Keqian Zhang • Dejie Li

Electromagnetic Theory for Microwaves and Optoelectronics

Second Edition

With 280 Figures and 13 Tables
Contents

1 Basic Electromagnetic Theory
1.1 Maxwell’s Equations ... 1
1.1.1 Basic Maxwell Equations 2
1.1.2 Maxwell’s Equations in Material Media 6
1.1.3 Complex Maxwell Equations 13
1.1.4 Complex Permittivity and Permeability 15
1.1.5 Complex Maxwell Equations in Anisotropic Media 17
1.1.6 Maxwell’s Equations in Duality form 18
1.2 Boundary Conditions .. 19
1.2.1 General Boundary Conditions 19
1.2.2 The Short-Circuit Surface 21
1.2.3 The Open-Circuit Surface 22
1.2.4 The Impedance Surface 23
1.3 Wave Equations .. 24
1.3.1 Time-Domain Wave Equations 24
1.3.2 Solution to the Homogeneous Wave Equations 25
1.3.3 Frequency-Domain Wave Equations 29
1.4 Poynting’s Theorem ... 30
1.4.1 Time-Domain Poynting Theorem 30
1.4.2 Frequency-Domain Poynting Theorem 32
1.4.3 Poynting’s Theorem for Dispersive Media 35
1.5 Scalar and Vector Potentials 41
1.5.1 Retarding Potentials, d’Alembert’s Equations 41
1.5.2 Solution of d’Alembert’s Equations 43
1.5.3 Complex d’Alembert Equations 45
1.6 Hertz Vectors .. 46
1.6.1 Instantaneous Hertz Vectors 46
1.6.2 Complex Hertz Vectors 49
1.7 Duality .. 50
1.8 Reciprocity .. 51
Problems .. 52
Contents

2 Introduction to Waves 55

2.1 Sinusoidal Uniform Plane Waves ... 55
 2.1.1 Uniform Plane Waves in Lossless Simple Media 56
 2.1.2 Uniform Plane Waves with an Arbitrary Direction of
 Propagation .. 59
 2.1.3 Plane Waves in Lossy Media: Damped Waves 63

2.2 Polarization of Plane Waves .. 67
 2.2.1 Combination of Two Mutually Perpendicular Linearly
 Polarized Waves ... 68
 2.2.2 Combination of Two Opposite Circularly Polarized
 Waves ... 72
 2.2.3 Stokes Parameters and the Poincaré Sphere 74
 2.2.4 The Degree of Polarization 76

2.3 Normal Reflection and Transmission of Plane Waves 76
 2.3.1 Normal Incidence and Reflection at a Perfect-
 Conductor Surface, Standing Waves 77
 2.3.2 Normal Incidence, Reflection and Transmission at Non-
 conducting Dielectric Boundary, Traveling-Standing
 Waves ... 80

2.4 Oblique Reflection and Refraction of Plane Waves 84
 2.4.1 Snell’s Law ... 84
 2.4.2 Oblique Incidence and Reflection at a Perfect-
 Conductor Surface ... 86
 2.4.3 Fresnel’s Law, Reflection and Refraction Coefficients 91
 2.4.4 The Brewster Angle .. 96
 2.4.5 Total Reflection and the Critical Angle 97
 2.4.6 Decaying Fields and Slow Waves 99
 2.4.7 The Goos–Hänchen Shift .. 102
 2.4.8 Reflection Coefficients at Dielectric Boundary 102
 2.4.9 Reflection and Transmission of Plane Waves at the
 Boundary Between Lossless and Lossy Media 104

2.5 Transformmission of Impedance for Electromagnetic Waves 107

2.6 Dielectric Layers and Impedance Transducers 109
 2.6.1 Single Dielectric Layer, The $\lambda/4$ Impedance
 Transducer .. 109
 2.6.2 Multiple Dielectric Layer, Multi-Section Impedance
 Transducer .. 111
 2.6.3 A Multi-Layer Coating with an Alternating Indices 111

