Contents

Preface XV
List of Contributors XVII

I Materials 1
A Donors 1

1 Regioregular Polythiophene Solar Cells: Material Properties and Performance 3

Paul C. Ewbank, Darin Laird, and Richard D. McCullough

1.1 Introduction 3
1.1.1 Overview of Nomenclature and Synthesis 3
1.1.2 Advantages of the HT Architecture 5
1.2 Assembly and Morphology 6
1.2.1 Conformation 7
1.2.2 Aggregation 7
1.2.3 Solid Deposition 8
1.2.4 Solid-State Crystalline Order 9
1.2.5 Solid-State Phase Behavior and Thermal Analysis 10
1.2.6 Anisotropy 12
1.3 Characterization of Impurities 14
1.3.1 Fractionation and Effects of M_w 14
1.3.2 Inorganic Impurities 15
1.4 Optical and Electronic Properties of PAT 16
1.4.1 Optical Properties: Intermolecular Excitons 16
1.4.2 HT-PT Electron Transport: Conductivity and Mobility 17
1.5 Benefits of HT-Regioregular Polythiophenes in Solar Cells 17
1.6 Bulk Heterojunctions: Focus on HT-PAT/PCBM Blends 18
1.6.1 Homogeneous PCBM Assembly 18
1.6.2 HT-PAT/PCBM Blends: Component Ratio 19
1.6.3 HT-PAT/PCBM Blends: Annealing 20
3 Carbazole-Based Conjugated Polymers as Donor Material for Photovoltaic Devices 93
Wojciech Pisula, Ashok K. Mishra, Jiaoli Li, Martin Baumgarten, and Klaus Müllen
3.1 Introduction 93
3.2 Synthesis of Carbazole-Based Polymers 96
3.3 Supramolecular Order of Carbazole-Based Polymers 111
3.4 Photovoltaic Devices 116
3.4.1 Polycarbazole 116
3.4.2 Ladder-Type Polymers Based on 2,7-Carbazole 121
3.5 Conclusions 125
References 126

4 New Construction of Low-Bandgap Conducting Polymers 129
Zhengguo Zhu, David Waller, and Christoph J. Brabec
4.1 Introduction 129
4.2 Low-Bandgap Polymers Containing 4,7-Di-2-Thienyl-2,1,3-Benzothiadiazole Moieties 130
4.3 Low-Bandgap Polymers Containing 4,8-Di-2-Thienyl-Benz[1,2-c:4,5-c']bis[1,2,5]thiadiazole Segments 136
4.4 Low-Bandgap Polymers Containing 4,9-Di-2-Thienyl[1,2,5]thiadiazolo[3,4-g]quinoxalines 137
4.5 Low-Bandgap Polymers Containing Thieno[3,4-b]pyrazines 138
4.6 Arylene Vinylene Based Low-Bandgap Polymers 140
4.7 Low-Bandgap Polymers Containing 4H-Cyclopenta[2,1-b:3,4-b']dithiophene or Its Analogues 142
4.8 Low-Bandgap Polymers Based on Other Types of Building Blocks 146
References 148

B Acceptors 153

5 Fullerene-Based Acceptors 155
David F. Kronholm and Jan C. Hummelen
5.1 Introduction and Overview 155
5.2 Fullerenes as n-Type Semiconductors 158
5.2.1 Electron Accepting and Transport 158
5.2.2 Other Electronic Properties 159
5.3 [60]PCBM 162
5.4 Variations in Fullerene Derivative and Effect on OPV Device 165
5.4.1 Morphology Considerations – Solubility and Miscibility of the Fullerene Derivative 165
5.4.2 Solubility and Supersaturation in the Donor/Acceptor Blend 166
5.4.3 Miscibility 168
5.4.4 Morphology Fixation and Insoluble Fullerene Layers 169
5.4.5 Optical Absorption of the Fullerene Derivative 169
5.4.6 More Strongly Absorbing Fullerene Derivatives: [70]PCBM and [84]PCBM 170
5.4.7 LUMO Variation 170
5.4.8 Deuterated PCBM 172
5.5 Practical Considerations and Potential in Commercial Devices 172
5.5.1 Powder Morphology and Dissolution 172
5.5.2 Stability of the Fullerene Derivative and the Device Film 173
5.5.3 Impurities 174
5.5.4 Commercial-Scale Application 174
References 175

