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Zusammenfassung

In modernen Entwicklungs- und Fertigungsprozessen spielt die Analyse von
Messdaten und Simulationsergebnissen eine herausragende Rolle: Während
der Entwicklungsphase eines Produktes gilt es, die Eignung des Designs für die
Massenfertigung durch Simulationen und Experimente abzusichern. Zudem
stellt eine Vielzahl von Messungen eine gleichbleibend hohe Qualität in der
automatisierten Fertigungsumgebung sicher.

Bei steigender Anzahl von Messgrößen und wachsenden Datenmengen stößt
die konventionelle, manuelle Datenanalyse an ihre Grenzen. Die vorliegende
Arbeit untersucht den Nutzen der Anwendung maschinellen Lernens auf ty-
pische Fragestellungen in der Datenauswertung von der Entwicklung eines Pro-
duktes bis hin zur Massenproduktion. Die Herstellung integrierter Schaltkreise
und mikromechanischer Sensoren auf Siliziumbasis dient als Fallbeispiel. Im
Rahmen der Arbeit sind konkrete Lösungen zu einigen relevanten Problemen in
der industriellen Anwendung entstanden, bei denen die Ausbeute die zentrale
Größe darstellt:

Die parametrische Ausbeute wird durch die Empfindlichkeit eines Designs
gegenüber Prozessschwankungen bestimmt. In dieser Arbeit wird ein Konzept
zur Auswertung von Simulationsergebnissen in einer statistischen Sensitivitäts-
analyse entwickelt, die durch den Einsatz nichtparametrischer Regression mit
Gaußprozessen effizient durchgeführt werden kann. Der Ansatz ermöglicht eine
neue Methode zur robusten Optimierung, die für rechenaufwändige
Simulationen erst durch den vorgestellten Ansatz durchführbar wird.

Gaußprozesse ermöglichen eine effektive Nutzung vorhandener Simulations-
ergebnisse, machen als statistische Modelle aber zudem eine optimale Pla-
nung neuer Simulationen möglich, wodurch die Zahl der nötigen Simulationen
signifikant reduziert werden kann. Ein neuer Ansatz für aktives Lernen mit
Gaußprozessen wird in dieser Arbeit vorgestellt und experimentell validiert.

Neben statistischen Ausfällen, die in der parametrischen Ausbeute erfasst
werden, können in der Fertigung systematische Fehler auftreten. Der Ursprung
solcher Probleme kann in komplexen Fertigungsanlagen allerdings nur schwer
lokalisiert werden, da physikalische Zusammenhänge kaum nachvollziehbar sind
und man mit einer großen Zahl möglicher Ursachen konfrontiert ist. Durch
Anwendung von Merkmalsselektion ist es im Rahmen dieser Arbeit gelungen,
Daten aus Qualitätskontrolle und Fertigung zu kombinieren und die Fehler-
lokalisierung zu automatisieren.





Abstract

The analysis of data from simulations and experiments in the development
phase and measurements during mass production plays a crucial role in mod-
ern manufacturing: Experiments and simulations are performed during the
development phase to ensure the design’s fitness for mass production. During
production, a large number of measurements in the automated production line
controls a stable quality.

As the number of measurements grows, the conventional, largely manual
data analysis approaches its limits, and alternative methods are needed. This
thesis studies the value of machine learning methods for typical problems faced
in data analysis from engineering to mass production. In a case-study, the pro-
duction of integrated circuits and micro electro-mechanical systems in silicon
technology is discussed in detail. A number of approaches to salient problems
in industrial application have been developed in the presented work, addressing
the yield as the central figure of batch processes in silicon manufacturing:

The parametric yield is governed by a design’s robustness against process
tolerances. This work develops a framework for doing statistical sensitivity
analysis, and robust optimization which accounts for process tolerances. Us-
ing nonparametric Gaussian process regression, the sensitivity analysis can be
performed efficiently. For computationally demanding simulations a robust
optimization is eventually only made feasible through the presented approach.

Being probabilistic models, Gaussian processes allow for an optimal exper-
imental design, thus significantly reducing the number of required simulation
runs. A novel approach to active learning for Gaussian process regression is
proposed in this thesis, and validated experimentally.

Besides random failures, as captured by the parametric yield, systematic
errors in the production can lead to additional losses. It is hard to localize the
root cause for previously unseen losses, as physical interrelations can hardly
be reconstructed in complex manufacturing facilities, and as there is usually a
large number of potential sources for the error. This work shows that, using
feature selection, data from quality checks can be combined with data from
manufacturing to construct an automated localization mechanism.
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Introduction

Motivation and objective

This thesis has resulted from a project to bring together novel developments
in machine learning and substantial applications in modern industrial engi-
neering and mass production. The project was done at the Corporate Sec-
tor Research and Advance Engineering of Robert Bosch GmbH, Stuttgart,
and was supported by the Max Planck Institute for Biological Cybernetics in
Tübingen—opening the opportunity to address both, practical and conceptual
issues.

Mass production. The great success of mass production consists in manufac-
turing items in a large number of copies, by breaking their construction down
to a number of well-defined manipulations. Semiconductor manufacturing is
a prime example for such mass production, creating large numbers of highly
complex devices in standardized batch processes.

To ensure a stable quality, each manufacturing step needs to be repeatable by
keeping it within defined specifications. For technologically advanced products
these requirements become tighter, and inevitable fluctuations might be of
the same scale as the allowed tolerances. To effectively control a complex
manufacturing environment, it is therefore necessary to collect a large number
of data to monitor its stability. Rigorous quality checks at the end of the
production line are indispensable to identify and reject sporadic failures.

Industrial engineering. While one objective is to increase the control over
the processes in mass production, another lever to increase quality is to de-
sign a product to be robust against fluctuations in the first place. However,
the high complexity of the manufactured devices often makes it impossible to
foresee the actual impact of fluctuations on their functionality, making robust
design a formidable task: one is usually dealing with tens or even hundreds of
fluctuating parameters which jointly determine a nonlinear response.

Powerful numerical simulation software is now widely available, making it
possible to model the complete behavior of a device. However, such complex
models can hardly mediate an intuitive understanding of the system, and are
usually too time-consuming to be used in an automated, robust design opti-
mization: they are used to perform individual computer experiments, replacing
expensive experimental specimens.

Machine learning. When the underlying physical reality is too complex to be
described by manageable models—as it is the case for complex devices such as
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integrated circuits or processes in semiconductor manufacturing—it becomes
impossible to directly interpret observations or to understand the effect of
specific changes.

Machine learning addresses this problem by replacing deduction through
physical modeling by extracting the underlying relations directly from ob-
served data: Statistical nonparametric models, for example, do not assume a
fixed functional dependency, and the complexity of the model is adjusted as
more data are observed. These models serve as a machinery to handle high
dimensional data, being very flexible and thus applicable to many different
problems: They are based on elementary assumptions about the structure of
the data, not the underlying physical reality.

In other fields, such as biotechnology, where the physical reality can not
yet be modeled, machine learning is already successfully applied in the inter-
pretation of experimental measurements. Thinking of complex manufacturing
lines, the identification of the root cause of an observed error is similar to the
identification of a gene, responsible for some phenotypic feature: directly in-
vestigating the underlying mechanism is a hopeless endeavor, and the machine
learning approach is to identify the root cause (gene) by statistically measuring
its impact on the error (phenotypic feature).

Machine learning for mass production and industrial engineering. The
goal of this thesis is to make novel results from machine learning accessible to
open problems in data analysis from product design to mass production, and
to introduce industrial manufacturing as an interesting and mainly uncovered
field in machine learning research. The development and production of inte-
grated circuits and micro electro-mechanical systems in silicon technology is
used as an exemplary case study throughout this thesis.

The thesis starts with a thorough study of a product’s cycle from design to
mass production, where the emphasis is placed on the analysis of experimental
measurements, computer simulations and data collected during production. A
number of valuable applications for machine learning could be identified in
this survey. These have been worked out and ultimately cast into software
tools in collaboration with various departments at Bosch, where they are now
routinely used:

The contribution of this thesis to design analysis is a statistically justified
approach to compute the robustness and predominant structure of a design
from computationally demanding, high dimensional computer models. The
approach has lead to a novel scheme for design optimization, which explicitly
accounts for process tolerances—while being tractable through an extremely
efficient use of simulation runs. Using nonparametric Gaussian process regres-
sion, the proposed method is significantly different from previous approaches
to robust optimization.

Since Gaussian processes are probabilistic models, which provide a notion of
uncertainty, they can be used to plan simulation runs using statistical exper-
imental design—increasing the informativeness of each computer experiment.
In this work a novel active learning scheme is derived from Bayesian decision
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theory to make sensitivity analysis applicable to highly expensive simulations.
In contrast to previous approaches, the learning scheme avoids expensive nu-
merical approximations and directly minimizes the generalization error in a
given region of interest.

While design optimization aims at the reduction of failures due to process
tolerances, another approach of this thesis addresses systematic failures due to
malfunctioning processes. The objective of the troubleshooting task is to iden-
tify the root cause of systematic failures, which are identified in final quality
checks. Since it is impossible to build a physical model of the complete man-
ufacturing environment, the root cause needs to be filtered from an extremely
large number of characteristics of the manufacturing line. In analogy to pre-
vious approaches e.g. in bioinformatics, this work proposes a novel scheme
for troubleshooting, locating errors using feature selection. Since the method
approaches the problem from a phenomenological viewpoint, it allows to re-
late measurements from quality control to any type of data collected during
production.

A guide through this thesis

A successful application of machine learning requires a deep insight into the ad-
dressed field, and a broad overview over basic principles and available methods
in machine learning. On the one hand, this thesis introduces modern manu-
facturing as a relatively new field to machine learning, identifying challenging
and relevant tasks. On the other hand, novel methods to approach these tasks
have been developed and are described in detail.

Therefore, a wide range of topics from semiconductor technology to statis-
tical inference is covered, and the thesis is aimed at both, practioners and
machine learning experts. The following overview is intended as a guide to the
reader, indicating topic, background and addressee of individual sections—it
can be seen as an annotated table of contents.

Chapter I introduces semiconductor manufacturing as a prime-example
for modern mass production, where data analysis plays an important role: Sec-
tion 1 comments on the organization of mass-production and section 2 covers
engineering for robust designs. Each section is divided into an overview over
basic terms and open questions related to machine learning, outlining our
approaches in relation to previous work. Besides an introduction to modern
manufacturing and design, the chapter serves as a case study for the practioner
to exemplify where an application of machine learning can improve off-the-shelf
methods.

A very basic fact in machine learning is that no information can be ex-
tracted from observations without a suitable model. Chapter II outlines the
concept of Bayesian statistics as a formal way to encode information in
the framework of probability theory. Section 1 introduces probabilistic models
as the basic ingredient for inference, i.e. the analysis of data in the light of
prior information. Statistical model selection and decision theory are covered
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by section 2. For a reader who is familiar with Bayesian analysis, these sec-
tions might serve as a résumé to introduce concepts and notation used in the
following chapters. Illustrating theoretical considerations on the analysis of ex-
perimental data, the short survey is also intended to encourage experimenters
to use the Bayesian framework as a principled way to handle measurement
results. Gaussian processes are nonparametric probabilistic models for regres-
sion and classification, which are used extensively in this thesis. Section 3
introduces Gaussian process regression in detail, providing the basis for the
proposed approaches to design analysis and active learning.

The approach to design analysis and robust optimization, covered by
chapter III, is a cornerstone of this thesis. Section 1 addresses the funda-
mental concept of robust designs, and discusses previous work on sensitivity
analysis and design optimization in relation to the proposed approach. The
measures which are used to analyze the response of a system to fluctuations
in mass production are introduced in section 2, their interpretation being ex-
emplified in a case study. While the above sections motivate the approach,
section 3 covers the actual implementation, which ultimately makes compu-
tations feasible for realistic computer models. These details, as well as the
empirical verification in section 4, might be of more relevance to a reader in-
terested in machine learning than for a potential user of the provided software
package.

How to plan simulation runs efficiently when the models are nonlinear and
high dimensional is covered by chapter IV, where a novel active learning
scheme is developed for Gaussian process regression. Section 1 reviews the
historical development of statistical experimental design and active learning.
The proposed learning scheme for Gaussian process regression is developed in
section 2, where a number of illustrations exemplify the results. The section is
mostly aimed at the experienced reader and includes a thorough discussion of
the conceptual background. The experimental section 3 serves as a verification
of the approach’s performance.

Chapter V on troubleshooting is largely self contained, as the feature se-
lection approach does not rely on the same methods as the remaining chapters.
Section 1 discusses the used data, including the preprocessing which ultimately
makes feature selection applicable to this problem. This work’s main contribu-
tion to the troubleshooting problem has been to identify its analogy to other
fields studied in machine learning. The generic concept of feature selection is
covered by section 2, where the chosen implementation is motivated in compar-
ison to previous work. To verify the viability of the proposed troubleshooting
scheme, it has been tested on historic and recent data from production. The
results of the case study are presented in section 3.

The outlined approaches are discussed again in a concluding section with
regard to the presented results.



I. Machine learning for
semiconductor manufacturing

Machine learning provides a large variety of methods to extract information
from data. The aim of this thesis is to assess where machine learning promises
to be valuable to analyze processes in production and engineering, and to de-
velop tools for the application in practice. Production in semiconductor tech-
nology involves a particularly automated manufacturing environment where a
lot of data is collected on the way from the design to the finished product.
Therefore we concentrate on this field to identify beneficial applications for
machine learning. However, we believe that the approaches which we have
developed in this thesis apply also to other fields of modern production.

We devote this chapter to the description of semiconductor manufacturing,
typical products, their design and fabrication. Note that we slightly abuse
the term semiconductor manufacturing in this thesis, also using it to refer semiconductor

manufacturingto the technology to produce silicon-based micro electro-mechanical systems
(MEMS). MEMS

We start this chapter with a brief description of MEMS in section 1, which
are produced on a large scale by Robert Bosch GmbH for sensor applications.
The production of such miniaturized systems in semiconductor foundries is foundry

quite different from traditional manufacturing or assembly. We introduce the
basic processes and give an overview on the typical organization of semicon-
ductor mass production, where hundreds of machines and production steps
might be involved. In section 2 we discuss the design process, which relies
heavily on computer experiments since experimental specimens are typically
very expensive and time-consuming in their fabrication. Computer models are
used in industrial engineering to validate the functionality of a design, and to
assess its robustness with respect to process tolerances.

We close each section with a discussion of potential uses of machine learn-
ing, introducing related previous approaches and the solutions which we have
developed in this work.

1. Semiconductor products & manufacturing

1.1. Micro systems and integrated circuits

In 1965, Moore predicted an exponential growth of the number of transistors
per integrated circuit (IC) for the next decade (Moore, 1965). The prophecy integrated circuit

has remained true until today, and up to 109 transistors are now combined
in a single processing unit while prices remain stable. Low costs per device
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(a) Yaw rate sensor in fine mechanics and
equivalent component in MEMS technol-
ogy (top right).

(b) Mechanically active structure of the
yaw rate sensor in MEMS technology.
Size: 2× 2× 1

10mm3.

Figure I.1.: A modern yaw rate sensor in MEMS technology together with a prede-
cessor model constructed in fine mechanics (a). The mechanically active structure
of the MEMS sensor is shown in (b). The basic principle is to exploit the coriolis
force caused by the rotating frame of reference.

in combination with increasing performance is mainly due to miniaturization:
ICs are produced as batches on so-called wafers , silicon discs with a diameterwafer

of up to 300mm. Thus we obtain the price for a single device by dividing the
costs by the number of units which can be crammed onto a wafer.

The active structures of ICs are generated in an alternating series of pro-
cesses which deposit or remove thin layers of material on the wafer, where
lithographic procedures are used to define fine structures on the layers. These
processes are basically the same for all integrated systems, and different prod-
ucts are obtained by using different lithographic masks and a diverse succession
of hundreds of processing stages.

The processes for processing silicon have long been restricted to electronic
circuits. Robert Bosch GmbH has been a pioneer in transferring the technology
to the production of miniaturized “micro” electro-mechanical systems, where
partly self-supporting mechanical structures form the active structures. The
response of active structures to external forces is measured by means of inte-
grated electrical modules and analyzed by an application specific IC. MEMS
are used in sensor applications to measure for example pressure or inertial
forces due to acceleration or rotation. Figure I.1 shows mechanical structures,
which are used to measure the yaw rate in automotive applications. Com-yaw rate sensor

pare in panel (a) the degree of miniaturization which could be achieved by the
replacement of fine-mechanics by micro structures in MEMS technology.

1.2. Semiconductor foundries

Assembly lines for mass production of most bulk articles are dominated by spe-
cially tailored machines, which handle the devices one-by-one and carry out
product specific manipulations. In contrast, standard-sized wafers are used
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raw lots-

Stage 1

M11

M12

. . .
M1n1

-

Stage 2

M21

M22

. . .
M2n2

-. . .

Stage K

MK1

MK2

. . .
MKnK

-
wafer-level

tests

Figure I.2.: Serial-group manufacturing line. The raw lots undergo manipulations
in K production stages, and in each stage ℓ we have several machines Mℓ1 . . .Mℓnℓ

to
choose from. Most lots take different paths through the machinery, as the allocation
is designed to maximize the plant utilization. After processing, the functionality of
each unit is tested on wafer-level.

in semiconductor foundries for all devices, and manipulations can be reduced
to the repetition of a couple of standard processes. While it is expensive and
time-consuming to adjust a specialized mass production, it is therefore possible
to manufacture a large variety of products simultaneously in one facility, using
shared resources. Hence, foundries are not organized in serial manufacturing
lines: The machinery consists instead of a large number of multi-purpose ma-
chines which are used interchangeably for various processing steps of different
products. Single lots1 are guided through the machinery by a computer- lot

ized system which ensures the correct succession of processing steps. Several
equivalent machines are available for most steps, and the typical way of a lot
through the machinery can be seen as a serial-group manufacturing scheme,
as shown in figure I.2.

In the examples which we describe in chapter V, we are dealing with as many
as 500 production stages in which one can typically choose from five equivalent
machines. As the allocation to machines is usually designed to maximize the
utilization of the machinery, it will therefore hardly happen that two lots share
a common history.

Manufacturing in standard chemical processes, such as etching and epitaxial
growth, has the advantage that expensive machinery can be used for a large
family of products. Unfortunately, using these methods the dimensions of in-
terest can hardly be controlled directly. In epitaxy, for example, the resulting
layer thickness would be controlled via deposition time and temperature, in
contrast to a direct control in milling metal workpieces. Furthermore, the
very idea of using batch processes on wafer-level implies that control measure-
ments are not done for each device. The process stability needs therefore to be
controlled on the basis of few measurements on the wafer, which are referred
to as in-line measurements . Hence, even though the processes in mass pro- in-line

measurementsduction are usually well understood and under tight control, it might happen
that previously unseen errors pass the control mechanisms.

Due to the imperfect coverage of in-line measurements, a conclusive decision
regarding the quality of the devices can only be made in final tests at the final tests

very end of the production chain. However, it is highly important from the

1A lot is a group of wafers which is handled simultaneously.
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Stage Equip. Equip. Track in Track out Queue

ID ID Type

P1_5X 8Q1 WLANT XX/XX/2004 XX:XX:11 XX/XX/2004 12:XX:08 XX/XX/2004 XX:XX:11

NP_086X 103 WLANT XX/14/2004 XX:XX:22 XX/XX/2004 10:XX:27 XX/XX/2004 0X:XX:55

NE_087S QIM MISKO XX/XX/2004 XX:XX:45 XX/XX/2004 16:XX:45 XX/XX/2004 XX:X4:35

PAC57X Q5_3 CRO_AC XX/XX/2004 13:XX:17 XX/XX/2004 18:XX:14 XX/XX/2004 13:35:03

. . . . . . . . . . . . . . . . . .

Table I.1.: The complete processing history is stored in a database for each lot.
Recorded are the equipment ID and timestamps when the lot was put into the
queue, when processing started and ended.

economical point of view to detect changes in target parameters early in the
line in order to be able to react fast to changes in the processes.

material e

?

processing ee

?

wafer-level
tests ee

?

packaging eee

?

final tests ee

?

assembly
eee

eee

Figure I.3.: Added
value.

Especially with regards to the cost structure of batch
processes it is is desirable to discard malfunctioning de-
vices before separation: Batch processing makes han-
dling cheap, and a large fraction of the costs for a finished
device can therefore be assigned to the last stages after
the devices have been separated. Each device is there-
fore tested rigorously on wafer-level before the units arewafer-level tests

separated. A schematic view on the structure of semi-
conductor production is shown in figure I.3.

The tests on wafer-level are an important source of
information for the manufacturing line: As we have out-
lined, in-line measurements are usually fragmentary and
the finishing tests on wafer-level are the first to control
each device. Following tests after separation are of re-
stricted significance to the manufacturing line, as the
packaging has a significant influence on the results. This
makes it hard to relate the results to processes in the
wafer foundry.

1.3. The “smart” factory

For serial manufacturing lines it is sufficient to stack the workpieces in front of
the machine which is next in the process chain. As we have seen, however, the
organization of a semiconductor foundry is more intricate. Most lots which
are waiting in the queue require different processing and it is necessary to keep
track of the actual state of each lot.

For this reason the complete lot-history is stored in a database, which canlot-history

also be accessed for further analysis. An exemplary excerpt from such a lot-
history is shown in table I.12: The database stores the time when each lot enters

2Note that the data has been alienated for reasons of nondisclosure.
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Figure I.4.: The results of on-wafer tests are typically shown as wafermaps, where the
results are arranged according to the units’ positions on the wafer. Panel (a) shows
a parametric wafermap with numerical test results. Panel (b) shows a pass/fail
wafermap, where several tests are combined by classifying the units into several
failure bins.

the queue for a production stage, the beginning and ending of processing, as
well as the ID of the used equipment.

Our running example is semiconductor manufacturing. However, many other
modern shop floors provide similar structures to store similar information, and
the methods which we propose in this thesis can therefore also be valuable
there.

To ensure process stability, a great variety of in-line measurements are per-
formed during production. In contrast to the lot-history, these data are not
necessarily stored in the database, as it is often sufficient to install a control
mechanism locally at the machine. The in-line data is therefore only partly
available for subsequential analysis and might have to be collected manually.

The results of the electrical on-wafer tests are tens of numerical values or
characteristic curves, which are recorded for each die. Units which fail these
tests are inked and separated out. Different types of failures are pooled in ink

several error bins, and their distribution on wafers is often inspected in form error bins

of so-called wafermaps (figure I.42). wafermaps

The data which are collected in the final measurements after separation are
similar to that from on-wafer tests. However, as we have mentioned above,
the units’ characteristics are usually well defined by the on-wafer tests, and
deviations from the final tests are dominated by effects from separation and
packaging.

1.4. Applications of machine learning in production

Having introduced the structure of semiconductor manufacturing and related
problems, we will now discuss how machine learning might help to use available
data to ease the manufacturing process.
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Optical inspection. A prominent application of machine learning methodsoptical inspection

in manufacturing is the automation of visual tests, which are generally very
expensive and little effective if done manually. Tobin et al. (2001) discuss
a procedure which automatically compares shots of single dies to reference
pictures and counts deviations as defects. Such algorithms are now commonly
used, their output listing single defects together with their position on the
wafer. This allows for a visualization on defect maps , which are similar todefect maps

wafermaps.

SPC. Statistical process control (SPC) is commonly used to control processesSPC

with a large number of inspection variates. A detailed description is given by
Wieringa (1999). The basic tool in SPC are Sheward control charts, whereSheward chart

each relevant parameter is plotted together with its specifications against the
time (figure I.5). Since single outliers are easily detected automatically, the
main challenge is the detection of drifts or sudden shifts.

time

p
a
ra

m
e
te

r

Figure I.5.: Sheward con-
trol chart. Shown are
measurements (•) and the
tolerance window (—).

Wiel (1996); Rao et al. (1996); Leang et al. (1996);
Kohlmorgen and Lemm (2001); Chinnam (2002) re-
port on automatic methods to detect changes in the
time series. A common idea for the analysis is to use
a regression model to predict future measurements.
Such models can foresee a drift out of the tolerance
window and detect sudden changes by strong devi-
ations of predictions and measurements.

SPC relies heavily on manual inspections and sim-
ple models which do not reflect the interplay be-

tween different parameters. Therefore, manufacturing can only be controlled
by inspecting the temporal evolution of the variates.

Process modeling. The goal of advanced methods is to instead model theprocess modeling

behavior of complete processes, representing the interrelation of several param-
eters. Machine learning methods have already been used to build such models
for engineering tasks where new processes are evaluated:

Braha and Shmilovici (2002), for example, report to have optimized a novel
cleaning process under the constraint that only a small amount of data was
available. The picture is different when it comes to the control of established
processes. Fenner et al. (2005) have developed a process control based on a
simultaneous examination of several parameters, which is in use in an exper-
imental clean room. However, such a mechanism seems not to be applicable
in mass production, where processes are tightly controlled and errors occur
mostly due to previously unseen causes:

A process model which is trained on data from the normal run can hardly
give reasonable predictions to control atypical situations, and it seems more
natural for mass production to aim at the construction of automatic mech-
anisms for troubleshooting. As Agosta and Gardos put it, “by their nature,
breakdown events are rare, and a troubleshooting model cannot be built solely
by a data-driven approach”. In (Agosta and Gardos, 2004) they describe how
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to solve this problem by using Bayesian networks which allow to incorporate
expert knowledge in the analysis3. Manago and Auriol (1996) and Cheetham
et al. (2001) present earlier work on data-based expert systems. The tech-
nique is referred to as “case-based reasoning”, and is commercially used to case-based

reasoningguide engineers through the troubleshooting process.

Troubleshooting. The aim in troubleshooting is fundamentally different from troubleshooting

the approach to reproduce foundry processes in empirical models. As men-
tioned above, such models necessarily represent processes under normal condi-
tions and can hardly generalize well to previously unseen, atypical situations.
In contrast, troubleshooting approaches directly address abnormal observa-
tions. These approaches are really what is needed in mass production, as
processes are already well understood under normal conditions. One is not pri-
marily interested in modeling why things go wrong, but in detecting whether
something is going wrong and isolating the root cause. Once the cause is
located, the maintenance can be pointed to the right machine and solve the
problem.

