JAK94/ und Xenon /MUH78/ als Schutzgas mit sich.

2.3.3 Schmelzehandhabung unter Reaktivgasatmosphäre

Schwefeldioxid

Die Schutzwirkung von gasförmigem SO_2 und auch elementarem Schwefel für Magnesiumschmelzen ist bereits seit den 30er Jahren bekannt /BRO36, ESC39/. Das Schwefeldioxid bildet auf der Magnesiumschmelze eine Schutzschicht aus schwefel- und sauerstoffhaltigen Verbindungen, die bis ca. 740 °C stabil bleibt. Gleichzeitig wird das Abdampfen des gasförmigen Magnesiums unterbunden.

Der Schutzeffekt beruht auf der Bildung einer dichten Schutzschicht aus MgO, MgSO_4 und MgS. Die Deckschicht wurde als MgO mit Spuren von MgSO_4 identifiziert. Es wurden keine Spuren von MgS gefunden. Es ist allerdings möglich, dass MgS in der Zeit zwischen der Probeentnahme und der Probeanalyse zu MgSO_4 oxidiert ist. Entsprechend den jeweiligen Bedingungen können die folgenden Reaktionen ablaufen /GJE98/:

\[
\text{Mg}_(l) + \text{O}_2 + \text{SO}_2 \longrightarrow \text{MgSO}_4(s) \quad \text{Gl. 2.3.1}
\]

\[
\text{MgSO}_4(s) + 4\text{Mg}_(l) \longrightarrow 4\text{MgO}_(s) + \text{MgS}_(s) \quad \text{Gl. 2.3.2}
\]

\[
\text{Mg}_(l) + \text{SO}_2 + \text{MgO}_(s) + \text{O}_2 \longrightarrow \text{MgSO}_4(s) \quad \text{Gl. 2.3.3}
\]

Indirekt wird dieser Mechanismus durch die Tatsache bestätigt, dass die unter Ausschluss vom Sauerstoff gebildete Deckschicht keine Schutzwirkung hat /SAR78/.

\[
\text{Mg}_(l) + \text{SO}_2 \longrightarrow \text{MgO} + (\text{S} + \text{SO} + \text{S}_2\text{O}) \quad \text{Gl. 2.3.4}
\]

Bei der Reaktion unter Ausschluss vom Sauerstoff (Gl. 2.3.4) entstehen keine Magnesium-Schwefelverbindungen, so dass die Oberflächenschicht keinen dauerhaften Oxidationsschutz bietet. Das Vorhandensein von elementarem Schwefel auf der Metalloberfläche unter diesen Bedingungen wird von anderen Autoren bestätigt /SUB00/.

Zur Aufrechterhaltung der Schutzwirkung sind etwa 0,5-2 Vol% SO_2 in trockener Luft, N_2 oder CO_2 erforderlich /ASM99/. Bei einem Gasgemisch aus CO_2 und SO_2 läuft die Reaktion
weniger heftig ab als beim Luft/SO\(_2\)-Gemisch, was auf die geringere Oxidationsgeschwindigkeit von CO\(_2\) zurückzuführen ist /RIC99/.

Über 740°C beginnt der exotherme Zerfall von Magnesiumsulfat (MgSO\(_4\)) in MgO, SO\(_2\), SO\(_3\) und O\(_2\) /SNE40/, so dass der Schmelzeschutz nicht mehr gegeben ist.

Schwefelhexafluorid

Die gebräuchlichste Schmelzbadabdeckung ist zur Zeit Schwefelhexafluorid. SF\(_6\) wurde 1934 als Schutzgas für Magnesiumschmelzen vorgeschlagen /DCC34/, fand aber damals keine industrielle Anwendung. Erst durch die Arbeiten von Frueling und Hanawalt /FRU69, HAN71/ Ende 60er Jahre konnte sich SF\(_6\) als besonders betriebssicherer Schutzgas im Gussbetrieb etablieren /KRE75, BUS80/. So wurden z.B. mit SF\(_6\) arbeitende Direktschmelzanlagen im Volkswagenwerk Hannover zur Herstellung von Zylinderkurbelgehäusen bereits für den VW-Käfer eingesetzt (Bild 2.3.1).

Bild 2.3.1: Magnesium-Direktschmelzanlage /SCH71/.
Etwa 0,2 Vol.% bis 3 Vol.% SF\textsubscript{6} werden den Trägergasen CO\textsubscript{2}, N\textsubscript{2} oder trockener Luft zugesetzt /SWZ96/, damit sich auf der Schmelzbadoberfläche ein dichter, metallisch glänzender Film bildet. Gleichzeitig wird die Abdampfung von gasförmigem Magnesium an die Umgebung weitgehend unterbunden /HAN78/. Unter Laborbedingungen wurde nachgewiesen, dass bereits 0,002 Vol.% SF\textsubscript{6} zur Bildung einer Schutzschicht ausreichen /RIC98/.

Die möglichen Reaktionen sind abhängig von der SF\textsubscript{6} - Konzentration /DÖR00/:

\[SF_6 < 0.5 \text{ Vol.}\% \]

\[Mg_{(s)} + SF_6 + Luft \longrightarrow MgO_{(s)}(+SF_6) \quad \text{Gl. 2.3.5} \]

\[SF_6 > 0.5 \text{ Vol.}\% \]

\[Mg_{(s)} + SF_6 + Luft \longrightarrow MgO + MgF_2 + SO_2 + MgO_{(s)}(\text{Spuren})(+SF_6) \quad \text{Gl. 2.3.6} \]

weitere mögliche Reaktionen:

\[Mg_{(s)} + SF_6 + O_2 \longrightarrow MgF_2_{(s)} + SO_2F_2 \quad \text{Gl. 2.3.7} \]

\[MgO + SF_6 \longrightarrow MgF_2 + SO_2F_2 \quad \text{Gl. 2.3.8} \]

In Übereinstimmung dazu stehen die in der Arbeit von /CAS98/ gewonnenen Erkenntnisse über den Reaktionsmechanismus zwischen SF\textsubscript{6} und Mg. Der Autor identifiziert die Schutzschicht als einen MgF\textsubscript{2}-Film oder MgF\textsubscript{2}-Einlagerungen in der MgO-Schicht. Der mehrfach auch in der Arbeit von Fruehling /FRU70/ vorgeschlagene Ansatz, SF\textsubscript{6} verhalte sich in geringen Konzentrationen (bis ca. 0,4 Vol\%) inert, der metallisch glänzende Schutzfilm bestehe hauptsächlich aus MgO und der unterbundene Legierungsabbrand sei auf eine geringe Durchlässigkeit des spezifisch dichten Gases SF\textsubscript{6} gegenüber Sauerstoff aus der Umgebung zurückzuführen /HAN75, HEF93/, muss zumindest angezweifelt werden /LIN00/.

Während der F-Gehalt in der Schutzschicht und somit die Schutzwirkung der Schicht sich durch die Konzentration von SF\textsubscript{6} beeinflussen lässt, hat die Reaktionszeit keine Auswirkung auf die Filmzusammensetzung, da der Kontakt zwischen Magnesiumschmelzen und SF\textsubscript{6} durch den Film unterbrochen wird. Diese Aussage steht jedoch im Widerspruch zu Pettersen /PET02/, nach dessen Untersuchungen die zeitliche Zunahme der Schichtdicke auf die weitere Formation einer MgF\textsubscript{2}-Schicht zurückzuführen ist.

Ein Problem bei der Verwendung von SF\textsubscript{6} ist der Korrosionsangriff auf Stahllarmaturen bei Temperaturen oberhalb 680 °C und unter Beteiligung von Luftfeuchtigkeit. Am Tiegel bilden
sich die Beläge mit hohen FeF\textsubscript{2}- und FeO-Anteilen, die abplatzen und so in die Schmelze gelangen können. Dies führt zu heftigen, exothermen Reaktionen /GJE96, DÖR00/:

\[
\text{Gl. 2.3.9} \\
FeF_2 + Mg_{(l)} \rightarrow MgF_2 + Fe
\]

\[
\text{Gl. 2.3.10} \\
FeO + Mg_{(l)} \rightarrow MgO + Fe
\]

Neben dem Korrosionsangriff auf Stahlarmaturen stellt die klimaschädigende Wirkung bei der Verwendung SF\textsubscript{6}-haltiger Schutzgasgemische ein Problem dar. Mit einem GWP- Faktor von 23.900 hat Schwefelhexafluorid das höchste Treibhauspotential aller bekannten Gase /ELL97/. Da ein Teil des für den Magnesiumguss eingesetzten SF\textsubscript{6} im Prozess zersetzt wird /CAR97/, ist die genaue Quantifizierung nicht möglich. Außerdem hängt das Maß der Zersetzung vom jeweiligen Verfahren ab /BAR03/. Gemäß den internationalen Anforderungen an die Berichterstattung wird der Verbrauch an SF\textsubscript{6} mit den Emissionen in der Nichteisen-Metallindustrie gleichgesetzt /SWZ99/. Er betrug 2002 16.000 Tonnen (Bild 2.3.2).

Bild 2.3.2: Entwicklung der SF\textsubscript{6}-Emissionen aus dem Magnesiumguss in Deutschland /BRE04/.

Durch die Verabschiedung des Kyoto-Protokolls hat sich die Europäische Union verpflichtet, den Ausstoß der Treibhausgase um 8% zu reduzieren /SWZ99/. Infolgedessen ist die Verwendung von Schwefelhexafluorid für den Magnesiumguss ab dem 1.01.2007 untersagt, es sei denn, die dabei verwendete Menge liegt unter 500 kg jährlich /EUR04/.
2.3.4 Neuartige Schutzsysteme

Auf Grund der dargestellten Problematik ist in den letzten Jahren ein Anstieg der Aktivitäten im Bereich der Oxidationsschutzsysteme für Magnesiumschmelzen zu verzeichnen /BAC03a/. Zahlreiche Forschungsprogramme zur Evaluierung von Alternativen wurden aufgelegt /TRA01, WAL01, PET02, HIL02/. Treibende Kraft war die Automobilindustrie als größter Abnehmer der Magnesiumprodukte. Hintergrund hierfür sind ökobilanzielle Untersuchungen (LCAs), die zeigen, dass der bei Fahrzeugen durch den Einsatz leichter Bauteile aus Mg-Legierungen an Stelle von Stahl erzielte Beitrag zur CO₂-Emissionsreduzierung (verringelter Treibstoffverbrauch) durch den Einsatz von SF₆ im Herstellungs- und Verarbeitungsprozess von Magnesiumlegierungen mehr als aufgezehrt wird /UBA04/. Die Verbesserung der Ökobilanz von Fahrzeugen durch SF₆-Substitution ist demnach ein entscheidender Faktor für den Einsatz leichter Magnesiumteile /RIC02/.

Ein Schwerpunkt laufender Entwicklungen in der Magnesiumverarbeitung fokussiert sich auf die Ausarbeitung technischer Lösungsansätze zur Verhinderung der Schmelzeoxidation.

So wurde eine neuartige Ofentechnik für die Realisierung eines SF₆-freien Gießprozesses entwickelt /MAD99/. Wesentliche konstruktive Merkmale des entwickelten Mehrkammer-Ofensystems sind die stufenweise Temperaturführung der Schmelze und die vollständige druckdichte Abschirmung der höher temperierten Ofenkammern von der Umgebungsatmosphäre (Bild 2.3.3).

![Bild 2.3.3: Dreikammer-Magnesiumschmelzofen /MAD99, AUD99/.

In der ersten Ofenkammer wird das Gießmetall auf maximal 650°C temperiert und mit reinem CO₂ begast. In den nachgeschalteten Ofenkammern (Zwischenkammer und Entnahmekammer) wird das Metall auf Abgusstemperatur (bis zu 700°C) erwärmt und mittels der Vacural-Saugdosierung in die Gießkammer gefördert.
Versuche mit reinem CO\textsubscript{2} ergaben einen guten Schutz der Magnesiumschmelze. Eine dünne Schutzschicht verhinderte einen Brand bei Temperaturen bis zu 750 °C, solange der Ofen nicht geöffnet wurde. Allerdings kommt es bei einer Verletzung der Schicht zum punktuellen Brennen, insbesondere wenn feuchte Luft eindringen kann.

Das französische Unternehmen Brochot verzichtet ebenfalls auf F- und/oder S-haltige Gase und patentierte eine konstruktive Neuentwicklung in der Magnesiumgießtechnik /BRO99/. Es handelt sich um ein für die Magnesiumprimärindustrie entwickeltes Schutzsystem, welches sich ausschließlich für den Blockguss eignet. Das Kernstück dieser Methode ist das automatisch kontrollierte Gießrad (Bild 2.3.4a), welches zur Steigerung der Produktionsraten einerseits und zur Minimierung der Krätzebildung andererseits eingesetzt wird /GRU01/. Das flüssige Metall wird durch das Gießrohr des Rades (Bild 2.3.4b, Pos.3) in die Masselform (Bild 2.3.4b, Pos.2) einpresst.

\begin{table}
\begin{tabular}{|c|c|c|c|}
\hline
& CO\textsubscript{2} & Ar & trockene Luft & Xe \\
\hline
Gasanteil, % & 50-90 & 0-40 & 5-15 & 0-10 \\
\hline
Anwendungsbeispiel, % & 70 & 20 & 9 & 1 \\
\hline
\end{tabular}
\caption{Tabelle 2.3.1: Zusammensetzung des verwendeten Gasgemisches.}
\end{table}
Den Berichten zufolge /HIL02/ kann dieses System Magnesiumschmelzen bei diversen Gießoperationen, wie z. B. beim Gießen in Masselformen, schützen, versagt jedoch bei der Anwendung des Gasgemisches für den Schmelzofen.

In Kenntnis der Schutzmechanismen, die bei Anwendung von SF₆ als Schutzgas ablaufen, fokussierte sich die Suche nach Alternativen vor allem auf fluorierte Substanzen.

Es wurde Bor trifluorid (BF₃), dessen schützende Wirkung seit den 30er Jahren bekannt ist /DCC34/, erneut vorgeschlagen. Das neue „MagShield“-System basiert auf einer modernen Methode BF₃ in-situ zu erzeugen /REV00, HAT01/.

KBF₄ wird aus einem Vorratsbehälter (Bild 2.3.5, Pos.1) mittels einer Dosierschnecke (Bild 2.3.5, Pos.2) in eine Zersetzungskammer (Bild 2.3.5, Pos.3) befördert und thermisch zersetzt (Zersetzungstemperatur von unter 700°C hat sich als günstig erwiesen).

\[
KBF_4 \rightarrow KF + BF_{3(g)} \tag{Gl. 2.3.11}
\]

Das gasförmige BF₃, welches kleinere Mengen von BOF und BF₂ enthalten kann, wird mit einem Trägergas vermischt und über eine Gasleitung (Bild 2.3.5, Pos.5) einem Schmelzofen zugefügt (Bild 2.3.5, Pos.6).

Folgende Reaktionen laufen an der Oberfläche der Magnesiumschmelze ab:

\[
Mg + BF_{3(g)} \rightarrow MgF_{2(s)} + BF_{(g,unstabil)} \tag{Gl. 2.3.12}
\]
Der Schutzeffekt basiert auf der Bildung eines dünnen Films, der aus MgF$_2$ und MgO besteht. Für einen ausreichenden Schutz der Magnesiumschmelze sind ca. 0,5 Vol% BF$_3$ in trockener Luft notwendig.

Da das Gas relativ teuer, ätzend und sehr toxisch ist (MAK 1 ppm), kann diese Lösung, die keinen praktischen Einsatz gefunden hat, keine umweltfreundliche Alternative darstellen.

Neben SO$_2$F$_2$ /HOB02/ wurden weitere gasförmige F-haltige Verbindungen wie NF$_3$, NOF, SO$_2$ClF und SOF$_4$ als Inhibitoren für den Magnesiumguss empfohlen /APC02/. Diese Gase sind einem Trägergas (CO$_2$, N$_2$, Ar oder Luft) in Konzentrationen von 0,5 bis 2,9 % beizumischen, um einen ausreichenden Schmelzeschutz zu gewährleisten. Der Reaktionsmechanismus beruht, wie bei allen F-haltigen Verbindungen, auf der Entstehung einer MgO-MgF$_2$-Schicht. Angesichts des hohen toxischen Potentials der empfohlenen Substanzen wird ersichtlich, warum diese Verbindungen keine industrielle Anwendung gefunden haben.

Eine weitere Entwicklung stellen die teilhalogenierten Kohlenwasserstoffe (HFC), welche als Kälteschutzmittel bekannt sind, dar. So wurde HFC-134a (1,1,1,2-Tetrafluoroethan) als Schutzgas für Magnesiumschmelzen patentrechtlich geschützt /PTY00/ und als eine Alternative zu SF$_6$ präsentiert /RIC01/. Das Gas ist nicht toxisch und im Vergleich zu SF$_6$ günstig, allerdings hat es einen GWP-Faktor von 1300. An verschiedenen Standorten wurden großtechnische Versuche mit diesem inzwischen kommerziell erhältlichen Gas durchgeführt /CAS03, LYO03/. Als nachteilig anzusehen ist die thermische Zersetzung von HFC-134a, wobei giftiger Fluorwasserstoff entsteht und zusätzlich die Stahllarmaturen der Ofenanlagen angegriffen werden.

Im Jahre 2002 präsentierte eine Forschergruppe von 3M Performance Materials Division Laboratory ein neues Produkt „Novec™ 612“ /MIL02a, MIL02b/. Es handelt sich um ein fluoriertes Keton (Pentafluoroethylhepafluoroisopropylketon), einen Neustoff im Sinne des Chemikaliengesetzes /CHG02/, der bisher in geringerem Umfang verwendet und produziert wird. Die im Trägergas benötigte Konzentration von dieser organischen Substanz, welche bei Raumtemperatur flüssig ist und bei geringem Temperaturanstieg in die Gasphase übergeht, beträgt etwa 0,01 % und ist damit um ein Vielfaches geringer als die erforderliche Konzentration an SF$_6$.

Obwohl fluorierte Ketone wie CO$_2$ einen GWP-Faktor von 1 (wie CO$_2$) haben, treten bei der thermischen Zersetzung im Temperaturbereich über 575 °C unerwünschte Nebenprodukte mit hohen GWP-Faktoren (CF$_4$, C$_2$F$_6$ und C$_3$F$_8$ mit GWP- Werten von 6500, 9200 bzw. 7000) und toxischem Potential (HF, COF$_2$) auf. Die Bildung unerwünschter Produkte, so die Autoren /MIL02b/, kann durch Zusatz geringerer Menge an Sauerstoff und eine optimierte
Schutzgasdosierung reduziert werden. Allerdings ist das Produkt zur Zeit nicht kommerziell erhältlich, großtechnische Anwendungen sind ebenfalls nicht bekannt.

2.4 Eigenschaften von Kohlenstoffdioxid

Kohlenstoffdioxid ist das Anhydrid der nicht in freier Form existierenden Kohlensäure (H$_2$CO$_3$). CO$_2$ ist unter Normalbedingungen (25 °C und 1 bar) ein farbloses, nicht brenbares Gas mit leicht säuerlichem Geschmack. Es ist um ein Faktor 1,5 schwerer als Luft (1,97 g/cm3 im Normalzustand) /UIG04/ und sinkt demzufolge zu Boden.

Die wesentliche Eigenart des thermischen Verhaltens von Kohlenstoffdioxid ist durch die Lage des Tripelpunktes bedingt, d.h. des Wertepaares von Druck und Temperatur, bei dem sich die gasförmige, flüssige und feste Phase im thermodynamischen Gleichgewicht befinden. Der Druck im Tripelpunkt ist bei Kohlenstoffdioxid erheblich höher als der normale Atmosphärendruck und beträgt 5,18 bar; die zugehörige Temperatur –56,6 °C. Nur im Tripelpunkt können alle drei Phasen nebeneinander bestehen.

Flüssiges CO$_2$ ist ebenfalls farblos und existiert nur im Bereich zwischen dem Tripelpunkt und dem kritischen Punkt (Bild 2.4.1). Unter Umgebungsdruck von 1 bar liegt CO$_2$ nur im festen und gasförmigen Zustand vor, der flüssige Zustand ist nicht stabil.

![Zustandsdiagramm von Kohlenstoffdioxid /KUP53/](image)

Bild 2.4.1: Zustandsdiagramm von Kohlenstoffdioxid /KUP53/.
Festes Kohlenstoffdioxid hat bei 1 bar in der gesättigten Atmosphäre eine Temperatur von -78,5 °C und sublimiert bei Wärmezufuhr. Dem Umstand, dass nach der Sublimation keine Schmelzprodukte verbleiben, verdankt das Kühlmittel seinem Trivialnamen „Trockeneis“. Wenn festes CO\textsubscript{2} aus dem Entspannungsprozess entsteht, liegt es als Schnee mit weißem Aussehen vor. Beim Ausgefrieren an kalten Oberflächen ist festes CO\textsubscript{2} farblos und durchsichtig. Die typischen Stoffwerte von CO\textsubscript{2} sind in Tabelle 2.4.1 gegeben.