Problems .. 114

3 Transmission-Line Theory and Network Theory for Electromagnetic Waves 117

3.1 Basic Transmission Line Theory ... 117
 3.1.1 The Telegraph Equations ... 118
 3.1.2 Solution of the Telegraph Equations 119

3.2 Standing Waves in Lossless Lines .. 121
3.2.1 The Reflection Coefficient, Standing Wave Ratio and Impedance in a Lossless Line 121
3.2.2 States of a Transmission Line 126

3.3 Transmission-Line Charts 130
3.3.1 The Smith Chart .. 130
3.3.2 The Schimdt Chart 133
3.3.3 The Carter Chart .. 134
3.3.4 Basic Applications of the Smith Chart 134

3.4 The Equivalent Transmission Line of Wave Systems 134

3.5 Introduction to Network Theory 136
3.5.1 Network Matrix and Parameters of a Linear Multi-Port
Network ... 136
3.5.2 The Network Matrices of the Reciprocal, Lossless,
Source-Free Multi-Port Networks 142

3.6 Two-Port Networks .. 146
3.6.1 The Network Matrices and the Parameters of Two-Port
Networks .. 146
3.6.2 The Network Matrices of the Reciprocal, Lossless,
Source-Free and Symmetrical Two-Port Networks 149
3.6.3 The Working Parameters of Two-Port Networks 153
3.6.4 The Network Parameters of Some Basic Circuit Elements 155

3.7 Impedance Transducers 161
3.7.1 The Network Approach to the λ/4 Anti-Reflection
Coating and the λ/4 Impedance Transducer 161
3.7.2 The Double Dielectric Layer, Double-Section
Impedance Transducers 164
3.7.3 The Design of a Multiple Dielectric Layer or Multi-
Section Impedance Transducer 166
3.7.4 The Small-Reflection Approach 171

Problems ... 177

4 Time-Varying Boundary-Value Problems 179
4.1 Uniqueness Theorem for Time-Varying-Field Problems 180
4.1.1 Uniqueness Theorem for the Boundary-Value Problems
of Helmholtz's Equations 180
4.1.2 Uniqueness Theorem for the Boundary-Value Problems
with Complicated Boundaries 182
4.2 Orthogonal Curvilinear Coordinate Systems 185
4.3 Solution of Vector Helmholtz Equations in Orthogonal Curvi-
linear Coordinates ... 188
4.3.1 Method of Borgnis' Potentials 188
4.3.2 Method of Hertz Vectors 194
4.3.3 Method of Longitudinal Components 195
4.4 Boundary Conditions of Helmholtz's Equations 198
4.5 Separation of Variables 199
4.6 Electromagnetic Waves in Cylindrical Systems 201
4.7 Solution of Helmholtz's Equations in Rectangular Coordinates 205
 4.7.1 Set z as u_3 205
 4.7.2 Set x or y as u_3 208
4.8 Solution of Helmholtz's Equations in Circular Cylindrical Coordinates 209
4.9 Solution of Helmholtz's Equations in Spherical Coordinates 214
4.10 Vector Eigenfunctions and Normal Modes 219
 4.10.1 Eigenvalue Problems and Orthogonal Expansions 220
 4.10.2 Eigenvalues for the Boundary-Value Problems of the Vector Helmholtz Equations 222
 4.10.3 Two-Dimensional Eigenvalues in Cylindrical Systems 224
 4.10.4 Vector Eigenfunctions and Normal Mode Expansion 225
4.11 Approximate Solution of Helmholtz's Equations 228
 4.11.1 Variational Principle of Eigenvalues 228
 4.11.2 Approximate Field-Matching Conditions 230
Problems 234