The expert knowledge, which is necessary to detect errors, can be encoded
by a precise definition of error patterns. Bergeret and Gall (2003), for example,
describe a simple approach to find the root cause for a repeated observation of
some error: In the serial-group structure of wafer processing (figure I.2) lots
are usually mixed after each processing stage, and Bergeret and Gall locate
the responsible machine as the one which has handled several conspicuous
lots consecutively. The assumptions in this approach are that lots mix during
production and that a single machine causes the error repeatedly over a period
of time.

We present a related approach based on feature selection in chapter V, which feature selection

is also described in (Pfingsten et al., 2005). Similarly to the above approach,
we combine the lot-history with a list of detected errors. However, our method
is not restricted to the above assumptions.

Error detection. Troubleshooting methods are necessarily based on the com-
bination of the lot-history with a list of workpieces which show similar abnor-
mal characteristics. Such lists might be created manually, but it is certainly
worthwhile to think of ways to automatically identify systematic errors based
on a vague description of what might go wrong. The most obvious target
figure in wafer foundries is the yield of flawless units. Bensch et al. (2005) yield

correlate the yield and in-line measurements to identify early indicators for
yield losses.

The spatial distribution of failures on a wafer can give additional insight
into the source of the problem. The wafermap shown in figure I.4, for exam-
ple, shows a significantly increased failure rate at the rim of the wafer. As
failures which are caused by particle contamination tend to be uniformly dis-
tributed over the wafer, patterns on wafermaps indicate that a process does

3For introductory texts on graphical models and Bayesian networks see (Buntine, 1996;
Jordan et al., 1999).
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not run optimally. Defect-maps from optical inspection can be analyzed with
similar methods to detect spatial correlations. Several works discuss methods
to attribute failures to different failure patterns. See (Duvivier, 1999; Fountain
et al., 2002; Nicolao et al., 2003; Riordan et al., 2005). We discuss a number
of real-world examples from the Bosch foundry, where we were able to local-
ize root causes for errors which were detected on the basis of such patterns
(chapter V).

2. Computer-aided design

The above section covers the potential benefit of machine learning approaches
to mass production, in particular semiconductor manufacturing. In the fol-
lowing section we describe modern development, where experiments and espe-
cially computer simulations are used to assess the fitness of a design for mass
production. We outline the designing process using computer experiments in
section 2.1, and discuss in 2.2 how they are used to determine the robust-
ness of designs against process tolerances. We outline our approaches to these
problems in 2.3.

2.1. Computer experiments

The construction of simple mechanical systems can usually be done manually
and without the aid of special software. However, as quality requirements
and the system’s complexity increase, the designer can no longer master the
system’s characteristics, and a valid design can hardly be obtained at a single
try. Simulation software can help in those cases to speed up necessary iterations
in the design cycle and may allow for an automatic design optimization.

Before computational power was widely available, only relatively simple
models were used. Such simple models need to be based on very specific
assumptions and one has to identify beforehand what question they are to
answer. Therefore they require a deep understanding of the system in consid-
eration.

Figure I.6.: Exemplary
plot of an FEM computer
experiment to determine
the tensile strength of a
silicon structure.

Today, however, simulation techniques have ma-
tured to the point where computer models can de-
scribe all relevant features of a system, including ge-
ometrical properties, electrical and thermal aspects,
and circuit simulations. Typically used simulation
tools are based on finite element methods (FEM) or
equivalent network models. Such models are con-
structed as one-to-one emulations of a device and
mimic their behavior (as illustrated in figure I.6).
The purpose of modern computer models is thus to
replace experimental specimens where possible, as

the latter may be extremely expensive and time-consuming in their fabrica-
tion and measurement.
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2.2. Robust designs for mass production

Figure I.1(b) shows a modern yaw rate sensor which is produced in silicon-
based MEMS technology with complex structures on the scale of micrometers.
Using photolithographic processes, these extremely small structures can be
manufactured within tolerance windows below micrometers, which can hardly
be achieved by traditional cutting machining.

However, while typical fluctuations are small on an absolute scale, they may
be large compared to the dimensions of the structures, and the performance
of the manufactured devices may vary significantly from unit to unit. High
quality standards require the characteristics of a product to lie within a small
tolerance window. A main task of simulation is therefore to assess and opti-
mize the robustness of the design with respect to random variations which are
inherent to the used processes.

Computer models which simulate the behavior of a device can be seen as a
deterministic mapping from geometrical and material parameters of the sys-
tem (input parameters) to its characteristics (output parameters). The main
task is thus to estimate the variation in the output by combining the deter-
ministic computer model and the distributions of the input parameters. The
corresponding techniques are embraced by the terms uncertainty or sensitivity uncertainty

analysisanalysis. The challenge is that the system’s response needs to be studied over

sensitivity
analysis

a range of parameter settings using a limited number of simulation runs.

2.3. Machine learning for design analysis

In simple, low dimensional problems it is common to evaluate the computer
model on a regular grid of parameter settings and to interpolate to new pa-
rameter settings using linear or polynomial interpolation. Once the grid has
been computed, the interpolation schemes make it possible to avoid expensive
software and long computation times when asking for the simulation results at
new input parameters. The possibly large number of settings on the grid can
be calculated as a batch and the engineer does therefore not have to wait for
the results of single runs.

f(
x
)

x

Figure I.7.: GP fit.
Training instances (+),
predictive mean (—), and
2σ-confidence interval
(gray).

Now it is possible to run computer experiments
with many parameters, which might show strong
nonlinear effects. Simple interpolation schemes are
not applicable for these cases as the size of the grid
explodes with the number of dimensions. Gaussian
processes (GPs) are a common regression model for Gaussian process

high dimensional, nonlinear problems, which have
been used as fast surrogates of expensive computer
code in a number of previous works4. GPs can effi-
ciently solve the interpolation task for high dimen-
sional problems, and can combine given function

4See for example (Sacks et al., 1989a; Bernardo et al., 1992; Welch et al., 1992; Morris
et al., 1993; Rasmussen, 2003).
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values and gradient information.
In contrast to most other regression methods, GPs are probabilistic models ,probabilistic

models i.e. they not only deliver point estimates of the underlying function, but also
come with a notion of uncertainty. For a simple example see figure I.7, where
we have plotted a GP fit with the 2σ confidence interval for its predictions.

In this thesis we use GPs to approach two topics, which are related to the
problems we face in the design of micro systems: We propose a methodology
to analyze the robustness of a design with respect to process fluctuations, and
to automate design optimization. The probabilistic nature of GPs can be used
to define experimental designs, which enhance the value of each simulation run
when exploring a region of interest.

Design analysis and optimization. As we have argued above, an impor-
tant purpose of computer experiments is to study the robustness of designs
with respect to fluctuations in production and to find influential parameters.
Sensitivity analysis is traditionally done using the “brute force” Monte Carlo
method or using restricted linear models. However, when expensive computer
experiments are used, the number of simulation runs is crucial, and we need
to obtain a certain accuracy using as few runs as possible. As suggested by
Haylock and O’Hagan (1996) we replace the Monte Carlo method by one that
uses a GP prior. We show in extensive experiments that the method reduces
the number of necessary runs by an order of magnitude, thus saving time,
resources, and expensive software licenses. The GP meta-model can be used
to do an efficient gradient-based design optimization to maximize the robust-
ness with respect to fluctuations in manufacturing. Chapter III covers design
analysis in detail. We have also described the approach in (Pfingsten et al.,
2006a).

Active learning. Using GPs we can reduce the number of necessary simula-
tion runs further if we carefully plan at which parameter settings the computer
code should be run. In the context of probabilistic models, which include a
notion of uncertainty, Bayesian experimental design provides a formalism toBayesian

experimental
design

determine optimal designs once an objective function is defined. We develop
optimal designs for sensitivity analysis and show that the approach is signif-
icantly more efficient than the state-of-the-art methods for passive learning.
We discuss our approach in chapter IV. The results have been published in
(Pfingsten, 2006).



II. Bayesian methods in
machine learning

The Bayesian interpretation of probability provides a principled way to reason
under incomplete knowledge. By interpreting probability as a measure for sub-
jective belief, the mathematical framework of probability theory is applied to
quantify the a-posteriori knowledge as a combination of a-priori beliefs and in-
formation from observed data. In this chapter we outline the generic principles
of Bayesian analysis, which are used throughout this thesis.

An overview on Bayesian methods is given by MacKay (1999, Chap. 4),
who presents them in relation to other approaches in machine learning. The
textbook of Berger (1985) addresses the subject from the statistical viewpoint,
and discusses Bayesian analysis in more detail. Jaynes’s (2003) book contains
many illustrative examples, and in particular examines the differences between
the frequentist and the Bayesian interpretation of probability. An article by
Cox (1946) deserves special attention: the author deduces the algebra of prob-
ability theory from universal rules for reasonable expectation.

The historical background of Bayesian statistics is covered by Jaynes (1985)
and Fienberg (2006). The connections to statistical physics are particularly
interesting. Jaynes (1957a,b), for example, showed that the principles of sta-
tistical mechanics can be seen as an instance of Bayesian inference under the
maximum entropy principle. Related to this, the entropy, which first appeared
in thermodynamics, can be reinterpreted as a measure for information (Shan-
non, 1948).

Gaussian processes (GPs) are a common class of models for high dimen- Gaussian process

GPsional, nonparametric regression and classification. In this chapter we discuss
GP models for regression, to apply them in our approaches to sensitivity anal-
ysis (chapter III) and active learning (chapter IV) for computer experiments
in industrial development.

A recent textbook on GPs is (Rasmussen and Williams, 2006), Stein (1999)
approaches the subject from a more theoretical perspective. GP priors have
a long history as kriging in spatial statistics (Matheron, 1963), and they are
discussed in a number of works by Sacks and Ylvisaker (1966, 1968, 1978)
to describe correlated deviations from parametric models. O’Hagan (1978)
introduces GPs as localized linear models, and Neal (1996) shows that they
can, in special cases, also be seen as neural networks with an infinite number
of hidden neurons.

We outline the rules for Bayesian inference in section 1, the basic ideas of
Bayesian model selection and decision theory are discussed in section 2. We
discuss GPs in some more detail in section 3.
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1. Bayesian inference

The following section outlines the basic concepts of Bayesian inference. While
introducing the general formalism, we illustrate the procedure on a simple
analysis of experimental data. The example is based on an experiment by
Glien et al. (2004) on the reliability of MEMS devices. A detailed description
of the analysis has been published in (Pfingsten and Glien, 2006).

Our presentation starts with an overview on the nature of probabilistic mod-
els (section 1.1). In section 1.2 we introduce the formal way of doing inference
in the Bayesian framework, where we briefly introduce Markov Chain Monte
Carlo methods as a tool for numerical approximation.

1.1. Probabilistic models

The first ingredient of Bayesian analysis is a model

M(α) , (1.1)

which encodes our belief about the system we analyze. While the structure of
the model M remains fixed, it is specified by uncertain parameters α which
need to be inferred from observations.

The knowledge we have about the parameters α before the analysis is en-
coded in a prior distributionprior

p(α|M) , (1.2)

which might contain information from previous measurements or theoretical
considerations. Prior distributions are well-known from statistical physics,
where the maximum entropy principle is the foundation for the analysis of
systems with a large number of degrees of freedom (Jaynes, 1957a,b).

Once we have observed some data D which are related to the model, the
prior beliefs can be updated according the new information. The probability
distribution of the observations,

L(α) = p(D|M,α) , (1.3)

is part of the model, and specifies how the data relates to the model and its
parameters α. As a function of the parameters, L(α) is referred to as the like-
lihood function. It might contain additional constants, such as a noise level,likelihood

function which are part of the modelM. According to the likelihood principle, the like-
lihood expresses all information which the data contain about the parameters
α. It should therefore be the only place where the data enter the analysis.

Example (part 1): Our illustrative example analyzes an experiment
to determine the parameters of a model for slow crack growth. To keep
the presentation clear, we simplify the notation and leave aside all tech-
nical details (see (Glien et al., 2004)). In the experiment one measures
the fracture strength y for several specimens at different loading rates x.
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The ys scatter around a characteristic fracture strength fFS(x,α), which
depends on x and three characteristic parameters α = (a, b, c):

log
[
fFS(x,α)

]
=

{
ax + b for x ≤ c

ac + b for x > c
(1.4)

The fracture strength of single experimental specimens can differ widely,
and the deviations from the characteristic strength are described by a
Weibull distribution, p(y(x)|fFS(x,α), d) = WB(y(x)|fFS(x,α), d) with
an extra parameter d. Thus, the likelihood for measurements D =
{(x1, y1) . . . (xN , yN )} is given by

L(α) =
N∏

ℓ=1

WB
(
yℓ|fFS(xℓ, α), d

)
. (1.5)

We have practically no prior knowledge about the model parameters,
and therefore we set the prior p(α|M) to be uniform in the physically
sensible range.

1.2. The posterior distribution

Once we have specified our prior beliefs and the likelihood function, we can
infer the parameters α from observed data D. Bayes’ theorem provides the Bayes’ theorem

formal rule to combine prior and likelihood:

p(α|D,M)
︸ ︷︷ ︸

posterior

= p(α|M)
︸ ︷︷ ︸

prior

p(D|α,M)
︸ ︷︷ ︸

likelihood

× [p(D|M)]
︸ ︷︷ ︸

evidence

−1 . (1.6)

The updated, or posterior distribution represents the a-posteriori belief about posterior

α. The rightmost term, the marginal likelihood or evidence, marginal
likelihood

evidencep(D|M) =

∫

dα p(D|α,M) p(α|M) , (1.7)

is independent of α and normalizes the posterior.
The posterior distribution p(α|D,M) contains all information we have about

the parameters α—including the remaining uncertainty which is often dis-
played in the form of confidence intervals. Assume we are instead interested
in the posterior distribution p(f |D,M) of some function f which depends on
α. Using the product and sum rule of probability we obtain

p(f |D,M) =

∫

dα p(α|D,M) p(f |α,D,M) , (1.8)

which is the corresponding average over the posterior p(α|D,M).

Markov Chain Monte Carlo (MCMC) approximations. Integrals of the
type (1.8) can in general not be solved analytically. A standard technique to
solve the integrals numerically are Monte Carlo methods, which approximate Monte Carlo
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the average by the empirical mean

p(f |D,M) ≈
M∑

ℓ=1

p(f |αℓ,D,M) , (1.9)

where the α1 . . . αM are samples from the posterior distribution p(α|D,M).
As it is generally impossible to draw the samples directly, MCMC methods areMarkov Chain

Monte Carlo

MCMC
used to construct Markov Chains, which approach p(α|D,M) as an equilib-
rium distribution.

MCMC techniques are guaranteed to converge in the limit M → ∞ under
mild conditions. However, they can be computationally expensive and require
manual inspection. Hence, MCMC is usually avoided where possible, but it is
often the only alternative to approach the exact solution for (1.8). MCMC
methods for Bayesian inference are covered by MacKay (2003, Chap.IV), more
details are given by Neal (1993, 1996, 1997). A discussion of the practical
usage of MCMC can be found in (Kass et al., 1998).
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Figure II.1.: Analysis of a dynamic
loading experiment.

Example (part 2): The re-
lation in (1.4) is an example
for a simple parametric model.
The adjoining figure shows the
posterior estimate of the char-
acteristic fracture strength as
a function of the loading rate
x. The solution was obtained
using an MCMC technique.
Figure II.1 shows the measured
data (×), the mean estimate
(—) and the 95% confidence

interval (gray) for the characteristic fracture strength. Note that the
data scatter widely around characteristic fracture strength as the Weibull
module d for this material is very small. Confidence intervals for the
parameters α = (a, b, c) can directly be obtained from their posterior
distribution.

2. Decision theory and model selection

In the previous section we have outlined how to do inference under a given
model, combining prior beliefs and information from observed data. However,
experiments are often performed to verify the model assumptions themselves,
and the aim in machine learning is to find a model which best reflects the
structure of the data to generalize to new instances. The problem of compar-
ing the fitness of models under the light of given measurements is covered by
Bayesian model selection, which we discuss in the following section 2.1. The
overview includes a discussion of the common maximum likelihood approxima-
tion of type II (ML-II) and the much-cited principle of Occam’s razor.
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Model selection is an instance of decision theory, which addresses the quan-
titative rating of actions in the presence uncertainty. We discuss the generic
formalism in section 2.2, as it builds the foundation for Bayesian active learn-
ing, covered by chapter IV.

2.1. Model selection

Model comparison. Assume we compare the plausibility of a set of models
Mℓ, ℓ ∈ {1, 2 . . . } on the basis of our prior beliefs p(Mℓ) and observed data
D. According to Bayes’ rule the posterior probability for a model p(Mℓ|D)
is given—up to a constant factor—by p(Mℓ)p(D|Mℓ). Two models M1 and
M2 are thus compared via their posterior odds: posterior odds

p(M1|D)

p(M2|D)
︸ ︷︷ ︸

posterior odds

=
p(M1)

p(M2)
︸ ︷︷ ︸

prior odds

p(D|M1)

p(D|M2)
︸ ︷︷ ︸

Bayes’ factor

. (2.10)

As the prior odds are given independently of observations, the data enters the
comparison only through the Bayes’ factor (Kass and Raftery, 1995), which Bayes’ factor

is the ratio of the evidences (1.7).
Model selection is formally solved by considering the Bayes’ factors (2.10).

Note, however, that the computation of the involved evidences is often very
hard even in numerical approximation. The fully Bayesian approach to model
selection is therefore only rarely used in practice.

Maximum likelihood type-II. It can be convenient to define a class of models
Mθ via a set of parameters θ, which are referred to as hyperparameters1. hyperparameters

In contrast to the parameters α within the model, the hyperparameters pa-
rameterize the model itself. However, the difference is only of interpretative
nature. Just as the parameters α are integrated out according to (1.8), the
hyperparameters need to be treated by averaging over their posterior distribu-
tion:

p(f |D,M) =

∫

dθ p(θ|D,M) p(f |D,Mθ) . (2.11)

The corresponding integral is usually hard to solve analytically or numerically,
the only feasible approaches often being MCMC methods.

The average is therefore often replaced by model selection: A common as-
sumption is that no set of hyperparameters is to preferred, i.e. that p(Mθ)
is flat2. The best model according to the Bayes’ factors (2.10) is in this case
found by optimizing the marginal likelihood p(D|Mθ) with respect to θ. The
method is therefore called maximum likelihood of type-II (ML-II). For more Maximum

likelihood of
type-II

ML-II

details see (Berger, 1985, Chap 3).

1In the last section’s example we have already introduced a hyperparameter in the form of
a parameter in the likelihood function. The likelihood (1.5) has a parameter d, which is
a property of the analyzed material.

2Note that this assumption is not invariant under variable transformation.
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Figure II.2.: Illustration of the posterior distribution (2.11) and its ML-II approxi-
mation. Both panels show the predictive distribution of Gaussian process regression
with observations (+). The gray area indicates the 95% confidence interval for the
latent function, and the solid lines are random samples from the posterior. The
MCMC average over hyperparameters (a) includes smoother samples, which inter-
pret parts of the variation as noise. In contrast, the ML-II estimate (b) chooses only
one set of hyperparameters and overfits the data, effectively interpolating between
the observations.

ML-II can be interpreted as an optimistic approximation to the posterior
p(θ|D,M), which is replaced by a sharp δ-distribution:

p(θ|D,M) ≈ δ(θ − θ∗) with θ∗ = argmax
θ

p(D|Mθ) . (2.12)

An illustrative example can be found in figure II.2, where we show an ML-II
estimate (2.12) in comparison to the MCMC approximation to the exact av-
erage (2.11). The example is a simple regression problem, where we have used
a flexible Gaussian process prior3. Gaussian processes are only introduced
in the following section 3, however, leaving the details aside, the example il-
lustrates how the overly confident ML-II estimate can lead to overfitting in
flexible model classes.

Occam’s razor. Fully Bayesian inference automatically “smooths” extreme
predictions of overly complex models by averaging over the hyperparameters
(2.11). This can be seen as an automatic implementation of what is often
informally called Occam’s razor (MacKay, 1992a). The ML-II approximationOccam’s razor

(2.12) can, in contrast, lead to overfitting:
On the one hand, optimizing the hyperparameters instead of averaging over

all plausible possibilities as suggested by (2.11), can lead to poor results when
doing inference in a flexible class of models. On the other hand, ML-II
is often used to estimate the evidence of model classes, to compare them
using Bayes’ factors (2.10). ML-II is used replacing the averaged evidence,

3For the example in figure II.2 we have assumed a Gaussian process prior as introduced
in section 3. We used the squared exponential covariance function (3.20) with ARD-
distance (3.18).
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∫
dθ p(D|Mθ) p(θ|M), by the maximized p(D|Mθ∗). When optimized ML-II

evidences are used, flexible models are necessarily favored, possibly in spite of
poor generalization. Bayesian model selection for nonparametric regression is
analyzed in detail in (Pfingsten and Rasmussen, 2006).

2.2. Decision theory

Model selection is an example for decision problems, where we seek to take
an optimal action a out of a set of alternatives A, based on our prior beliefs
and the available information. In order to cast a decision problem into the
mathematical framework, one needs to specify a utility function U to reflect utility function

the optimality criterion which the action is supposed to maximize:

U(a,α,θ|M,D) . (2.13)

The utility function naturally depends on prior information, which are reflected
by assuming a class of models M and observed data D. Data and prior can
be considered fixed, which we indicate by conditioning U onM and D.

The action a is to be chosen to maximize U, however, the utility might
also depend on uncertain parameters α and the hyperparameters θ which
correspond toM. Such uncertain parameters are integrated out by averaging
over the posterior distribution:

U(a|M,D) =

∫

dα

∫

dθ p(α,θ|M,D) U(a,α,θ|M,D) . (2.14)

Hence, the Bayesian expected utility is the averaged utility function with a Bayesian
expected utilityweighting according to the posterior belief in the uncertain parameters.

3. Gaussian process priors

The running example in the previous section was a parametric model to de-
scribe the nature of slow crack growth. Such physically motivated models
cover a very broad class of inference problems, where the generative process is
well understood. In contrast, nonparametric models are formulated avoiding nonparametric

modelssuch specific assumptions to generalize from observations to unseen instances—
possibly without understanding the underlying mechanisms.

Gaussian processes are nonparametric models to encode a prior distribu-
tion on a very broad class of functions, directly specifying their characteristics
without a detour via parameterization. In combination with various likelihood
functions, GPs can be used e.g. for classification or regression. In this thesis
we present applications of GP regression, whose concepts are outlined in sec-
tion 3.1. GPs can be seen as a kernel method, where the covariance function
is re-interpreted as a kernel. In section 3.2 we analyze the assumptions, which
are implicit to the choice of the covariance function.
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3.1. Gaussian process regression

Assume we model a mapping f from input parameters x ∈ R
D to an output

f(x) ∈ R. GPs extend parametric models by allowing for systematic deviations
from a (parameterized, e.g. linear) mean function

µ(x) = E[f(x)] . (3.15a)

The simplest way to deal with deviations is to interpret them as pure noise.
In this case we have f(x) = µ(x) + ǫ, where the ǫ are independent identically-
distributed random variables.

If the parametric model µ(x) does not perfectly fit the data, the deviations
are systematic, and might be similar especially at neighboring inputs x and x̄.
The simplest way to model the similarity of the deviations is to use a covariance
function, which models their dependence as a function of their position:

k(x, x̄) = cov [f(x), f(x̄)] . (3.15b)

Formally speaking, GPs are an instance of random processes which are de-
fined as follows:

Definition 1 (Random process) A random process is a collection of ran-
dom variables X(x) with x ∈ T , where the index set T can be finite or contin-
uous.

For regression we are interested in the continuous case, where T ⊂ R
D. A

Gaussian process is completely defined by the mean the covariance function
(3.15):

Definition 2 (Gaussian process) A Gaussian random process is a random
process, where the joint distribution of all finite collections X(x1) . . . X(xN)
with x1 . . .xN ∈ T is multivariate normal. A Gaussian process is therefore
defined by a mean function µ(x) and a covariance function k(x, x̄).

In the following we focus on the structure of GPs, which is governed by the
covariance function. The mean function only defines a fixed offset function,
and therefore we set it to zero to keep the following derivations simple.

While we assume through parametric models that the mapping f is defined
by some parameters, GPs directly encode a prior on a function space. The
covariance function specifies the structure of the model, and we collect its
parameters as hyperparameters in a vector θ.

In most setups we do not directly measure f for some input x, and instead
observe a y(x), which is in some way related to the latent function value
f(x). The likelihood function L(f(x)) = p(y(x)|f(x),θ) defines the relation
of the latent function f and the observations y4. As before we add possible

4Recall the definition of the likelihood: In contrast to the definition in (1.3), p(y,x|f,θ),
we use p(y(x)|f(x),θ). As p(y,x|f,θ) = p(y|x, f,θ) p(x|f,θ), this implies that we do not
model the distribution of the inputs x, setting p(x|f,θ) to a constant in the likelihood
function.
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parameters of the likelihood function to the vector of hyperparameters θ. A
common assumption for regression is that observations are corrupted by normal
noise. The likelihood function is thus L(f(x)) = N (y(x)|f(x), σ2).

With normal noise inference is particularly simple, since the posterior pro-
cess (1.6) is again Gaussian and can be derived analytically. Assume we have
observed N targets y = (y1 . . . yN)T at inputs X = (x1 . . .xN)T , collecting
both in the dataset D = {X,y}. The posterior process is given by

p(f |D,θ) ∝ p(f |θ)p(D|f,θ) , (3.16)

and for an input x∗ the posterior predictive distribution is normal

p(f ∗|x∗,D,θ) = N (f ∗|m(x∗), v(x∗)) (3.17a)

with mean m(x∗) = k(x∗)T Q−1y (3.17b)

and variance v(x∗) = k(x∗,x∗)− k(x∗)T Q−1k(x∗) .

