Table of Contents

1 **Introduction**

1.1 Phytoplankton pigments as markers for community structure and environmental changes

1.2 Phytoplankton and pigments in Lake Baikal

1.3 International interest in paleoclimate and paleolimnologic research in Lake Baikal

1.4 Outline of the thesis

2 **Materials, Methods and Site Descriptions**

2.1 Lake Baikal

2.2 Water samples

2.2.1 Sample collection

2.2.2 Phytoplankton qualitative and quantitative determination

2.2.3 HPLC-aided pigment analysis in water samples

2.2.4 Spectrophotometric data from long-term monitoring

2.2.5 Fluorescence measurements

2.3 Sediment traps

2.3.1 Mooring and sampling

2.3.2 HPLC-aided pigment analysis in sediment trap materials

2.3.3 C/N-analysis

2.4 Sediment

2.4.1 Description of CONTINENT coring sites

2.4.2 Short and piston core sampling

2.4.3 Pigment and C/N-analyses in sediment samples

2.4.4 Chronography

2.5 Statistics used

3 **Results**

3.1 Recent spatial and seasonal phytoplankton and pigment distribution

3.1.1 Regional distribution

3.1.2 Vertical distribution

3.1.3 Seasonal dynamics

3.2 Pigment transfer through the water column and preservation in the surface sediment

3.2.1 Transfer fluxes and composition of settling material (South 2001-2002)

3.2.2 Regional and interannual differences of pigment sedimentation

3.2.3 Degradation and preservation within the surface sediment

3.3 High-resolution analysis of fossil phytoplankton pigments

3.3.1 Holocene

3.3.2 Last Interglacial (Kazantsevo)
Table of contents

4 DISCUSSION ..87

4.1 Recent phytoplankton pigments in Lake Baikal as markers for community structure and environmental changes ...87

4.1.1 Regional phytoplankton and pigment distribution and driving factors88
4.1.2 Pigments as markers for vertical changes during stratification and homothermy 92
4.1.3 Seasonal dynamics of phytoplankton and pigments and driving factors95
4.1.4 Remote sensing ...97
4.1.5 Does a pigment-based approach accurately monitor phytoplankton community and environmental changes in Lake Baikal’s euphotic zone?100

4.2 Phytoplankton pigment transfer through the water column and preservation within the surface sediment ..101

4.2.1 Fluxes in Lake Baikal compared to marine and freshwater systems101
4.2.2 Degradation processes in the water column of the South basin101
4.2.3 Composition of the settling material in the South basin104
4.2.4 Comparison of the sedimentation and degradation between South and North. 105
4.2.5 Degradation within the surface sediment ...107
4.2.6 Do recently buried pigments reflect the phytoplankton standing crop?109

4.3 Reconstruction of past phytoplankton variations ...111

4.3.1 Holocene ...111
4.3.2 Last Interglacial (Kazantsevo) ...115
4.3.3 Do fossil pigments track past phytoplankton community structure and environmental changes? ..120

5 CONCLUSION ...121

6 REFERENCES ..123