5 Metallic Waveguides and Resonant Cavities 235
5.1 General Characteristics of Metallic Waveguides 236
 5.1.1 Ideal-Waveguide Model 237
 5.1.2 Propagation Characteristics 237
 5.1.3 Dispersion Relations 239
 5.1.4 Wave Impedance 240
 5.1.5 Power Flow 240
 5.1.6 Attenuation 241
5.2 General Characteristics of Resonant Cavities 243
 5.2.1 Modes and Natural Frequencies of the Resonant Cavity 243
 5.2.2 Losses in a Resonant Cavity, the Q Factor 244
5.3 Waveguides and Cavities in Rectangular Coordinates 245
 5.3.1 Rectangular Waveguides 245
 5.3.2 Parallel-Plate Transmission Lines 256
 5.3.3 Rectangular Resonant Cavities 259
5.4 Waveguides and Cavities in Circular Cylindrical Coordinates 264
 5.4.1 Sectorial Cavities 264
 5.4.2 Sectorial Waveguides 267
 5.4.3 Coaxial Lines and Coaxial Cavities 268
 5.4.4 Circular Waveguides and Circular Cylindrical Cavities 274
 5.4.5 Cylindrical Horn Waveguides and Inclined-Plate Lines 282
 5.4.6 Radial Transmission Lines and Radial-Line Cavities 285
5.5 Waveguides and Cavities in Spherical Coordinates 288
 5.5.1 Spherical Cavities 288
 5.5.2 Biconical Lines and Biconical Cavities 291
5.6 Reentrant Cavities 295
 5.6.1 Exact Solution for the Reentrant Cavity 297
6 Dielectric Waveguides and Resonators 317
6.1 Metallic Waveguide with Different Filling Media 319
 6.1.1 The Possible TE and TM Modes 319
 6.1.2 LSE and LSM Modes, HEM Modes 322
6.2 Symmetrical Planar Dielectric Waveguides 327
 6.2.1 TM Modes 328
 6.2.2 TE Modes 330
 6.2.3 Cutoff Condition, Guided Modes and Radiation Modes 332
 6.2.4 Dispersion Characteristics of Guided Modes 333
 6.2.5 Radiation Modes 334
 6.2.6 Fields in Symmetrical Planar Dielectric Waveguides 335
 6.2.7 The Dominant Modes in Symmetrical Planar Dielectric Waveguides 338
 6.2.8 The Weekly Guiding Dielectric Waveguides 338
6.3 Dielectric Coated Conductor Plane 339
6.4 Asymmetrical Planar Dielectric Waveguides 339
 6.4.1 TM Modes 341
 6.4.2 TE Modes 342
 6.4.3 Dispersion Characteristics of Asymmetrical Planar Dielectric Waveguide 343
 6.4.4 Fields in Asymmetrical Planar Dielectric Waveguides 344
6.5 Rectangular Dielectric Waveguides 346
 6.5.1 Exact Solution for Rectangular Dielectric Waveguides 347
 6.5.2 Approximate Analytic Solution for Weekly Guiding Rectangular Dielectric Waveguides 348
 6.5.3 Solution for Rectangular Dielectric Waveguides by Means of Circular Harmonics 352
6.6 Circular Dielectric Waveguides and Optical Fibers 356
 6.6.1 General Solutions of Circular Dielectric Waveguides 356
 6.6.2 Nonmagnetic Circular Dielectric Waveguides 368
 6.6.3 Weakly Guiding Optical Fibers 377
 6.6.4 Linearly Polarized Modes in Weakly Guiding Fibers 380
 6.6.5 Dominant Modes in Circular Dielectric Waveguides 382
 6.6.6 Low-Attenuation Optical Fiber 384
6.7 Dielectric-Coated Conductor Cylinder 385
6.8 Dielectric Resonators 387
 6.8.1 Perfect-Magnetic-Conductor Wall Approach 387
6.8.2 Cutoff-Waveguide Approach ... 391
6.8.3 Cutoff-Waveguide, Cutoff-Radial-Line Approach 393
6.8.4 Dielectric Resonators in Microwave Circuits 395
Problems ... 397