To abbreviate notation we have defined Q = K + diag[σ2, . . . , σ2], and used
k(x∗) ∈ R

N and K ∈ R
N×N with [k(x∗)]ℓ = k(xℓ,x

∗) and Kiℓ = k(xi,xℓ) .
A more detailed derivation can be found in (Rasmussen and Williams, 2006,
Chap. 2).

3.2. Covariance functions

Gaussian processes can be seen as linear models in a feature space, which is
defined by the covariance function as a kernel. In both interpretations k(x, x̄)
defines the similarity of function values at two inputs x and x̄.

In general, the only constraint for covariance functions is their positive defi-
niteness. However, the class of functions which are commonly used for GPs is
very limited. Besides classes k(x, x̄) = k(x·x̄), which depend only on the dot
product, covariance functions are mostly assumed to be stationary , i.e. k(x−x̄), stationary

and isotropic, k(‖x−x̄‖)5. isotropic
Restricting the covariance to one of the above types implies similar assump-

tions for the latent function f : Stationary covariances encode that the struc-
ture of the function is invariant under translations, i.e. f has a similar structure
over the whole input space. Isotropy implies a corresponding invariance over
directions in the input space.

Besides linear and polynomial kernels, which are of the dot product type,
stationary and isotropic covariance structures are practically exclusively used.
Gibbs (1997) describes how non-stationary kernels can be defined while en-
suring positive definiteness, however, the flexibility of non-stationary models
has to our knowledge only been reported to lead to improved results on few
specific, and low dimensional datasets6.

5The definition of isotropy depends on the used norm ‖ · ‖.
6A special case of non-stationary covariance functions is encoded by mixtures of Gaussian

processes, which can be interpreted as GP models with a latent extension of the feature
space. Please refer to (Pfingsten et al., 2006b) for further details. Other works to discuss
non-stationary kernels include (Schmidt and O’Hagan, 2003; Paciorek and Schervish,
2004; Gramacy et al., 2004). The approach by Goldberg et al. (1998) brakes translational
invariance by assuming input dependent noise.
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Figure II.3.: Samples from an ARD GP prior with different parameters w1, which
effectively define the scale of the input parameter.

Automatic relevance determination. Isotropic covariance functions are re-
stricted to depend only on the distance ‖x− x̄‖, where the euclidean norm is
a natural choice for inputs from R

D. Since the input parameters may live on
different scales, the assumption of isotropy might prove too limited. A com-
mon choice is to allow for an adequate scaling by considering each dimension
d on its typical length scale wd

7 (let A = diag(w2
1 . . . w2

D)):length scale

d2
ARD =

D∑

d=1

(
xd−x̄d

wd

)2

= (x− x̄)T A−1(x− x̄). (3.18)

Find an illustration in figure II.3, where we have plotted samples from a one
dimensional GP prior with varying length scale parameters8.

Distances of the above type are known under the collective term automatic
relevance determination (ARD), which is due to Neal (1996). However, similarautomatic

relevance
determination

ARD

covariance functions have been described earlier by Sacks and Ylvisaker (1966).
Welch et al. (1992) already used the length scale parameters to determine the
impact of single input parameters: Assume a length scale wℓ takes a very large
value, so that

|xℓ − x̄ℓ|
wℓ

≪ |xi − x̄i|
wi

∀i 6= ℓ, ∀ observed x, x̄ . (3.19)

The dimension ℓ can in this case be neglected in the sum (3.18). Thus it does
not enter the covariance function and leaves the posterior process (3.17) invari-
ant. When the length scales are inferred from the data, the ARD mechanism
hereby implements an implicit feature selection9.

7We write diag to indicate a diagonal matrix with the elements being the given arguments.
In principle we can choose any positive semi-definite matrix A. For instance, Rasmussen
and Williams (2006) consider A−1 = diag(w−2

1 . . . w−2
D ) + ΛT Λ with Λ ∈ R

D×k, k < D,
which they call the factor analysis distance. It serves to identify linear combinations of
inputs, which are particularly relevant.

8We have used a GP with the common squared exponential covariance function (3.20).
The dotted lines indicate the prior signal amplitude as a 2σ confidence interval, given by
the parameter v. In solid lines we show five samples from the prior.

9In chapter V 2.2 we discuss feature selection in more detail.
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Figure II.4.: Samples from GPs with various kernels. The covariance function defines
the characteristics of the corresponding GP, such as its smoothness (i.e. its differ-
entiability). Note that the smoothness is fundamentally different from the typical
length scale as in ARD.

Smoothness assumptions. In the above paragraph we have introduced ARD,
which implements an automatic scaling of the data to obtain an adequate dis-
tance measure dARD. This measure can be used with a variety of covariance
functions which specify how the correlations between function values evolve
with the distance.

The structure of the covariance function eventually defines the characteris-
tics of the corresponding GP, such as its differentiability which we refer to as
the smoothness . In this sense, the ARD length scale parameters do not affect smoothness

the smoothness of the GP. What the length scale parameters do control is by
how much the GP may vary within a given interval, which we distinguish by
referring to it as the variability . variability

For an overview over common choices for kernel functions see (Stein, 1999)
or (Rasmussen and Williams, 2006). A basic result, as given by Abrahamsen
(1997), is that the smoothness of a Gaussian process directly corresponds to
the smoothness of its covariance function. In short, a Gaussian process is as
many times mean square (MS) differentiable as the covariance function in mean square

differentiabled = 0. The corresponding theorems can be found in appendix A.
In the following we introduce the most common stationary covariance func-

tions for GPs, using the symbol d to indicate some distance measure. Fig-
ure II.4 illustrates the effect of the kernels, showing samples from the corre-
sponding GP priors10.

Squared exponential (SE) covariance function.
The SE kernel squared

exponential
kernel

kSE(d) = v2 exp
[
−1

2
d2
]

(3.20)

is probably the most commonly used kernel in machine learning. As it is
infinitely often differentiable, it leads to GPs which are infinitely often MS
differentiable. The power spectrum of the SE kernel has again Gaussian shape,
and therefore only covers a restricted band of frequencies. Hence, the SE kernel
encodes the assumption that f is very smooth, and the model can be considered
little flexible.

10We are plotting samples from one-dimensional ARD GP priors, setting w1 = 0.25. The
common factor v2 indicates the signal variance, whose 2σ interval is indicated by dotted
lines.
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Figure II.5.: Posterior predictive distribution for different covariance functions. Plot-
ted are observations (+), mean (–) and 2σ confidence intervals (gray) of the pre-
dictive distribution. The covariances encode priors that include functions which are
only once (c) or twice (b) differentiable, or exclusively functions which are infinitely
often differentiable (a). The plots show that the mean function is smooth for all
cases, and the smoothness mainly influences how fast the uncertainty increases in
between observations.

Rational Quadratic (RQ) covariance function. The RQ kernel is defined asrational
quadratic kernel

kRQ(d) = v2

(

1 +
d

2α

)−α

(3.21a)

∝
∫

dτ τα−1 exp (−ατ) exp
(
−1

2
τd2
)

. (3.21b)

As we have indicated in (3.21b), it can be seen as an infinite mixture of SE
kernels with different length scales. By changing α, we can adjust the range
of contributing length scales, and therefore change he flexibility of the RQ
kernel. Nevertheless, for all α the RQ kernel comprises the assumption of
MS differentiability to any order. For α → ∞ we effectively constrain the
superposition and recover the SE kernel.

Covariance functions of the Matérn (MA) form. The Matérn-class ofMatérn kernels

covariance functions is given by

kMA(d) = v2 21−ν

Γ(ν)

(√
2νd
)ν

Kν

(√
2νd
)

, (3.22)

where Kν is a modified Bessel function (Stein, 1999). The parameter ν ∈ R
+

controls the smoothness of the corresponding process: The GP is up to ν times
differentiable, and kMA approaches the SE kernel in the limit ν → ∞. For
ν = 3

2
and 5

2
the Matérn kernel can be handled analytically. The corresponding

process is once (3
2
) and twice (5

2
) MS differentiable.
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Illustration: The effect of the ARD parameters is intuitively clear:
They implement an automatic normalization, which assigns a “natural
length scale” to each input dimension. The effect is shown by figure II.3,
where the ARD parameter w1 effectively zooms into the x-axis.

In comparison, the assumptions which correspond to the choice of a
particular covariance function are not so apparent. The standard pro-
cedure in machine learning is thus to try a few kernels, comparing their
performance in a model selection scheme.

Figure II.4 shows samples from the GP prior with different kernels, to
illustrate typical functions covered by the model. To exemplify the mod-
els’ effect on the results of an inference problem, we show corresponding
predictive distributions in figure II.511.

We observe two main aspects: On the one hand, fast fluctuations of
rough functions in the prior are averaged out in the predictive mean.
Thus, the use of highly flexible functions can be sensible even in the
case of few observations. The predictive variance, on the other hand,
is strongly influenced by the smoothness assumptions. As we allow for
more flexibility, the uncertainty in between observations increases faster
than for smooth models. Especially the SE kernel is known to underesti-
mate the uncertainty by implying unrealistic strong assumptions about
the functions’ smoothness (Stein, 1999).

11As for figure II.4 we have set w1 = 0.25, the signal and noise level are v = 1, σ = 0.05.





III. Robust designs for mass
production

Simulation software is now extensively used to explore the behavior of complete
physical systems, replacing expensive experiments in industrial engineering.
Even though computer models can be constructed efficiently using commer-
cial tools, the interpretation of the results remains an intricate problem: The
models have tens of parameters and often require considerable time for eval-
uation. Hence, it is hard to grasp the behavior of the system and to explore
the model’s response interactively.

As we have outlined in chapter I 2, an important motivation for using simu-
lations in the design for mass production is to analyze the design’s robustness
against process tolerances. When process tolerances cannot be considered
small, as it is the case for MEMS and ICs, a device’s functionality has to be
validated over the whole distribution of parameter settings, which is given by
the typical fluctuations in production.

In this chapter we describe the results of a project to create a software pack-
age for model-based design analysis and optimization1. The starting point of
such analysis are known process tolerances and a computer program which
simulates the device. Our software provides fast sensitivity analysis for vary-
ing parameter settings and an efficient gradient-based design optimization to
automate re-specification. The focus of our approach lies on the efficient use of
simulation runs to make design analysis feasible for computationally expensive
models.

Our procedure is based on the use of an efficient emulator for the simulation
software, which eases both, manual exploration and statistical design analy-
sis. We use Gaussian process (GP) regression to ensure sufficient flexibility for
nonlinear and high dimensional models, and to make efficient use of expensive
simulation runs. We define several measures for the importance of linear and
nonlinear effects, which let the designer grasp the global structure of a model at
one glance. Design analysis necessarily involves a global average over the re-
sponse of the computer model, which is usually difficult to compute. However,
since these averages can be computed in closed form from the GP emulator,
our approach renders possible an efficient gradient-based robust optimization.
The accuracy of the results can be assessed using standard validation methods
such as cross validation.

GPs have previously been proposed for efficient sensitivity analysis, and the
main contribution of this work has been to derive new sensitivity measures for

1The software is a joint project of Benjamin Sobotta, Daniel Herrmann and Tobias Pfing-
sten at CR/ARY together with AE/EST4.
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process fluctuations. The robust optimization scheme, which is proposed in
this work, is significantly different from previous approaches, and it is the first
to explicitly account for the distribution of the process tolerances while being
feasible for computationally expensive models. Our approach has previously
been described in (Pfingsten et al., 2006a).

In section 1 we introduce the concept of robust designs to attenuate the effect
of random fluctuations in production (1.1). We review common approaches to
design analysis in 1.2 and discuss them in the light of the requirements for
day-to-day use in industrial engineering. In relation to the state-of-the-art we
outline our approach and discuss the contribution of this work.

We propose a number of sensitivity measures in section 2, deriving them
in 2.1 and exemplifying their interpretation (2.2) on the analysis of a MEMS
sensor. To compute the sensitivity measures efficiently, we use the Bayesian
Monte Carlo (BMC) approach, which we describe in section 3. Relating BMC
to classical quadrature and Monte Carlo (3.1), we explain the BMC scheme
in 3.2 and our approach to automated design optimization in 3.3. To keep the
argumentation clear, we have moved technical details to the appendix B.

We have validated our approach on a number of benchmark problems from
literature and fully featured models of MEMS, presenting the results in sec-
tion 4. A discussion is given by section 5.

1. Process tolerances and robust designs

Before describing our approach to design analysis, we introduce the problem
setup and previous approaches in this section. In section 1.1 we outline the
basic terminology and the aim of the analysis, using a simple example to moti-
vate the generic considerations. We review previous works which treat design
analysis and optimization in section 1.2, working out where our approach com-
prises novel results.

1.1. Fluctuations and specifications

Process tolerances. Complex physical systems such as MEMS are specified
by a large number of parameters, including material properties and geometrical
dimensions. Besides such internal parameters, other quantities such as the
temperature might have a substantial influence on the behavior of the device.
We collect all parameters in x ∈ X ⊂ R

D and denote the deterministic response
by f(x) ∈ R. For simplicity we write a possibly noisy observation of f(x) as y.

As we can hardly know all parameters exactly, we are necessarily left with
some uncertainty about the response even if the model is perfect. In the
Bayesian framework the uncertainty in the input parameters is described by
an input distributioninput distribution

p(x), (1.1)

which reflects the subjective knowledge about the parameters.



Robust designs for mass production 41

When thinking of mass production, p(x) also reflects a probability in the
sense of a repeated experiment: as the processes are subject to random fluc-
tuations, the parameters vary from device to device. The input distribution is
usually known for standard processes and describes fluctuations of a process
which is not subject to sudden changes or systematic drifts. We refer to these
variations as process tolerances . Industrial processes are mostly defined by a process tolerances

nominal parameter x̂, around which the actual parameters fluctuate. nominal
parameters

The uncertainty distribution. Since the input parameters x are random vari-
ables, so are f(x) and the corresponding measurement y. The distribution of
the output—commonly called the uncertainty distribution—is given via the uncertainty

distributionmapping f(x) and the input distribution p(x):
The cumulative distribution function (CDF) for y is given by indicator function

px(y ≤ a) =

∫

X

dx p(x) I[f(x) ≤ a] , (1.2)

where I denotes the indicator function. If it exists, the density function2 is
given by px(y) = ∂

∂a
CDF(a) |a=y . We use the subscript x to indicate that the

distribution is induced by the uncertain inputs.
The term uncertainty analysis collects the methods to derive px(y). It is uncertainty

analysisgenerally hard to obtain the uncertainty distribution, in particular when the
function f(x) is only known via an expensive computer code.

Example: Stone pitch (part 1) To illustrate the idea of uncertainty
analysis we consider a simple low-dimensional problem.
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Figure III.1.: Stone pitch. Trajectories
for several angles α and initial veloci-
ties vo.

Assume we shoot a projectile,
such as a stone or golf ball,
with initial velocity vo and an-
gle α from 1m height. The
setup is shown in figure III.1.
Neglecting friction, the stone’s
trajectory can readily be com-
puted, including the distance
f where it hits the ground
(Demtröder, 1994, Chap. 2).
The goal is to hit an interval
[fmin, fmax] = [2.5, 3.5].
Assume the pitch is not per-

fect, resulting in Gaussian noise around the chosen α and vo (standard
deviation 4o and 1

2m/s). The figure shows 50 trajectories around the
nominal value (α̂, v̂o) = (45o, 4.8m/s).

Accordingly, the target is not always hit and the stone strikes the ground
at varying distances. In the plot we show a histogram to indicate the
uncertainty distribution of the resulting distances f(vo, α).

2For notational simplicity we assume in the following that the density function px(y) exists.
However, we only use its first and second moment which are guaranteed to exist since
the support of p(x) and f are bounded for all real production process.
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Feasibility region and parametric yield. Concerning computer-aided design,
the nominal input parameters x̂ ∈ X are usually set to ensure that one or
several responses f1(x) . . . fL(x) meet specific requirements, such as

fℓ(x) ∈ [fmin
ℓ , fmax

ℓ ] . (1.3)

The region F ⊂ X where all constraints are met is called the feasibility region.feasibility region

While it is relatively simple to find some point from F , one has to make sure
that most area under p(x) falls within F when process tolerances cannot be
neglected.

The parametric yield measures the fraction of devices which meet the re-parametric yield

quirements despite process tolerances3. Using the input distribution one ob-
tains

Yield =

∫

F

dx p(x). (1.4)

Maximizing the parametric yield is the most important objective in design
optimization. One possibility is to minimize the impact of process tolerances
by adjusting the nominal values x̂ . Tackling the process tolerances themselves
often implies an investment in new machinery or more careful processing. In
those cases one has to balance yield gain and resulting costs.

Example: Stone pitch (part 2) Figure III.2 shows a contour plot
of the distance where the stone hits the ground as a function of (α, vo).
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Figure III.2.: Stone pitch. Feasibility
region and contours for f(α, vo) [m].

In our example the angle can
be adjusted arbitrarily, and vo

can be chosen between 0 and
10 m/s. The feasibility region
F (gray) indicates when the
target [fmin, fmax] is hit. The
•s correspond to the trajecto-
ries in figure III.1 around
α̂ = 45o and v̂o = 4.8 m/s.

Note that some trials miss the
target due to the fluctuations,
even though the nominal val-

ues are set to hit the target at 3.1m. From the shape of the feasibility
region one can argue that the shallow region at large angles α leads
to low success rates, while the uncertainty in vo has less impact when
α is small. A design optimization has to account for these effects by
considering the shape of p(x) and the feasibility region. The optimal
setting4 is (α̂, v̂o) = (2.5o, 6.1m/s), where the △s indicate 50 additional
samples. The yield at the optimal setting is by 7% larger than at the
original nominal value.

3The parametric yield does not include catastrophic failures which are not related to nat-
ural process variations. A typical example for catastrophic failures in semiconductor
manufacturing is failure due to particle contamination.

4We have used the numerical optimization scheme as described in section 3.3.
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1.2. Approaches to design analysis

General difficulty. In the preceding section 1.1 we have seen that a design
analysis has to account for the shape of the feasibility region as well as for the
shape of the input distribution. The yield (1.4), for example, is the integral of
p(x) over F .

Designs which are analyzed in modern engineering contain tens or even hun-
dreds of parameters. Hence, the integrals are very high dimensional and gener-
ally hard to solve—we discuss common numerical methods in section 3. When
dealing with computationally expensive models, such as circuit simulations or
geometric finite element models, the bottleneck is given by the number of sim-
ulation runs: If one evaluation of the model runs minutes or even hours, the
results need to be used efficiently to make integration feasible.

Requirements for industrial engineering. Besides the capability to
assess single settings, the circumstances in engineering lead to some additional
requirements for a useful approach to design analysis:

1. Running a batch of simulations—e.g. outside working hours—is cheaper
than doing so interactively: while computation time is relatively cheap,
it is inconvenient to have the user wait for a result during analysis. Also,
expensive licenses for simulation software are usually short during the
day while unused at night.

2. Simulation runs should be recycled for various analyses: the software
should let the engineer explore the design quickly, i.e. without re-running
the simulations for each setting. This includes simple features like plot-
ting projections to one or two axes.

3. The results of the analysis need to be reduced to few expressive figures:
besides the parametric yield, one is interested in the influence of single
parameters, in interactions of inputs and in the degree of linearity.

4. The analysis has to be reliable by allowing for the validation of the SA.
Besides, the software should provide the means for validating the com-
puter model itself, e.g. by detecting outliers due to numerical instabilities.

State of the art. Computer-aided optimization of integrated circuits has
been described as early as 1967 by Temes and Calahan, and since then network
models have been used extensively in the designing process. Brayton et al.
(1981), Bandler and Chen (1988) and Director et al. (1993) review several
techniques to optimize the parametric yield.

The simplest approach to compute the yield is the Monte Carlo (MC) Monte Carlo

method, where simulations at random samples from p(x) are used to approx-
imate (1.4) directly. An application can be found in (Johnson et al., 1999).
The method is exact in the limit of a large number of samples, however, it
might require many runs for convergence—in particular in combination with
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an optimization scheme. Thus, most advanced methods are constructed to
reduce the computational costs of the MC method.

A popular technique is geometrical design centering , as covered by Low andgeometrical
design centering Director (1991) and Antreich et al. (1994). Instead of directly approaching the

expression for the parametric yield (1.4), these methods replace the problem
by a related geometrical setup: the nominal value x̂ is placed at a maximal
distance to the boundary of the feasibility region5. These approaches are
efficient since they evaluate f(x) only at few points close to the boundary.
However, they are mainly suited for situations where the yield is nearly 100%,
as the distance only indicates critical directions—geometrical approaches do
not provide reliable estimates for the yield.

Response surface (RS) methods are used to speed up computations by re-response surface

placing the original code by some simpler approximation. See (Myers and
Montgomery, 2002). When used in optimization, RSs are usually local lin-
ear or quadratic approximations. Especially for high dimensional input spaces
such parametric models fail or become computationally unattractive (Li et al.,
2005).

The problem can be solved by using more flexible, nonparametric models:
Zaabab et al. (1995) and Rayas-Sánchez (2004) report on the use of artificial
neural networks. Sacks et al. (1989a,b) and Currin et al. (1991) propose to
use Gaussian processes to interpolate between single runs of computer models.
O’Hagan in particular promoted the use of GP “emulators” in a Bayesian
analysis of computer experiments6.

Design centering approaches analyze and optimize given models with respect
to their overall robustness. However, to improve the very structure of the
design, the engineer needs to understand the influence and interaction of the
input parameters. By decomposing the output uncertainty into specific effects,
a sensitivity analysis (SA) uncovers this information in a compressed form.sensitivity

analysis Saltelli et al. (2000a,b) review the concept of SA and a number of measures
for the impact of input parameters. A large number of sensitivity measures
can be found in literature, where a first distinction is made between local and
global sensitivity measures:local/global

sensitivity
measures � Local measures are computed around the nominal value, mostly based

on derivatives. They can be used to measure the impact of small distur-
bances and do not reflect the shape of the input distribution.� Global measures need to be employed when the support of p(x) cannot
be considered small with respect to the variability of f(x). As defined
by Saltelli et al. (2000a), global measures need to reflect size and shape
of the input distribution and are therefore based on averages over p(x).

5The choice of the distance measure needs to reflect the shape of p(x). A Gaussian distri-
bution p(x) = N (x|x̂, B), for example, corresponds to the distance d(x, x̂) = xT B−1x̂.
Corresponding distances exist only for a restricted class of distributions.

6O’Hagan has been involved in a number of publications on this subject, including a guide
for practioners: (O’Hagan et al., 1998; Haylock and O’Hagan, 1996; Oakley and O’Hagan,
2002, 2004; O’Hagan, 2004; Conti et al., 2004; Kennedy and O’Hagan, 2001; Kennedy
et al., 2004).
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A local linear approximation can be computed with 1 + D function evalu-
ations, while the computation of a global average involves the exploration of
the support of p(x) and thus requires a large number of samples. The approxi-
mations described in literature can be seen as trade-offs between accuracy and
complexity (Morris, 2004):� Local linear measures can be generalized by using local parametric fits

(response surfaces) of higher order.� Assuming that f is an additive function of the input parameters, one
can simplify the global analysis by considering projections onto single
parameters. See e.g. Classen et al. (2004).� Using feature selection, SA can be reduced to identifying inactive param-
eters. Welch et al. (1992) proposes to use the ARD capability of GPs
(see chapter II 3.2). These qualitative screening methods make with few screening

simulation runs, however, they do not quantify the importance of input
parameters.

Contribution of this work. The aim of this work was to create a software tool
for design analysis and optimization at Robert Bosch GmbH. To be valuable for
regular use by the designers, such tool has to fulfill the requirements mentioned
on page 43:

To account for requirements 1 and 2 (fast interactive use and recycling of
data) we have chosen a response surface scheme. As process tolerances are
generally not small and responses are usually high dimensional nonlinear func-
tions, the RS needs to be a flexible nonparametric fit. The emulator can be
tested using standard techniques such as cross validation and thus provides a
reliable estimate for the accuracy of the results (requirement 4).

We use Gaussian processes (GPs), which have proven to be efficient mod-
els for regression and interpolation. Their structure eases the derivation of
analytical expressions for sensitivity measures, and their ARD capability au-
tomatically provides a screening mechanism. As the sensitivity measures can
be computed analytically from the RS, an automatic optimization becomes
extremely efficient, even accounting for process tolerances.

As mentioned above, the use of GPs in the context of sensitivity analysis
has previously been reported on. However, they are hardly known outside
the statistics and machine learning community, and have not been applied
previously in design analysis for mass production. The robust optimization
scheme, presented here, is significantly different from previous approaches,
analytically incorporating the distribution of process tolerances using a global
GP response surface. We believe that only the presented approach makes
robust optimization feasible when expensive computer models are used.

As GPs are probabilistic models, they provide a notion of predictive uncer-
tainty. This allows for the use of active learning—also known as experimental
design—to explore the support of p(x) efficiently. We discuss this aspect in
chapter IV.
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GPs encode a rich class of functions, however, it is not clear how they per-
form on real-world tasks from development. We present an extensive empirical
study, where we analyze the convergence rate of the GP-based approach in re-
lation to the Monte Carlo method.

Most work on SA concentrates on input distributions which encode uncer-
tainty in the inputs. This work is the first to explicitly treat process tolerances
where the nominal setting plays a salient role, deriving statistically justified
global sensitivity measures for this setting. To ease the interpretation of high
dimensional models we propose novel measures for the degree of nonlinearity
and non-additivity over p(x) (requirement 3).

2. Sensitivity analysis for design validation

Above we have outlined our approach to design analysis, where the efficient
use of simulation runs plays a major role. In this section we introduce and
motivate a number of sensitivity measures, the actual output of our tool for
design analysis. The methods to compute these measures are subject of the
following section 3.

We derive a number of sensitivity measures in 2.1, which are constructed to
give a compressed overview over the structure of the computer model. Sec-
tion 2.2 can be seen as a manual for practioners, where we exemplify the
interpretation of the results via the characteristics of a pressure sensor.

