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The reasonable man adapts himself to the world; the unreddéemne
persists in trying to adapt the world to himself. Therefai progress
depends on the unreasonable man.

Georg Bernard Shawlrish playwright.
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1 Introduction

1.1 The continuing challenge of biosequence analyis

Just about 50 years ago, Watson and Crick discovered with thi pioneering work the double helix
structure of DNA [WWC53], and only about 30 years ago, with the bacteriophage MS2, the rst
genome of an organism was sequenceld [FC€]. In these 50 years, several scienti ¢ ndings rev-
olutionized our understanding of evolution and life, and nev research disciplines like molecular
genetics and computational biology were constituted. In paticular, research results from these two
interacting disciplines led to substantial scienti c advances in the last decades. Tabl¢—Tl1 on the
following page gives a time line of some of these major mileshes and ndings.

Computational biology generated new algorithms to addressand solve biological problems. Among
the most prominent ones are database search methods that alv for the comparison of nucleic or
amino acid sequences with provision for evolutionary evers like mutations, insertions and dele-
tions. With the availability of such methods, the eld of com parative sequence analysis evolved
to the probably most successful and expanding discipline incomputational biology. It became a
key discipline for the discovery and understanding of moleglar mechanisms necessary for the ma-
chinery of an organism [RYW' 00, [EPC* 0d]. The foundations of this discipline go back to the
early 1970's, when it was discovered_[Fif7/0] that conservabns in the nucleic acid sequence of
genes, and accordingly in the amino acid sequence of proteinlead to a conserved secondary and
tertiary structure, and thus to a conserved (similar) function. Founded on this observation, the
comparison of sequences of molecules allows to deduce knedde from one or several known se-
quence(s) to a new, uncharacterized sequence if the nucledc amino acid sequence of the molecules
is conserved. This nding has not only become the groundworlkfor all of today's pairwise sequence
comparison methods[[NW70[ SW8I| T P85, AGM 90,IAMS™ 97] commonly used for searching large
sequence databases, but also for several motif and domain @dases that contain motif descriptors
of conserved (parts) of sequences, like regular expresiofSWB98], position speci c scoring ma-
trices [GMES8Y], or hidden Markov models [Edd98], and their nodel speci ¢ search routines. Such
collections of diagnostic signatures/[WCF 98, [HSL" 04, [HSWO03,| FMSB' 0€], which often describe
functionally relevant parts of a molecule, like protein domains, transcription factor binding sites in
DNA, or catalytic active sites, have become an invaluable p& for homology based annotation and
classi cation of nucleic or amino acid sequences into funaébnally related groups or families.

Responsible for the abiding success of comparative sequenanalysis were not only algorithmic
contributions, but also the progress in genome sequencindhit generates an ever increasing amount
of sequence data available for comparative studies. This #snishing progress is re ected in the in-
creasing number of genomes sequenced in the last years. Tovgian example, theGenomes OnLine
Database (GOLD) [LTHKO8] lists not less than 2120 fully sequenced genomes b¥pril 2007, with
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‘ Year H Event

1953 || Discovery of the structure of the DNA double helix [WC53]

1958 || Discovery of the semi-conservative replication of DNA [MSH]

1965 || The rst theory of molecular evolution; the Molecular clock concept [ZP65]

1965 || Atlas of Protein Sequences, the rst protein database[[DEC$5]

1966 || Encryption of the genetic code is completed; rst codon decypted in 1961 [MN61]

1970 || Needleman-Wunsch algorithm for global protein sequence @nment [NW70]

1972 || Development of recombinant DNA technology, which permits solation of de ned frag-
ments of DNA [CCBH73]

1975 || Sanger DNA sequencinglISC/5]

1976 || Complete genome sequence of bacteriophage MS2 (3569hbp) [BC7€]

1977 || Maxim-Gilbert DNA sequencing [MG77]

1981 || Smith-Waterman algorithm for local protein sequence alignment [SW81]

1981 || Human mitochondrial genome sequenced [ABB81]

1981 || The concept of a sequence motil [Doo81]

1982 || Phage genome sequenced [SCHZ]

1982 || First public GenBankrelease containing 606 sequences

1985 || FASTP /FASTN sequence similarity search algorithms invented [LP85]

1987 || First pro le search algorithms [GMESY]

1990 || Introduction of the BLAST program (version 1) for fast sequence similarity search
ing [AGM * 9(]

1993 || Protein modeling with hidden Markov models [HKB* 93, [KMSH94]

1995 || First bacterial genomes Haemophilus in uenzae and Mycoplasma genitaliun) com-
pletely sequenced [FAW 95, I[FGW™ 95]

1996 || First archeal genome completely sequencedethanococcus jannaschii [BWO * 96]

1996 || First eukaryotic genome completely sequencedSacharomyces cerevisge/GBB ™ 96]

1997 || Introduction of gapped BLAST and PsiBLAST [AMS” 97]

1998 || The rst genome of a multicelluar organism is sequenced Caenorhabditis ele-
gang [Con9d]

1999 || The genome sequence ddrosophila melanogasteris sequenced [ACH 0Q]

2001 || The draft sequence of the human genome becomes available [Gl#l]

2005 || GenBankexceeds 100 gigabases

2005 || 454 Life Sciences announces massively parallel, high-thughput pyrosequencing ap-

proach [MEA™ 05]

Table 1.1: A brief time line of milestones in genomics and comutational biology.
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Figure 1.1: Number of completely sequenced genomes per yeaFor 2007, the data acqui-
sition period is January through April. Data source: Genomes OnLine Database
(http://www.genomesonline.org ).

607 completed only in 2007 (see FigurEZIl.1). In addition, majr nucleotide sequence databases like
GenBankcontinue to grow at an exponential rate, with a doubling of their number of bases ap-
proximately every 18 months [BKML ™ 07]. Due to the dispersal of new high-throughput sequencing
technologies{[MEA™ 05], which reduce the amount of time necessary to fully sequee the genome of
some species from years to days, these numbers will increasith an even faster rate in the future.
Another corollary of this technological progress in genomesequencing, however, is the forti cation
of the gap between data generation and data analysis alreadgbserved today. More precisely, sev-
eral of today's widely used sequence analysis programs, e.gairwise sequence comparison methods
for database searching, likeBLAST [AMS™ 97] and FASTA [LP85] or search tools for conserved
sequence motifs, likeMATCH [KGR* 03], EMATRIX [WNBUQOOQ], and the search tools from theHM-
Mer package [Edd98], are more and more faced with di culties in processing these large amounts
of sequence data in reasonable time. Often this problem is viated by a massive increase of the
applied compute resources, like large cluster systems, thuigh for some computational intensive
methods their application on complete genomes remains chi@nging even then. This problem is
mainly founded in the fact that most of today's widely used se&uence analysis methods show a
running time that is at least linear in the size of the search gace (i.e., length of the processed
sequences) and hence their running times su er from the expaentially growing sequence space.
Consequently, there is a strong need for new, e cient algorthms capable to handle tomorrows's
large amounts of sequence data. Ideally one is interested ialgorithms that show a running time
that is independent of the size of the searched sequence sgac

A possible solution to this dilemma is o ered by indexing of sequences with full text index data
structures like su x trees [\Wel73] or the more space e cient (enhanced) sux arrays [MM90,
AKOO04]. These data structures can be built in linear time and space from the sequences to be
searched with several algorithms[[Wei 73, McC76, Ukk95, KSB, [KSPP03,[KAO03] and allow for very
e cient access to subwords. Hence they can be used to e cienly solve many problems in sequence
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analysis. Although it is folk knowledge since the middle of he 1980's, that there are \myriads" of
possible applications of such data structures [Apo85], in grticular in the analysis of huge amounts
of sequence data, they barely found their way in today's widé/ used sequence analysis programs.

One of the main goals of this thesis is the utilization of full text index data structures for the
compute intensive searching with position speci ¢ scoringmatrices (PSSMs for short), a well known
motif model with a variety of applications in sequence analgis [GMES81]. For this purpose, we
developed and implemented new index-based algorithms foresrching with PSSMs, which clearly
outperform existing methods in terms of running time. We also demonstrate how index based PSSM
searching in combination with a fragment chaining approachcan be used for e cient protein family
classi cation, and for speeding up computation intensive daitabase searching with hidden Markov
models. With the PoSSuM software distribution, we also provide implementations ofthe presented
algorithms in form of a exible command line tool.

We further integrated PoSSuMsearchas a database search method in our integrated high-throughyt
sequence analysis systersenlight which is also a contribution of this work. Genlighto ers an in-
teractive, biologist compatible, and user friendly environment for a variety of large-scale sequence
analysis tasks with a special focus on (di erential) compasative genome analyses. It employs a set
oriented operational model, that allows to reuse generatedesults, and to perform complete anal-
ysis work ows in an interactive way. The system integrates ®veral widely used sequence analysis
methods and databases in a common environment, and is capablto perform analyses on a com-
plete genome or proteome scale by employing a distributed @nt server approach, even for non
index-based analysis methods. We demonstrate the practidausability of Genlightwith di erent
case studies in which the system was used and which lead to ssantial new scienti ¢ ndings.

1.2 Structure of this thesis

In this thesis, we present new e cient index-based algorithms for searching with PSSMs in large
sequence sets, and their integration into an interactive sgtem capable for large-scale di erential
comparative genome analyses.

In the following Chapter, we start with some introductory and motivating remarks on sequence
motifs and motif nding. We describe di erent modeling conc epts for sequence motifs and consensi.
This includes regular expression based motif descriptordSSMs and their construction principles,
Gribskov pro les, and pro le hidden Markov models. We discuss in detail strengths and weaknesses
of the di erent modeling concepts.

In Chapter 3, we make several new algorithmic contributionsto the eld of searching with PSSMs.
With algorithm ESAsearch and its variants we present new non-heuristic, index-baselgorithms
for searching with PSSMs that achieve sublinear running tire in the expected case and linear
running time in the worst case under certain assumptions. Tt variants include a version achieving
improved running time by operating on sequences recoded wit a reduced alphabet, as well as a
version to determine the k best matching substrings for a PSSM e ciently, without a con crete
threshold speci cation. In various benchmark experiments for nucleotide as well as amino acid
sequences, we evaluate the performance BSAsearch and its variants and compare our algorithms
with the best previous methods in terms of running time. We ako address the problem of non-
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comparable PSSM-scores by developing a method based on dyni& programming that allows for
the e cient computation of a matrix similarity threshold fo r a PSSM, given an E-value or p-value.
In contrast to other methods, our algorithm, called LazyDistrib, employs lazy evaluation of the
dynamic programming matrix leading to superior running tim es. We further describe thePoSSuM
software distribution implementing our algorithms.

