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Notation

Throughout this document, the following notational conventions and typesets are used:

~x vector

xi i-th component of vector ~x

M matrix (also used for the intensity matrix of a gray value image)

Mi,j entry in row i, col j of the matrix M

S set

dist(~x, ~y) Euclidean distance between vectors ~x and ~y, i.e.
√
∑n

i=1(xi − yi)2

nl number of layers of the HFM

np(l) number of planes on layer l of the HFM

dx(l) x-dimension of all C-cell planes on layer l of the HFM

dy(l) y-dimension of all C-cell planes on layer l of the HFM

dp(l) dimension (in both, x and y direction) of the receptive field
profiles on layer l of the HFM

γl “competition strength” parameter of the lateral competitive
mechanism on layer l of the HFM

θl “activity threshold” parameter of the lateral competitive mechanism
on layer l of the HFM

σl variance of the Gaussian spatial pooling kernel of layer l of the HFM
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P l
p q(x, y) value at position (x,y) of the receptive field profile between C-cell

plane q on layer l − 1 and S-Cell plane p of layer l

Ŝl
p(x, y; I) preliminary activity of the S-cell at position (x, y) on plane p on

layer l of the HFM with image I as input

Sl
p(x, y; I) final activity of the S-cell at position (x, y) on plane p on layer l of

the HFM with image I as input

C l
p(x, y; I) activity of the C-cell at position (x, y) on plane p on layer l of the

HFM with image I as input
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CHAPTER 1

Introduction

An overview of the scope and the contributions of this thesis is given. The content of each
chapter is summarized shortly.

1.1 Overview

In recent years, computer vision research has made great advances in solving problems of
visual recognition in restricted environments like e.g. detecting nonconforming parts on an
assembly line or recognizing isolated objects under fixed lighting conditions. However, with
computer vision applications about to enter less restricted environments, as in the case of
mobile vision systems, autonomous robots, vehicle navigation aids, or surveillance systems,
tasks are becoming more difficult. Here, the recognition system has to cope with an input
signal of high variability, which is caused by changing illumination, arbitrary view points,
cluttered scenes, object deformations, partial occlusions, etc. From an engineering point
of view, this situation is difficult: it means that the recognition task cannot be adequately
specified anymore, since it is impossible to exhaustively predict all possible configurations of
appearances that might occur under combinations of multiple distortions.

A major goal of today’s computer vision research is therefore to find approaches that
allow for recognition which is invariant to distortions. Since the visual system of humans
and animals, “optimized” by evolution, seems to have few problems in solving such difficult
recognition tasks, it has become popular – and also quite successful – to take into account
physiological and psychophysical findings about information processing principles in the brain
to build artificial vision systems.

Modern approaches that follow this paradigm often rely on the early findings by Hubel
and Wiesel [45], who firstly theorized about the hierarchical organization of the primary
visual cortex and identified two types of cells, simple cells and complex cells, whose layered
arrangement plays a key role in visual processing. While simple cells act as feature extractors,
selectively responding to oriented bar-like structures that are present within the receptive
field of the cell, the responses of complex cells are phase invariant and unaffected by small
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1 Introduction

spatial shifts in position of the stimulus.

Based on these findings, in 1980, Fukushima was one of the first to propose a hierarchical
computational model, called Neocognitron, which is based on feed-forward processing and
mimics the layered organization of the visual cortex. He showed that his model achieves
a recognition of handwritten digits which is – to a certain degree – invariant to rotation,
spatial shift and deformation of the stimulus. Since then, research has come up with a
variety of modifications and enhancements of the original Neocognitron model, which are
now opening up the application of the approach for real world computer vision scenarios.

Building upon previous models, in this thesis, we provide a generalized formal framework
of a Hierarchical Feed-Forward Model (HFM) and apply the approach to challenging object
recognition tasks. The main contributions are summarized briefly in the following:

• Methodology: For quantifying the success of the model in reducing signal variance,
a novel method called Average Nearest Neighbor Descriptor (ANND) is proposed
that allows measurement of the “apparent complexity” of a given multi-class dataset
by analyzing class distributions and computing a single, real-valued descriptor. The
method, together with synthetically distorted test datasets which are generated from
three natural images databases – covering the domains of hand-written digits, small
objects, and human faces – allows for a detailed analysis of the performance of the
HFM.

• Unsupervised optimization of internal model parameters: We show that a recently
proposed unsupervised coding strategy called Non-negative Matrix Factorization with
Sparseness Constraints [43] can be used to “fine-tune” internal parameters of the HFM
in order to account for the properties of a specific image domain. Previous results
on unsupervised optimization of internal model parameters have been published in
advance in [10].

• Image patch classification: We show that the abstract neural feature representation
that is provided by the output space of HFM is well suited for building powerful classi-
fiers that are able to achieve a high classification performance on difficult test datasets
that contain a significant amount of distortions like noise, affine transformations, and
background clutter. For this, we apply standard classification techniques as well as
a novel method which learns optimized object representations based on a spectral
clustering scheme.

• Segmentation-free multi-class object detection: We show that the flexibility of the
model definition allows for a straight-forward extension of the model from pure clas-
sification to detection. The approach is able to simultaneously perform detection
and classification of objects in natural scene images without the necessity of a pre-
segmentation. For this, we attach an additional layer to the model, which is trained
supervised using a labeled dataset of image patches. We test the approach on a syn-
thetically generated detection task, where objects are randomly embedded into natural
scene images. Previous results on segmentation-free multi-class object detection have
been published in advance in [11, 8, 9].

2



1.2 Organization of the Manuscript

1.2 Organization of the Manuscript

This thesis is organized as follows:

• Chapter 2 gives a short introduction to the problem of visual perception and provides a
brief review of models of object recognition which relate to the approach investigated
in this thesis.

• Chapter 3 formally defines the Hierarchical Feed-Forward Model that is used for the
investigations in the remaining chapters.

• Chapter 4 describes a novel, empirical complexity measure for multi-class datasets
called Average Nearest Neighbor Descriptor (ANND). This allows a convenient analysis
of the statistical properties of class distributions in a dataset by computing a single,
well-bounded descriptor.

• Chapter 5 investigates the image normalization capabilities of the HFM. For this, highly
distorted image datasets are passed through differently parameterized HFMs and the
ANND is used to measure the reduction in complexity that results from projecting
images onto the abstract feature space as given by the activity of the output layer of
the HFM.

• Chapter 6 deals with the application of the HFM to the problem of image patch
classification using highly distorted natural image datasets. For discrimination tasks,
we investigate the use of Template View Tuned Units (T-VTUs), which correspond
to 1-nearest neighbor classifiers operating on the output space of the HFM. Then we
propose Condensed View Tuned Units (C-VTUs), which are obtained by applying a
spectral clustering scheme on T-VTUs. Finally, for confidence based recognition, i.e.
multi-class discrimination with rejection of “unknown” stimuli, Radial Basis Functions
(RBFs) and Linear Discriminant Functions (LDFs) are employed.

• Chapter 7 applies the HFM to the problem of segmentation-free multi-class object
detection. For this, an architecture consisting of a two-layered training branch and a
three-layered recognition branch is proposed. The approach is tested on synthetically
generated detection images that contain objects that are randomly embedded into
images of natural scenes.

• Chapter 8 summarizes the results of this thesis and sketches potential future research
activities.

3
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CHAPTER 2

Background

This chapter gives a short overview of the problem of visual perception and provides a brief
review of existing models of object recognition which relate to the Hierarchical Feed-Forward
Model that is investigated in this thesis.

2.1 Biological and Computer Vision

Vision is one of the most essential human senses. From a practical point of view, there is
not much need to argue for this hypothesis if one considers the number of everyday tasks
that would either be impossible or at least very difficult to carry out if we were unable to see.
While some of these tasks – for example reading this thesis – solely rely on vision, others
are based on a seamless cooperation of vision with other senses. Examples are crossing a
street (vision and hearing), playing a ball game (vision, touch, and hearing) or deciding if
food is edible (vision and smell). In all cases, our visual system exhibits astonishing degrees
of accuracy and flexibility as well as a high level of efficiency. Vision seems to always
provide us with a clear window onto reality, as it allows us to constantly perceive the state
of our environment. Not only for humans but also for the vast majority of animals, light
proves to be a rich and vitally important source of knowledge about various aspects of the
environment.

For technical systems the exploitation of optical information is equally attractive. In
principle, the availability of digital camera equipment and processors with high computational
power allows for the development of a new class of “intelligent machines” that are able to
actively perceive their environment and, as a consequence, can act and react in a much more
flexible way than conventional computer systems do. This is of interest in many application
areas. Above all autonomous systems, like for example mobile robots or unmanned vehicles
can benefit greatly from visual information. In the area of human machine interaction,
optical interfaces can be used to find new ways that allow for a more natural communication
with machines. Also for security and biometry, optical information has a key role for the
development of new applications.

5



2 Background

The subfield of computer science that is devoted to research of this kind is called computer
vision. It is concerned with automatic processing of digital image data. Typically, digital
image data is obtained from image sensors such as cameras, but can also be gained from
other sources such as medical imaging devices (e.g., x-ray or computer tomography), any
other types of sensor arrays, or it can even be artificially generated. Taking an image or
a sequence of images as a starting point, the goal of computer vision is to automatically
recover higher level information that is contained in the sensory data. A comprehensive
definition of what is meant by “higher level information” is neither possible nor useful in
general, but is given by specific application scenarios.

One such scenario is for instance object recognition. Here, the goal is to recover informa-
tion about the properties of physical objects, that are present in the sensor’s “field of view”
such as identity, position, orientation or others. The computational problem is then defined
as an algorithmic mapping between the sensory data and the properties that one wants to
analyze.

However, as we argue in the following section, this mapping between the sensory data
and the desired high level information can by no means be considered trivial and a straight-
forward solution to the problem is not possible, because visual perception must be understood
as an under-specified inverse problem which makes the sensory data inherently ambiguous.
In particular, we argue for the following points:

• These ambiguities result from either different objects leading to an identical retinal
image, or, different views of the same object leading to different retinal images.

• In order to resolve these ambiguities, heuristics are needed which exploit the structure
of the environment.

• In biological vision, these heuristics emerge from evolutionary adaptation and learning
processes that actively model the structure of the environment.

2.1.1 Vision as an Inverse Problem

The task of visual perception is often called an inverse problem [80], because the sensory
data results from projecting light that is reflected or emitted from the environment onto
the sensor plane of a camera, or – in the case of biological vision – onto the retina at the
back of the eye. This well-understood process is called image formation and is completely
determined by the laws of optics. In this sense, the task of deriving properties of objects in
the environment from observed light patterns can be formulated as “reversing” the process
of image formation by undoing the projective transformations that happened during the
formation of the image.

However, from a mathematical point of view, the relation between the sensory data and
the environment is not symmetrical, because the light is being reflected from the surfaces
of physical three-dimensional objects and projected onto a two-dimensional structure (the
array of sensor elements of a camera or the photoreceptor cells of the retina, respectively).

On the one hand, as illustrated in Fig. 2.1 (a), this involves a loss of information and
makes the sensory data highly ambiguous, because there are always an infinite number of
possible “world configurations” that correspond to a single retinal image.

6
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(a)

a

b

(b)

Figure 2.1: Ambiguities in visual perception. (a) Different line segments lead to an identical
retinal image (adapted from [80]). (b) Different views of the same object lead
to different retinal images (from [70]).

On the other hand, as illustrated in Fig. 2.1 (b), one and the same object can lead to
drastically different retinal images, depending on the view point or other degrees of freedom
that might alter the appearance of the object.

Hence, visual perception must be seen as finding a single suitable solution to an under-
specified problem. How this is resolved by biological vision systems is still far from well-
understood and a profound understanding of the underlying processes is one of the ultimate
goals of cognitive neuroscience.

Whatever the answer might be, from a theoretical point of view the problem can only be
solved by applying heuristic processes that exploit the structure of the environment in order
to rule out unlikely “world configurations” and to end up with a single solution. In other
words, for any vision system – artificial or biological – in order to pick the right solution
from the infinite set of all theoretically possible ones, it is necessary to rely on a number of
specific assumptions about the structure of the environment.

Research on artificial object recognition systems within the past decades has produced
numerous different approaches to defining such assumptions. However, most often the
assumptions are very strict and fixed a priori, leading to systems that can successfully operate
in environments that are equally restricted. Many examples of such systems can be found
in industrial applications, where e.g. nonconforming parts on assembly lines are detected.
Here, the assumptions are highly restrictive in the sense that the objects in question always
appear at a specified position, scale, and orientation, and under fixed lighting conditions. If
the assumptions are violated, the system fails in generating reliable recognition results.

In contrast, biological vision systems, which, as argued above, also have to rely on re-
strictive assumptions about the structure of the environment in order to solve the inverse
problem, by far outperform any artificial systems known today.

7



2 Background

This fact motivates computer vision researchers to analyze the way these assumptions
– which appear to be implemented in a much more flexible way and do not seem to be fixed
a priori – are encoded in biological vision systems and try to utilize the findings for building
artificial vision systems.

This means that a fruitful source for developing new concepts and ideas in the field
of computer vision is in fact found in the results of biological, neurophysiological, and
psychological research. One prominent example for this paradigm is the field of neural
networks research, which has already led to many successful applications in computer vision.

This thesis focuses on a special type of neural network that can be used for visual pro-
cessing and whose design is inspired by biological vision systems. The basic principle that
this type of network employs is that the aforementioned assumptions about the structure
of the environment are encoded partly within the overall neural topology of the network
architecture and partly within the “neural wiring”, i.e. the synaptic connections between
neurons of the network. In biological vision systems, the topology, namely the structural
organization of the brain, is a result of evolution, whereas the neural wiring is constantly
adapted during the life of the organism, as the visual system is exposed to its environment
and used to solve recognition tasks that are necessary for survival.

In the following section, we provide a brief review of models of object recognition before
we define the generalized Hierarchical Feed-Forward Model (HFM) that is investigated in
this thesis in Chapt. 3.

2.2 Models of Object Recognition

According to Riesenhuber and Poggio [87], models of object recognition can be roughly
divided into two categories: object-centered models and view-centered models. The latter
can be subdivided into another two groups: feedback-driven models and feed-forward models.

In object-centered models, recognition is achieved by creating view-invariant structural
descriptions of objects and matching these representations to a database of stored object
descriptions. A representative of these kinds of models is found in the works of Biedermann
and Hummel [15, 47]. The model, called Recognition-by-Components (RBC) is based on
decomposing objects into basic geometrical shapes, a similar scheme to that proposed in
the classical works of Marr and Nishihara [63]. The main prediction of the model is that
recognition of objects is view-point invariant as long as the same structural descriptions can
be extracted from each object view [87]. However, from a computational point a view, a
major question is how to obtain such descriptions from an input image.

On the other hand, the basic concept of view-centered models is that objects are repre-
sented by collections of features that are derived from different “image based appearances”
of objects, covering for example different view points or different illuminations. Such an im-
age based appearance is referred to as a view of an object. According to [87], the recognition
performance of view-centered models is then a function of previously seen “training” views
of the objects. Since a large number of view-centered models can be found in literature,
the authors of [87] make a further distinction, depending on whether the models employ
feedback connections or whether they are strictly based on feed-forward processing.

Feedback-driven models are based on an “analysis-by-synthesis” or “hypothesis-and-test”
approach. This means that for recognition, the model creates an initial hypothesis in terms

8
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0

UG

US1 UC1 US2 UC2
US3

UC3
US4

UC4

input

contrast edge 
detectionextraction

layer
recognition

U
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Figure 2.2: The basic architecture of the Neocognitron model. The model consists of
alternating layers of feature-extracting S-planes and spatial-pooling C-planes
(adapted from [25]).

of a neural representation taken from a stored collection of formerly seen object views. Upon
comparing this representation to the actual visual input, the initial hypothesis is modified,
sometimes in multiple iterations, in order to generate a recognition result. The strategy is
employed for instance by the models of Rao and Ballard [83] and Mumford [67]. Slightly
different types of feedback connections are present in the Shifter Circuit model proposed by
Anderson et al. [2, 74]. Here, feedback is used in order to alter the position and the scale
of the input stimulus until it finds a match in a database of stored object views.

In contrast, in feed-forward models, recognition of input patterns takes place in a strict
feed-forward fashion, without employing any feedback connections or recursive loops. For
example, in the SEEMORE system, proposed by Mel [65], objects are represented and
recognized by histograms over various channels of color, shape, and texture features. The
Hierarchical Feed-Forward Model that is investigated in the thesis is also a representative of
this class of models. The definition of the model as given in the following chapter is based
on previously proposed feed-forward models, two of which are highlighted in more detail in
the following sections.

2.2.1 Fukushima’s Neocognitron

The Neocognitron, firstly proposed by Fukushima in 1980 [25, 28, 26, 27], is one of earliest
representatives of a feed-forward view-based recognition model. The basic architecture of
the model is sketched in Fig. 2.2.1

1The model presented here is only a simplified version of the original Neocognitron as proposed in [25],
which additionally contains V-planes that are used for gain control of S-cell responses.

9



2 Background

Processing of an input stimulus starts at the U0 plane, which can be interpreted as an array
of photoreceptor cells of the retina. The first layer, UG, performs contrast extraction and the
remaining processing architecture is composed of alternating layers of complexity-increasing
S-planes and invariance-increasing C-planes.

Each S-plane consists of an array of identical cells which resemble simple cells of the
primary visual cortex. They receive as input the activities of cells of the previous layer
within a certain receptive field. In the lower stages of the hierarchy, S-cells are supposed
to extract local features such as edges of certain orientations, whereas at higher levels, the
cells respond to more global features, such as larger parts of patterns. Finally, on the output
layer, S-cells responds to an entire image of a certain class. The kinds of features that
are extracted by S-cells is determined by the variable input connections of the cells (the
“weights” or “profiles”, as we call them later), which are obtained by learning, as described
below.

C-planes of the model consist of arrays of C-cells, which – unlike S-cells – have fixed
input connections and resemble the response properties of complex cells as found in the
visual cortex. The input connections are designed in such a way that a cell becomes active
when at least one S-cell of the previous layer is active within a local sub-window, centered
at the position of the C-cell. This way the activity pattern of C-planes is a “blurred copy”
of the S-plane activity pattern of the previous layer. This is the essential mechanism which
makes the responses of C-cells to a certain degree phase invariant and robust to small spatial
shifts of the input stimulus.

For learning in the Neocognitron, which is used to adjust the variable input connections
of the S-cells, 2 Fukushima proposed two different approaches, “unsupervised learning” and
“learning with a teacher.” In case of “unsupervised learning,” a winner-takes-all Hebbian
learning scheme is applied to train the model layer by layer starting from the left in Fig. 2.2:
After presentation of a training pattern, the cell responses of S-cells located within a hyper-
column, i.e., within a small area across all planes, are compared and the most responsive
S-cell is selected. The input connections of this cell are then adjusted such that the cell
responds even more strongly to the stimulus the next time the same pattern is presented.
For “learning with a teacher” [28], a human operator manually selects the cells that are
supposed to respond to a certain stimulus and again, a Hebbian update rule is applied in
order to adjust the input connections.

Despite the fact that the Neocognitron model was successfully applied to the problem of
handwritten digit classification, training of the model was reported to be rather difficult [58].
The main reason is that some internal selectivity parameters turned out to be very difficult
to adjust. Nevertheless, the Neocognitron model can be seen as a major milestone in the
development of biologically motivated hierarchical feed-forward models, as it already employs
the two complementary principles of alternatingly creating redundancy by feature extraction
and successively reducing variance by spatial pooling. The effectiveness of pooling was also
shown in later work by Perret and Oram [81], who used the mechanism for recognition that
is invariant to non-affine transformations such as rotation in depth or varying illumination
as well.

2In the original version of the Neocognitron, V-cells, which have inhibitory connections to S-cells in order
to control the gain of the S-cell responses, are also subject to learning.
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MAX

complex cells (C1)

simple cells (S1)

complex composite cells (C2)

view tuned cells

weighted sum

composite feature cells (S2)

Figure 2.3: The HMAX model proposed by Riesenhuber and Poggio [85]. Similar to the
Neocognitron model, a hierarchy of alternating layers of S-planes and C-planes
is used. A major advantage of the model is the use of a non-linear maximum
operation for computing C-cell responses.

2.2.2 The HMAX Model

A modern variation of the Neocognitron model was introduced by Riesenhuber and Poggio
in [85, 84, 88]. Tarr [97] named the model Hierarchical Model and X (HMAX), where X
stands for a highly non-linear maximum operation that is applied for the computation of
C-cell responses.

A sketch of the architecture of the model is shown in 2.3. The basic structure, i.e., the
alternating arrangement of layers of S-cell planes and C-cell planes, is adopted from the
Neocognitron model.

In contrast to the Neocogniton model, the HMAX model employs hard-wired connections
on all but the last layer. For S-cells on the first layer, several groups of edge detectors
with different receptive field sizes are used (ranging from 7 × 7 to 29 × 29 cell positions).
C-cells on the first layer pool the responses of groups of S-cells with the same orientations
by selecting the maximum response within a certain local region. The role of S-cells on the
second model layer is to combine different features from the first layer, yielding “composite
features.” Here again, the weights are hard-wired. Second layer C-cells again pool over
multiple second layer S-cell responses, using the maximum-rule.

Finally, on the last layer of the model, “view-tuned cells” are applied, which receive as
input the responses of all second layer C-cells and perform the actual recognition step. For
this, Gaussian response functions which operate on the C-cell response space, are used. The
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centers of these functions are obtained by recording the final C-cell responses caused by
training patterns that are passed through the model. The variance of the Gaussian function
can be manually adapted for fine-tuning selectivity.

The HMAX model was successfully applied to the recognition of artificial stimuli like paper-
clip objects, where it exhibited a high robustness to distortion of the input pattern. The
model was also applied to the recognition of more natural stimuli and also to a categorization
task [86]. In summary, the major advance of the HMAX model over the Neocognitron is
the novel maximum operation that is employed for computing C-cell responses.

2.2.3 Recent Advances

In more recent literature, a number of advances for biologically motivated feed-forward
models can be found.