2.1. Sensitivity measures

Our approach focuses on variance-based measures, which are commonly used
for sensitivity analysis. Using the variance implies the assumption that the
uncertainty distribution is approximately Gaussian. However, the variance is
also a natural measure when considering a single number to characterize the
width of a distribution.

Local measures for small disturbances. For models which are approxi-
mately linear over the support of p(x),

f(x) ≈ flin(x) = ao +
∑

ℓ

aℓxℓ , (2.5)

the standardized regression coefficients (SRCs) are a common measure for sen-standardized
regression
coefficients

sitivity: assume that the inputs are uncorrelated and normally distributed,

p(x) =
∏

ℓ

pℓ(xℓ) =
∏

ℓ

N (xℓ|x̂ℓ, σ
2
ℓ ). (2.6)

The output distribution px(flin) is in this case also normal, and the variance
can be decomposed into independent contributions from each input parameter,

varx [flin] =
∑

ℓ

a2
ℓσ

2
ℓ . (2.7)
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The SRCs are defined as the shares of the variance due to fluctuations in single
parameters:

SRCℓ = 1
Nf

(

varx

[

flin

∣
∣fix all inputs but xℓ

])

= 1
Nf

(

a2
ℓσ

2
ℓ

)

, (2.8)

where Nf is an arbitrary normalizing constant.

Generalization to nonlinear models. The SRCs can easily be generalized to
nonlinear models f by defining local correlation ratios as local correlation

ratios

LCRℓ = 1
Nf

(

varx

[

f
∣
∣fix all inputs but xℓ to their nominal value

])

, (2.9)

where it is no longer assumed that f is linear. Note that the definition is
slightly different from (2.8): As f is no longer assumed to be additive, the
value of fixed parameters becomes relevant. While the contributions from
each input are independent when the model is additive, mixed terms can in
general lead to interactions. Consider for example a term xixℓ. The impact of
xℓ is zero for xi = x̂i = 0, while it has nonzero influence for other xi.

In terms of the input distribution, mean and variance of the uncertainty
distribution are given by

meanx [f ] =

∫

dx p(x) f(x) (2.10a)

varx [f ] =

∫

dx p(x) f 2(x) −meanx
2[f ] . (2.10b)

From the definition of LCRℓ in (2.9) we see that the integral is taken along
the axis of input parameter xℓ. Hence, the function’s behavior off the xℓ-axis
is disregarded and the LCRs are local measures.

Cross terms: global measures. To account for the cross effects off the axes
we use the correlation ratios7, correlation ratios

CRℓ = 1
Nf

(

varx [f ]− varx [f |xℓ = x̂ℓ]
)

. (2.11)

These are true global measures as the average is taken over the complete
support of p(x).

The interpretation of our measures is simple: The local LCRℓ expresses
the width of the uncertainty distribution when only the input xℓ fluctuates,
with all other parameters being perfectly controlled to their nominal values.
In contrast, CRℓ measures by how much the fluctuations in the output can
be reduced by a perfect control of xℓ —correctly considering interactions and
fluctuations in all other parameters. Thus, the difference between the two
measures the model’s degree of non-additivity.

7Our correlation ratios CR relate to the expected importance measure
varx[f ]−Exℓ

[varx[f |xℓ]]

varx[f ]

(Iman and Hora, 1990). The expectation measure is used when nominal values are not
naturally given as for process in mass-production.
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Figure III.3.: Design analysis for the pressure sensor (PS model): The most influ-
ential design parameters and their impact are shown in panel (a). The correlation
ratios CRℓ include all effects, their local counterparts LCRℓ are computed along
the xℓ-axis to exclude cross terms. SRCℓ is based on a linear approximation. A
combination of all three extracts the prevailing structure in the model. The cross
correlation ratios CCR are displayed in panel (b) to extract pairwise interactions,
where the matrix is given by numbers and gray shades.

To be able to assess the strength of interactions between pairs of parameters
we define cross correlation ratioscross correlation

ratios

CCRiℓ = CRi − CRi(xℓ = x̂ℓ) = CCRℓi , (2.12)

which reveal how strongly two parameters are linked. The definition of the
cross terms is intuitively clear: they measure the change in the influence of
parameter xℓ as we fix parameter xi to its nominal value. Where mixed terms
can be neglected, we have CRi = CRi(xℓ = x̂ℓ) and the cross terms are zero. If
two parameters xi and xℓ are maximally correlated we have CCRiℓ = CCRℓℓ =
CRℓ = CCRii = CRi.

In our design analysis we use plots which combine all four measures, SRC
(2.8), LCR (2.9), CR (2.11) and CCR (2.12) to obtain an overview over the
effects which dominate the model. As normalization constant Nf we choose
the total variance

Nf = varx[f ] . (2.13)

In some applications it might be convenient to choose another scale, e.g. the
squared width of a specification interval as in (1.3).

2.2. Interpretation and use in practice

The following case study illustrates the use of the proposed sensitivity measures
to extract the basic properties of a simulation model. We have performed the
analysis using the Bayesian Monte Carlo method, which is explained in detail
in section 3. The case study reproduces the design analysis of an electro-
mechanical pressure sensor, in development at Robert Bosch GmbH:pressure sensor
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PS model: Pressure Sensor. The model stems from the design
analysis of a pressure sensor (PS) and covers all relevant mechanical
and electrical properties of the system. A finite element model of the
mechanical configuration reproduces the deformation of the device due
to the applied pressure. The mechanical module has a number of pa-
rameters which represent the geometrical dimensions, the deformations
are in turn converted into electrical signals. The output of the model
is a temperature and pressure dependent electrical signal, for which a
last module calculates significant characteristics such as the accuracy
of the device. The model has in total 28 parameters, for which typical
tolerances are known.

One model run requires several minutes on a modern CPU. An exhaus-
tive MC analysis requires thousands of function evaluations and can
therefore not be under consideration for a variety of design alternatives:
According to the probabilistic error bound of the MC method we would
need 5000 samples for an accuracy of 1.5% in the mean estimate.

Instead, the Bayesian Monte Carlo approach uses a Gaussian process
meta-model, which is trained and tested on comparably few simulation
runs: We have used a 500 points-Latin Hypercube design (see app. B)
from p(x) to obtain training samples and a separate test set of 1000
samples to estimate the model accuracy. The square root of the mean
squared error on the test set was 1.3% of the standard deviation of the
output, thus ensuring a good accuracy of the GP-meta model. One can
easily verify that the accuracy of the estimated CRs is of the same order
as the maximal squared error of the regression model.

Note that we have anonymized the model by renaming all input param-
eters.

Design analysis. The plots in figure III.3 combine all sensitivity measures
to give a condensed and comprehensive overview on the nature and impact of
the model’s parameters. We have restricted the plot to the most influential
parameters:

The difference between the CRs and SRCs in panel (a) indicates the impor-
tance of nonlinear effects, which are apparently responsible for most variation
due to parameter P79. The lower part of the bars, shaded in a lighter gray,
shows the local correlation ratios LCR. The difference to the global CRs indi-
cates the part of the correlation which is induced by the joint variation with
other parameters, i.e. what we have called cross effects.

These cross effects are broken down by the symmetric CCR matrix, which
is shown in plot (b). Shaded in gray we find the CRs on the diagonal and
the interdependencies between pairs of parameters off the diagonal. Note, for
example, that the first two parameters, P6E and P79, interact strongly.
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3. Bayesian Monte Carlo for design analysis and

optimization

The concern of this section is how the sensitivity analysis can be performed
accurately on the basis of few simulation runs, which basically corresponds to
finding efficient numerical approximations to high dimensional integrals: As
we have seen, global measures for sensitivity are some kind of average over the
joint distribution of input parameters p(x),

I [f ] =

∫

dx p(x) F [f(x)] , (3.14)

where F denotes some functional of the output f .
Traditionally, classical quadrature rules are used in low dimensions to solve

these integrals and (Quasi-) Monte Carlo (MC) methods are applied in higher
dimensions. We introduce both in section 3.1. The Bayesian Monte Carlo
(BMC) method can be seen as an extension to classical quadrature, where the
integrand is modeled using a Gaussian process prior. We introduce the BMC
scheme and its application to SA in 3.2. Using the BMC approach, an efficient
design optimization can be realized, which correctly incorporates statistical
fluctuations. We outline the optimization scheme in 3.3.

3.1. Monte Carlo methods and classical quadrature

Classical quadrature rules show good convergence properties in one dimension,
however, they are not applicable for high dimensional integrals: The error of
the trapezoidal rule scales as O(N−2/D)—for F ∈ C2 and N being the number
of nodes. As the dimension of the integral in (3.14)—the number of model
parameters—is typically very high, this behavior makes classical methods in-
applicable for our purposes.

Monte Carlo (MC) methods lead to a probabilistic error bound of O(N−1/2)Monte Carlo

which is independent of the input dimension (Niederreiter, 1992). The basic
idea of Monte Carlo methods is to draw a finite number of N samples x1 . . .xN

from p(x) and to use the empirical mean

I [f ] ≈ 1
N

∑

ℓ

F [f(xℓ)] (3.15)

as an unbiased estimator of the expectation in (3.14)8. The average error and
the probabilistic bound are guaranteed by the strong law of large numbers and
the central limit theorem for any square integrable F [f ].

The simple MC method uses independent random samples from p(x). More
sophisticated quasi-Monte Carlo methods use sampling schemes which lead toQuasi-Monte

Carlo improved space filling, as it can be shown that the convergence rate is related
to the discrepancy—a measure for space filling. Common designs are Sobol lat-discrepancy

tices (Sobol, 1993) and the popular Latin Hypercube design (see appendix B).Latin Hypercube

8To compute the CRs and LCRs using the MC method one may draw samples from p(x)
to compute the complete variance, subsequently recomputing the function with the cor-
responding parameters being set to their nominal value.
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An overview over quasi-MC methods is given by Niederreiter (1992).
The error bound O(N−1/2) for MC methods holds for a very broad class

of functions, requiring only square-integrability. While this can be seen as an
advantage, it is clear that for highly regular functions fewer nodes should be
necessary to approximate the integral than for irregular functions, and it can
be worthwhile to reflect this regularity in a quadrature rule.

3.2. Bayesian Monte Carlo

Generic idea. Monte Carlo methods—including improved quasi-MC meth-
ods like Latin Hypercube—directly estimate the uncertainty distribution using
empirical sums (3.15). The Bayesian MC method uses an indirect estimate,
where the underlying function f is modeled using a GP. Using such model, the
available simulation runs can be used efficiently to approximate the function,
and all measures can subsequently be computed using this approximation:

Algorithm 1 Bayesian Monte Carlo

Require: Generated dataset D = {X,y}.
1: GP regression. Use the data D = {X,y} to compute an estimate

p(f |D,θ∗).
2: Verification. Verify the GP assumptions using CV or a separate test set.
3: Sensitivity analysis. The posterior distributions to all integrals I[f ] can

be computed efficiently from p(f |D,θ∗).
In particular, all measures LCR, CR, CCR can be computed in closed
form.

The underlying idea is relatively general and does also apply to other frame-
works: the available data are used to construct a GP emulator of the computer
code, which is used for all further analysis.

As we have seen in section 3.1, classical quadrature rules perform well on
low dimensional integrals. However, the underlying polynomial interpolation
does not generalize well to higher dimensions: to obtain the same error bound
as the dimension D is doubled, we need to square the number of nodes N . In
contrast, the error bound of the Monte Carlo method is independent of D, as
the integrand F [f ] is not modeled using any interpolation scheme.

For integrals of dimension higher than D = 4 Monte Carlo outperforms clas-
sical quadrature, apparently because not assuming any structure on F [f ] is
more effective than doing polynomial interpolation. However, the essential
statement of learning theory is that the error bounds of function estimation
methods do not necessarily depend on the dimension of the input space, but
rather on the complexity of the function. Thus, as long as a learning algorithm
restricts the complexity through regularization, it can generalize well despite
high dimensional inputs (Vapnik, 1995, chap. 5).

Gaussian process priors are nonparametric models which implement such
regularization and therefore show good generalization performance in high di-
mensional spaces. We can therefore expect that their use extends the favorable
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properties of classical quadrature to higher dimensions, as long as the GP can
capture the underlying structure of the data.

The GP prior for numerical quadrature has been proposed by O’Hagan
(1991) to replace classical Gauss-Hermite rules for one-dimensional and fac-
torial integration. Rasmussen and Ghahramani (2003) verified that Bayesian
Monte Carlo can outperform classical MC in high dimensional applications—
showing that the advantage of MC over classical quadrature is due to the
inadequacy of the underlying polynomial models for high dimensions.

O’Hagan (1987) entitles his arguments against MC drastically with “Monte
Carlo is fundamentally unsound”. Besides arguments against importance sam-
pling, his main point against MC methods is that only the function values f(xℓ)
enter the estimate, not the inputs xℓ themselves. Not exploiting the informa-
tion from the inputs stems from the fact that F [f ] is interpreted as a random
variable, instead of directly modeling the mapping F [f(x)]. Thus, once the
input distribution is changed, previous function evaluations cannot be re-used.
The Bayesian approach has the advantage that the samples do not have to
reflect the input distribution. Other than with MC, with BMC we can recycle
the data in further analyses or even reduce the number of function evaluations
by choosing an optimal design (see chapter IV).

Bayesian Monte Carlo for SA. For sensitivity analysis Bayesian quadra-
ture has been proposed in (Haylock and O’Hagan, 1996) and (Oakley and
O’Hagan, 2002). Having computed the posterior process p(f |D,θ∗) from the
available simulation runs, we can compute the posterior estimate for mean
or variance of the output f(x) under p(x) (3.14) from the GP’s predictive
distribution (II 3.17b).

The solution involves longish expressions, which we have moved to the ap-
pendix B. The quadrature problem can eventually be reduced to integrating
products of the input distribution p(x) and the covariance function, and all
integrals can be expressed through the following quantities:

kc =

∫

dx p(x)

∫

dx′ p(x′) k(x,x′) (3.16a)

ko =

∫

dx p(x) k(x,x) (3.16b)

zℓ =

∫

dx p(x) k(x,xℓ) (3.16c)

Lij = ℓ(xi,xj) =

∫

dx p(x) k(x,xi)k(x,xj) . (3.16d)

Note that we can also calculate confidence intervals for the estimated quanti-
ties by taking into account the remaining uncertainty in the posterior process
p(f |D,θ∗).

If the common squared exponential covariance function (II 3.20) is used, the
integrals (3.16) can be calculated explicitly for uniform and Gaussian input
distributions

p(x) = N (x|x̂, B) . (3.17)
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If the input distribution factorizes, p(x) =
∏

ℓ pℓ(xℓ), the integrals in (3.16)
break down to a product of one dimensional integrals. These are, in contrast
to a full integral of the type (3.14), relatively easy to handle using e.g. Gauss-
Hermite rules. We provide the details in appendix B.

Integrals such as the parametric yield (1.4) cannot be simplified. However,
using the fast GP emulator of the original code, we can use a simple Monte
Carlo estimate with a large number of samples.

Nonzero mean functions. Up to this point we have derived BMC for a
GP with zero mean function, however, the generalization is straightforward.
Assume we add an offset µ(x) to the GP prediction m(x) in (II 3.17). The
expectations over p(x) (2.10) decompose for this sum as

meanx [m(x) + µ(x)] = meanx [m(x)] + meanx [µ(x)] (3.18a)

varx [m(x) + µ(x)] = varx [m(x)] + varx [µ(x)] (3.18b)

+ 2covarx [m(x) , µ(x)] .

Thus, as long as we can compute the integrals over the products of µ(x), p(x)
and k(x, ·), it can easily be incorporated into the analysis. For example, for
a polynomial offset in combination with the SE covariance function kSE(x, x̄)
and Gaussian or uniform input distribution p(x) all integrals are analytically
tractable.

3.3. Robust design optimization

General problem. Design centering methods automatically optimize the ro-
bustness of a design with respect to maximal deviations from the nominal
value. Using our approach such automatic optimization can be done on the
global GP response surface while explicitly taking into account the distribu-
tion of statistical fluctuations on input parameters. The stone pitch example
on page 42 illustrates such optimization.

Design optimization is by nature a difficult task: in a manual adjustment
the engineer is usually mindful of a number of design restrictions and opposed
objectives. Before an automatic optimization can be performed, these need to
be cast into a utility function (see section 2.2) and explicit constraints. utility function

Once the problem has been formalized, the optimization can be done auto-
matically. However, when the utility function takes into account the process
tolerances, its evaluation can be computationally expensive. The MC method,
for example, requires an independent average for each evaluation and is thus
inapplicable. In contrast, the BMC approach provides the averages over p(x) in
closed form as an efficient way to replace MC runs on the simulation software.

Yield optimization. The yield (1.4) is usually the main contribution to the
utility function for design optimization. Approximating the uncertainty dis-
tribution using its first two moments (2.10), the yield for a specification of the
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type f(x) ∈ [fmin, fmax] (1.3) results in

Yield =

∫

F

dx p(x) =

∫ fmax

fmin

df px(f) (3.19a)

≈
∫ fmax

fmin

df N (f |meanx[f ], varx[f ]) (3.19b)

= Φ

(

fmax−meanx[f ]√
varx[f ]

)

− Φ

(

fmin−meanx[f ]√
varx[f ]

)

, (3.19c)

where Φ denotes the CDF of the normal distribution (3.20)9.
Both moments, meanx[f ] and varx[f ], can be derived in closed form from

the GP emulator as functions of the input distributions’ parameters—such
as nominal values and process tolerances. Evaluating the expressions for
the yield and its derivatives with respect to all parameters is extremely fast.
An optimum can therefore be computed efficiently using standard gradient-
based optimization schemes as described in (Press et al., 1986, Chap.10). In
particular for nonlinear outputs f , the uncertainty distribution might not be
approximated well by a normal distribution. However, optimizing the yield
approximation (3.19) will in those cases still lead to a type of design centering.

Yield optimization is a major feature of the software tool for engineering,
which we have developed on the basis of the presented approach.

4. Experiments

In the following section we present the results of our evaluation of Bayesian
Monte Carlo for sensitivity analysis. To assess the convergence properties
in comparison to the Monte Carlo method we have used several benchmark
problems from literature (section 4.1) and three fully featured models of MEMS
devices from current development for mass production (section 4.2).

4.1. Analytical benchmark problems

Friedman’s function.

Definition. Our first example is a function which was defined by Fried-
man (1991) as a benchmark problem for regression. It is nonlinear and
non-monotonic, and therefore a challenging problem for sensitivity anal-
ysis. The function has 10 input parameters, 5 of them having an impact
on the output. We use a normal input distribution p(x) = N (x|x̂, B)
with mean x̂ = (0, 0, 1

2 , 0 . . . 0) and covariance B = diag(1
4 . . . 1

4). As we
use a symmeterized version of the original function

f(x) = 10 sin(πx1x2) + 20(x3 − 1
2)|x3 − 1

2 |+ 10x4 + 5x5 , (4.21)

9

The error function is defined as Φ(z) =
∫ z

−∞
dx N (x|0, 1) . (3.20)
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Figure III.4.: Friedman’s benchmark function: Convergence rates for MC and the
GP-based BMC scheme. Shown are the errors of the estimates for mean (a) and
variance (b) against the number of samples. The true values serve as a reference.
The solid curve in (a) indicates the characteristic error bound of the MC estimate
for the mean, O(N−1/2).
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Figure III.5.: Friedman’s benchmark function: Convergence rates for the CRs using
MC and BMC. Note that x6 does not enter f(x), making the screening capability
of BMC speed up the convergence of CR6 drastically.
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we ensure that the mean under p(x) is zero. All sensitivity measures
can be computed analytically and we compare the estimates to the true
values. In this example we do not add noise, as this corresponds to the
common situation in computer experiments. Note, however, that the
BMC procedure handles noise automatically.

The plots in figures III.4 and III.5 depict the convergence rates of MC and
BMC. Each marker represents one of 1 900 experiments using Latin Hypercube
designs, which are evaluated using MC and BMC.

Panel III.4(a) shows the convergence rates for the estimate of meanx[f ],
where the MC approximation is governed by the typical convergence rate
O(N−1/2). BMC achieves the same accuracy as MC on 10 000 runs, using
only 10% of the sample size. The same holds for the variance estimate shown
in III.4(b).

The correlation coefficients cannot be computed in only one MC run, as the
input distribution is changed for each CR—while no extra simulation run is
needed for BMC. In figure III.5 we plot the estimates for the first 6 CRs against
the number of simulation runs10. One observes that BMC is again an order
of magnitude more efficient than MC. The output is independent of x6 . . . x10,
and correspondingly CR6 . . . CR10 = 0. In these cases BMC profits from the
GP’s screening capability (ARD, eq. (3.18)) and converges on less than 100
samples to the correct value (see panel III.4(f) for CR6). Nevertheless, also
MC detects zero influence on few simulation runs.

SA benchmark problems.

Description. A variety of benchmark problems for SA has been de-
fined by a number of authors. We consider 7 problems in our comparison
of BMC and MC, which have been collected by Saltelli et al. (2000a,
Chap. 2). A brief description of all problems is given in appendix B.
The dimensionality of the problems ranges from 2 to 20 active param-
eters. Note that model 4 is not differentiable and thus contradicts the
smoothness assumptions of BMC.

The results of our experiments are given in table III.1. We have used Latin
Hypercube designs of various sizes to obtain an accuracy between 1% and 1

10
%

with BMC, and compare it to the MC estimates on the same designs.
The accuracy of the BMC estimates depends strongly on the complexity of

the underlying function: While low dimensional mappings can be captured
well using only a few hundred samples (model 1, 3, 5), functions with many
parameters require more function evaluations. An extreme example is model
2(b), which is defined by 20 equally important inputs. While the screening
ability lets the GP ignore inactive parameters—as in Friedman’s function—
here good accuracy is only obtained using 3 000 samples.

10Saltelli (2002) describes a scheme to avoid using a full extra MC run for each CR. There-
fore we count only the evaluations of one MC run to keep the comparison fair. However,
for simplicity we use extra simulations, setting the corresponding parameters to their
nominal values.
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BMC clearly outperforms MC in all cases. However, as the number of active
parameters increases the difference becomes smaller: on model 1 the accuracy
of BMC on varx[f ] is by a factor 1430 better than MC, while the factor is 2.3
for model 4.

4.2. Case studies from industrial engineering

Pressure sensor.

We have introduced the PS model in section 2.2, page 49, where we show the
sensitivity analysis in figure III.3. It turns out that the model is highly non-
linear and non-additive, however, only 5 out of 28 parameters have significant
impact on the output.

Figure III.6 shows 130 runs on Latin Hypercube designs with 50 to 2 000
samples, where we have computed mean (a) and variance (b) of the output
distribution using MC and BMC. As the computation of the CRs would have
required extra simulation runs, we only show the BMC results in panel (c) and
(d). Note that BMC is only slightly more accurate than MC on the estimate
for meanx[f ]. However, BMC estimates the central quantity for SA, varx[f ],
on 200 samples as well as MC on 2 000 and discovers that the minimal CR
is zero on only 120 samples. As the CRs are computed analytically from the
global fit, the maximum CR converges as fast as the variance.

Accelerometer.
accelerometer

AC model: Our second simulation code models the behavior of a micro
electro-mechanical accelerometer which is used e.g. to trigger airbags.

LCR
CR
SRC

P37 P63 P16 PB
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure III.7.: Sensitivity analysis
for the accelerometer.

The model has 29 parameters which
show variations in the manufactur-
ing process. The predictions of the
GP model, trained on 300 points,
lead to a root mean squared error
of 3.7% relative to the standard
deviation on an independent test
set of 4 700 instances.

It turns out that this model is dom-
inated by linear effects, as indicated
by the sensitivity analysis shown
in figure III.7. We find that only

4 parameter have significant influence on the output. Nonlinearities or
cross terms can be neglected on the region given by p(x).

The convergence rates for the AC model are shown in figure III.8, where the
designs are made of independent, identically distributed samples from p(x).
Observe that the MC method’s estimate of varx[f ] converges much slower
than that of BMC: On 75 training instances BMC is as accurate as MC on
500 samples. Both methods perform comparably in estimating the meanx[f ],
which can be explained by the great linearity of the model: Due to linearity,
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Model D N MC BMC ratio

error meanx[f ] relative to stdx[f ] in % means

1 2 100 0.08 [0.0009, 0.24] 0.0020 [0.00009, 0.0065] 0.0250

2(a) 6 600 1.66 [0.0213, 4.49] 0.0388 [0.00251, 0.0775] 0.0233

2(b) 20 3000 0.72 [0.0501, 1.72] 0.0676 [0.00444, 0.2140] 0.0938

3(a) 2 30 1.61 [0.3635, 4.22] 0.0364 [0.00125, 0.1848] 0.0226

3(b) 2 300 2.59 [0.2264, 6.80] 0.0124 [0.00194, 0.0410] 0.0048

4 8 2000 0.68 [0.0253, 1.57] 0.1515 [0.00651, 0.43864] 0.2223

5 3 500 1.98 [0.0651, 6.02] 0.0570 [0.00388, 0.1740] 0.0287

relative error varx[f ] in %

1 2 100 8.32 [0.4198, 22.9] 0.0062 [0.00020, 0.0279] 0.0007

2(a) 6 600 10.8 [0.2033, 24.1] 0.3976 [0.04713, 0.8913] 0.0365

2(b) 20 3000 4.76 [0.1118, 16.5] 1.8373 [0.06968, 3.4314] 0.3863

3(a) 2 30 14.7 [1.1521, 42.3] 0.1258 [0.00441, 0.6785] 0.0086

3(b) 2 300 13.9 [0.7684, 31.9] 0.1170 [0.00203, 0.3941] 0.0084

4 8 2000 2.19 [0.4055, 7.29] 0.9554 [0.38691, 1.8166] 0.4346

5 3 500 3.77 [0.0599, 11.6] 0.2684 [0.00505, 0.5694] 0.0711

Table III.1.: Convergence on SA benchmark problems (app. B). The figures rep-
resent the performance on 20 independent designs (mean [best, worst]). The last
column (“ratio”) contains the ratio of mean BMC- and MC-error.

number of samples

re
l.

e
rr

o
r

o
f
m

e
a
n

MC
BMC

50 100 200 500 1000 2000
0

2

4

6

×10−3

(a) rel. error of meanx[f ]

number of samples

re
l.

e
rr

o
r

o
f
v
a
r.