In Chapter 4, we introduce the concept of PSSM family models ¢ increase the power of database
searches with PSSMs. We combine algorithnESAsearch with an e cient fragment chaining algo-
rithm to search with PSSM family models and evaluate its perbrmance for accurate protein family
classi cation. Therefore, we compare our approach with astate of the art hidden Markov model
based method and measure the classi cation performance fati erent evaluation scenarios in terms
of sensitivity and speci city. We further demonstrate the c apabilities of PSSM family models to act
as e cient pre- Iters allowing to speedup database searching with the compute intensive hidden
Markov models, as is implemented in thehmmsearch program, dramatically.

In Chapter 5, we describe the interactive high-throughput ssquence analysis systenGenlight We
provide an in-depth report of the overall architecture, the di erent parts of the system, and elucidate
the system's functionalities, including an overview of theintegrated analysis methods and databases.
We further demonstrate the practical useability of our system with three case studies in which
Genlightwas used, published in[[MBG 03,IBMM™* 04, |SBB"].

In the last Chapter 6, we conclude with a review of the achievd results and discuss potential future
developments and extensions.

We round up this thesis with an appendix. It contains, in particular, a detailed manual for the
programs included in the POSSuM software distribution.
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2 Modeling concepts for sequence motifs
and consensi

2.1 Basic de nitions and nomenclature

We start with some basic de nitions and notations used throughout this thesis. Some de nitions
may be omitted here as they are introduced later where they a& needed.

Denition 1  An alphabet A = fag;a;;::;;akg is a nite, non empty set. The elements of A are
characters.

De nition 2 A sequenceor string S of length n over an alphabet A is the concatenation ofn
characters of the alphabet. In particular " denotes the empty string/sequence. ByA" we denote
the set of sequences of lengtim > 0 over A. The set of all possible sequences over an aéohabét
including the empty sequence’ is denoted by A . It holds: S2 A" and A" A . A = ; A
with A% := f"gand A'™*! := fawj a2 A;w 2 A'g. The set of non empty sequences oveA is
denoted with A* = A nf"g. We write S as a sequence of symbols

S = $15,S3:::S,

Here s; 2 A is the i-th character of the sequence. We denote thé-th character also by S[i]. The
length of a sequence or string, denoted bySj, is the number of characters inS.

De nition 3 If S = uvw for some (possibly empty) stringsu,v,w 2 A , then

uis aprex of S,
v is a subword of S, and

wisasux ofS.

Denition 4 Let S2 A be a sequence, then we denote the set of subwords $fof length m by
words, (S) ;= fw2 A™ jw is a subword of Sg.

2.2 Motifs, domains, and sequence families

While the number of di erent, naturally occurring proteins is huge, most of them can be grouped
into a limited number of families on the basis of similarities in their sequences. Proteins belonging
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to a particular family generally share functional attribut es and in most cases are derived from an
evolutionary common ancestor. Throughout this work we use he term family for related nucleic
acid or protein sequences whose relationship extends ovene entire molecule. This relationship may
be evolutionary, structural and/or functional. Examples for well known sequence families are the
bacterial 16s rRNAs, which build together with proteins the ribosomal complex and are involved in
its enzymatic activity, or the protein family of cytochrome C molecules. Cytochrome C is a highly
conserved protein across the spectrum of species, found irlgmts, animals, and many unicellular
organisms. The molecule has been studied for the glimpse itiggs into evolutionary biology. E.g.,
both chickens and turkeys have the identical molecule (amio acid for amino acid) within their
mitochondria, whereas ducks possess molecules di ering byne amino acid. Similarly, both humans
and chimpanzees have the identical molecule, while rhesusankeys possess mitochondria di ering
by one amino acid. Cytochrome C is involved in manifold reacions and pathways inside the cell. It
can catalyze several reactions such as hydroxylation and amatic oxidation, and shows peroxidase
activity by oxidation of various electron donors. It is also an intermediate in apoptosis, a controlled
form of cell death used to kill cells in the process of develapent or in response to infection or DNA
damage.

It is apparent, when studying protein sequence families, tlat some regions have been more conserved
than others during evolution and in some cases the sequencé an unknown protein is too distantly
related to any known protein to detect its resemblance by oveall sequence alignment, but it can be
identi ed by occurrences of conserved modules or particularesidue types in its sequence. We call
such modulesdomains. They can be generally described as a family of subsequencescurring in
di erent contexts. In case of amino acid sequences, a domaimay be de ned as units of sequence
conservation or as units that independently fold into the same 3D structure. When analyzing pro-
teins, domains are omnipresent building blocks. Prominentexamples of proteins that contain several
domains with di erent functionality as building blocks det ectable by conservations on the amino
acid sequence level are the major subunit of bacterial DNA plymerase |, also known asKlenow
fragment. The Klenow fragment, which can be isolated by proteolysis from the DNA mlymerase |
holoenzyme, consists of two domains, one with DNA dependenpolymerization functionality and
one with 3'-5' exonuclease activity for proofreading durig DNA replication. See Figure[Z1 for
an example of this domain structure. The Klenow fragment has a wide range of applications in
molecular biology, like the synthesis of double-stranded DA from single-stranded templates or
the production of blunt ends in double-stranded DNA molecukes by digesting away protruding 3'
overhangs with its 3'-5' exonuclease activity. Another exanple for typical multi domain proteins
are RNA polymerase Il molecules, which catalyze the DNA depedent polymerization of RNA dur-
ing transcription. Since the revolutionary discovery of the structure of the yeast RNA polymerase
1 [CBKOl_IIfit is known, that RNA polymerases are more complex, multi chan molecules with a
distinct quartery structure and single chains build up from multiple domains (see Figure[ZP).

For short subsequences of high sequence similarity (withim sequence family) we use the ternmotif.
These can be small protein domains, transcription factor binding sites in DNA, or the catalytic
active site of a family of enzymes. See Figur€2.2 for an exartg These regions are generally
important for the function of the molecule like its binding p roperties or enzymatic activity and/or

1very recently, in 2006, this discovery was honored with the a ward of the noble price in chemistry for Roger D.
Kornberg.
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tivity for proofreading during replication whereas the carboxy-terminal domain (green)
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for the maintenance of its three-dimensional structure. Eg., transcription factor binding sites are
small conserved regions typically found upstream and clos¢o the transcription start site of a

gene. Through binding of a transcription factor, which is a protein, specic for the binding site,

the expression of that gene is regulated by activating or infbiting the transcription machinery.

Suchmotifs can be identi ed by analyzing the constant and variable properties of groups of similar
(sub)sequences. In case of proteins this often allows to diee a diagnostic signature for a family or
domain. This motif then distinguishes family members from all other unrelatedproteinsﬁ.

The use of diagnostic sequence motifs to classify nucleic igicor amino acid sequences into function-
ally related groups/families and hence predict their function(s), has a long history in the analysis
of bio-molecular sequences and is an essential and commoniged technique today. We motivate
the importance of sequence motifs and their subsequently deribed motif descriptor models with a
citation from the mid-1980s of R.F. Doolittle, a well known expert in protein sequence analysis

"There are many short sequences that are often (but not alway diagnostics of certain binding
properties or active sites. These can be set into small subéections and searched against your
sequencel[Doo86]."

When dealing with sequence motifs, one basically faces tworpblems. The rst, brie y described in
the following section, is the initial detection of a yet unknown motif in a set of given sequences and
the second is its representation with an adequate motif des@tor model that pro les the instances
of the motif in the set of sequences.

2.3 Motif nding

One scenario in which the problem of motif nding arises, is he discovery of binding sites of
regulatory elements like transcription factors. Considera set of upstream regions of genes, putatively
co-regulated by a common transcription factor. Such genesan be determined from a microarray
experiment by selecting genes with a common expression patn under the same conditions. Then,
all their upstream sequences should contain a common bindip site for the transcription factor,
which has to be identi ed. Alternatively, if the transcript ion factor is already known, a popular,
applicable, experimental technique to con rm motif bindin g and determine protein-DNA interaction
is chromatin immunoprecipitation (ChlIP). ChlIP is also appl icable on a large scale with its high-
throughput variant, called ChiP on chip [[HS ™01, IRRW* 0Q]. In a ChIP experiment, DNA with
bound transcription factors is broken up into various small parts by shearing. With the help of an
antibody, speci c to the putatively responsible transcription factor, antibody-transcription factor-
DNA complexes are precipitated. After washing out of the anibody and the transcription factor,
the selected small pieces of DNA can be ampli ed with PCR for sibsequent sequencing. We end
up with a set of sequences containing the common binding sitenotif of the transcription factor.
However, ChIP is only an option if the precise transcription factor is known and a speci ¢ antibody
for it is available.

2Although in literature such signatures are also called patt erns, in this thesis we use the term pattern only for
regular expression like motif descriptors, like the ones de scribed in section 2]

11
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Through either microarray or ChiP based methods, we obtain aset of DNA sequences, which we
have reason to believe, respond to the same transcription tor. The problem of motif- nding is to
nd the regulatory elements that these DNA sequences have icommon. In other words, we want
to nd subsequences, that are signi cantly over-represened in our set of sequences. More generally,
the problem of nding a motif can be abstracted to a search prdlem, that takes as input a set of
sequences with some kind of commonality, like predicted siitar function, or structure, or a common
context like upstream regions of putatively co-regulated gnes. Then, the output consists of a set
of relatively short subsequences of the input sequences arttleir description with a motif model.
In case of regulatory DNA motifs, these subsequences are tigally 8-15bp long and although they
often have a constant size, since a constant-size transctipn factor must bind to the motif, they are
highly variable. Consequently it is not su cient to nd an ex act substring of some length common
to all sequences under consideration.

Computationally, the motif- nding problem may be viewed as one of multiple local alignment [HS99,
FHSWO04]. Given a group of sequences that share a common bigial property, multiple local

alignment methods attempt to locate and align similar subse@uences, which may confer this property.
That is, given protein or DNA sequences, locate a region (i. a substring) of xed length from each

sequence such that a score determined from the set of regiois optimized.

Beyond the discovery of transcription factor binding sites there are numerous other applications
for motif nding. E.g., one could search for functional motifs at exon-intron boundaries, in 3'-
untranslated regions of localized RNAs, in 5'-untranslatel regions of translationally regulated RNAs
or to nd domains and motifs in sets of protein sequences.