<table>
<thead>
<tr>
<th>Allgemein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molare Masse</td>
</tr>
<tr>
<td>Spezielle Gaskonstante</td>
</tr>
<tr>
<td>Molares Normvolumen</td>
</tr>
<tr>
<td>Gasdichte im Normzustand</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tripelpunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druck</td>
</tr>
<tr>
<td>Temperatur</td>
</tr>
<tr>
<td>Gasdichte</td>
</tr>
<tr>
<td>Flüssigkeitsdichte</td>
</tr>
<tr>
<td>Feststoffdichte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kritischer Punkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druck</td>
</tr>
<tr>
<td>Temperatur</td>
</tr>
<tr>
<td>Dichte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bei Normaldruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sublimationstemperatur</td>
</tr>
<tr>
<td>Sublimationsenthalpie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas (-50 \text{ °C} \leq T \leq 0 \text{ °C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>mittl. isobare Wärmekapazität</td>
</tr>
<tr>
<td>mittl. spez. Wärmeleitfähigkeit</td>
</tr>
</tbody>
</table>

Tabelle 2.4.1: Stoffwerte für Kohlenstoffdioxid.
Die Sublimationswärme des festen Kohlenstoffdioxids beträgt bei 1 bar, also bei $T_{\text{sub}}=-78,5 \, ^\circ\text{C}$, etwa 577 kJ; rechnet man die Erwärmung des entstandenen Gases bis auf 0 °C hinzu, so erhält man eine gesamte Kühlleistung von 640 kJ. Sublimiert Schnee in einer Atmosphäre, die nicht nur aus CO$_2$-Gas besteht, sondern eine Mischung aus Gasen wie Stickstoff, Sauerstoff und anderen enthält, so findet die Sublimation auf Grund des geringeren CO$_2$-Partialdruckes bei einer Temperatur unterhalb von $T_{\text{sub}}=-78,5 \, ^\circ\text{C}$ statt.

![Diagram](image.png)

Bild 2.4.2: Sublimationstemperatur von CO$_2$ bei unterschiedlichem CO$_2$-Partialdruck /BER99/.

Bild 2.4.2 stellt die Sublimationstemperaturkurve von CO$_2$ nach Fernandes-Fassnacht im Vergleich zu Messwerten der Sublimationstemperatur von Kuprianoff bei unterschiedlichen CO$_2$-Anteilen und einem Gesamtdruck von 1 bar dar. Eine Abnahme des CO$_2$-Gasgehaltes z. B. auf 80 Vol.% führt zur Senkung der Sublimationstemperatur auf $-81,2 \, ^\circ\text{C}$, was wiederum in einer Erhöhung der Sublimationswärme resultiert /KUP53/.

2.5 Gießtechnische Verarbeitung von Magnesium

2.5.1 Ofentechnik

2.5.2 Gießen von Magnesiumlegierungen

Der Markt für Magnesium-Strukturkomponenten wird durch das Druckgießverfahren dominiert. Die Gründe dafür liegen einerseits in dem bei gleichem Gießdruck erzielbaren höheren Strömungsgeschwindigkeiten (Bernoullische Gleichung) beim Füllen der Form (Bild 2.5.1). Andererseits ist das Druckgussverfahren für die Verarbeitung von Magnesiumlegierungen auf Grund deren geringer spezifischen Schmelzwärme der am besten
geeignete und am häufigsten genutzte Gießprozess. Die Potentiale dieses Verfahrens bezüglich Dünnwandigkeit der Gussteile, Formabbildungsvermögen komplexer Strukturen, Oberflächenqualität und Produktivität sind mit anderen Gießprozessen nicht zu erreichen /SCH00/.

Bild 2.5.1: Strömungsgeschwindigkeit flüssiger Metalle in Abhängigkeit vom Gießdruck.

2.5.3 Warmkammerdruckguss

Beim Warmkammerverfahren befindet sich das Gießaggregat (= Gießkammer und Gießkolben) innerhalb der Schmelze, die zu gießende Metallmenge wird direkt aus der Schmelze angesaugt, so dass nur die Schmelzbadoberfläche gegen die Atmosphäre zu schützen ist. Für kleine und mittlere Gussteile (Gewichte bis ca. 2 kg) besitzt dieses Verfahren deutliche Produktivitätsvorteile im Vergleich zu Kaltkammergießmaschinen vergleichbarer Schließkraft.

Das in den Warmhalteofen eingesetzte Gießaggregat ist allerdings auf Grund der räumlichen Verhältnisse in seiner Größe beschränkt, zudem ist der Wirkungsgrad wegen der Strömungsverluste nicht optimal.

2.5.4 Kaltkammerdruckguss

3 Ausgangssituation, Zielsetzung und Lösungsansatz

Die wachsenden Bestrebungen zum Einsatz leistungsfähiger Leichtbaukomponenten machen Magnesiumlegierungen zu einem besonders attraktiven Konstruktionsmaterial. Der Einsatz von Magnesiumguss im Bereich des Automobilbaus ist durch ein erhebliches Potential zur weiteren Gewichtsreduzierung der Fahrzeuge gekennzeichnet. Die im Stand der Wissenschaft und Technik dargelegte hohe Reaktivität von Magnesiumschmelzen stellt bei der Verwendung von Magnesium als Konstruktionsmaterial ein grundsätzliches Problem dar /GEF01/. Um das Risiko eines Magnesiumbrandes einerseits und der Verunreinigung der Schmelze durch entstehende Oxidationsprodukte andererseits möglichst gering zu halten, ist die Handhabung der Schmelze unter einem geeigneten Abschluss gegen Umgebungsatmosphäre unerlässlich /HIL02, BAI04/.

Auf Grund der dargestellten Problematik ist in den letzten Jahren ein Anstieg der Aktivitäten im Bereich Oxidationsschutzsysteme für Magnesium zu verzeichnen /BAC03b, KAR03a/. Die neueren Entwicklungen auf dem Gebiet des Schutzes von Magnesiumschmelzen wie das „MagSchield“-System /REV00/, HFC-134a /RIC02, CAS03/ oder fluorierete Ketone /MIL02a, MIL02b/ stellen auf Grund erheblicher GWP-Faktoren oder/und toxischer Belastung keine langfristigen Alternativen dar und können höchstens als Zwischenlösung betrachtet werden.

Vor dem Hintergrund dieser ökologischen und ökonomischen Belastung ist das Ziel dieser Arbeit die Entwicklung und Umsetzung eines geeigneten Schmelzeschutzkonzeptes für die Handhabung von Magnesiumschmelzen, welches eine nachhaltige, umwelt- und werkstoffgerechte Lösung zur Reduktion des CO₂-Ausstoßes bietet.
Ausgangssituation, Zielsetzung und Lösungsansatz

Der zunehmende Verzicht auf salzhaltige Abdeckmittel, welche auf die Tiegelwerkstoffe eine korrosive Wirkung ausüben und die Schmelze stark verunreinigen, unterstreicht die kostenreduzierende und die umwelttechnische Ausrichtung dieser Arbeit. So werden die dabei auftretenden chlor- bzw. fluorhaltigen Zerfallsprodukte vermieden. Hierdurch ergeben sich höhere Tiegel- und Formstandzeiten, was die Wettbewerbsfähigkeit von Mg-Gießereibetrieben deutlich steigert.

Angestrebt wird, basierend auf der Recherche bereits angewandter Begasungssysteme, die grundlegende Untersuchung und Entwicklung eines SF\textsubscript{6}-freien Schmelzeschutzverfahrens. In diesem Zusammenhang gilt es den Anteil umweltbeeinträchtigender Reaktivgase auf ein Minimum zu reduzieren und so bei gewährleistetem Schmelzeschutz eine Umweltentlastung zu erreichen. Dadurch soll den gesetzlichen Regelungen vorgegriffen und eine zukünftige ressourcenschonende Nutzung des Werkstoffes Magnesium sichergestellt werden.

Der verfolgte Lösungsansatz sieht die Realisierung eines umweltfreundlichen und kontaminationsarmen Schmelzeschutzsystems für Magnesiumschmelzen vor.

Um das Reaktionspotential in einem Ofen einzuschränken, ist als konstruktive Maßnahme die Minimierung der freien Schmelzbadoberfläche vorgesehen. Hierdurch kann die mögliche Reaktionsfläche herabgesetzt werden, so dass der Einsatz von Schutzmedien verringert werden kann. Ebenso ist eine Verringerung des Abdampfverhaltens der Magnesiumschmelze bei inerter Ofenatmosphäre mit der minimierten Badoberfläche verbunden.

Über die Untersuchungen von konventionellen Schutzgasen und deren Gemischen hinaus liegt ein Schwerpunkt auf der Entwicklung neuer Schmelzeschutzkonzepte. Basierend auf den gewonnenen Erkenntnissen wird ein neues Verfahren entwickelt, das die Nachteile der Begasung mit konventionellen Schutzgasen überwindet. So soll durch die Einbringung von festem Kohlenstoffdioxid die Oberflächentemperatur der Magnesiumschmelze abgesenkt werden, um die starke Abdampfneigung von Magnesium zu unterdrücken. Gleichzeitig
erfolgt durch die Sublimation des CO$_2$-Schnees eine Gasexpansion, wodurch jeglicher Sauerstoff von der Badoberfläche verdrängt wird. Das neu entwickelte CO$_2$-Schnee-Verfahren wird im Labormaßstab untersucht und qualifiziert.

Im nächsten Schritt wird die Handhabungstechnologie entwickelt, um die bereits im Labor gewonnenen Erkenntnisse in den praxisrelevanten Maßstab übertragen zu können. Die technische Umsetzung des Verfahrens wird an industriellen Magnesiumschmelzöfen realisiert. In der Versuchsgießerei der Audi AG wird das CO$_2$-Schnee-Schmelzeschutzkonzept speziell auf Eignung im Kaltkammerdruckguss untersucht, während bei der Laukötter Gusstechnik GmbH das Verfahren an einer Warmkammerdruckgussmaschine implementiert wird. Die weitere Optimierung dient dem effizienten Einsatz des Kühlmediums, was nicht nur den Verbrauch positiv beeinflusst, sondern auch eine Energieersparnis durch Vermeidung unnötiger Abkühlung der Gasatmosphäre bedeutet (Bild 3.1)
Umweltgerechte Magnesiumschutzsysteme

Ausgangssituation
- Schmelzehandhabung
 - Oxidation der Schmelze, problematische Badabdeckung
 - Hohe Belastungspotential für Mensch und Umwelt
 - SF₆-Verbot

Lösungsansatz
- Neue Schutzkonzepte
 - Untersuchung konventioneller Schutzgasmachanismen
 - Minimierung der freien Schmelzbadoberfläche
 - Senkung der Oberflächen-temperatur

- Analyse
 - REM
 - ESMA
 - EDX
 - Mikroskopie
 - Gravimetrie

- Auswahl geeigneter Schmelzeschutzkonzepte

- Entwicklung einer Handhabungstechnologie
 - IR-Untersuchungen, Gasanalyse
 - Automatisierung des Prozesses

- Übertragung der Ergebnisse in den industriellen Maßstab
 - Adaption an bestehende Anlagen
 - Überprüfung der Eignung über den gesamten Gießzyklus
 - weitere Optimierungen des Verfahrens

Ziel
- Entwicklung und Qualifizierung SF₆-freier Schmelzeschutzverfahren

Bild 3.1: Gesamtkonzept zur Entwicklung des umweltgerechten Schutzverfahrens.
4 Versuchsmethodik

4.1 Analysemethoden

4.1.1 Lichtmikroskopische Untersuchungen

4.1.2 Rasterelektronenmikroskop (REM), Energiedisperser Röntgenstrahlanalyse (EDX), Elektronenstrahlmikroanalyse (ESMA)

Die Rasterelektronenmikroskopie mit ihren hohen Vergrößerungsfaktoren (20000:1) und großen Tiefenschärfen dient im Rahmen vorliegender Arbeit vorrangig zum qualitativen Nachweis der Unterschiede in der Zusammensetzung einzelner Randbereiche der untersuchten Proben.

EDX ist ein klassisches Verfahren, das zur Analyse der oberflächennahen Bereiche von Festkörpern oder zur Charakterisierung von dünnen Schichten eingesetzt wird. Die Auswertung der im Röntgenspektrum enthaltenen Spektrallinien erlaubt es, die Elementzusammensetzung der Probe zu identifizieren und über die Intensität auch zu quantifizieren. Hierzu wird die Röntgenstrahlung hinsichtlich ihrer Energie analysiert und die jeweilige Intensität der Spektrallinien gemessen. EDX wird mit einem REM kombiniert. Durch die Rasterung eines fein fokussierten Primärelektronenstrahls kann die Elementverteilung auf der Probenoberfläche mit hoher Ortsauflösung abgebildet werden. Das EDX-System am REM (LEO 1455VP) von der Firma EDAX wird in dieser Arbeit zur Bestimmung der Schutzschichtzusammensetzung eingesetzt.

Elemente ab der Ordnungszahl 4 (Beryllium) detektierbar. Die relative Nachweissgrenze beträgt bei Elementen 0,01-0,05 m%, was einer absoluten Nachweissgrenze von 10^{-14} bis 10^{-15} g entspricht.

4.2 Eingesetzte Werkstoffe, Materialien und Geräte

Werkstoffe

Im Rahmen der durchgeführten Untersuchungen wurden sowohl reines Magnesium (Tabelle 4.2.1) als auch die Standard-Legierung AZ91HP (Tabelle 4.2.2) mit den nachfolgend aufgeführten Zusammensetzungen in Gew. % gemäß Herstelleranalyse verwendet.

<table>
<thead>
<tr>
<th>Lieferant: Norsk Hydro Magnesiumgesellschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
</tr>
<tr>
<td>99,8</td>
</tr>
</tbody>
</table>

*Tabelle 4.2.1: Zusammensetzung des Rein-Magnesiums in Gew. % (Herstellerbezeichnung: Mg99,8).

<table>
<thead>
<tr>
<th>Lieferant: Norsk Hydro Magnesiumgesellschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
</tr>
<tr>
<td>9,26</td>
</tr>
</tbody>
</table>

*Tabelle 4.2.2: Zusammensetzung der Legierung AZ91HP.
* - ppm=10^{-4} Gew.-%

Kontinuierliche Gaskonzentrationsanalyse

Zur Messung der Gaskonzentration werden folgende Geräte eingesetzt:

- CO$_2$-Messgerät, BINOS 100-2M, Fa. Rosemount GmbH & Co., Hanau, Deutschland;
- CO-Messgerät, BINOS 1, Leybold-Heraeus GMBH, Hanau, Deutschland;

Gasproben der Ofenatmosphäre werden für die kontinuierliche Messung des Gasgehaltes mit Hilfe einer Analysenpumpe während des laufenden Prozesses entnommen. Da die Abdampfungsprodukte (MgO-Partikeln) von der Analysepumpe mitangsaugt werden, was zur Funktionsstörung der Geräte führen kann, wird ein Filter zwischengeschaltet.
Thermografische Untersuchungen

Unter dem Begriff Thermografie wird die räumliche Erfassung der von einem Objekt abgegebenen Infrarotstrahlung mit einer Kamera verstanden. Die Infrarotstrahlung ist eine Funktion:

- der Oberflächentemperatur,
- des Emissionsgrades vom Objekt,
- der Reflexion und Absorption von Strahlung in der Atmosphäre.

Sind Emissionsgrad, Umgebungstemperatur, relative Luftfeuchtigkeit und Distanz von Messobjekt zu Kamera bekannt, kann die Oberflächentemperatur aus der gemessenen Infrarotstrahlung des Objektes berechnet werden.

Die Thermografie bietet die Vorteile der berührungslosen Temperaturmessung von Flächen auch bei starken thermischen Vorgängen mit einer hohen örtlichen und zeitlichen Auflösung der Messergebnisse.

Da die Kamera über eine Framegrabberkarte an den Messrechner angeschlossen werden kann, können die aufgenommenen Videosequenzen auf einen Messrechner gespeichert und anschließend mit der Software ThermaCAM Researcher ausgewertet werden.

4.3 Anlagen

4.3.1 Schmelzanlagen für Laboruntersuchungen

Für die Durchführung der Untersuchungen konventioneller Schutzgase wurde eine Laboranlage aus einem Ofen und einem Heizregler verwendet (Bild 4.3.1). Der Tiegel aus Baustahl hat einen Durchmesser von 90 mm, was einer Schmelzbadoberfläche von ca. 64 cm² entspricht. Für die Versuche wurden typischerweise 500 bis 600 g AZ91 eingesetzt. Die Temperaturmessung erfolgte mit Hilfe von Thermoelementen (Ni-CrNi, Typ K) ca. 30 mm unter der Schmelzbadoberfläche. Zur visuellen Beobachtung der Schmelze wurde eine Glasscheibe mit einem Wischer eingebaut (Bild 4.3.1, Pos. 6).
Mit Hilfe einer Gas miesz anlage (Bild 4.3.2) wurden die Begasungsvolumenströme variiert und Gasgemische definierter Zusammensetzung erstellt. An dem Laborofen wurden die Untersuchungen zur Klärung des Oxidationsverhaltens von Magnesiumschmelzen durchgeführt.

Das gießtechnische Verhalten wurde an einem offenen Tiegel (Ø120 mm) mit einem Fassungsvermögen von ca. 5 kg untersucht. Die Verwendung dieses Tiegels ermöglichte die Durchführung der im Gießbetrieb üblichen Operationen (Nachchargieren, Abkrätzen, Abgießen). Dieser Tiegel wurde ebenfalls bei den Untersuchungen zur Minimierung der freien Schmelzbadoberfläche (Kapitel 5.2) und zur Abdeckung der Magnesiumschmelze mit gekühlten Schutzmedien (Kapitel 5.3) verwendet.

Um die im Labormaßstab gewonnenen Erkenntnisse im praxisnahen Betrieb zu untersuchen, wurde ein Schmelz- und Warmhalteofensystem konstruiert, mit dem sowohl eine konventionelle Begasung der Magnesiumschmelze mit Reaktiv- und Inertgasen, als auch die kontrollierte Einbringung von festem CO₂ möglich ist. Die Anlage ist adaptiv aufgebaut, so dass mit geringerem Aufwand verschiedene Schmelzeschutzkonzepte bei einem großen Parameterspektrum realisiert werden können. Diese Ofenanlage wurde überwiegend für die Untersuchungen der Wirkung von CO₂-Schnee verwendet. Der Versuchsaufbau ist in Bild 4.3.3 dargestellt.
Die Temperaturmessung erfolgt mit Thermoelementen im Bereich des Ofenraums, sowie an mehreren Stellen unter der Schmelzbadoberfläche. Gasproben der Ofenatmosphäre werden für eine kontinuierliche Messung des \(\text{O}_2 \)-, \(\text{CO}_2 \)- und \(\text{CO} \)-Gehaltes mit Hilfe einer Analysenpumpe während des laufenden Prozesses entnommen und mit den im Kapitel 4.3.1 beschriebenen Gasanalysegeräten ausgewertet. Die große Oberfläche des Schmelztiegels (ca. 1620 cm\(^2\)) kann gut mit den Bedingungen in der industriellen Praxis verglichen werden.

4.3.2 Industrielle Schmelzanlagen

Im Laufe weiterer Untersuchungen wurde das entwickelte und im Labormaßstab untersuchte \(\text{CO}_2 \)-Schnee-Verfahren im industriellen Gießbetrieb getestet. Dabei wurden bei den industriellen Versuchen (Versuchsgießerei der Audi AG und Laukötter GmbH) unterschiedliche Schwerpunkte gesetzt. In der Versuchsgießerei der Audi AG wurde das \(\text{CO}_2 \)-Schnee-Schmelzeschutzkonzept speziell auf Eignung im Kaltkammerdruckguss untersucht (MDO500), während bei der Laukötter Gusstechnik GmbH das Verfahren an einer Warmkammerdruckgussmaschine (DAM-F) implementiert wurde.

MDO500

Der Vorwärmofen erlaubt die Erwärmung der Masseln auf Kerntemperaturen bis zu 300 °C bei einer Kapazität von 500 kg/h und ermöglicht ein metallurgisch vorteilhaftes schnelleres Aufschmelzen. Durch die automatische Beschickung des Schmelzaggregates in Abhängigkeit von der Schmelzenentnahme wird eine gleichmäßige Schmelztemperatur und ein konstantes Schmelzniveau erreicht. Der Gießprozess erfolgt über eine Gießrinne, die an eine Druckgussmaschine angeschlossen wird. Das Dosiergewicht kann zwischen 1 und 8 kg variiert werden.