MC
BMC

50 100 200 500 1000 2000
0

.1

.2

.3

.4

(b) rel. error of varx[f ]

number of samples

a
b
s.

e
rr

o
r

o
f
m

in
.

C
R

BMC

50 100 200 500 1000 2000
0

0.5

1

1.5

2

×10−2

(c) abs. error of minimal CR

number of samples

a
b
s.

a
rr

o
r

o
f
m

a
x
.

C
R

BMC

50 100 200 500 1000 2000
0

0.5

1

1.5

2

×10−1

(d) abs. error of maximal CR

Figure III.6.: PS model: pressure sensor. Convergence rate of MC and BMC on
mean, variance, minimal and maximal CR. As reference we have chosen the mean
over all estimates using 2 000 samples.
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all effects caused by a deviation from the nominal value cancel in the mean
estimate and effectively we only need to estimate the offset f(x̂)—where the
MC method is as efficient as the Bayesian approach. When we turn to the
variance and the CRs, BMC can again profit from prior assumptions and its
screening capability, showing extremely good estimates on only 75 samples
(observe that the plots have different scales on the y-axis).

Yaw rate sensor.
yaw rate sensor

YR model: A REM picture of the yaw rate sensor is shown in figure I.1,
page 16.
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Figure III.10.: Sensitivity analysis
for the yaw rate sensor.

The sensor measures the yaw rate
which results when the device is
moved along a bent curve, and is
used in applications like the
Electronic Stability Program. The Electronic

Stability
Program

model of the yaw rate sensor has
15 fluctuating inputs. We consider
the output which corresponds to
the responsivity of the device. Fig-
ure III.10 shows the results of the
sensitivity analysis, which were ob-
tained using BMC on 500 random

samples from p(x). The root mean squared error on an independent test
set of 4 500 samples was 1.1% relative to the standart deviation. Only 5
parameters contribute more than 1% to the variance of the output. As
the SRCs, which are based on a linear fit, give similar results as the
LCRs, we can conclude that no strong nonlinear effects can be found
along the axes. However, a pronounced difference between LCRs and
SRCs indicates that the model is highly non-additive.

The accuracy of the SA is shown in figure III.9 for varying design sizes.
The inputs have been drawn independently from p(x) and the designs were
evaluated using MC and BMC.

The comparison shows that BMC clearly outperforms MC on both, mean
and variance estimate. For the variance the BMC estimate is accurate within
2% on 500 samples, while the deviations of MC are as large as 18%. BMC
obtains the same accuracy on the CRs. In particular zero coefficients are found
efficiently on few samples due to the screening ability of BMC.
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Figure III.8.: AC model: accelerometer. Convergence for meanx[f ], varx[f ] and
minimum/maximum CR. The reference is the mean estimate of all approximations
on more than 200 samples. The accuracy of the normalized CRs is given on an
absolute scale.
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Figure III.9.: YR model: yaw rate sensor. Convergence for meanx[f ], varx[f ] and
minimum/maximum CR. The reference is the mean estimate of all approximations
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5. Discussion

In this chapter we have described a novel approach to design analysis, which
has now been implemented for regular use in the designing process of MEMS at
Robert Bosch GmbH. We have defined a number of statistically justified sen-
sitivity measures to express the structure of the model: the degree of linearity
and additivity, and the impact of fluctuating parameters in mass production.
In a real-world case study we have exemplified the interpretation of the results.

The bottleneck of sensitivity analysis is often the time-consuming simulation
software. To use simulation runs efficiently—and to re-use them for multiple
analyses—we have used Bayesian Monte Carlo. Furthermore, BMC makes it
possible to compute the SA analytically on a global response surface, while
validating the accuracy through standard methods like cross validation.

Using BMC, we can compute an analytical approximation of the yield, in-
cluding expressions for its gradient with respect to the parameters of the input
distribution. The design can thus be optimized using standard methods like
gradient ascent, correctly reflecting the distribution of the fluctuations. This
method is conceptually different from previous approaches, which require re-
peated MC runs or use geometrical design centering approximations.

To evaluate the convergence properties of BMC we have compared it to MC
on a variety of problems: Three problems were simulations of MEMS sensors
in development at Robert Bosch GmbH, where we have assessed the accuracy
over a large range of sample sizes. The models have up to 29 parameters,
where the SA showed that between 4 and 7 inputs have significant influence
on the output. Due to their screening ability, GPs can efficiently detect inactive
parameters and BMC converges significantly faster than MC.

We considered a number of nonlinear benchmark problems from literature
with 2 to 20 active parameters. A comparison of MC and BMC showed that on
all problems—and especially on simple functions—BMC significantly improves
accuracy on a given set of simulation runs. As the number of active parameters
grows, the difference between both methods becomes smaller. The situation is
similar to classical quadrature, where MC catches up when linear interpolation
fails to extract the structure from the data. In this sense, BMC can be seen
as an extension of classical quadrature to functions of moderate complexity in
high dimensional spaces.

We believe that BMC is particularly well suited for models of devices which
are considered for mass production: Typically, the models have a large number
of parameters, while the output varies moderately within process tolerances.

The BMC approach meets a number of requirements which suggests its use
in industrial engineering. Using the GP emulator, we separate simulation
calls from the analysis. Those can therefore be computed as a batch, and
the designer can explore the model interactively, avoiding waiting times. The
simulation runs can be used for several analyses, as the inputs do not have to
reflect the input distribution. Another benefit of BMC is that it can be used
in connection with active learning, saving simulation runs by using optimal
experimental designs—details can be found in the following chapter IV.





IV. Active Learning for
nonparametric regression

In the previous chapter we have described Bayesian Monte Carlo (BMC) for
sensitivity analysis. The BMC approach is based on nonparametric Gaussian
process (GP) regression, and in comparison to Monte Carlo it can drastically
reduce the number of simulation runs required for a given accuracy. Another
advantage of the BMC approach is that simulation runs do not have to reflect
the distribution of the process fluctuations: This allows for another degree of
freedom to increase the efficiency by using an experimental design.

In this chapter we present an active learning scheme that uses available data
to run the simulation software at expectedly informative configurations. Our
learning scheme is based on the Bayesian expected utility, which measures the
expected generalization error on samples from a given input distribution. We
show that one can derive the expected utility exactly, and as we avoid expen-
sive numerical approximations, the resulting learning scheme is computation-
ally efficient and easy-to-use. The approach can thus be used by non-experts
in combination with the tool which we have developed for the evaluation of
computer experiments in sensitivity analysis (see chapter III).

Our experiments show that the proposed scheme can significantly reduce
the number of simulation runs required to obtain a desired accuracy. The
method is very robust, leading to good designs even in presence of noise and
for underlying functions which are hard to learn.

We have described our approach to active learning previously in (Pfingsten,
2006), which is to our knowledge the first work to present the expected loss
which corresponds to the generalization error in closed form.

This chapter is grouped into four sections. Section 1 addresses previous work
on Bayesian experimental design, and active learning as it is known to the ma-
chine learning community. We discuss their relation, asymptotical learning
rates, and fundamental difficulties. Section 2 contains the derivation of our
active learning scheme from the corresponding Bayesian expected utility. We
discuss the objectives which form the basis of A- and D-optimal designs, the
effect of the ML-II approximation on optimal designs and nonstationary mod-
els. We have tested our approach in a number of experiments using analytical
benchmark problems and fully featured sensor models from the development
at Robert Bosch GmbH. The results are presented in section 3, and we close
with a discussion in section 4.
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1. Experimental design and active learning

Before we describe our approach to active learning for Gaussian process regres-
sion, we introduce the basic concepts in this section. Bayesian experimental
design has a long history, which we outline in section 1.1 in relation to active
learning as used by the machine learning community. We show in section 1.2
that there is no fundamental difference between the two approaches, even
though the resulting algorithms and their derivations often seem very distinct:
both approaches are ultimately approximate solutions of Bayesian decision
theory, which correspond to distinct foci. All optimal designs, especially when
approximations to the full Bayesian solution are used, need to be used with
care. We discuss this fundamental problem in section 1.3. Besides empirical
studies there exists much work on asymptotical learning rates of active learning
schemes, which we review in section 1.4.

1.1. Historical development

Bayesian experimental design. Experimental design is an instance of de-
cision theory (II 2.2), where the problem is to determine an optimal design
matrix X with respect to some utility function

U(X|M,Do) . (1.1)

Do denotes prior knowledge and M the chosen model1. The utility function
can in principle be based on any objective, possibly specific to a single problem.
More general utilities, based on the entropy as a measure for information have
been introduced by Lindley (1956, 1968).

While early work focuses on parametric models, experimental design has
been proposed for nonparametric Gaussian process regression by Sacks and
Ylvisaker (1966, 1968) and O’Hagan (1978).

Comprehensive reviews on Bayesian experimental design are given by Fe-
dorov (1972) and Chaloner and Verdinelli (1995). In this work we focus on the
most prominent objectives, which lead to D-Optimal and A-Optimal designs.D-Optimal

A-Optimal

Space filling and factorial designs. While Bayesian experimental designs are
based on a utility function which encodes the objective of the experiment, a
number of heuristics have been proposed to improve independently identically-
distributed sampled designs.

For nonparametric regression these are commonly space filling designs , whichspace filling
designs minimize the discrepancy, i.e. avoid uncovered areas in the input region. The

most common member of space filling designs is Latin Hypercube, proposed
by MacKay et al. (1979). We give a short description in the appendix B. Fig-
ure IV.1 illustrates Latin Hypercube and random sampling in two dimensions.
Latin Hypercube stratifies samples in one dimensional projections, a refined
version for more dimensional projections is given by Ye (1998). Johnson et al.

1For simplicity we omit the condition on the model M in the following. However, the
necessary condition on the model is important—we discuss its implications in section 1.3.
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Figure IV.1.: Random samples and Latin Hypercube designs. The plots show 100
samples for N (0, 1)2 (a, b) and U(0, 1) (c, d). Note that independent samples tend to
leave large areas under p(x) uncovered. Latin Hypercube stratifies sampling in one
dimensional projections, yet the samples still seem “clustered” in two dimensions
and the designs can hardly be distinguished from independent samples.

(1990) define the MiniMax and MaxiMin criteria, where the latter can be in- MiniMax

MaxiMinterpreted a limiting case of D-optimal designs for GPs with small length scale
parameters.

For experimental plans with a large number of parameters factorial designs factorial designs

are widely used. They are based on linear or quadratic fits and define sparse
schemes to determine the model’s parameters (Myers and Montgomery, 2002;
Taguchi et al., 2004).

Active learning in machine learning Experimental design, which has its ori-
gins in Bayesian statistics, has been picked up by the machine learning com-
munity under the synonym active learning for various applications. MacKay
(1992b) reviews statistical approaches with regard to their use for regression
with neural networks. Cohn et al. (1996) formulate the statistical approach
from the machine learning perspective, using the fundamental decomposition
of the generalization error into a variance and a bias contribution. The au-
thors propose to minimize the variance term, which is tightly connected to
A-optimal design. In his work from 1997 Cohn derives a new approach which
focuses on the bias term, i.e. systematic deviations.

There is a large number of publications on the application of active learning
to regression. This includes approaches with neural nets (Plutowski and White,
1993; Cohn, 1994) and Gaussian processes (Seo et al., 2000). Yu et al. (2006)
interpret active learning in the setup of transductive learning.

Active learning is by far more popular for classification than for regression,
where a whole branch of methods has been developed. Especially in classi-
fication the focus has moved away from the Bayesian viewpoint of expected
utility to the definition of (often heuristic) sampling schemes. An exception is
(Chapelle, 2005), which resembles A-optimality. Bryan et al. (2006) describe
active learning to identify thresholds in a continuous output, a problem which
is closely related to classification.

In relevance sampling experts are only queried for samples which a learn- relevance
samplinging algorithm clearly assigns to a class (Salton and Buckley, 1990). The aim
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is to save human effort on samples which are unlikely to contain any clear
structure. Uncertainty sampling is designed as the counterpart to relevanceuncertainty

sampling sampling, querying the most uncertain inputs (Lewis and Gale, 1994; Roy and
McCallum, 2001). A problem common to many machine learning algorithms
is that they tend to lack a notion of uncertainty. For support vector machines
the uncertainty can be substituted by the distance to the separating hyper-
plane (Campbell et al., 2000), and Mitra et al. (2004) use the probabilistic
interpretation proposed by Platt (1999).

The volume of the version space serves as another criterion for the potentialversion space

information of a new observation. It is used by the popular Query by Commit-
tee Machine (Seung et al., 1992; Gilad-Bachrach et al., 2006), which basicallyQuery by

Committee
Machine

chooses queries which rule out a maximal number of hypotheses.

1.2. From experimental design to active learning

Experimental design is used to determine complete optimal designs of N sam-
ples before any experiments are performed. A main issue has been to find
approximate designs for large N , as the exact problem is NP-hard (Ko et al.,
1995).

In the machine learning community the term “active learning” has replaced
the statistical expression “experimental design”, as the focus has moved from
planning a whole batch of experiments to actively planning the experiments one
after the other. The advantage of this procedure is that the learning algorithm
can be updated after query, hence considering all available information for
planning remaining experiments. Although the approaches are quite different
in their goal, in the Bayesian setting both are optimally solved by maximizing
the expected utility (chapter II (2.2)):

Consider classical experimental design, where the queries X are planned as
a batch, maximizing the expected utility U(X|Do):

Do
-DN

design
x1, . . .xN

If we assume that the outcomes of all experiments become available at once,
the solution is optimal. However, if the results come one-by-one, the remain-
ing experimental schedule should be refined in each step ℓ by considering the
measured y1, y2 . . . yℓ in the prior belief Dℓ at that time. In the Bayesian for-
malism it is clear that this information is correctly considered by maximizing
U(xℓ+1 . . .xN |Dℓ), and the active learning scheme becomes:

Do
-design

x1, . . .xN
D1

-design
x2, . . .xN

D2 . . . -design
xN−1, . . .xN

DN

The difference between experimental design and active learning is thus merely
whether the queries are processed as a batch or in a sequence. However, most
active learning schemes avoid the computational burden of planning all re-
maining experiments by greedily planning only one step ahead. The greedy
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active learning scheme is given by greedy active
learning

Do
-design

x1
D1

-design
x2

D2 . . . -design
xN

DN

where the expected utilities U(xℓ+1|Dℓ) are optimized.

1.3. The fundamental drawback of active learning

The Bayesian framework provides a principled and conclusive formalism for
active learning. However, it is hard to conceive the implications of the basic
assumptions on the resulting designs. An important aspect is the utility func-
tion, which might lead to unexpected designs. We discuss some utilities and
the corresponding designs in section 2, and focus here on a very basic problem
which already becomes apparent in the very first equation of this section: The
expected utility (1.1) is conditioned on M, the underlying generative model
of the data.

Conditioning on the model is inevitable in Bayesian analysis, yet implies
that one is completely sure that the model is correct. MacKay (1992b) calls
this the Achilles’ heel of active learning, as it is typically impossible to verify
the model on the basis of optimally planned experiments.

As the linear model implies very strong assumptions about the structure of
the data, optimal designs will typically be extreme, only querying inputs at
the limits of the input region. For the linear model this behavior is intuitively
clear, as the slopes can best be estimated using far apart points. However, an
experimenter will typically place some measurements non-optimally to be able
to verify the linearity of the function.

The imperfect belief in the modelM can be encoded by using a composite
model M̃ which accounts for the possibility that the data might be generated
by an alternative model Malt. In the spirit of Jaynes’s “two-model model”
(Jaynes, 2003, ch. 21) the composite model contains a new hyperparameter
q ∈ [0, 1],

p(y|x,M̃) = q p(y|x,M) + (1− q) p(y|x,Malt) , (1.2)

where a prior on q encodes the confidence inM2. The Achilles’ heel is in this
view simply the design’s plausible sensitivity to overconfident models, where
the alternative model is neglected.

A natural extension of the linear model could be one which includes higher
order terms. Sacks and Ylvisaker (1966) propose GPs to account for correlated
errors in the design, and O’Hagan (1978) proposes localized linear models
using GPs. However, even flexible nonparametric models such as GPs impose
assumptions such as smoothness on the underlying function, and overconfident
designs can hardly be ruled out. An illustrative example is given in section 2.2,
where we consider the confident ML-II approximation for GPs.

2Note that inference in this class of models can be extremely difficult. A comparison of
MCMC and expectation propagation to solve a “two-model model” approach to robust
GP regression is given by Kuss, Pfingsten, Csató, and Rasmussen (2005).
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1.4. Bounds for learning rates

Experimental design or active learning are applied in particular when samples
are rare. However, even though they apply to the opposite limit, asymptotic
bounds on learning rates can provide valuable insight into their potential ben-
efit for different applications.

Castro et al. (2006) compare the rates of active and passive learning for re-
gression under noise, showing that on stationary problems active learning does
not lead to better asymptotic performance than passive learning: Castro et al.
consider Hölder smooth functions, proving that arbitrary active and passive
learning schemes lead to the same asymptotic learning rates. Intuitively active
learning is particularly useful for setups where the experimenter is only inter-
ested in small subsets of the input space, such as the separating hyperplane
in classification. Castro et al. show that—despite the discouraging results
for stationary problems—active learning can lead to a significant improvement
when the function’s complexity is concentrated in a low-dimensional subset of
the input space. The results correspond to the prevalence of work on active
learning for classification in comparison to regression, where the function needs
to be explored over the whole input region.

Another interesting view in (Castro et al., 2006) is that experimental design
does not belong to the class of learning schemes which have the potential to
improve the learning rate in nonstationary problems: Intermediate measure-
ments need to be taken into account to locate regions of high relevance, which
the learning scheme is to concentrate on.

Seung et al. (1992) prove an exponential learning rate for classification when
no noise is present, using the Query by Committee machine to bisect the
version space with each query. Similar results are shown by Baum (1991) for
learning neural networks on noiseless samples. Nevertheless, it turns out that
the results strongly depend on the premises: Dasgupta (2006) gives examples
where active learning does not lead to any improvement even in the noiseless
case.

2. Active learning for GP regression

The aim of our approach to active learning is to find a suitable optimal design
for GPs in the spirit of Bayesian experimental design, which can be computed
efficiently and automatically in an easy-to-use tool for industrial engineering.

We introduce the most common information-based utility functions in sec-
tion 2.1. We show that the contribution of a query to the expected utilities
can be computed in closed form for GPs with squared exponential covariance
function, except for the average over hyperparameters. We analyze the ML-II
approximation for active learning in 2.2, relating it to the full MCMC solu-
tion. As indicated by asymptotic learning rates (section 1.4), active learning is
most attractive for nonstationary functions. We briefly discuss nonstationary
designs in 2.3. Section 2.4 subsumes the algorithm which we ultimately apply
for our experiments, discussing all used approximations briefly.
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2.1. Information-based objectives

In the following section we derive and illustrate D-optimal and A-optimal
designs for regression, which have long been used in Bayesian experimental
design. The utility for D-optimal designs is easier to handle than the A-optimal
criterion. However, we show that D-optimal designs may lead to undesirable
results and that—for special cases—also the utility for A-optimal designs can
be computed efficiently for Gaussian processes.

D-optimal design: maximum information gain. Lindley (1956) introduced
the information gain3 as an objective for experimental design for paramet- information gain

ric models with parameters α. The objective corresponds to the situation
where experiments are performed to determine the parameters of the model,
e.g. the determination of physical constants. As the prior entropy3 H[α] can entropy

be considered fixed, this is equivalent to minimizing the entropy H[α|D] of
the parameters’ posterior distribution4. The name D-optimal stems from the
normal linear model, where this objective leads to a minimization of the de-
terminant of the paremeters’ posterior covariance matrix—the “D” stands for
“D”eterminant.

Currin et al. (1991) derive a similar measure for Gaussian processes, consid-
ering a finite pool of possible samples x: They minimize the joint posterior en-
tropy of the targets which have not been queried. As for the linear model, this
related objective leads to a minimization of the determinant of the posterior’s
covariance matrix, or equivalently to a maximal |Q| = |K + diag[σ2, . . . , σ2]|
(Q is defined in (II 3.16)). It turns out that adding a single input to the de-
sign matrix X, |Q| is maximized by choosing the input with maximal predictive
variance in the pool5.

0 0.5 1

0

0.5

1

Figure IV.2.: D-optimal
design. 5 initial (×) and
195 chosen samples (•).

D-optimal designs are apparently based on a sen-
sible objective function, and it seems intuitively
sensible to define a greedy learning scheme which
chooses the input with highest predictive variance.
However, as argued by MacKay (1992b), D-optimal-
ity has undesirable properties in nonparametric re-
gression: The posterior entropy might not be min-
imized by choosing informative inputs, but rather
inputs which lead to simple posterior hypotheses.
We show a greedy 2 dimensional D-optimal design
in figure IV.26 using intermediate length scales

3 In this chapter we assume that the terms information gain and entropy are known. For
an introduction see (Cover and Thomas, 1991). We use the entropy in a different context
in ch. V 2.3, page 90, where we introduce its basic properties.

4MacKay (1992b) also discusses the Kullback-Leibler divergence between prior and poste-
rior, showing that both corresponding expected utilities are equivalent (II 2.14).

5This can easily be shown using a rank-one update of Q−1 and the predictive variance in
(II 3.17).

6We use a GP with squared exponential covariance function (II 3.20) and small noise level
(σ = 10−2, v = 1). The input distribution (gray rectangle) is U(0, 1)2, the pool is a
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w1, w2 = 1. The design tends to choose points at extremes and repeatedly
around 9 inner locations, without exploring the region of interest: The de-
signs minimizes the posterior entropy not by choosing informative queries, but
instead by choosing them to make a simple hypothesis fit the data.

A-optimal design: minimum generalization error. When the input distri-
bution p(x) is known, the aim of active learning is usually to obtain good
generalization to new samples from p(x). This holds in particular for sensi-
tivity analysis, where we are interested in an accurate estimate of averages
(III 3.14) over this distribution.

To measure the generalization error of the model we use its predictive vari-
ance, averaged over p(x)7. Integrating out the unseen targets y, we obtain

UA(X,θ|Do) =

∫

dy p(y|X,θ,Do)
︸ ︷︷ ︸

average over unseen
training targets

∫

dx p(x)
︸ ︷︷ ︸
average over

region of interest

[

− var [y|x,θ,D,Do]
]

︸ ︷︷ ︸

objective: (negative)
pred. uncertainty

.

(2.3)

For most models the average over x in (2.3) cannot be calculated in closed
form and needs to be approximated numerically. It is therefore common to
replace the integral by an MC-like approximation, using a sum over a pool of
samples from p(x). When we are given a large pool of data instead of an input
distribution, or when we are actually only interested in the given samples, the
pool approach can be seen as the natural measure rather than an approxima-pool approach

tion to (2.3). In this case Yu et al. (2006) speak of transductive experimental
design. Another variant is to estimate the distribution from available samples,
e.g. using a Gaussian mixture model.

The term A-optimal stems from the pool approach for the linear model,
whose expected utility can be written as the trace of a matrix, which is com-
monly denoted by “A”.

Exact A-optimal design for GP regression. When dealing with computer
experiments with a known input distribution, the pool approach is not justified
by itself and it might require a large pool to obtain a good approximation of the
integral (2.3). However, for GP regression the utility of an additional training
sample can be evaluated in closed form for multivariate normal and uniform
input distributions. For other factorizing input distributions the averages can
be reduced to one dimensional integrals, and efficient numerical methods for
quadrature can thus be applied. The input distribution is usually normal
in sensitivity analysis, and for general regression setups it is mostly chosen
uniform—hence the exact solution is possible for the most common problem
setups. To our knowledge the use of the exact expression for the A-optimal

50× 50 grid on [0, 1]2.
7MacKay (1992b) discusses several related utility functions to measure the generalization

error in a region of interest. An alternative is to use the information gain in the test
points, which corresponds to using the logarithm of the predictive variance.
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Figure IV.3.: In this figure we have plotted A-optimal designs of 200 points (•)
with 5 initial samples (×). The noise was set to a small level (σ = 10−5, wo = 1).
Panels (a)–(c) show designs for a normal, N (0, 1)2, panels (d–f) for a uniform,
U(0, 1)2, input distribution. In contrast to random samples, A-optimal designs tend
to spread the samples well apart from each other, where the length scales control
the distances between the points.

expected utility function for GPs has first been reported in (Pfingsten, 2006).
The derivation is the following:

Assume we add a sample x̃ to the dataset D. The integral over y drops out,
as the predictive variance is independent of the targets. Using the definitions
in (II 3.17), the change in the predictive variance results in8

var [y|x,D, (x̃, ỹ)]− var [y|x,D] = −
[
k(x, x̃)− k(x)T Q−1k(x̃)

]2

var [ỹ|x̃,D]
, (2.4)

which, through integrating over p(x), leads to

UA(x̃,θ|D) = const +

∫

dx p(x)

[
k(x, x̃)− k(x)T Q−1k(x̃)

]2

var [ỹ|x̃,D]
(2.5a)

= const +

[

l(x̃, x̃) + (Q−1y)
T
L (Q−1y)− 2 (Q−1y)

T
l
]

var [ỹ|x̃,D]
. (2.5b)

8The predictive variance is given by (II 3.17b). The change for an additional sample can
be derived using a rank-one update of Q−1. Note that the utility is valid for both, noisy
(σ 6= 0) and exact (σ = 0) observations y.
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Figure IV.4.: Active learning, univariate example. Approximate inference using a
GP prior on 15 training samples (×): ML-II (a) and an average over the hyperpa-
rameters using MCMC (b). The ±2σ predictive distribution is shaded in dark gray.
The dashed line indicates the expected utility (2.5b) of a potential new training
sample with the input distribution indicated by the light shade. Note that ML-II
and MCMC give qualitatively different results. Panel (c) shows the contours of the
posterior for v and w1 relative to the maximum (⋆) at the correct noise level: Much
posterior mass is located at smaller length scales, and the confident ML-II estimate
is inadequate.