Generally, we can formulate the motif nding problem as follows. Given a set of sequencek =
S1;Sy;:::;Sgwith S 2A foralll i I, and a word lengthk > 0. For the sake of simplicity,
we assume here that a reasonabl& is already known and hence takek as xed, although in
practice this is often not the case. Letw be a word with jw j = k, that has the best match to
the set of sequenced& . We de ne best based on the Hamming distance, although other distances
are also possible. Led(w; S;) denote the minimum Hamming distance betweenw and any word of
words (S;). Further, we de ne the total distance between w and the set of sequencek as

X
D(w;L):= diw; Sj): (2.1)

i=1
Then the optimal solution to the motif nding problemisto n daw 2 AX such that D(w ;L) is
minimized. Here the wordw in combination with the distance measureD de nes a motif (descrip-

D(w %L) <D (w ;L)g. In general a motif de nes a set of words and can be derived fim a set of
words, and it is noted in form of a motif descriptor.

The most obvious method to solve the motif nding problem would be simply to search exhaustively
through the set of all possiblew 2 A X, to nd the best match. Unfortunately this exhaustive search
is very expensive and often not feasible for problem sizes ogrring in practiclg. Observe, that there
are jAj * words of length k. Taking the total length of all sequences asn = ::1 iSij, the running
time of the sketched algorithm isO k n jAj¥ , as eachw must be checked against allO (n) words
in L and each check take (k) time. If we can assure, that the sequences i are error free, the
running time can be reduced toO k n? by checking only the O (n) words that actually occur in

12



2.4 Regular expressions as motif descriptors

L instead of all jAj¥ possible words of lengthk. However, this can lead to an overlooking of the
true w , since it may be the case that the best, or true,w is one that is very close to a number of
words occurring in L, but not exactly equal to any of them.

In practice, the motif nding problem is usually either redu ced to an enumeration and veri ca-
tion problem or to a multiple alignment problem. Either class of problems has been shown to be
NP-Hard [WJ94] Bra94|. Therefore numerous di erent algorithms have been proposed, employing
various heuristics or ad hoc constraints to discover motifse ciently [RHECY98,1YTI_* 9§, [Kei02].
These methods can be subdivided into two broad categories Is&d on the two major algorithmic
paradigms for motif nding. These are

Combinatorial approaches . Programs like Consensus[HHS90] or Pratt [JCH95] belong to
this category.

Probabilistic approaches . To this category belong methods based on Expectation Maxi-
mization (EM) [LR90], like MEME [BE95¢, [BE9Q5H] and methods based on Gibbs sampling
techniques [LAB* 93,INLL95], like AlignACE [HETCOO] or MotifSampler [TLM *01].

Since a detailed description of all the di erent variants of these paradigms is not in the scope of
this thesis, we only give a brief overview over the most widegl used tools (see Tabld=2]1) and refer
the reader in particular to [ITLB_* 05,[LT06]. These articles describe, compare and evaluate iterms
of prediction accuracy in detail di erent computational ap proaches for the prediction of regulatory
elements in nucleotide sequences. The described algorithmideas in these articles are in most cases
also applicable to amino acid sequences.

2.4 Regular expressions as motif descriptors

Once a motif has been derived from a set of related sequencds,must be described with some
kind of motif descriptor. A basic way to describe a sequence wotif and historically one of the oldest
approximate pattern models in sequence analysis uses regulexpressions. A regular expression,
often called apattern, is an expression that describes a set of strings. They are ually used to give
a concise description of a set, without having to list all its elements. Motif descriptors in form of
regular expressions are used to describe amino acid (see big[Z34) as well as nucleotide motifs. A
well known example for a nucleotide motif describable with aregular expression is the TATA-box
found in the promotor region of many prokaryotic genes. The TATA-, often also called Pribnow-box,
is a conserved cis-regulatory element. It is the binding si of either transcription factors or histones
(binding of a transcription factor blocks binding of a histone and vice versa) and is involved in the
process of transcription by RNA polymerase. It has the consesus DNA sequences® TATAAT 3°
but can vary slightly. E.g., TAAT TATATand TAAATcan also be found. The set containing the four
strings TAAT TATATTATAATand TAAATan be described by the patternTAT?AZT or alternatively,

it is said that the pattern matches each of the four strings. Here the '?' indicates that there is zero
or one occurence of the preceeding expression. In most fortisans describing regular expressions,
the following operations for their construction are provided:

13



2 Modeling concepts for sequence motifs and consensi

Program Operating principle Algorithmic
paradigm
AlignAce [HETCOO] Gibbs sampling algorithm that returns a series of m otifs  Probabilistic

as PSSMs that are overrepresented in the input set.

Consensus [HS99] Models motifs using PSSMs, searching for the matrix Combinatorial

with maximum information content.

MEME [BE95D] Optimizes the expectation value of a statistic rela ted to  Probabilistic

the information content of the motif.

MotifSampler [TLM " 01]Matrix-based, motif nding algorithm that extends Probabilistic

Gibbs sampling by modeling the background with a
higher order Markov model.

Oligo/dyad- Detects overrepresented oligonucleotides and spaced mo- Probabilistic
analysis [HRCVO0O] tifs with dyad-analysis.
Pratt [JCH95] Identi es conserved motifs in a set of unaligned protein  Combinatorial

sequences. The method guarantees to nd the highest
scoring motif in a user de ned motif class, according to
a de ned tness measure.

PROTOMAT [HH9I] Detects series of overrepresented motifs in form of un- Combinatorial/

gapped blocks in amino acid sequences by employing a Probabilistic
combinatorial algorithm[$AC90]las well as a modi cation
of Lawrence's Gibbs sampler{LAB* 93].

QuickScore [RD0O4] Based on an exhaustive searching algorithm that esti- Combinatorial
mates probabilities of rare or frequent words in genomic
sequences.

YMF [ST03] Uses an exhaustive search algorithm to nd motifs wit h  Combinatorial.

14

the greatest z-score. Motifs are formulated as sequences
over the IUPAC alphabet

Table 2.1: Widely used motif nders and their operating prin ciples.

concatenation : A centered dot () or minus (-) concatenates two regular expressions. In
practice the concatenation operator is often not explicitly written, thatis T T=T T=TT.

alternation : A vertical bar separates alternatives. For example, TAAj TTAmatches TAAor
TTA which can commonly be shortened toT(Aj T)A

grouping : Parentheses are used to de ne the scope and precedence oktlperators. E.g.,
TAAj TTAand T(Aj T)A are di erent patterns, but they both describe the same set ofstrings.

quanti cation : A quanti er after a character or group speci es how often that preceding

expression is allowed to occur. The most common quanti ers ge ?, +, and *. The question

mark indicates that there is zero or one occurrence of the prgous expression. The plus sign
indicates that there is at least one occurrence of the precadg expression and the asterisk,
also calledKleene operator, indicates there are zero, one or any number of ocectences of the
preceding expression.



2.4 Regular expressions as motif descriptors

Figure 2.3: Deterministic nite state automaton (DFA) for r egular expressionTAT?AA?T, describing
the TATA-box motif found in many gene promotors. Here state 1 is the start state and
state 7 is the only accepting state.

These rules can be combined to form arbitrarily complex expessions, which again are regular
expressions. The set of strings matched by a regular exprés® R is also called the semantic or
language ofR, denoted by L (R). Generally, we de ne the syntax of regular expressions andheir
semantic as follows.

Denition 5 Let A be an alphabet. A regular expressionand its associatedlanguage (semantic)
L over A is de ned as follows.

is a regular expression withL( ) := f g.
a is a regular expression for anya 2 A with L(a) := fag.

If and are regular expressions, then is a regular expression withL ( ) == fuvju 2
LC)sv2L()g

If and are regular expressions, then | is a regular expression withL( | ) :=

LC)IL ()
If is a regular expression, then () is a regular expression withL (( )) := L( ).

S _
If is a regular expression, then is a regular expression withL(a ) .= , 4L( '), where
L( 9:=fgandL( "):=L( .

In the Chomsky hierarchy of formal languages, the class of laguages describable by a regular
expression is called type-3 language, or regular languagdt is a subset of type-2 context free
languages, type-1 context sensitive languages and type-Ontestricted languages. Note that, regular
languages are exactly all languages that can be decided by aéterministic and non-deterministic)
nite state automaton (DFA and NDFA for short).

A DFA takes in a string of input symbols. For each input symbol it will then transition to a
state given by following a transition function. While trans itioning from state to state, symbols are
accepted or rejected. When all symbols are accepted and theurent state is an accepting state, the
string is accepted. We de ne a DFA according to the following de nition.

De nition 6 A deterministic nite state automaton (DFA) is a 5-tuple, (S;A; ;So;A) consisting
of

1. a nite set of states S,
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2 Modeling concepts for sequence motifs and consensi

2. an alphabetA,
3. atransition function :S A S,
4. a start state sp 2 S,

5. a set of accepting statesA  S.

Let M =(S;A; ;sp;A)beaDFAand T = tpt;:::t, be a string overA. M accepts or matchesT
if and only if a sequence of stateso;ry;:::r, exists in S satisfying the following conditions:

l.ro=5
2. ri+1 = (rizt), fori2[0;n 1]

3.rh 2 A.

That is, for matching a pattern described by a regular expresion we must construct the correspond-
ing DFA and process the sequence to be searched with the DFA.€8 Figure[Z3B for an example of
a DFA recognizing a simple sequence motif described by a retar expression.

In practice, di erent regular expression matching enginesand tools utilizing them, like grep, awk,

or Perl, use di erent avors of regular expressions with varying syntaxes and in some cases di erent
semantics. An e ort of standardization was undertaken by dening a POSIXE speci cation for

regular expressions. POSIX distills the various common awrs into just two classes,Basic Regular
Expressions (BRESs), and Extended Regular Expression{ERES). Fully POSIX-compliant tools use

one or both of the avors.

2.4.1 Consensus strings

For the description of the consensus of a set of sequencesg.ea multiple alignment of related
sequences, sometimes simple strings over extended alph&bere used. These alphabets contain
special letters, representing character classes and allote describe equivocalities in a column of the
alignment. These letters may describe subsets of the alpha, de ned by a common property, e.g.
polarity or hydrophobicity in case of amino acids. See TabldZZ for an example of a standardized
extended nucleotide alphabet. Obviously, these consensistrings are regular expression, since any
character class can be written as a sequence of alternatiori®etween its members.