• Lateral competition: In [107], Wersing and Körner proposed a replacement of the
maximum operation as used in the HMAX model, which is based on a winner-takes-
most lateral competition scheme within hyper-columns of S-cells. They showed that
this method leads to much more selective cell responses and yields a segmentation
of the input in terms of the most dominant features. This high selectivity makes
it possible to substantially simplify the initial feature computation performed by S-
cells in the first layer. Here, the authors used a single bank of four small scaled odd
Gabor filters (spanning approx. 3 × 3 pixels) and used the absolute values of the
responses 3. For details, the reader is referred to the following chapter, where we
adopt the winner-takes-most mechanism for our model definition.

• Learning of receptive field profiles: A major drawback of the original HMAX model is
the fact that the connections within the lower layers of the model are hard-wired and
cannot be automatically adapted to, for instance, a certain image domain. For this,
an approach to unsupervised learning of connection weights for the HMAX model can
be found in [57], where k-means clustering [61] was used on activity patches of first
layer S-cell responses in order to obtain weights for second layer S-cells. In [107] a
similar learning scheme based on a variation (see [106]) of Sparse Coding [75, 77] was
proposed. In both cases, experimental results showed the unsupervised adaptation
of connections makes it possible to tune the model to a specific image domain. In
Chapt. 5 we also employ such a learning strategy for receptive filed profiles, not only
for the second model layer, but also for the first. The learning strategy is based on
a recently proposed learning method called Non-Negative Matrix Factorization with
Sparseness Constraints [43].

2.3 Discussion

In this chapter, a short introduction to the problem of visual perception was given and it
was argued that object recognition must rely on a specific set of assumptions about the
visual environment in order to solve the inverse problem of visual perception. How such

3This approximates quite well the classical “sum-of-squares” complex cell model which relies on combining
the responses of pairs of even and odd Gabor filters [24, 44].
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assumptions are encoded in biological vision systems is of great interest for computer vision
research, because an understanding of the underlying processes would eventually allow us to
build more flexible artificial vision systems that can operate in less restricted environments
and thus offer a larger range of application possibilities.

Research has yielded a variety of models to explain object recognition: these can be
categorized as object-centered or view-centered, where the latter can be subdivided into
feed-back driven and feed-forward models. The question which of these models is most
plausible cannot be answered easily, but, as argued e.g. in [87] empirical evidence points
in the direction of view-based, feed-forward models. Psychophysical data from humans and
monkeys (for a review see [98]) suggest view-dependence of object recognition. This is also
supported by physiological studies [19], where it was found that cells in the inferotemporal
cortex (IT) of monkeys respond to complex objects such as faces. Experimental results by
Logothetis et al. [56], who trained monkeys to recognize paperclip objects by presenting
example views, also suggest view-dependence.

Evidence for feed-forward processing is given by EEG studies, e.g. [99], where it was
shown that humans can solve simple object detection tasks within 150ms, which roughly
corresponds to the latency of visual signals being transferred from primary visual cortex to
the inferotemporal cortex. According to [87], this result constrains the role of feedback at
least in “immediate” object recognition.
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CHAPTER 3

A Hierarchical Feed-Forward Model

In this chapter, a generalized formulation of a Hierarchical Feed-Forward Model is presented,
which is used for the investigations in the following chapters.

3.1 Formal Definition

The formal definition of the model as described in following sections is based on previously
proposed models, but attempts to provide a more general and flexible framework. We
first describe the general topological architecture of the model, and then focus on feature-
extracting S-cells, lateral competition and finally on spatial pooling C-cells.

3.1.1 Topology

The structure and feed-forward connectivity of the model is illustrated in Fig. 3.1. The
hierarchy consists of nl layers, each holding np(l) planes of two types: S-cell planes and
C-cell planes, denoted Sl

p and C l
p, respectively, where l is the layer index and p the plane

index. For notational convenience (see below), the input gray-scale image is formally treated
as a C-cell plane and referred to as C0

1 (setting np(0) = 1).

The responses of S-cells in a layer always depends on the activity of all C-cell planes of
the previous layer. In contrast, C-cell responses are computed only from the activity of the
corresponding S-cell plane of the same layer.

The elements in each C-cell plane are arranged in a dx(l) × dy(l) grid, whose dimension
can be different for each layer (typically, it decreases with an increasing layer index l). The
dimension of S-cell planes in a layer l is always equal to that of the C-cell planes of the
previous layer l− 1. For an input image I, we refer to the activity of a single cell located at
position (x, y) as Sl

p(x, y; I) for S-cells and C l
p(x, y; I) for C-cells respectively.

Processing of an input stimulus takes place in a feed-forward fashion by successively
computing the activity of the layers in increasing order. The final output of the network is
given by the activity of the C-cell planes of the last layer (shown at the top in Fig. 3.1).
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Figure 3.1: The architecture and feed-forward connectivity of the Hierarchical Feed-Forward
Model. It consists of multiple layers, each holding a number of S-cell planes
(displayed in dark gray) and corresponding C-cell planes (displayed in light gray).
The input stimulus at the bottom is a gray-scale image and the output of the
network is given by the activity of the C-cell planes of the final layer at the top.

Figure 3.2 shows a more detailed view of a single layer l of the hierarchy. The major
processing principles that are involved in a layer are feature extraction (performed by S-cells),
followed by lateral competition (among S-cell responses) and spatial pooling (performed by
C-cells).

In the following, the computation of S-cell and C-cell responses in a layer is described in
detail.

3.1.2 Feature Extracting S-Cells

For featuring extracting S-Cells, in a first step, preliminary responses (denoted Ŝl−1
p , with

p ∈ {1, . . . , np(l)}) are computed by means of convolution of preceding C-cell activities
(denoted C l−1

q , with q ∈ {1, . . . , np(l − 1)}) with receptive field profiles. Receptive field

profiles are denoted P l
p q as depicted by the cone like connections at the bottom of Fig. 3.2

between plane p of layer l and plane q of layer l − 1. In the following, we consider linear
S-Cell models. Formally, the preliminary response of an individual S-cell is given by:

Ŝl
p(x, y; I) =

np(l−1)
∑

q=1

r
∑

i=−r

r
∑

j=−r

C l−1
q (x + i, y + j; I)P l

p q(r + i, r + j), (3.1)

16



3.1 Formal Definition

S
^ l

2

S
l
1

S
l
2

l
1

C

S
^ l

1

l
2

C

C
l−1
2C

l−1

1

spatial pooling

lateral competition

feature extraction

P
lP

l
11 2 1 P l

(  )l
P

l

l−1

l
(  )l

C

S
^ l

(  )l

S
l

(  )l

C
l−1

( l−1)

( l−1)
l

(  )l

n

pn

np

pn

p

np npnp 1

����������

�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
��
��
��
��
��

����������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��

Layer 

Layer 

Figure 3.2: Computation within a layer l: S-cell responses are computed in two steps: First,
the activities of the C-cell planes of the previous layer are convolved using dif-
ferent receptive field profiles, one for each plane (denoted P l

p q, where l is the
index of the current layer, p the plane index within the current layer and q the
plane index within the previous layer). This step can be interpreted as a feature
extraction stage. The cumulative result of the convolutions yields the prelimi-
nary responses of S-cells, denoted Ŝl

p(x, y; I). In a second step, the preliminary
responses are subject to a lateral competitive mechanism, which is performed
among all S-cells located at identical positions on the planes of the current layer.
The results are the final responses of the S-cells, denoted Sl

p(x, y; I). The re-

sponses of C-cells (denoted C l
p(x, y; I)) is computed using a spatial pooling

mechanism that combines the responses of a local neighborhood of S-cells.

where r =
dp(l)−1

2 is the “radius” of the receptive fields, directly derived from the dimension
of the receptive field profiles of layer l, dp(l). C l

q(x, y; I) is set to 0 for out-of-range values
of x of y. Note that for the S-cells of the first layer the previous C-cell plane C0

1 is simply
the input stimulus. This model is called linear, because the preliminary responses of S-cells
is computed solely by means of convolution and summation.

3.1.3 Lateral Competition

The lateral competitive mechanism (depicted by the edges in the middle of Fig. 3.2 con-
necting the preliminary S-cell planes with the final S-cell planes) that is used to derive the
final responses of S-cells is given by a competition function LC : R

np(l) × N → R that
takes as input the activities of a so-called hyper-column, i.e. a vector containing all np(l)
preliminary S-cell activities at position (x, y) of all planes, and a plane index. The output
of the competition function then is the final response of the S-cell:

Sl
p(x, y; I) = LC((Ŝl

1(x, y; I), . . . , Ŝl
np(l)(x, y; I))T ; p). (3.2)
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3 A Hierarchical Feed-Forward Model

Here, we adopt the winner-takes-most mechanism proposed in [107]. It is given by:

LC(~s; p) :=















0 if M = 0 or
sp

M
< γl or

sp−γlM
1−γl

< θl,

1 else,

(3.3)

where M = maxp sp, γl with 0 < γl < 1 is the “competition strength”, and θl is the
“activity threshold” common to all planes in layer l.

Even though we adopt the lateral competitive mechanism of [107] (which the authors
showed to be superior to others), and are not investigating any other alternatives in this
thesis, the above definition of the function LC could be easily replaced by a different
approach, such as the maximum operation as used in the HMAX model [85] or the OR-
operation of the Neocognitron [25].

3.1.4 Spatial Pooling C-Cells

The activities of cells in a C-cell plane C l
p are computed directly from the activities of the cells

in the corresponding (final) S-cell plane Sl
p. Each C-cell receives as input the responses of S-

cells that are located within a spatial pooling area (as depicted by the cone-like connections
at the top in Fig. 3.2).

The spatial pooling area is determined by a neighborhood function Hl(x, y; rl) which –
given a C-cell position (x, y) in planes C l – returns a set of S-cell positions within a square
of size rl × rl in the S-cell planes Sl

p, i.e.

Hl(x, y; rl) = {(x′, y′) | fXx− rl ≤ x′ ≤ fXx + rl,
fY y − rl ≤ y′ ≤ fY y + rl,
x′, y′ ∈ N},

(3.4)

where fX = dx(l−1)
dx(l) and fY =

dy(l−1)
dy(l) are the sub-sampling ratios between the planes in

layer l and l − 1 in x and y directions respectively. The size of the spatial pooling area
is determined by the parameter rl, which we set to 6σl−1

2 , where σl is the variance of a
Gaussian weighting kernel which can be chosen differently for each layer (see below).

The following formulation for the computation of the response of a C-cell C l
p(x, y; I) was

used in the model of [107] and is given by

C l
p(x, y; I) = tanh





∑

(x′,y′)∈Hl(x,y;rl)

g((x − x′)2 + (y − y′)2;σl)S
l
p(x

′, y′)



 , (3.5)

where g(x;σl) is the Gaussian weighting kernel computed from the squared distance (in cell
positions) of the current cell to the center of the spatial pooling area, i.e.,

g(x;σl) =
1

σl

√
2π

e
− x

2σ2
l , (3.6)

where σl denotes the variance for layer l. This definition computes a weighted sum of the
responses of S-cells within the spatial pooling area and passes the result through a tanh
function to implement a smooth spatial OR-operation [107].
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3.2 Summary

3.2 Summary

The main advantage of the above definition over previous proposals is that each of the nl

layers are formally treated equally and only differ in that parameters which are summarized
in the following:

• np(l): This defines the number of planes in layer l (both S-cell planes and C-cell
planes).

• dx(l) and dy(l): These parameters determine the size of the grid in which C-cells are
arranged in layer l. If present, the S-cell planes of the next layer l + 1 always have the
same dimension.

• dp(l): This parameter defines the size of each receptive field profile P l
p q, with p =

1 . . . np(l) and q = 1 . . . np(l − 1).

• P l
q p: This is the dp(l) × dp(l) weight matrix of the receptive field profile connecting

C-cell plane q of layer l − 1 and S-cell plane l of layer l.

• σl: This parameter defines the variance of the Gaussian pooling kernel as applied for
computing C-cell activity.

• γl and θl: These parameters define the “competition strength” and the “activity
threshold” of the winner-takes-most lateral competitive mechanism on layer l, common
to all planes.

Before applying the HFM for processing natural images, in the next chapter we first develop
a complexity measure for multi-class datasets, which is used in Chapt. 5 for analyzing the
success of the HFM in normalizing image patches.
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CHAPTER 4

An Empirical Complexity Measure for Multi-Class Datasets

In this chapter a novel method is described that allows the analysis of the statistical struc-
ture of class distributions in high-dimensional multi-class datasets. In contrast to former
proposals, the measure yields a single, real-valued descriptor between 0 and 1 that can be
interpreted as a quantitative judgment of the geometrical complexity of the dataset. The
method provides a generic tool for (i) analyzing the “difficulty” of discrimination tasks and
(ii) evaluating the quality of feature representations. Therefore the measure can be used as
an objective function for optimizing a specific feature extraction technique. The computa-
tion of the measure is based on randomly selecting many subsets of data points that are used
as reference nodes for an ensemble of simple 1-nearest neighbor classifiers to be applied on
the whole dataset. The average accuracy of these classifiers is used to obtain a characteristic
graph that reflects the statistical properties of the class distributions. The area above this
curve is used to compute the measure which we call Average Nearest Neighbor Descriptor
(ANND). Several experiments on toy datasets that show the usefulness of the measure are
presented. In Chapt. 5 the ANND is applied on multi-class natural image datasets and it
is further used to analyze the quality of the abstract feature representation that is provided
by the final C-cell planes of the Hierarchical Feed-forward Model when processing highly
distorted natural image datasets.

4.1 Overview

The problem of measuring the complexity of multi-class datasets has been addressed e.g. in
the works of Ho et al. [39, 37, 38, 62], where it is pointed out that there are at least three
independent factors which affect the complexity (or “difficulty”) of discrimination problems:

• Class ambiguity: This refers to situations where some classes in the datasets cannot
be distinguished using a given feature representation by any classification approach.
This can either be caused by the intrinsic structure of the dataset or by inadequate
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feature measurements.1 Discrimination problems like this are said to have a non-zero
Bayes error, meaning that the class distributions overlap to a certain degree. This sets
a natural limit on the lowest achievable error rate.

• Complexity of decision boundaries: Even in the case of a zero Bayes error, not all
discrimination problems can be considered equally difficult, because implicitly, for
defining a classifier a description of the boundaries that separate classes in the feature
space is necessary. The more complex these class boundaries are the more difficult the
problem must be considered.

• Sample sparsity and feature space dimensionality: From a practical point of view a
discrimination problem can only be analyzed in terms of a representative dataset that
contains example instances of the problem. This means that there always exist un-
seen examples which are unavailable during analysis. How these examples should be
“classified” depends on a set of generalization rules that a corresponding classifier
must employ. The smaller the size of the sample (or the higher the dimensionality
of the feature space) the sparser the description of the distributions. Therefore, less
information is available to constrain the classifier’s generalization rules. Small sample
size can lead to two different effects: Intrinsically complex problems can appear “sim-
ple”, whereas intrinsically simple, e.g. linear separable problems might appear to have
complex non-linear decision boundaries.

Of these sources of difficulty, sample sparsity can be seen as the most severe one because
as long as a complete sample is not available no a priori predictions can be made about
the representativeness of the dataset. Therefore, when analyzing a dataset of examples we
can never expect to measure the true complexity of the underlying problem but only the
apparent complexity as computed from a fixed, finite dataset [37]. Thus, in the following
we concentrate on the first and second of the mentioned factors and assume that we have
a dataset at hand which is sufficiently representative.

The problem of characterizing the complexity of a dataset has been approached from two
sides: One is to use the performance of classifiers as a measure of complexity, whereas the
other attempts to define measures that are independent of the choice of a specific classifier.

A representative of the first class of approaches can be found in the work of Duin et al. [20].
Here, it is argued that a natural characterization of the complexity of a classification problem
is provided by the tools that are used to solve it. Following this view, the authors propose
to use a set of standard classifiers and measure their performance on a given dataset. From
the absolute performance values of the different classifiers the authors obtain what they
call a classifier disagreement matrix, that — after an embedding into a two dimensional
Euclidian space — can be used to compare different classification problems. In practice,
the measure can be used to assist the selection of suitable classification techniques when
given a classification problem whose properties are unknown. However, the stability and
consistency of the approach, especially when changing the set of classifiers or altering their

1An example from the field of optical character recognition (OCR) is the distinction between the lower case
letter ’l’ and the digit ’1’, which appear similar in some fonts. Using a simple pixel representation for the
characters the two classes appear ambiguous. To solve the problem, a more advanced representation is
needed that also takes account of the context in which the characters appear.
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parameterizations, is not investigated. Therefore, such an analysis is rather qualitative and
so far does not appear to be well suited as an absolute, quantitative measure.

Regarding the second type of approach, i.e., measures that are independent of specific
classification approaches, a summary of existing methods is given in the work of Ho &
Basu [39]. Here, the authors compare different approaches to characterizing the complex-
ity of a dataset which focus on the geometrical complexity of the class boundaries. It is
argued that none of the investigated measures alone can sufficiently capture all aspects
of complexity that may be present in a dataset. Therefore, the authors proposed a com-
bination of multiple measures (such as Fisher’s discriminant ratio [23], Feature Efficiency
[38], Mixture Identifiability [95], Non-linearity [40] and several other approaches) to form a
multi-dimensional descriptor. A given classification problem can then be seen as a point in
a multi-dimensional descriptor space. In experiments it has been shown that for real world
datasets the descriptor differs significantly from that of randomly labeled datasets. However,
the proposed measure seems to be strongly dependent on the choice of the set of measures
and, again, due to the multi-dimensionality of the descriptor, it canot be used directly as an
absolute quantitative measure of complexity. In other works (e.g, [62]), the authors use the
descriptor space for the definition of a so-called domain of competence of a classifier.

In summary, existing methods which characterize the complexity of multi-class datasets
are mostly based on multi-dimensional descriptors and are therefore not well suited for the
analysis that we intend to carry out in this thesis, since a quantitative measure rather than
a qualitative one is required.

The approach introduced in the following is based on a single, real-valued and also well
bounded descriptor. The value of the measure is derived from the average accuracy of simple
1-nearest neighbor classifiers that use representations of increasing complexity.

We argue that the measure accounts for the first two of the above mentioned issues,
namely “class ambiguity” and “complexity of the decision boundary.” With respect to
“class ambiguity,” the error rate of the 1-nearest neighbor classifier is known to be no worse
than twice the Bayes error when the number of nodes is increased to infinity [18, 93].

The measure also accounts for the “complexity of the decision boundary” because the
number of reference nodes that the representation consists of corresponds to the number of
Voronoi tessellation cells which create the decision boundaries. The more tessellation cells
used, the higher the geometrical complexity of the decision boundaries that separate the
classes in data space [104, 3].

After describing how the measure — which is called the Average Nearest Neighbor De-
scriptor (ANND) — is computed in the next section, we apply the approach on toy datasets
in order to discuss some important properties.

4.2 The Average Nearest Neighbor Descriptor

Let us assume, we are given a dataset D consisting of examples that are represented by
vectors ~xi:

D := {~xi| ~xi ∈ R
n, i ∈ {1, . . . ,m}}, (4.1)

where n is the dimension of the data space and m is the total number of examples. Further,
labels l(i) ∈ {1, . . . , c} are assigned to the examples ~xi, with c being the number of classes.
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Based on this dataset we now create a set of different 1-nearest neighbor classifiers which
use subsets D

′ ⊂ D of the dataset as nodes for classification. A 1-nearest neighbor classifier
is a function Φ : R

n → {1, . . . , c}, which assigns a class identifier to a given data point ~x
(based on the current representation D

′) by choosing the label of the node that is closest
to the input data point with respect to a distance measure dist : R

n ×R
n → R

Φ(~x; D′) := l(arg min
i

dist(~xi, ~x)), ~xi ∈ D
′, (4.2)

where in the following we use the Euclidean distance, dist(~a,~b) :=‖ ~a −~b ‖. The analysis
of the dataset D based on such classifiers is now done by randomly choosing subsets D

′

of different sizes and measuring the classification accuracy of the corresponding 1-nearest
neighbor classifiers applied on the whole dataset D. This is expressed by

acc(D′) :=
1

m

m
∑

i=1

δΦ(~xi,D′),l(i), (4.3)

where δa,b = 1 if a = b and 0 else. The value of acc(D′) is bounded within the interval [0, 1]
and can be interpreted as a measure of how well the current choice of nodes represents the
dataset. A value of 1 corresponds to maximal accuracy, meaning that all examples of the
dataset can be classified correctly using the current representation D

′.
The accuracy measure defined in Eq. 4.3 is now used to compute what we call the

Characteristic Accuracy Graph (CAG) of the given dataset. This is done by varying the size
of the representation and averaging the value of the accuracy measure for each size over
a number NREP of different randomly selected subsets. The computation of the CAG is
summarized in Alg. 1.

Algorithm 1 Computation of the Characteristic Accuracy Graph: CAG(D, NREP )

1: for size = 1 to m do

2: CAG[size]← 0
3: for repetition = 1 to NREP do

4: randomly choose D
′ ⊂ D with |D′| = size

5: CAG[size]← CAG[size] + acc(D′)
6: end for

7: CAG[size]← CAG[size]
NREP

8: end for

9: return CAG

The array CAG returned by the algorithm has as an argument the size-values ranging
from 1 to m. The CAG-values range from 0 to 1. Rescaling the size-values to the interval
[ 1
m

, 1], each point of the graph can be interpreted as the average performance of a 1-nearest
neighbor classifier that uses a specific fraction of the total data points as nodes for the
representation. The curve starts at the size-value of 1

m
, where the representation uses only

a single node. Here, assuming an equal number of representatives in each class, we obtain
an average accuracy value of CAG = 1

c
. At the other extreme, at the size-value of 1, the

representation consists of all data points and trivially we obtain an average accuracy of 1.
The experiments described in the following show that the average accuracy values at the

intermediate positions between 1
m

and 1 form a smooth, monotonically increasing curve,
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Figure 4.1: Schematic illustration of a typical Characteristic Accuracy Graph (CAG) and
the area enclosed by the curve. The area is used to compute the Average
Nearest Neighbor Descriptor (ANND). The CAG curve starts at approx. ( 1

m
, 1

c
)

and monotonically increases to (1, 1). The dotted line represents the theoretical
worst case where the dataset contains randomly distributed and randomly labeled
(using c classes) data points.

as long as NREP is chosen large enough.2 In particular, it turns out that in the case of
a random dataset, e.g., obtained by using a uniform random distribution and assigning a
random labeling to the data points, the curve approximates a straight line connecting the
points ( 1

m
, 1

c
) and (1, 1). On the other hand, for a dataset which has a structured labeling

the curve is located above this straight line.
As illustrated in Fig. 4.1, this property of the CAG motivates us to utilize the value of

the area (denoted A in Fig. 4.1) that is enclosed by the curve for the overall measure of
complexity of the dataset. The area A can be estimated by:

A(D) =
1

2m

m−1
∑

i=1

CAG[i] + CAG[i + 1]. (4.4)

Based on A(D) we now define the measure — in the following called the Average Nearest
Neighbor Descriptor (ANND) — as follows:

ANND(D) := 2

(

1− A(D)− 1
c

1− 1
c

)

. (4.5)

The definition is motivated by rescaling the value of the area in a way that leads to invariance
to the number of classes c and also bounds the result to the interval [0, 1], where a value of
1 corresponds to the maximal complexity.