6 Hybrid Polymer/Nanocrystal Photovoltaic Devices 179
Neil C. Greenham
6.1 Introduction 179
6.2 Classes of Polymer/Nanocrystal Device 181
6.2.1 Devices Based on CdSe Nanoparticles 181
6.2.1.1 Synthesis of CdSe Nanoparticles 181
6.2.1.2 Devices Using CdSe Nanoparticles 186
6.2.2 Devices Based on Metal Oxide Nanoparticles 189
6.2.2.1 Synthesis of ZnO Nanoparticles 190
6.2.2.2 Devices Based on ZnO Nanoparticles 190
6.2.3 Devices Based on Low-Bandgap Nanoparticles 192
6.2.4 Polymer Brush Devices 195
6.2.5 All-Nanoparticle Devices 195
6.3 Physical Processes in Polymer/Nanocrystal Devices 196
6.3.1 Absorption and Exciton Transport 197
6.3.2 Charge Transfer 198
6.3.3 Charge Separation and Recombination 202
6.3.4 Charge Transport 204
6.3.5 Electrical Characteristics and Morphology 206
6.4 Conclusions 207
References 208

C Transport Layers 211

7 PEDOT-Type Materials in Organic Solar Cells 213
Andreas Elschner and Stephan Kirchmeyer
7.1 Introduction 213
7.2 Chemical Structure and Impact on Electronic Properties 214
7.2.1 Chemical Structure of PEDOT-Type Materials 214
7.2.2 Polymerization 215
7.2.3 Morphology: π–π Stacking and Crystallization 216
7.2.4 Redox States of PEDOT 217
7.3 PEDOT-Type Materials in Organic Solar Cells 218
7.3.1 Preparation of PEDOT Layers 218
7.4 High-Conductive PEDOT:PSS as TCO-Substitution in OSCs 220
7.4.1 Conductivity of PEDOT:PSS 221
7.4.2 Morphology Impact on Conductivity 222
7.4.3 Optical Properties of PEDOT:PSS 226
7.4.4 Long-Term Stability 228
7.5 PEDOT-Type Materials as Hole-extracting Layers in OSCs 229
7.5.1 PEDOT:PSS as Buffer Layer in Solar Cells 229
7.5.2 Electronic Effects at the PEDOT:PSS–Semiconductor Interface 231
7.6 Conclusions 233

References 234

8 The Dispersion Approach for Buffer Layers and for the Active Light Absorption Layer 243
Bjoern Zeysing and Bernhard Wefling
8.1 Introduction 243
8.2 Photovoltaic Devices 243
8.3 Conductive Polymers 245
8.3.1 Polyaniline 247
8.4 Polymers in Photovoltaic Devices 250
8.4.1 ITO Replacement 251
8.4.2 Polymer Photovoltaic Devices 252
8.5 The Dispersion Approach as a Productive Tool for Photoactive Layer Deposition 255
8.6 Discussion of the Influence of Polymer Morphology on Device Performance 257
8.7 Summary 257
References 258

II Device Physics 261
A Overview of the State-of-the-Art 261

9 Titanium Oxide Films as Multifunctional Components in Bulk Heterojunction “Plastic” Solar Cells 263
Kwanghee Lee, Jin Young Kim, and Alan J. Heeger
9.1 Introduction 263
9.2 Sol–Gel Processed Titanium Oxide as an Optical Spacer in Polymer Solar Cells 263
9.3 Air-Stable Bulk Heterojunction Polymer Solar Cells 269
9.4 Efficient Polymer Solar Cells in the Tandem Architecture 272
12.3.2 Transparent Conducting Oxide (Cathode) 331
12.3.3 Titania 332
12.3.4 Semiconducting Polymer 332
12.3.5 Anode 332
12.4 Device Structures 332
12.4.1 TiO$_2$/Polymer Bilayers 334
12.4.2 TiO$_2$ Nanoparticles/Polymer 335
12.4.3 Mesoporous Titania/Polymer 337
12.4.4 Ideal Nanostructures 339
12.5 Pore Filling 341
12.5.1 Spin Casting 341
12.5.2 Melt Infiltration and Dip Coating 342
12.5.3 In Situ Polymerization 343
12.6 Effects of Pore Filling on Polymer Mobility and Exciton Harvesting 344
12.6.1 Ordered Versus Disordered Polymers 344
12.6.2 Measurement Techniques 344
12.6.3 Pore Size Effects for Semicrystalline Polymers 345
12.6.4 Significance of Polymer Mobility in OCPVs 346
12.6.5 Pore Filling and Exciton Harvesting 347
12.7 Organic Composite Photovoltaic Modeling 347
12.8 Future Outlook 348
12.8.1 Low-Bandgap Polymers 349
12.8.2 Polymer Engineering 349
12.8.3 Increasing Exciton Diffusion Lengths via Energy Transfer 350
12.8.4 Interface Modification 351
12.8.5 Conclusion 352
References 352