2.4.2 Prosite patterns: Regular expressions for protein fa mily assignment

A well known collection of diagnostic sequence patterns foprotein family assignment is the PRO-
SITE database [HBB 0€]. It contains in its latest release Rel 19.29 1331 documésd patterns.

PROSITE patterns are manually curated and are derived with expert knowledge about groups or
families of sequences from multiple alignments. In particlar, attention is drawn to the residues and
regions thought or proved to be important to the biological function of that group of proteins, since
they are often highly speci ¢ and hence discriminative desdptors. These biologically signi cant

regions are generally:

3POSIX = Portable Operating System |nterface for Uni x
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2.4 Regular expressions as motif descriptors

Symbol  Semantic Description
R AjG purine
Y CjT pyrimidine
w AjT weak hydrogen bond
S GjC strong hydrogen bond
M AjC amino group
K GjT keto group
H AjCijT not guanine
B GjCjT not adenine
\% GjAjC not thymine
D GjAjT not cytosine
N GjAjTjC any

Table 2.2: IUPAC extended nucleotide alphabet

Enzyme catalytic sites.
Prosthetic group attachment sites (heme, pyridoxal-phosgate, biotin, etc.).
Amino acids involved in binding a metal ion.

Cysteines involved in disulphide bonds, since they are indwed in and important for secondary
structure formation.

Regions involved in binding a molecule (ADP/ATP, GDP/GTP, ¢ alcium, DNA, etc.) or an-
other protein.

If a pattern common to all sequences under consideration iofind, e.g. with one of the motif nders
presented in Table[Z1, it is screened versus the SwissProtrgtein database, to make sure, that it
matches all other known members of this family and only this aad hence makes a good discriminative
descriptor for the protein family under consideration.

PROSITE patterns are formulated as limited regular expressons, which represent a subset of the
class of full regular expressions. In contrast to full regudr expressions, they contain noKleene
operator, and alternations are only de ned between stringsof length 1 (single characters). These
limitations have almost no negative e ect on their ability t o describe biological sequence patterns
adequately, but allow the construction of easier matching agines and the use of fast bit-vector
algorithms, like SHIFT-AND [WM9Z2[land/or SHIFT-OR [BYG89[]. Even fast approximate match-
ing of these limited regular expressions (e.g. matching ofagular expressions allowing errors) is
possible [Mye99].

The syntax of Prosite patterns

PROSITE uses the standard IUPAC one-letter code to representhe amino acids and established
widely accepted conventions for the notation of regular expession based patterns in computational
biology. The employed syntax, which is di erent from the standard POSIX notation for regular
expressions, is given in the Tabld—Z13.
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2 Modeling concepts for sequence motifs and consensi

-N-P-Q- Each element in a pattern is separated from its neighbor by a -.

-N-X-Q- The symbol Xis used for a position where any amino acid is accepted

N-[AST]-Q- Ambiguities are indicated by listing the acceptable amino a cids for a given position
between square brackets, i.e. in this example Alanine, Serne and Threonine.

N-f M-Q- Curly brackets indicate residues that are not accepted in th is position i.e. not Me-
thionine or Proline.

N-A(2,3)-Q- Repetition of an element of the pattern can be indicated by fo llowing that element

with a numerical value or a numerical range between parenthesis, i.e. in this example
N-A-A-Q and N-A-A-A-Q.

N-A(2,3)-Q> | If a pattern is restricted to either the amino- or carboxy-te rminal end of a sequence,
that pattern either starts with < or respectively ends with >.

A period ends the pattern.

Table 2.3: Syntax of PROSITE patterns

The pattern describing the TATA-box element, as given befor, can be written in PROSITE syntax
as T-A-T(0,1)-A-A(0,1)-T . Beyond the pattern de nition, a PROSITE entry contains add itional
annotation information about the sequence family characteized by the pattern, like a listing of
already known members of the family, active site position anl many more. Figure[A] on pagd 198
gives a concrete example of a PROSITE entry.

Although motif descriptors based on regular expressions & quite successful for protein function
prediction and family assignment [HBO1], there are a numbeiof protein families as well as functional
or structural domains that cannot be accurately detected usng this kind of motif descriptors due
to their extreme sequence divergence. In such cases altetha, more exible techniques are used
to build a model that describes a family of related sequenceadequately. One of these modeling
concepts are position speci ¢ scoring matrices which are tén better suited for motif description in
heterogeneous protein families than regular expressions.

2.5 Position speci ¢ scoring matrices

Position specic scoring matrices (PSSMs), often also ca#id position-weight matrices (PWMs),
probabilistic patterns, or pro les, have a long history in sequence analysis (se¢_[GMEB7]). They
are successfully used in nucleotide as well as in amino aciéguence analysis as approximate mo-
tif models, e.g. for the representation of transcription fector binding sites (TFBSs for short) or
conserved regions of proteins. In particular for modeling 6 short conserved regulatory motifs in
DNA, like TFBSs, PSSMs are the method of choice. This can alsde seen in a comparison of 13
computational tools for TFBS prediction described in [TLB* 05], where the majority of tools uses
PSSMs to describe the predicted motifs.

The primary intuition of a PSSM is that a multiple alignment o f related sequences, which is normally
the building material for a PSSM, can reveal position-spect amino acid or nucleotide propensities.

If these information is properly deployed it should increa® the sensitivity in a database search for
recognition of distant homologs. Many studies have shown tht database searches using PSSMs as
queries are more e ective at identifying distant protein relationships than are searches that use the
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2.5 Position speci ¢ scoring matrices

ABC33. AGLA/285-305 Cfs.. CaekVaeflgenpHvnl.. H
ABRLDROME/546-567 Cpk.. CgkiYrsahtlrt Hledk. H
ACEI1TRIRE/402-424 CrepgCtkeFkrpcditk Hekt.. H
ACE2SCHPO/475-495 Cdl.. CkagFvrhhdlkr Hlri.. H
ACE2YEAST/605-627  Clypn CnkvFkrrynirs Hiqt.. H
ADNEHUMAN/514-535 Cpy.. CrstFndvekmaaH mrmvH
(A) | ADNEMOUSE/233-254 Cpy.. CrstFndvekmaaH mrmvH (B)
ADNERAT/234-255 Cpy.. CrstFndvekmaaH mrmvH
ADRIYEAST/106-126  Cev.. CtraFargehlkr Hyrs.. H
AEF1DROME/270-290 Cvi.. CkkgFrgsstinn Hiki.. H
AEF1DROME/242-262 Cnf.. CpkhFrglstlan Hvki.. H
AEGAECOLI/15-37 Cha.. CeiaCvmahnded visgh H
AIOLHUMAN/148-168 Cng.. CgasFtgkgnllr Hikl.. H

C2H2 type zinc finger
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Figure 2.4: Multiple alignment of C2H2 type zinc nger domain sequences (A) and three dimensional
structure of C2H2 domain of the mouse protein Argenine N-Mehyltransferase 3 (B).
Yellow marked part of structure corresponds to part of sequace shown in the multiple
alignment. As apparent in the sequence logo (C)ICHCBO4], tis domain family can be de-
scribed by the characteristic pattern C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H
(PROSITE Accession: PS00028). Zinc nger domains have beefound in numerous nu-
cleic acid binding proteins and for several members of thisadmily zinc-dependent DNA
or RNA binding properties could be demonstrated, experimetelly. The two conserved
cysteines and histidines of the C2H2 type at the extremitiesof the domain are involved
in the tetrahedral coordination of a zinc atom, when binding to DNA or RNA.
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2 Modeling concepts for sequence motifs and consensi

information of a single sequence like standard pairwise segnce comparison methods. In sequence
analysis with PSSMs, the basis for comparison is not a genekrgurpose substitution matrix like
BLOSUM [HHB8Y], as in traditional pairwise sequence compason [AGM* 9], but also structural
information implicit in the multiple alignment of related s equences used for PSSM construction.
Unlike the pairwise alignment methods, intuitively, PSSMs use the fact that certain positions in a
family of related sequences are more conserved than other gitions, due to their conformational or
structural relevance, and allow substitutions less ready in these conserved positions. The PSSM
model incorporates this position speci c information and alows, if used in a database search sce-
nario, increased sensitivity and speci city, compared to pmirwise sequence alignment methods that
use position independent general purpose scoring matricdike BLOSUMG62 or PAM120. One pop-
ular program that makes use of PSSMs for database searching ithe Position-Specic Iterated
BLAST (PSI-BLAST) program [AMS_* 97]. PSI-BLAST computes a PSSM from a set of homol-
ogous sequences and iteratively scans the database with theerived PSSM as a scoring matrix.
In each iteration the PSSM is recomputed based on the set of fmd sequences. A complementary
approach is used in the IMPALA software package |[SWP 99]. IMPALA compares a single query
sequence with a database of PSI-BLAST generated PSSMs usirggvariant of the Smith-Waterman
algorithm [SW81]] to compute an optimal alignment between a FSSM and a sequence.

In protein sequence analysis PSSMs often help to model and tilentify structurally or functionally
important regions within a family of proteins, such as cataltic sites, substrate binding sites and
intermolecular interaction sites. Those regions are assued to have a highly conserved tertiary struc-
ture to be biologically functional. Certain types of struct ural information, however, are not generally
captured by PSSM search methods and recent publications desibe approaches to include available
structural information explicitly. The Structure-Based A lignment Tool (SALTO) [KTP_* 04] for ex-
ample aligns protein query sequences to PSSMs derived from@Bl's conserved domain database
(CDD) [MBADS ~ 08]. The algorithm uses additional rules to compute only algnments that are
consistent with the conserved regions of domain alignment&rom the CDD. A di erent more visual
approach to include structural information is used in the program 3MATRIX [BLBO3]l 3MATRIX
combines sequence information determined by sequence selaes with PSSMs and maps these on
structural models obtained from protein structure databases, like PDB (see FigurdZFb for an exam-
ple). This allows to link sequence attributes like residue onservation with structural attributes, e.g.
solvent accessibility. Here again, the underlying idea ishat conserved sequence motifs can be seen
as structural elements that may have the same local tertiarystructure in whatever protein they
are found in. Hence linking three dimensional information fom crystallographic experiments to
PSSMs may provide new insights in the potential functional a structural contributions of residues.
In [BLBO3] the authors state that the structural environment of conserved residues described by a
PSSM allows one to better target them for further experiments, such as mutagenesis or drug design.