2For all ANND-experiments presented in the thesis, the parameter NREP is set to 50, which proved to be
sufficient for obtaining stable results.
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4 An Empirical Complexity Measure for Multi-Class Datasets

The rescaling is illustrated in Fig. 4.1. The procedure is as follows: First, we subtract
1
c

from the area A(D) (this is the rectangle enclosed by the dashed line) and rescale the
result by dividing it by 1− 1

c
. This makes the measure invariant to the number of classes c.

At this point, we obtain a value of approx. 0.5 for randomly labeled data (denoted by the
dotted line). For data with structured labeling, we expect the value to be between 0.5 and
1. Therefore, we subtract the current value from 1 and multiply the result by 2 in order to
obtain values between 0 and 1 for representing the complexity of the dataset.

4.3 Experiments on Toy Datasets

In this section, we apply the approach to several toy datasets to further illustrate the proper-
ties of the proposed measure. The first experiment verifies that we obtain maximum ANND
values (close to 1) for datasets that contain randomly distributed classes. This result is
invariant to the number of classes, to the dimensionality of the data space and also — as
long as sufficiently many points are used – to the number of data points.

In a second experiment we use a 2-dimensional 2-class dataset where the data points are
drawn from two Gaussian distributions whose means are varied in distance. In this setup
we can analytically compute the theoretical Bayes error of the problem and show that the
ANND values obtained for the generated datasets are proportional to the Bayes error. This
shows that the measure accounts for the “class ambiguity” issue mentioned at the beginning
of the chapter.

In a third experiment, we use different 2-dimensional datasets that are generated based
on gray images that show structures of different complexity levels. First, we use spiral
images that have an approximately constant geometrical complexity, but different numbers
of classes in order to demonstrate the invariance of the measure with respect to the number
of classes. Finally, we use chessboard images in order to generate two-class problems with
an increasing geometrical complexity in order to show that the measure accounts for the
“complexity of the decision boundary” (the second issue mentioned at the beginning of the
chapter) in that it yields higher values the more complex the decision boundary appears.

4.3.1 Experiment 1: The RANDOM-Dataset

The RANDOM-dataset contains c classes and is generated by sampling a number of m
c

data
points for each class. The dimension of the data points is n and the values are randomly
chosen from the interval [−1, 1] using a uniformly distributed random number generator.

For all instances of the RANDOM-dataset we expect the measure to return maximal
values (close to 1), since the data does not exhibit any structure which could be exploited
by any classification approach.

Figure 4.2 (left) shows four CAGs computed for different settings. In each case, the
number of representatives per class is chosen to be 100, i.e. m = 100 ∗ c. The number of
classes c is set to 2, 5, 10 and 20 respectively, and the dimension is n = c. As expected,
the curves approximate straight lines connecting the points ( 1

m
, 1

c
) and (1, 1). The ANND

values corresponding to Eq. 4.5 are shown in Fig. 4.2 (right). Again, as expected, all values
are close to 1.
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Figure 4.2: Left: Characteristic Accuracy Graphs for different instances of the RANDOM-
dataset. Classes are distributed following uniform distributions. Right: Corre-
sponding Average Nearest Neighbor Descriptor values.

This experiment verifies our expectation that random labeling leads to CAGs that approx-
imate straight lines. In the second experiment, we again use datasets that are generated
from random distributions but where the labeling exhibits some structure.

4.3.2 Experiment 2: The GAUSS-Dataset

The GAUSS-dataset consist of c = 2 classes of data points that are drawn from Gaussian
distributions with variance 1 and mean ~µ,

G(~x) =
1√
2π

e−
‖~x−~µ‖2

2 , (4.6)

where all components of the mean ~µ are set to 0 for the first class and to d√
n

for the second

class. The parameter d is then the distance between the means of the two classes. Varying
d allows us to introduce structure to the labeling of the dataset in order to test the behavior
of the complexity measure.

Figure 4.3 (left) shows examples of CAGs for the GAUSS-dataset. The distance d between
the means is chosen to be 0, 1, 2, 3, 4 and 5, the sample size is m = 500, and the dimension
is n = 2. From the curves it can be seen that in the case of d = 0, where the labeling of
the dataset does not exhibit any structure (this is equivalent to Experiment 1 with c = 2),
the CAG forms a straight line between the points ( 1

500 , 1
2) and (1, 1). As the distance d

increases, the curvature of the CAG increases and so does the size of the area enclosed by
the CAG.

In Fig. 4.3 (right), the corresponding ANND-values are shown in comparison to the theo-
retical Bayes error of the problem for the different choices of d, which is given by the overlap
of the classes with respect to d:
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Figure 4.3: Left: Characteristic Accuracy Graphs for instances of the GAUSS-dataset.
Classes are distributed following two Gaussian distributions with variance 1. The
distance of the means of the distributions is varied for d ∈ {0, . . . , 5}. Right:
Corresponding Average Nearest Neighbor Descriptor values and the theoretical
Bayes error of the distributions.

EBayes(d) =
2√
2π

∫ ∞

d
2

e−
‖~x‖2

2 dn~x. (4.7)

The results show that the decrease of the value of the ANND is proportional to the
decrease of the Bayes error. From this we conclude that for the GAUSS-dataset the proposed
ANND is able to successfully measure the “structured-ness” of the datasets in the presence
of ambiguous classes.

4.3.3 Experiment 3: The COMPLEX-2D-Dataset

Here, we apply the proposed measure on a different class of problems, which have a Bayes
error of zero but complex decision boundaries.

For this we generate discrimination problems of dimension n = 2 from base images as
shown in Fig. 4.4. To obtain a dataset from such an image we randomly sample points from
the image plane using a uniformly distributed random number generator. For each point, if
the intensity of the pixel at the position is other than white we add the location of the point
as an example to the dataset. The labeling of the point is determined by the gray value of
the pixel.

First, we generate datasets with m = 500 for the spiral images shown in Fig. 4.4 (a-d) and
compute the corresponding CAGs, which are shown in Fig. 4.5 (a-d, left). The geometrical
complexity of the four problems is approximately equal, just the number of classes c is
varied. As expected, the CAG curves each start at an average accuracy value of approx.
1
c

and rapidly increase to 1 (note that in Fig. 4.5 (a-d, left) the x-axis is restricted to the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Base images from the COMPLEX-2D dataset, used for generating different two-
dimensional test datasets.

interval [0, 0.2]). From the corresponding ANND-values as show in Tab. 4.5 (a-d, right), it
can be seen that the measure assigns similar ANND values to four different problems despite
the fact that they have different numbers of classes.

In contrast, the images shown in Fig. 4.4 (e-h) represent four different checkerboard-like
distributions. Here, the number of classes is c = 2 for all datasets, but the geometrical
complexity is varied by increasing the grid dimension of the checkerboard. From the CAGs
shown in Fig. 4.5 (e-h), it can be seen that the shape of the CAG flattens for high grid
dimensions. In the case of a grid dimension of 16 (Fig. 4.4 (h)), the curve looks similar to
the one of the RANDOM-dataset. This is not surprising, since a number of 500 data points
is by far not sufficient to describe the structure of 256 grid cells, and the labeling of the
data points appears as a random labeling. From the corresponding ANND-values shown in
Tab. 4.5 (e-h) it can be seen that the measure assigns higher values to datasets that appear
to have highly complex decision boundaries.

4.4 Discussion

In this chapter we have proposed an empirical measure that makes it possible to judge the
“apparent” complexity of a given multi-class dataset. The measure is derived from the
accuracies of simple 1-nearest neighbor classifiers whose node representations are obtained
from subsets of increasing size taken from the dataset itself.

In contrast to former proposals, e.g., by [39] or [20], the measure yields a single, real-
valued descriptor that simultaneously accounts for class ambiguity (in the case of a non-zero
Bayes error) and for the complexity of the decision boundary — two factors which have been
identified by [39] as affecting the complexity of discrimination problems.

Since the measure is free of any additional parameters (the only parameter is the number
of repetitions NREP , which must only be chosen large enough in order to ensure stability)
it can conveniently be used as an objective function in order to optimize for example the
size of a training dataset or the parameters of a feature extraction mechanism.
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Figure 4.5: Left: Characteristic Accuracy Graphs for the COMPLEX-2D-dataset. The
datasets contain m = 500 data points that are samples generated from the
images in Fig. 4.4. (Right) Corresponding ANND values.
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4.4 Discussion

We argue that the proposed measure provides a highly practical tool for datamining
researchers, since it allows analysis of given multi-class data prior to applying a (possibly
highly parameterized) classification approach. In the following chapter we apply the ANND
measure to analyze natural image datasets and optimizing the parameters of the Hierarchical
Feed-forward Model for the task of image normalization.
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CHAPTER 5

Image Normalization

In this chapter, the image normalization capabilities of the Hierarchical Feed-forward Model
are investigated. The neural activities of the final C-cells of the HFM after processing an
input stimulus provide an abstract high dimensional feature representation which is invariant
to a substantial range of transformations and distortions that the input stimulus might
be subject to. To prove this, multi-class test datasets of highly distorted image patches
containing stimuli from three different natural image domains are generated which – in input
space – exhibit a poor statistical structure. Passing the images of the datasets through
the model and using the Average Nearest Neighbor Descriptor (ANND) as a measure of
complexity, it is shown that the HFM is capable of normalizing the images in order to
significantly improve the statistical structure of the data. Receptive field profiles of the
model are obtained using a recently introduced unsupervised learning method called Non-
negative Matrix Factorization with Sparseness Constraints [43]. Profiles learned with this
method make it possible to encode knowledge about the current image domain and thus
lead to a better performance than fixed receptive field profiles such as those used in former
models. This is experimentally confirmed by comparing different choices of receptive field
profiles in terms of their success in reducing the apparent complexity of the dataset. The
goal of this chapter is to provide a parameterization of the HFM that can be used for the
classification and detection experiments in the following chapters. Preliminary results of
some of the experiments presented in this chapter have been published in advance in [10].

5.1 Overview

Figure 5.1 show the experimental architecture used in the following and provides an overview
of the organization of the chapter. First, in Sect. 5.2 we introduce three publicly available
natural image datasets that are frequently used as benchmarks in the computer vision com-
munity and that are used for various experiments throughout this thesis. The statistical
structure of these datasets is analyzed using the ANND as a measure of complexity. In a
series of experiments with synthetic distortions and transformations which are applied on
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5 Image Normalization

the datasets it turns out that when adding even a single additional “degree of freedom”
to the appearance of the objects a tremendous increase of the complexity can be observed.
Moreover, when adding multiple sources of transformations and distortions, the statistical
structure is completely lost.

In Sect. 5.3 it is shown that the complexity of the highly distorted test datasets can be
reduced again by passing the images through a single- and two-layered HFM and using the
activity of the final C-cells of the model as a new representation of the dataset.

In Sect. 5.3.1 a method called Non-negative Matrix Factorization with Sparseness Con-
straints (NMFSC, [43]) is described. This allows learning of receptive field profiles from
natural image data that have similar properties to the receptive fields of biological simple
cells as found in visual cortex. As shown in Fig. 5.1, besides learning profiles for the single-
layered HFM, higher-order profiles for the second layer of the model can be learned from
the outputs of the single layered model.

An example of passing an image through the HFM is discussed in Sect. 5.3.2 and exper-
imental results are given in Sect. 5.3.3, where the performance of the model is evaluated
using the ANND and a comparison to other types of receptive field models is made.

5.2 The Statistical Structure of Multi-class Natural Image

Datasets

For the experimental investigations in the present and the following chapters, we use as a
basis the following three image patch datasets, which are commonly used as benchmarks in
computer vision research:

• The MNIST database of handwritten digits [53, 52]: A database which is available
online1 and maintained by Yann LeCun (Courant Institute, New York University) and
Corinna Cortes (Google Labs, New York). It is composed of a training set of 60,000
examples and a test set of 10,000 examples. The digits are size-normalized and
centered in a fixed-size image of 28× 28 pixels. From this database, a random subset
of 2000 images is selected, rescaled, and embedded into 64× 64 frames2. Below, this
dataset is referred to as MNIST-10. Some example images are shown in Fig. 5.2 (a).

• The Columbia Object Image Library [68, 70, 69]: A database of images showing frontal
views of small objects recorded using a turntable (rotated in steps of 5 degrees) and
controlled lighting conditions. The dataset is available in two versions, one (called
COIL-100) contains 7200 color images taken from 100 objects and the other (called
COIL-20) contains 1440 gray-scale image images taken from 20 objects. For our
experiments we use the COIL-20 library, where each image is rescaled to 64 × 64
pixels. Some examples are shown in Fig. 5.2 (b).

• The AT&T Database of Faces [90, 89]: This database contains 400 gray-scale images
of size 92 × 112 showing frontal views of 40 different people with 10 images each.
The database was formerly known as the ORL Face Database. Therefore we refer to
the dataset as ORL-40 below. Examples are shown in Fig. 5.2 (c). Since some of the

1http://yann.lecun.com/exdb/mnist/
2The conversion of the images to 64× 64 is done for consistency with the other datasets.
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Figure 5.1: Overview of the experimental HFM architecture used in the present chapter. The
Average Nearest Neighbor Descriptor (ANND) is used to analyze the apparent
complexity of multi-class natural image datasets under synthetic transformations
and distortions (top). The complexity of highly distorted datasets can be signifi-
cantly reduced by passing the images through a Hierarchical Feed-forward Model
(HFM), which consists of a single layer (middle) or of two layers (bottom). Re-
ceptive field profiles for the HFM are obtained using an unsupervised learning
algorithm called Non-negative Matrix Factorization with Sparseness Constraints
(NMFSC, [43]).
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experiments that are conducted in the present and the following chapters require a
foreground-background segmentation of the images, the faces are manually segmented
and embedded into 64×64 frames. We only use the segmented version of the dataset
and refer to it as ORLS-40. Example images are shown in Fig. 5.2 (d).

In order to show that the HFM approach is not restricted to a single image domain, most
of the experiments are conducted on all of the three datasets MNIST-10, COIL-20, and
ORLS-40. Also, since all datasets are publicly available a good reproducibility of results is
given.

5.2.1 Apparent Complexity of Natural Image Datasets

To give some idea of the apparent complexity of natural image datasets, Table 5.1 shows
results of an ANND analysis performed on different versions of the three datasets MNIST-
10, COIL-20, and ORLS-40.3 The results for the original, raw datasets of size 64 × 64 are
shown in bold (rows 1, 4, and 7). The apparent complexity of the three datasets differs
significantly. The most “difficult” one appears to be ORLS-40 with an ANND value of
0.362. This is not surprising since each class is only represented by 10 different views, which
in some cases additionally differ significantly in appearance. The MNIST-10 dataset has a
much more dense sampling of 200 examples per class, leading to an ANND value of 0.164.
The lowest apparent complexity can be measured for the COIL-20 dataset. Here, a value
of 0.113 is obtained, which suggests that the classes are well sampled and in addition the
inner-class variance is low.

For comparison, rows 2, 5, and 8 of Tab. 5.1 also show the results for the same datasets,
but subsampled to a resolution of 32 × 32. The values do not differ significantly and are
only slightly lower than for the 64× 64 resolution. This is probably due to the fact that the
Euclidean distance measure which is employed by the ANND algorithm is more stable for
the reduced data dimensionality.4 The ANND value for the original ORL-40 dataset without
manual segmentation is shown in row 9 of Tab. 5.1. The apparent complexity is a bit lower
for this set, which might be due the background being mostly stable for each class and thus
providing a clue to the class identity.

In the following section, we apply different synthetic transformations on the image datasets
to see how this affects the apparent complexity. For this, a fixed number of 2000 examples is
used for each dataset. In order to create such datasets, randomly selected images from the
original datasets are used and Gaussian noise of variance 10 is added to the intensity value
of each pixel (the intensity of each pixel is represented by a number between 0 and 255).
The datasets are kept balanced, i.e. each class always has the same number of examples.
The ANND values for these datasets are shown in rows 3, 6, and 10 (denoted by “GN10”).
For the MNIST-10 dataset the apparent complexity increases slightly because the original
set already contains 200 examples per class. For the COIL-20 and ORLS-40 datasets, the
apparent complexity is significantly reduced since the number of examples per class is larger
than in the original set, which means that some examples are almost identical in this base
setup. These datasets with a fixed number of 2000 examples are used for the experiments
presented in the following section.

3For this, we use the Euclidean distance which is applied on the 4096-dimensional image vectors.
4This relates to the “curse of dimensionality problem”, see [14].
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(a) (b)

(c) (d)

Figure 5.2: Examples from the multi-class natural image datasets that are used for experi-
ments in this thesis. (a) The MNIST-10 dataset, consisting of 200 examples of
each of 10 different handwritten digits. (b) The COIL-20 datasets, consisting of
72 views of each of 20 different small objects. (c) The original ORL-40 datasets
consisting of 10 frontal views of each of 40 different people’ face. (d) The
ORLS-40 datasets, a rescaled and manually segmented version of the ORL-40
dataset. All gray-scale images have a size of 64× 64 pixels.
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Dataset Classes Examples per class Total examples ANND

MNIST-10, 64× 64 10 200 2000 0.164

MNIST-10, 32× 32 10 200 2000 0.153
MNIST-10, 64× 64, GN10 10 200 2000 0.167

COIL-20, 64× 64 20 72 1440 0.113

COIL-20, 32× 32 20 72 1440 0.107
COIL-20, 64× 64, GN10 20 100 2000 0.082

ORLS-40, 64× 64 40 10 400 0.362

ORLS-40, 32× 32 40 10 400 0.360
ORL-40, 92× 112 40 10 400 0.310
ORLS-40, 64× 64, GN10 40 50 2000 0.099

Table 5.1: The apparent complexity of different natural image datasets measured using the
Average Nearest Neighbor Descriptor (ANND, see Chapt. 4).

5.2.2 Synthetic Transformations and Distortion

In this section, it is experimentally confirmed that the apparent complexity of natural image
datasets is very sensitive to the addition of transformations and distortions to the images.
Applying just a single additional source of distortion leads to a tremendous increase of the
complexity of the dataset. For the experiment we simulate the following transformations,
which commonly appear in practical computer vision setups, for example when observing
objects with a camera:

• Noise: For simulating the effect that sensor noise has on the complexity of a dataset,
we use pixel-wise additive Gaussian noise with an increasing variance. The results in
Fig. 5.3 (a) show that the ANND remains quite stable for low variance values, but
strongly increases for high values. The ORLS-40 dataset appears to be more sensitive
to noise than the other two datasets. This might be due to the fact that classes in
the ORLS-40 dataset are distinguished by small details of the face (eyes, nose, etc.)
which are corrupted more easily by noise than global shape properties.

• Rotation, translation, and scaling: Other transformations of the input stimulus that
commonly occur in computer vision setups also strongly affect the apparent complexity
of the datasets. Here, we investigate rotation in the image plane, translation in the
image plane, and scaling. For rotation, an angle between 0 and a maximum value
is chosen for each image and the stimulus is rotated by that angle. The maximum
value is increased from 0 to 180 degrees. The resulting ANND values are shown in
the plots in Fig. 5.3 (b). For translation in the image plane, an (x, y) pixel offset is
randomly chosen where x and y are between −t and t. t is varied between 0 and 10.
The results are shown in Fig. 5.3 (c). Finally, for simulating scaling, a random percent
value is chosen between −s and s, where s in increased from 0 to 75. The results for
this are shown in Fig. 5.3 (d). In all three cases the complexity is strongly affected by
the additional source of distortion.
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• Background clutter: Another source of distortion that must be considered in practical
applications occurs when objects appear in front of a cluttered background. This
also has a powerful effect on the apparent complexity of the dataset. We simulate
this by segmenting the objects from the background (which for our test datasets can
be easily done using an intensity threshold) and placing them in front of a 64 × 64
clutter image patch that is randomly extracted from images of the Art Explosion
Photo Gallery [72]. Finally, Gaussian noise of variance 10 is added to each pixel’s
intensity value. The results for the three datasets are shown in Tab. 5.2, rows 4–6.
The apparent complexity strongly increases compared to that of the setup without
background clutter (see Tab. 5.1).

• Multiple sources: Instead of encountering a single source of additional distortion,
in practical computer vision setups multiple sources of transformation often occur
simultaneously, which has an even greater effect on the complexity of the datasets.
For simulation, we choose the following synthetic transformations, which are applied
one after the other: random rotation in the image plane of up to +/ − 10◦, random
scaling of up to +/ − 10%, random translation in the image plane of up to +/ − 5
pixels, and additive Gaussian noise with variance 10. The results for the three image
datasets are shown in Tab. 5.2, rows 7–9. Additionally applying background clutter
leads to a further increase of the complexity, as shown in Tab. 5.2, rows 10–12.5

The results of the experiments in this section show that natural image datasets are very
sensitive to transformations and distortions of the input stimuli. Adding a single source
of distortion such as noise, rotation, scaling, translation, or background clutter leads to a
significant increase of the apparent complexity of the dataset in terms of the ANND measure.
When multiple sources of distortion are added to an image dataset of limited size, the ANND
value quickly approaches value of > 0.5, which means that the statistical distribution of the
classes in the Euclidean space is very poor.