DAM-F

Durch konstruktive Veränderungen wurde der konventionelle Schmelzofen der Firma Frech GmbH an den typischen Gießereitaktbetrieb angepasst. So wurde z. B. anstatt einer Drehdeckels eine pneumatisch gesteuerte Schiebetür senkrecht zur Schmelzbadoberfläche angebracht, welche beim Öffnen nur minimale Luftbewegung in den Ofenraum hinein verursacht und somit zur Reduzierung des Schutzgasverbrauchs beiträgt.

5 Experimentelle Ergebnisse und Diskussion

5.1 Untersuchung konventioneller Schutzgassysteme

Versuchsdurchführung

Die Untersuchungen fanden in einem Laborofen statt, welcher von einem mobilen Heizregler gesteuert wurde (s. Kapitel 4.3.1). Das kleine Tiegelvolumen ermöglichte einen schnellen Aufschmelz- bzw. Erstarrungsvorgang.

Die Proben der Schmelzbadoberfläche wurden entnommen und entsprechend untersucht. Der gefüllte Tiegel wurde vor und nach dem Versuch gewogen, um eine Gewichtsänderung zu protokollieren, wobei das Gewicht der entnommenen Proben bei der Berechnung berücksichtigt wurde. Die eingebaute Glasscheibe gestattete eine visuelle Beobachtung der Schmelzbadoberfläche. Da die Scheibe beim Aufschmelzen des Metalls innerhalb kurzer Zeit mit Magnesiumoxidstaub beschlägt, wurde ein temperaturbeständiger Scheibenwischer zum Reinigen der Glasscheibe installiert.

Oxidationsverhalten

Bei der Bildung einer Schutzschicht ist mit einer Gewichtszunahme zu rechnen. Bildet sich kein Schutzfilm, so findet ungehindertes Abdampfen des Magnesiums statt und es ist eine Gewichtsabnahme zu verzeichnen. Bei porösen bzw. nicht stabilen Schichten erfolgt zuerst eine Gewichtszunahme, da die Schicht zuerst aufgebaut wird, anschließend entweicht aber
Magnesium aus den entstandenen Poren und Rissen, was zu nachweisbaren Massiverlusten führt.

Gießtechnisches Verhalten
Das gießtechnische Verhalten wurde im offenen Tiegel (Ø120 mm) untersucht (s. Kapitel 4.3.1). Einerseits spiegelt die Verwendung eines offenen Tiegels die Bedingungen eines realen Gießprozesses wider, andererseits ermöglicht sie eine visuelle Beobachtung der Schmelzbadoberfläche sowie die Durchführung der üblichen Gießoperationen (Nachchargieren, Abkrätzen, Abgießen).

Temperaturabhängigkeit
Wie im Kapitel 2 dargelegt, hängt das Oxidationsverhalten der Magnesiumschmelze von der Temperatur ab. Das Schmelzverhalten von AZ91 wurde im Temperaturbereich von 600 bis 720°C untersucht, wobei die Temperaturmessungen mit Hilfe von Thermoelementen (Ni-CrNi, Typ K) ca. 30 mm unter der Schmelzbadoberfläche erfolgten.

Probenanalyse
Die Proben der Schmelzbadoberfläche wurden analysiert. Die bei der Reaktion mit CO₂ entstandene Oberflächenschicht sowie der Querschliff durch die Probe wurden untersucht. Die Elementverteilung auf der Probenoberfläche wurde mit Hilfe der EDX-Methode (s. Kapitel 4.1.2) bestimmt. Da die ESMA-Analyse (Kapitel 4.1.2) eine polierte Probenoberfläche voraussetzt, konnte diese Methode nur an den Querschliffen der untersuchten Proben angewandt werden. Diese Untersuchungen gelten in erster Linie der Bestimmung der Zusammensetzung der Grenzschicht. Die Schliffbilder der Querschnittsproben (Kapitel 4.1.1) ermöglichen die Aussagen über die Dicke und die Qualität der Schicht.

Die Untersuchung konventioneller Schutzmechanismen beinhaltet die Begasung mit CO₂, Argon und Stickstoff und deren Kombinationen.

5.1.1 Begasung mit reinem CO₂
CO₂ wird als alternatives Schutzgas zur Deckschichtbildung eingesetzt. Es wird ein ähnlicher Effekt wie bei SF₆ und SO₂ angestrebt, wobei die Gase durch Reaktion mit der Magnesiumschmelze eine stabile Schicht auf der Schmelzbadoberfläche bilden. Diese Deckschicht verhindert zum einen die Oxidation der Schmelze und zum anderen das Abdampfen des Magnesiums / MAD99, KAR03b/.
Oxidationsverhalten

Bild 5.1.1 stellt die Gewichtsänderung der AZ91-Probe bei der Begasung mit reinem CO\textsubscript{2} dar.

![Gewichtsänderung von AZ91 bei 700 °C unter CO\textsubscript{2}.](image)

Die Gewichtszunahme der Probe ist durch die Entstehung einer Schutzschicht an der Oberfläche zu erklären. Das Abdampfen des flüssigen Magnesiums wurde sehr stark eingeschränkt. Allerdings kam es im Laufe des Versuches zur Porenbildung an der Oberfläche, so dass das freiwerdende Metall sowohl abdampfen als auch oxidiert werden konnte.

Gießtechnisches Verhalten

Beim Erhitzen von Magnesium in CO\textsubscript{2}-Atmosphäre findet eine Reaktion statt. Die Schmelzbadoberfläche überzog sich bereits nach 5 min. mit einer metallisch glänzenden Schutzhaut (Bild 5.1.2a). Ferner schränkte die Schutzschicht das Abdampfen des flüssigen Magnesiums sowie die weitere Oxidation des Metalls sehr stark ein. Die Schutzschicht zeigte sich bei 640 °C nach einer Stunde immer noch stabil (Bild 5.1.2b). Bei einem Lufteinbruch (Öffnen des Tiegeldeckels) kam es an der Oberfläche zu Krätzebildung und zu punktförmigem Brennen. Durch Schließen des Deckels wurde die Sauerstoffzufuhr unterbrochen, der Restsauerstoff binnen Sekunden verbraucht und der Brand gestoppt.
Nach 2 Stunden bildete sich auf der Schmelzbadoberfläche, besonders im Randbereich des Tiegels, zunehmend Krätze. Trotz der Verunreinigung der Schmelze durch Reaktionsnebenprodukte (Krätze und Ruß) behielt diese weiterhin einen metallischen Glanz.

Nach Abschaltung der Gaszufuhr zeigte sich die Schutzwirkung des Gases. Die entstandene Schutzschicht bildet eine Oxidationsbarriere, welche eine sofortige Oxidation mit anschließendem Brennen verhindert. Es kommt nach einiger Zeit (ca. 1 min.) zu kleinen lokalen Bränden und Bildung von Krätze (Bild 5.1.3a). Wenn keine Schutzmaßnahmen ergriffen werden, würde ein unkontrollierter Brand entstehen. Bei erneuter Gaseinleitung wird die Oxidation zum Stillstand gebracht. Auf der Schmelzoberfläche sind die Produkte dieser Reaktion zu erkennen (Bild 5.1.3b).

Bei der Verletzung der Schutzschicht (z. B. beim Nachchargiervorgang) kam es ebenfalls zu Oxidationsreaktionen an der Schmelzbadoberfläche, die unter Einleitung des Gases gestoppt werden konnten.
Temperaturabhängigkeit

Bereits bei 600 °C bildete sich auf der Schmelzbadoberfläche eine metallisch glänzende Schutzschicht, welche das Abdampfen des flüssigen Metalls unterdrückt. Bei Steigerung der Schmelztemperatur blieb der Schmelzeschutz erhalten. Erst bei Temperaturen über ca. 640 °C wurde eine verstärkte Krätzebildung beobachtet (Bild 5.1.4). Mit weiterer Temperaturerhöhung überzog sich im Laufe des Versuches praktisch die gesamte Schmelzbadoberfläche mit Krätze. Ein Brand wurde bis 720 °C nicht beobachtet.

Probenanalyse

Es wurden Proben der Schmelzbadoberfläche entnommen, wobei darauf geachtet wurde, dass die Schutzschicht auf der Probe nicht zerstört wird. Der metallisch glänzende Schutzfilm war plastisch verformbar und haftete stark an der Magnesiumprobe (Bild 5.1.5).

Die Probenoberfläche wurde mit Hilfe der EDX-Analyse untersucht. Die räumliche Elementverteilung auf der Oberfläche der Schutzschicht wurde mit der EDX-mapping-Methode gemessen (Bild 5.1.6). Bei diesem Verfahren wird jedem Bildpunkt eine gemessene Konzentration zugeordnet (je heller desto höher). Die Oberflächenschicht besteht hauptsächlich aus Mg und Al (Hauptlegierungselemente) sowie aus C und O. Auch die Begleitelemente einer AZ91-Legierung (Zn, Ca, Si, Fe, Mn) sind zu finden (Herstellanalyse, Tabelle 4.2.2).
Die Oberflächenuntersuchungen ergaben, dass die Oberfläche der Probe hauptsächlich aus MgO aufgebaut ist. Da eine AZ91-Legierung etwa 9 % Aluminium enthält, sind Al_2O_3 Anhäufungen auf der Oberfläche zu finden. Die visuelle Beobachtung von Rußpartikeln (elementarer Kohlenstoff) auf der Schmelzbadoberfläche wurde durch den analytischen Befund bestätigt.

Betrachtet man den Querschnitt der Probe, so ist eine Phasentrennung deutlich zu erkennen. Die Probe weist eine dichte Schicht auf. Die Schichtdicke liegt zwischen 3 bis 6 µm. Die Bildung dieses Schutzfilmes, welcher bei der Begasung mit CO_2 die weitere Oxidation erheblich erschwert, wurde ebenfalls von Fruehling /FRU78/ nachgewiesen.
Die Ergebnisse der ESMA-Analyse (Bild 5.1.8) bestätigen die gleiche Zusammensetzung der Schicht, die bereits durch die EDX-Analyse ermittelt wurde. Eine Schutzschicht aus MgO mit Kohlenstoff-Spuren lässt sich ableiten.

Bild 5.1.8: Ergebnisse der ESMA-Analyse.

Diskussion der Ergebnisse

Die folgenden Werte für die freie Standard-Bildungsenthalpie (ΔG_f^0) der Reaktionen zwischen Magnesium und CO$_2$ bei 660 °C sind gegeben /FRU69/:

\[
2\text{Mg} + \text{CO}_2 \rightarrow 2\text{MgO} + \text{C} \quad \Delta G_f^0 = -73 \text{ KJ/mol} \quad \text{Gl. 5.1.1}
\]

\[
\text{Mg} + \text{CO}_2 \rightarrow \text{MgO} + \text{CO} \quad \Delta G_f^0 = -72 \text{ KJ/mol} \quad \text{Gl. 5.1.2}
\]

Die beiden Reaktionen weisen nahezu die gleichen Werte für die Freie Standard-Bildungsenthalpie auf, so dass die beiden Reaktionen nahezu gleich wahrscheinlich sind. Detaillierte Untersuchungen zur Klärung der bei einer Reaktion zwischen CO$_2$ und Mg ablaufenden Vorgänge sind in der Arbeit von Scharov /SAR78/ zu finden. Nach Meinung der Autoren laufen die Reaktionen parallel ab und werden durch eine höhere Temperatur...
begünstigt. Die bei der Probenanalyse nachgewiesenen Mengen an Kohlenstoff sprechen ebenfalls für diese These.

Bei der Reaktion zwischen CO\textsubscript{2} und flüssigem Magnesium bildet sich ein Schutzfilm, welcher aus mehreren Phasen aufgebaut ist /SAR87a/:
- Die erste dünne Schicht haftet direkt am Metall (ca. 1 µm);
- Die zweite Schicht besteht aus MgO und C, wobei der Anteil an C von 0 auf 100 % fast linear ansteigt (ca. 10 µm);
- Die letzte Schicht besteht ausschließlich aus Kohlenstoff (ca. 10 µm).

Die erste Schicht besteht aus MgO, dem Zersetzungsprodukt des bei niedrigeren Temperaturen gebildeten Mg(OH)\textsubscript{2}. Im weiteren Verlauf der Reaktion bilden sich MgO und C in Form von kleinsten Partikeln (Durchmesser der MgO-Partikel 0,35µm; von C – 0,04µm) Die feinen Partikel steigen auf Grund der Gaskonvektion auf und fallen bei anschließender Abkühlung auf die Metalloberfläche. Da die MgO-Partikel einen größeren Durchmesser und ein größeres spezifisches Gewicht als die C-Partikel haben, sinken die letzteren langsamer (laut Berechnungen ca. um den Faktor 18). Dies wird durch die deutliche Zunahme des MgO-Gehaltes im unteren Teil der Deckschicht bestätigt. Die letzte Schicht besteht ausschließlich aus Kohlenstoff, der sich als letztes abscheidet.

Die schützende Wirkung der Deckschicht beruht auf einem kombinierten Effekt – die poröse MgO-Schicht wird durch deutlich kleinere C-Partikel geschlossen. Zur Dichtigkeit der Deckschicht tragen wahrscheinlich die unterschiedlichen Ladungen der Partikel (MgO „+“; C „-“) bei /SAR78/.

Die Gewichtsabnahme der Magnesiumschmelze (Bild 5.1.1) ist durch Rissbildung und das darauf folgende Abdampfen zu begründen. Die Rissbildung kann auf die größere Dichte der aus MgO und C bestehenden Schutzschicht und die unterschiedliche thermische Dehnung von MgO und C zurückgeführt werden (s. Tabelle 5.1.1).

<table>
<thead>
<tr>
<th>Temperatur, °C</th>
<th>Mg</th>
<th>MgO</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-650</td>
<td>29,5</td>
<td>13,5</td>
<td>750</td>
</tr>
<tr>
<td>(\alpha \cdot 10^6, \text{K}^{-1})</td>
<td>29,5</td>
<td>13,5</td>
<td>28,4</td>
</tr>
</tbody>
</table>

Tabelle 5.1.1: Wärmeausdehnungskoeffizienten /SAR78/.
5.1.2 **Begasung mit reinem Stickstoff**

N_2 wird als Trägergas bei der Begasung mit SO_2 bzw. SF_6 verwendet und reagiert mit der Magnesiumschmelze erst dann, wenn kein anderes Reaktivgas vorhanden ist.

Bei der Begasung mit reinem Stickstoff überzieht sich das Metall im geschmolzenen und festen Zustand mit einer Schicht von gelblichem Mg_3N_2, welche das Abdampfen des Magnesiums bei Temperaturen unter 650 °C verringert.

Oxidationsverhalten

Die Gewichtsänderung der AZ91-Probe bei der Begasung mit reinem N_2 ist in Bild 5.1.9 dargestellt.

![Graph](image)

Bild 5.1.9: Gewichtsänderung des Magnesiums bei 700 °C unter N_2.

Beim Beginn der N_2-Begasung bildet sich eine Schicht auf der Oberfläche der AZ91-Schmelze. Es ist eine Gewichtszunahme zu verzeichnen, die in der ersten Phase stattfindet (Bild 5.1.9). Allerdings lässt der entstandene Schutzfilm ein Abdampfen zu, so dass bei der weiteren Begasung eine Gewichtsabnahme festzustellen ist.

Gießtechnisches Verhalten

Wie bereits erwähnt, bildete sich nach wenigen Minuten auf der Schmelzbadoberfläche eine dicke, poröse Schicht. Diese Oxidationsschicht hat eine dunkelgraue, gelbliche, nicht metallische Farbe. Während der Begasung wächst der Film auf der Oberfläche, es bildet sich zunehmend Krätze (Bild 5.1.10).
Komm es zu einem Lufteinbruch, so beginnt die Schmelze zu brennen. Durch Schließen des Deckels wird die Sauerstoffzufuhr unterbrochen und das Brennen durch erneute Einleitung des Gases gestoppt. Allerdings dauert der Löschvorgang länger als der bei der CO\textsubscript{2}-Begasung (s. Kapitel 5.1.1).

Beim Abschalten der Gaszufuhr wird der Sauerstoff nicht mehr von der Schmelzbadoberfläche verdrängt. Die Schutzwirkung der gebildeten Oxidationsschicht ist gering, so dass es nach sehr kurzer Zeit zu einer massiven Krätzebildung mit anschließendem Brennen kommt (Bild 5.1.11). Der fortschreitende Magnesiumbrand ist durch erneute Gaseinleitung nur sehr schwer unter Kontrolle zu bringen. Die Umgebungsatmosphäre wird durch Stickstoff von der Schmelzbadoberfläche substituiert. Da die Dichte des Stickstoffes (1,25 g/l) kleiner als die der Luft (1,29 g/l) ist, dauert dieser Vorgang länger als z. B. bei der Begasung mit Argon (1,79 g/l). Bei einer industriellen Anlage, wo in der Regel die Schmelzbadoberfläche und somit die Angriffsfläche für die Oxidation deutlich größer ist, könnte der Brand mit reinem N\textsubscript{2} wahrscheinlich nicht mehr gelöscht werden.
Temperaturabhängigkeit

Probenanalyse

Für die Charakterisierung der Oberflächenschicht wurden Proben der Schmelzbadoberfläche entnommen. Der Schutzfilm ist vergleichsweise dick und ungleichmäßig aufgebaut (s. Anhang, Bild 7.1). Die unterschiedlichen Färbungen der Probenoberfläche deuten auf verschiedene Bereiche im Aufbau des Oberflächenfilms hin. Die gelbe Farbe der Oberflächenschicht im Bereich 3 lässt auf Mg₃N₂ schließen, während die metallisch blanken Bereiche einen Hinweis auf eine überwiegend aus MgO aufgebaute Schutzschicht geben. Diese Bereiche werden bei der Probenauswertung getrennt behandelt.

Die Zusammensetzung der Schicht wird mit Hilfe einer EDX-Analyse untersucht. Wie bereits vermutet, besteht der „metallische“ Bereich hauptsächlich aus Mg, Al und O (s. Anhang, Bild 7.2). Die weiteren Legierungselemente, die in geringeren Anteilen in einer AZ91-Legierung vorhanden sind (s. Tabelle 4.2.2), wurden ebenfalls nachgewiesen.

Nur in dem gelblichen Bereich konnte Stickstoff neben den Hauptbestandteilen (Mg, Al und O) als ein Begleitelement detektiert werden (s. Anhang, Bild 7.4).

Der Querschnitt der Probe ist in Bild 5.1.13 dargestellt. Die Deckschicht auf der Oberfläche erscheint porös und nicht geschlossen. Über eine dicke poröse Schicht bei der Begasung von Magnesiumschmelzen mit Stickstoff berichtete Turkin /TUR78/. Dieser Schutzfilm wurde als Magnesiumnitridschicht bezeichnet, obwohl die genauen Angaben zur Untersuchung der Schichtzusammensetzung fehlten.

Laut den Ergebnissen der ESMA-Analyse (s. Anhang, Bild 7.5) ist kein Stickstoff in der Schutzschicht vorhanden. Es ist durchaus denkbar, dass Magnesiumnitrid nicht in die Schicht eingebaut ist, sondern als eine Anlagerungsverbindung auf der Probenoberfläche liegt.

Diskussion der Ergebnisse

Berücksichtigt man die Werte für die freie Standard-Bildungsenthalpie (ΔG_f^0) von MgO und Mg$_3$N$_2$ bei 700°C (Gl.5.1.3-5.1.6), so stellt man fest, dass die Bildung von MgO gegenüber Magnesiumnitrid thermodynamisch günstiger ist /CAS98/.

\begin{align*}
Mg_{(l)} + \frac{1}{2}O_{2(g)} &= MgO_{(s)} & \Delta G_f^0 &= -496,4 KJ / mol & \text{Gl. 5.1.3} \\
Mg_{(g)} + \frac{1}{2}O_{2(g)} &= MgO_{(s)} & \Delta G_f^0 &= -523,3 KJ / mol & \text{Gl. 5.1.4} \\
3Mg_{(l)} + N_{2(g)} &= Mg_3N_{2(s)} & \Delta G_f^0 &= -263,3 KJ / mol & \text{Gl. 5.1.5} \\
3Mg_{(g)} + N_{2(g)} &= Mg_3N_{2(s)} & \Delta G_f^0 &= -376,6 KJ / mol & \text{Gl. 5.1.6}
\end{align*}

Obwohl die Begasung mit 100% Stickstoff erfolgt, kann dieser nur in Spuren an der Oberfläche nachgewiesen werden. Die bereits oben besprochenen Werte für die freie Standard-Bildungsenthalpie von MgO und Mg$_3$N$_2$ zeigen eine deutliche Begünstigung der
Bildung von Magnesiumoxid gegenüber Magnesiumnitrid aus thermodynamischer Sicht, schließen allerdings die Bildung des letzteten nicht aus.