2.5.1 From alignment blocks to PSSMs
The prerequisite for the construction of a PSSM is the discoery of a motif shared by several or all
members inside a family of related sequences. As already deibed in sectionZ3, this is a basic, but

challenging task. A special type of motif often described inliterature is the block or alignment block
An alignment block is (a part of) a gapless local multiple segience alignment (see Figur&2l16 for an
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Figure 2.5: BMATRIX visualization for a sequence motif descibed by a PSSM represent-
ing a glycine-rich cytoskeletal associating protein (CAPGly) domain (InterPro ID:
IPB000938) found in the PDB structure 1LPL, a CAP-Gly protei n from Caenorhab-
ditis elegans Di erent shades of blue in the left model (A) visualize di e rent degrees
of sequence conservation. In the right model (B) amino acidsre colored with a shade
of green determined by the relative solvent accessible swa€e area of the amino acid
at each motif position. The most solvent-exposed amino acisl are also the most highly
conserved in this motif, which is an expected result for a maf known to represent a
protein-protein interaction domain. Figure taken from [BL_BO3].

example). The proper determination of characteristic, fanily speci c alignment blocks, representing
functionally important and thus conserved regions of nucletide or amino acid sequences, is the rst
step in the PSSM construction process. Blocks can be carvedub from fully-ungapped regions of
gap containing multiple global alignments constructed with standard multiple alignment programs,
like Clustalw [HTG *94], DCA [SMDY8, [Sfa98] or T-Co ee [NHHOC] or generated by uig local
sequence alignment methods such as BLAST. Also some of the theds presented in sectiofZI3 on
pagelTl for nding a localized region of sequence similarityn a set of sequences without rst having
to produce an alignment can be used. An example for suclab initio motif discovery methods is
the CONSENSUS program [HS9b] for the prediction of regulatoy motifs. Other programs like the
PROTOMAT system [HH91I] even allow the fully automated detection of ordered, characteristic sets
of alignment blocks from a family of related amino acid sequeces. High quality multiple alignments,
usable to derive useful alignment blocks, as well as alreadgierived PSSMs for database searching
are publicly available in several collections and database The following enumeration gives a brief
overview about the largest and most popular collections:
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2 Modeling concepts for sequence motifs and consensi

the BLOCKS database [HGPHOD [HP99]
Contains groups of short multiple alignment blocks of conseved, characteristic protein se-
quences, e.g. catalytic domains and receptor sites;

the eBLOCKS database [SLSBOb|_Gal05]

is a database of ungapped alignments of highly conserved riegns among a protein family or
superfamily. eBLOCKS is automatically generated from all against all PSI-Blast searches in
the SwissProt database;

the Pfam (ProteinFamilies) database [BBD™ 0Q]
Large collection of manually curated high quality, and automatically generated multiple align-
ments of protein families and inferred hidden Markov models

the TIGRFAMs protein family database
Manually curated multiple sequence alignments of protein &milies;

the PRINTS database [AMG" 06, |ACFE" 0Q]
Database containing protein ngerprints in form of (ordered) sets of gapless multiple align-
ments and derived PSSMs;

the PROSITE database [HBEB99]
Collection of PSSMs and regular expressions of charactetis protein sequence motifs;

the HAMAP protein family database [GMR™ 03]

HAMAP is a collection of multiple alignments of orthologous microbial protein families, gen-
erated manually by expert curators. They are used for the hidp-quality automatic annotation
of microbial proteomes in the UniProtKB/SwissProt protein knowledge base;

the PRODOM database [CGK99]
Database containing multiple alignments of protein domainfamilies;

the commercial TRANSFAC database [WCF 98]

on eukaryotic cis-acting regulatory DNA elements and transacting factors, containing infor-
mation on transcription factors, regulated genes, regulabry sites and binding sites of tran-
scription factors modeled as PSSMs;

the JASPAR database [SAE 04]

is a freely available, high quality transcription factor binding pro le database. It is a non-
redundant and curated collection of transcription factor DNA-binding preferences of multi
cellular organisms, modeled as position speci ¢ scoring meces. All models in this database
are derived from published collections of experimentally & ned transcription factor binding
sites.

We now render the concept ofalignment blocks PSSMs and their relationship more precisely.
De nition 7 An Alignment block A of length m is a set ofl sequences of lengtim over alphabet

A. Ais represented as at ' m matrix with elements a;; 2A and1 i 71 j m,with a
be the j -th character of the i-th sequence.
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ks6h xenla
a3o0001
c32571
ks62 mouse
ks62 human
aj7459

ks6a xenla
a32571

ks6a chick
ks6l mouse
151901
aj3300
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Figure 2.6: Alignment block representing a part of the multifunctional calcium/calmodulin-
dependent protein kinase Il (CaMKIl), a kinase enriched in g/napses. CaM kinases
belong to the family of Ser/Thr protein kinases and have an exremely wide tissue
distribution.

See Figure[ZBb for an example of an alignment block. A PSSM ismaabstraction of an alignment
block of related sequences (see Figule2.7 for an example)doan be de ned as follows.

Denition 8 A PSSM M isafunctionM :[O;m 1]A! , wherem is the length of M and A is
a nite alphabet. In case of matrices over the nucleotide alfhabet we de ne the reverse complement
M of the PSSMM asM (i;a)= M(m 1 i;a)foralli2[0;m 1Janda2A = fA;C;G;Tg,
where @ is the Watson Crick complement of nucleotidea. Thatis A= T, C = G, G = C, and
T=A.

Usually M and M are represented by anm jAj matrix, as shown in Table [Z2.

Large collections of curated, high quality alignment blocks allow the identi cation and function
assignment of a sequence by comparing it against every aligment block. The rst step for such a
comparison is the conversion of each block into a PSSM. Sewarmethods for this conversion have
been developed [GMES8/7, TAK94| TAK94,[HH96, SKB" 96,[WNB99] over the last two decades. The
basic task when computing a PSSM from a given alignment blocks to estimate the probabilities of
each amino acid or nucleotide appearing at each position ofiie alignment block and convert them
into a scoring system that discriminates best between true psitive and true negative members of
the family represented by the alignment block. The scores ireach row of a PSSM can be derived in
a number of ways, but are naturally based on the frequency digibution of the characters observed
in that position of the block, such that a nucleotide or amino acid that occurs more frequently
receives a higher score.

In the following paragraphs we describe some widely used P®&6construction methods and illustrate
the basic principles and underlying ideas. Since PSSMs areagticularily used as motif descriptors
for protein families, most of the construction methods belav were originally developed for amino
acid sequences.
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Figure 2.7: Multiple alignment of 3, transcription factor sequences (top), corresponding PSSM
(center) and sequence logo based on relative frequenciesoftom) (representing block
from position 11 until position 20). Observe that high scoring values in the PSSM cor-
respond to highly conserved residues in the multiple alignrant and larger character
symbols in the sequence logo.
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2.5 Position speci ¢ scoring matrices

‘(A)denin (C)ytosin  (G)uanin  (T)hymin H (A)denin (C)ytosin  (G)uanin (T)hymin ‘

28.50 256.54 85.51 28.50 47.70 47.70 28.62 9.54
28.62 47.70 47.70 9.54 106.40 148.95 21.27 21.28
45.54 4554 45.54 500.92 41.19 32.95 8.24 32.95%
320.83 0.00 71.29 106.94 96.46 41.34 13.78 41.34
47.29 15.76 15.76 31.53 31.53 15.76 15.76 47.29
41.34 13.78 41.34 96.46 106.94 71.29 0.00 320.88
32.95 8.24 32.95 41.19 500.92 45.54 4554 45.54
21.28 21.27 148.95 106.40 9.54 47.70 47.70 28.62
9.54 28.62 47.70 47.7( 28.50 85.51 256.54 28.50

Table 2.4: A9 4 PSSMM (left matrix) and its reverse complementM (right matrix) of length m =
9 over the nucleotide alphabetA = fA; C; G; T g, describing a transcription factor binding
site motif found in the promotor sequences of HOX A3 genes. H® (homeobox) genes
and their regulation play a major role in developmental proliferation of cells. Example
taken from the TRANSFAC database.

2.5.2 Sequence weighting procedures

Families of sequences are almost always highly biased andithcorrelation should not be ignored
when aligning if it is su ciently extensive. A typical prote in family in sequence databases is a highly
non-random sample of sequences where organisms with a loterm research tradition like E.coli or
D.melanogaster pathogens with medical impact like H.pylori, or economically relevant organisms
like S.cerevisaeare heavily over-represented irrespective of their evolubnary role. Beside such issues
based on selection, statistical correlation between simér sequences may arise from their common
evolutionary origin or as a result of similar functional requirements.

For the construction of PSSMs which subsequently will be usé as a motif descriptor in database
searches, it is common to nd a group of sequences with a ceria amount of diversity when con-
structing an alignment block. Some members of this group wilbe nearly identical, whereas others
may be as little as 20% identical, when aligned. Obviously, ach of the nearly identical sequences
contributes much less information than each of the 20% iderital sequences.

To compensate for over-representation among multiply aligmed sequences which would lead to
PSSMs that inadequately model the underlying sequence farties and that would overspecialize
to the over-represented sequences, various concepts of segce weighting procedures have been de-
veloped. These methods give theutlier sequences, those that do not belong to the highly similar,
over-represented group, additional importance in the calalation of the PSSM values.

For the weighting, numerical coe cients (sequence weightd are associated with each sequence to
denote the degree of independence of this sequence from ththers in the multiple alignment. For
example, low weights are given to sequences that are redundaand high weights to sequences
that are diverged. In its most drastic form, additional similar sequences are discarded from the
set of sequences to be aligned, i.e. they achieve a zero weigand only highly di erent sequences
remain [NLCLL97] HSHA9Z]. Other techniques use the full segance information and can be roughly
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2 Modeling concepts for sequence motifs and consensi

categorized in two classes, evolutionary tree-based and geence distance-based methods. Tree based
approaches assume that the sequences in the set under corsidtion have a common evolutionary
origin and are a result of divergent evolution and that an evdutionary tree can be constructed from
sequence or additional information [THG94].

The distance-based methods[[HHI94[ [XB94] avoid the problem of tree topology and even do
not require that the sequences are related at all. Sequenceeights are calculated from a residue
similarity matrix, like PAM or BLOSUM or from the amino acid t ype diversity observed in each
column of the multiple alignment. For example in the method proposed in [HH94], for each position
in a sequence, a weight inversely proportional to the numbepf di erent amino acids in the column
and the number of times the amino acid of interest appears inte column, is computed. The weight
of a sequence is then the average of the weights in all positis, normalized to sum up to 1.