For practical computer vision applications which rely solely on statistical methods at-
tempting to model the class distributions on the basis of a training dataset, this has the
following implications: (i) For each additional source of distortion that the system should
be able to tolerate, a tremendous increase of the size of the training dataset is necessary in
order to preserve sufficient statistical structure of class distributions that can be exploited
during training. (ii) When training the system using a limited set of examples, one cannot
expect the system to perform well on test datasets which violate the restrictions on the
appearance of the objects that have been made during the training phase. When the test
images are subject to additional sources of distortion that were not contained in the training
set, the internal model of the system is unlikely to account for this additional degree of
freedom and recognition is likely to fail.

Therefore, we argue that computer vision systems can greatly benefit from employing
heuristic knowledge about natural imagery which is not apparent from a training dataset
alone. The Hierarchical Feed-forward Model that is investigated in this thesis makes use
of such heuristic knowledge by projecting input stimuli into an abstract high-dimensional
feature space. This can be interpreted as a normalization with respect to transformations
and distortions that commonly occur in natural images. In the remainder of this chapter we

5Example images for this are shown in Fig. 6.2.
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Dataset Transformations ANND

1 MNIST-10, 64× 64 GN10 0.167
2 COIL-20, 64× 64 GN10 0.082
3 ORLS-40, 64 × 64 GN10 0.099

4 MNIST-10, 64× 64 CL, GN10 0.499
5 COIL-20, 64× 64 CL, GN10 0.230
6 ORLS-40, 64 × 64 CL, GN10 0.463

7 MNIST-10, 64× 64 RI10, SC10, TR5, GN10 0.211
8 COIL-20, 64× 64 RI10, SC10, TR5, GN10 0.331
9 ORLS-40, 64 × 64 RI10, SC10, TR5, GN10 0.527

10 MNIST-10, 64× 64 RI10, SC10, TR5, CL, GN10 0.611
11 COIL-20, 64× 64 RI10, SC10, TR5, CL, GN10 0.690
12 ORLS-40, 64 × 64 RI10, SC10, TR5, CL, GN10 0.747

Table 5.2: ANND values for the three image databases MNIST-10, COIL-20, and ORLS-40
after adding different types of synthetic transformations. CL stands for back-
ground clutter, GN10 for additive Gaussian noise of variance 10, RI10 means
random rotation in image plane by +/ − 10◦, SC10 means random scaling by
+/ − 10%, and TR5 means random translation in the image plane by +/ − 5
pixels.

experimentally investigate the success of the HFM in reducing the apparent complexity of
distorted image datasets.

5.3 Image Normalization with the HFM

In this section we investigate the image normalization capabilities of single-layered and
two-layered HFMs whose receptive field profiles are obtained from an unsupervised learning
method called Non-negative Matrix Factorization with Sparseness Constraints (NMFSC,
[43]) which is applied on the input dataset. By computing the ANND on the dataset after
projecting the input stimuli into the space of C-cell activities it is shown that (i) the HFM is
able to successfully recover statistical structure contained in the distorted dataset and that
(ii) profiles obtained by NMFSC yield a slightly better performance than Gabor filters of
randomly initialized receptive field profiles.

In the following it is described how receptive field profiles are learned using NMFSC
decomposition, in Sect. 5.3.2 an example of passing an image through the HFM is discussed,
and experimental results are given in Sect. 5.3.3.

5.3.1 Learning Receptive Field Profiles

In recent literature there has been an ongoing discussion about whether and how statistical
methods can be used to model the formation of receptive field as found in biological simple
cells in the primary visual cortex. While the basic properties of simple cells were investigated
in the early works of Hubel and Wiesel [45, 46], Barlow [5, 6] was one of the first who
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Figure 5.3: Left: ANND for the three image databases, when (a) adding Gaussian noise of
increasing variance to the pixel intensities, (b) randomly rotating the images by
+/- an increasing maximum angle, (c) randomly translating the images by +/-
an increasing maximum number of pixels, and (d) randomly rescaling the images
by +/- an increasing maximum percentage value. Right: Example images (for
the extreme values). See text.
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analyzed the behavior of simple cells and suggested that their response properties might
emerge from an efficient coding strategy in the sense of information theory.

Since then, a number of proposals have been made for methods that makes it possible to
compute receptive field profiles from natural images. Bell and Sejnowski [13] showed that
Independent Component Analysis (ICA, [49]) applied on natural image data yields Gabor-like
basis components similar to biological receptive fields.

Olshausen and Field [22, 75, 77, 76] suggested using sparse coding to compute an over-
complete basis that accounts for the statistics of natural imagery. In [48, 44, 41] Hyvärinen
and Hoyer proposed another model based on sparse coding that learns receptive fields from
natural images. In the work of Wersing and Körner [107], a special version of a sparse coding
algorithm [106] was successfully applied for learning second-layer receptive field profiles for
an HFM similar to the one used in this thesis.

In the following we choose to apply a more recent proposal by Hoyer, called Non-negative
Matrix Factorization with Sparseness Constraints (NMFSC, [43]), which relies on an ex-
tension of regular Non-negative Matrix Factorization (NMF) [79, 54, 55] and qualitatively
subsumes former approaches, because the sparseness of the weight matrix and the latent
matrix can explicitly be controlled. This enables the approach to reliably find a decomposi-
tion of a natural image ensemble that is made up of constituents that are sparse, localized,
oriented, and bandpass [42]. This method is described in the following.

Non-negative Matrix Factorization with Sparseness Constraints

The goal of regular NMF is to decompose a positive data matrix V into two factors, a
weight matrix W and a latent matrix H such that V ≈WH and W as well as H only
contain positive values. The data matrix V has dimension n×m, the weight matrix W has
dimension n× r, and the latent matrix H has dimension r×m where n is the dimension of
the input space, m is the number of examples, and r is an input parameter that determines
the number of basis vectors that the target representation should consist of.

Unlike other linear decomposition methods such as Principal Component Analysis (PCA)
or Independent Component Analysis (ICA) [49, 13], the non-negativity constraints employed
by NMF lead to a representation of the data that is based on purely additive components.
For image datasets this is especially interesting because the method yields a decomposition
into sparse local parts that the stimuli consist of [54]. Moreover, applying the method on
natural imagery yields a representation that is composed of Gabor-like oriented structures
[43], a result which cannot be obtained by for example Hebbian learning or PCA [16].

The quality of the approximation V ≈WH can be evaluated by the following error
function:6

E(W,H) = ||V −WH||2 =
∑

i,j

(Vij − (WH)ij)
2. (5.1)

Minimizing this error function can be done using an iterative algorithm which applies the
following multiplicative update rules on the matrices W and H in alternating fashion:

W←W ⊗ (VH)T ⊘ (WHH
T ) (5.2)

6Besides using the Euclidian distance as a measure, Lee and Seung [55] also suggest an alternative error
function based on the Kullback-Leibler divergence [51]. This option is not investigated here.
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and

H← H⊗ (WT
V)⊘ (WT

WH) (5.3)

where ⊗ denotes element-wise multiplication and ⊘ element-wise division. As proven in
[55], the error of the approximation is non-increasing under these update rules.

An example application in [54] on the CBCL database of face images ([96]) showed that
NMF is able to obtain a sparse basis representation which consists of small localized face
constituents like e.g., eyes, nose, mouth, etc. However, the author of [43] argues that the
sparseness constraints that are employed by regular NMF are only a “side-effect” and that
the result cannot always be reproduced for other datasets like for example the ORL face
dataset [90, 89], because the sparseness of the basis vectors is not guaranteed. Therefore, he
suggested an extension of the original algorithm that allows explicit control of the sparseness
of either one, or of both, the weight matrix and the latent matrix.

In order to apply an explicit sparseness constraint on the weight matrix, a sparseness
factor µW can be chosen between 0 and 1 and in each optimization step the application of
Eq. 5.2 is replaced by the following two steps:

1. Set

W←W − µW (WH−V)HT . (5.4)

2. Project each column of W to be non-negative, have an unchanged L2 norm, and an
L1 norm of µW .

The same can be done for the latent matrix by choosing a sparseness factor µH between 0
and 1 and replacing Eq. 5.3 by:

1. Set

H← H− µHW
T (WH−V). (5.5)

2. Project each row of H to be non-negative, have an L2 norm of µH , and an unchanged
L1 norm.

For projecting a vector to have target L1 and L2 norms, Hoyer describes a special iterative
algorithm which finds, for a given input vector, the closest (in the Euclidian sense) non-
negative vector that has the given L1 and L2 norm. The reader is referred to [43] for
details.

As also demonstrated in [43], applying the NMFSC method on ON-OFF-channel sepa-
rated, contrast filtered natural image data, the method – under an appropriate parameteri-
zation of µW and µH – can be used to obtain a basis representation that consists of vectors
which have similar properties like the receptive fields of biological simple cells found in the
mammalian visual cortex [76, 22, 77, 5, 6].

We accordingly adopt this method for our purposes in order to obtain receptive field
profiles for the HFM. As shown in Fig. 5.1, besides computing profiles from natural image
patches which are used on the first layer of the model, we also use the method to compute
higher-order profiles from the outputs of a single-layered model to be used on the second
layer of the HFM. The procedure is described in detail in the following.
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ON-OFF-Channel Separated Data

As illustrated in Fig. 5.4, for computing receptive field profiles with the NMFSC algorithm,
ON-OFF-channel separated data is extracted by sampling a large number of random activity
patches from C-cell planes after feeding the HFM with random images from the training
dataset. After applying the NMFSC algorithm on this data the receptive field profiles are
extracted from the resulting weight matrix.

The first step is to create a data matrix V using Alg. 2. The algorithm gets as input a
training set Dtrain, the total number m of examples to be extracted, and the layer index l for
which the profiles shall be computed. For each example a random image from the dataset
is chosen as well as a random position on the C l−1 cell planes. At this position a patch
of size dp(l)× dp(l) is extracted from each plane. Then, for each one of these patches the
mean activity is computed and subtracted from each activity value. For storing the values
in the matrix column that corresponds to the current example, a positive value is written
into a reserved ON-slot. For a negative value the sign is changed and it is written into a
reserved OFF-slot. The output of the algorithm is a matrix V containing the ON-OFF-
channel separated data. On this matrix the NMFSC algorithm is then applied, setting the
desired target number of basis components to the number of planes of layer l, i.e. r = np(l).

The output of the algorithm is a weight matrix W and a latent matrix H. H is discarded
and from the weight matrix W receptive field profiles P l are created using Alg. 3. The
values are extracted from the columns of W in the same order as the data was stored
during construction of the data matrix V. Here, the OFF-channel is subtracted from the
ON-Channel.

Examples of first-layer receptive field profiles that are obtained by applying the described
procedure on the three datasets MNIST-10, COIL-20, and ORLS-40 are shown in Fig. 5.5.
For the top three rows, the number of planes of layer l, np(l), is set to 16 and the dimension
of the profiles, dp(l), is set to 9. For the bottom three rows, np(l) was set to 6 and dp(l) to
5. The results show that NMFSC decomposition yields sparse, localized, Gabor-like profiles.

Typical examples of second layer receptive field profiles are shown in Fig. 5.6. Here,
the outputs of a single-layered HFM (using the profiles shown in the bottom three rows of
Fig. 5.5) were used to create the data matrix. The number of planes of the second layer,
np(2) was varied between 8, 16, and 32. It can be seen that the decomposition yields sparse,
localized, and oriented spots that are distributed across the 6 input planes.

To obtain the above results, the number of examples, m was set to 5000 and a sparseness
constraint was applied on the weight matrix by setting µW = 0.5. The sparseness of the
latent matrix was left unconstrained. Additional experiments which are not discussed any
further here revealed that slight changes to the parameters µW and µH do not have a string
effect on the properties of the basis components. A previous experimental setup is described
in [10], where the above parameterization (µW = 0.5 and leaving the sparseness of the
latent matrix unconstrained) was found to be optimal for a similar task, where second layer
receptive field profiles were learned and the classification performance of the resulting HFM
was used as an optimization criterion.
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Figure 5.4: Application of the NMFSC algorithm for creating receptive field profiles for layer l
of the HFM using ON-OFF-channel separated data. A column of the data matrix
V is created by extracting an activity patch of size dp(l)×dp(l) from each C-cell
planes of layer l − 1. The data is split into an ON- and an OFF-Channel, as
explained in the text.
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Figure 5.5: Examples of receptive field profiles for the first layer of the HFM learned using
NMFSC-decomposition, which is applied on ON-OFF-channel separated patches
which are extracted from random positions of input images taken from the
MNIST-10, COIL-20, and ORLS-40 datasets. The best performance in the cur-
rent setup is obtained when the number of planes np(1) is set to 6 and the
dimension of the profiles dp(1) is set to 5. These profiles are shown in the
bottom three rows.
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Algorithm 2 Constructing a data matrix for NMFSC decomposition (Dtrain, l, m)

1: for i← 1 to m do

2: I← random image from Dtrain

3: offx ← random number between 0 and dx(l − 1)− dp(l)
4: offy ← random number between 0 and dy(l − 1)− dp(l)
5: for p← 1 to np(l − 1) do

6: sum← 0
7: for x← 0 to dp(l)− 1 do

8: for y ← 0 to dp(l)− 1 do

9: sum← sum + C l−1
p (x + offx, y + offy; I)

10: end for

11: end for

12: mean← sum
dp(l)2

13: for x← 0 to dp(l)− 1 do

14: for y ← 0 to dp(l)− 1 do

15: j+ ← (p− 1) ∗ np(l − 1)2 + y ∗ np(l − 1) + x
16: j− ← (np(l − 1) + p− 1) ∗ np(l − 1)2 + y ∗ np(l − 1) + x
17: if C l−1

p (x + offx, y + offy; I) > mean then

18: Vj+i ← C l−1
p (x + offx, y + offy; I)−mean

19: Vj−i ← 0
20: else

21: Vj+i ← 0
22: Vj−i ← −(C l−1

p (x + offx, y + offy; I)−mean)
23: end if

24: end for

25: end for

26: end for

27: end for

28: return V

Algorithm 3 Obtaining receptive field profiles from a weight matrix (W, l)

1: for p← 1 to np(l) do

2: for q ← 1 to np(l − 1) do

3: for x← 0 to dp(l)− 1 do

4: for y ← 0 to dp(l)− 1 do

5: j+ ← (q − 1) ∗ np(l − 1)2 + y ∗ np(l − 1) + x
6: j− ← (np(l − 1) + q − 1) ∗ np(l − 1)2 + y ∗ np(l − 1) + x
7: P l

p q(x, y)← Wj+ p −Wj− p

8: end for

9: end for

10: end for

11: end for

12: return P l
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n (2) = 32p

n (2) = 8p
n (2) = 16p

Figure 5.6: Typical examples of second-layer receptive field profiles obtained by processing
an input image dataset by a single layered HFM where the number of planes
np(1) is set to 6. Patches are extracted from each C1 cell plane, ON-OFF-
channel separation is applied and the resulting vectors are used as input for the
NMFSC decomposition algorithm. (For this example, the COIL-20 dataset was
used.)

5.3.2 Processing Example

Figure 5.7 shows an example of passing a distorted test image from the COIL-20 dataset
through a two-layered HFM. The profiles of the model are obtained using the NMFSC
decomposition procedure as described above.

As can be seen from the activities of the cells on the Ŝ1 planes, the profiles of the first
layer are tuned to different edge orientations. Positive and negative response peaks can be
observed at locations where corresponding edges are present.

In the next step, the activities of the Ŝ1 cells are subject to the winner-takes-most lateral
competitive mechanism (WTM, [107]). The resulting activities are shown in the S1 cell
planes. The WTM-mechanism yields a “segmentation” of the input with respect to the
locally dominant feature.

The last processing step in the first layer of the model is the application of the spatial
pooling mechanism, which is implemented by Gaussian convolution and sub-sampling. The
result for this is shown in the C1 cell planes.

As the experimental results in the following section show, we have at this point already
achieved a significant normalization of the input image with respect to local transformations
and distortions of the image by using the combined activities of the C1 cell planes as an
abstract high-dimensional representation of the input stimulus.

A further normalization is carried out by the second layer of the model. Here, multidi-
mensional receptive field profiles are applied on the output of the first layer. The “meaning”
of second layer profiles can be described as follows: The NMFSC decomposition extracts
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Figure 5.7: Example of passing a distorted test image from the COIL-20 dataset through a
two-layered HFM, whose profiles were obtained using NMFSC decomposition.
See text for discussion.
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“typical” local activity patterns that occur on the C1 cell planes. This leads to a complex
ensemble of profiles which for instance respond to co-occurrences of multiple first-layer fea-
tures (e.g., the meeting points of edges, etc.). The responses of the second layer profiles
are shown on the Ŝ2 cell planes.

Again, the WTM mechanism implements a local competition among the features and
yields a segmentation of the input in terms of the most dominant feature. The result of this
step is shown in the S2 cell planes. Finally, the spatial-pooling mechanism is applied on the
S2 cell planes (here, the parameterization was chosen such that no further reduction of the
plane size is carried out). The final output of the two-layer HFM is shown on the C2 cell
planes.

We can summarize the underlying strategy which is employed by each layer of the HFM
as follows: C-cells achieve a certain degree of “invariance” to spatial translations of local
parts of the input stimulus using sub-sampling and smoothing. (This is intuitively clear since
for example a translation of a part of the input stimulus by 4 cell positions only appears
as a translation of 2 cell positions on a C-cell plane which has been reduced in size by a
factor of 2.) However, the spatial pooling mechanism also leads to a loss of – possibly
discriminative – information. Therefore, the role of S-cells is to compensate for this loss of
information beforehand by performing feature extraction in order to create redundancy in
the representation (obviously, the total dimensionality of the S-cells planes is much higher
than that of the input C-cell planes of the previous layer).

The experimental results presented in the following section show that the HFM is capable
of successfully preserving discriminative information during the normalization.

5.3.3 Experimental Results

For the experimental results as presented in Tab. 5.3, we use the highly distorted test datasets
with multiple sources of distortion and transformation generated from the MNIST-10, the
COIL-20, and the ORLS-40 datasets by applying random scaling, rotation, translation, back-
ground clutter, and noise (for example images see Fig. 6.2). As discussed in Sect. 5.2.2,
these datasets have ANND values larger than 0.5 which means that – in input space – they
have poor statistical structure (see Tab. 5.2, rows 10–12).

In the following it is shown that the HFM is capable of significantly reducing the complexity
of these datasets. For this, we pass the images of the three datasets through different
versions of the HFM and use the activities of the final C-cell planes as a new representation
of the datasets. Each experiment is repeated 10 times.7 The average ANND values and the
standard deviations are shown in the last two columns of Tab. 5.3.

The column labeled “space” denotes the output space from which the dataset represen-
tation is obtained. C0 (rows 1,9 and 17) refers to the input space (Here, the ANND values
are identical to those shown in Tab. 5.2, rows 10–12). C1 refers to a single-layered HFM
and C2 refers to a two-layered HFM. In the columns “Profiles” different types of receptive
field models for the first and the second layer of the HFM are shown. Their performance is
investigated in the following.

7Each repetition involves generating a new test dataset and recomputing all receptive field profiles.
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Layer 1 Layer 2

Dataset Space Profiles np dp Profiles np dp ANND std.dev.

1 MNIST-10 C0 - - - - - - 0.611 0.0023
2 C1 RANDOM 6 5 - - - 0.416 0.0401
3a C1 GABOR 6 5 - - - 0.411 0.0072
3b C1 GABOR 6 3 - - - 0.431 0.0270
3c C1 GABOR 4 5 - - - 0.413 0.0184
3d C1 GABOR 4 3 - - - 0.408 0.0170
4 C1 NMFSC 6 5 - - - 0.409 0.0131
5 C1 NMFSC∗ 6 5 - - - 0.402 0.0121
6 C2 NMFSC∗ 6 5 RANDOM 32 5 0.300 0.0669
7 C2 NMFSC∗ 6 5 NMFSC 32 5 0.285 0.0197
8 C2 NMFSC∗ 6 5 NMFSC∗ 32 5 0.275 0.0134

9 COIL-20 C0 - - - - - - 0.670 0.0013
10 C1 RANDOM 6 5 - - - 0.254 0.0368
11a C1 GABOR 6 5 - - - 0.229 0.0029
11b C1 GABOR 6 3 - - - 0.241 0.0100
11c C1 GABOR 4 5 - - - 0.229 0.0213
11d C1 GABOR 4 3 - - - 0.228 0.0123
12 C1 NMFSC 6 5 - - - 0.225 0.0140
13 C1 NMFSC∗ 6 5 - - - 0.218 0.0116
14 C2 NMFSC∗ 6 5 RANDOM 32 5 0.195 0.0443
15 C2 NMFSC∗ 6 5 NMFSC 32 5 0.180 0.0206
16 C2 NMFSC∗ 6 5 NMFSC∗ 32 5 0.174 0.0056

17 ORLS-40 C0 - - - - - - 0.747 0.0085
18 C1 RANDOM 6 5 - - - 0.443 0.0421
19a C1 GABOR 6 5 - - - 0.377 0.0115
19b C1 GABOR 6 3 - - - 0.390 0.0038
19c C1 GABOR 4 5 - - - 0.381 0.0072
19d C1 GABOR 4 3 - - - 0.379 0.0055
20 C1 NMFSC 6 5 - - - 0.357 0.0433
21 C1 NMFSC∗ 6 5 - - - 0.351 0.0221
22 C2 NMFSC∗ 6 5 RANDOM 32 5 0.339 0.0320
23 C2 NMFSC∗ 6 5 NMFSC 32 5 0.331 0.0421
24 C2 NMFSC∗ 6 5 NMFSC∗ 32 5 0.311 0.0209

Table 5.3: Results of the image normalization experiment. Three highly distorted natural
image datasets are passed through different variants of the HFM. These differ in
the number of layers as well as the employed receptive field profile model. The
best performance values (shown in bold) for all datasets are obtained using a
two-layered HFM with receptive field profiles that are computed using NMFSC
decomposition applied on undistorted example images. See text for discussion.
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Results for a Single-Layered HFM

The results for applying a single-layered HFM on the test datasets using profiles that are
obtained by NMFSC decomposition as described in Sect. 5.3.1 are shown in rows 4, 12, and
20 of Tab. 5.3. Compared to the result obtained on the C0 space a significant reduction
of the ANND is achieved for all three datasets. For the “NMFSC” setup the optimal
parameterization of the number and the dimension of the profiles was found to be np(1) = 6
and dp(1) = 5.