7 Periodic Structures and the Coupling of Modes 401
7.1 Characteristics of Slow Waves .. 402
 7.1.1 Dispersion Characteristics 402
 7.1.2 Interaction Impedance ... 403
7.2 A Corrugated Conducting Surface as a Uniform System 404
 7.2.1 Unbounded Structure ... 404
 7.2.2 Bounded Structure .. 406
7.3 A Disk-Loaded Waveguide as a Uniform System 407
 7.3.1 Disk-Loaded Waveguide with Center Coupling Hole 407
 7.3.2 Disk-Loaded Waveguide with Edge Coupling Hole 410
7.4 Periodic Systems ... 411
 7.4.1 Floquet's Theorem and Space Harmonics 412
 7.4.2 The $\omega-\beta$ Diagram of Period Systems 416
 7.4.3 The Band-Pass Character of Periodic Systems 417
 7.4.4 Fields in Periodic Systems 420
 7.4.5 Two Theorems on Lossless Periodic Systems 422
 7.4.6 The Interaction Impedance for Periodic Systems 422
7.5 Corrugated Conducting Plane as a Periodic System 423
7.6 Disk-Loaded Waveguide as a Periodic System 426
7.7 The Helix .. 431
 7.7.1 The Sheath Helix .. 432
 7.7.2 The Tape Helix ... 442
7.8 Coupling of Modes ... 450
 7.8.1 Coupling of Modes in Space 450
 7.8.2 General Solutions for the Mode Coupling 454
 7.8.3 Co-Directional Mode Coupling 456
 7.8.4 Coupling Coefficient of Dielectric Waveguides 459
 7.8.5 Contra-Directional Mode Coupling 460
7.9 Distributed Feedback (DFB) Structures 462
 7.9.1 Principle of DFB Structures 463
 7.9.2 DFB Transmission Resonator 466
 7.9.3 The Quarter-Wave Shifted DFB Resonator 469
 7.9.3 A Multiple-Layer Coating as a DFB Transmission Res- onator .. 470
Problems ... 472
8 Electromagnetic Waves in Dispersive Media and Anisotropic Media 475
8.1 Classical Theory of Dispersion and Dissipation in Material Media 476
8.1.1 Ideal Gas Model for Dispersion and Dissipation 476
8.1.2 Kramers–Kronig Relations 479
8.1.3 Complex Index of Refraction 479
8.1.4 Normal and Anomalous Dispersion 481
8.1.5 Complex Index for Metals 482
8.1.6 Behavior at Low Frequencies, Electric Conductivity 483
8.1.7 Behavior at High Frequencies, Plasma Frequency 484
8.2 Velocities of Waves in Dispersive Media 485
8.2.1 Phase Velocity 486
8.2.2 Group Velocity 487
8.2.3 Velocity of Energy Flow 490
8.2.4 Signal Velocity 492
8.3 Anisotropic Media and Their Constitutional Relations 493
8.3.1 Constitutional Equations for Anisotropic Media 494
8.3.2 Symmetrical Properties of the Constitutional Tensors 495
8.4 Characteristics of Waves in Anisotropic Media 497
8.4.1 Maxwell Equations and Wave Equations in Anisotropic Media 497
8.4.2 Wave Vector and Poynting Vector in Anisotropic Media 498
8.4.3 Eigenwaves in Anisotropic Media 499
8.4.4 \(kDB \) Coordinate System 500
8.5 Reciprocal Anisotropic Media 504
8.5.1 Isotropic Crystals 504
8.5.2 Uniaxial Crystals 504
8.5.3 Biaxial Crystals 505
8.6 Electromagnetic Waves in Uniaxial Crystals 505
8.6.1 General Expressions 505
8.6.2 Plane Waves Propagating in the Direction of the Optical Axis 509
8.6.3 Plane Waves Propagating in the Direction Perpendicular to the Optical Axis 509
8.6.4 Plane Waves Propagating in an Arbitrary Direction 511
8.7 General Formalisms of Electromagnetic Waves in Reciprocal Media 513
8.7.1 Index Ellipsoid 513
8.7.2 The Effective Indices of Eigenwaves 516
8.7.3 Dispersion Equations for the Plane Waves in Reciprocal Media 518
8.7.4 Phase Velocity and Group Velocity of the Plane Waves in Reciprocal Crystals 525