Bild 5.1.14 stellt die berechneten Partialdrücke im System Mg-O_2-N_2 bei 700°C /CAS98/ dar. Die gestrichelten Linien markieren die typischen Werte für die Reaktion zwischen den verwendeten Gasen. Die Schnittfläche dieser Linien zeigt den bevorzugten Bereich für die Bildung der Reaktionsprodukte. Man stellt fest, dass unter normalen Bedingungen sogar bei einem Übermaß an Stickstoff überwiegend MgO entstehen wird. Die Existenz der hauptsächlich aus MgO bestehenden Schutzschicht kann damit erklärt werden.

5.1.3 Begasung mit reinem Ar

Oxidationsverhalten

Bild 5.1.15 stellt die Gewichtsänderung der AZ91-Probe bei der Begasung mit reinem Argon dar.
Bereits bei Temperaturen oberhalb 400 °C findet ein ungebremstes Abdampfen von Magnesium in die Ofenatmosphäre statt. Die Abdampfraten entsprechen einem linearen Gewichtsverlust.

Gießtechnisches Verhalten

Magnesium behielt seine typische metallische Farbe sowohl in fester als auch in flüssiger Form bei (Bild 5.1.16). Die Oberfläche blieb nach einer Stunde stabil, die Krätzebildung war als mäßig einzustufen.

Bild 5.1.15: Gewichtsänderung von AZ91 bei 700 °C unter Ar.

Bild 5.1.16: Schmelzbadoberfläche bei ca. 650 °C a) nach 5 min.; b) nach 60 min.

Wird die Gaszufuhr abgestellt, kommt es unverzüglich zur Oxidation, da der Schutz der Schmelze nicht auf der Bildung einer Oberflächenschicht, sondern auf der Substitution der sauerstoffhaltigen Atmosphäre durch inertes Argon beruht.

Temperaturabhängigkeit

![Bild 5.1.17: Schmelzbadoberfläche nach 30 min. bei ca. 700 °C.](image)

Probenanalyse

Zur Charakterisierung der Schutzschicht bei der Ar-Begasung wurden Proben der Schmelzbadoberfläche (s. Anhang, Bild 7.6) entnommen. Da inertes Argon keinerlei Reaktionen mit der Magnesiumschmelze eingeht, war mit keiner Schutzschicht zu rechnen. Allerdings ist eine Art Schutzhaut auf der Probenoberfläche zu finden, welche eine metallische Farbe aufweist. Diese Schicht ist nicht gleichmäßig und durchgehend aufgebaut.

Die Probenoberfläche wurde mit Hilfe der EDX-Analyse untersucht (s. Anhang, Bild 7.7). In der Oberflächenschicht sind die Legierungselemente von AZ91 zu finden (mit Ausnahme von Fe und Si, welche laut Herstellungsanalyse 4.3.2 in Spuren in der AZ91-Legierung vorhanden sind). Auffällig sind die Anwesenheit von Sauerstoff und ein relativ hoher Zn-Gehalt.
5.1.4 Begasung mit Ar-CO$_2$ bzw. N$_2$-CO$_2$-Gasgemischen

Die Auswahl der Gasgemische, die in diesem Abschnitt untersucht wurden, basiert auf folgenden Überlegungen: Die eingesetzten Gasgemische bestehen aus einem Reaktivgas (CO$_2$) und einem Inertgas (N$_2$, Ar). Erwartungsgemäß reagiert das Reaktivgas mit dem flüssigen Magnesium unter Ausbildung einer Oberflächenschicht, die weitere Oxidation und Abdampfung verhindert. In diesem Zusammenhang sind die eventuelle Verunreinigung der Magnesiumschmelze mit Reaktionsnebenprodukten (z. B. mit elementarem Kohlenstoff) sowie die Stabilität der Schutzschicht auf Grund der unterschiedlichen thermischen Dehnung einzelner Schichtkomponenten (s. Kapitel 5.1.1) von besonderer Bedeutung. Durch das
Beimischen eines Inertgases wird die Reaktivität des Aktivgases herabgesetzt, um die o. g. Nachteile zu vermeiden bzw. zu minimieren.

Ar-CO$_2$-Gasgemische

Oxidationsverhalten

Die Gasgemische mit unterschiedlichen CO$_2$-Anteilen werden als Abdeckgas für Magnesiumschmelzen verwendet. Bild 5.1.19 gibt eine Übersicht über die zeitliche Gewichtsänderung der AZ91-Schmelze bei der Begasung mit Ar-CO$_2$-Gasgemischen.

![Bild 5.1.19: Gewichtsänderung von AZ91 bei 700 °C unter Ar/CO$_2$-Gemischen.](image)

Die Ergebnisse der Untersuchungen zeigen, dass schon bei einem CO$_2$-Gehalt von 10 % die Abdampfung des flüssigen Magnesiums stark eingeschränkt wird. Bei einem CO$_2$-Anteil über 20 % findet keine nennenswerte Gewichtsabnahme der AZ91-Legierung statt. Das Gasgemisch mit einem CO$_2$-Gehalt zwischen 40 und 50 % ist als optimal zu bezeichnen.

Die Gewichtsänderungen der AZ91-Schmelze bei der Begasung mit den N$_2$-CO$_2$-Gasgemischen sind in Bild 5.1.20 dargestellt.
Bild 5.1.20: Gewichtsänderung von AZ91 bei 700 °C unter N\textsubscript{2}/CO\textsubscript{2}-Gemischen.

Schon bei einem CO\textsubscript{2}-Gehalt von 10 % ist eine starke Verringerung des Abdampfens gegenüber der Begasung mit reinem Stickstoff zu verzeichnen. Über 20 % CO\textsubscript{2} im Gasgemisch unterbinden einen weiteren Gewichtsverlust während der Versuche. Die optimale Zusammensetzung des Schutzgases wird bei 40 % CO\textsubscript{2} erreicht.

Gießtechnisches Verhalten

Bereits bei einem CO\textsubscript{2}-Gehalt von 10 % in Argon reagiert das Gasgemisch mit der Magnesiumschmelze, es bildet sich eine dünne, metallisch glänzende Schutzschicht auf der Schmelzbadoberfläche. Der Schutzfilm bleibt nach einer Stunde stabil, wobei bei kleineren CO\textsubscript{2}-Gehalten (bis zu 20 %) eine verstärkte Krätzebildung zu beobachten ist.

Beim simulierten Lufteinbruch wird praktisch die gleiche Beobachtung wie bei der Begasung mit reinem CO\textsubscript{2} gemacht: Es kommt zum punktförmigen Brennen, welches durch Schließen des Deckels (Unterbrechung der Sauerstoffzufuhr) gestoppt werden kann.
Die Steigerung des CO₂-Gehaltes im Gasgemisch auf 40-50 % führt zur stabileren Schutzhaut und somit zum besseren und länger anhaltenden Schmelzeschutz (Bild 5.1.21).

Die entstandene Schutzschicht wirkt der Oxidation entgegen, so dass es nach Abstellen der Gaszufuhr erst nach einigen Minuten (1-3 min.) zum Brennen kommt. Bei erneuter Begasung wird der Brand gestoppt.

Wird Stickstoff als Träergas verwendet, so bekommt der metallisch glänzende Schutzfilm zusätzlich die dunkelgelbe Färbung. Die vorhandene Schutzschicht verhindert die unverzügliche Oxidation der Magnesiumschmelze. Die beste Wirkung zeigten die N₂/CO₂-Gemische mit 40 bis 50 % CO₂.

Beim Eindringen der Luft wird genau so wie bei der Begasung mit CO₂/Ar-Gemischen stellenweise Krätzebildung beobachtet, welche durch Schließen des Deckels gestoppt wird.

Temperaturabhängigkeit

Bei der Begasung mit CO₂/N₂-Gasgemischen verhindert die ausgebildete Schutzschicht die Krätzebildung sehr effektiv bei Schmelztemperaturen bis zu ca. 640 °C. Ein weiterer Temperaturanstieg führt einerseits zur verstärkten Krätzeebildung, andererseits zur
Verunreinigung der Schmelze mit Reaktionsprodukten des Stickstoffs. Ein Brand wird bis zu 720 °C nicht beobachtet.

Probenanalyse

Die Proben der Schmelzbadoberfläche werden bei verschiedenen Gaskonzentrationen entnommen und mit Hilfe der im Kapitel 5.1.2 beschriebenen Analysemethoden ausgewertet. Bei allen untersuchten Proben wird eine Schutzschicht aus MgO nachgewiesen. Praktisch alle Proben weisen unterschiedliche Kohlenstoffgehalte auf, wobei eine deutliche Steigerung des Kohlenstoffgehaltes bei 70 % CO₂ mit beiden Trägergasen festzustellen ist. Die besten Ergebnisse werden bei der Begasung mit einem 50 %-igen CO₂/Ar-Gasgemisch erzielt - eine ausgeprägte, geschlossene Schutzschicht wird nachgewiesen.

Die bei der Begasung mit CO₂/N₂-Gasgemischen entnommenen Proben weisen ebenfalls eine Schutzschicht aus MgO auf. Bei einigen dieser Proben werden kleinste Mengen an Stickstoff detektiert, wobei kein Zusammenhang zwischen nachgewiesenem Stickstoff und dem N₂-Anteil im Gasgemisch erkennbar ist - während bei der Begasung mit einem Übermaß an Stickstoff (80 % N₂, 20 % CO₂) kein Stickstoff nachgewiesen wird, wird dieser bei der Begasung mit einem deutlich geringeren Stickstoffanteil (30 % N₂, 70 % CO₂) festgestellt. Als optimal kann ein 40 %-iges CO₂/N₂-Gasgemisch bezeichnet werden.

5.1.5 Zusammenfassung der Ergebnisse

Die Bewertung der untersuchten Gase bzw. Gasgemische ist in Tabelle 5.1.2 zu finden.

<table>
<thead>
<tr>
<th>Untersuchte Gase</th>
<th>Schutzwirkung</th>
<th>Decksschicht</th>
<th>Einfluss der Temperatur</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Ar N₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 0 0</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>70 30 0</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>50 50 0</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>40 60 0</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>30 70 0</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>20 80 0</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10 90 0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>0 100 0</td>
<td>++</td>
<td>---</td>
<td>++</td>
<td>-</td>
</tr>
</tbody>
</table>

70	0	30	++	+	+	+
50	0	50	++	++	+	+
40	0	60	++	++	+	+
30	0	70	++	++	-	+
20	0	80	+	+	-	-
10	0	90	+	-	-	-
0	0	100	-	--	---	---

+++ sehr gut; ++ gut; + befriedigend; - ausreichend; -- schlecht, --- sehr schlecht

Tabelle 5.1.2: Übersichtstabelle der untersuchten Gase.

Allerdings liegen die üblichen Schmelz- und Gießtemperaturen für Magnesiumlegierungen zwischen 680 und 720 °C und somit deutlich oberhalb des Temperaturbereiches (bis ca. 640 °C), wo der Schmelzeschutz bei der Begasung mit CO₂ einwandfrei funktioniert. Basierend auf den gewonnenen Erkenntnissen lassen sich folgende Anforderungen für die weitere Entwicklung eines geeigneten Prozesses formulieren:

- Der Schmelzprozess ist so zu führen, dass die Schmelzbadoberflächentemperatur abgesenkt wird. Dies ist z. B. durch Einbringung gekühlter Medien möglich. Die angestrebte Oberflächentemperatur soll zwischen 550 und 600 °C liegen. In diesem Temperaturbereich sind die meisten Magnesiumlegierungen immer noch flüssig, ihre Oxidationsneigung wird aber drastisch herabgesetzt.

- Der Kühleffekt soll so ausgelegt sein, dass die inneren Bereiche des Schmelzbades nicht beeinträchtigt werden, also immer noch die gewünschte Gießtemperatur aufweisen.

- Da durch den Sauerstoff der Luft das flüssige Metall oxidiert wird, ist dieser aus dem Ofenraum zu verdrängen. Ein Restgehalt des Sauerstoffs um 2-3 % ist dabei akzeptabel /STR00/. Dies ist durch Aggregatzustandsänderung der flüssig bzw. fest eingebrachten Medien in die Gasphase möglich. Das freigesetzte Gas soll entweder inert sein oder mit der Schmelze unter Ausbildung einer Schutzschicht reagieren.

5.2 Minimierung der freien Schmelzbadoberfläche

Ein weiterer Entwicklungsschwerpunkt liegt in der Minimierung der freien Oberfläche durch geeignete Maßnahmen. Die Reaktionsfläche wird reduziert, was zur Einschränkung der Oxidationsneigung von Magnesiumschmelzen führt. Hierdurch kann der Einsatz von Schutzmedien verringert. Ebenso ist eine Verringerung des Abdampfverhaltens mit der Minimierung der Schmelzeoberfläche verbunden.
5.2.1 Einsatz von Stahlhohlkugeln

Durch das Einbringen von auf dem Schmelzbad schwimmenden Hohlkörpern wird die mit der Ofenatmosphäre in Kontakt stehende Oberfläche reduziert. Solche Körper können z.B. Hohlkugeln aus Stahl sein, welche eine geringere Dichte als Magnesiumschmelze haben.

Das EPS-Granulat ist kommerziell verfügbar und es können durch den Vorschäumprozess spezifische Durchmesser des Trägermaterials und somit Durchmesser der Kugeln eingestellt werden. Das Herstellungsverfahren erlaubt eine sehr große Werkstoffvielfalt.
Chargen der Stahlhohlkugeln aus S235JR mit folgenden Parametern wurden untersucht (Tabelle 5.2.1).

<table>
<thead>
<tr>
<th>Probe</th>
<th>ρ_{Schütt}, g/cm³</th>
<th>ρ_{einz.}, g/cm³</th>
<th>D_{mit.}, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,39</td>
<td>0,61</td>
<td>3,9</td>
</tr>
<tr>
<td>2</td>
<td>0,40</td>
<td>0,62</td>
<td>2,7</td>
</tr>
<tr>
<td>3</td>
<td>0,56</td>
<td>0,88</td>
<td>1,3</td>
</tr>
</tbody>
</table>

Tabelle 5.2.1: Eingesetzte Chargen von Stahlhohlkugeln.

Grundsätzlich wurden drei Untersuchungsrichtungen verfolgt:
1. Abdeckung von Magnesiumschmelzen mit Stahlhohlkugeln;
2. Kombination der Stahlhohlkugelabdeckung mit einem Inertgas;

Abdeckung von Magnesiumschmelzen mit den Stahlhohlkugeln

In diesem Untersuchungsabschnitt wird das Potential der Stahlhohlkugeln als Abdeckung für Magnesiumschmelzen dargestellt. Die Untersuchungen wurden an einem nahezu offenen Tiegel mit einem Durchmesser von ca. 12 cm durchgeführt (Kapitel 4.3.1). Als Schmelze wird sowohl AZ91 als auch reines Magnesium verwendet.

Bringt man die Stahlhohlkugeln auf die Schmelzbadoberfläche, so schwimmen diese auf Grund der geringeren Dichte (Tabelle 5.2.1) auf der Magnesiumschmelze. Die Kugeln bilden einerseits eine Trennschicht zwischen dem Sauerstoff der Luft und flüssigem Metall, welche die sofortige Oxidation der Schmelze verhindert. Andererseits wird durch die Reduzierung der freien Schmelzbadoberfläche das Abdampfen der Magnesiumschmelze praktisch unterbunden.

Die Stahlhohlkugeln schwammen auf der Schmelzbadoberfläche, so dass kein flüssiges Metall zu sehen war. Diese Schicht blieb eine Zeit lang stabil (Bild 5.2.2), anschließend bildete sich ausgehend vom Randbereich Krätze (Bild 5.2.3). Dabei ordneten sich die kleineren Stahlhohlkugeln in eine dichtere Trennschicht und verhinderten somit den Oxidationsprozess effektiver als die größeren, bei denen die Hohlräume zwischen einzelnen Kugeln (Freiraum für Luft) größer sind.

Mit steigender Temperatur erhöhte sich die Reaktivität der Magnesiumschmelze. Die Schutzwirkung der Oxidationsbarriere ließ nach, so dass sich die Zeit bis zur Krätzebildung verkürzt.

Mit dem verschlossenen Deckel dauerte die Krätzebildung länger, da praktisch noch eine Oxidationsbarriere den Kontakt zwischen der Magnesiumschmelze und Luftsauerstoff verhinderte. Allerdings bietet diese Abdeckvariante keinen dauerhaften Schutz. Sowohl die
5 Experimentelle Ergebnisse und Diskussion

Steigerung der Schmelztemperatur, als auch die Zunahme des Kugeldurchmessers beeinflussen die Schutzwirkung der Stahlhohlkugeln negativ.

![Diagramm mit Zeit und Temperatur](image)

Bild 5.2.4: Schutzwirkung unterschiedlicher Stahlhohlkugeln (mit verschlossenem Tiegeldeckel).

Zusammenfassend lässt sich sagen, dass die Abdeckung mit den Stahlhohlkugeln zwar den Oxidationsangriff verlangsamt, kann jedoch alleine keinen zuverlässigen Schmelzeschutz gewährleisten.

Kombination von Stahlhohlkugeln mit einem Inertgas

Bild 5.2.5 stellt die Gewichtsänderung der AZ91-Probe bei der Begasung mit Argon dar. Als Referenzwerte werden die im Kapitel 5.1.3 ermittelten Ergebnisse für die Begasung mit reinem Argon verwendet.
Wie in Bild 5.2.5 dargestellt, werden die Metallverluste durch Einbringen der Stahlhohlkugeln auf die Schmelzbadoberfläche drastisch reduziert. Es lässt sich feststellen, dass die kleinsten Hohlkugeln (Ø 1,3 mm) den effektivsten Schutz gegen Abdampfen der Magnesiumschmelze bieten. Je kleiner die Hohlkugeln sind, desto dichter ist die Kugelschicht, die auf der Schmelzbadoberfläche aufgebaut ist. Die größeren Hohlräume in der Kugelschicht, wie z. B. bei 3,9 mm Kugeln, führen zu größeren Metallverlusten, wobei eine Reduzierung des Abdampfens im Vergleich zur Begasung mit reinem Argon bis zu 97 % erzielbar ist (Bild 5.2.5).

In weiteren Experimenten wurde die Eignung der Stahlhohlkugeln in Kombination mit Ar für gießtechnische Operationen geprüft. Der Aufschmelzvorgang erfolgte unter einem Schutzgasgemisch (0,5 Vol.% SF₆ in N₂). Vor den Versuchen wurde die Schutzschicht aus MgF₂ und MgO abgezogen und die Magnesiumschmelze mit den Stahlhohlkugeln abgedeckt. Der Gasvolumenstrom wurde variiert bis sich ein Volumenstrom von ca. 2 l/min. als ausreichend erwies. Die Schmelztemperatur lag zwischen 640 und 700 °C.

Durch die Abdeckung der Schmelzbadoberfläche mit Stahlhohlkugeln wurde das Abdampfen des flüssigen Metalls unterbunden. Beim Einleiten des Argons wurde der Sauerstoff der Luft verdrängt, so dass keine Oxidation der Schmelze stattfand. Die Oberfläche war stabil (Bild 5.2.6), die Bildung der Krätze blieb praktisch aus.
Das Nachchargieren gestaltete sich problemlos: das Metallstück schob die Hohlkugeln zur Seite, diese Kugeln sanken nicht in die Schmelze ab sondern bildeten anschließend erneut eine geschlossene Schicht.

Das Abkrätzen der Schmelze war nicht notwendig, da eine Oxidation und die mit ihr verbundene Krätzebildung ausblieb.

Somit wird durch den Einsatz von Stahlhohlkugeln eine sichere Handhabung der Schmelze unter Inertgasatmosphäre ermöglicht, da die entscheidenden Nachteile dieser Begasung (siehe Kapitel 5.1.3) überwunden werden können. Eine Kombination von Argon und Hohlkugeln bietet einen zufriedenstellenden Schutz der Magnesiumschmelze.

Reduzierung des Reaktivgasverbrauchs

Wird die im Kontakt mit Sauerstoff stehende Oberfläche reduziert, so kann weniger Schutzgas eingesetzt werden, um einen ausreichenden Schmelzschutz zu gewährleisten.