An additional improvement of the “NMFSC” setup can be obtained by using the original
raw image datasets without synthetic transformations, distortions, and background clutter
for training the profiles. This is denoted “NMFSC∗” in Tab. 5.3 and the results are shown
in rows 5, 13, and 21. In all cases, the performance is slightly better than for the regular
“NMFSC” setup. Obviously, providing “clean” training data leads to a better encoding of
the properties of the image domain, which might alleviate responses to “unknown” patterns
like for example the background clutter.

For comparison we also provide results for two alternative profile models: random profiles
and fixed Gabor profiles (denoted “RANDOM” and “GABOR” in Tab. 5.3):

Random profiles, for which the results are shown in rows 2, 10, and 18, are obtained by
assigning random values to all elements of P 1 and then normalizing the profiles to have an
L1 norm of 0 and an L2 norm of 1. Examples of 6 random first layer profiles of dimension
5 are shown in Fig. 5.8 (c). From the resulting ANND values it can be seen that using
random profiles on the first layer of the HFM leads to a significant improvement compared
to the input space, but the reduction of the complexity and also the standard deviation of
the ANND is not as good as for the “NMFSC” and “NMFSC∗” setups.

The results for using fixed Gabor profiles (as e.g. done in the work of Wersing & Körner
[107]) are shown in rows 3, 11, and 19 (a–d). Here, the number of profiles np(1) is set
to 4 and 6 and for the dimension dp(1), 3 and 5 are used.8 The orientations of the even
Gabor filters are set to 0◦, 45◦, 90◦ and 135◦. The profiles are shown in Fig. 5.8 (a) and
(b). In order to reproduce the original setup described in [107], a slight modification of the
computation of the S-cell responses (Eq. 3.1 in Chapt. 3) was undertaken, such that the
absolute value of the profile responses is taken. The resulting ANND values show that the
“GABOR” setup clearly outperforms the “RANDOM” setup in terms of the ANND and the
standard deviation of the result. However, the performance remains slightly below that of
the “NMFSC∗” setup.

Results for a Two-Layered HFM

In the results presented above, the best setup for the single-layered HFM turned out to be
the NMFSC∗ setup using 6 profiles at a dimension of 5. Therefore, this parameterization of
the first layer is used for the investigations of the two-layered model.

For this, we compare the three setups “NMFSC” (profiles trained on the distorted test
dataset) “NMFSC∗”(profiles trained on the raw datasets), and “RANDOM” (as above,

8In [107], the authors used dp(1)=3 and np(1)=4. For better comparison, we also provide results for the
same parameterization as used for the other profile models that are investigated here. The results show
however, that increasing the number of profiles or the dimension does not significantly influence the
performance of the Gabor profiles.
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(a)

(b)

(c)

(d)

Figure 5.8: Alternative receptive field profiles. (a) First-layer Gabor filters of dimension
dp = 3 (for np = 4 and np = 6). (b) First-layer Gabor filters of dimension
dp = 5 (for np = 4 and np = 6). (c) Set of 6 first-layer random profiles of
dimension 5. (d) Set of 32 random profiles of dimension 5 to be used as second
layer profiles, where the number of planes of the first layer is 6.

profiles are chosen randomly and normalized plane-wise to have an L1 norm of 0 and an L2

norm of 1, examples are shown in Fig. 5.8 (d)). In all cases we choose to set the dimension
of the profiles dp(2) to 5 and the number of the profiles dn(2) to 32.9

From the results it can be seen that the “NMFSC∗” setup (rows 8, 16 and 24) yields
the best performance in terms of the ANND as well as the standard deviation. The regular
“NMFSC” setup (rows 7, 15, 23) and the “RANDOM” setup (rows 6, 14 and 22) remain
slightly below the “NMFSC∗” setup but still have a reasonable performance.

Discussion

From the above results we can conclude that the apparent complexity of highly distorted
image datasets of fixed size can indeed be significantly reduced by using the HFM approach.
The best performance is achieved when using a two-layered HFM with profiles that are
learned from the input dataset using the NMFSC decomposition method as described in
Sect. 5.3.1. Here, it was found that by using the raw image datasets instead of the highly
distorted test dataset for training the profiles it is possible to further improve the quality of
the encoding.

For comparison, we also considered randomly chosen receptive field profiles for both the
single- and the two-layered model. The results obtained for this setup are also remarkably
high, though not quite as high as for the NMFSC setup and also not as stable (in terms of
the standard deviation of the ANND).

9As shown in the experiments in Chapt. 6, setting the number of planes of the second layer to 32 is not
necessarily the optimal choice. For some applications, a further improvement can be achieved when even
more planes are used.
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5.4 Discussion

For the single layered model we also compared the results to a former approach which
relies on a set of oriented Gabor filters used as receptive field profiles. Here, we reproduced
the original setup by Wersing & Körner [107] and showed that the ANND remains slightly
below that for the NMFSC setup, but still a reasonable and stable performance can be
reached.

Looking at the lowest ANND values obtained for the three datasets it can be seen that
the approach works significantly better for the COIL-20 dataset than for the MNIST-10 and
ORL-40 datasets. This can be explained by the special properties of the datasets: The
objects of the COIL-20 datasets differ significantly not only in global shape but also in
textural details, whereas the digits of the MNIST-10 can only be distinguished by shape and
the faces of the ORLS-40 datasets only differ in textural details. Therefore the success of
the HFM in reducing the ANND value is most successful for the COIL-20 dataset.

5.4 Discussion

In the first part of this chapter we have used the previously introduced ANND measure in
order to analyze the statistical structure of three multi-class natural image datasets covering
the domains of handwritten digits, small objects and faces.

We have simulated a number of transformations and distortions that commonly occur
in natural imagery using synthetic manipulations of the images. Here it was found that
by adding just a single additional “degree of freedom” to an image dataset the apparent
complexity in terms of the ANND measure increases dramatically. When applying multiple
sources of transformation and distortion such as scaling, rotation, translation, noise, and
background clutter, the statistical structure of a dataset of fixed size becomes very poor.

In the second part of this chapter we showed that the HFM is able to significantly improve
the statistical structure of such highly distorted datasets by exploiting heuristic knowledge
about natural imagery. This knowledge is encoded partly in the topology of the model and
partly in the receptive field profiles that the model employs for feature extraction.

To prove this, an experimental setup was used where the highly distorted test datasets
were passed through different single- and a two-layered HFMs. Here it was shown that a
recently proposed unsupervised learning scheme called Non-negative Matrix Factorization
with Sparseness Constraints can be used to adapt the model to the image domain in order
to improve the quality of the normalization.

Throughout this chapter the proposed Average Nearest Neighbor Descriptor (ANND)
proved to be a useful tool for measuring the suitability of the HFM for the task of image
normalization. It allowed us to conveniently compare different parameterizations of the HFM
and different receptive field profile models using multi-class datasets. However, the ANND
is a rather abstract quantifier that is well suited for use as a relative comparison measure
rather than an absolute performance measure. Therefore, in the following two chapters we
apply the HFM for concrete classification tasks using the parameterization that has been
found to be optimal for the normalization task described in this chapter.

Parameter Details

The parameter details for the experimental results presented in Tab. 5.3 and shown in
Tab. 5.4.
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MNIST-10 COIL-20 ORLS-40

Single-layered HFM, setups “NMFSC”,
“NMFSC∗” and “RANDOM”

layer 1 S-cell model LINEAR LINEAR LINEAR
dx(1) 16 32 32
dy(1) 16 32 32
np(1) 6 6 6
dp(1) 5 5 5
γ1 0.91 0.91 0.91
θ1 0.1 0.1 0.1
σ1 1.2 1.2 1.2

Single-layered HFM, setup “GABOR”

layer 1 S-cell model ABS ABS ABS
dx(1) 16 32 32
dy(1) 16 32 32
np(1) 4,6 4,6 4,6
dp(1) 3,5 3,5 3,5
γ1 0.91 0.91 0.91
θ1 0.1 0.1 0.1
σ1 1.2 1.2 1.2

Two-layered HFM, setups “NMFSC”,
“NMFSC∗” and “RANDOM”

layer 1 S-cell model LINEAR LINEAR LINEAR
dx(1) 16 32 32
dy(1) 16 32 32
np(1) 6 6 6
dp(1) 5 5 5
γ1 0.91 0.91 0.91
θ1 0.1 0.1 0.1
σ1 1.2 1.2 1.2
layer 2 S-cell model LINEAR LINEAR LINEAR
dx(2) 16 32 32
dy(2) 16 32 32
np(2) 32 32 32
dp(2) 5 5 5
γ2 0.91 0.91 0.91
θ2 0.1 0.1 0.1
σ2 0.5 0.5 0.5

Table 5.4: Model parameters for the HFM architecture for image normalization as used to
obtain the experimental results shown in Tab. 5.3.
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CHAPTER 6

Image Patch Classification

In this chapter, the Hierarchical Feed-forward Model is applied to the problem of image patch
classification. The image normalization capabilities of the HFM can be exploited for building
powerful classifiers that operate on the output space of the HFM and achieve a high classifi-
cation performance on difficult test datasets while using training datasets of small size. For
this, comparatively simple classification techniques prove to be sufficient for outperforming
standard approaches that operate on the raw input image space. First, we investigate the
use of so-called Template View Tuned Units (T-VTUs) that correspond to simple 1-nearest
neighbor classifiers in the C-cell plane activity space of the HFM. Next, we propose a method
that utilizes a spectral clustering technique in order to obtain Condensed View Tuned Units
(C-VTUs) allowing for high recognition rates on severely distorted test datasets using only
a very low number of units. For confidence based recognition, i.e. classification with the
ability to reject “unknown” stimuli, two possibilities are investigated: (i) Linear Discriminant
Functions (LDFs), which are trained supervised from T-VTU representations, and (ii) Radial
Basis Functions (RBFs), whose centers are obtained from C-VTUs.

6.1 Overview

Figure 6.1 provides an overview of the experimental architecture used in this chapter. First,
in Sect. 6.2 we pass training image patches from the MNIST-10, the COIL-20, and the
ORLS-40 datasets through the HFM and record the activity of the final C-cell planes to
obtain so-called Template View Tuned Units (T-VTUs, [107, 85]). For recognition, image
patches from a test dataset are passed through an identically parameterized HFM and the
resulting activities are matched against the stored T-VTU representation using a nearest-
neighbor decision rule [18].

Experimental results on severely distorted test datasets show that T-VTUs in the C-
cell plane activity space of a single- and a two-layered HFM significantly outperform the
standard 1-nearest neighbor classifier operating on the raw input image space. This verifies
the predictions of the ANND analysis that was carried out in the preceding chapter and
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6 Image Patch Classification

shows that the HFM can be used to create more powerful classifiers by applying a simple
1-nearest neighbor technique at different levels of the HFM.

However, one problem of the T-VTU approach is that during recognition for each im-
age patch, its final C-cell plane activity must be matched to all T-VTUs that the current
representation consists of, which is computationally expensive. As the experimental results
in Sect. 6.2 reveal, in order to achieve a reasonable classification accuracy on the chosen
datasets, a large number of units has to be used.

Therefore, in Sect. 6.3 a novel method is proposed that uses a spectral clustering technique
for reducing the number of units used for representing the classes in the C-cell plane activity
space. The strategy of the method is as follows: First, a large number of T-VTUs is
generated from a distorted set of training image patches. Then, spectral clustering is used
to partition each class representation into disjoint subsets and finally, the means of the
partitions are computed and used as new units for classification. Since these units do not
correspond to individual views of the objects any longer, they are called Condensed View
Tuned Units (C-VTUs) below. In an experiment it is shown that C-VTUs outperform T-
VTUs for small representation sizes.

In Sect. 6.4, we provide a comparison the results on the image patch classification task to
an eigenspace method called “VPL” in order to show that the HFM outperforms standard
classification techniques that solely rely on analyzing the statistical properties of the training
datasets in input image space.

In the above formulation of the problem of image patch classification it was assumed
that each image patch always contains an object belonging to the “known” set of classes
and the task was to choose the correct class identifier from this set. However, in practical
computer vision setups, it is most often required to also be able to detect the case when
the input image contains an “unknown” object or no object at all. In Sect. 6.5 we refer to
this extension of the discrimination problem as confidence based recognition.

One way to achieve confidence based recognition is to employ a supervised learning strat-
egy for optimizing a set of Linear Discriminant Functions (LDFs) using a given T-VTU
representation as a training set. Each one of these functions is then responsible for “detect-
ing” one specific class and it is trained to respond strongly to examples of “its” class and
to respond weakly to examples of other classes. This way, the responses of LDFs can be
interpreted as confidence values and rejection of “unknown” stimuli can then be achieved
by introducing a threshold parameter on the responses of LDFs. This approach is discussed
in Sect. 6.5.1.

In Sect. 6.5.2, we investigate an alternative option that does not rely on supervised
learning but directly uses a given C-VTU representation for constructing a set of Radial
Basis Functions (RBFs). Again the responses of these functions can be interpreted as
confidence values and a threshold parameter makes it possible to achieve classification and
also rejection of unknown stimuli.
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Figure 6.1: Experimental architecture used for the experiments in this chapter. Solid lines
depict training cues and dashed lines test cues. Three variants of Template View
Tuned Units (T-VTUs) are obtained by recording the final C-cell plane activity
from C0, C1, or C2 of the HFM after processing either raw or distorted training
images. Section 6.2 deals with an experimental comparison of the classification
abilities of these three representations. In Sect. 6.3 a method is described for
creating Condensed View Tuned Units (C-VTUs) from C2-Template View Tuned
Units. Finally, Sect. 6.5 describes confidence based recognition using linear
discriminant functions and radial basis functions.
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6 Image Patch Classification

6.2 Template View Tuned Units

Given a collection of m training image patches Ti of size dx × dy,

Dtrain = {Ti | Ti ∈ R
dx × R

dy , i = 1, . . . ,m}, (6.1)

and a function ltrain(Ti) ∈ {1, . . . , c} storing the class identifier of the ith image chosen
from a set of c class identifiers, we consider three different T-VTU representations that are
obtained by passing the training image patches through the HFM and recording the C-cell
plane activities at the input layer C0 (which is simply the vectorial representation of the
input image) at the first layer C1 and at the final layer C2:

TC{0,1,2} = {(C{0,1,2}(Ti), li) | Ti ∈ Dtrain, li = ltrain(Ti)}, (6.2)

Each one of these three T-VTU representations consists of a set of tuples each containing
a C-cell plane activity vector and a class identifier. These T-VTU representations can be
used to classify a given test image patch I by passing it through the HFM and matching
the C-cell plane activities at the corresponding layer against all T-VTUs using the nearest
neighbor decision rule. For this we define the following three classifiers:

ΦTV TU
C{0,1,2}(I) := arg min

li
dist(C{0,1,2}(I),~ti), ∀(~ti, li) ∈ TC{0,1,2} . (6.3)

Given a set of t test images

Dtest = {Ii | Ii ∈ R
dx × R

dy , i = 1, . . . , t}, (6.4)

together with a function ltest(Ii) ∈ {1, . . . , c} storing the true class identifiers of the test
images, the classification accuracy is measured by:

accTV TU
C{0,1,2}(Dtest) :=

1

t

t
∑

i=1

δ(ΦTV TU
C{0,1,2}(Ii), ltest(Ii)), (6.5)

where δ(a, b) = 1 if a = b and 0 else.

6.2.1 Test Datasets

In the following we compare the classification performance of the three classifiers defined in
Eq. 6.3 using the following three test datasets, each consisting of 2000 images:

• D
MNIST−10
test : The original MNIST-10 dataset consists of 200 examples of each of

the digit 0 to 9. For this test set, for each of the 10 classes, 200 examples are
randomly selected from the odd-numbered images (the even numbered images are
used for training). Additionally, each of these 2000 image patches is subject to the
following synthetic transformations: Random rotation in image plane by +/- 10o,
random scaling by +/- 10 %, random translation of +/- 5 pixels, randomly selected
background clutter (taken from the Art Explosion Photo Gallery [72]), and pixel-wise
additive Gaussian noise with variance 10. Some example test images for the MNIST-10
dataset are shown in Fig. 6.2 (a).
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6.2 Template View Tuned Units

• D
COIL−20
test : This dataset consists of 100 views of each object from the COIL-20 dataset

which are again randomly selected from the odd-numbered views. The images are
subject to the same synthetic transformations as for the DMNIST−10

test dataset. Example
images are shown in Fig. 6.2 (b).

• D
ORLS−40
test : For this dataset, 50 example views are generated for each of the 40

persons contained in the ORLS-40 dataset. Again, the images are randomly selected
from the odd-numbered views and the same synthetic transformations are added as
for the D

MNIST−10
test and the D

MNIST−10
test datasets. Fig. 6.2 (c) shows some examples.

6.2.2 Experiment: Classification with Undistorted T-VTUs

For a first T-VTU classification experiment, we use for training undistorted raw images from
the three datasets MNIST-10, COIL-20, and ORLS-40 and for testing the severely distorted
datasets as described in the preceding section. The raw training images are chosen randomly
from the even-numbered images of the three sets. Here, no synthetic transformations are
applied. The number of images in each training set (which corresponds to the number of
units in the T-VTU representation) is varied, starting at the number of classes (10, 20, and
40 for MNIST-10, COIL-20, and ORLS-40 respectively) and is increased in steps of 40 until
a representation size of 2000 units is reached.1

As depicted in Fig. 6.1, each training dataset is first used to create a C0-T-VTU represen-
tation by simply normalizing the images (a). Simultaneously, the training images are used
to create the receptive field profiles P 1 of the single-layered HFM by NMFSC decomposition
(b). Then, the training images are passed through the single-layered HFM in order to create
a C1-T-VTU representation (c) and to obtain second layer receptive field profiles P 2 (d).
The final C2-T-VTU representation for each training set is obtained by passing the images
through the two-layered HFM (e).

For testing, the training image patches (bottom left in Fig. 6.1) are passed through the
identical architecture and matched against the three T-VTU representations in order to
obtain the classification results and measure the classification performance according to
Eq. 6.5.

Figure 6.3 shows the results of the experiment. The three curves in each of the three
figures (a), (b), and (c) represent the classification accuracies accTV TU

C0 , accTV TU
C1 , accTV TU

C2

vs. the number of units. The vertical bars represent the standard deviation for 5 repetitions,
using differently chosen training and test datasets.

It can be seen that for all three image domains the classifiers operating on the C-cell plane
activity space of the HFM (ΦTV TU

C1 and ΦTV TU
C2 ) clearly outperform the standard 1-nearest

neighbor classifier which uses the raw image space (ΦTV TU
C0 ). Also, it can be observed that

the ΦTV TU
C2 classifier slightly outperforms the ΦTV TU

C1 classifier for each of the three image
domains.

Table 6.1 shows a summary of the final classification accuracy for the three classifiers and
the three datasets for a representation size of 2000 units. For the MNIST-10 and the COIL-
20 datasets, the ΦTV TU

C2 classifiers exhibits an improvement in performance of approx. 100%
compared to the ΦTV TU

C0 classifier. The fact that the performance increase is rather low for

1All datasets are always kept balanced, i.e. all classes are represented by the same number of examples.
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6 Image Patch Classification

(a)

(b)

(c)

Figure 6.2: Example images from the three test datasets used for the T-VTU classification
experiment. (a) Dataset D

MNIST−10
test . (b) Dataset D

COIL−20
test . (c) Dataset

D
ORLS−40
test . The images are randomly selected from the odd-numbered views of

the original datasets and subjected to synthetic transformation such as rotation
in image plane, scaling, translation in image plane, background clutter, and
additive Gaussian noise. See text for details.
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Figure 6.3: Comparison of the classification performance of three variants of undistorted
T-VTUs which operate at three different levels of the HFM: the C0 (which
is simply the raw input image space), the C1 space, and the C2 space. (a)
Results for the MNIST-10 dataset. (b) Results for the COIL-20 dataset. (c)
Results for the ORLS-40 dataset. In each case the training sets consists of an
increasing number of undistorted raw images that are randomly selected from
the even-numbered images of the original training datasets. The test datasets
are composed of 2000 images taken from the odd-numbered views, which are
subject to severe synthetic transformations (see Fig. 6.2). 61



6 Image Patch Classification

Dataset # units C0, undistorted C1, undistorted C2, undistorted

MNIST-10 2000 38.91% 70.48% (+81.1%) 77.63% (+98.8%)
COIL-20 2000 44.52% 81.64% (+83.3%) 90.32% (+102.9%)
ORLS-40 2000 47.63% 51.95% (+9.1%) 59.30% (+24.5%)

Table 6.1: Comparison of the final classification accuracy of undistorted C0, C1 and C2

T-VTUs, using a representation size of 2000 units. For the C1 and C2 the
percentage of improvement over the C0-classifier is shown.

the ORLS-40 dataset is not surprising keeping in mind that the training sets only contain
5 different views of each person. Also, for undistorted T-VTUs and for representation sizes
above approx. 400 units, no further improvement is possible, because identical images are
used.

6.2.3 Experiment: Classification with Distorted T-VTUs

From the results of the experiment described above we have seen that the HFM is capable of
successfully compensating distortions the test stimuli were subjected to. For all three image
domains, the best classification accuracies were achieved by the ΦTV TU

C2 classifiers operating
on the C-cell plane activity space of the second layer of the HFM. In a second experiment
we now investigate whether an additional improvement can be achieved by using distorted
training data, i.e. applying synthetic transformations not only to the test image patches but
also to the training image patches.