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>Waves in Electron Beams</td>
<td>526</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Permittivity Tensor for an Electron Beam</td>
<td>526</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Space Charge Waves</td>
<td>530</td>
</tr>
<tr>
<td>8.9</td>
<td>Nonreciprocal Media</td>
<td>534</td>
</tr>
<tr>
<td>8.9.1</td>
<td>Stationary Plasma in a Finite Magnetic Field</td>
<td>534</td>
</tr>
<tr>
<td>8.9.2</td>
<td>Saturated-Magnetized Ferrite, Gyromagnetic Media</td>
<td>537</td>
</tr>
<tr>
<td>8.10</td>
<td>Electromagnetic Waves in Nonreciprocal Media</td>
<td>547</td>
</tr>
<tr>
<td>8.10.1</td>
<td>Plane Waves in a Stationary Plasma</td>
<td>548</td>
</tr>
<tr>
<td>8.10.2</td>
<td>Plane Waves in Saturated-Magnetized Ferrites</td>
<td>552</td>
</tr>
<tr>
<td>8.11</td>
<td>Magnetostatic Waves</td>
<td>560</td>
</tr>
<tr>
<td>8.11.1</td>
<td>Magnetostatic Wave Equations</td>
<td>562</td>
</tr>
<tr>
<td>8.11.2</td>
<td>Magnetostatic Wave Modes</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>575</td>
</tr>
<tr>
<td>9</td>
<td>Gaussian Beams</td>
<td>577</td>
</tr>
<tr>
<td>9.1</td>
<td>Fundamental Gaussian Beams</td>
<td>577</td>
</tr>
<tr>
<td>9.2</td>
<td>Characteristics of Gaussian Beams</td>
<td>580</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Condition of Paraxial Approximation</td>
<td>580</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Beam Radius, Curvature Radius of Phase Front, and Half Far-Field Divergence Angle</td>
<td>581</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Phase Velocity</td>
<td>582</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Electric and Magnetic Fields in Gaussian Beams</td>
<td>583</td>
</tr>
<tr>
<td>9.2.5</td>
<td>Energy Density and Power Flow</td>
<td>584</td>
</tr>
<tr>
<td>9.3</td>
<td>Transformation of Gaussian Beams</td>
<td>585</td>
</tr>
<tr>
<td>9.3.1</td>
<td>The q Parameter and Its Transformation</td>
<td>585</td>
</tr>
<tr>
<td>9.3.2</td>
<td>$ABCD$ Law and Its Applications</td>
<td>589</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Transformation Through a Non-thin Lens</td>
<td>591</td>
</tr>
<tr>
<td>9.4</td>
<td>Elliptic Gaussian Beams</td>
<td>592</td>
</tr>
<tr>
<td>9.5</td>
<td>Higher-Order Modes of Gaussian Beams</td>
<td>595</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Hermite-Gaussian Beams</td>
<td>596</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Laguerre-Gaussian Beams</td>
<td>600</td>
</tr>
<tr>
<td>9.6</td>
<td>Gaussian Beams in Quadratic Index Media</td>
<td>603</td>
</tr>
<tr>
<td>9.6.1</td>
<td>The General Solution</td>
<td>604</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Propagation in Medium with a Real Quadratic Index Profile</td>
<td>606</td>
</tr>
<tr>
<td>9.6.3</td>
<td>Propagation in Medium with an Imaginary Quadratic Index Profile</td>
<td>607</td>
</tr>
<tr>
<td>9.6.4</td>
<td>Steady-State Hermite-Gaussian Beams in Medium with a Quadratic Index Profile</td>
<td>609</td>
</tr>
<tr>
<td>9.7</td>
<td>Optical Resonators with Curved Mirrors</td>
<td>611</td>
</tr>
<tr>
<td>9.8</td>
<td>Gaussian Beams in Anisotropic Media</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>619</td>
</tr>
</tbody>
</table>
10 Scalar Diffraction Theory