We have used the definition9 l(x′,x′′) =
∫

dx p(x) k(x,x′)k(x,x′′) which we
have already introduced in (III 3.16). The explicit solutions for the squared
exponential kernel function (II 3.20) and Gaussian or uniform input distribu-
tion are given in the appendix B, where we also treat the case of arbitrary
factorizing input distributions.

2.2. The ML-II approximation

In the expected utility U(x̃,θ|D) (2.5b) the hyperparameters θ are assumed
to be known. In the designs which we have shown so far we have kept them
constant for illustration, however, in our experiments they are updated after
each query to adjust to the functions’ properties.

As required in Bayesian decision theory, unknown parameters need to be
integrated out using the posterior distribution p(θ|D). However, an analytical
solution is infeasible (chapter II 1). Good numerical estimates, e.g. using
MCMC, are computationally expensive and require an experienced user. A
simpler alternative is the ML-II estimate, where the posterior is approximated
by a delta distribution around its mode θ∗ (2.12), and the expected utility
simply becomes U(x̃|D,θ∗).

Problems using ML-II in extreme situations. The ML-II approximation
is widely used for inference. However, there are critical situations in which
there is a qualitative difference between ML-II and MCMC estimates for A-
optimal scores: In figure IV.4 we show such a case. In this univariate example

9As for the covariance function k we use:
l(x̃) ∈ R

N , L ∈ R
N×N with [l(x̃)]ℓ = l(xℓ, x̃) and Liℓ = l(xi,xℓ) .
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(a) Extra input x3(x1, x2)
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(c) A-Optimal design

Figure IV.5.: Optimal design for a nonstationary GP model. Augmenting the in-
puts by a function of x1 and x2 as an extra dimension (panel a), leads to a new,
nonstationary kernel function. A sample from the corresponding GP prior is shown
in (b), and the A-optimal design is given by panel (c).

we have used 15 training samples which we have placed around only three
locations. Gray shades indicate the Gaussian input distribution p(x), and the
predictive distribution. Note that ML-II (a) returns optimistic predictions
with significantly smaller predictive variance than MCMC (b) and maximal
expected utility (dashed line) far from the origin and at the maximum of
p(x) where a number of samples is already given. This seems unreasonable
as no samples have been queried between ±2 and 0. In contrast, the MCMC
solution (b) shows exactly the characteristic which we would have expected
intuitively: The utility is very small where targets have been observed, and
maximal around±1. Panel (c) displays why the ML-II solution is inadequate in
this example. As the training samples are placed only around three locations,
the length scales’ posterior distribution has its mass spread from w1 = 0.1 to
20, and MCMC samples with shorter w1 contribute strongly to the variance in
between samples. These are neglected by ML-II, which fixes w1 to 6.

2.3. Nonstationary GP priors

As we have outlined in chapter II 3.2, a common assumption when specifying
a GP prior is stationarity, i.e. that the covariance between function values
only depends on the distances (x − x′), not on their location. It is far more
difficult to specify a GP prior allowing the function to have different properties
in different parts of the input space.

Assuming stationarity implies that we exclude the case where the function
varies fast in one region of the input space, while being very smooth elsewhere.
Unfortunately, just this is the most interesting case for active learning: Using
few samples where the function is smooth, the learning scheme could place
samples more densely in the “interesting” region.

Gramacy et al. (2004) propose to use nonstationary Gaussian process trees
to locate and exploit such regions for design. Pfingsten et al. (2006b) approach
nonstationarity via a latent input dimension.

Figure IV.5 illustrates an A-optimal design for a nonstationary GP with one
given extra input: Panel (a) shows the extra input as a function of the first two,
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Algorithm 2 Greedy A-optimal active learning

Require: No initial samples DNo
. Input distribution p(x).

1: for ℓ = No + 1 to N do
2: find the ML-II estimate θ∗ using Dℓ−1.
3: find xℓ ← argmaxx̃UA(x̃|Dℓ−1,θ

∗).
4: query target yℓ to obtain new dataset Dℓ ← Dℓ−1 ∪ {(xℓ, yℓ)}.
5: end for

x3(x1, x2), which introduces extra variability where x3 is not constant. We have
used a squared exponential kernel (II 3.20) with v = 1, w1 = w2 = 0.2 and w3 =
0.1 for the extra input. Panel (b) shows a sample from the prior, which exhibits
fast variations in the leftmost corner. Accordingly, the corresponding designin
panel (c) turns up to place samples more densely in this region than elsewhere.
Note that active learning, in contrast to experimental design, would be able
to detect the nonstationarity, enabling the learning scheme to concentrate on
interesting regions.

2.4. The greedy A-optimal scheme for active learning

In the preceding sections we have outlined possible approaches and approx-
imations to Bayesian active learning. In the following we outline the imple-
mentation which we have used for our experiments.

In section 1.2 we have described the conceptual difference between Bayesian
experimental design and active learning as commonly used in machine learn-
ing. For our implementation we have chosen the greedy active learning scheme,
which updates the model after each query, yet plans only one step ahead. From
the shown low dimensional examples we conjecture that the greedy approxima-
tion is usually appropriate, while updating the GPs unknown hyperparameters
has a significant influence on the design.

For sensitivity analysis and standard regression setups, where the underlying
function can be queried in form of a simulation software, the A-optimal design
(2.1) is the most natural. We use the exact averages over p(x) (2.5b), which we
optimize by choosing the maximum value out of a pool of 10 000 samples from
p(x) and 10 000 samples from a distribution with twice the variance of p(x).
The brute-force maximization can be replaced by a gradient-based scheme,
however, we expect a large number of local minima where the optimization
could get caught.

The example in 2.2 shows that the ML-II approximation might lead to sub-
optimal designs. Nevertheless, a full MCMC solution is not feasible as it can
hardly be adapted for non-expert use, and thus we use the ML-II approxima-
tion. The hope is that ML-II leads to good results in practice, which was in
fact verified in an extensive empirical study (see section 3).

Nonstationary GPs (2.3) are difficult to handle numerically, and it is not
clear whether such priors are useful for high dimensional models. We believe
that this class of models is very interesting for future research, however, for
our application of active learning we choose the simpler stationary model with
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Figure IV.6.: Friedman’s function. Learning rates of passive learning—using inde-
pendent samples from p(x) (RD) and Latin Hypercube (LH) designs—compared to
greedy active learning (AL). We consider the mean (a) and variance estimate (b)
for SA, and the MSE on samples from p(x) (c).

squared exponential kernel (II 3.20). Nonstationarity is introduced to sensi-
tivity analysis via the nonconstant weighting given by p(x). Our approach is
subsumed by algorithm 2.

3. Evaluation and use in practice

Our active learning scheme is rigorously derived from the Bayesian expected
utility, which addresses the generalization error. However, for the reasons
we have outlined above, it is not clear whether the scheme can actually save
queries in practice. We have benchmarked the algorithm in comparison to
passive learning on a number of problems of differing complexity, which we
believe to cover problems that are important in practical application:

We consider the benchmark problems for sensitivity analysis, which have
been introduced in chapter III. Here we assess the performance of GP regres-
sion and Bayesian Monte Carlo, directly comparing the generalization error of
the GP emulator using the mean squared error (MSE) on samples from the in- MSE

put distribution, and the accuracy of the estimates for the first two moments
of the uncertainty distribution. The examples are divided into analytical
benchmark problems (section 3.1) and simulation models from development at
Robert Bosch GmbH (section 3.2).

3.1. Artificial benchmark functions

Friedman’s function. The results for the example on the basis of Friedman’s
function10 are shown in figure IV.6. We have initialized our greedy active
learning scheme (AL) with No = 20 random samples from p(x), and sub-
sequently added 480 optimal queries. The plots compare the error to those
obtained using Latin-Hypercube designs (LH) and independent samples from
p(x) (RD) for varying design sizes. Panels (a–c) show the accuracy of the

10For the definition see chapter III 4.1, p. 54.
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relative error in % ratio

passive learning: LH active learning: AL means

meanx[f ] 0.34 [0.07, 0.65] 0.52 [0.08, 0.94] 1.55

varx[f ] 2.66 [0.79, 4.83] 0.81 [0.07, 1.70] 0.30

MSE 1.05 [0.71, 1.39] 0.30 [0.26, 0.37] 0.28

Table IV.1.: Convergence of active and passive learning for Friedman’s function with
noise. The figures represent the performance on 10 independent designs with 500
samples (mean [best, worst]). The last column contains the ratio of mean AL- and
LH-error.

BMC mean and variance estimate, and the mean squared error of the GP em-
ulator on 10 000 independent test points from p(x). Each errorbar shows the
mean and maximal error out of 20 independent runs. We have omitted the
minimal values to increase the legibility of the plots.

AL significantly outperforms both passive sampling schemes on all quan-
tities of interest on designs of more than approximately 100 points. At 500
samples the AL mean estimate is around 5 times more accurate compared
to passive learning, for the variance estimate and the MSE optimal designs
are better by a factor 10. A surprising fact is that for all measures there is
hardly any difference between independent samples and Latin Hypercube de-
signs. Note also that the fluctuations in the AL designs are much smaller than
for random samples, as the sampling scheme is to large extend deterministic11.

The MSE in panel (c) appears to be dominated by three phases during
active learning: Up to 100 samples the function’s structure is only roughly
captured by the GP, so that the active planning can hardly profit from prior
measurements. The gap between optimal and random designs increases very
rapidly from 100 to 450 samples. Our intuition is that the structure is well
approximated in this phase, so that the planning procedure results to be very
effective. From 450 samples on the improvement slows down. We believe that
the saturation at an accuracy of 0.1% relative to the correct variance varx[f ]
might be due to a slight mismatch between prior and data.

Noisy observations In our experiments we aim mainly at assessing the per-
formance of active learning for noiseless observations from computer exper-
iments. Therefore we have not added noise to the artificial examples. To
evaluate whether our learning scheme also improves the learning rate in the
presence of noise, we consider here the Friedman function adding normal noise
with unit variance, as proposed in the original problem by Friedman (1991).
The results are given in table IV.1.

On a separate test set of 10 000 samples (without noise) from p(x), active
learning reduces the MSE by a factor of 3.5 and the relative accuracy of the
variance estimate by a factor of 3.3. Surprisingly, the mean estimate is by a
factor of 1.5 worse than for passive learning.

11Due to the logarithmic scale the AL errorbars appear stretched.
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Model D N passive learning: LH active learning: AL ratio

mean squared error relative to varx[f ] means

1 2 100 5.6 10−8
[1.3 10−8, 2.2 10−7] 1.1 10−8

[4.7 10−9, 1.8 10−8] 0.20

2(a) 6 600 1.2 10−4
[8.3 10−5, 2.2 10−4] 9.4 10−5

[6.2 10−5, 1.4 10−4] 0.76

2(b) 20 500 3.5 10−2
[3.1 10−2, 4.5 10−2] 3.5 10−2

[2.6 10−2, 5.2 10−2] 1.0

3(a) 2 30 6.2 10−6
[3.6 10−7, 5.0 10−5] 2.2 10−7

[1.3 10−7, 4.8 10−7] 0.04

3(b) 2 300 7.0 10−6
[4.3 10−7, 3.2 10−5] 3.0 10−8

[2.4 10−7, 3.8 10−7] 0.04

4 8 500 1.3 10−2
[1.1 10−2, 1.9 10−2] 9.9 10−3

[8.9 10−3, 1.1 10−2] 0.79

5 3 500 4.0 10−4
[2.0 10−4, 6.6 10−4] 1.4 10−5

[1.3 10−5, 1.7 10−5] 0.04

Table IV.2.: Convergence of active and passive learning on SA benchmark problems
(appendix B). The figures represent the performance on 20 independent designs
(mean [best, worst]). The last column contains the ratio of mean AL- and LH-error.

Our explanation for the differing results on the mean estimate is the follow-
ing: active learning cannot improve the uncertainty in the offset due to noisy
observations. According to the standard bound given by the central limit
theorem, the relative standard deviation of the mean estimate with 500 obser-
vations is 0.39%, which is in the range of accuracy of both learning schemes.
We conjecture that the error in the mean estimate is dominated by the uncer-
tain offset due to the noise, which means that the bad performance of AL is
not significant. In contrast, the maximum MSE for active learning is smaller
than the minimum MSE for random sampling.

Many heuristic approaches to active learning tend to fail in the presence of
noise, and there has been an extensive discussion on how to solve the problem
(Balcan et al., 2006). We believe that our learning scheme does not show this
behavior, as it is rigorously derived from the Bayesian expected loss. As the
used GP models are probabilistic, they provide a notion of uncertainty and
separate noise-variance naturally from predictive uncertainty.

SA benchmark functions. A large variety of benchmark functions for sensi-
tivity analysis has been proposed by a number of authors. We have used a set
of these problems to evaluate the BMC scheme, as defined in the appendix B.
The problems are all nonlinear, yet of very different complexity with two to
twenty active dimensions.

Table IV.2 shows the results of passive and active learning, comparing the
MSE on a fixed number of samples12. Except for model 2(b) and 4 we have used
the same number of samples as in table III.1, p. 58, where we compared MC
and BMC. Models 2(b) and 4 turned out to be extremely difficult, requiring
2 000 and 3 000 samples, respectively. Therefore we have used only 500 samples
to limit the computational expense.

The ratio of the MSE for active and passive learning varies from 0.04 for
problems 3(ab) and 5 to 1 for problem 2(b). In particular on the low di-
mensional examples active learning leads to a great improvement, while we
obtained only a slight or no improvement for the hardest problems.

12We have used No = 5 (model 1, 3(a,b)) and 20 (model 2(a,b), 4, 5) initial random samples.
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Figure IV.7.: Learning rates for the PS model: The estimates for the output’s
mean and variance using the MC method, passive and active Bayesian quadrature
are plotted in panels (a) and (b). The mean squared error for active and passive
learning is shown in panel (c) relative to varx[f ]. The error bars indicate the median
and maximum value out of 35 runs.

This connection is related to our results for the comparison of MC and BMC,
where we found that BMC leads to more improvement where the function
was easier to capture by the GP prior: As we have seen in the Friedman
example, the active learning scheme can only start being effective when parts
of the function are captured well by the GP. We believe, that the function in
example 2(b) is too difficult to make AL work on only 500 samples. Note,
however, that even here AL performs as well as passive learning and does not
waste simuilation runs.

3.2. Examples from development

The following examples are fully features models of MEMS sensors, which we
have introduced in chapter III, section 4.2.

PS model. Figure IV.7 shows the empirical comparison of MC, active and
passive BMC for the PS model (chapter III 4.2 p. 49). The active learning
scheme has been initialized with No = 20 random samples. We observe that
AL outperforms random sampling on each quantity for more than 75 samples.
The accuracy at 300 samples is improved by roughly a factor of five.

AC and YR model. The AC model has been introduced in chapter III 4.2
p. 57, the YR model can be found on p. 59. In both cases we have initialized
the active learning scheme with No = 20 random samples. For the previous
examples we have seen that the accuracy of the moment estimates for BMC
tightly corresponds to the MSE. Hence, to keep the presentation brief, we only
show the MSE of active and passive learning against the number of training
samples (figure IV.8).

We observe that active learning significantly increases the accuracy starting
at around 100 samples in both problems. For designs with 270 samples we
gain a factor of 15 (AC model) and 5 (YR sensor).
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Figure IV.8.: Learning curves for the model of the AC model (a) and the YR
model (b). The markers indicate the median of 6 (a) and 3 (b) runs, the error
bars cover the interval up to the maximal value. We compare the performance on
designs randomly sampled from p(x) (RD) and A-optimal designs (AL), where the
mean squared error is measured relative to varx[f ].

4. Discussion

The asymptotical learning rates for stationary regression models are discourag-
ing, as they state that active learning schemes cannot lead to faster convergence
than passive learning. However, these results do not cover the case where few
samples are available, which is in practice of main interest for active learning.
Accordingly, our approach to active learning was motivated by the need of an
efficient way to compute sensitivity measures for computationally expensive
computer models of MEMS.

Our approach is rigorously derived from a Bayesian expected utility, and—in
contrast to many previous works—we have avoided heuristics and numerical
approximation where possible: To our knowledge our approach is the first to
avoid the pool-approximation for A-optimal designs. Therefore, the evalua-
tion of our utility function is computationally as cheap as a simple prediction
for GP regression at that input, and the method is easily implemented.

As indicated by asymptotical learning rates for active learning and its sen-
sitivity to misspecifications of the model, it is not clear a-priori whether a
learning scheme improves the learning rate in practice. On the example of
the ML-II approximation we have shown that in particular approximating the
expected loss might have undesirable effects. To test the fitness of our active
learning scheme we have therefore performed experiments on various bench-
mark problems, and case studies on fully featured models from the development
of MEMS sensors.

Our experiments show that—for a fixed number of samples—active learning
can greatly reduce the generalization error of the GP model in a region of
interest, and thus increase the accuracy of a SA while keeping simulation time
constant.

The improvement is particularly large for smooth functions, including the
high dimensional sensor models where only a restricted number of parameters
have significant impact. As active learning can only become efficient when
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enough structure of the approximated function is captured, the scheme be-
comes less attractive for very difficult problems. However, our experiments
have shown that active learning never performs significantly worse than pas-
sive learning—we loose the effort spent in computing the optimal design, but
queries are not wasted at uninformative positions.

Our approach to active learning is very efficient and robust—due to its
principled derivation. It can thus be integrated into our engineering tool for
analyzing computer experiments, where the simulation code is automatically
called at optimal settings until a required accuracy is obtained.



V. Feature selection for
troubleshooting

In chapter I we have discussed semiconductor manufacturing, including the
available data and typical problems one faces in mass production. Though all
processes are tightly controlled in mass production by keeping a large number
of in-line measurements in a small tolerance window, the faultless functioning
of all devices cannot be guaranteed. Each device is therefore controlled in
rigorous quality checks at the end of the production line to verify that the
specifications are met. A small number of devices is always found to fail the
quality tests due to particle contamination and random fluctuations—and in
rare cases a systematic error leads to an increased failure rate. While it is the
aim of robust designs (see chapter III) to minimize random failures, here we
present a scheme to detect and localize systematic errors due to malfunctioning
processes.

Our approach for troubleshooting is a novel application of feature selection,
which is also described in (Pfingsten et al., 2005). In contrast to previous
methods, the approach does not model the structure of the fabrication, and is
thus not restricted to a specific process.

In order to detect systematic errors we make use of data from finishing
quality checks. These consist of tens of numerical measurements, which we
use to separate failures into classes that are likely to be related to different
root causes. The classification is typically done manually when certain error
patterns are repeatedly found by the operator, and for semiconductor man-
ufacturing it is possible to tailor an automatic error detection. We outline
several mechanisms in section 1.1. In section 1.2 we describe how to com-
bine the lot-history and data from other sources to obtain a list of features
which might explain the errors.

When dealing with a moderate number of possible root causes and a large
number of samples, troubleshooting is an easy task. The crux of the trou-
bleshooting problem is that we usually have less than a hundred detected
errors while there are thousands of potential causes. Also, potential causes
need to be treated jointly as we expect that an unfortunate concurrence of
several incidences causes the problem. The problem which we end up with
in troubleshooting has been studied extensively in machine learning as fea-
ture selection, where powerful algorithms have been developed. We discuss
the generic problem of feature selection in section 2, introducing the basic
concepts (2.1 and 2.2). Our implementation is described in section 2.3.

Our approach has been cast into a tool for the Bosch semiconductor foundry,
where it has proven valuable in several incidences. In section 3 we present a
case study on four real-world problems from the foundry, which has served
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Figure V.1.: The results of on-wafer tests can be used in different levels of detail.
The total yield (a) compares only the total number of good and bad dies. The
failures can be classified into several bins (b), which may contain information about
the root cause. The position of failures on the wafer (c) indicates systematic errors
through deviations from a uniform distribution.

us to test the algorithm before clearing it for common usage. The results are
discussed in section 4.

1. Data preprocessing

A crucial step in machine learning is the preprocessing, as this is where great
parts of the expert knowledge enter the analysis. In the presented approach to
troubleshooting we have used known algorithms, and the main contribution of
this work was to identify the analogy of troubleshooting and previously studied
problems.

In the following section 1.1 we describe the detection of systematic errors in
semiconductor manufacturing. In our feature selection approach these errors
are sought to be explained by a small number of features, given by the way of
a lot through the manufacturing line. In section 1.2 we describe how to merge
all potential causes in a standardized format which suits troubleshooting.

1.1. Detection of systematic errors

The outset of troubleshooting is the detection of systematic deviations which
are caused by an abnormal behavior of the manufacturing line. Depending on
the product which is under consideration, these deviations may be noticed by
a great variety of attributes and are usually a matter of manual classification.

For semiconductor manufacturing we have the possibility to define some
characteristics which can be detected automatically. See chapter I for an
overview on a typical semiconductor foundry and the available data. During
production wafers are the basic workpieces and pass through the manufactur-
ing line in groups (lots), which represent a batch of thousands of single devices.
Each device is tested individually in electrical on-wafer quality checks. In fig-
ure V.11 we illustrate the levels of detail, in which the results of the on-wafer

1The plots show artificial data.
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tests may be analyzed: The yield (panel a) is the rate of compliance with
the specifications and can be defined for single wafers as well as for the lot
as a whole. It is widely used, in particular to analyze the cost-effectiveness
of the foundry, however, it is often not specific enough for troubleshooting as
it averages over all possible causes for failure. A minor refinement to the
overall yield is to brake down the failure rate into error classes according to
the specification which is violated (panel b). Using the position of failed dies
on the wafer we can go a step further and explore their spatial distribution.
Panel (c), for example, shows a suspicious spot with concentrated failures at
the bottom left of the wafer. By considering such patterns we can make sure
not to miss on rare systematic failures in a background of random errors. Pat-
terns on wafermaps as indicators for systematic losses have been studied in
several previous publications:

Duvivier (1999) describes a scheme to identify regions where dies tend to
fail more often than on average, and Fountain et al. (2002) and Riordan et al.
(2005) use these dependencies to predict failures before on-wafer tests are per-
formed2. The detection of patterns in a database of wafermaps is an unsuper-
vised learning problem, where no pre-classified training set is available—the
main goal is to discover unknown patterns, not to assign wafers to known
templates. Nicolao et al. (2003) compare several methods for unsupervised
classification using a set of artificial examples. Defect maps, which capture
the quality of the wafer’s surface at several production stages, can complement
maps of on-wafer tests.

In our case study we have not made use of automatically extracted patterns,
as critical regions on the wafers had already been identified by the operators.
Using these templates, we could identify affected wafers comparing the failure
rates on critical regions to the overall yield. As the detection of patterns on
wafermaps has been extensively studied in the above works, we concentrate
here on how to use the data to locate root causes.

As we have mentioned above, flaws in the production line can lead to sys-
tematic failures with very different attributes. Our troubleshooting approach
is independent of the errors’ specific attributes and how they are detected, we
only distinguish “regular” and “conspicuous” lots. If, for example, the occur-
rence of systematic patterns serves us as an attribute, we define a suspicious
lot as one where patterned wafers are found. In order to use the yield we need
to define a threshold below which we consider a lot to be conspicuous. Let
us denote the number of lots in the dataset by N . The results of the error
detection can be collected in a binary vector

y = (y1, y2 . . . yN)T ∈ {0, 1}N , (1.1)

where an entry yℓ = 0 stands for lot number ℓ being unaffected, and yℓ = 1 for
a lot being affected by the error.

2The cut down of on-wafer tests can be valuable as testing contributes with a non-negligible
fraction to the total costs of a device.
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Figure V.2.: Scheme of a serial-group manufacturing line. The raw lots undergo
manipulations in K production stages, and in each stage ℓ we have several machines
Mℓ1 . . .Mℓnℓ

to choose from. Most lots take different paths through the machinery,
as the allocation is designed to maximize the plant utilization. After processing, the
functionality of each unit is tested on the wafer.

1.2. Features and root causes

When doing troubleshooting we need information about the production of
each lot—in addition to the classification y into regular and irregular given
through error detection. The information may consist of in-line measurements
or other, more general details. Here we can think of the information that a
certain supplier has delivered a chemical substance, or that the lot has been
processed during a night shift. Suppose we have defined a list of D featuresfeature

out of which we believe to be able to read a root cause—no matter whether we
believe that a single feature or a combination of them has caused the observed
errors. Using a binary vector

xℓ = (xℓ1, xℓ2 . . . xℓD)T ∈ {0, 1}D (1.2)

we can describe for each lot ℓ which features j have been observed in its
fabrication (xℓj = 1) and which have not (xℓj = 0). We will call the xℓ input
vectors , collecting them in a matrix X = (x1,x2 . . .xN)T ∈ {0, 1}N×D.input vector

Using a binary coding to record whether some feature has been active during
production, we can combine arbitrary information about a lot. The binary vec-
tor can be expanded by in-line measurements, as our feature selection scheme
is also valid for numerical data.

In our case study we use the lot-history to define plausible root causes. Recall
the scheme of a serial-group manufacturing line introduced (figure V.2): The
wafers are processed in K stages, and in each stage j we randomly choose one
out of nj equivalent machines. If we believe that the use of a machine in a
specific stage causes the error, we obtain

D =
K∑

j=1

nj (1.3)

different features, each of which standing for a combination of a stage and a
machine. In realistic problems we have to deal with approximately 5 machines
in each of 400 stages and obtain D = 2 000 features. Machines can be used in
several stages in the foundry, and an error might be caused when a machine
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is used anywhere in the processing independently of the stage. To account
for this possibility we append features which we set to one if the according
machine is used anywhere in the process.

Our strategy for troubleshooting is the following: We use an algorithm to
extract combinations of features which contain information about the target y. target

The interpretation is simple. We identify the root cause with the set of features
which is suited best to predict whether an error occurs.