The approaches for sequence weighting described so far haire common, that a single sequence
weight is assigned to a sequence. Implicitly this means, thathe evolutionary rate of residue changes
is believed to be equal in all positions of the sequence. IhER* 99] the authors introduce a sequence
distance-based approach that incorporates position-spéc sequence weights. They describe that
their method based on position-speci ¢ independent counts produces PSSMs, that are in many
cases more powerful in detecting members of protein fold failies, than e.g. PSI-BLAST derived
PSSMs [AMS' 97]. Although many di erent sequence weighting proceduresare described in litera-
ture, it remains to be di cult to identify a single, best weig hting method, since the choice of the
weighting method depends both on what the resulting PSSM wil be used for and the particular
group of sequences being modeled.

Methods that determine a PSSM from a set of aligned sequencdmsically face two di culties. First,

the problem of interdependence between sequences in the ugrdying alignment block (biased data),
and second, the problem how to derive a PSSM from an alignmenblock adequately, especially
when the number of aligned sequences is small. The rst prol@m can be addressed with sequence
weighting procedures. Principles and approaches for the send problem will be presented in the
following. For the methods to be described, we assume that th sequences in the alignment block
are already weighted to compensate selection biases and pottial redundancies.

2.5.3 Basic PSSM construction principles

The rst step when generating a PSSM is to determine a matrix based on of absolute residue
frequencies. This is also fundamental for more complex PSSMeneration methods. In literature
such counting matrices are often also callegro les, position frequency matrices (PFMs for short) or
simply count matrices. Although in literature some authors distinguish between munting matrices,
pro les, and PSSMs we use the generic term PSSM for all theseypes of matrices throughout this
work, since for the matching algorithms described in the nekchapter, it is irrelevant how the matrix
values are determined and what their semantics are. Howevemwe will see that some matrix value
determination principles are better suited for scoring in adatabase search scenario than others.

In a PSSM based on residue counts, each element in the matrixonitains the number of occurrences
of a certain residue at a specic position in the alignment block. More precisely: Let A be an
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2
1 2 3
G T A 3
A A A 21121@
A Ma=91 2 1 1
T Cc C A
2 1 1 1
G G G
cc T

Figure 2.8: Let A be an alignment block of 5 sequences of length 3 over the nuciéde alphabet
A =fA;C;G;Tg. The PSSMM with m;.; = counta (i;a) based on absolute frequencies
frequency corresponding toA is shown on the right.

[O;m 1], a2 A; k2 [1;1] a Kronecker symbol, such that

1; if Sk[i]= a;

i;a;k) = ; 2.2
( ) 0; otherwise : (2:2)
Now let count be a function [Gm 1] A! de ned as

X

countp(i;a) := (ba;k)=jfS2 AjS[i]= agj

k=1
Hence a PSSMM based on absolute frequencies (counts) isa jAj matrix with

Mi.a = counta (i a) (2.3)

See Figure[ZB for an example of an alignment block over the mleotide alphabet and the corre-
sponding PSSM based on absolute frequencies.

Absolute frequencies are easily converted to relative fragencies. That is, each element of the PSSM
contains the fraction of the total number of occurrences of aresidue at a speci c position in the
alignment block and the number of aligned sequences. Ldtbe the number of aligned sequences in
the alignment block, then a PSSM based on relative frequeneis is am jAj] matrix M with

Mia = w 2.4)

In a database searching scenario, where a PSSM is used as a agsor for a family of related
sequences, PSSMs based on residue counts or relative frequees are not appropriate. Counts or
relative frequencies are an imperfect representation of aatumn in the alignment block since they do
not take the background residue frequencies into account. & an example, reconsider the alignment
block and derived PSSM given in Figure[ZB. Heram;.c = ma.c = ms.a holds and consequently,
when using this PSSM in a database search, a guanine in the tgosition achieves the same score
as a cytosine in the second and an adenine in the third positio, although it is probably more
likely to see a cytosine just by chance than a guanine, sinceytosine occurs more often in the
sequences to be searched than guanine. Further, the sequescincluded in the alignment block are
an incomplete sample of the full set of related sequences arnce the derived counts or frequencies
can be misleading and deviate signi cantly from the frequerties of the whole family. This leads to
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2 Modeling concepts for sequence motifs and consensi

the basic problem of how to convert observed counts into truefrequencies or scores, adequately.
The set of observed counts is nite and almost always contais zero counts for one or more amino
acids or nucleotides. However, zero frequencies are undesble, because they may exclude true but
unusual members of a given family. Therefore, some methodoyly have to be used to estimate the
true frequencies at a position in the sequence based on the sérved counts in the corresponding
column in the alignment block.

2.5.4 PSSMs based on odds ratios

Instead of using residue counts or relative frequencies orideally would like to create an odds ratio
based score for each column in the alignment block. Residueants can be converted to odds ratios
of probabilities that are expected to be observed[BH87,_SHY). Let g5 be the unknown probability
for residuea occurring in column i of the alignment block and p, be the expected frequency o# in
a random sequence, which can be estimated from the overall #zkground) frequency of residuea in
a large sequence database. As the number of sequendes the alignment block A grows, estimates
of g.a should converge to the relative frequencies‘w. Thus, for su ciently large values of |,
we can estimate the odds ratio of residuea appearing in columni of the alignment block as

Ga  counta(i;a)

Pa | pa (2:5)

In [HWB90] these odds ratios are directly used as score valgein a PSSM. That is, a PSSM based
on odd ratios is am jAj matrix M with

Mg = 2. (2.6)
Pa
To achieve a more convenient additive scoring system, some ethods use log-odds ratios instead of
simple odds ratios [BH87,. LAB" 93]. In these methods a PSSM based on log-odd ratios is de ned
asam jAj matrix M with
miq = log Ga (2.7)

a
In this case the PSSM valuesn;, are the log of the ratio of two probabilities - the probability that
symbol a occurs at positioni in the family described by the PSSM and the probability that a occurs
at position i just by chance. p, is often also called the probability of the null model, or background
probability, since it expresses how likely it is to see symbba by chance. Although log-odd ratios
provide a simple, additive scoring system that maximizes dectivity for observed residues, log-odd
ratio based PSSMs have some drawbacks:

Residue similarity problem: They do not take conservative replacements of residues into
account and hence may fail to detect distantly related membes of the family.

Incomplete sample problem:  There are often not enough sequences included in the align-
ment block A, making A an incomplete sample of the full set of related sequences. lpractice,
the number of sequences needed to accurately estimate the gacted amino acids at each po-
sition in a protein is often larger than the number typically available in an alignment block

28
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for most protein families. Moreover, it is prevalently the case that the available data is skewed
towards one or more subfamilies of the protein being modeledsuch that a large fraction of
the sequences are highly redundant and minor variants of e&cother. In such a casew
is not an adequate estimate forg., . This problem is known asover tting and a variety of

approaches commonly known asegularization have been developed to deal with it.

Zero count problem:  For a specic columni 2 [O;m 1], counta(i;a) = 0 often holds for
somea 2 A, especially for relatively small values ofl. This converts to odd ratios of zero. A
zero count might indicate that the residue cannot occur in pgition i, or, which is much more
likely in most cases, it is the consequence of insu cient knavledge about the true instances
of the model. That is, not enough truly related sequences aréncluded in the alignment block
A. Additionally, in either case a technical problem arises wih zero counts. count (i;a) = 0
would lead to unde ned values in the PSSM if scores based on g@arithms are used, since
log(0) is unde ned.

2.5.5 Average score methods

PSSMs based on simple odds ratios or log-odds ratios do not ka similarities between certain
characters of the alphabet into account, for example a substution of amino acid leucin by a
chemically similar one like isoleucin. PSSMs based on scoeveraging methods as rstly introduced
by Gribskov [GMES87| and successfully used in[TAK94] addres this issue by weighting residues with
a similarity score based on their biochemical properties. Tie entries of such a PSSM are calculated
by averaging scores from a substitution matrix like PAM or BLOSUM. An average is taken of all
pairwise scores obtained from the used substitution matrixfor an aligned residue and each of the
residues seen in the column under consideration. Unobserdeesidues receive scores based on their
presumed association with the observed residues.

For a givenjAj jAj substitution matrix S, a PSSMM based on the average score method according

to [GMESY] is a matrix with X

Mia = WibSap; (2.8)
b2A

where s,., denotes the similarity matrix score for residuea replacing residueb and w;, is a weight

for the appearance of residué in column i of the alignment block. For a simple average weighting

Wip can be determined as _
Wi = w: (2.9)

and for logarithmic weighting as

counta (i; b)

Wi;b = Iog |

(2.10)

while setting count (i; b) = 1 for any residue not appearing in columni. Consequently Gribskov's
average PSSMs address the residue similarity problem and oadeal with zero counts.

The major criticism on Equation (£38) is, that it is purely he uristic and does not rely on any
statistical model of (protein) sequence family evolution. The notion of amino acid substitution
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2 Modeling concepts for sequence motifs and consensi

matrices implicitly accepts that the mutation probabiliti es or in other words the evolutionary rates
are identical at every position of the protein family, an asaimption which is somehow opposite to
the basic idea of a position speci ¢ scoring matrix.