Als Referenzgas für die Untersuchungen wurde ein reaktives Schutzgasmisch aus 0,5 Vol.% SF₆ in N₂ verwendet. Am Anfang der Versuchsreihe wurde der für die Begasung minimal notwendige Volumenstrom ermittelt. Dazu wurde ausgehend von 2 l/min. der Volumenstrom kontinuierlich reduziert, wobei sich ein Volumenstrom von ca. 1,1 l/min. als ausreichend erwies.

Ohne die gebildete Schutzschicht zu zerstören, wurden Hohlkugeln auf die Oberfläche des Schmelzbades gestreut. Der anfängliche Volumenstrom von 1,1 l/min. wurde stufenweise reduziert. Die Begasung mit dem jeweilig vorgegebenen Volumenstrom dauerte 20 min., anschließend wurde die Schutzwirkung des jeweiligen Gases beurteilt.
Die Reduzierung des Volumenstromes bis auf 0,8 und 0,58 l/min. zeigte keine direkte Auswirkung auf den Schmelzeschutz (Tabelle 5.2.2). Die Oberfläche blieb nach 20 min. stabil, eine Krätzebildung wurde nicht beobachtet. Das Versagen des Schutzmechanismus wurde erst bei einem Volumenstrom von 0,26 l/min. festgestellt. Es ist dadurch zu erklären, dass der Volumenstrom nicht ausreichte, um den Sauerstoff der Luft aus dem Ofenraum zu verdrängen.

In einer anderen Versuchsreihe wurde mit Hilfe der Gasmischanlage die Konzentration des Reaktivgases im Trägergas reduziert. Die Begasung mit 0,3 und 0,2 Vol.% SF₆ reichte für den Schmelzeschutz aus. Bei der SF₆-Konzentration von 0,1 Vol.% wurde an einigen Stellen eine punktförmige Krätzebildung beobachtet, wobei die Stabilität der Deckschicht (Kugelschicht) nicht gefährdet war. Bei der weiteren Abnahme der SF₆-Konzentration auf 0,05 Vol.% bildete sich die Krätze an mehreren Stellen, Brandanzeichen konnten nicht festgestellt werden.

<table>
<thead>
<tr>
<th>SF₆-Konzentration, Vol.%</th>
<th>Volumenstrom, l/min.</th>
<th>Schutzwirkung*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>1,1</td>
<td>+++</td>
</tr>
<tr>
<td>0,5</td>
<td>0,8</td>
<td>++</td>
</tr>
<tr>
<td>0,5</td>
<td>0,58</td>
<td>++</td>
</tr>
<tr>
<td>0,5</td>
<td>0,26</td>
<td>-</td>
</tr>
<tr>
<td>0,3</td>
<td>1,1</td>
<td>++</td>
</tr>
<tr>
<td>0,2</td>
<td>1,1</td>
<td>++</td>
</tr>
<tr>
<td>0,1</td>
<td>1,1</td>
<td>+</td>
</tr>
<tr>
<td>0,05</td>
<td>1,1</td>
<td>-</td>
</tr>
</tbody>
</table>

* : +++ = sehr gut; ++ = gut; + = ausreichend; - = nicht ausreichend.

Tabelle 5.2.2: Übersichtstabelle der untersuchten Gasgemische.

Zusammenfassung

Zuerst wurde die Eignung der Stahlhohlkugeln zur Bildung einer dichten Trennschicht zwischen der Magnesiumschmelze und Luftsaurestoff untersucht. Die Ergebnisse der Untersuchungen bestätigen zwar die Tauglichkeit der Stahlhohlkugeln für die Bildung einer Oxidationsbarriere, zeigen jedoch keine dauerhafte Wirkung als eine eigenständige schmelzeschützende Maßnahme.

Im weiteren Verlauf der Untersuchungen wurden die Stahlhohlkugeln in Kombination mit einem Inertgas getestet. Durch die Verwendung der Kugeln wurde das Abdampfen der Magnesiumschmelze sehr stark eingeschränkt. Die Experimente bestätigten eine Reduzierung der Abdampfverluste bis zur 97 % (Bild 5.2.5). Die Begasung mit Ar führt zur Verdrängung des Luftsaurestoffes aus dem Ofenraum und somit zur Vermeidung der Magnesiumoxidation.
Die Nachteile der Begasung mit einem Inertgas wie eine starke Abdampfneigung des flüssigen Metalls und die daraus resultierende Explosionsgefahr lassen sich durch den Einsatz der Stahlhohlkugeln überwinden. Die Kombination der o. g. Verfahren bietet eine Möglichkeit sicherer Handhabung von Magnesiumschmelzen.

Da der Verbrauch der Schutzgase eine Funktion der Schmelzbadoberfläche ist /KAZ98/, lässt sich durch die Minimierung der Schmelzbadoberfläche eine Reduzierung des Schutzgasverbrauchs erzielen. Die Reduzierung des SF$_6$-Verbrauchs und somit die Verringerung des CO$_2$-Ausstosses um bis zu 80 % wurde während der durchgeführten Untersuchungen nachgewiesen.

Die Nachteile der Stahlhohlkugeln, in erster Linie ihre teuere Herstellung, sowie die große Wärmeleitfähigkeit und bislang fehlende Recyclingmöglichkeiten sind negativ zu bewerten.

5.2.2 Einsatz keramischer Schwimmkörper

Der Einsatz von keramischen Werkstoffen bietet gegenüber den Stahlhohlkugeln folgende Vorteile:
- bessere Handhabung;
- Wiederverwendbarkeit;
- gleichmäßige vertikale Temperaturverteilung in der Schmelze;
- Energieersparnis infolge geringerer Wärmeleitfähigkeit.

Die Schwimmkörper müssen so ausgelegt werden, dass sie nach dem archimedischen Prinzip auf der Schmelzeoberfläche schwimmen und jederzeit abgenommen und gereinigt werden können. Diese Schwimmkörper können leicht in handelsübliche Öfen adaptiert werden.

Bei der Auswahl keramischer Werkstoffe sind folgende Eigenschaften zu beachten:
- geringere Wärmeleitfähigkeit;
- ausreichende Biegefestigkeit;
- gute Temperaturwechselfestigkeit;
- geringere Dichte.

Untersuchung keramischer Werkstoffe im Kontaktbereich von Magnesiumschmelzen

Ausgehend von den bereits durchgeführten Untersuchungen /SCH00/ wurden weitere Werkstoffe für den Kontaktbereich von Magnesiumschmelzen erprobt. Die Tauchversuche wurden mit folgenden Parametern durchgeführt:
Legierung AZ91
Temperatur 700 °C
Zeit 6 Stunden, anschließend eine Lagerung für 72 Stunden
Schutzgas 0,5 Vol. % SF₆ in N₂
Badagitation keine

Die Untersuchungsergebnisse sind in Tabelle 5.2.3 zusammengefasst.

<table>
<thead>
<tr>
<th>Keramik</th>
<th>Gefüge</th>
<th>Dichte, g/cm³</th>
<th>Wärmeleitf., W/mK</th>
<th>Temperaturwechselfestigkeit, R/K</th>
<th>Beständigkeit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlN</td>
<td>dicht</td>
<td>2,95</td>
<td>180</td>
<td>126</td>
<td>++</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>dicht</td>
<td>3,2</td>
<td>35</td>
<td>625</td>
<td>++</td>
</tr>
<tr>
<td>ZrO₂ MgO dot.</td>
<td>porös</td>
<td>2,2</td>
<td>2,5</td>
<td>62</td>
<td>-</td>
</tr>
<tr>
<td>Y₂O₃</td>
<td>porös</td>
<td>5,6</td>
<td>12</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>Y₂O₃ Nitridgeb.</td>
<td>porös</td>
<td>5,01</td>
<td>12</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>Y₂O₃N1740 **</td>
<td>dicht</td>
<td>5,23</td>
<td>12</td>
<td>45</td>
<td>+</td>
</tr>
<tr>
<td>ZrO₂ Y₂O₃ dot.</td>
<td>dicht</td>
<td>5,76</td>
<td>2,5</td>
<td>62</td>
<td>+</td>
</tr>
<tr>
<td>CaF₂</td>
<td>dicht</td>
<td>6,1</td>
<td>4,2</td>
<td>25</td>
<td>++</td>
</tr>
<tr>
<td>BN (hdp)</td>
<td>dicht</td>
<td>3,18</td>
<td>7,4</td>
<td>79</td>
<td>+++</td>
</tr>
</tbody>
</table>

* +++ = sehr gut; ++ = gut; + = ausreichend; - = unbeständig.
** mit geringer Restporosität

Tabelle 5.2.3: Übersichtstabelle der untersuchten Keramiken.

Die besten Ergebnisse zeigte eine gesinterte feinkörnige Bornitridkeramik.

Bild 5.2.7: Probekörper aus Bornitrid a) vor und b) nach dem Tauchversuch.
Nach dem Tauchversuch konnte, anders als bei porösen Keramiken, kein Angriff festgestellt werden. Infolge der Infiltration von porösen Keramiken mit der Magnesiumschmelze wurde nach einer Lagerungszeit von 72 Stunden die Zerstörung einiger Proben beobachtet. Dies ist mit dem Eindringen von Magnesium in die Hohlräume der offenporigen Struktur der Sinterkeramiken und einer anschließenden Umsetzung von Mg bzw. MgO zu Mg(OH)$_2$ zu erklären. Die Reaktion ist mit einer signifikanten Volumenzunahme verbunden. Verringert sich das Volumen bei der Bildung von MgO aus Mg um den Faktor 0,8, so nimmt es bei der Bildung von Mg(OH)$_2$ um den Faktor 1,54 zu /HOL02/. Nach einer Lagerung von 72 Stunden blieb der Zustand der BN-Probe unverändert.

Nach der Entnahme aus der Schmelze sind an der Probenoberfläche haftende Magnesiumrückstände leicht entfernbare, ohne dass die Oberfläche der Probe beschädigt wird. Haften bleiben nur MgO – Rückstände, die sich sowohl auf mechanischem als auch auf chemischem Wege entfernen lassen.

Minimierung der freien Schmelzbadoberfläche mittels keramischer Schwimmkörper

Basierend auf den gewonnenen Erkenntnissen bezüglich der Materialauswahl wird passend zum Laborofen ein Schwimmkörper aus Bornitrid angefertigt. Bei der Auslegung des Schwimmkörpers werden zwei Aspekte beachtet:

- Der Bauteil soll nach dem archimedischen Prinzip auf der Schmelzeoberfläche schwimmen;
- Der ausreichend große Abstand zwischen der Tiegelwand und dem Schwimmkörper soll für die Verdrängung der Magnesiumschmelze durch das Eintauchen des Körpers zur Verfügung stehen bzw. die Ränder von dem Schwimmkörper sollen eine ausreichende Höhe aufweisen, um das Überlaufen mit der verdrängten Schmelze zu verhindern.

Die Untersuchungen wurden an einem offenen Tiegel (Ø 120mm) mit folgenden Parametern durchgeführt:

- Legierungsmaterial: AZ91
- Schmelztemperatur: 670 °C bis 700 °C
- Schutzgas: 0,5 Vol. % SF$_6$ in N$_2$

Die Ergebnisse dieses Untersuchungsabschnittes sind in Tabelle 6.2.4 dargestellt.
<table>
<thead>
<tr>
<th>SF₆-Konzentration, Vol.%</th>
<th>Volumenstrom, l/min.</th>
<th>Oberfläche*</th>
<th>Schutzwirkung**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>0,8</td>
<td>r</td>
<td>+++</td>
</tr>
<tr>
<td>0,5</td>
<td>0,8</td>
<td>n</td>
<td>+</td>
</tr>
<tr>
<td>0,5</td>
<td>0,58</td>
<td>r</td>
<td>++</td>
</tr>
<tr>
<td>0,5</td>
<td>0,4</td>
<td>r</td>
<td>+</td>
</tr>
<tr>
<td>0,5</td>
<td>0,4</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>0,5</td>
<td>0,26</td>
<td>r</td>
<td>-</td>
</tr>
<tr>
<td>0,3</td>
<td>1,1</td>
<td>r</td>
<td>++</td>
</tr>
<tr>
<td>0,2</td>
<td>1,1</td>
<td>r</td>
<td>++</td>
</tr>
<tr>
<td>0,2</td>
<td>1,1</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>0,1</td>
<td>1,1</td>
<td>r</td>
<td>+</td>
</tr>
</tbody>
</table>

*: r = reduzierte Oberfläche; n = nicht reduzierte Oberfläche

**: +++ = sehr gut; ++ = gut; + = ausreichend; - = nicht ausreichend.

| Tabelle 5.2.4: Übersichtstabelle der untersuchten Gasgemische. |

Durch den Einsatz eines BN-Schwimmkörpers lassen sich ca. 70% der Schmelzbadoberfläche abdecken, so dass man in etwa die gleiche Reduzierung des Gasverbrauchs erwarten kann. Beginnend bei einem Gasvolumenstrom von 1,1 l/min (ausreichende Begasung, s. Kapitel 5.2.1) wurde der Gasvolumenstrom schrittweise reduziert.

Während die abgedeckte Schmelzbadoberfläche sich bei 0,8 und 0,58 l/min. ausreichend stabil zeigte, wurde bei einem Volumenstrom von 0,4 l/min. vereinzelte Krätzebildung beobachtet (Bild 5.2.8a).
5 Experimentelle Ergebnisse und Diskussion

Bild 5.2.8: AZ91-Schmelze bei der Begasung mit 0,5% SF₆ in N₂, 0,4 l/min. a) mit dem BN-Körper abgedeckte Oberfläche nach 20 min. b) freie Oberfläche nach 5 min.

In einem weiteren Experiment wurde die Wirkungsweise der Oberflächenabdeckung und die daraus folgende Reduzierung des Gasverbrauchs verdeutlicht. Wird die Reaktionsfläche nicht mit einem Schwimmkörper abgedeckt, so folgt bei gleichem Volumenstrom (0,4 l/min.) bereits nach wenigen Minuten (3-5 min.) massive Krätzebildung (Bild 5.2.8b), die zum Brand führt. Diese Beobachtung wurde ebenfalls bei der weiteren Verringerung des Gasvolumenstromes auf 0,26 l/min. gemacht.

Parallel dazu wurde bei einem Gasvolumenstrom von 1,1 l/min. der SF₆-Gehalt von 0,5 auf 0,2 Vol.% reduziert. Das Resultat war ein deutlich besserer Schmelzeschutz (Bild 5.2.9), wobei die gleichen Begasungsbedingungen bei der nicht abgedeckten Schmelzbadoberfläche zum Versagen der Schutzwirkung führten. Ein weiteres Herabsetzen der Gaskonzentration bei einer verringerten Schmelzbadoberfläche schlug nach ca. 20 min. fehl.

Bild 5.2.9: AZ91-Schmelze nach 20 min. bei Begasung mit 0,2% SF₆ in N₂, 1,1 l/min.

Zum Nachchargieren wurde der Schwimmkörper von der Schmelzbadoberfläche abgehoben. Da die darunterliegende Schmelze keine Schutzschicht aufwies, reagierte das flüssige Magnesium sofort mit dem Sauerstoff der Luft. Der kurze Nachchargievorgang führte zwar
zur Krätzebildung jedoch nicht zum Brand. Die anschließende Abdeckung der Oberfläche und erneute Begasung verhinderte das Fortschreiten der Krätzebildung.

Bornitrid ist mit Magnesiumschmelzen nicht benetzbar, so dass beim Herausnehmen des Keramikkörpers das flüssige Magnesium fast vollständig abtropft und nur Oxidationsprodukte am Schwimmkörper anhaften (Bild 5.2.10). Diese lassen sich sowohl auf mechanischem, als auch chemischem Wege sehr leicht entfernen. Die Qualität der Schmelze wurde durch die Abdeckungsart nicht beeinflusst, da Bornitrid mit dem flüssigen Metall nicht reagiert.

Zusammenfassung

Angesichts der im Kapitel 5.2.1 dargestellten Nachteile, welche aus der Verwendung von Stahlhohlkugeln zur Abdeckung von Magnesiumschmelzen resultieren, wird im weiteren Verlauf der Untersuchungen eine Minimierung der freien Schmelzbadoberfläche mittels eines Schwimmkörpers aus Bornitrid angestrebt. Die keramischen Werkstoffe sind bei der Materialauswahl vorzuziehen, da diese gegenüber metallischen Werkstoffen zahlreiche Vorteile bieten (s. Kapitel 5.2.2). Die Tauchversuche bestätigen sowohl die Stabilität der BN-Keramik als auch das günstige Benetzungsverhalten gegenüber Magnesiumschmelzen.

5.3 Untersuchung der Schutzwirkung von gekühlten Medien

Unter Berücksichtigung der gestellten Anforderungen an die verwendeten Schutzmedien (Kapitel 5.1.3) sowie umwelt- und wirtschaftrelevante Aspekte stehen die in Tabelle 5.3.1 zusammengefassten Substanzen zur Auswahl.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Siedepunkt, °C</th>
<th>Latente Verdampfungs- bzw. Sublimationswärme, kJ/kg</th>
<th>Dichte, kg/m³ *</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂</td>
<td>-195,8</td>
<td>199,1</td>
<td>1,2506</td>
</tr>
<tr>
<td>Ar</td>
<td>-185,9</td>
<td>162,3</td>
<td>1,7837</td>
</tr>
<tr>
<td>CO₂</td>
<td>-78,5</td>
<td>640,1</td>
<td>1,9769</td>
</tr>
</tbody>
</table>

* - bei 0 °C und 1 bar

Tabelle 5.3.1: Eigenschaften gekühlter Gase /KUP53/.
Der Einsatz von flüssigem Argon zielt nicht auf die Bildung einer Isolationsschicht zwischen der Schmelzbadoberfläche und der Ofenatmosphäre, wie z. B. bei der Verwendung von Reaktivgasen, sondern auf das Ausspülen des Sauerstoffs aus dem Ofenraum. 1 l flüssiges Argon verdampft zu 840 l Argongas (bei 20 °C und 1 bar). Hierdurch wird selbst bei einem offenen Tiegel jeglicher Sauerstoff von der Oberfläche verdrängt /ROS82/. Gleichzeitig wird die Temperatur der Schmelzbadoberfläche herabgesetzt, was zur Verringerung der Abdampfeigung führt.

Die zum Schutz der Schmelze benötigte Menge von flüssigem Argon soll einerseits die Verdampfungsrate kompensieren, so dass es sich eine permanente Argongasatmosphäre ergibt. Andererseits darf die Schmelzbadoberfläche durch die Zugabe von flüssigem Argon nicht einfrieren, da während des Schmelzprozesses die üblichen Gießoperationen (Nachchargieren, Abkrätzen usw.) durchgeführt werden. Die inneren Bereiche des Schmelzbades sollen weiterhin die für die Schmelzentnahme notwendige Temperatur (in der Regel zwischen 680 und 720 °C) aufweisen.

Die Untersuchungen wurden an einem offenen Tiegel (Ø 120 mm) durchgeführt. Als Schmelzematerial wurde AZ91 verwendet (3 kg entsprechen einer Tiefe von ca. 25 cm im Tiegel). Der Aufschmelzvorgang erfolgte unter einer Schutzgasatmosphäre aus 0,5 % SF₆ in N₂. Bei 680 °C wurde die Schutzschicht abgezogen und die Schmelze mit flüssigem Argon abgedeckt. Da die ersten Voruntersuchungen lediglich der Klärung der prinzipiellen Eignung dienten, wurde flüssiges Argon aus einem Isoliervorrichtung hinzugegeben. Bei Kontakt mit flüssigem Argon raute die Schmelzbadoberfläche sehr stark auf. Das heiße Argon verflüchtigte sich und die kältere Luft aus der Umgebung strömte zur Schmelzbadoberfläche. Die Reaktion zwischen Luftsaustoff und flüssigem Magnesium führte zur Krätzebildung, die sich auch durch eine kontinuierliche Einbringung des flüssigen Argons ist nicht vermeiden ließ (Bild 5.3.1a).

![Bild 5.3.1: Schmelzbadoberfläche a) während und b) nach der Abdeckung mit flüssigem Ar.](image-url)
Die Experimente mit flüssigem Stickstoff ähneln auf Grund der vergleichbaren Eigenschaften (s. Tabelle 5.3.1) denen mit flüssigem Argon, bringen aber zusätzlich eine Verunreinigung der Schmelze durch die mögliche anschließende Reaktion des Magnesiums mit freierndendem N₂-Gas. Ein weiterer Faktor, welcher gegen Stickstoff im Vergleich mit Argon spricht, ist die geringere Dichte von Stickstoff (1,25 g/cm³ gegenüber 1,29 g/cm³ bei Luft).