The results of this experiment are shown in Fig. 6.4, where the accuracies achieved by the
ΦTV TU

C2 classifier using undistorted training data are compared to the accuracies obtained
when applying the following synthetic transformations also on the training data: Random
rotation in the image plane by +/- 10o, random scaling by +/- 10%, and random translation
of +/- 5 pixels.2

From these results it can be seen that by using distorted training data improvements in
final accuracy can be achieved and that the stability of the results can be improved (Note
that the standard deviations are significantly smaller for the distorted training dataset). As
summarized in Tab. 6.2, for the MNIST-10 and COIL-20 dataset the improvement of the
final classification accuracy (using a representation size of 2000) is only minor, because
high values are already reached by the undistorted T-VTUs. However, for the ORLS-40
dataset the improvement of the final accuracy is much higher. This shows that synthetic
transformations offer a good means for compensating for poor class sampling in a dataset
(recall that in the original training data we had only 5 different views for each one of the 40
classes).

On the other hand it can also be observed that for small representation sizes, adding
synthetic transformations to the training data does not pay off: the accuracy remains slightly
below that obtained when using the undistorted raw image.

2Adding background clutter and additive Gaussian noise to the training images does not change the average
accuracy, but only leads to larger standard deviation of the results under repetition.
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Figure 6.4: Comparison of the classification performance of the C2 classifier using undis-
torted vs. distorted training data. (a) Results for the MNIST-10 dataset. (b)
Results for the COIL-20 dataset. (c) Results for the ORLS-40 dataset. See text
for details.
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Dataset # units C2, undistorted C2, distorted

MNIST-10 2000 77.63% 82.61% (+6.4%)
COIL-20 2000 90.32% 95.85% (+6.1%)
ORLS-40 2000 59.30% 80.84% (+36.3%)

Table 6.2: Comparison of the final classification accuracy of undistorted and distorted C2

using a representation size of 2000 units.

6.2.4 Summary

In this section, we have investigated the classification performance of Template View Tuned
Units (T-VTUs) using severely distorted test datasets from three different image domains.
The datasets were generated by applying synthetic transformations to the images taken from
the MNIST-10, the COIL-20, and the ORLS-40 datasets. In a first experiment we found
that T-VTUs operating on the C-cell plane activity space of the second layer of the HFM
exhibit a significantly better performance compared to first-layer T-VTUs and the standard
nearest neighbor classifier in the raw input image space.

Secondly, we have found that applying synthetic distortions to training images leads to
improvements in performance. For training datasets that already have well represented
classes the improvement is only minor, whereas a large improvement can be achieved for
datasets such as the ORLS-40 dataset, which have a poor class sampling. However, the
improvement in accuracy can only be observed for large numbers of T-VTUs. For small
representation sizes distortions of the training data lead to a loss in performance.

We can conclude that T-VTUs can be successfully used to classify image patches but only
when large class representations are used. This is clearly a drawback of the T-VTU approach
because for classification each test image patch’s final C-cell plane activity must be matched
to all T-VTUs in order to obtain the result. This is computationally expensive and leads to
limitations for practical applications. To overcome this problem in the following section we
investigate a method that allows one to reduce the number of units used for classification.

6.3 Condensed View Tuned Units

The idea of Condensed View Tuned Units (C-VTUs) is to create simplified representations
of the classes in the C-cell plane activity space that consist only of a low number of units.
For this, we start off from a distorted T-VTU representation and apply a spectral clustering
technique in order to successively divide each class in the representation into disjoint subsets.
The means of these partitions then serve as a new representation, called a C-VTU repre-
sentation. As shown in experiments below, this method makes it possible to significantly
reduce the size of the representation while keeping up a high classification performance.

In the following the spectral clustering technique that is used for computing partitions from
a given T-VTU representation is described. Then, in Sect. 6.3.2, we experimentally compare
the classification performance of C-VTUs obtained by the spectral clustering technique to
that of standard T-VTUs.
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6.3.1 Spectral Clustering

The spectral clustering approach as introduced in [94] describes the problem of clustering in
the context of graph theory. From a set of m data points – or objects – a fully connected,
undirected graph is constructed whose (real-valued) edge weights are defined using a measure
of similarity between two objects. The clustering problem is then defined as a problem of
finding an optimal cut that partitions the graph into two disjoint sets by simply removing all
edges that connect the two parts. The classical approach to finding such an optimal cut is
to minimize the degree of cumulative similarity between two partitions A and B, measured
by the following local criterion that calculates the total sum of the edge weights,

cut(A, B) =
∑

~u∈A,~v∈B

w(~u,~v), (6.6)

where w(~u,~v) is the edge weight between objects ~u and ~v. An earlier approach in [108]
utilized the minimization of this criterion for data clustering. The authors noticed, however,
that the criterion favors cutting out small isolated sets of objects. To avoid this effect, the
authors of [94] proposed a new, global criterion called the normalized cut,

Ncut(A, B) =
cut(A, B)

assoc(A, V)
+

cut(A, B)

assoc(B, V)
, (6.7)

where assoc(A, V) =
∑

~u∈A,~t∈V
w(~u,~t) denotes the total connection of objects in a partition

A to all objects in the graph; assoc(B, V) is defined correspondingly. The authors argue that
minimizing the normalized cut criterion can be viewed as a tradeoff between the association
within each partition and the disassociation between the partitions, which leads to a much
better quality of partitions.

As shown in [94], the computational appeal of this new criterion is that minimization can
be expressed in terms of a generalized eigenvalue problem,

(D−W)~y = λD~y, (6.8)

where W is the m × m edge weight matrix and D is a m × m diagonal matrix with
Di,i =

∑

j Wi,j. The problem can be rewritten as a standard eigenvalue problem,

D
− 1

2 (D−W)D− 1

2~z = λ~z, (6.9)

where ~z = D
− 1

2 ~y. The solution of the clustering problem can be derived from solving (6.8)
for the eigenvector corresponding to the second smallest eigenvalue. By applying a threshold
on the entries of the eigenvector, we can then decide which data point belongs to which
partition.3

Spectral clustering can also be used for finding multiple partitions of a data set by re-
cursively repeating the process described above. In [94] this is referred to as the Recursive
Two-way N-cut, which we utilize for building the C-VTU representations below. In [94], the
authors also mention a different approach to finding multiple partitions, which they call the
Simultaneous K-way Cut. For this, more than one eigenvector (with increasing eigenvalue,

3For finding an optimal threshold, one possibility is to choose different threshold values and compute the
normalized cut criterion (6.7) for each choice.
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starting from the second smallest) is considered for finding partitions. Assigning the data
points to clusters then involves using another clustering method on rows of the eigenvector
matrix. One possibility for this is using K-means clustering (originally introduced in [61]) as
suggested in [94] and evaluated in more detail, e.g., in [71].

For the purpose of building the C-VTU representations, we define a function splitspec(D)
which performs a single spectral clustering step, i.e. splitting a given set D into two par-
titions. For the implementation of the spectral clustering method, the Jacobi algorithm
[50, 82] was used for solving the eigenvalue problem. The edge weight matrix was com-
puted by:

Wi,j = exp

(

−dist(xi, xj)

σ

)

, (6.10)

where σ was chosen such that exp(−m
2σ

) = 0.5, with m = max(dist(xi, xj)), assigning a
similarity value of 0.5 to half of the maximum distance between any two objects.

Based on the function splitspec, Alg. 4 describes how a C-VTU representation is obtained
using the clustering method.

Algorithm 4 Computation of Condensed View Tuned Units: C-VTU(T, n)

1: for i← 1 to c do

2: Ki ← { (~xj , lj) | ~xj ∈ T, lj = i }
3: end for

4: for j = c + 1 to n do

5: i∗ ← arg maxi |Ki|
6: (Ki∗ , Kj)← splitspec(Ki∗)
7: end for

8: C← { (~µi, li) | ~µi = 1
|Ki|

∑

(~xj ,li)∈Ki
~xj , i = 1 . . . n }

9: return C

The algorithm takes as input a T-VTU representation T, i.e., a set consisting of tuples of
vectors and corresponding class labels, and a number n denoting the desired target number
of units.

In a first step (lines 1–3), the algorithm starts by defining c sets Ki each of which contains
all examples belonging to class i. In the following (lines 4–7), the algorithm successively
creates additional sets by splitting the set that contains the most examples (this is expressed
in line 5). Splitting of sets is repeated until a target number n of sets have been created.
Finally (line 8), the means of the n sets are computed and combined to a set C which is
the resulting C-VTU representation.

Figure 6.5 shows four snapshots of the clustering process for a 2-dimensional spiral-like
data distribution containing 2 classes. Data points (boxes depict the first class, crosses the
second) correspond to the T-VTUs that are the input to the algorithm. Bold crosses depict
the means of the cluster, which are the current C-VTUs. For visualization purposes, the
decision borders of the corresponding tessellation cells are included. It can be seen that the
representation becomes increasingly detailed, and after 32 clustering steps all data points
are located inside a tessellation cell of the correct class.

66



6.3 Condensed View Tuned Units

(a) (b)

(c) (d)

Figure 6.5: Toy example for creating a C-VTU representation for a 2-dimensional dataset
containing 2 classes. Boxes denote examples of the first class and crosses for
the second. Bold crosses denote the means of the clusters and lines visualize the
decision borders. (a) Initial representation with 2 C-VTUs, (b) after 16 steps,
(c) after 32 steps and (d) final representation after 500 steps.
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Dataset Representation size distorted T-VTUs C-VTUs Increase

MNIST-10 400 75.07 % 80.52 % 7,25 %
COIL-20 400 86.83 % 93.45 % 7,61 %
ORLS-40 400 61.29 % 70.06 % 14.31 %

Table 6.3: Comparison of classification accuracy of second layer distorted T-VTUs and C-
VTUs for a representation size of 400 units. (The C-VTUs are obtained by
spectral clustering applied on the full set of 2000 T-VTUs.)

6.3.2 Experiment: Classification with C-VTUs

In this section, the classification performance of C-VTUs is experimentally compared to that
of T-VTUs. Here, we consider the classifiers operating on the second layer of HFM only.

Analogous to Eq. 6.3 we define the C-VTU classifier operating on the second-layer C-cell
plane activity space as follows:

ΦCV TU
C2 (I) := arg min

li
dist(C2(I),~ti), ∀(~ti, li) ∈ CC2, (6.11)

and analogous to Eq. 6.5, we can measure the classification accuracy on a test dataset Dtest

by

accCV TU
C2 (Dtest) :=

1

t

t
∑

i=1

δ(ΦCV TU
C2 (Ii), ltest(Ii)). (6.12)

The C-VTU representations are obtained from distorted second layer T-VTU representa-
tion with 2000 units. The target number of C-VTUs is varied, starting at the number of
classes (10, 20 and 40 for MNIST-10, COIL-20, and ORLS-40 respectively) and is increased
in steps of 40 until the full representation size of 2000 units is reached.

Figure 6.6 shows the results of the experiment. For each of the datasets MNIST-10, COIL-
20, and ORLS-40, the two plots shows the classification accuracy of T-VTUs (Eq. (6.5))
and C-VTUs (Eq. (6.12)). Again, the standard deviation of the accuracy under 5 repetitions
is visualized by horizontal bars. From the result, it can be seen that for small representation
sizes C-VTUs significantly outperform the distorted T-VTUs. In Tab. 6.3, the accuracies for
a representation size of 400 units are compared.

6.3.3 Summary

In this section we have investigated a method that allows a significant reduction in the
number of units needed for representing classes in the C-cell plane activity space of a two-
layered HFM. The method takes as input a large T-VTU representation, which is obtained by
adding synthetic transformations to a training dataset of images and successively partitions
the representation class-wise using spectral clustering [94]. Although for training an initially
large set of T-VTUs has to be generated, from which the C-VTU representation is computed,
for recognition the computational benefit lies in the reduced number of units that have to be
matched for every input image. With this method, for the three test datasets, a reasonable
classification performance can be reached using approx. 400 units.
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Figure 6.6: Comparison of the classification performance of second layer T-VTUs and C-
VTUs for the three datasets MNIST-10 (a), COIL-20 (b), and ORLS-40 (c).
See text for details.
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Figure 6.7: Sketch of the three-stage VPL classification architecture which relies on Vector
Quantization, Local Principal Component Analysis and Local Linear Maps. See
text and [29] for details.

6.4 Comparison to an Eigenspace Classification Approach

In order to provide a comparison of the results presented above, to a conceptually different
classification approach, in this section we apply an eigenspace based classification method
on the same datasets.

For this, we choose an approach called “VPL”, which is a highly optimized eigenspace
classification architecture that was proposed by Heidemann in [29] and that was successfully
applied for different image patch classification tasks in a number of computer vision se-
tups [35, 33, 7, 12, 31]. In contrast to former eigenspace classification approaches that rely
on global eigenspaces (e.g. [101, 68]), the VPL architecture is based on local eigenspaces
that are used for feature extraction and Local Linear Map (LLM, [66]) neural networks for
classification.

As depicted in Fig. 6.7, the architecture involves three processing stages. In the first stage,
called “V”, a special winner-takes-all based vector quantization technique (called “AEV”,
[34]) is applied on the training images in order to partition the datasets into a number of
clusters. In the next stage, called “P”, Principal Component Analysis (PCA) is applied
on the images in each cluster. For the computation of the Principal Components, Sanger’s
algorithm [91] is applied, an approach that relies on Hebbian learning to successively compute
the leading eigenvectors of the auto-correlation matrix of the data. In the final stage, called
“L”, for each cluster the images are projected onto the corresponding local eigenspace and
the resulting representation is used to train LLM classifiers [66]. The VPL architecture has
three main parameters: the number of clusters V in the first stage, the number of Local
Principal Component P in the second stage, and the number of LLM-nodes L in the third
stage. For further details on the VPL architecture, the reader is referred to [29].

For the experiment we consider two setups: In the first, different VPL classifiers for each
of the three datasets MNIST-10, COIL-20, and ORLS-40 are trained on datasets with 500,
1000, 1500, and 2000 undistorted images (the same as used in Sect. 6.2.2). The VPL
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Figure 6.8: Results for applying the VPL classifier on the MNIST-10 (a), the COIL-20 (b),
and the ORLS-40 (c) datasets. For the curves labeled “undistorted”, raw images
are used for training the classifiers and for the curves labeled “distorted” highly
distorted training images are used. Visualizations of the internal states of the
trained classifiers using undistorted training images are shown in the middle col-
umn and in the right column for distorted training images. In each visualization,
the top row shows the Vector Quantization prototypes, and the corresponding
Local Principal Components are arranged column-wise below. See text for dis-
cussion.
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parameters are chosen to be V = 5, P = 5 and L = 20.4 The internal states of the
classifiers obtained for this setup are shown in the middle column of Fig. 6.8. Plots of
the classification performance of the classifiers applied on the highly distorted test datasets
with background clutter (Fig. 6.2) are shown in the left column of Fig. 6.8 (curves labeled
“undistorted”).

The second setup is identical to the first, except that distorted images are used for training
the classifiers (see Sect. 6.2.3). The resulting performance is plotted in the curves labeled
“distorted”, and the visualizations of the internal states are shown in the right column of
Fig. 6.8.

The results of the experiment show that the VPL classifiers exhibits a relatively weak
performance on the highly distorted test datasets. In all cases, the performance clearly re-
mains below that obtained by the HFM approach as presented above. From the visualization
of the internal states of the trained classifiers it can be seen that the eigenvectors for the
undistorted training data appear to be too specific to account for the severe distortions
contained in the test images. On the other hand, this problem cannot be compensated for
by using the distorted training images. Here, the eigenvectors appear blurred and seem to
fail to extract discriminative features that can be utilized for successful classification.

For the COIL-20 dataset an increase in performance from 31% to 49% (for using 2000
training images) can be observed when using distorted training images instead of raw images.
For the other datasets we even encounter a severe drop in performance. (From 28% to 16%
for the MNIST-10 dataset, and from 21% to 10% for the ORLS-40 dataset.)

In summary, for neither one of the two setups can a reasonable performance be obtained
using the VPL classifier. We conclude that eigenspace approaches alone are not sufficient
for solving discrimination problems where the test images are subject to such severe distor-
tions, transformations and background clutter as used for the experiments with the HFM
above. The HFM achieves a significantly better performance since it makes use of heuristic
knowledge about the general structure of natural imagery. This knowledge cannot be ex-
tracted from a training dataset alone using statistical methods such as Principal Component
Analysis.

6.5 Confidence based recognition

This section discusses two methods that allow for confidence based recognition, i.e. clas-
sification with rejection of “unknown” stimuli: Linear Discriminant Functions and Radial
Basis Functions. Linear Discriminant Functions are obtained from supervised learning us-
ing T-VTU representations and Radial Basis Functions are directly derived from C-VTU
representations. We experimentally compare the rejection performance of the two options
on the distorted test datasets as already used in the preceding experiments, but with 2000
additional “rejection” images that do not contain objects, but only random clutter.

4This parameterization of the VPL was found to offer a good trade-off between training time, size of the
classifier, and performance.
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6.5.1 Linear Discriminant Functions

For classification with linear discriminant functions, we define a set of functions LDFi :
R

dx(2)∗dy(2) → R, which take as input a second layer C-cell plane activity vector ~x and
return a real-valued response that can be interpreted as a confidence score:

LDFi(~x) := ~xT ~wi + bi, with i = 1, . . . , c (6.13)

where c is the number of classes. ~wi is a called the weight vector and bi the bias for
class i. These free parameters are optimized by supervised learning using a given T-VTU
representation, such that a high response is given to an example whose class identifier is
equal to i and a low response if the example belongs to a different class. The weight vectors
~wi and biases bi can be found by minimizing the following error function with respect to a
given second layer T-VTU representation:

E(~w1, . . . , ~wc, b1, . . . , bc; TC2) :=
1

2

∑

(~x,l)∈TC2

c
∑

i=1

(∆(l, i)− LDFi(~x))2 , (6.14)

where ∆(i, j) = 0.9, if i = j and 0.1 else.

After optimizing the error function,5 we can classify a given input image based on the
maximum response of the linear discriminant functions:

ΦLDF (I) := arg max
i

LDFi(C
2(I)), with i = 1, . . . , c. (6.15)

Further, we can reject an image as an “unknown stimulus,” if the maximum response of the
linear discriminant functions remains below a threshold θLDF :

LDFΦLDF (I)(I) < θLDF . (6.16)

In Sect. 6.5.3 we experimentally investigate classification with rejection using linear dis-
criminant functions.

6.5.2 Radial Basis Functions

In the preceding section it was described how supervised learning can be used to obtain a set
of linear discriminant functions from a given T-VTU representation that allows classification
with rejection using a threshold on the responses of these functions. In this section, we
investigate an alternative possibility: radial basis functions that are obtained directly from
C-VTUs and that do not require supervised learning.

Analogous to the preceding section, we define a set of radial basis functions RBFi :
R

dx(2)∗dy(2) → R, which again take as input a second layer C-cell plane activity vector ~x
and return a real-valued response. However, here the number of functions is not equal to
the number of classes as for the LDFs, but equal to the size of the C-VTU representation:

5For optimization, we use the Numerical Recipes [82] implementation of the Fletcher-Reeves-Polak-Ribiere
algorithm, which is based on the conjugate gradient method [36].
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RBFi(~x) := exp

(

−dist(~x, ~xi)

2σ

)

, with (~xi, li) ∈ CC2, i = 1, . . . , |CC2 | (6.17)

where σ is the radius of the RBF which is set fixed to σ = dx(2) ∗ dy(2). In this setup,
each RBF gives high responses to stimuli whose second layer C-cell plane activity vectors
are “close” to the corresponding C-VTU that the function has been created from. Based
on this set of functions, we can define the following classifier, which returns the class label
li∗ of the RBF function with the maximum response:

ΦRBF (I) := li∗ , with i∗ = arg max
i

RBFi(C
2(I)), i = 1, . . . , |CC2 |. (6.18)

Again, we can reject an image as an “unknown stimulus” if the maximum response of the
“winning” RBF is below a threshold θRBF :

RBFΦRBF (I)(I) < θRBF . (6.19)

In the following section, we experimentally compare the performance of the above defined
LDFs and RBFs.

6.5.3 Experiment: Classification with rejection using LDFs and RBFs

For the rejection experiment we again use the three distorted test datasets D
MNIST−10
test ,

D
COIL−20
test , and D

ORLS−40
test as described in Sect. 6.2.1 but each extended by an additional

number of 2000 image patches only containing clutter that is randomly selected from the Art
Explosion Photo Gallery [72]. For all clutter image patches, we set the true class identifier
ltest(I) to −1. Some example clutter image patches are shown in Fig. 6.9.

The T-VTU representations used for training linear discriminant functions are obtained
from the distorted training datasets as described in Sect. 6.2.3. The C-VTU representations
used for creating radial basis functions are obtained from T-VTU representations of size
2000.

ROC analysis

For evaluating the classification and rejection performance of the two classifiers ΦLDF and
ΦRBF , which have as free parameters the rejection thresholds θLDA and θRBF respectively,
we use special types of ROC curves, called Precision vs. Recall curves which are extended
to the multi-class case in a straight-forward way.

For creating such a Precision vs. Recall curve, the classification and rejection experiment
is repeated for different threshold values and for each choice of θLDA or θRBF respectively,
the following quantities are aggregated:

• True positive (TP): In this case, (i) the test image patch contains an object, (ii) the
object is classified correctly and (iii) the output of the “winning” classification unit is
above the chosen threshold value:

ltest(I) 6= −1 ∧ ltest(I) = ΦLDF (I) ∧ LDFΦLDF (I)(I) ≥ θLDF (6.20)
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Figure 6.9: Some example clutter image patches to be rejected as “unknown stimuli”.

for the linear discriminant functions and

ltest(I) 6= −1 ∧ ltest(I) = ΦRBF (I) ∧ RBFΦRBF (I)(I) ≥ θRBF (6.21)

for the radial basis function setup.