2. Feature selection

In the previous section we have described how to combine error detection with
other data from production, to obtain a target vector and feature vectors which
enlist its possible root causes. Section 2.1 introduces the generic concept of fea-
ture selection, where the objective is to identify small subsets of features which
are informative with respect to the target. In the troubleshooting task this re-
sembles the search for the root cause of the problem. In 2.2 we review previous
approaches to feature selection to motivate our approach to troubleshooting,
which we present in 2.3.

2.1. Objective in feature selection

In chapter II we have introduced methods to learn mappings f(x) from inputs
x ∈ R

D to targets y. It is often the case in real-world problems that the
mapping only depends on a subset of the given input dimensions (features).
In the following we call a feature irrelevant if f does not depend on it, and irrelevant

accordingly call features which enter f relevant . To indicate the relevancy of relevant

features we define a vector σ ∈ {0, 1}D with an entry σℓ = 1 when the feature
xℓ is relevant and σℓ = 0 when xℓ is irrelevant. We denote the number of
relevant features, i.e. nonzero entries in σ by Dσ.

To obtain good generalization performance an induction algorithm needs
to be able to ignore irrelevant inputs. For the nearest neighbor classifier, for
example, Langley and Iba (1993) study the importance of feature selection
and show that the predictive performance rapidly decreases with the number
of irrelevant features. The automatic relevance determination (ARD), which
we have introduced in chapter II, automatically detects the importance of
features by learning the appropriate length scales. The basic idea in ARD—
and other methods which concentrate on informative features—is to encode
our prior preference of simple mappings that depend on few features.

In the troubleshooting problem we are faced with an unfavorable proportion
of thousands of features and only a tens of training instances. Any model has
to restrict the number of active features, i.e. Dσ ≪ D, to be useful for these
applications, and feature selection has therefore received a lot of interest in the
machine learning community. An introduction is given by Guyon and Elisseeff
(2003)3, Blum and Langley (1997) review earlier works and discuss the basic

3The introduction is part of a special issue of the Journal of Machine Learning Research
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approaches to the problem.
Assume we have made up our mind about the modelMσ which we want to

use to describe the relationship between the active features σ and the target.
The choice of the subset σ is a model selection problem of the kind we have
discussed in chapter II 2.1, and in the Bayesian framework we use the posterior
probabilities p(Mσ|D) as a basis for our decision. To encode our belief
in models which depend on few features, we might use a prior of the type
p(σ) = p(Dσ) which favors small Dσ.

Non-probabilistic models usually optimize some loss function, where we can
identify an empirical risk term which corresponds to the (− log) likelihood, and
a regularization term which corresponds to the (− log) prior (Schölkopf and
Smola, 2002, chapter 3 and 4). Just as we may introduce a prior which favors
small sets of active features, we can adjust the regularization term such that
it penalizes large Dσ. A well known method, the Lasso, has been proposed
by Tibshirani (1996). The Lasso is a linear model, f(x) =

∑

ℓ wℓxℓ, where
the mean-squared loss is minimized under the constraint

∑

ℓ |wℓ| ≤ λ. As
the extra parameter λ approaches zero, more and weights equal exactly zero,
effectively making the corresponding features inactive. Weston et al. (2003a)
propose a similar approach for linear and kernel methods, directly penalizing
the number of active features Dσ.

Any model selection is an optimization task, be the objective function the
posterior probability as in Bayesian approaches, some other loss function, or
the cross validation error. Let us name the objective function for feature
selection, the score,

S(Mσ,D) , (2.4a)

where D is the available training data. We will call its maximizer,

σ∗ = argmax
σ

S(Mσ,D) with D∗ active features , (2.4b)

the optimal or most informative subset of features.

2.2. Wrappers, filters, and embedded methods

If we compare only small subsets with Dσ being one or two, we might be able
to evaluate S(σ) (2.4) for all possible subsets, but as the number of subsets of
length smaller or equal Dmax is

card{σ|Dσ ≤ Dmax} =
Dmax∑

d=1

(
D

d

)

, (2.5)

an exhaustive search is impossible for large D and Dmax
4. The approaches to

the optimization problem are manifold, all are necessarily suboptimal and are

(Kaelbling, 2003) on the subject.
4Take, for example, a problem with a moderate number of D = 100 features and Dmax = 5

relevant features. In order to do an exhaustive search we need 919 days of computation
if the evaluation takes one second per score.
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Figure V.3.: The ARD mechanism on a toy example with two input features.
Panel (a) shows the projection of the 2-dimensional training data (+) with the
GP fit (mean (—) and predictive uncertainty (2σ, shaded)). Panels (b) and (c)
show the evidence for varying length scales. While w1 is optimal around 2.5, w2 is
driven to values w2 ≫ maxiℓ ‖xi2 − xℓ2‖, thus eliminating x2 from the covariance
function.

designed to restrict the search to few feature sets which seem promising. In
the following we outline different approaches. According to Blum and Langley
(1997) we have grouped the methods into three classes, embedded methods,
wrappers and filter methods.

Embedded methods. Our first example for feature selection has been ARD, embedded
methodsas introduced in chapter II 3.2. ARD belongs to a family of methods which

do not directly consider the combinatorial problem (2.4), instead tuning a
smoothed problem with continuous “importance” parameters.

In figure V.35 we illustrate ARD on a toy example with two input dimen-
sions. The output f is a function of the first parameter only, making the second
feature irrelevant. Panel (a) shows the fit to the data, which is obtained by
maximizing the evidence with respect to the hyperparameters θ. From a pro-
jection to the first length scale parameter w1 (b), we observe that the evidence
is maximal for w1 ≈ 2.5. The other length scale w2 (panel c) maximizes the
evidence at w2 ≫ maxiℓ ‖xi2 − xℓ2‖, thus eliminating the second feature.

Smooth approximations to the feature selection problem have also been con-
sidered for the support vector machine (SVM), e.g. by Weston et al. (2003a)
and Bradley et al. (1998). Smoothed problems can be solved more efficiently
than combinatorial tasks as they ease a search for local extrema. We can, how-
ever, not expect to be dealing with a convex problem where the maximum is
unique, and searching for a global maximum might therefore still be impossible
for realistic problems.

5 The 2nd feature, not shown in the plots, was randomly drawn from U(0, 1) and does not
enter the function f(x). We have used the ARD squared exponential covariance function
(3.20), and the ML-II approach, where the hyperparameters θ∗ are tuned to maximize
the evidence p(D|θ). Panel (b) and (c) show the evidence for varying length scales, while
the other parameters are set to θ∗.
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Smoothed approximations are examples for embedded methods, described in
detail by Lal et al. (2006). The characteristic of embedded methods is that they
do not search blindly for optimal sets of features using the model as a black
box. Instead, they are tailored to the induction algorithms and use internal
quantities of the model in addition to outcome of S(σ). To come back to the
ARD example, the optimization is made efficient by the use of the evidence’s
gradient with respect to the hyperparameters θ.

The mentioned Lasso is another embedded method, just as the optimal brain
damage for neural nets by Cun et al. (1990) and the related recursive feature
elimination for SVMs (Guyon et al., 2002). Both latter methods start with
the full set of features and eliminate them according to their impact on the
objective function. Instead of computing the change of S(σ) by re-evaluating
the predictor, the methods estimate the change using Taylor approximations.

Recursive feature elimination ranks the features one-by-one and can there-
fore not propose to remove (or include) related groups of features. The situa-
tion is similar in the Bayesian setting when Gibbs sampling is used to propose
new σs:
Gibbs sampling compares the conditional probabilities p(σℓ = 0|σ\ℓ,M,D)
and p(σℓ = 1|σ\ℓ,M,D)6, i.e. we only look at single features while leaving
the others fixed. Nott and Green (2004) resolve this constraint by apply-
ing the Swendsen-Wang algorithm to the problem, which had originally been
developed to solve the Ising model. The algorithm proposes changes not one-
by-one, but finds connections between the features and accordingly proposes
the removal and inclusion of whole groups of features.
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The wrapper approach. Wrappers treat the inductionwrappers

algorithm as a black box and rate sets of feature only on
the basis of the predictive performance of the constrained
model Mσ. The idea to use the leave-one-out or cross
validation error has been reviewed by John et al. (1994);
Kohavi and John (1998), who also address the problem of
overfitting. As they put it, we are likely to find a subset
of features which is consistent with the holdout set by pure
chance when the number of features is large. Therefore it is
fundamental to test the selected features on another hold-
out set which has not been used for feature selection. We
have sketched the validation scheme in figure V.4.

While embedded methods tackle the optimization prob-
lem by using model specific measures for the impact of fea-

tures, wrappers necessarily need to do without such guidance, computing the
change in S by retraining the induction algorithm for each possible change. A
common way to do a non-exhaustive search over the set of active sets σ is the
so-called plus-l-take-away-r method as proposed by Stearns (1976), which con-
siders nested subsets by adding l and omitting r features in several steps. An

6For details see (MacKay, 2003, chapter 29).
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example is the oblivion by Langley and Sage (1994), which starts with a full
set of features and leaves them out one-by-one (l = 0, r = 1). Almuallim and
Dietterich’s focus (1991) performs a forward search to build a set of features
(l = 1, r = 0). The floating search of Pudil et al. (1994) adds single features
and then omits features until S decreases (l = 1, r flexible).

Greedy search schemes such as the (l, r) strategies are necessary to restrict
the search to a reasonable number of subsets σ, yet it is clear that they might
not lead to optimal solutions. Consider the backward search where we start
with the full set of features. Once the induction algorithm is able to filter some
relation to the target, leaving out unnecessary features will generally lead to a
good solution. However, when the number of features is large compared to the
number of training instances, the induction algorithm might completely fail to
do predictions on the full set and cannot measure the relevance of features.

The xor problem (John et al., 1994; Guyon and Elisseeff, 2003) shows that a
forward selection can fail when features are only jointly informative: Consider
a binary function f with two relevant features,

f(1, 1, . . . ) = 0, f(0, 0, . . . ) = 0, f(0, 1, . . . ) = 1, f(1, 1, . . . ) = 1 . (2.6)

The first two inputs become completely meaningless on their own if their out-
comes 0 and 1 are equally probable, yet together they completely define f .
Therefore, a forward selection which adds single informative features will not
find evidence for the relevance of either feature.

Filters. Kohavi and John (1998) recommend using wrapper methods, as filter methods

they directly optimize the predictive performance, which is usually what one
is interested it. Also, the schemes can be wrapped around any induction
algorithm used as a black box. However, in comparison to embedded methods,
wrappers are computationally disadvantageous. A problem which can be even
more severe is that wrappers tend to overfit the data when the test set is small:

The tendency to overfit is analyzed in detail by Ng (1998), who considers
two feature selection schemes. Standard-wrap is a wrapper which does an
exhaustive search to solve (2.4), using the predictive error on a test set as score
S(σ). Let the size of the holdout set be a fraction γ of N training samples.
Ordered-wrap is a filter mechanism which ranks all features without using the
test set. It constructs nested subsets σ0,σ1 . . . σD, where σℓ contains all ℓ top-
ranked features. Out of these D subsets ordered-wrap chooses the maximizer
of the score S. Ng shows that the generalization bound for standard-wrap
depends on D via the term

√

D/(γN). Therefore, when we have four times
as many features, we need twice as many training instances to expect the
same performance on new data. Ordered-wrap can, in contrast, deal with
exponentially many features, as the number of features enters the bound via
√

log(D)/(γN): We need twice as many training instances only as the number
of features is squared.

What distinguishes ordered-wrap from standard-wrap is that it searches only
over D nested sets which are defined independently of the score. In accordance
to Blum and Langley (1997) we use the term filter method for all related
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schemes which include candidates into σ in the order of some ranking which
depends on the training set only. The robustness of filter schemes makes them
the method of choice when D ≫ N , i.e. when we have many more features
than samples. This can be the case for example in object recognition (Vidal-
Naquet and Ullman, 2003)7, in bioinformatics (Weston et al., 2003b)8, and
in text categorization (Yang and Pedersen, 1997)9—and the troubleshooting
problem which we address here.

2.3. The troubleshooting approach

Ranking scores. In the preceding section we have argued that filter methods
are preferable when the number of features is much larger than the number
of samples. This situation is given in the troubleshooting setup, and therefore
we have chosen a filter scheme in our analysis. A convenient side effect is that
filter methods are computationally much cheaper than wrappers or embedded
methods, as only a small number of nested subsets is considered.

According to the definition of Ng (1998), any ranking criterion is admissible
as long as it only depends on the training set, and the inclusion of the ℓth

feature may thus depend on the previously selected subset σℓ−1. However,
most ranking criteria are univariate, i.e. they only compare single features xℓ

to the target y using a ranking score Ri = R(xi, y). Accordingly, the subset
σℓ is chosen to contain the first ℓ features with best scores Ri. The number
of univariate scores which can be found in literature is large, examples are
the correlation coefficients, which measure the quality of a linear fit to thecorrelation

coefficients corresponding parameter, and the related Fisher score (Guyon and Elisseeff
Fisher score (2003); Bishop (1995)).

Mutual information. We have chosen the mutual information (MI) as a mea-mutual
information sure which is based on information theoretic principles. It is in general hard

to calculate10, but as we are dealing with binary features and targets it can be
estimated from the available data with little computational effort. The mu-
tual information is based on the concept of entropy , long known in statisticalentropy

physics. It was introduced by Clausius as early as 1855 for thermodynamics,
and reinterpreted as the degree of disorder by Boltzmann in 1877 (for details
see e.g. (Feynman et al., 1963, ch. 44.6)). Shannon (1948) derived the entropy
as a measure for the information content of a random process, using only few

7Vidal-Naquet and Ullman search for image fragments which are representative for their
class. They are dealing with 59 200 of features and use a training set of 934 images.

8Weston et al. predict the chemical activity of a drug based on 139 351 binary features
which describe the geometry of the molecule. They have access to 1 909 samples, 42 of
which being active.

9Yang and Pedersen present a comparative study of several filters and consider two datasets
with 16 039/72 076 features and training sets of 9 610/1 990 instances. Text categoriza-
tion is somewhat special, in that documents are assigned to a large number of different
categories (92/12).

10When the features are continuous one needs to use nonparametric density estimation. See
Bonnlander and Weigend (1994).
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axiomatic properties. In the following paragraphs we give a short overview,
restricting the presentation to the special case which is important for our fea-
ture selection setup. A comprehensive introduction to information theory can
be found in (MacKay, 2003) or (Cover and Thomas, 1991).

Illustration. Consider a Bernoulli B(q) distributed random variable
X —i.e. p(X = 1) = q and p(X = 0) = 1− q. The entropy H is defined
as

H(X) = −
∑

x∈{0,1}

p(X = x)log2 p(X = x) (2.7a)

= −
[
qlog2 q + (1− q)log2 (1− q)

]
. (2.7b)

Note that we have chosen the logarithm to the base two to measure the
entropy in bits, while in physics it is usually measured in terms of heat
capacity, i.e. units of Joule per Kelvin by using the natural logarithm
and the Boltzmann constant.

H
(q

)
[b

it
]

q
0 .2 .4 .6 .8 1

1

Figure V.5.:
The entropy of a
Bernoulli B(q) distri-
bution.

See figure V.5 for a plot of H(q) against q. For
q = 0 or 1 the outcome of X is precisely known
and the outcome of a trial does not provide us
with any new information. In the other ex-
treme case q = 1

2 we know nothing about the
results and we need exactly one bit to store the
outcome of each trial. Shannon’s source code
theorem (Shannon, 1948, theorem 4) guaran-
tees that we can extend these results to all val-
ues of q: Sequences of N randomly chosen sym-
bols can be stored using H bits per symbol in
the limit of large N .

After defining the entropy as a measure for the information content of a
random variable, we can define the mutual information between two random
variables X and Y :

MI(X,Y ) = H(X)−H(X|Y ) . (2.8a)

The conditional entropy H(X|Y ) is the average entropy of the conditional
distribution p(X|Y = y) over Y :

H(X|Y ) = −
∑

y∈{0,1}

p(Y =y)




∑

x∈{0,1}

p(X =x|Y =y) log2 p(X =x|Y =y)



 .

(2.8b)
Hence, the MI measures how much information the outcome of Y contains
about X on average. Note that as the MI is symmetric, i.e. we obtain
MI(X,Y ) = MI(Y,X).

In the feature selection setup we are given a target vector y and feature
vectors (x1ℓ, x2ℓ . . . xNℓ)

T , which contain the binary class label and feature ℓ
for each sample. If we think of the entries as samples from a joint distribu-
tion p(Xℓ, Y ), we can approximate the ranking scores MI(Xℓ, Y ) in (2.8) by
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replacing the probability distributions by their empirical estimates. The com-
putations are, in the end, done by counting the occurrence of the respective
events. See appendix C.

Conditional mutual information. Univariate measures rank the features one-
by-one, and therefore they cannot capture whether those are redundant or
whether they are more informative when considered jointly (as in the xor-
problem (2.6)). However, simple rankings are usually good enough to identify
candidates for a subset to be used in a more powerful classifier11.

For our troubleshooting problem it is more important to understand the
structure of the data than to correctly predict the targets, and a more detailed
ranking can help to capture the underlying processes. The natural bivari-
ate extension of the MI is the conditional mutual information (CMI), whichconditional

mutual
information

measures how much information observations of a random variable X i supply
about a target variable Y when a third variable Xℓ has already been observed.
The conditional mutual information is defined as

CMI(X i, Y |Xℓ) = H(X i|Xℓ)− H(X i|Y Xℓ) , (2.9)

where the difference to (2.8) is simply that we condition all entropies on Xℓ.
It has been used in previous work by Vidal-Naquet and Ullman (2003) and
Fleuret (2004) to discard redundant features in the selected subsets. We extend
this approach for a detailed analysis of the data generating process.

The interpretation of the CMI is the following: When two features X i and
Xℓ convey different information to Y , the CMI reduces to the MI(X i, Y ),
while it is zero when they are perfectly correlated. In the xor-problem (2.6),
which is the other extreme case, X i and Xℓ might be completely uninformative
(i.e. MI(X i,ℓ, Y ) = 0) when regarded independently—yet together they contain
all information about Y and CMI(X i, Y |Xℓ) = H(Y ).

Consider the simple examples12 in figure V.6, where we show the MI of each
feature X i and the target Y , comparing it to the CMI(X i, Y |Xℓ) by plotting
the differences

∆MI(X i, Y |Xℓ) = CMI(X i, Y |Xℓ)−MI(X i, Y ) . (2.10)

It can easily be seen, that ∆MI is symmetric in X i and Xℓ. Panel (a) shows
a typical case where two features (1 and 2) are strongly correlated to the
target, yet perfectly correlated to one another. We obtain large MIs and
zero CMI(X1, Y |X2). The difference ∆MI(X1, Y |X2) is therefore the negative
MI. The cases (b) and (c) are contrary: as the target is given as X1 ∧ X2

and X1 xor X2 respectively, the CMI is larger than the MI. The difference is

11Guyon and Elisseeff (2003) argue that redundant features can lead to a better predictive
performance, as they help to suppress noise.

12We have randomly created the data for this example using 5 binary features and N = 1000
samples, choosing p(xℓ = 1) = 0.2 ∀ℓ = 1 . . . 5. We have set the targets to zero and
changed them to one with p(y = 1|λ(x1, x2) = 1) = 0.5. Noise was added by setting
p(swap target) = 0.05. The placeholder λ stands for the operators λ(x1, x2) = x1 (a),
λ(x1, x2) = x1 ∧ x2 (b) or λ(x1, x2) = x1 xor x2 (c).
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Figure V.6.: Artificial toy example12. The plots show the conditional mutual infor-
mation (2.9) for all combinations of features in the form of a (symmetric) matrix.
The diagonals (ℓ, ℓ) show MI(Xℓ, Y ), the off-diagonal elements (ℓ, i) give the differ-
ences ∆MI(Xℓ, Y |Xi). Large absolute values are indicated by dark gray shades, the
signs are explicitly given. In (a) features 1 and 2 are perfectly correlated and each
defines Y . In the example (b) Y is given by X1 ∧X2, and in (c) by X1 xor X2.

positive as each feature gives us more information about the target if the other
is known. Thus, from matrices as those shown in figure V.6, we can read the
logical dependency between features, and analyze which features contribute to
the target. Redundancies and joint contributions such as in the xor or and
examples can be perceived at one glance.

The support vector machine. In the preceding section we have introduced
the ranking criteria MI and CMI in detail, which are crucial to understand our
approach to the troubleshooting problem. In the following we introduce the
support vector machine (SVM), which we have used to validate the predictive SVM

power of the selected subsets of features. SVM are covered for example in the
textbooks by Schölkopf and Smola (2002) and Cristianini and Shawe-Taylor
(2000), for a tutorial see (Burges, 1998). Our implementation uses the libsvm-
package by Chang and Lin (2001).

The weighted soft-margin SVM (referred to as C-SVM), which we have cho-
sen for our problem, solves the following constrained optimization problem13:

min
w,b,ξ

[

1
2
‖w‖2 + C

(

C1

∑

i;yi=1

ξi + C0

∑

i;yi=0

ξi

)]

(2.11a)

s.t. (wφ(xℓ) + b)

{
≤ ξℓ − 1 if yℓ = 0
≥ 1− ξℓ if yℓ = 1

(2.11b)

ξℓ ≥ 0 (2.11c)

The objective function in (2.11a) consists of two terms. The norm ‖w‖2 pe-
nalizes the complexity of the solution, while the second term penalizes wrong
predictions. Note that the constants C1 and C0 weight the misclassification
dependent of the classes, and can be adjusted to reflect the importance we
ascribe to a correct classification of good or bad lots.

13We have used the same notation as Hsu et al. (2001). See equation (1) therein.
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We are dealing with an unbalanced distribution of the classes y = 0 (good)
and y = 1 (conspicuous), yet we are particularly interested in a correct predic-
tion of the conspicuous lots. Therefore we set the weights such that the loss
for misclassification is equal for both class:

C1 =
#[y = 0]

#[y]
and C0 =

#[y = 1]

#[y]
. (2.12)

To be able to rate the predictive performance of the C-SVM we need a
score function which measures how well the relation of inputs and targets hasscore

been understood. In agreement with the above loss function we do not rate
classifications in both classes equally, as we believe that errors are only rarely
found with absent root cause, while flawed machines will still produce good
parts. Thus we use the balanced score function introduced by Weston et al.
(2003b),

S(yo,y∗)=
1

2

[
#{yo =y∗=1}

#{yo =1} +
#{yo =y∗=0}

#{yo =0}

]

, (2.13)

which is one when all lots are classified correctly, assigning an equal contri-
bution to each class. We denote test samples by yo and the corresponding
predictions by y∗.

The C-SVM (2.11) has a free parameter C, and the Gaussian kernel function
k(x,x′) = exp{−γ|x − x′|2}, which we have chosen for our implementation,
requires another parameter γ to be set. As the SVM is not a Bayesian method,
we cannot do a formal model selection and need to resort to another criterion.
We have chosen a 10 fold cross validation (CV) to optimize C and γ, and 25
folds to rank subsets of features.

3. Case study

Above we have introduced the filter approach for feature selection, which we
have chosen for our troubleshooting scheme. The mutual information (2.8),
the conditional mutual information (2.9) and the predictive performance of
the C-SVM classifier S (2.8) play a crucial role in the analysis. In this
section we present the results of a case study, which has been performed before
transferring our troubleshooting scheme to the Bosch semiconductor foundry,
where it is now regularly used. The purpose of the presentation on the
following pages is, on the one hand, to demonstrate the good performance
on examples from mass production, and, on the other hand, to serve as an
instruction for the practioner on how to interpret its output.

3.1. Datasets

The datasets which are analyzed in this case study have been extracted from
the database in the foundry. The data stem from the mass production of dif-
ferent products, representing recent and historic problems. We have collected
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number of number of number of number of number of
Name stages machines features lots tot. samples class 1
PC1 403 357 1896 112 41
PC2 355 331 1758 98 28
YC1 157 142 779 870 11
YC2 339 391 2104 261 37

Table V.1.: Benchmark datasets from the Bosch semiconductor foundry.

the details of the data in table V.1. For two of the datasets, PC1 and PC214, we
can expect to obtain clear results as they come with a relatively large number
of samples in class one—41 flawed lots have been detected in PC1, 28 in PC2.
Also, the lots have been classified according to the occurrence of patterns,
which, as we have argued in section 1.1, are known to be excellent indicators
for systematic errors. In the datasets YC1 and YC214 we have defined the lots
to be conspicuous when the total number of defects exceeded a threshold. In
contrast to the patterns, this criterion is not very sharp as it mixed several
root causes and random failures. In YC1 we are given as many as 870 lots in
total, but with only 11 observed errors the root cause will be hard to locate.
YC2 relies again on more (37) samples.

3.2. Interpretation of the results

PC2. For the case PC2 we extracted data from a time interval, in which
characteristic patterns were observed on some wafermaps. The root cause had
not yet been understood. The results of our analysis, displayed in figure V.7,
lead to the identification of the flaw, and the maintenance team could be
pointed to the responsible machine.

Using the mutual information we have ranked all 1758 features from the lot
history. See plot V.7(a). Most features are ranked below a noise level of roughly
0.05 bit, and one feature is found to be highly informative. Its ranking score
is around 1

2
bit. Two other features apparently carry some information about

the target, obtaining about half of the first feature’s score. The ∆MI matrix
in plot V.7(b) displays the results of the ranking in more detail. Note that we
plot all values normalized with respect to the maximal element in the matrix.
The features have been sorted according to the MI (shown on the diagonal),
and their interdependencies ∆MI are plotted below the diagonal. Note that
we have discarded all but the first 10 features for a clearer illustration. The
absolute values of the ∆MI are shown in gray shades, and their signs are given
within the matrix elements. The top-ranked feature, f.288, corresponds to the
first column of the matrix.

We find that feature f.289 is uninformative once we know f.288: As we
condition on f.288 it does not provide us with much new information and

14Our abbreviations stand for (P)attern based (C)lassification and (Y)ield based
(C)lassification.
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∆MI(X289, Y |X288) ≈ −MI(X289, Y )). The same holds for f.28a. Note, how-
ever, that both features apparently complement each other, and f.28a is more
informative as we condition on f.289 or vice versa. The structure our rank-
ing method has uncovered here reflects the production plan for the considered
device. The machines behind all three features belong to a single production
stage, where the one corresponding to f.288 was related to the error. Feature
f.289 and f.28a carry some information about the occurrence of the error, as
the lots pass only one of the machine in the stage. As we are given both
features, however, we know exactly whether it has passed machine 288 and is
thus likely to be affected by the error.