Da in der Literatur keinerlei Angaben zur Reaktion zwischen Magnesiumschmelzen und festem CO₂ bei höheren Temperaturen vorliegen, wurde die prinzipielle Eignung von festem CO₂ in Vorversuchen mittels unter Sauerstoffausschluss abgepackter CO₂-Pellets (Bild 5.3.2) untersucht. Da Magnesiumschmelzen heftig mit H₂O reagieren, wurde darauf geachtet, dass die CO₂-Pellets trocken bleiben.

Beim Kontakt zwischen dem festen CO₂ und der Schmelze trat keine heftige Reaktion auf. Es dauerte 2-3 min. bis die Pellets sublimieren, wobei es zur Abkühlung der Schmelzbadoberfläche kam. Die sauerstoffhaltige Ofenatmosphäre wurde durch eine CO₂-Atmosphäre ersetzt. Dies führte zur anschließenden Reaktion zwischen der Magnesiumschmelze und Kohlendioxid, wobei eine Schutzschicht auf der Schmelzbadoberfläche gebildet wurde. Diese Schicht wirkt besonders bei niedrigeren Temperaturen schützend /BAC03b/.

5 Experimelle Ergebnisse und Diskussion

5.4 CO\textsubscript{2}-Schnee-Verfahren

Die Untersuchungen konventioneller Schutzgasmechanismen, welche in Kapitel 5.1 beschrieben sind, haben die Eignung von CO\textsubscript{2} als Abdeckgas für Magnesiumschmelzen belegt. Der Funktionsmechanismus beruht auf der Reduktion des CO\textsubscript{2} durch das flüssige Magnesium an der Schmelzbadoberfläche verbunden mit der Bildung einer dünnen MgO-Schicht an der Badoberfläche, welche das Abdampfen von Magnesium aus dem Schmelzbad teilweise behindert. Mit zunehmender Temperatur der Magnesiumschmelze verschiebt sich das Boudouard-Gleichgewicht, was zu unerwünschten Effekten wie Bildung von hochgiftigem Kohlenmonoxid und elementarem Kohlenstoff führt. Der Kohlenstoff kann in die Schmelze einsinken und das Korrosionsverhalten der gießtechnischen Endprodukte stark negativ beeinflussen /MUH92b/.

Zur Vermeidung dieser Nachteile wird im Rahmen der hier dargestellten Untersuchungen festes CO\textsubscript{2} zum Schutz der Magnesiumschmelzen eingesetzt.

Bei der Expansion des flüssigen CO\textsubscript{2} auf Atmosphärendruck wird das Gas abgekühlt. Bei Unterschreiten des Tripelpunktes (-56,6°C und 5,18 bar) ändert sich der Aggregatzustand, und es entsteht festes und gleichzeitig gasförmiges CO\textsubscript{2}. Dieses feste CO\textsubscript{2} scheidet sich auf dem Schmelzbad ab und senkt die Oberflächentemperatur der Schmelze (bei einer Temperatur von –78 °C hat CO\textsubscript{2}-Schnee eine Kühlleistung von 640 kJ/kg), was zu einer verringerten Abdampfneigung der Magnesiumschmelze führt (Bild 5.4.1). Somit verschiebt sich der

![Graphik](image-url)
Bereich der Oberflächentemperatur von den im Gießbetrieb etablierten 680 – 720 °C zu Werten zwischen ca. 550 und 600 °C. Andererseits erfolgt durch Sublimation von CO₂-Schnee eine Gasexpansion (1 g entspricht ca. 0,54 l). Hierdurch wird jeglicher Sauerstoff von der Badoberfläche verdrängt /SPR04, KAR04a/.

5.4.1 Auslegung der CO₂-Schneeanlage

Nach dem erfolgreichen Abschluss der Vorversuche (Kapitel 5.3) wurde eine CO₂-Schneeanlage konstruiert, die aus flüssigem CO₂ festen CO₂-Schnee (= agglomerierte Partikel aus festem CO₂) erzeugt, um eine praxisgerechte Beschickungsmöglichkeit der Schmelzbadoberfläche mit festem CO₂ zu erzielen.

Bei der Auslegung des Systems zur CO₂-Schneeerzeugung sind zunächst drei Teilschritte zu beachten:

- die Zuleitung zur Düse,
- die Expansionsdüse selbst sowie
- das Schneerohr.

Mehrphasenzustand in Zuleitung und Düse

Das Kohlendioxid, welches sich im Liquidtank und in den Rohrleitungen befindet, ist beispielsweise mit T = -19,6 °C bei 20 bar deutlich kälter als die Umgebungstemperatur. Trotz einer Isolierung des Tanks und der Zuleitung findet eine Erwärmung auf Grund eines Wärmestromes von der Umgebung in das kalte Fluid statt. Ist der herrschende Druck über der Flüssigkeit geringer als der Flüssigkeitsdampfdruck, so verdampft die flüssige Phase. Dies geschieht bei Wärmezufuhr sowie bei Drucksenkung, was als Entspannungsverdampfung bezeichnet wird. Ist die Wärmezufuhr bzw. Drucksenkung gering, so siedet die Flüssigkeit nur an der Oberfläche. Bei schneller Drucksenkung resultiert ein Verdampfen unter Blasenbildung nicht nur an der Oberfläche und den Wandungen, sondern auch im Inneren der Flüssigkeit, man spricht hier vom „Flashen“. Die Phasenverteilung von Gas und Flüssigkeit ist bei der Entspannungsverdampfung gleichmäßiger als beim Verdampfen durch Wärmezufuhr.
Infolge der Druckabnahme und des Wärmestromes im Fluid kommt es während der Kühlmittelzufuhr innerhalb der CO\textsubscript{2}-Zuleitung und der Düse zu mehrphasigen Strömungszuständen. Wie bereits erwähnt, liegt der Anwendungsbereich zwischen dem Lagerdruck im Liquidtank (16-22 bar) und dem Umgebungsdruck von 1 bar (Bild 5.4.2), wobei in erster Näherung ein Entspannungsvorgang bei konstanter Enthalpie angenommen wird. Im Tank stehen CO\textsubscript{2}-Flüssigkeit und CO\textsubscript{2}-Dampf näherungsweise im thermodynamischen Gleichgewicht. Der Lagerzustand des flüssigen Kohlendioxides entspricht dabei einem Zustand auf der Siedelinie. Flüssiges Kohlenstoffdioxid strömt aus dem Tank in der Rohrleitung zur Expansionsdüse, wo es dann auf den Umgebungsdruck von 1 bar entspannt wird. Dabei entsteht festes CO\textsubscript{2}, welches eine Sublimationstemperatur von -78,5 °C aufweist. Beim Entspannungsvorgang findet ein mehrfacher Phasenwechsel des Kühlmittels statt, da der Tripelpunkt (P\textsubscript{tr.}= 5,18 bar, T\textsubscript{tr.}= -56,6 °C) innerhalb des Arbeitsdruckbereichs liegt. Bei der Entspannung vom Tankdruck auf P\textsubscript{tr.}= 5,18 bar verdampft ein Teil der flüssigen Kohlensäure. Bei Erreichen des Tripelpunktdruckes tritt ein plötzlicher Phasenwechsel der Flüssigkeit zum Feststoff auf. Gleichzeitig nimmt bei diesem Phasenwechsel der Dampfanteil schlagartig zu. Bei der Drucksenkung von P\textsubscript{tr.}= 5,18 bar bis auf Umgebungsdruk sublimiert ein geringerer Teil des CO\textsubscript{2}-Feststoffs zu CO\textsubscript{2}-Gas. Unter P\textsubscript{tr.}= 5,18 bar befindet sich das Kühlmittel im Sublimationsgebiet, in dem keine CO\textsubscript{2}-Flüssigkeit mehr existiert, sondern nur noch Feststoff mit etwa gleichem Anteil Gas vorliegt.

Strömungsform in der CO\textsubscript{2}-Leitung
Betrachtet man ein horizontales Rohr mit vollständiger Verdampfung der Flüssigkeit, so
lassen sich unter Vorrausetzung einer geringeren Massenstromdichte und mäßiger
Wärmezufuhr unterschiedliche Strömungsarten ableiten. Die im Verdampferrohr eintretende
Flüssigkeit ist unterkühlt (z. B. zwischen −16 und −25 °C bei flüssigem CO₂) und überhitzt
sich im wandnahen Bereich. Bei hinreichender Überhitzung bilden sich Blasen, die bei einer
bestimmten Größe abreißen und in den Flüssigkeitskern gelangen. Da der Flüssigkeitskern
anfangs unterkühlt bleibt, kondensieren die Blasen wieder. Bei Siedetemperatur in der
gesamten Flüssigkeit entstehen Blasenketten aus kleinen Blasen, die mit ansteigender Zahl
agglomerieren und größere Dampfbereiche bilden. Eine Schichtenströmung entsteht infolge
der Schwerkraft mit Dampf im oberen und Flüssigkeit im unteren Bereich. Die
Phasentrennung führt zu unterschiedlichem Wärmeübergangsverhalten im Dampf gegenüber
der Flüssigkeit und zu unterschiedlichen Strömungsgeschwindigkeiten, wodurch bei erhöhter
Geschwindigkeit eine Wellenströmung entsteht, die im weiteren Verlauf in eine
Schwallströmung übergeht. Bei der Schwallströmung und anschließenden Ringströmung ist
die Flüssigkeitsbenetzung der Rohrwand so effektiv, dass ein gleichmäßiger Wärmeübergang
am gesamten Rohrumfang erreicht wird. Mit Eintreten der Nebelströmung trocknet die
Rohrwand teilweise aus, womit sich der Wärmeübergang reduziert.

Die Strömungen in vertikal angeordneten Rohrleitungen mit aufwärtsgerichteter Strömung
unterscheiden sich von denen im horizontalen Rohr. Ist der Dampf in Form kleiner Blasen in
der kontinuierlichen Flüssigphase fein verteilt, so spricht man von Blasenströmung. Anfangs
findet selbst bei dichter Packung wenig Berührungen zwischen den Blasen statt, da die
meisten Blasen gleichgroß sind und demzufolge den gleichen Auftriebskräften unterworfen
sind. Nimmt der Dampfgehalt zu, so können die Blasen zu größeren Kolben agglomerieren,
welche vorne abgerundet und hinten flach sind. In ihrem Nachlauf ziehen sie meist mehrere
kleine Kugelblasen hinter sich her. Die Kolbenblasen verlängern sich, bis die
Flüssigkeitsbrücken zerbrechen und eine chaotische Strömung entsteht. Die bereits erwähnte
Ringströmung entsteht mit weiterer Dampfzunahme, wobei die im Kern strömende
Dampfphase kleinere Tropfen und größere Flüssigkeitsbereiche aus der ringförmigen
Flüssigkeitsschicht herausreißt, was wiederum zur Ring/Strähnen- Strömung führt. Bei der
dann auftretenden Nebelströmung ist die gesamte Flüssigkeit in Form von Tropfen fein im
Dampf verteilt /BER99/.

Die auftretende Strömungsform lässt sich mit Hilfe sogenannter Strömungsformenkarten
bestimmen, deren Anwendung im VDI-Wärmeatlas /VDI94/ für beide Strömungsarten
ausführlich beschrieben ist.

Dampfmenge in der CO₂-Leitung

Mit der Druckabnahme und dem Wärmestrom in der Rohrleitung nimmt die Dampfmenge
während der Strömung vom CO₂-Vorratstank bis zum Ende der Düse ständig zu. Die
5 Experimentelle Ergebnisse und Diskussion

Berechnungen für den Dampfvolumenanteil bzw. Dampfmassenanteil in Abhängigkeit von dem CO\textsubscript{2}-Massenstrom für verschiedene Rohrleitungsängen sind in der Arbeit von Berghoff /BER99/ zu finden. Die bei dem Entspannungsvorgang entstehende Dampfmenge berechnen sich aus

\[x = \frac{\dot{h}_T - \dot{h}}{\dot{h} - \dot{h}'} \quad \text{Gl. 5.4.1} \]

und

\[x_v = \frac{x \cdot v''}{x \cdot (v' - v') - v'} \quad \text{Gl. 5.4.2} \]

wobei \(x \) Dampfmassenanteil;

\(x_v \) Dampfvolumenanteil;

\(v' \) spezifisches Volumen im Siedezustand;

\(v'' \) spezifisches Volumen im Tauzustand;

\(\dot{h}_T \) spezifische Enthalpie im Tank;

\(\dot{h} \) spezifische Enthalpie im Siedezustand;

\(\dot{h}' \) spezifische Enthalpie im Tauzustand sind.

Die dazugehörigen Enthalpieswerte können dem Druck/Enthalpie-Diagramm (Bild 5.4.2) entnommen werden. Mit der Drucksenkung nimmt der Dampfmassenanteil leicht progressiv zu. Der Dampfvolumenanteil steigt zu Beginn der Entspannung stark an, mit weiterer Drosselung verläuft der Dampfvolumenanteil degressiv. Der Dampfvolumenanteil ist infolge der geringeren Dichte des Dampfes gegenüber der Flüssigkeit wesentlich höher als der Dampfmassenanteil. So beträgt beispielsweise der Dampfmassenanteil \(x = 0,04 \) bei einer Druckabnahme in der Zuleitung von 18 auf 15 bar, während der Dampfvolumenanteil mit \(x_v = 0,53 \) mehr als das 10-fache des Dampfmassenanteils beträgt, was ein ungefähr gleiches Dampf- und Flüssigkeitsvolumen in der Rohrleitung bedeutet. Die plötzliche Druckabnahme am Tripelpunkt bei der Phasenumwandlung resultiert in einem unbeständigen Dampfentwicklungsverlauf. Liegt vor der Phasenumwandlung der Dampfmassenanteil von 0,2 bzw. der Dampfvolumenanteil von 0,95 vor, so betragen diese nach der
Phasenumwandlung jeweils 0,4 bzw. 0,99. Beim Entspannungsvorgang auf Umgebungsdruck liegen ungefähr gleiche Massenanteile von Gas und Feststoff vor \((\chi = 0,52)\), was wiederum einen Dampf volumenanteil von 0,998 bedeutet /BER99/.

Strömung in der Düse

![Schematische Darstellung der Expansionsdüse /BER93/](image)

Die Düse der CO\(_2\)-Schnee-Anlage ist so ausgelegt, dass die Expansion von CO\(_2\) unterhalb des Tripelpunktes bei 5,18 bar (hier bei 1 bar) am Düsenaustritt erfolgt. Der Strahl tritt achsenparallel gerichtet aus der Düse und vermischt sich mit der Umgebungsatmosphäre. Findet diese Expansion innerhalb der Düse statt, beginnt die Schneebildung ebenfalls innerhalb der Düse, was eine Durchsatzverminderung bis hin zur völligen Verstopfung der Düse zur Folge hat.

Strömt ein Fluid mit Schallgeschwindigkeit, so nennt man dies den kritischen Strömungszustand mit den dabei auftretenden kritischen Größen. Nur ein Teil des Fluids darf in der Düse der Länge \(L\) expandieren bei einem Druckabfall bis auf den kritischen Strömungsdruck \(P_{\kappa}\). Dieser Druck \(P_{\kappa}\) soll sich noch über dem Tripelpunkt von 5,18 bar
befinden. Die völlige Entspannung bis auf Atmosphärendruck hat dann hinter dem Düsenauslass zu erfolgen. Am Ende der Düse herrscht Schallgeschwindigkeit \(w_{sch.} \), die die maximale Strömungsgeschwindigkeit darstellt. Die restliche Entspannung findet in Folge explosionsartig hinter der Düse statt. Soll die Expansion in einer Düse unterhalb des kritischen Strömungsdruckes \(P_{krit} \) geführt, und die Strömungsgeschwindigkeit über die Schallgeschwindigkeit hinaus gesteigert werden, so ist der Strömungsquerschnitt entsprechend zu erweitern (Bild 5.4.3). Derartig erweiterte Düsen werden nach ihrem Erfinder als Laval-Düsen bezeichnet. Im ersten konvergierenden Düsenabschnitt senkt sich der Druck auf den kritischen Strömungsdruck am engsten Querschnitt ab. Bekanntlich kann ein Fluid im engsten Querschnitt einer Strömungsapparatur nicht schneller strömen als mit seiner Schallgeschwindigkeit. Bei richtig ausgelegter Düse reduziert sich der Druck am Ende der Düse bis auf Umgebungsdruck. Die Strömungsgeschwindigkeit kann dort ein Vielfaches der Schallgeschwindigkeit betragen, was sich positiv auf die Schneeeausbeute auswirkt.

Schneerohr

Tritt CO\(_2\) aus einer Expansionsdüse aus, so entsteht ein feiner kristalliner CO\(_2\)-Schnee. Die Austrittsgeschwindigkeit ist auf Grund des Gasanfalls sehr groß. Der entsprechend hohe Impuls eines solchen Gas/Feststoffstrahls auf eine Magnesiumschmelze ist unerwünscht und zu vermeiden. Dazu soll der CO\(_2\)-Zweiphasenstrahl gegen eine geeignete Prallfläche gerichtet werden, so dass der Strahl abgebremst wird und Verwirbelungszenen entstehen, in denen der Schnee agglomerieren kann. Sinnigerweise wird diese Prallfläche in ein "Schneerohr" (Bild 5.4.4) integriert, so dass die nun größeren CO\(_2\)-Schneepartikel durch das entstehende CO\(_2\)-Gas ausgetragen werden.

Bild 5.4.4: Versuchsanlage mit dem Schneerohr.

![Bild 5.4.5: Versuchsaufbau zur Ermittlung optimaler Rohrabmessungen.](image)

Tabelle 5.4.1 gibt eine Übersicht über die untersuchten Versuchsparameter. Die experimentellen Untersuchungen sollen helfen, die für die Expansionsdüse optimalen Abmessungen des Schneerohres zu ermitteln.
Alle Experimente wurden bei Raumtemperatur (ca. 20 °C) durchgeführt. Da während der Schneebildung das Rohr stark abgekühlt und u. U. vereist, wurde bei der Durchführung einzelner Versuche gewartet, bis das Rohr sich auf die Umgebungstemperatur aufwärmt. Im ersten Schritt wird der Abstand zwischen dem Schneerohr und der Oberfläche (H_A) ermittelt. Dieser Abstand (ca. 35 cm) wird während weiterer Untersuchungen beibehalten.

Ist der Abstand zwischen der Düse und der Rohrwand zu groß (32 mm), so gelangt mehr warme Umgebungsluft in den Strahl hinein und die fein kristallinen Partikel sublimieren zunehmend anstatt sich zu größeren Flocken zu agglomerieren. CO$_2$ tritt überwiegen als Gas aus dem Schneerohr aus. Die mäßige Abkühlung des Schneerohres im Vergleich zu kleineren Durchmessern bestätigt diese Annahme. Durch die Variierung der Rohrlänge wird keine bessere Ausbeute erzielt.

Der kleinere Rohrdurchmesser (Ø 28mm) führt zu deutlich besseren Ergebnissen in Bezug auf die Schneebildung. Das Schneerohr kühlt nach wenigen Sekunden stark ab und flockiger CO$_2$-Schnee wird produziert. Der geformte Gas/Feststoffstrahl besitzt einen größeren Ausgangsimpuls, so dass die Schneepartikel von der Oberfläche (in dem Versuch vom Boden) abprallen. Es bildet sich der Kernbereich mit großer Schneekonzentration, der einen Durchmesser von ca. 12 cm aufweist. Wird das Rohr ausgehend von der Anfangslänge (22 cm) verkürzt, so ergibt sich ein Optimum zwischen 18 und 16 cm. Eine weitere Längenreduzierung führt nicht zu zufriedenstellenden Ergebnissen.

Die besten Resultate lassen sich mit dem Rohrdurchmesser von 56 mm erzielen, wobei der Abstand zwischen dem Düsenaustritt und der Wand 25 mm beträgt. Die optimale Schneeausbeute wird zwischen 18 und 21 cm beobachtet, woraus eine Verteilung von CO$_2$-Schnee auf einen Querschnitt von Ø 40-46 cm resultiert. Eine weitere Verkürzung des Schneerohres führt zur Verhinderung des Agglomerierungsprozesses, bis bei einer Länge von ca. 12-13 cm hauptsächlich gekühltes CO$_2$-Gas produziert wird.

Für die Abdeckung von Magnesiumschmelzen mit CO$_2$-Schnee werden Rohre aus Edelstahl mit einem Durchmesser von 56 mm und einer Länge von 195 mm angefertigt und für die praktischen Untersuchungen verwendet.
5.4.2 Untersuchung der Wirkungsweise des CO₂-Schnee-Verfahrens

Die CO₂-Schnee-Anlage ermöglicht eine praxistaugliche Abdeckung von Magnesiumschmelzen. Um die für die Entwicklung des Verfahrens notwendigen Informationen über die Schutzwirkung zu gewinnen, werden experimentelle Untersuchungen zum Abdeckprozess durchgeführt.