• False positive (FP): Either an object is detected, but classified incorrectly, or, the image
patch does not contain an object, but the “winning” classification unit’s response is
above threshold:

(ltest(I) 6= −1 ∧ ltest(I) 6= ΦLDF (I)) ∨ (ltest(I) = −1 ∧ LDFΦLDF (I)(I) ≥ θLDF )
(6.22)

and

(ltest(I) 6= −1 ∧ ltest(I) 6= ΦRBF (I)) ∨ (ltest(I) = −1 ∧ RBFΦRBF (I)(I) ≥ θRBF )
(6.23)

respectively.

• False negative (FP): The image patch contains an object, but all classification units’
responses are below threshold:

ltest(I) 6= −1 ∧ LDFΦLDF (I)(I) < θLDF (6.24)

and
ltest(I) 6= −1 ∧ RBFΦRBF (I)(I) < θRBF , (6.25)

respectively.

Based on these three values, Precision (also called Positive Predictive Value) and Recall
(also called Sensitivity or True-Positive Rate) are defined as follows:

75



6 Image Patch Classification

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

pr
ec

is
io

n

recall

Figure 6.10: An example Precision vs. Recall curve. Here, 200 radial basis function were
used on the COIL-20 dataset.

Precision :=
TP

TP + FP
(6.26)

Recall :=
TP

FP + FN
(6.27)

An example Precision vs. Recall curve for the radial basis function setup using a repre-
sentation size of 200 and the COIL-20 dataset is shown in Fig. 6.10.

A convenient way of obtaining a single performance value based on an ROC curve is to
estimate the area under the curve (AUC). As discussed in e.g. [21] this is a well established
technique that allows a relative comparison of different classifiers. The AUC value for the
example curve depicted in Fig. 6.10 is approx. 0.872.6

Results

Table 6.4 (a) shows AUC values for different settings obtained in the RBF setup for the
three datasets MNIST-10, COIL-20, and ORLS-40. Here, the size of the representation, i.e.
the number of radial basis functions is varied, using the values 100, 200, 400, 1000, and
2000. Also, the number of planes np(2) on the second layer of the HFM is varied, using

6For algorithmic details on how to compute AUC values from given ROC curves, the reader is referred to
[21].
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the values 16, 32, and 64. Each value is averaged over 5 repetitions of the experiment with
differently generated datasets.

Under these variations, the highest AUC values achieved by RBFs are 0.760 for the MNIST-
10 dataset, 0.912 for the COIL-20 dataset, and 0.969 for the ORLS-40 dataset. In this setup
the most difficult dataset appears to be the MNIST-10. This can be explained by the fact
that for most digits only a small portion of the image plane is occupied by the stimulus itself
whereas the remaining area is filled with background clutter for the test images as shown in
Fig. 6.2. This makes it more difficult to distinguish positive cases from negative ones (pure
clutter images) for this dataset.

From the results it can also be seen that increasing the representation size, i.e. the
number of functions used, does not lead to a significant improvement in performance. Even
over-fitting effects can be observed for some cases when the representation becomes too
detailed.

Increasing the number of planes np(2) of the second layer of the HFM (which corresponds
to an increase of the feature space dimensionality) also does not lead to improvements. This
can be explained by the fact that the Euclidian distance measure as used for computing the
responses of RBFs becomes unstable for the high dimensional feature space.

The results for the LDF setup are shown in Tab. 6.4 (b). Here, the size of the training
T-VTU representation is varied, using the values 100, 200, 400, 1000, and 2000 and again
the number of second layer plains is varied, using the values 16, 32, and 64.

The highest AUC values achieved by LDFs are 0.755 for the MNIST-10 dataset, 0.934 for
the COIL-20 dataset, and 0.867 for the ORLS-40 dataset. Here, in contrast to the RBF setup
the values increase significantly with both the size of the training T-VTU representation and
the dimensionality of the features space.

Since LDFs rely on the dot product between the weight vector and the C-cell plane activity
vector the performance benefits from increasing the feature space dimensionality, because
the probability increases that the classes are linear separable in the C-cell plane activity
space.

6.5.4 Summary

In this section we have investigated two methods for utilizing the HFM for classification
with rejection of “unknown” stimuli.

The first option was to create radial basis functions (RBFs) from C-VTU representations
by directly using C-VTUs as centers. Recognition relies on thresholding the responses of
the units which are computed from passing the Euclidian distance between the C-cell plane
activity of the test stimulus and the center of the RBFs through an activity function.

Experimental tests on sets of 4000 test images (2000 positive and 2000 negative cases)
showed that RBFs achieve high recognition performance values in terms of the area un-
der ROC curves. However, large numbers of RBF units have to be used for representing
each class and during recognition the responses of all units have to be computed, which is
computationally expensive. The advantage of RBFs is that no supervised learning step is
required.

The second alternative investigated were linear discriminant functions (LDFs) which are
trained supervised on target responses using T-VTU representations. The performance
values achieved by LDFs are almost comparable to those of RBFs as long as the training

77



6 Image Patch Classification

Dataset Number of radial np(2) = 16 np(2) = 32 np(2) = 64
basis functions

MNIST-10 100 0.749 0.743 0.742
200 0.756 0.747 0.742
400 0.755 0.753 0.751

1000 0.759 0.760 0.752
2000 0.753 0.747 0.747

COIL-20 100 0.849 0.861 0.851
200 0.872 0.878 0.877
400 0.886 0.896 0.887

1000 0.889 0.909 0.905
2000 0.896 0.912 0.907

ORLS-40 100 0.873 0.879 0.881
200 0.902 0.909 0.912
400 0.930 0.935 0.938

1000 0.954 0.960 0.962
2000 0.963 0.967 0.969

(a)

Dataset Number of training np(2) = 16 np(2) = 32 np(2) = 64
T-VTUs

MNIST-10 100 0.502 0.492 0.583
200 0.506 0.523 0.655
400 0.515 0.623 0.703

1000 0.544 0.651 0.729
2000 0.587 0.689 0.755

COIL-20 100 0.732 0.786 0.821
200 0.743 0.808 0.850
400 0.754 0.824 0.878

1000 0.782 0.847 0.915
2000 0.846 0.901 0.934

ORLS-40 100 0.639 0.708 0.747
200 0.593 0.735 0.826
400 0.492 0.678 0.821

1000 0.592 0.677 0.832
2000 0.660 0.766 0.867

(b)

Table 6.4: Comparison of AUC values obtained by radial basis functions (a) and linear dis-
criminant functions (b) for classification with rejection using the three image
domains MNIST-10, COIL-20, and ORLS-40. The highest AUC values achieved
for each dataset are highlighted in bold font. See text for discussion.
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6.6 Discussion

T-VTU representation is large enough and the dimensionality of the feature space given by
the C-cell plane activity space is high enough such that linear separability of the classes is
possible. Although the supervised optimization step is computationally expensive, the LDF
approach is well suited for practical applications, because each class is represented by one
single unit.

6.6 Discussion

In this chapter we have used the image normalization capabilities of the HFM in order to
solve difficult image patch classification problems using comparatively small training datasets
and highly distorted test datasets.

First, we have investigated the use of simple 1-nearest neighbor classifiers operating on
the raw image space and on the output space of single- and two-layered HFMs. Since the
nodes of these classifiers correspond to the C-cell plane activities caused by individual object
views they are called Template View Tuned Units (T-VTUs, [107, 85]). The experimental
results for this setup showed that the performance of the 1-nearest neighbor classifier can
be greatly enhanced by projecting the input images onto the output space of the HFM.

In a next step, we have used a spectral clustering technique in order to reduce the compu-
tational effort that is required by the T-VTU approach during recognition. Here, a significant
reduction of the number of units was possible while preserving most of the the classification
performance obtained using the T-VTU approach with a large number of units.

A comparison of the results on the same datasets to a different classification approach
called “VPL” [29] suggest that eigenspace based methods are insufficient for tolerating such
a high number of distortions of the test images, when trained on small sized training datasets
and using the input image space. Here, the HFM together with View Tuned Unites by far
outperformed the VPL approach.

In the last part of the chapter we have investigated the use of Linear Discriminant Func-
tions (LDFs) as well as Radial Basis Functions (LDFs) for the problem of confidence based
recognition, i.e. classification with the ability to reject “unknown” stimuli using a threshold
parameter. Experiments on test datasets that contained 50% negative examples showed
that with both approaches, a high recognition performance can be achieved. The advantage
of the RBF approach is that no additional training phase is required since the RBF repre-
sentation is directly obtained from a given C-VTU representation. However, the recognition
process is still computationally expensive, despite the reduction achieved by the spectral
clustering method.

In contrast, the LDF approach requires an additional training phase, but yields as a result
only a single unit for each class. However, the dimensionality of the output space of the
two-layered HFM (the number of planes np(2)) has to be increased in order to achieve a
performance that is comparable to that of the RBF approach.

Another advantage of the LDF approach is that the computation of unit responses rely
on the dot-product. Therefore, it is possible to use LDF weight vectors as receptive field
profiles in a three-layered HFM with increased input dimensionality in order to perform
segmentation-free multi-class object detection in highly cluttered scenes. This option is
investigated in the following chapter.

In summary, we have shown that the HFM offers a good possibility for high performance
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6 Image Patch Classification

classification of image patches. The approach allows the use of relatively small training
datasets and is robust to significant distortions and transformations of the test images. This
makes the method interesting for real world computer vision applications.

Parameter Details

If not stated otherwise, the parameterization of the HFM that was used for the experiments
in this chapter is identical to the one used in Chapt. 5. Refer to Tab. 5.4.
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CHAPTER 7

Detection

In this chapter, the Hierarchical Feed-forward Model is applied to a segmentation-free multi-
class detection problem, i.e. finding and classifying objects in larger images. For this, a three
layered HFM architecture with an increased input dimensionality is proposed. Receptive field
profiles of the first two layers of the architecture are inherited from a two-layered training
model which processes distorted training image patches in order to obtain receptive field
profiles using NMFSC decomposition (see Chapt. 5). On the third layer of the detection
architecture, linear discriminant functions (LDFs) are used as receptive field profiles that
are obtained by supervised learning in the output space of the two-layered training model
(see Chapt. 6). Finally, recognition results are obtained using a maxima detection scheme
on the output C-cell planes of the three layered architecture which exhibit activity peaks at
locations that correspond to the positions of specific objects that are present in the input
image. Experimental tests are carried out on synthetically generated test images that are
obtained by randomly embedding objects from different image domains into highly cluttered
natural scene images. Earlier results and parts of the material presented in this chapter have
been published in advance in [11, 8, 9].

7.1 Overview

Multi-Class object detection is a problem that involves solving two subtasks simultaneously:
(i) Finding the location of an object in the image and (ii) determining its class.

Many common approaches to multi-class object detection employ a strategy to split up
the process into two independent subtasks: a localization stage and a subsequent identifi-
cation stage. Usually, the localization stage utilizes a coarse heuristic that makes it possible
to generally distinguish “objects” from “non-objects” from the perspective of the current
application scenario.

For example, in previous work [31, 32, 12] a system for online object learning and recog-
nition was proposed, in which it was assumed that objects are highly textured and appear in
front of a homogeneous background. Under this premise the locations, i.e. the centers of the
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objects in terms of image coordinates could be found using a segmentation scheme that is
based on context-free, purely data-driven saliency measures (see [33] for details). The sub-
sequent identification stage was then implemented by applying an image patch classification
method on “candidate” regions computed during the localization stage.

Even though such an approach proves to be quite efficient in terms of computation time
and online applicability it is nevertheless highly restricted to the application scenario. The
sequential split-up into the two stages implies that foreground-background segmentation
must always be done in a purely data-driven and unsupervised manner, i.e. without taking
into account the special properties and the features that are needed in order to discriminate
between the objects. This limitation becomes apparent when one tries to apply such a
sequential model to multi-class object detection in highly cluttered scenes. Natural imagery
imposes significantly higher difficulty than, e.g., a textured background, because it exhibits
the same natural power spectrum [100] as the objects themselves and the data-driven dis-
tinction between objects and non-objects becomes just as difficult as the classification task
itself. The architecture that is proposed in this chapter overcomes this limitation by solving
both tasks not sequentially, but simultaneously.

A conceptually different approach to object detection in cluttered scenes was proposed
by Viola and Jones [103, 102]. Here, simple local features are used in combination with a
boosting algorithm [64, 92] to achieve efficient localization of objects in real world scenes.
However, training of the weak classifiers is very time-consuming and the approach is only
feasible for detection of a single object class (such as faces). Application to multi-class prob-
lems, e.g., detecting and identifying different objects, is not investigated. Boosting mecha-
nisms have also been applied to the problem of generic object recognition [78], i.e., deciding
if an object belonging to a specific category is present in a given image or not. Again, an
extension of the approach to simultaneous processing of multiple categories seems difficult.
Another example of single category detection was presented by Agarwal and Roth [1], who
use part-based sparse representations for finding cars in images.

In contrast to the above works, the approach presented in this chapter allows simul-
taneous detection and identification of multiple object classes without the necessity of a
pre-segmentation. The strategy employed bears some similarity to the method proposed
in the works of Lowe [59, 60]. Lowe uses special types of features (called SIFT features)
for object detection and identification. A large number of features that are invariant to
a substantial range of transformations is extracted from an image and matched against a
database of examples using an efficient lookup mechanism. Instead of storing specific feature
ensembles in a database, the approach described below uses linear discriminant functions
whose weight vectors encode signatures of objects in the C-cell plane activity space of the
HFM.

7.2 An Architecture for Segmentation-Free Multi-Class Object

Detection

In the preceding chapter, a learning scheme was described for linear discriminant functions
(LDFs) that allow a high classification accuracy in the output space of a two-layered HFM
under severe distortions of the test images. In the following, it is demonstrated how these
linear discriminant functions can be used as receptive field profiles in a three layer HFM
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7.2 An Architecture for Segmentation-Free Multi-Class Object Detection

with an increased input dimensionality in order to perform segmentation-free detection of
multiple object classes in larger images that contain severe background clutter.

Figure 7.1 shows a sketch of the proposed architecture. The upper part of the architecture
depicts the training branch, which processes a set of distorted training image patches of size
64×64 and successively creates first- and second-layer receptive field profiles as well as a set
of linear discriminant functions (LDFs).1 The bottom part of Fig. 7.1 depicts the recognition
branch, which employs a three layered HFM with an increased input dimensionality of 256×
256. Receptive field profiles of the first and second layers are directly inherited from the
training branch. On the third layer, LDFs are used as receptive field profiles. Here, each
profile takes the role of a “grandmother cell”, serving as detector for a specific object class.

To use LDFs as receptive field profiles P 3 on the third layer of the recognition model we
simply plug in the components of the optimized weight vectors ~wi from Eq. 6.13. 2

P 3
pq(x, y) = wp

j , with j = (q np(3) + p) dp(3)
2 + y dp(3) + x,

where p = 1 . . . c, q = 1 . . . np(2), x, y = 1 . . . dp(3).
(7.1)

Since the LDF functions have bias components (the bi in Eq. 6.13) we slightly modify the
linear simple cell model and replace Eq. 3.1 in Sect. 3.1.2 for the third model layer with:

Ŝ3
p(x, y; I) = bp +

nP (2)
∑

q=1

rX
∑

i=−rX

rY
∑

j=−rY

C2
q (x + i, y + j)P 3

p q(rX + i, rY + j). (7.2)

Additionally, we skip the WTM competition on the third layer by simply setting S3
p(x, y; I) =

Ŝ3
p(x, y; I). This is needed because the binarization caused by the WTM mechanism would

discard the confidence information required. In the current setup, a slightly different com-
petitive mechanism is used on the third layer of the model, which is implemented in the
algorithm for activity peak detection described in Sect. 7.2.3. The algorithm is used to obtain
the final recognition results, i.e. the positions and the class labels of detected objects.

In the following section a method for the synthetic generation of detection test images
is described; these are used in the experiments below for evaluating the performance of the
proposed architecture. In Sect. 7.2.2, an example of passing a detection image through the
recognition branch of the trained architecture is used to illustrate how the model achieves
simultaneous detection and identification of objects contained in an input image. The
activity peak detection scheme is described in Sect. 7.2.3. Finally, experimental results
using detection test images from three different image domains are presented in Sect. 7.3.

7.2.1 Synthetic Detection Test Images

The synthetic generation of a detection dataset is carried out by embedding randomly chosen
examples from a given set of test image patches into images of natural scenes taken from
the Art Explosion Photo Gallery [72]. For the experiments in this chapter the three natural
image datasets MNIST-10 [52], COIL-20 [70], and ORLS-40 [90, 89] are used.

1The training branch is identical to the architecture discussed in the preceding chapter.
2Note that since the dimension of the receptive field profiles df (3) needs to be odd, the chosen dimension

of the final C-cell planes of the training branch (dx(2) and dy(2)) must be odd.

83



7 Detection

C CS SP P0 1 1 1 2 2 2C

C CSP0 1 1 1

C2−Template
View Tuned Units

Linear Discriminant
Functions

NMFSC
decomposition

C0

NMFSC
decomposition

training images

training images
distorted

Detection

test images

Activation Peak

C CC CS SP P0 1 1 1 2 2 2C P3 S3 3

Section 7.2.1 Section 7.2.2 Section 7.2.3

Figure 7.1: Sketch of the architecture for segmentation-free multi-class detection. The train-
ing branch (top) consists of a two-layered HFM with an input dimensionality of
64 × 64. The recognition branch (bottom) uses a three layered model with
an increased input dimensionality of 256 × 256. Receptive field profiles em-
ployed in the recognition branch are inherited from the training branch. See
text for further details. The generation of synthetic detection test images is de-
scribed in Sect. 7.2.1, an example for processing a detection image is discussed
in Sect. 7.2.2, and Sect. 7.2.3 deals with the activity peak detection scheme that
is used for obtaining the final detection results.
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The generation procedure requires a foreground-background segmentation of the original
object images from the database, which – in our case – can be easily done using an intensity
threshold. In order to provide “ground truth” for the evaluation of the recognition results,
for each test image a list of the embedded objects is stored, with each entry containing the
class identifier and the center position (in image coordinates) of the embedded object.

For the current setup an image size of 256 × 256 was chosen, where the original size of
the image patch dataset is 64× 64. For each generated image, first a random scene image
is selected from a pool of 1000 scene images from the Art Explosion Photo Gallery. Then,
five random examples from the patch dataset are chosen and embedded at random positions
in the scene image. The generation algorithm is designed such that a spatial overlap of the
objects is prevented. Some example detection test images are shown in Fig. 7.2.

7.2.2 Detection Example

Figure 7.3 shows an example of passing a detection test image generated from the COIL-20
dataset through the trained three layered HFM with an input dimensionality of 256 × 256.
The number of planes of the first layer is set to 6 and the spatial resolution is decreased
by 25% relative to the input image. The activities of the first layer C-cell planes C1 exhibit
small isolated patches of activity corresponding to the locally dominant edge orientation that
the respective receptive field profile is tuned to. On the second layer, the number of planes
is set to 64 and the spatial resolution is again decreased by 25% relative to the previous
layer. The activity pattern on the C2 C-cell planes is qualitatively similar to that of the first
layer but more sparse in general. This results from the fact that on the first layer the ABS
simple cell model is applied, whereas on the second layer the linear model is applied. Also,
the receptive field profiles on the second layer have more specific responses than on the first
layer since more planes are involved in the lateral competition mechanism (see Chapt. 5).

Finally, on the third layer of the model the LDFs are applied as receptive field profiles.
Since there is exactly one LDF for each class, the plane index directly corresponds to the
class identifier. Strong local activity peaks can be observed on the C3 C-cell planes at
locations that correspond to the positions of the respective objects in the input image.3

7.2.3 Activity Peak Detection

In order to obtain the final recognition results for an input test image a detection of local
activity peaks on the final C-cell planes C3 of the three layered HFM is performed. Alg. 5 is
used for computing a set of detection results given a test image I and a response threshold
θ.

The algorithm iterates over all planes of the third layer and over all cells in each C-cell
plane (lines 2–29). Each cell’s activity is compared to that of the 8 neighboring cells of the
same complex cell plane (lines 5–12). If none of these cells has a higher activity than the
current cell, the algorithm performs an additional check whether no higher maximum can
be found on any other C-cell plane within a region of +/- 1 cell positions (lines 14–22). If
the current cell passes this check and if its activity is above the selected threshold θ (line
24), an object is detected and a triple is added to the result set, containing the object’s

3On the third layer, the linear simple cell model is applied. The model is parameterized such that no further
reduction of the spatial resolution is employed on the final layer.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.2: Examples of synthetically generated detection test images for the segmentation-
free multi-class detection experiment. For generation, random odd numbered
images from the MNIST-10 (a-c), COIL-20 (d-f) and ORLS-40 (g-i) datasets
were used and embedded at random positions into real world scene images taken
from the Art Explosion Photo Gallery. In the examples shown here, no synthetic
transformations were applied on the test image patch datasets.
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1

. . .

. . . . . . . . .

. . .

C2

C1
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C2C2
C2

C1 C1 C1
1 2 3 6

64321
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C 0

Figure 7.3: Example of passing a detection image generated from the ORLS-40 patch dataset
through the recognition branch of the trained architecture. For simplicity, only
selected C-cell planes of each layer are shown. At the output layer at the top, only
those C-cell planes that correspond to the classes that occur in the input image
(2, 3, 4, and 29) are shown. It can be seen that the C3 planes clearly exhibit
activity peaks at locations where the corresponding person’s face is present. See
text for further explanation.
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Algorithm 5 Activity Peak Detection: APD(I, θ)

1: M← ∅
2: for p← 1 to np(3) do

3: for x← 1 to dx(3) do

4: for y ← 1 to dy(3) do

5: max← true
6: for xx← −1 to 1 do

7: for yy ← −1 to 1 do

8: if xx 6= 0 ∧ yy 6= 0 ∧ C3
p(x, y; I) < C3

p(x + xx, x + yy; I) then

9: max← false
10: end if

11: end for

12: end for

13: if max = true then

14: for q ← 1 to np(3), q 6= p do

15: for xx← −1 to 1 do

16: for yy ← −1 to 1 do

17: if xx 6= 0 ∧ yy 6= 0 ∧C3
p(x, y; I) < C3

q (x + xx, x + yy; I) then

18: max← false
19: end if

20: end for

21: end for

22: end for

23: end if

24: if max = true ∧ C3
p(x, y; I) > θ then

25: M←M ∩
(

x∗dx(0)
dx(3) ,

y∗dy(0)
dy(3) , p

)

26: end if

27: end for

28: end for

29: end for

30: return M

x,y-position (in terms of input image coordinates) and the class identifier (which is the index
of the current plane). Finally, the algorithm returns the detection results as a set of triples.