13 Metal Oxide–Polymer Bulk Heterojunction Solar Cells 357
Waldo J.E. Beek, Martijn M. Wienk, and René A.J. Janssen
13.1 Introduction 357
13.2 Planar Metal Oxide–Polymer Bilayer Cells 363
13.2.1 Metal Oxide–Poly(p-Phenylene Vinylene) 363
13.2.2 Metal Oxide–Polythiophene 365
13.3 Filling Nanoporous and Nanostructured Metal Oxides with Conjugated Polymers 368
13.3.1 Polymers in Nanoporous TiO$_2$ 368
13.3.2 Filling Structured Inorganic Semiconductors with Polymers 371
13.3.2.1 Structured Porous TiO$_2$ 371
13.3.2.2 Oriented Nanorods 372
13.4 Nanoparticle–Polymer Hybrid Solar Cells 375
13.4.1 TiO$_2$ Nanoparticles 376
13.4.2 ZnO Nanoparticles 377
13.4.2.1 Photophysics of Nanocrystalline ZnO–Polymer Blends 378
13.4.2.2 Photovoltaic Properties of nc-ZnO–Polymer Blends 380
13.4.2.3 Morphology of nc-ZnO:Polymer Blends 383
13.5 Metal Oxide Networks and Conjugated Polymers 385
13.5.1 In situ Blends Based on TiO$_2$ 386
13.5.2 In situ Blends Based on ZnO 388
13.6 Conclusions and Outlook 392
References 393

III Technology 399
A Electrodes 399

14 High-Performance Electrodes for Organic Photovoltaics 401
Cecilia Guillén and José Herrero
14.1 Introduction 401
14.2 Metal Electrodes 403
14.2.1 Metal Properties 403
14.2.2 Metal/Organic Semiconductor Interactions 406
14.3 Metal Oxide Electrodes 409
14.3.1 Metal Oxide Properties 409
14.3.2 Metal Oxide/Organic Semiconductor Interactions 411
14.4 Conducting Polymer Electrodes 413
14.4.1 Conducting Polymer Properties 413
14.4.2 Conducting Polymer/Organic Semiconductor Interactions 416
14.5 Multilayer Electrodes 417
14.6 Conclusions 419
References 419

15 Reel-to-Reel Processing of Highly Conductive Metal Oxides 425
Matthias Fahland
15.1 Introduction 425
15.2 Materials 427
15.3 Deposition Technology 429
15.4 Equipment 431
15.4.1 Vacuum System 432
15.4.2 Winding System 433
15.4.3 Inline Measurement System 434
15.5 Alternative Approaches 435
References 437

16 Novel Electrode Structures for Organic Photovoltaic Devices 441
Michael Niggemann and Andreas Combert
16.1 Introduction 441
16.2 Buried Nanoelectrodes 442
16.2.1 Experimental 443
16.3 Organic Photovoltaic Devices on Functional Microprism Substrates 447
16.3.1 Optical Simulations 448
Contents

16.3.2 Dimensioning of the Microstructure 452
16.3.3 Experimental 454
16.4 Anode Wrap-Through Organic Solar Cell 457
16.4.1 Organic Solar Cell with Inverted Layer Sequence 458
16.4.2 Calculation of Optimal Device Geometry for the Wrap-Through Device 459
16.4.3 Performance of Wrap-Through Devices 461
16.5 Summary 463
References 465

B Packaging 469

17 Flexible Substrates Requirements for Organic Photovoltaics 471
William A. MacDonald
17.1 Introduction 471
17.2 Polyester Substrates 471
17.3 Properties of Base Substrates 473
17.3.1 Optical Properties 473
17.3.2 Thermal Properties 474
17.3.3 Solvent Resistance 475
17.3.4 Surface Quality 478
17.3.5 Mechanical Properties 479
17.3.6 UV Stability 481
17.3.7 Barrier 482
17.3.8 Summary of the Key Properties of Base Substrates 485
17.4 Concluding Remarks 487
References 487

18 Barrier Films for Photovoltaics Applications 491
Lorenzo Moro and Robert Jan Visser
18.1 Introduction 491
18.2 Requirements for OPV Environmental Barriers 492
18.3 Degradation Mechanisms of OPV Cells 494
18.4 Current Approaches to Oxygen and Moisture Barriers 496
18.5 Barix Multilayer Technology 498
18.6 Conclusions 506
References 507

C Production 511

19 Roll-to-Roll Processing of Thin-Film Organic Semiconductors 513
Arved C. Hübler and Heiko Kempa
19.1 Introduction 513
19.2 Coating 514