10.1 Kirchhoff’s Diffraction Theory ... 621
10.1.1 Kirchhoff Integral Theorem .. 621
10.1.2 Fresnel–Kirchhoff Diffraction Formula 623
10.1.3 Rayleigh–Sommerfeld Diffraction Formula 625

10.2 Fraunhofer and Fresnel Diffraction 627
10.2.1 Diffraction Formulas for Spherical Waves 627
10.2.2 Fraunhofer Diffraction at Circular Apertures 629
10.2.3 Fresnel Diffraction at Circular Apertures 632

10.3 Diffraction of Gaussian Beams .. 634
10.3.1 Fraunhofer Diffraction of Gaussian Beams 634
10.3.2 Fresnel Diffraction of Gaussian Beams 638

10.4 Diffraction of Plane Waves in Anisotropic Media 640
10.4.1 Fraunhofer Diffraction at Square Apertures 640
10.4.2 Fraunhofer Diffraction at Circular Apertures 645
10.4.3 Fresnel Diffraction at Circular Apertures 649

10.5 Refraction of Gaussian Beams in Anisotropic Media 652

10.6 Eigenwave Expansions of Electromagnetic Fields 658
10.6.1 Eigenmode Expansion in a Rectangular Coordinate System ... 658
10.6.2 Eigenmode Expansion in a Cylindrical Coordinate System 660
10.6.3 Eigenmode Expansion in Inhomogeneous Media 662
10.6.4 Eigenmode Expansion in Anisotropic Media 665
10.6.5 Eigenmode Expansion in Inhomogeneous and Anisotropic Media 666
10.6.6 Reflection and Refraction of Gaussian Beams on Medium Surfaces 668

Problems .. 671

A SI Units and Gaussian Units ... 673
A.1 Conversion of Amounts .. 673
A.2 Formulas in SI (MKSA) Units and Gaussian Units 674
A.3 Prefixes and Symbols for Multiples 676

B Vector Analysis .. 677
B.1 Vector Differential Operations ... 677
B.1.1 General Orthogonal Coordinates 677
B.1.2 General Cylindrical Coordinates 678
B.1.3 Rectangular Coordinates 679
B.1.4 Circular Cylindrical Coordinates 679
B.1.5 Spherical Coordinates .. 680
B.2 Vector Formulas .. 680
B.2.1 Vector Algebraic Formulas 680
B.2.2 Vector Differential Formulas 681
B.2.3 Vector Integral Formulas 681
B.2.4 Differential Formulas for the Position Vector 682

C Bessel Functions 683
C.1 Power Series Representations 683
C.2 Integral Representations 684
C.3 Approximate Expressions 684
 C.3.1 Leading Terms of Power Series (Small Argument) 684
 C.3.2 Leading Terms of Asymptotic Series (Large Argument) 684
C.4 Formulas for Bessel Functions 684
 C.4.1 Recurrence Formulas 684
 C.4.2 Derivatives 685
 C.4.3 Integrals 685
 C.4.4 Wronskian 685
C.5 Spherical Bessel Functions 686
 C.5.1 Bessel Functions of Order $n + 1/2$ 686
 C.5.2 Spherical Bessel Functions 686
 C.5.3 Spherical Bessel Functions by S.A.Schelkunoff 686

D Legendre Functions 687
D.1 Legendre Polynomials 687
D.2 Associate Legendre Polynomials 687
D.3 Formulas for Legendre Polynomials 688
 D.3.1 Recurrence Formulas 688
 D.3.2 Derivatives 688
 D.3.3 Integrals 688

E Matrices and Tensors 689
E.1 Matrix ... 689
E.2 Matrix Algebra 690
 E.2.1 Definitions 690
 E.2.2 Matrix Algebraic Formulas 690
E.3 Matrix Functions 691
E.4 Special Matrices 692
E.5 Tensors and Vectors 693

Physical Constants 695

Smith Chart 697

Bibliography 699

Index 704