Plot V.7(c) shows the predictive performance of the SVM classifier with
error bars obtained through cross validation. Using only the most informative
feature f.288 we obtain an extremely good performance of S ≈ 80%, which
substantiates its strong ranking of 1

2
bit. As we add more features the score

does not increase, confirming the dependencies predicted in the ∆MI matrix.
As we add the 9thand 10thfeature the predictive performance decreases: the
information content on the active set can certainly not decrease as we add
more features, but as we pointed out in section 2, the classifier might degrade
as we add many irrelevant features.

PC1. Dataset PC1 is again an example for a pattern based error detection,
where we are given a good number of examples for flawed lots. The data
represents a historic problem in the plant, which had already been solved
manually—thus requiring a lot of manpower. Using our method we could
correctly reproduce the known results, this time, however, in an automated
manner. The output of our method is shown in figure V.8.

A look at plot V.8(a) shows that three features are ranked higher than
the great mass, obtaining relatively high scores between 0.13 and 0.25 bit.
In V.8(b) the ranking score is broken down to dependencies between the 10
top ranked features. The top features f.675 and f.404 are apparently highly
correlated, the third feature f.3cf, however, brings new information which is
not related to the first two. The same holds for the fourth feature f.626.

The classification in V.8(c) supports our analysis for the top three features.
We obtain a score of 70% for the first or first two features, yet adding f.3cf
increases the performance by 11%. Feature 626, in contrast, has not been
validated to be informative and we can conjecture that a combination of either
f.675 and f.3cf or f.404 and f.3cf was responsible for the error.

YC1. Dataset YC1 is another historic case, where an unusually high defect
rate was observed from time to time. It consists of a large number of sample
lots, the number of affected batches, however, is very small (11 out of 870).
Still, our method successfully uncovered the root cause. Find the results in
figure V.10.

One of the 779 features (f.2a5) in YC1 sticks out of the noise with a rank-
ing score of 0.025 bit (plot V.10(a)). The score is, compared to the other
examples, extremely low, but as the entropy of the target is itself very low
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(c) Predictive performance of the SVM.

Figure V.7.: Dataset PC2: We find in plot (a) that f.288 obtains a much higher
ranking score than all other features. In plot (b) we show the 10 top-ranked features
and use the ∆MI to analyze their dependencies. Note that the following f.289 and
f.28a completely depend on f.288, indicated by large negative ∆MI(·, Y |X288)s. The
good ranking for f.288 (1

2 bit) is reflected by a large prediction score (c) of over 80%.
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(c) Predictive performance of the SVM.

Figure V.8.: Dataset PC1: The MI ranking coefficients for all features are shown
in (a), where three features stand out. The ∆MI, shown in (b), shows that f.675
and f.404 are highly dependent, while f.3cf gives additional information. This is
substantiated in the classification (c), where the score is better when f.3cf is added.
The high rankings (∼ 0.2 bit each) correspond a predictive performance of (∼ 80%).
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(H(Y ) = 0.098 bit), this corresponds to an information content of 25%.

time

fa
il
u
re

ra
te

J F M A
0

0.2

TH

0.4

Figure V.9.: Failure rates for all lots
in YC1 against the production date15.
Lots which have passed f.2e5 have been
marked by •s. TH marks the thresh-
old.

As only one feature appears to be in-
formative, the ∆MI matrix shown in plot
V.10(b) cannot provide us with much
new insight. The resulting classifier is,
with a score of slightly less than 60%,
not much better than a random guess
(plot V.10(c)). A closer look at the data,
however, shows that the predictions can
in fact not be much better. All suspi-
cious lots have actually passed the ma-
chine referred to by f.2a5, but it still
produced faults in less than 5% of the

cases. We see in figure V.915, that the machine produced an increased failure
rate only in a restricted time window—with the classifier’s predictions natu-
rally being wrong in the meanwhile.

YC2. The results for the dataset YC2, shown in figure V.11, is based on a
problem from the foundry where we look for the root cause of an increased
failure rate. As it is mostly the case for error detection based on failure rates,
it is hard to separate different causes and an appropriate threshold is not easily
identified. Our troubleshooting method does not point to a root cause here,
but note that we are not lead onto a wrong trace—the analysis shows that no
conclusions can be drawn from this dataset.

Though the ranking scores, shown in V.11(a), are relatively high, no feature
is ranked significantly above the noise level. Accordingly, we cannot find any
interesting dependencies in the ∆MI matrix (plot V.11(b)). The predictive
performance, given in V.11(c), shows scores around 60%, thus only slightly
above random. As we are given a large fraction of affected lots this indicates
that there is really no connection between the lot-history and the target present
in the data.

15 For reasons of nondisclosure we have normalized failure rates and dates.
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Figure V.10.: Dataset YC1: Panel (a) shows that the ranking for feature 2a5 is
well above the noise level. However, the low score of 0.025 bits indicates that the
relation to the target is weak. With roughly 60% the predictive performance (c)
is only slightly above random. Panel (b) shows that f.dd gives some additional
information about the target, while f.232 is completely dependent on f.2a5.
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(c) Predictive performance of the SVM.

Figure V.11.: Dataset YC2: The ranking (a) does not uncover any prominent fea-
ture, and the ∆MI matrix in (b) shows that the top-ranked features are strongly
correlated. The predictive performance of the SVM (c) is accordingly weak.
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4. Discussion

In this section we have discussed a novel mechanism for troubleshooting in
complex manufacturing lines. The work was initiated to improve quality as-
surance and process control in a semiconductor foundry, where it is impossible
to control all device specifications continuously. However, as we do not rely
on process specific models our approach holds for any serial-group manufac-
turing line. The method is based on the connection of two different types of
data which are available in the plant’s database: the results of final measure-
ments in quality control, and the lot-history which tracks the batches’ passage
through the manufacturing line.

The idea of our approach is to combine both types of information to create
an automatic tool, which enables the process control team to rapidly identify
root causes for systematic defects. An error which can be attributed to few
machines is usually easily fixed, while it is nearly impossible to inspect all
machines in the cleanroom. When a great number of affected batches is
available in the database the troubleshooting problem is easily solved, and it
is the limited amount of data which makes the task a formidable problem: as
the aim is to eliminate an error as fast as possible, typically we only have tens
of positive examples, while there are thousands of possible root causes.

We have applied feature selection methods, which have recently received a lot
of attention in the machine learning community, to solve this task. The filter
approach, which we have chosen here, is particularly efficient for problems
like the troubleshooting task where the number of samples is much smaller
than the number of features. The ranking scores—the entropy-based mutual
information and conditional mutual information—which we have used, are
theoretically justified and enable us to analyze the data’s structure in detail.
To rule out overfitting we apply an extra validation step, where we determine
the predictive performance of an SVM.

Before transferring our method as a tool to the foundry, we conducted a
series of experiments to demonstrate its capability. The benchmark test con-
sisted of four datasets from mass production, two of them representing historic
cases and two being based on recent problems. We were able to confirm both
historic problems, and to solve one of the recent problems. No conclusion could
be drawn from the fourth dataset, but as we can avoid overfitting, our method
does not point to wrong traces and states that no conclusion can be drawn.

The aim of the project was to construct a tool for the production facility, and
thus it had to be designed to be used by non-specialists. Our implementation
does not require the user to set any parameters, and the results can be read
conveniently from few plots. The tool is now in regular use, and was confirmed
to lead to a facilitation of the regular work and an accelerated error correction.



Conclusions

This thesis has examined mass production and industrial engineering as a
challenging new field for the application of machine learning. Identifying ap-
plications for machine learning included collaboration with departments over
the whole range from research and development to production and quality as-
surance at Robert Bosch GmbH—making this project markedly versatile. Par-
ticularly bringing together expertise from the applicational side at Bosch and
the methodological side at the Max Planck Institute for Biological Cybernetics
in Tübingen has been essential for this project to lead to useful and actually
used innovation.

The conventional approach to data analysis in production and engineering
is to build a model based on the underlying physical reality of the exam-
ined system. Therefore, the approach is of limited practicability for complex
systems, and new concepts need to embrace methods which remain feasible
when it is no longer practicable to describe devices and production facilities
by physical models. Machine learning has been developed as an alternative to
this deductive approach: using flexible statistical models of the interrelations’
structure, the connection between the inputs and the answer of the system is
inferred empirically from observations. The aim of this thesis was to assess
where machine learning is a valuable complement of conventional data analysis
in product design and mass production.

The survey over the state-of-the-art in data analysis in mass production
showed that machine learning is now only used in few and very specific appli-
cations like automated optical tests. However, since—especially in semiconduc-
tor manufacturing—many data are already automatically stored in centralized
data bases, the prerequisite for implementing machine learning solutions is
usually given. These approaches can, on the one hand, automate tasks which
are today left to a manual handling, and thus increase cost efficiency. On the
other hand, some tasks require the joint analysis of thousands of variables,
and only become feasible using machine learning methods, rendering possible
completely new analyses.

Two identified problems have been addressed explicitly in this thesis, where
the common thread is the yield as a central benchmark figure for the cost-
effectiveness of a semiconductor foundry:

Starting at the development stage, product designs have to be made robust
against process tolerances to reduce the number of random failures. This
thesis introduces statistically justified sensitivity measures to facilitate the
analysis and interpretation of high dimensional computer simulations. The
machine learning approach to sensitivity analysis has lead to a novel optimiza-
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tion scheme, which permits efficient robust optimization on computationally
demanding simulations.
Malfunctioning processes may lead to systematic failures. Modern manufac-
turing lines are often extremely complex, thus frustrating a manual localization
of root causes. A novel approach to troubleshooting is described, which com-
bines error detection in quality control with other available data in the shop
floor. The approach allows to locate the root cause in a large number of poten-
tial causes, using only few observations and thus cutting down on systematic
losses by accelerating the elimination of the error.

Design alanysis. Numerical simulations are now extensively used in indus-
trial engineering to validate the fitness of a design for mass production. Using
such simulations, the system’s response can be computed for various parame-
ter settings, however, they can usually not facilitate an intuitive understanding
of the system. To help the designer grasp the basic relations encoded in the
model, this thesis proposes a procedure to analyze the response of the system
to process fluctuations. Using statistically justified measures, the interpreta-
tion is eased by quantifying the importance of single parameters, the degree of
nonlinearity and the strength of the entanglement between pairs of parameters.

In recent years such sensitivity analysis has received a lot of attention, how-
ever, to our knowledge this work has been the first to adapt it for industrial
mass production—and actually making it available to practioners by providing
a software package.

For computationally expensive simulations, the bottleneck of sensitivity
analysis is the number of required simulation runs. Using a Bayesian approach
based on nonparametric Gaussian process regression, the presented sensitivity
analysis makes very efficient use of the available results, thus reducing the ex-
pense of the design analysis. Furthermore, the Gaussian process might be used
as an efficient emulator of the computer model to let the designer interactively
explore the model.

An extensive empirical study, using analytical benchmark problems and a
number of simulators of micro electro-mechanical devices (MEMS) in devel-
opment at Bosch, showed that the proposed analysis significantly outperforms
conventional approaches: The Bayesian approach using Gaussian processes
outperformed the Monte Carlo method, which can be considered state-of-the-
art, on all eleven considered problems. On the MEMS models, which can be
considered typical for industrial engineering tasks, the computational load due
to simulation runs could be reduced roughly by an order of magnitude.

Design optimization. Process tolerances, which may have a significant effect
especially in semiconductor manufacturing, should be accounted for in any
design optimization. Available optimization schemes fail to account for the
distribution of the fluctuations, or are infeasible due to a large number of
required simulation runs.

In this thesis a novel approach to robust optimization has been developed,
which combines a Gaussian process emulator with the distribution of the pro-
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cess fluctuations in closed form. Thus, the optimization can be done efficiently
using a gradient-based optimization scheme. To our knowledge, the presented
scheme is the first computationally feasible approach to robust optimization,
which quantitatively accounts for process tolerances.

Active learning. Active learning has been studied extensively in the last
years and has been considered in this thesis to reduce the number of computer
experiments, necessary to build a Gaussian process emulator. Many works
in active learning are based on heuristic considerations. In contrast, proba-
bilistic models such as Gaussian processes can be used to directly construct
experimental designs, maximizing the utility of simulation runs. However, the
derivation of a suitable utility function is intricate, and most previous works
rely on expensive numerical approximations. This thesis is the first to derive
the loss which corresponds to the generalization error—on uniform (regression
setup) and Gaussian (sensitivity analysis) input distributions—in closed form.

In an extensive empirical study it could be shown that the proposed active
learning scheme significantly improves the learning rate, including the case of
noisy observations. Since it does not rely on heuristic considerations, it does
not lead to uninformative designs, even in cases where not enough data is
available to capture the underlying function. For seven analytical benchmark
functions the proposed scheme increases the accuracy by a factor between one
and 25, depending on the complexity on the mapping. On the MEMS models
the required number of simulation runs to obtain a given accuracy could be
reduced by a factor between two and five.

Troubleshooting. The presented troubleshooting approach combines error
detection in quality checks with data which is collected during production. It
has been verified in regular use to save time in production by replacing manual
analysis, and to reduce costs by accelerating repairs. Using feature selection,
the troubleshooting scheme combines data from various sources according to
a standardized preprocessing, and is therefore applicable to most modern fab-
rications.

The empirical verification of the approach comprised four examples from
the data base in Bosch’s semiconductor foundry, which were used to clear the
software tool for regular use. Carefully avoiding overfitting, the approach is
not prone to false alarms, and could be shown to filter the root cause from 779
features using as few as 11 observations.

Outlook. By virtue of flexible statistical modeling, machine learning has the
advantage that approaches and models are not necessarily specific to a certain
physical relationship, but may instead be valid for a whole class of problems.
Machine learning concepts can therefore, once established in engineering and
production, accelerate the solution of new problems, and make completely
new approaches possible where it is impractical to use physical models—giving
machine learning the potential for great impact and value in this field. It is
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to hope, that data analysis in industrial production becomes better known in
the machine learning community as a challenging new field for research.



Appendix

A. Mean square differentiability

The properties of random processes are intimately related to the properties of
the corresponding covariance function. Especially the smoothness of a random
process is directly given by the smoothness of the covariance. A detailed
discussion is given by (Stein, 1999), who focuses on the power spectrum of
stationary and isotropic processes.

In this section we reproduce the basic results regarding the connection be-
tween the continuity and differentiability of a random process and the covari-
ance function. The results have been taken from (Abrahamsen, 1997).

For random processes continuity and differentiability can be defined in sev-
eral ways. One possibility is to define:

Definition 1 (Mean square (MS) continuity and differentiability)
Consider a random process X in B ⊂ R

D.� X is MS continuous, if

E
[
|X(xn)−X(x)|2

]
→ 0 as n→∞

∀x ∈ B and for all sequences {xn} ⊂ B with ‖xn − x‖ → 0 for n→∞.� X is MS differentiable, if ∀ℓ = 1 . . . D

E

[∣
∣
∣

∂
∂tℓ

X(xn)− ∂
∂tℓ

X(x)
∣
∣
∣

2
]

→ 0 as n→∞

∀x ∈ B and for all sequences {xn} ⊂ B with ‖xn − x‖ → 0 for n→∞.

The following theorem shows how the mean square properties relate to the
covariance function:

Theorem 2 (Random process and covariance function)
Consider a random process X in B ⊂ R

D with covariance function k(x, x̄).
For simplicity assume the mean function µ(x) is zero.� X is MS continuous at x̃

if and only if k(x, x̄) is continuous at x = x̄ = x̃.� If the derivative
∂2|κ| k(x, x̄)

∂xκ1
1 · · · ∂xκD

D ∂x̄κ1
1 · · · ∂x̄κD

D
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exists and is finite at x = x̄ = x̃, then X is |κ| times MS differentiable
in x̃, and the above expression is the covariance of

∂|κ| X(x̃)

∂xκ1
1 · · · ∂xκD

D

.

B. Bayesian Monte Carlo

Latin Hypercube designs
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Figure V.12.: Latin
Hypercube design for
N (x|0, 1).

The Latin Hypercube design is a popular and sim-Latin Hypercube

ple scheme for factorizing input distributions p(x) =
∏

ℓ pℓ(xℓ): Figure V.12 depicts the sampling scheme
for the normal distribution. To obtain N samples,
for each dimension ℓ the interval [0, 1] is divided
into N equal bins (grid of the y-axis) and a sample
is drawn uniformly from each of them (dots to the
left). Using the inverse CDF (solid line) of the pa-
rameter’s distribution p(xℓ), corresponding samples
xℓ are computed (dots on the x-axis). The samples
for the single parameters are combined in random

order to create a design which is stratified in one dimensional projections. The
method has been proposed by MacKay et al. (1979), and extended to stratified
designs in more dimensions by Tang (1993) and Ye (1998).

Moments of the uncertainty distribution

In the following section we specify the estimates for the mean and variance of
the uncertainty distribution px(f) when a Gaussian process prior is used (see
chapter III, section 3.2).

The estimate for the mean is simply the average over the predictive mean,
as the expectations Ef |D and Ex can be swapped:

Ef |D

[

Ex[f ]
]

= Ex

[

m(x)
]

=

∫

dx p(x) m(x) (B.14a)

=

∫

dx p(x) k(x)T Q−1y = zT Q−1y ,

where we have used the definition of the mean m(x) from (II 3.17b) and the
abbreviation z from (III 3.16). The estimate of the variance relies as well on
the predictive uncertainty, and we need to decompose it into three terms (see
also Oakley and O’Hagan (2004)):

Ef |D

[

varx[f ]
]

= varx

[

Ef |D[f ]
]

+ (B.14b)

+ Ex

[

varf |D[f ]
]

− varf |D

[

Ex[f ]
]

.
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If the GP model perfectly fits the function f with zero predictive variance, the
sum reduces to the variance over the predictive mean:

varx

[

Ef |D[f ]
]

= varx

[

m(x)
]

(B.14c)

=

∫

dx p(x)
(
k(x)Q−1y

)2 − Ex[m(x)]2

= trace
[
(Q−1y)(Q−1y)T L

]
− Ex[m(x)]2 ,

where L is defined by (III 3.16). Due to finite predictive uncertainty we obtain
the following two contributions,

Ex

[

varf |D[f ]
]

= Ex

[

σ2(x)
]

(B.14d)

=

∫

dx p(x)
[

k(x,x)− k(x)T Q−1k(x)
]

= ko − trace[Q−1L]]

and

varf |D

[

Ex[f ]
]

= Ef |D

[(
Ex[f ]− Ef |D [Ex[f ]]

)2
]

(B.14e)

=

∫

dx p(x)

∫

dx′ p(x′) Ef |D

[ (
f(x)− Ef |D [f(x)]

)

×
(
f(x′)− Ef |D[f(x′)]

) ]

=

∫

dx p(x)

∫

dx′ p(x′) covf |D [f(x), f(x′)]

=

∫

dx p(x)

∫

dx′ p(x′)
[
k(x,x′)− k(x)T Q−1k(x′)

]

= kc − zT Q−1z ,

where ko and kc are defined in (III 3.16). Note that the last term is identical
to the predictive uncertainty for the mean-estimate.

Exact average for specific input distributions

When the common squared exponential covariance function (II 3.20) is used,
the integrals (III 3.16) for the moments of the uncertainty distribution (chapter
III, section 3.2) can be solved in closed form for several input distributions p(x).
Among those are the uniform and the Gaussian input distribution. When the
input distribution factorizes, the averages can be reduced to one dimensional
integrals which can in any case readily be solved numerically.
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Gaussian input distribution. For the Gaussian input distribution (III 3.17),
p(x) = N (x̂, B), we obtain

ko =
∫

dx p(x) k(x,x) = v2 (B.15a)

kc =
∫

dx p(x)
∫

dx′ p(x′) k(x,x′) (B.15b)

= w2
o |2A−1B + I|−

1
2

zℓ =
∫

dx p(x) k(x,xℓ) (B.15c)

= w2
o(2π)

d
2 |A|

1
2
∫

dx N (x|x̄, B)N (x|xℓ, A)

= w2
o|A−1B + I|−

1
2

× e−
1
2

[
(xℓ−x̄)T (A+B)−1(xℓ−x̄)

]

ℓ(x,x′) =

∫

dx̃ p(x̃) k(x̃,x)k(x̃,x′) (B.15d)

= w4
o|2A−1B + I|−

1
2

× e
−

1
2

h

(x−x′)T 1
2

A−1(x−x′)
i

e
−

1
2

»

(x̄−x̂)T
h

1
2

A+B
i−1

(x̄−x̂)

–

with x̄ = 1
2
(x + x′) ,

where we have defined A = diag{w2
1 . . . w2

D} as in (II 3.18).

Factorizing input distributions. In the special—yet important—case of fac-
torizing input distributions

p(x) =
∏

d

pd(xd) (B.16)

and factorizing covariance functions like the squared exponential kernel (II 3.20)

kSE(dARD) = v2 exp
[
−1

2
d2

ARD

]
= v2

D∏

d=1

exp
[

− (xd−x′
d
)2

2w2
ℓ

]

, (B.17)

the multidimensional averages can be reduced to products of one dimensional
integrals, which are in general much easier to solve:

kc =

∫

dx p(x)

∫

dx′ p(x′) kSE(x,x′) (B.18a)

= v2

D∏

d=1

∫

dxd p(xd)

∫

dx′
d p(x′

d) exp
[

− (xd−x′
d
)2

2w2
d

]

ko =

∫

dx p(x) kSE(x,x) = v2 (B.18b)

zℓ =

∫

dx p(x) kSE(x,xℓ) (B.18c)

= v2

D∏

d=1

∫

dxd p(xd) exp
[

− (xd−xℓd)2

2w2
d

]
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ℓ(x,x′) =

∫

dx̃ p(x̃) kSE(x̃,x)kSE(x̃,x′) (B.18d)

= v4

D∏

d=1

∫

dx̃d p(x̃d) exp
[

− (x̃d−xd)2

2w2
d

]

exp
[

− (x̃d−x′
d
)2

2w2
d

]

.

If no analytical solution can be found, we can apply e.g. the efficient one
dimensional Gauss-Hermite quadrature, as the covariance function factorizes
into one dimensional Gaussian distributions.

Uniform input distribution. For uniform input distributions pd(xd) = U(ad, bd)
the one dimensional integrals can be solved in closed form, since all reduce to
integrating a normal distribution between the limits ad and bd.

Benchmark problems for sensitivity analysis

In chapter III, section 4 we analyze the convergence of Bayesian MC on a
number of benchmark problems for sensitivity analysis, which are collected in
(Saltelli et al., 2000a, Chap. 2). All are nonlinear, and range from 2 to 20
input dimensions.

Example 1 (Saltelli et al., 2000a).

The problem has D = 2 dimensions, where p(x) = U(0, 1)2:

f(x) = x1 + x4
2

Mean and variance can be calculated exactly: meanx[f ] = 0.7, varx[f ] =
139/900.

Example 2 (Sobol and Levitan, 1999).

This problem consists of two versions with uniform input distribution,
p(x) = U(0, 1)D:

f(x) = exp

[
∑

ℓ

bℓxℓ

]

−
∏

ℓ

exp bℓ − 1

bℓ

.

a) D = 6, b = (1.5, 0.9, . . . , 0.9).
One obtains meanx[f ] = 0 and varx[f ] = 427.2751.

b) D = 20, bℓ = 0.6 for ℓ = 1 . . . 10, bℓ = 0.4 for ℓ = 11 . . . 20.
Here meanx[f ] = 0 and varx[f ] = 18 022.

Example 3 (Gardner et al., 1981).

Problem 3 is two dimensional, D = 2:

f(x) = x4
2/x

2
1 .

Two subproblems are given through
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a) p(x) = U(0.9, 1.1)2 with meanx[f ] = 51001
49500

and varx[f ] = 115340737213
1637379562500

b) p(x) = U(0.5, 1.5)2 with meanx[f ] = 121
60

and varx[f ] = 503101
72900

.

Example 4 (Saltelli and Sobol, 1995).

Benchmark problem 4,

f(x) =
∏

ℓ

|4xℓ − 2|+ aℓ

1 + aℓ

,

with a = (0, 1, 4.5, 9, 99, 99, 99, 99) has D = 8 dimensions, which are uniformly
distributed p(x) = U(0, 1)8.

meanx[f ] = 1 and varx[f ] =
∏

ℓ

−a3
ℓ
+(2+aℓ)

3

6(1+aℓ)
2 ≈ 0.465424432.

Example 5 (Ishigami and Homma, 1990).

Here we have D = 3 dimensions with p(x) = U(−π, π)3 and

f(x) = sin(x1) + 7 sin2(x2) + 1
10

x4
3 sin(x1).

For mean and variance one obtains meanx = 7
2

and varx[f ] = π4

50
+ π8

1 800
+ 1

2
+ 49

8
.

C. Estimates of entropy and (conditional) mutual

information

In the feature selection setup we are given a target vector y and feature vectors
(x1ℓ, x2ℓ . . . xNℓ)

T , which contain the binary class label and feature ℓ for each
sample. If we think of the entries as samples from a joint distribution, we can
approximate the MI in (2.8) by replacing the probability distributions by their
empirical counterparts:

p(Y =1) ≈ 1
N

∑

i

yi = 1− p(Y =0) (C.19a)

p(Xℓ =1) ≈ 1
N

∑

i

xiℓ = 1− p(Xℓ =0) (C.19b)

p(Xℓ =1, Y = 1) ≈ 1
N

∑

i

xiℓ yi . . . and so forth. (C.19c)

The discrete nature of features and class labels makes the estimates extremely
simple. If a feature Xℓ was continuous, one would need to estimate the density
p(xℓ) using a discretization or a more sophisticated method such as kernel
density estimation (Hastie et al., 2001, chap.6).
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