Für eine bessere Übertragbarkeit der Ergebnisse in den Gießbetrieb werden an die durchzuführenden Versuche folgende Anforderungen gestellt:

- die zu ermittelten Daten sollen die industriellen Bedingungen widerspiegeln, d. h. die Parameter wie Temperatur, Dichtigkeit des Ofens, Oberfläche des Schmelzbades sind vergleichbar mit denen der Gießereipraxis zu wählen;
- ein breites Informationsspektrum über die Wirkungsweise des Verfahrens, auftretende Reaktionen und deren Produkte, welches zur Klärung des Mechanismus beiträgt, soll ermittelt werden. Dazu sind Gasmessungen, Probenentnahmen und eine anschließende Auswertung der Proben notwendig. Da die Abkühlung der Schmelzbadoberfläche ein wesentlicher Bestandteil des Verfahrens ist, soll die Temperaturverteilung sowohl auf der Schmelzbadoberfläche, als auch direkt in der Schmelze untersucht werden.
- Alle üblichen Gießoperationen (Abkrätzen, Nachchargieren, Warmhalten) sowie der Löschvorgang im Notfall sollen getestet werden.

Die Temperaturmessung erfolgte mit Thermoelementen im Bereich des Ofenraums, sowie 15 mm unter der Schmelzbadoberfläche. Gasproben der Ofenatmosphäre wurden für eine kontinuierliche Messung des CO₂-, O₂- sowie CO-Gehaltes mit Hilfe einer Analysenpumpe während des laufenden Prozesses entnommen.
Es wurden sowohl Schmelzen aus Reinmagnesium (99.5), als auch aus der Legierung AZ91 verwendet. Für die Durchführung der Versuche wurden typischerweise ca. 15 kg Schmelzmaterial verwendet; dies entspricht einer Schmelzbadtiefe von ca. 50 mm.

Der Aufschmelzvorgang wurde unter einem Schutzgasgemisch von 0,5% SF\textsubscript{6} in N\textsubscript{2} vorgenommen. Vor den Versuchen mit CO\textsubscript{2}-Schnee wurde die Schutzschicht komplett abgezogen. Die Abdeckung erfolgte im Temperaturbereich zwischen 600 °C und 740 °C. Da das Schneerohr direkten Kontakt mit der heißen Umgebungsatmosphäre des Ofens hat, unterscheiden sich verständlicherweise die bei Raumtemperatur ermittelten Parameter wie die Zeit bis zur Schneebildung bzw. die Schneeausbeute. Diese negativen Auswirkungen wurden bei den Versuchen berücksichtigt, indem man längere Beschneiungszeiten für die notwendige Schneeausbeute verwendete.

Die ersten Untersuchungen dienten dem Nachweis der Wirkung und der Kontrollierbarkeit des CO\textsubscript{2}-Verfahrens. Die Versuche bestätigten die Möglichkeit der Schmelzprozessführung durch Einbringen von CO\textsubscript{2}-Schnee auf die Schmelzbadoberfläche.

In einem weiteren Experiment wurde eine für die Praxis übliche Solltemperatur von ca. 700 °C für den Schmelzvorgang gewählt. Durch die Abdeckung der Magnesiumschmelze mit CO\textsubscript{2}-Schnee soll ein stabiler störungsfreier Schmelzprozess gewährleistet werden.

In Bild 5.4.6 werden charakteristische Änderungen der versuchsrelevanten Parameter dargestellt.

![Temperaturverlauf bei der Abdeckung der Schmelze (AZ 91) mit CO\textsubscript{2}-Schnee.](image)

Bei der Beschneiung kommt es 15 mm unterhalb der Schmelzbadoberfläche zu einer Abkühlung der Schmelze, die Temperatur der Ofenatmosphäre sinkt zeitgleich von 550 °C bis
auf ca. 400 °C je nach Dauer der Beschneiung. Nach der Abdeckung steigt die Temperatur der Ofenatmosphäre auf ca. 550 °C innerhalb von ca. 3 min., die Erhöhung der Schmelztemperatur auf den Sollwert erfolgt hingegen sehr schnell (20-30 s.). Die schwächere Abkühlung resultiert aus der Konvektion in der Magnesiumschmelze. Es ist davon auszugehen, dass die Schmelzbadoberfläche während der Abdeckung deutlich stärker abgekühlt wird, da diese einen direkten Kontakt mit dem CO$_2$-Schnee hat.

Da bei einem handelsüblichen Magnesiumschmelzofen das flüssige Metall für den Gießvorgang aus dem Inneren des Schmelzbades entnommen wird (Kapitel 2.5), sollen diese Bereiche bei der Beschneiung eine stabile Gießtemperatur (zwischen 680 und 720 °C) aufweisen. Der Prozess soll so ausgelegt sein, dass Temperaturschwankungen in den Entnahmeprozessen vermieden werden.

Das Ziel weiterer Untersuchungen war die Temperaturverteilung in einem Schmelztiegel während der Abdeckung zu bestimmen. Untersuchungen des Temperaturverhaltens der Magnesiumschmelze wurden an einem tiefen Tiegel (Tiefe ca. 35 cm) durchgeführt. Mit Hilfe von Thermoelementen wurde die Temperatur in verschiedenen Tiefen des Schmelzbades gemessen. Durch die Einwirkung des CO$_2$-Schnees wird die Oberfläche abgekühlt. Eine sprunghafte Abnahme der Temperatur ist auf der Oberfläche, sowie in 1 cm Tiefe deutlich zu erkennen (Bild 5.4.7). Die inneren Bereiche der Schmelze kühlen sich nur langsam ab; dies entspricht einer Abkühlung nach Lufteinbruch beim Öffnen des Tiegeldeckels. Nach der Sublimation des CO$_2$-Schnees steigt die Temperatur wieder. Es folgt eine weitere Beschneiung.

Bild 5.4.7: Temperaturverlauf in der Schmelze bei Beschneiung.
Während der durchgeführten Untersuchungen wurde nachgewiesen, dass kein massiver Küheffekt bei Verwendung von CO₂-Schnee auftritt und die inneren Bereiche der Schmelze nicht beeinträchtigt werden.

Da die Abkühlung der Schmelzbadoberfläche mittels Thermoeffelementen nicht hinreichend genau messbar war, wurden stattdessen Thermographieaufnahmen der Schmelzbadoberfläche angefertigt. Die Aufnahmen mit der Infrarotkamera zeigten die Abkühlung der Oberfläche durch den CO₂-Schnee, partiell bis unter 550 °C (Bild 5.4.8).

Die Erwärmung der Schmelzbadoberfläche auf die Solltemperatur (ca. 700 °C) dauerte deutlich länger als die der inneren Bereiche, was für die Prozessführung vom Vorteil ist.

Die typische Änderung der Gaskonzentrationen im Ofenraum bei der Anwendung der CO₂-Beschneiung wird in Bild 5.4.9 dargestellt.

Durch die Sublimation des CO₂-Schnees entsteht CO₂-Gas und der Sauerstoff wird von der Badoberfläche verdrängt. Die Konzentration des Sauerstoffes fällt von ca. 11% bis auf 0%. Nach ca. 1,5 min. steigt die Sauerstoffkonzentration langsam wieder an. Da aus dem Ofen zur
Analyse kontinuierlich Gas entnommen wird, entsteht ein Unterdruck im Ofenraum, der zum Ansaugen der Umgebungsgasatmosphäre führt. Unter realen Bedingungen findet diese Gasentnahme nicht statt, so dass in Abhängigkeit von der Dichtigkeit des eingesetzten Ofensystems die Sauerstoffkonzentration im Ofenraum deutlich langsamer steigt. Die CO-Konzentration bleibt während des Versuches unverändert, d. h. es findet nur eine minimale Zersetzung von CO_2 statt.

Wenn der Oxidationsprozess startet, entstehen an der Schmelzbadoberfläche Oxide, die sogenannte Krätze. Bereits gebildete Krätze stellt einen „Brandherd“ dar und führt örtlich zu fortlaufenden exothermen Reaktionen. Die Temperatur der Krätze ist dabei deutlich höher (900 - 1000 °C) als die der Schmelze. Da unter realen Bedingungen die Krätzebildung nie ganz zu vermeiden ist, soll die Eignung des CO_2-Schnees als Abdeckmedium auch für eine mit Krätze überzogene Schmelzbadoberfläche gewährleistet werden.

Bild 5.4.10: verkrätzte Schmelzbadoberfläche bei 710 °C
a) vor und b) nach Einsatz von CO_2-Schnee (ca. 20 s.).

Bild 5.4.10a zeigt die Schmelzbadoberfläche bei ca. 710 °C. An mehreren Stellen bildet sich
Krätze, die Brände sind deutlich zu erkennen. Die genaue Temperatur der Krätze lässt sich mit der IR-Kamera nicht ermitteln, da ein Messbereich bis 800 °C eingestellt ist. Sie liegt aber deutlich über 800 °C (Bild 5.4.11a). Wenn keine Schutzmaßnahmen ergriffen werden, würde ein unkontrollierter Brand entstehen, wobei Temperaturen bis zu 3000 °C auftreten /GME37/. Durch den Einsatz von CO₂-Schnee wurde die Temperatur der Schmelzbadoberfläche gesenkt (Bild 5.4.11b), die Temperatur der Krätze fiel nach der Beschneiung (20 s.) auf ca. 620 °C ab. Der Brand wurde gestoppt und es waren Oxidationsprodukte auf der Schmelzbadoberfläche zu sehen (Bild 5.4.10b).

Probenanalyse

Schutzmechanismus

Bei der Abdeckung von Magnesiumschmelzen mit CO₂-Gas laufen die Reaktionen gemäß Gl. 5.1.1 und 5.1.2 ab /FRU69/. Die Zersetzungsrreaktion wird durch die steigende Temperatur begünstigt, was durch Vorhandensein von freiem Kohlenstoff (schwarzer Ruß) auf der Magnesiumoberfläche /EML66/ bestätigt wird.

Allerdings laufen diese Reaktionen, nach Meinung von Fruhling /FRU70/ nur bei niedrigeren Temperaturen in der ersten Phase der Schichtbildung, nämlich bei der Ausbildung von MgO ab. Das weitere Wachstum der Oberflächenschicht wird durch die kationische Diffusion bestimmt. Grundsätzlich ist bei diesem Vorgang mit sehr dünneren „zweidimensionalen“ Schichten zu rechnen /EVA39/. Anschließend wird gasförmiges CO₂ von MgO adsorbiert (Gl.6.4.3).

\[
CO₂(gas) + MgO \rightarrow MgO·CO₂(ads) \quad \text{Gl. 5.4.3}
\]

Verläuft dieser Prozess in O₂ anstatt in CO₂, so folgt nach der Adsorption der Sauerstoffmoleküle an der reinen Metalloberfläche die Dissoziation der O₂-Moleküle und das Einsetzen der kationischen Diffusion. Nach Ausbildung einer Mg-Schicht werden weitere O₂-Moleküle adsorbiert, so dass dieser Vorgang fortgesetzt wird, bis bei Temperaturen über 550 °C der Zusammenbruch der Oxidschicht erfolgt („Break-away-Oxidation“). Bei der Reaktion mit CO₂ bildet das im MgO-Gitter adsorbierte CO₂ eine quasistabile Verbindung \(MgO·CO₂(ads) \), obwohl MgCO₃ bei höheren Temperaturen thermodynamisch instabil ist. Die Adsorption von gasförmigem CO₂ durch Sauerstoffion in MgO ist eine begünstigte Reaktion: die Aktivierungssenergie für die Adsorption ist nahezu null, während diese für die Desorption einen höheren Wert besitzt /TRA55/.

Zusammenfassend lässt sich sagen, dass der Schutzeffekt bei dem CO₂-Schnee-Verfahren auf die Kombination folgender Mechanismen zurückgeführt werden kann:

- Die Bildung einer quasistabilen \(MgO·CO₂(ads) \)-Verbindung, die besonders bei niedrigeren Temperaturen (unter 600 °C) einen Oxidationsschutz für Magnesiumschmelzen bietet;
- Die verringerte Abdampfneigung von Magnesiumschmelzen bei niedrigeren Oberflächentemperaturen trägt einerseits zur Stabilität des Schutzfilms bei, andererseits ermöglicht sie einen sicheren Schmelzprozess bei minimalen Metallverlusten;
- Die Verdrängung der Luft durch sublimierendes Kohlendioxid.
5.4.3 Zusammenfassung der Ergebnisse

5.5 Überführung des CO$_2$-Schnee-Verfahrens in den industriellen Maßstab

Nach dem erfolgreichen Abschluss der Laborversuche wurde mit der industriellen Umsetzung des Verfahrens begonnen. Ein entscheidender Punkt war die Entwicklung einer Handhabungstechnologie, die einem praxisrelevanten, robusten Gießbetrieb gerecht wird. Im Laufe der Laboruntersuchungen des CO$_2$-Schnee-Verfahrens wurden einige anlagetechnischen Schwachpunkte aufgeworfen, so dass sich die folgenden Anforderungen an den Prozess formulieren lassen:

- Die Automatisierung des Prozesses erfordert die Entwicklung einer Steuerung, die bei einem entsprechenden Messwert bzw. vorgegebenen Ereignis ein Signal an die Ventile sendet und die Beschneiung auslöst. Des weiteren wird für einen robusten und einfachen Gießbetrieb eine Prozessregelung angestrebt.

- Aus wirtschaftlichen Gründen soll die Abdeckung nicht kontinuierlich, sondern in bestimmten Zeitabständen erfolgen. Dazu werden die relevanten Prozessparameter (Temperaturanstieg, Änderung der Gaskonzentrationen, Zeit) auf ihre Eignung als Steuerungssignal analysiert. Anhand der gewonnenen Erkenntnisse werden die Soll-Parameter für die Beschneiung festgelegt.

- Die bestehenden Öfen sind für den Einsatz der CO$_2$-Schnee-Anlage umzurüsten. Die Schneeverteilung soll an die Geometrie eines jeden Schmelzofens angepasst werden.

5.5.1 Entwicklung einer Handhabungstechnologie

Entwicklung der Ventilsteuerung für die CO$_2$-Schnee-Anlage

Zur vollautomatischen Steuerung des Prozesses sowie mit Hinblick auf eine langfristig angestrebte Prozessregelung wird ein modulares und flexibles Steuerkonzept entwickelt und umgesetzt.

Das automatische Druckventil wird vor die Düse geschaltet und erlaubt somit die sofortige Begasung bei einem entsprechenden Signal. Bei der Entwicklung wird auf ein handelsübliches 2-Wege-Magnetventil zurückgegriffen, das mit 230 V betrieben und auf einen Betriebsdruck bis zu 40 bar ausgelegt ist. Das mit einem Ventil aufgerüstete Schneerohr stellt eine austauschbare Komponente der CO$_2$-Schnee-Anlage dar (Bild 5.5.1).
Die entsprechende Taktsteuerung für die CO₂-Schneeanlage wurde mit dem Softwarepaket DASYLab entwickelt. Dieses Paket erlaubt das Regeln und Steuern von Prozessen. Es ist besonders gut für schnelle Messungen geeignet und bietet die Möglichkeit zur Darstellung der Messwerte in Echtzeit. In Bild 5.5.2 ist die Steuerungsoberfläche dargestellt.

Diese graphische Benutzeroberfläche ist auf jedem Windows-kompatiblen PC lauffähig und gestattet den automatisierten, einfachen und sicheren Betrieb der CO₂-Schnee-Anlage. Durch
Aktivierung der entsprechenden Buttons werden die für den Prozess erforderlichen Steuerelemente angesprochen. Durch Anklicken des jeweiligen Buttons wird eine Funktion aktiviert, die beim Eingang eines entsprechenden Steuersignals die Beschneiung auslöst und für eine vorgegebene Zeit erfolgen lässt. Wird z.B. die Schaltfläche „O₂“ betätigt (Bild 5.5.2, Pos. 4), so wird beim Überschreiten einer vorgegebenen Sauerstoffkonzentration ein Beschneiungsvorgang ausgelöst. Aktiviert man die Schaltfläche „Sofort“, erfolgt eine Notbegasung. An der Statusanzeige (Bild 5.5.2, Pos. 5) kann man erkennen, ob die CO₂-Schnee-Anlage sich im Betrieb befindet und welcher Zyklus zur Zeit läuft. Die Dauer der Begasung ist ebenfalls einstellbar.

Die Datenerfassung (O₂-, CO₂- und CO-Konzentrationen, Temperatur) sowie die Steuerung der Druckventile erfolgt über eine Mess- und Steuerungseinheit (Bild 5.5.2a). Die Prozessparameter werden mit Hilfe einer Schnittstelle on-line zur Verfügung gestellt. Weiterhin besteht die Möglichkeit zur Datenspeicherung für die spätere Prozessanalyse.

Ermittlung der Prozessparameter

Es wurde nachgewiesen, dass eine Sauerstoffkonzentration von 2 % eine positive Wirkung auf die Bildung einer stabilen Schutzschicht hat /STR00/. Allerdings darf die Sauerstoffkonzentration einen bestimmten Wert nicht übersteigen, der von der Dichtigkeit eines Ofens, Gießtemperatur, Legierung usw. abhängig ist. Die durchgeführten Untersuchungen zeigen, dass eine Sauerstoffkonzentration von bis zu 5 % noch zulässig ist. Beim Nachchargieren wird die Schutzschicht auf der Magnesiumschmelze zerstört, was eine erhöhte Brandgefahr mit sich bringt. Daher ist die Beschneiung gleich nach der Masselzufuhr notwendig.

Beim Warmhalten (kein Nachchargieren) bzw. bei einem Ausfall der Sauerstoffkonzentrationsmessung soll sichergestellt werden, dass ein Schmelzeschutz gegeben ist. Die Beschneiung in regelmäßigen Zeitabständen ist für solche Fälle sinnvoll. Im Laufe der ersten Versuche hat sich ein Zeitlimit von 300 s. bewährt. Für einen Notfall ist die Möglichkeit einer sofortigen Beschneiung gegeben.

Somit erfolgt die Beschneiung in Abhängigkeit von folgenden Parametern:

- Sauerstoffkonzentration im Ofenraum;
- Steuersignal beim Nachchargieren;
- in regelmäßigen Zeitabständen;
- sofortige Notfallbeschneiung.
Optimierung der Schneeeinbringung

Um den Schmelzschutz gewährleisten zu können, ist die Schneeverteilung an die Tiegelgeometrie anzupassen. Die Optimierung der Schutzmittelteinbringung erfolgt an einem Ofenmodell aus Plexiglas im Maßstab 1:1 (Bild 5.5.3). Dieser Versuchsstand erlaubt die Modellierung und die Visualisierung des Beschneiungsvorganges und somit eine direkte Übertragung der gewonnenen Erkenntnisse an die bestehende Anlage. Die Änderung des Wasserpegels im Plexiglasmodell erlaubt die Berücksichtigung verschiedener Schmelzbadhöhen über den gesamten Ofenzyklus (Dosieren, Nachchargieren). Lediglich der Einfluss der Temperatur kann nicht berücksichtigt werden, so dass die Schneeverteilung direkt am Schmelzofen überprüft werden muss. Bei der Überführung des CO$_2$-Schnee-Verfahrens in den industriellen Maßstab wurde festgestellt, dass die angewandte Visualisierungsmethode sehr gut den realen Vorgang beschreibt.

Die Nachbildung des Schmelztiegels vom Ofentyp Rauch MDO500 hat zwei Deckelöffnungen zur Reinigung der Schmelzbadoberfläche (Bild 5.5.3, Pos. 5) und eine Öffnung zum automatischen Nachchargieren (Bild 5.5.3, Pos. 3). Da beim Nachsetzen der Masseln die Schutzschicht verletzt wird und die ungeschützte Magnesiumschmelze sofort oxidiert, ist die Beschneiung in diesem kritischen Betriebspunkt unerlässlich. Die ersten Versuche zeigten, dass einerseits die schräge Form des Beschickungsdeckels keine zufriedenstellende Verteilung des CO$_2$-Schnees auf die Schmelzbadoberfläche zuließ, andererseits wurde die Masselzufuhr durch das im Weg stehende Schneerohr behindert. Der Umbau des vorhandenen Ofendeckels ermöglichte sowohl die notwendige Schneeverteilung, als auch einen störungsfreien Nachchargievorgang (Bild 5.5.4a).
Im Laufe weiterer Untersuchungen wurde der optimale Abstand zwischen der Schneekanone und der Schmelzbadoberfläche sowie die genaue Beschneiungsposition ermittelt. Dementsprechend wurde der erforderliche Nachbau an einer der Betriebsöffnungen (Bild 5.5.3, Pos. 5) vorgenommen. Die zweite Öffnung wurde weiterhin zur Reinigung des Schmelzbades benötigt.

