Contents

1 Introduction 1

2 Biochemical reaction networks with mass action kinetics 3
 2.1 Notation 3
 2.2 Modeling of biochemical reaction networks with mass action kinetics 3
 2.2.1 Properties of $\phi(x)$ and $v(k, x)$. 5
 2.3 Chemical Reaction Network Theory (CRNT) 6

3 Conditions for multistationarity 7
 3.1 Positive solutions to the polynomial equations 7
 3.1.1 The cone $\ker(Y L_\mu) \cap \mathbb{R}_+^2$ 7
 3.1.2 Parametrizing positive solutions - the equation $Y(L)^T \mu = \ln \frac{E\lambda}{F\lambda}$ 8
 3.2 Solvability of $Y(L)^T \mu = \ln \frac{E\lambda}{F\lambda}$ 11
 3.2.1 Solvability I 11
 3.2.1.1 Special form of polynomials 12
 3.2.2 Solvability II 13
 3.2.2.1 L^*-matrices matrices and sign-central matrices 14
 3.2.2.2 Sign patterns of $Q(\mu)$ determined by linear inequalities 15
 3.2.2.3 An example: application to network A_1 17
 3.3 Positive solutions satisfying the conservation relations 21
 3.3.1 The linear subspace case 23
 3.4 Multistationarity in subnetworks 25
 3.4.1 Multistationarity in subnetworks defined by stoichiometric generators 26
 3.4.1.1 Algebraic properties of subnetworks defined by a stoichiometric generator 26
 3.4.1.2 Steady states for subnetworks defined by a stoichiometric generator 28
 3.4.2 Extension of multistationarity to the overall network 32
 3.5 Resume: a program to decide about multistationarity 35

4 Multistationarity in the activation of an MAPK(K) 37
 4.1 Processive vs. distributive phosphorylation 37
 4.2 Positive solutions for the polynomial equations 39
 4.2.1 Positive solutions for N_4 39
 4.2.2 Positive solutions for N_5 42
 4.2.3 Positive solutions for N_6 43
 4.3 Positive solutions satisfying the conservation relations 44
 4.3.1 Parameterizing Multistationarity for N_4 45
 4.4 An extension: open systems 46
 4.5 Model discrimination using steady state information 48

5 Multistationarity in cell cycle regulation 51
 5.1 Subnetwork analysis 53
 5.2 Analysis of the complete network A_{10} 59
 5.3 Analysis of the complete network A_{11} 70
 5.4 Conclusions 74

Bibliografische Informationen http://d-nb.info/989018172
6 Robustness of Multistationarity 75
 6.1 Robustness against variations in the rate constants 75
 6.2 Robustness against concentration fluctuations 81
 6.2.1 Analysis of the steady state equations 81
 6.2.1.1 Network \(N_{12} \) 81
 6.2.1.2 Network \(N_{13} \) 84
 6.2.1.3 Network \(N_{14} \) 86
 6.2.2 Comparing robustness against concentration fluctuations 88

7 Multistationarity and Beyond 91
 7.1 The Jacobian matrix 91
 7.1.1 Zero eigenvalues of the Jacobian 91
 7.1.2 Saddle-node bifurcations 94
 7.2 Application to a double-phosphorylation mechanism 95
 7.2.1 Zero eigenvalues 96
 7.2.2 Saddle-node bifurcations 97
 7.2.3 Bifurcations of higher codimension: Bogdanov-Takens 98

8 Conclusions 103

A Models for the activation of an MAPK(K) 105
 A.1 Distributive mechanism for phosphorylation and dephosphorylation 105
 A.1.1 Species and complexes of network \(N_4 \) 105
 A.1.2 Ordinary differential equations 105
 A.1.3 Structural data 106
 A.2 Processive phosphorylation and distributive dephosphorylation 107
 A.2.1 Species and complexes of network \(N_5 \) 107
 A.2.2 Ordinary differential equations 107
 A.2.3 Structural data 107
 A.3 Processive mechanism for phosphorylation and dephosphorylation 109
 A.3.1 Species and complexes of network \(N_6 \) 109
 A.3.2 Ordinary differential equations 109
 A.3.3 Structural data 109
 A.4 Open systems 110
 A.4.1 Network \(N_4 + N_5 \) 110
 A.4.2 Network \(N_4 + N_6 \) 112
 A.4.3 Network \(N_4 + N_7 \) 113
 A.4.4 Network \(N_5 + N_7 \) 115
 A.4.5 Network \(N_5 + N_6 \) 116
 A.4.6 Network \(N_5 + N_8 \) 117
 A.4.7 Network \(N_6 + N_8 \) 119
 A.4.8 Network \(N_5 + N_9 \) 120
 A.4.9 Network \(N_7 + N_9 \) 121

B Models for cell cycle regulation 123
 B.1 Binary complex model 123
 B.1.1 Species and complexes of network \(N_{10} \) 123
 B.1.2 Ordinary differential equations 123
 B.1.3 Structural data 124
 B.2 Ternary complex model 125
 B.2.1 Species and complexes of network \(N_{11} \) 125
 B.2.2 Ordinary differential equations 125
 B.2.3 Structural data 125