7.3 Results

For a systematic evaluation of the performance of the proposed architecture for
segmentation-free multi-class detection, the following experiment was carried out: For each
of the three image domains MNIST-10, COIL-20, and ORLS-40, 500 detection test images
were generated as described in Sect. 7.2.1 using randomly selected images from the odd
numbered views of the raw image databases (examples are shown in Fig. 7.2).

The recognition architecture was trained using distorted training images (the same as
used for the experiments in the previous chapter, see Sect. 7.2.1 for details). The detection
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test images were then passed through the three layered HFM and Alg.5 was used to obtain
the recognition results for a varying threshold θ.

Similar to the confidence based classification experiment in the preceding chapter, for each
chosen threshold value the following quantities were aggregated by matching the recognition
results obtained from each detection test image against the “ground truth” which was stored
during generation of the detection test images:

• True positive (TP): A detected object exists in the test image at the specified location
and the class identifier is correct.

• False positive (FP): Either a detected object is not present in the test image at the
specified location or an object is present but the class identifier is incorrect.

• False negative (FN): An object is present in the test image, but the architecture has
not detected an object at that position.

In order to judge whether a detected object position matches the ground truth (see above),
we tolerate an inaccuracy of +/– 4 cell positions (this corresponds to a shift of 7% of the
object size). 4

Analogous to the confidence based classification experiment we can again create a Pre-
cision vs. Recall curve based on these three values. The results for the three datasets are
shown as solid curves in Fig. 7.4. The area under the curve values (AUC) are 0.347 for the
MNIST-10 dataset, 0.682 for the COIL-20 dataset, and 0.886 for the ORLS-40 dataset. For
comparison, the dashed curves in Fig. 7.4 show the results for the same experiment, but
using a black background instead of a natural scene image. Here the AUC values are 0.739
for MNIST-10, 0.959 for COIL-20, and 0.947 for ORLS-40.

From the results it can be seen that the best overall performance is obtained for the
ORLS-40 dataset. Even though this dataset consists of 40 classes and for training only
5 different views of each person are available, the architecture achieves an astonishingly
high detection performance. One explanation for this is that the outside shape of the
faces remains very stable across all classes, which makes the detection task comparatively
easy. This is supported by the fact that the performance difference between the settings
“clutter” and “black” is only minor. As a consequence the model has more “representational
capacity” left over for encoding specific face features that make it possible to distinguish
between different persons.

The results for the COIL-20 dataset are not as good as for the ORLS-40 dataset, but still
a high performance is reached. Here, a much larger difference between the “clutter” and
the “black” setting can be observed. This is probably due to the fact that a larger variety
of different shapes occurs in the dataset which the model needs to encode. This causes a
higher risk of false positives resulting from objects which may be present in the background
image and which might look similar to objects in the training set.

For the MNIST-10 dataset the performance is much lower than for the other two. For
the “black” setting a reasonable performance can be reached, whereas the performance for
the “clutter” setting is much lower. This can be explained by the special properties of the

4The reconstruction of the original position of an object in the input image is only coarse, because the
spatial resolution of the final C-cell planes of the HFM is only 25% of the input image (see line 25 in
Alg. 5).
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Figure 7.4: Precision vs. Recall plots for the segmentation free multi-class detection exper-
iment for the three test datasets MNIST-10 (a), COIL-20 (b), and ORLS-40
(c). Detection test images (examples are shown in Fig. 7.2) were created us-
ing undistorted images from the odd numbered examples and were embedded
into natural scene images (solid curves labeled “clutter”). For comparison, each
plot also includes the detection results for a black background without clut-
ter (dashed curves labeled “black”). The architecture was trained on distorted
images patches taken from the even numbered views.
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dataset. Even though there are only 10 classes, handwritten digits exhibit a very challenging
variety of different shapes, not only across different classes, but also within a single class.
Since handwritten digits can only be distinguished by shape properties as opposed to textural
properties, the MNIST-10 detection dataset must be considered a very difficult benchmark.
The special properties of the MNIST-10 dataset are accounted for in the parameterization
of the model by using a large reduction of the plane resolution on the first layer. This leads
to an effective increase of the receptive field size of the profiles on the first layer allowing
them to capture global shape properties rather than textural details.

For the results that were presented in this experiment, one has to keep in mind that
simultaneous classification and detection without any further means of localization — such
as either low level segmentation or high level cues — is a much more difficult task compared
to mere classification. While simple classification has to discriminate only a finite and a
priori known number of objects, simultaneous detection must deal with an infinite number
of a priori unknown distractors. In the present test scenario, we expose the system to the
maximally difficult type of distractors: arbitrary natural imagery, which imposes significantly
larger difficulty than, e.g., a textured background. In addition, natural background leads to
a much higher risk of false positives, because objects similar to the ones in the training set
may be present in background images.

7.4 Discussion

In this chapter we have proposed an architecture that allows for segmentation-free multi-
class detection of objects in natural scene images. The architecture is based on a two-layered
training HFM which processes distorted image patches from a training set in order to create
first- and second-layer receptive field profiles by unsupervised NMFSC decomposition. Using
the outputs of the training model, linear discriminant functions (LDFs) are computed using
supervised learning. Recognition is achieved by a three layered HFM with an increased input
resolution which re-uses the first- and second-layer receptive field profiles obtained in the
training phase and utilizes LDFs as detector units on a third model layer.

The feasibility of the approach was demonstrated in an experiment where synthetic de-
tection test images were created using objects from the three image domains that were
randomly embedded into natural scene images. The performance of the architecture was
evaluated by measuring the area under the Precision vs. Recall curve. The results showed
that the approach is especially well suited for the segmentation-free detection and identifi-
cation of faces. Here a very low number of training views for each class is sufficient in order
to obtain a high recognition performance. The approach also works well for the domain
of natural objects where also a reasonable recognition performance can be reached. The
domain of handwritten digits turned out to be much more challenging than the other two
image domains. Here the performance clearly remains below that achieved for the other two
domains.

Parameter Details

Table 7.1 shows the main model parameters used for the experiments presented in this
chapter. The parameterization is almost identical for all three image domains. Except for
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the MNIST-10 dataset, the larger reduction of the plane resolution is done on the first layers
(see discussion above).
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MNIST-10 COIL-20 ORLS-40

Training model

layer 1 S-cell model LINEAR LINEAR LINEAR
dx(1) 15 32 32
dy(1) 15 32 32
np(1) 6 6 6
dp(1) 5 5 5
γ1 0.91 0.91 0.91
θ1 0.1 0.1 0.1
σ1 1.2 1.2 1.2
layer 2 simple cell model LINEAR LINEAR LINEAR
dx(2) 15 15 15
dy(2) 15 15 15
np(2) 64 64 64
dp(2) 5 5 5
γ2 0.91 0.91 0.91
θ2 0.1 0.1 0.1
σ2 0.5 0.5 0.5

Test model

layer 1 S-cell model LINEAR LINEAR LINEAR
dx(1) 60 128 128
dy(1) 60 128 128
np(1) 6 6 6
dp(1) 5 5 5
γ1 0.91 0.91 0.91
θ1 0.1 0.1 0.1
σ1 1.2 1.2 1.2
layer 2 simple cell model LINEAR LINEAR LINEAR
dx(2) 60 60 60
dy(2) 60 60 60
np(2) 64 64 64
dp(2) 5 5 5
γ2 0.91 0.91 0.91
θ2 0.1 0.1 0.1
σ2 0.5 0.5 0.5
layer 3 simple cell model LINEAR, with bias LINEAR, with bias LINEAR, with bias
dx(3) 60 60 60
dy(3) 60 60 60
np(3) 10 20 40
dp(3) 15 15 15
γ2 - - -
θ2 - - -
σ3 0.5 0.5 0.5

Table 7.1: Model parameters for the HFM architecture for segmentation-free multi-class
object detection.
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CHAPTER 8

Conclusion

In this chapter, a brief summary and a discussion of the results of this thesis are given and
potential future research activities are discussed.

8.1 Summary

In this thesis we have investigated the application of a Hierarchical Feed-Forward Model
(HFM) to different computer vision tasks such as image normalization, image patch classi-
fication, and segmentation-free, multi-class object detection. In contrast to other methods
for pattern recognition which purely rely on a statistical analysis of given training datasets in
order to build models of object classes, the HFM approach employs a complementary strat-
egy: Input stimuli are projected into an abstract, high-dimensional feature representation.
This feature representation proves useful, because it incorporates a-priori knowledge about
the statistical structure of natural imagery in order to “simplify” the object manifolds in the
representation space. This can be interpreted as a normalization with respect to distortions
of the input that typically occur, e.g., when observing objects with a camera, where the
resulting images are subject to sensor noise, affine transformations, or local deformations.

One part of this a-priori knowledge is encoded in the model’s topology which – in close
analogy to the neurophysiological organization of biological vision systems – consists of
a hierarchy of alternating layers of feature-extracting S-cells and spatial-pooling C-cells.
Another portion of a-priori knowledge is encoded in receptive field profiles of S-cells, i.e.
the synaptic connections between different layers of the model. In analogy to the adaptive
behavior of biological simple cells, unsupervised learning methods can be applied in order to
obtain “optimized” receptive field profiles which are adapted to the current image domain.

In the following, we briefly summarize the major contributions and results of this thesis.
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Model Definition

The generalized definition of the model in Chapt. 3 is inspired by previously proposed hi-
erarchical feed-forward models like the Neocognitron model by Fukushima [25], the HMAX
model by Riesenhuber and Poggio [84, 85, 88] and, more recently, the model by Wersing
and Körner [107]. From the latter work, we adopted the mechanism for lateral competition
among S-cell responses which, in [107], was shown to be superior to the maximum operation
as employed by the original HMAX model.

Compared to previous models, the definition provided in Chapt. 3 is more flexible in the
sense that (i) an arbitrary number of layers can be used, (ii) each layer is formally treated
as equal, (iii) the reduction in spatial resolution from one layer to the next can be controlled
more explicitly by directly defining the number of cells in each plane, and (iv), the exact
choice of receptive field profiles is not part of the basic model definition, but kept flexible.
This allows for a better analysis of different choices of receptive field profile models (see
Chapt. 5).

Evaluation Methodology

In Chapt. 4, we have proposed a novel complexity measure for multi-class datasets, called
the Average Nearest Neighbor Descriptor (ANND), which computes for a given multi-class
dataset a single, well-bounded and real-valued complexity score. The computation of the
score is based on the average accuracy of collections of simple 1-nearest neighbor classifiers
that are generated from the data itself. As illustrated using several toy examples, the
measure is highly stable and accounts for different factors which have been identified in
previous literature as affecting the complexity of discrimination problems, such as “class
ambiguity,” “complexity of decision boundaries,” “sample sparsity,” and “feature space
dimensionality” [39].

We argue that the ANND measure provides a highly practical tool for data-mining re-
searchers, because the method is free of crucial parameters and allows one to receive a
judgment of the “difficulty” of the discrimination task at hand prior to applying a specific
classification approach to the data. Further, the measure can be used for analyzing the ad-
equacy of feature measurements, optimizing free parameters of feature extraction methods,
optimizing the size of a training dataset, and making predictions about the generalization
performance that can be expected when training a classifier on a specific dataset.

Image Normalization

In Chapt. 5, we have used the ANND measure in order to quantify the usefulness of the
abstract feature representation that is provided by the output space of HFM – or, in other
words, to measure the success of the HFM in “simplifying” the above mentioned object
manifolds. For this, we created an experimental setup in which three different multi-class
natural image datasets – covering the domains of handwritten digits, small objects and
human faces – were subjected to substantial synthetic transformations. First, the ANND
measure was used for analyzing the effects that these transformations have on the complexity
of the datasets. Here, it turned out that even after adding only a slight mount of distortion,
datasets of limited size quickly lose their statistical structure, meaning that the object
manifolds in image space become too complex to be sufficiently described by small numbers
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of reference examples. Next, when passing these highly distorted datasets through the HFM
and using the activities of the final C-cell planes as new representations, it was shown that
much of the statistical structure of such datasets – analyzed in terms of the ANND – can
be recovered again.

Of course, the success of the HFM in normalizing multi-class natural image datasets
depends on the parameterization of the model, and especially on the number of layers and
planes used as well as on the types of receptive field profiles. Here, the ANND proved
useful for optimizing model parameters and comparing different types of receptive field
profile models. For a single layered model, we experimented with Gabor profiles (as used
extensively in previous work, e.g., [107, 48, 44, 17]), normalized random profiles (as a
baseline), and finally, profiles, which were obtained using an unsupervised learning method
called Non-Negative Matrix Factorization with Sparseness Constraints (NMFSC, [43]). Here,
it transpired that the latter exhibit a slightly better performance than the other approaches,
as unsupervised learning obviously allows additional “tuning” of profiles to the image domain,
yielding slightly better response properties than “general” Gabor filters.

Extending the experimental setup by an additional layer, and using normalized random
profiles and NMFSC-profiles on the second layer, it was shown that an additional reduction
of the apparent complexity of natural image datasets can be achieved. For the second
layer, we again found that the NMFSC profiles lead to lower and more stable ANND values
than random profiles. In summary, in Chapt. 5, it was shown that the HFM is capable of
significantly reducing the apparent complexity of natural image datasets.

Image Patch Classification

From the experiments that were carried out in Chapt. 5, we obtained an “optimal” parame-
terization of the HFM, both in terms of selecting topological parameters as well as choosing
an appropriate receptive field profile model. Using this parameterization, in Chapt. 6 we
applied the HFM approach to the problem of image patch classification. For this, we first
constructed several discrimination tasks and investigated standard classification approaches
operating on the output C-cell activity space of the HFM. Here, so-called Template View
Tuned Units (T-VTUs, [107, 84, 85, 88]), which correspond to simple 1-nearest-neighbor
classifiers, proved to exhibit a high classification accuracy on challenging test datasets.
However, the number of chosen units, i.e., the number of reference nodes stored in the
representations of the classifiers, had to be quite large in order to achieve a reasonable
performance. Due to the high dimensionality of the feature representation, the T-VTU ap-
proach has some computational disadvantages. Therefore, we proposed new types of units,
called Condensed View Tuned Units (C-VTU), which were obtained by applying a spectral
clustering scheme [94] to large T-VTU representations. With this method, it was possi-
ble to significantly reduce the number of units while preserving most of the classification
performance.

In a next step, we extended the experimental setup in order to investigated confidence
based recognition, i.e. classification with rejection of “unknown” input patterns. For this
task, we added clutter images to the test datasets and applied Radial Basis Functions (RBFs)
as well as Linear Discriminant Functions (LDFs). While RBFs are constructed directly from
C-VTU representations, LDFs require an additional supervised learning step based on a T-
VTU representation. The experimental results showed that for both approaches, a high
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recognition performance could be achieved.

In summary, the HFM approach was found to be well suited for image patch classification
tasks where a limited number of training examples is available and the test images are
subject to severe distortions like affine transformations, noise, and background clutter.

Segmentation-Free Multi-Class Object Detection

In Chapt. 7 we applied the HFM to the problem of segmentation-free multi-class object
detection, i.e., locating and identifying objects in natural scene images. For this, we con-
structed an experimental setup in which synthetic detection images were generated from
multi-class natural image datasets by segmenting the objects and embedding them at ran-
dom positions into images of natural scenes (For examples, see Fig. 7.2).

For recognition of objects in such detection images, a special processing architecture
was proposed, consisting of a training and a recognition branch. In the training branch, a
two-layered HFM which operates on image patches is used for creating a set of LDF units
(as described in Chapt. 6). The recognition branch employs a three-layered HFM with an
increased input dimensionality. Receptive field profiles for the first and the second layer of
the model are inherited from the training branch. Since the computation of the responses
of an LDF unit relies on applying the dot-product between the final C-cell activities and
the weight-vector of the unit, it is possible to directly use each weight vector as a third-
layer receptive field profile. Each unit then serves as a detector cell for a specific object
class. On the output C-cell planes of the three-layered recognition model, activity peaks
can be observed at locations corresponding to the positions of a specific object in the input
image. Finally, the detection results are obtained by applying an algorithm for activity peak
detection on the final C-cell planes.

To evaluate the performance of the proposed method, we generated a large number
of detection images using the MNIST-10, the COIL-20, and the ORLS-40 datasets and
created Precision-vs-Recall plots by matching the recognition results against ground truth
obtained during the generation process. Using the area under these curves as a measure of
performance, interestingly, the best results were obtained on the ORLS-40 dataset – despite
the fact that this dataset consists of 40 classes and only provides 5 training views of each
person. The fact that the accuracy for the ORLS-40 test images was higher than for the
other two datasets was explained by the special properties of the dataset. Faces have a
rather stable global shape which makes it comparatively “easy” to detect them in scene
images, resulting in a low risk of false positives. For the objects of the COIL-20 dataset,
the global shape is not as invariant across classes which – in our experimental setup –
led to a lower detection performance. The MNIST-10 dataset was found to be the most
difficult dataset for the detection experiments. Even though the dataset only consists of 10
classes and a large number of training images is available, handwritten digits exhibit a large
inner-class variance and additionally lack any textural features by which the classes can be
distinguished.

Application in Practical Computer Vision Setups

The experimental results that have been presented in this thesis suggest that the HFM
approach provides a framework well-suited to many practical computer vision setups. This
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is especially true for object recognition applications, where certain restrictions on the ap-
pearance of the objects – as often required by former approaches – cannot be enforced
any longer. For instance, in the field of autonomous systems which operate in natural en-
vironments, recognition systems have to deal with an input signal that is subject to high
variability. This variability is caused by multiple degrees of freedom that the objects in
question are subject to, such as varying orientation, arbitrary viewing distances and angles,
uncontrolled lighting conditions, etc. Additionally, the input images are subject to other
sources of distraction such as sensor noise or light reflections. Here, it is impossible to ex-
haustively cover the variability using training datasets of limited size. Therefore, processing
methods are needed which employ a-priori knowledge about natural imagery, in combination
with the ability to learn object representations from small-sized training datasets.

Further, the feed-forward nature of the approach allows a highly efficient computation of
the recognition results. The computation of the cell responses in each layer of the HFM
offers excellent possibilities of optimization, because the main operation is convolution and
the computation can be parallelized plane-wise. This make the approach especially useful
for high-throughput real-time applications.

8.2 Perspectives

In this final section, we briefly outline some potential future research activities:

Color Vision

Despite the fact that color provides a rich source of additional discriminative information
in many application scenarios, in this thesis we have restricted our investigations to the
processing of gray-scale images only. However, in theory, the current formal definition of the
HFM already allows for the processing of color images. Color processing can be implemented
in a straight-forward way by using, instead of a single C-cell plane C0 on the input layer of
the HFM, multiple planes where each of them corresponds to one component of a chosen
color space. This would imply that already on the first layer of the model, multi-dimensional
receptive field profiles are used.

Open questions in this regard are, which color space should be used (RGB, HSV, or other
representations), and whether the NMFSC decomposition algorithm as described in Chapt. 5
is capable of producing suitable multi-dimensional receptive field profiles for the first model
layer.

Motion Recognition

Analogous to the straight-forward extension of the model for color processing, the HFM
could potentially also be used for motion processing. For this, each frame of an input
motion sequence could be used as an input plane for the HFM. Based on this input, multi-
dimensional receptive field profiles could be used (and possibly also learned using the NMFSC
decomposition algorithm), which respond to spatio-temporal features that occur in the input
sequence (e.g., see [73]).

A problem with this approach is however that the quantization of the motion sequence into
a fixed number of discrete frames introduces a limitation that cannot be easily overcome
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without substantially extending the current formal definition of the HFM topology. How
such an extension could be achieved is an interesting question for future research activities.

Recognition of Partly Occluded Patterns

The experimental results that were presented in this thesis proved that the HFM is capable
of tolerating high degrees of transformations and distortions of the input stimuli. Thus, the
approach is also able to deal with minor partial occlusions of input patterns. However, for
larger partial occlusions, as might also be encountered in practical applications, the HFM is
likely to fail to produce reliable recognition results. The reason for this is that recognition
on the final layer of the HFM is still holistic, meaning that the complete set of feature must
be present in order for the correct unit to give a high response.

To overcome this limitation, the final recognition layer of the HFM could be modified in
such a way that instead of a single classification unit for each object, several units could
be trained on designated local parts of the stimulus. Using an additional cell for combining
the responses of these local classifiers into a single response by incorporating the offsets of
the parts would then correspond to implementing a generalized Hough transform [4] in the
wiring of the HFM (similar as in [59, 60]).

For this parts-based extension of the HFM, a key question is how to arrange the parts
on which the local classifiers are trained. (An exploratory study using this option suggested
that partitioning the final cell planes in a simple grid-like fashion, e.g., 2 × 2 or 3× 3, was
not sufficient to produce results comparable to the holistic approach.)

Application in Hybrid Systems

In Chapt. 7, it was demonstrated how the HFM approach can be applied to the problem of
segmentation-free multi-class object detection. For this, we would like to point out that in
many practical computer vision setups, additional information cues are available from other
system components which can be used to restrict the “attention” of the recognition system
to a certain region of interest in the sensor’s field of view. These additional information
cues might either be derived from user interaction (e.g., in previous work, a system for the
recognition of pointing gestures was developed [31]), or from data driven saliency cues, such
as described in [33, 30].

A popular approach for encoding such information cues is the use of a so-called attention
map [105, 33]. As demonstrated for instance in [105] for the HMAX model, such an
attention map can easily be incorporated into the processing stream of the HFM, simply by
multiplying the responses of the final layer by the corresponding activities of the attention
map. This coupling of the HFM architecture with other processing modules in a hybrid
system is another interesting perspective for future work.
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[50] C.G.J. Jacobi. Über ein leichtes Verfahren, die in der Theorie der Säcularstörungen
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