Observe that the odds ratio score given in Equation [ZB) canalso be interpreted as an average
score that uses a simple substitution matrix S with

(
o= P T ash (2.11)
ab 0; otherwise : '

Another approach to derive a PSSM based on average scores isstribed in [Af91]. In this contri-
bution, the authors showed that any substitution matrix has a log-odds score interpretation. That
is, substitution scores can be interpreted as scaled log-aid with an implicit set of amino acid pair
substitution probabilities d..,. More precisely,

(2.12)

Here 1 is a scaling factor andp, and pp, denote the background probabilities of residuesa and b.
Thus Equation (EZ28)) can be rewritten as
1 X
Mia = — Wi log
b2A

Gasb
a Pb

(2.13)

and we notice that the average score is a weighted average afd-odds ratios. To explicitly retain a
log-odd interpretation, it can be considered to weight eachodds ratio before taking the log [HHI6]

as I
X .
mi-a = log Wip b : (2.14)
b2A PaPo

A potential drawback of averaging methods is that they do nottake the number of sequences in the
alignment block into account. When there are only few sequeces and the actual distributions of
residues in a certain column are uncertain, they make sengite PSSMs. However, with an increasing
number of sequences, averaging substitution values redud@SSM speci city [HH96]. The average
PSSM method also does not adequately emphasize positionsahare highly conserved. Consider,
for example, a residue that is absolutely conserved in evergequence in a family of 100 sequences.
Such a position is required, often participating in critical structures or functions such as the active
site of an enzyme. Using simple average weighting (Equatio®d)), in a PSSM based on Gribskov's
average score method such a column would result in a row of vags identical to the corresponding
row for the conserved residue in the substitution matrix S (see Equation [ZB)). This inability to
properly model highly conserved residues was the motivatio for a further re nement. In [GV96]
Gribskov and Veretnik introduced a new approach for the comptation of a PSSM from a given
alignment block, called evolutionary pro les. One of their basic ideas is to take into account that
the amount of conservation among protein sequences variesidely from position to position. Thus
any position in a sequence should be allowed to evolve at itswn evolutionary rate. This implies
modeling di erent positions in a sequence using di erent sibstitution matrices, each corresponding
to a rate of change at di erent evolutionary distances.
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2.5.6 Explicit log-odd score methods

Another widely used method to deviate a PSSM from a given aligment block is introduced in
[HH986]. This method, widely simply known asHeniko 's method, is, in contrast to Gribskov's aver-

age score method, explicitly based on log-odd scores. Thas im;; = log qr',—: with ¢., estimated
= | ta(i;a) , Bi b
counta (i;a i Ba
: - 2.1
Gia | + B; | | + Bj Bj (2.15)

Before we describe this formula in more detail, reconsiderttat odd ratios equal to zero, caused by
zero residue frequencieéw used for the estimation ofqg., , have to be prevented, when using
log-odd scores. In Gribskov's average score method with l@githmic weighting (see Equations (Z38)

and (Z1I0)) this was addressed by simply settingcounta (i;a) = 1 for any residue not appearing

in column i. Alternatively, zero residue frequencies can be avoided bpdding some kind of hypo-
thetical sequences to the alignment block. For each colum in the alignment block, this involves

adding pseudo-countsto the observed countscount  (i;a) based on some belief about the actual,
incompletely observed, distribution of residues in that cdumn. This means that, even if a given

amino acid does not appear in a column of the alignment blockit is given a fake count. Fake counts
are also added for the amino acids which appear in the columne.g. we add one to each count.
This is the simplest pseudo-count method also known as Laptze's rule. When probabilities are
calculated, the fake counts are treated exactly like real oberved counts. Thus, for simple Laplace
pseudo-counts,g., can be estimated as

countp(i;ja)+1

L

for any a 2 A. Though this is a very simple approach to avoid the zero countproblem it has

some disadvantages and does not perform well in practice. Ithe following we will discuss more
sophisticated methods to choose the pseudo-count valud®; and b5 .

(2.16)

In Heniko 's method (Equation (ZIR)), h.a > O is the number of pseudo counts added to the
observed count of residuea in column i, and B; =  _,, b.a the total number of pseudo counts
added in columni. Both w and béz;m. are estimates for the probability g., of residue a

appearing in columni and Equation (2I3) expresses a weighted average betweeneim. The relative

sizes ofl and B; balance, whether the observed counts dominate, wheh is large with respect to

B; or the pseudo-counts whenB; is large with respect tol. With the usage of pseudo-counts it is
guaranteed that ¢. > 0 holds for anyi 2 [O;m 1] anda 2 A. Consequently, well de ned PSSM

scores can be computed as log-odd ratios according to Equath (Z4).

Another PSSM construction method explicitly based on log-ald scores is described in_ [LAB 93].
Here g., values are estimated as

counta(i;a)+ Bi pa.
| + B; '

(2.17)

That is, pseudo countsB; are added to the observed countgount 4 (i; a) in proportion to the back-
ground probability p, for some residuea. This has the appealing feature, thatg., is approximately
equal to the background probability p, if only a few sequences are available, i.e. all the real coust
are very small compared toB;. At the other extreme, where many sequences are available he
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e ect of the added pseudo-counts becomes insigni cant andy., is essentially equal to the relative
frequency <UMtalia),

Although, with adding pseudo-counts to observed counts thezero count problem and to some extent
the over tting problem, since pseudo-counts can be used asegularizers, are addressed in general,
it remains open how to choose an adequate number of pseudoods.

Determination of pseudo counts

Several di erent methods for calculating pseudo counts hae been proposed over the last decade.
In [LAB 93] b4 is simply taken to be proportional to the overall frequency d residue a in a
sequence. That ish., = B; pa. A major criticism of this method is, that it does not take possible
constraints imposed by residues observed in a column into @ount. For example if a certain residue
a is observed, then the pseudo-count for residueb with high substitution probabilities pp.a (like
leucine-isoleucine mutations) should be higher than the bekground frequencyp, would imply and
the pseudo-count for residues with low substitution proballities should be less. This drawback was
the motivation for an improvement introduced in [TAK94][l Mo re precisely, letpa, be the probability
that residue b is substituted by residue a, then the pseudo-counth.; can be calculated based on
residue substitution probabilities as X

h;a = B;j Po:a- (2.18)

b2A

This approach takes residue similarities into account by ading substitution probabilities, but the
residues actually observed in a certain column are negleate To take the observed residues into
account, the authors of [TAK94] propose to calculateb., as

X it _
ba = B, count a (i; b) p Poa

; (2.19)
b2A ! b2A Poa

A similar method using similarity scores instead of substittion probabilities was proposed in [Cla94].

Selecting the total number of pseudo-counts

So far, we described approaches for determination of pseudeoounts b., that are added to the
observed count of residuea in column i of the alignment block, given the total number of pseudo
counts B;. It remains open, how to adequately choos®;. In literature, B; is often estimated to be
some function of the number of sequences in the alignment bék, independent ofi. For example, in
[LAB ™ 93,[TAK94] the authors choseB; | based on empirical estimations. In[[HHI6] the authors
report that this choice is not ideal, especially when the nunber of sequences in the alignment block
is small, since the number of pseudo-counts can never excetfte number of counts. They propose to
compute position-based pseudo count8; for each columni 2 [0;m 1], instead of using the same
number of pseudo-counts for all columns of the alignment blok. The basis for their computation
of B; is to take residue diversity into account. That is, a consered column in the alignment block
requires fewer total pseudo counts than a diverse column. lteR; be the number of observed di erent
residues in columni. Then the position speci c number of pseudo countsB; is computed as

Bi = R i (2.20)
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2.5 Position speci ¢ scoring matrices
where is an empirically determined positive number. Since 1 R; jAj holds, it follows that:
Ri minf I, jAjg (2.22)
Using position based pseudo-counts, Equation[[Z715) can beewritten as

I countA(i;a)+ Ri ba .
I+ R; I I+ Ri Ry’

Gia

(2.22)

Hence for position based pseudo-counts, pseudo-counts damte observed counts, ifl < A
holds. Forl >  jAj observed counts always dominate, regardless &;. As a consequence Equation
(Z13) tends to ™) for |arger values ofl, as required. For a highly conserved column in the
alignment block, that is R; = 1, observed counts dominate, ifl >

Pseudo-counts based on Dirichlet mixtures

Another sophisticated method to compute position speci ¢ pseudo-counts, similar in their general
form to the substitution probability method (see Equation (EZ13)), is known as Dirichlet-mixtures.
The mixtures are created by statistical analysis of the distibution of amino acids at particular
positions in a large number of proteins. Rather than using p&wise residue substitution data,
probabilities ¢., are derived from mixtures of Dirichlet densities computed wsing prior informa-
tion [BHK ™ 93,ISKB" 96]. Here a Dirichlet density is a probability density over al possible combina-
tions of amino acids appearing in a given position. It gives igh probability to certain distributions
and low probability to others. For example, a particular Dir ichlet density may give high proba-
bility to conserved distributions where a single amino acidpredominates over all others. Another
possibility is a density where high probability is given to amino acids with a common identifying
feature, such as the subgroup of hydrophobic amino acids. N, the idea is to incorporate such
prior information about residue distributions that typica Ily occur in columns of multiple alignments
into the process of building a statistical model. In [SKB" 9€] the authors present a method to con-
dense the information in databases of multiple alignmentsmto a mixture of Dirichlet densities over
amino acid distributions and to combine this prior informat ion with the observed amino acid counts
countp(i;a);a2 A, to form more e ective estimates of the expected distributions.

2.5.7 Construction of amino acid PSSMs in the BLOCKS databas e

PSSMs used in the BLOCKS database searching applicatioBLIMPS [HHAP95] are based on log-
odd scores (see Equation[{217)). Probabilitiesy., are estimated according to Equation [ZI5) and
pseudo-countsh., based on substitution probabilities are computed using Eqation (EI9). Position

based pseudo-countsB; are determined using Equation [Z2ZD). Hence a PSSM derivedrdm an

alignment block A of length m of protein sequences, as used by thBLIMPS program, isam 20

matrix M with

mia = log Sa (2.23)
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with
P )
Bta (i:b) Poa
_ I counta (i;a) . Ri Ri oA coIu tzi pf;"
Gia I+ R | I+ R Ri
_ countA(i;a)+ R X coun!gA(i;b) Pb;a (2.24)
| + R;j | + R;j b2A I c2A Pca

(2.25)

2.5.8 Wu's minimal risk scoring matrices

In [MWWNB99] a minimal-risk method for the estimation of frequencies of amino acids at a conserved
position in a protein family is introduced. The method nds t he optimal weighting between a set
of observed amino acid counts and a set of pseudo-frequensigvhich represent prior information
about the frequencies, by computing the optimal number of pgudo-counts to add. Optimality is
de ned by a criterion called risk, which is the expected distance between the estimated fregqncies
and true population frequencies, determined from the backgound distribution of amino acids or
from applying a substitution matrix to the observed data. Th e optimal weighting is computed by
minimizing the risk, measured by either a squared-error or elative-entropy metric. The resulting
frequency estimates are then used to estimate the probabties ¢.. and minimal-risk PSSMs are
constructed based on log-odd scores, like the PSSMs used B{IMPS described above (see Equation
(Z2Z3)). The method is implemented in the programeMatrix-maker H Furthermore several databases
exist containing PSSMs constructed with the minimal-risk method, e.g. the database®eBLOCKS
[SLSBO%] andeSIGNAL E