Diese am Deckel angebrachten Glasscheiben (Bild 5.5.4b, Pos. 1) ermöglichten die Beobachtung der Schmelzbadoberfläche während des Prozesses. Die bewegliche Glasabdeckung (Bild 5.5.4b, Pos. 3) verhinderten das Beschlagen der Scheiben mit Abdampfprodukten. Der integrierte Wischer (Bild 5.5.4b, Pos. 2) erlaubte die eventuell notwendige Reinigung der Glasscheibe. Beleuchtet wurde durch die zweite Glasscheibe, die an der gegenüberliegenden Seite angebracht war.

5.5.2 Industrielle Anwendung des CO₂-Schnee-Verfahrens

Im nächsten Arbeitsschritt erfolgte die Übertragung der ermittelten Ergebnisse in einen praxisrelevanten Betrieb. Dabei wurden bei den industriellen Versuchen (Versuchsgießerei der Audi AG und Laukötter GmbH) unterschiedliche Schwerpunkte gesetzt. In der Versuchsgießerei der Audi AG wurde das CO₂-Schnee-Schmelzeschutzkonzept speziell auf seine Eignung im Kaltkammerdruckguss untersucht, während bei der Laukötter Gusstechnik GmbH das Verfahren an einer Warmkammerdruckgussmaschine implementiert wurde.
5.5.2.1 Betriebsuntersuchungen in der Kleinserie

Das CO$_2$-Schnee-Verfahren wurde an einem Rauch MDO 500 Ofen implementiert, der für die entsprechende Begasung umgerüstet wurde (Kapitel 5.5). Dieser Magnesiumschmelzofen wird normalerweise mit einem SF$_6$-haltigen Gasgemisch betrieben, wobei die Verwendung eines SO$_2$/N$_2$-Gasgemisches zur Abdeckung der Schmelze ebenfalls möglich ist. Die genaue Beschreibung der Schmelzanlage ist in Kapitel 5.4 zu finden.

Bei den Versuchen wurde die Schmelzkammer der Anlage mit CO$_2$-Schnee abgedeckt, während die Entnahmekammer mit einem SF$_6$-haltigen Gasgemisch begast wurde (Bild 5.5.5). Die beiden Kammern sind durch eine Wand getrennt. Durch einen im unteren Drittel einer Trennwand befindlichen Durchlass tritt die Schmelze aus der Schmelzkammer in die Entnahmekammer über. Aus der Entnahmekammer gelangt die Magnesiumschmelze über das Gießrohr in die angeschlossene Druckgussmaschine. Die Umstellung des kompletten Schmelzprozesses auf das CO$_2$-Schnee-Verfahren war nur durch die konstruktive Veränderung des Ofens möglich und konnte aus betrieblichen Gründen (Garantieleistungen des Herstellers) nicht vorgenommen werden.

Die CO$_2$-Schnee-Anlage wurde am Schmelzofen installiert und mit den in Kapitel 5.5 ermittelten Steuerparametern in Betrieb genommen. Dementsprechend erfolgte die Abdeckung in Abhängigkeit von folgenden Parametern:

- bei der Steigerung der Sauerstoffkonzentration über 5%;
- beim Nachchargieren;
- in regelmäßigen Zeitabständen von 300 s.

Der Betrieb der Schneeanlage wurde daher unter realen Bedingungen an die Begebenheiten eines Schmelzofens angepasst, wobei die Reaktionsfreudigkeit der jeweiligen Legierung sowie die Heizleistung bzw. vertikale Temperaturverteilung in der Schmelze zu berücksichtigen war. Thermographische Untersuchungen der Schmelzbadoberfläche sind dabei sehr hilfreich, da sie einen guten Überblick über die Ofentemperaturen während und nach der Beschneiung geben.

Mit Hilfe der Infrarotkamera SC3000 der Firma FLIR Systems (Kapitel 5.3.2) wurde die Änderung der Schmelzbadoberflächentemperatur während und nach der Abdeckung mit CO₂-Schnee untersucht. Die aufgenommenen Videosequenzen wurden an einem Messrechner gespeichert und mit Hilfe der Software ThermaCAM Researcher ausgewertet. Die Temperatur der einzelnen Messpunkte sowie die linearen Temperaturverläufe lassen sich mit diesem Programm als Funktion der Zeit darstellen. Diese Auswertung gab einen Aufschluss über die notwendige Beschneiungsdauer bzw. den Beschneiungstakt.

Die Versuchsmethodik bei der Untersuchung des Abkühlverhaltens ist in Bild 5.5.6 dargestellt.
Vor der Beschneidung wurde die Oberfläche, falls notwendig, abgekratzt. Die Temperatur der Schmelzbadoberfläche betrug am Anfang des jeweiligen Abdeckvorgangs 680 °C; dies entspricht der für den Gießprozess erforderlichen Schmelztemperatur.
Die Dauer der Abdeckung wurde zwischen 10 s. und 3 min. variiert. Die anschließende Auswertung der Videosequenzen ergab die für diesen Schmelzprozess optimalen Parameter: 30 s. Beschneiungsdauer gefolgt von einer 1,5 min. Pause. Dieser Beschneiungstakt bewährte sich im Laufe weiterer Untersuchungen.

Bei den Untersuchungen in der Versuchsgießerei der Audi AG (Bild 5.5.7) wurde als Schmelzemedmaterial AZ91 verwendet. Für die Bereitstellung des CO$_2$ wurde ein Vorratsstank verwendet, in dem das CO$_2$ unterkühlt zwischen -25°C und -16°C (Druck dementsprechend zwischen 16-22 bar) vorlag (Bild 5.5.7, Pos. 4). Die Bauteile mit einem Gewicht von ca. 4 kg wurden an der Kaltkammerdruckgussmaschine gegossen. Der Versuchsgießprozess mit CO$_2$-Beschneiung dauerte ca. 2 Stunden.

Bild 5.5.7: Versuchsanordnung (Audi AG).

Die AZ91-Masseln (Bild 5.5.7, Pos. 1) wurden in den Vorwärmofen (Bild 5.5.7, Pos. 2) befördert, wo diese auf ca. 300 °C vorgewärmt wurden. Die Nachchargierung erfolgte automatisch, wobei die vorgewärmten Masseln über eine Rollenbahn (Bild 5.5.7, Pos. 4) in den Ofen gelangen. Die Schmelzeabdeckung wurde mit Hilfe der Beschneiungseinheiten (Bild 5.5.7, Pos. 5) realisiert. Das flüssige Metall wurde über die Gießrinne (Bild 5.5.7, Pos. 6) in die Gießform der Druckgussmaschine gefördert (Bild 5.5.7, Pos. 7) und zu Bauteilen vergossen.
Bei den Versuchen wurde der gesamte Schmelz- und Gießzyklus mit einer CO$_2$-Schneebegasung durchgeführt. Neben der visuellen Beobachtung wurden Gasproben aus der Ofenatmosphäre kontinuierlich entnommen und ausgewertet. Die Änderungen der Gaskonzentrationen entsprachen den zu erwartenden Verläufen. Durch die Sublimation des CO$_2$-Schnees entsteht CO$_2$-Gas und der Sauerstoff wird von der Badoberfläche verdrängt. Während die CO$_2$-Konzentration bei der Beschneiung auf 100 % steigt, fällt die des Sauerstoffs bis auf 0 % ab. Nach einigen Minuten steigt die Sauerstoffkonzentration langsam wieder an und die CO$_2$-Konzentration sinkt dementsprechend. Die CO-Konzentration bleibt während der gesamten Versuchsdauer vernachlässigbar klein (Bild 5.5.8).

Während der Versuche wurde die
Eignung des CO₂-Verfahrens über den gesamten Gießzyklus nachgewiesen. In keiner Phase (Nachchargieren, Abkrätzen, Warmhalten, Giessen) traten Anzeichen für einen Brand auf der Oberfläche oder eine Entwicklung giftiger Gase auf (Bild 5.5.8). Die gegossenen Teile entsprechen der üblichen Qualität (Bild 5.5.9).
5.5.2.2 Langzeituntersuchungen im Gießbetrieb

Das Verfahren wurde an einem Warmkammerofen realisiert, welcher normalerweise mit einem Gemisch aus SO$_2$ / N$_2$ (3% SO$_2$) betrieben wird. Das Fassungsvermögen des Ofentiegels beträgt ca. 250 kg Magnesium. Für die Herstellung der Bauteile ist eine Frech-Druckgussmaschine an den Schmelzofen angeschlossen (s. Kapitel 5.4).

Optimierung der CO$_2$-Schneeverteilung

Die angewandte Methode zur Optimierung der Schneeeinbringung mittels eines Plexiglasmodells bewährte sich bei den Untersuchungen in der Versuchsgießerei bei Audi. Ein Modell des umzurüstenden Schmelzofens wurde angefertigt, um den Beschneiungsvorgang optimieren zu können (Bild 5.5.10). Entsprechend der gewonnenen Erkenntnisse wurde die Umrüstung vorgenommen. Da der Temperaturinfluss auf die Schneeverteilung nicht berücksichtigt werden konnte, fand eine weitere Anpassung direkt am Ofen während des Betriebs statt.

Prozessregelung

Die Prozesssteuerung sowie die Datenerfassung bei den Versuchen in der Versuchsgießerei der Audi AG erfolgten mit Hilfe der verhältnismäßig aufwendigen Mess- und Steuerungseinheit. Durch die Ermittlung und eine weitere Anpassung der Steuerparameter war es möglich, den Schmelzprozess über die Vorgabe des Beschneiungstaktes
durchzuführen. Als logische Konsequenz daraus folgte die Entwicklung einer benutzerfreundlichen und einfachen Prozessregelung.

Das entwickelte Regelgerät (Bild 5.5.11) besteht im Wesentlichen aus 2 Zeitrelais, die das Einstellen der Beschneiungsdauer und des Beschneigungstaktes ermöglicht. Die Möglichkeit der Beschneiung direkt nach dem manuellen Nachchargier-Vorgang sowie der Notbeschneiung ist ebenfalls vorgesehen. Die kompakte Bauweise ermöglicht einen mobilen Einsatz des Gerätes.

Die für die Realisierung der Regelung notwendigen Informationen über die zeitliche Änderung der Oberflächentemperatur wurden mit Hilfe der Thermographiekamera am Schmelzofen ermittelt (Bild 5.5.12). Dabei wurde nach der in Bild 5.4.1 dargestellten Methodik vorgegangen. Die anschließende Auswertung der Messergebnisse lieferte den Beschneigungstakt (20 s. gefolgt von 60 s. Pause). Während der Versuche wurde die Regelung genauer an den Prozess angepasst.

Die Versuchsanordnung während der Betriebsuntersuchungen bei der Laukötter Gusstechnik GmbH ist in Bild 5.5.13 dargestellt.

Während der Untersuchungen wurden Teile mit einem Schussgewicht von ca. 200 g (Gehäuse für Schleifmaschine) aus AZ91 im Druckgussverfahren hergestellt. Das Nachchargieren erfolgte manuell, wobei überwiegend Produktionsreste umgeschmolzen wurden.

5.5.3 Zusammenfassung der Ergebnisse

Im diesem Untersuchungsabschnitt erfolgte die Umsetzung der gewonnenen Erkenntnisse in den industriellen Gießbetrieb. Die bei Laboruntersuchungen aufgedeckten Schwachpunkte wurden verbessert. Der Prozess wurde automatisiert, zur Steuerung wurde u. a. die Sauerstoffkonzentration im Ofenraum herangezogen. Die weitere Anpassung der

Die komplette Umstellung des Gießprozesses erfolgte in der Gießerei der Laukötter GmbH, wo eine Warmkammerdruckgussmaschine mit der CO₂-Schnee Technik betrieben wurde. Die Untersuchungen dauerten über mehrere Tage, wobei jeweils während einer Schicht (8 Stunden) das Verfahren zum Einsatz kam. Durch die kontinuierliche Reduzierung der CO₂-Schneemenge wurde der minimal notwendige Verbrauch ermittelt (ca. 13 kg flüssiges CO₂ pro Stunde). Betrachtet man den CO₂-Ausstoß im Vergleich zur SF₆-Begasung, so ergibt sich eine Reduzierung um ca. 80 %. Während der gesamten Untersuchungen wurden keine Störfälle festgestellt.
6 Zusammenfassung und Ausblick

Zur Vermeidung dieser Nachteile wurde im Rahmen der hier dargestellten Untersuchungen festes CO₂ zum Schutz von Magnesiumschmelzen eingesetzt. Der CO₂-Schnee scheidet sich auf dem Schmelzbad ab und senkt die Oberflächentemperatur der Schmelze, was zu einer Verringerung der Abdampfgeschwindigkeit des Magnesiums führt. Gleichzeitig erfolgt durch Sublimation des CO₂-Snees eine Gasexpansion, wodurch jeglicher Sauerstoff von der Badoberfläche verdrängt wird.

Das CO$_2$-Schnee-Verfahren wurde im Labormaßstab untersucht und qualifiziert. Die Handhabungstechnologie, welche für die Übertragung der im Labor gewonnenen Erkenntnisse in den praxisrelevanten Maßstab erforderlich war, wurde entwickelt und an industriellen Magnesiumschmelzöfen realisiert /KAR04b, BIE05/. Die weiteren Optimierungen dienten dem effizienten Einsatz des Kühlmittels sowie der sicheren Prozessführung.

Im Rahmen dieser Arbeit wurde ein neues Schutzverfahren für Magnesiumschmelzen entwickelt und umgesetzt. Diese neue Methode bietet ein geeignetes Schmelzeschutzkonzept für die Handhabung von Magnesiumschmelzen, das zu einer zufriedenstellenden, umweltgerechten und nicht zuletzt sicheren Magnesiumgießtechnik führt /BAC04, KAR05/. Die Reduzierung des CO$_2$-Ausstoßes um ca. 80% im Vergleich zu SF$_6$ wurde durch industrielle Versuche nachgewiesen. Da es sich hier aber um natürliches CO$_2$ – Gas handelt, welches der Atmosphäre entnommen und nach Gebrauch rückgeführt wird, ist der GWP Faktor lediglich auf den Energieaufwand zur Verflüssigung des Gases zu beziehen.

Der direkte Übergang von der Entwicklung der CO$_2$- Schutzgastechnik durch den vollständigen Verzicht auf fluor- bzw. schwefelhaltige Gase auf ein verbrauchsoptimiertes Verfahren mit der Minimierung der freien Schmelzbadoberfläche durch keramische Schwimmkörper, stellt eine große Innovation der gießtechnischen Verarbeitung von Magnesium dar. Der damit erzielbare umweltfreundliche Magnesiumguss verbessert entscheidend die Ökobilanz dieses Werkstoffes und fördert damit seine industrielle Akzeptanz.
7 Anhang

In diesem Kapitel werden die Ergebnisse der ESMA- und EDX-Analyse sowie die Gefügeaufnahmen dargestellt.

Bild 7.1: Nach 30 min. entnommene AZ91-Probe (N₂-Begasung).

Bild 7.2: EDX-Analyse mit der Elementverteilung auf der Probenoberfläche (Bereich 1).
Bild 7.3: EDX-Analyse mit der Elementverteilung auf der Probenoberfläche (Bereich 2).
Bild 7.4: EDX-Analyse mit der Elementverteilung auf der Probenoberfläche (Bereich 3).
Bild 7.5: Ergebnisse der ESMA-Analyse (N\textsubscript{2}-Begasung).
Bild 7.6: Nach 30 min. entnommene AZ91-Probe (Ar-Atmosphäre).

Bild 7.7: EDX-Analyse mit der Elementverteilung auf der Probenoberfläche (Ar-Begasung).
Bild 7.8: Ergebnisse der ESMA-Analyse (Ar-Begasung).
Bild 7.9: Nach 30 min. entnommene AZ91-Probe bei der Abdeckung mit CO₂-Schnee.

Bild 7.10: EDX-Analyse mit der Elementverteilung auf der Probenoberfläche (CO₂-Schnee Abdeckung).
Bild 7.11: Ergebnisse der ESMA-Analyse (Abdeckung mit CO₂-Schnee).
8 Literaturverzeichnis

/AMC28/ US Patent Nr. 1656793, American Magnesium Corporation, 1928

/AYL59/ Aylmore, D. W.; Gregg, S. I.; Jepson, W. B.: Journal of Electrochemical Society 1959 v.101 No. 12, S. 1010-1013

/BAC03a/ Bach, Fr.-W.; Karger, A.; Pelz, Ch.; Schacht, S.; Schaper, M.: Use of CO₂-snow for protecting molten magnesium from oxidation. Proceeding of the 2th International Conference Materials and Processing, 28-30.06.03

/BAC03b/ Bach, Fr.-W.; Karger, A.; Pelz, Ch.: Method for inhibining the oxidation of molten magnesium. IX International Conference New materials and technologies in materials science, 23-26.09.2003, pp. 93-95

Berghoff, R. E.; Pahl, M. H.; Balduhn, R.: Design of Nozzles for Liquid Carbon Dioxide Dosing. ZFL 44 (1993) Nr. ½, S. 1-4

Berghoff, R. E.: Kontinuierliche CO$_2$-Dosierung beim Schockfrosten. Dissertation, Universität Paderborn, Shaker Verlag, Aachen, 1999

Boussion, M. L.; Grall, L.; Caillat, R.: Rev. Metallurg. 54 (1957), S. 185

Brooks, M. E. Foundry 64 (1936) Nr. 2, S.91

Büchen, W.: Oxidationsschutz bei Aluminium- und Magnesiumformguss durch Schutzgase. Giesserei 77 (1990), Nr. 18, S. 581-585

DP Paten Nr. 384137, Chemische Fabrik Griesheim-Elektron, 1922

Cihal, V.; Pypar, V.: Korrosionsprobleme bei Gas- oder Wassergekühlten
Reaktoren. Werkstoffe und Korrosion 1962, Bd. 13 No. 1, S. 1-11

/DOW33/ EP Patent Nr. 404518, The Dow Chemical Company, 1933

/EUR04/ Europäisches Parlament. Ausschuss für Umweltfragen, Volksgesundheit und Verbraucherpolitik. 29.01.2004, S. 80-81

Herstellung von Stahlhohlkugeln auf der Basis verschiedener Ausgangswerkstoffe. Fraunhofer Institut für Fertigungstechnik und Angewandte Materialforschung, Außenstelle für Pulvermetallurgie und Verbundwerkstoffe, Dresden, Jahresbericht 1999

French, W.: Experiences and Possibilities in Hot Chamber Die Casting of Magnesium. 8th SDCE, Detroit 1975, Paper No. G-T75-113

Gefahrpotential beim Umgang mit Magnesium. Aluminium 77 (2001) 4, S. 238-244

Gmelins Handbuch der anorganischen Chemie. Verlag Chemie Berlin, 27 (1937-), S. 296

Light Metal Age 1 (3) 1943, S. 10-11/20-22

/GUL45/ Gulbransen, E. A.: The Oxidation and Evaporation of Magnesium at Temperatures from 400 °C to 500 °C. Transactions of Electrochemical Society 87 (1945), S. 589

/HAN75/ Hanawalt, J. D.: SF₆ – Protective Atmosphere for Molten Magnesium. 8th SDCE, Detroit 1975, Paper No. G-T75-111

McIntosh, A. B.; Bagley, K. Q.: Selection of Canning Materials for Reactors Cooled by Sodium Potassium and Carbon Dioxide. Journal of Institute of Metals, 84 (1956), S.251-270

8 Literaturverzeichnis

/MTB00/ Magnesium-Taschenbuch. Aluminium-Verlag. Düsseldorf, 2000

/MUH76/ Muhina, I. J. et al.: Bezflussovaja plavka magnievih splavov. Litejnoe proizvostvo 11 (1976), S. 16

/ÖAM33/ Ö Patent Nr. 138009, Österreichisch Amerikanische Magnesit AG, 1933

/ÖAM36/ EP Patent Nr. 809320, Österreichisch Amerikanische Magnesit AG, 1936

/PTY00/ WO Patent 00/064614: Cover Gases. Cast Centre PTY Ltd, 2000

Schindelbacher, G.; Rockenstaub, H.; Sigmund, A.; Wohlmuth, P.: Effektivität und Schutzwirkung von verschiedenen Gasgemischen bei Mg-Schmelzen. 2001

Schneider, A.; Esch, U.: Über die Reaktion zwischen Magnesium und Schwefeldioxid. Zeitschrift für Metallkunde 32 (1940) 6, S. 173-177

Timonova: Korozija i zascita magnievih splavov. Verlag “Nauka”, 1964, S. 5-7

Timonova: Korozija i zascita magnievih splavov. Verlag “Nauka”, 1964, S. 14-23

S. 33-45