In the following, we describe the main ideas of minimal-riskPSSMs more precisely. Letf}, i 2
[0;m 1] be a vector of dimensionjAj, with f'};a = mia and m;, de ned according to Equation
(Z3), that denotes the observed frequencies of symbols 2 A in column i of the alignment block.
These frequencies are generated by some unknown true poptitan frequenciesfs, which should be
estimated by f; as well as possible. Wu and coworkers propose to estimate arptimal f;, as a
weighted sum of the observed frequencies and pseudo-frequages,

fialis ia)=Q  Dfia+ i ia: (2.26)

The ; values are weights and i, denote the pseudo-frequency of symboa in column i of the
alignment block. The method allows to use background frequecies, as well as substitution pseudo-
frequencies for the determination of ;5. That is

(
_ I:)(a); [Background frequencies]
a =

L . (2.27)
b2A Sab f’};a [Substitution frequencies]

i;
Here f (a) denotes the background frequency for symboh and S is ajAj jAj substitution matrix
containing residue similarity information, e.g. a PAM or BL OSUM matrix. Then, S,y represents
the conditional probability of seeing amino acid a given amino acid b. To solve Equation (ZZ8)

we have to compute a weight , such that f; approximates fj as well as possible. To estimate an

4nittp://brutiag.stanford.edu/ematrix-maker
Shttp://brutlag.stantord.edu/esignal/
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2.5 Position speci ¢ scoring matrices

optimal weight , denoted by , a criterion of optimality called risk is de ned as the expected
distance between estimated frequencie§; and the yet unknown true frequenciesf;. For given fi

and T, we advocate to choose parameters that minimize the distare betweenf; and fi. Distance
computation can be performed using a squared error metric obased on relative entropy, leading
to the following de nitions of risk R:

(P )
aon E(fia fia) [Squared error]

R=E jfj fij? = . .
aon E fialog o [Relative entropy]:

(2.28)

—

Evaluation experiments performed in [WNB99] showed that PSSMs using the squared error metric
for frequency estimation perform better than PSSMs using tle relative entropy metric. Hence we
restrict in the following on the rst to explain the method. F or the squared error metric, Wu and

coworkers showed that weight ; is optimal, if the following two relationships between ; and the
true frequenciesfs hold.
8 1 P f2
< P oA lia H
o T Lo fap] a(ZA (ffi;a ff(a))(: ; [Background frequencies] (2.29)
! . 1 a Saa fia +fia (fia ja FP : ’
g — 1)(??,,, ol et +§, ST [Substitution frequencies]
where X
Sia = Sanfib (2.30)
b2A

For a detailed derivation of Equation (£22Z9) from Equation (ZZ8) see the Appendix in [[WNB99].
The rst case in Equation (E29) describes the relationshipwhen using background frequencies
as pseudo frequencies i, the second case when using substitution frequencies. WitlEquation
(Z2Z9) an initial estimate for the unknown frequenciesf; can be used to achieve a better estimate.
More precisely, the initial estimate for f7 serves as a starting point to determine (1) a weight
using Equation Z29) and (2) (more accurate) frequencie$; by using  in Equation (E28). This
procedure may be applied iteratively, but when the number ofsequences in the alignment block is
small, an iterative approach can lead to progressive over ting and poor estimates. As an initial
estimate, Wu chose

counta(i;a) B ia
fia = + ;

' [+B [+B
Here B denotes the total number of pseudo-counts to add and was ches by Wu proportional to
the number of sequence$ asB = = |.

a2A: (2.31)

Finally the score values of a minimum risk PSSM are computed alog-odd scores from the frequency
estimates as

Mia =log —2 : i2[0m 1] a2A: (2.32)

2.5.9 Construction of nucleotide PSSMs in the TRANSFAC data base

As a nal example of a construction method for PSSMs from a gien alignment block we describe
the PSSM building process in theTRANSFAC database. In TRANSFAC the PSSMs represent-
ing transcription factor binding site motifs are generated based on weighted, relative frequencies
(KGR* 03] and personal communication with A.Kel). Again, let f}, = w be the observed
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‘(A)denin (C)ytosin  (G)uanin  (T)hymin  (-) gap ‘

A G A A & 0.4 0.6 0 0 0
AT . AATG 0.2 0.4 0 0.4 0
c T o .6 -G 0 0 0.6 0 0.4
cc - AG T T 0.6 0 0 0 0.4
cc o .o . . 0.4 0 0.6 0 0

0 0 0 0.4 0.6

0.2 0 0.4 0.2 0.2

Figure 2.9: A multiple alignment of length seven of ve nucleotide sequences (left) and a corre-
sponding PSSM, containing relative frequencies and positin speci ¢ gap costs (right)

relative frequency of nucleotidea to occur in column i. Then a TRANSFAC PSSM of length m is
am jf A;C;G;Tgj matrix M with

Mia = 1() fla: (2.33)
Here the observed relative frequency'};a1 is weighted with the information vector | (i) de ned as
X
()= fla In(A] fia): (2.34)
a2

The information vector describes the conservation of the psition i in a matrix. The intention here
is, that the multiplication of the frequencies with the info rmation vector should result in a higher
acceptance of mismatches in less conserved regions, wheseaismatches in highly conserved regions
are very much discouraged. Inl[KGR 03] the authors claim, that this leads to a better performane
in recognition of transcription factor binding sites, compared with methods that do not use the
information vector [KKMBW99]]

2.6 Gribskov's pro le model

Gribskov's pro le model, introduced and described in [GMES87] and [GLE9(], extends the concept
of PSSMs according to De nition B on page[2ZB by facilitating position-dependent penalties for
the modeling of insertions and deletions. The underlying i@a is, that insertions and deletions in
multiple alignments of related sequences occur at di erentpositions with dierent frequencies,
depending of the variability or degree of conservation at these positions. Accordingly, position
dependent insertion/deletion (gap) costs should be incorprated into the PSSM model. In Gribskov's
pro le model, an additional column in the matrix contains th ese information. See Figuré—Z]9 for an
example of a PSSM with position speci ¢ gap costs derived frm a gap-containing multiple sequence
alignment. Observe, that in this model no di erence is beingmade between insertion and deletion
costs, since an insertion in one sequence can be viewed as detien in another.

To use a Gribskov pro le in a database search, sequences ardéigned to the pro le using dynamic
programming and the alignment is rated with a score. The gengl idea of the method is similar
to the alignment of two sequences and can be extended to the ogarison of two pro les [Got93].
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2.6 Gribskov's pro le model

In case of aligning a single sequence to a Gribskov pro le, th pro le is viewed as a string, where
each row represents a character. The objective is to computan optimal alignment of the string
and the Gribskov pro le where the score re ects how well the dring ts the pro le. We make this
more precise now.

Let My : [Oom 1] A (! , be a PSSM over a nite alphabet A; = A[ftg that includes
a special gap symbolt . For an alignment of a sequenceS = sp:::sp and a PSSM with position
speci ¢ gap costsM; , we need a scoring function that should express the aberratn of a character
c2 A of S from the j-th row of M, ] 2 [O;m 1]. We assume that a pairwise scoring function

A A for all characters in A; exists. This can be based on normal PAM or BLOSUM
scoring matrices. Assume thatM, is based on relative frequencies, then we may choose the stay
function

X
score(c; i) = (c:AM (i);i 2 [0;m 1] (2.35)
cO2A

to model a position dependent scoring. This function perfoms a weighted comparison of a character
¢ with the values of row i of M; and with the characters occurring in columni of the multiple
alignment respectively. E.g., the score for matching charater G to the second row of the prole
givenin FigureZ3 isscore(G;2) =0:2 (G;A)+0:4 (G;C)+0:4 (G;T). The optimal alignment of
the sequences and the PSSM with position speci ¢ gap costsM can now be computed by applying

th row vector of My ;j 2 [O;m 1] with V(i;j ). With the following recurrences for the dynamic
programming matrix

X
v, 1) = (tisk) JA Mp(kit)
|)((I
V( Lj) = score(k;t )
k j
8
2 V(i Lj 1)+ score(;si);
V(i) = max_ V(i Li)+ (siit) JA M (it);

V(i;j 1)+ score(j; t)

the optimal alignment between a sequencé of length n+1 and a PSSM with position speci ¢ gap
costsM; of length m can be calculated inO(jA jmn) time and O(mn) space. Likewise for pairwise
sequence alignment, this algorithm can be extended to an atgithm using an a ne gap-cost model
with the same time and space complexity.

In practice PSSMs with position speci ¢ gap costs are not prealent. To our knowledge they are
only used as (additional) motif descriptors in the PROSITE [HBEB99] and HAMAP [GMR_* 03]
databases. In most situations where it is necessary to inclle gap information, due to practical con-
cerns, like the need to model longer or more variable parts ofequences, a di erent motif descriptor
model like the subsequently described (pro le) hidden Marlov models are used.
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2.7 Hidden Markov models

Originally developed and applied to problems in speech regmition in the late 1960's and early
1970's, hidden Markov models became very popular in bioinfanatics in the late 1980's and early
1990's. Since then they have found many applications, e.g.eme prediction [BK94, [Bur9€], recog-
nition of transmembrane domains in proteins [KLvHSO1] or protein family classi cation. They are
successfully used as sequence family models [BCD4,[HSWO3] to re ect how the sequences of the
family relate by substitutions, insertions and deletions to the consensus sequence of the family. Since
HMMs are general probabilistic models with a wide range of pesible application and not limited

to problems in bioinformatics, we start with a brief introdu ction of the underlying general theory,
before focusing on a special type of HMMs often used in sequea analysis.

2.7.1 Foundations of hidden Markov model theory

A hidden Markov model (HMM for short)  over an alphabetA describes a probability distribution

over the set of nite words w2 A . Let [wj ] be the probability of w under the model . We call
[wj ] the production probability of  for the sequencew. An HMM can be used to characterize

a family of sequences by assigning a production probabilitto a sequencew screened versus the

model , giving a measure of how likely it its, that w belongs to the family described by . If the

production probability  [wj ] is signi cant, w matches the model and can be seen as a new member

of the sequence family described by this HMM.

connecting states. Each state has a local probability distibution, the state transition probabilities,
describing the probability of a certain state transition. L et s; denote the state of an HMM  at
point t. State transition probabilities for N states can be de ned by aN N matrix A with

aj = [st=S§jjst 1= Silii;j 2 [1;N] (2.36)

expressing the probability for a transition from state S; at point t 1 to state S§; at point t. For
the initialization of the stochastic process, we de ne stating probabilities ; for each stateS;. The
resulting vector ~ is de ned as

i= [s1=Sli2[LN] (2.37)

The transition structure of a discrete HMM can be described & a directed graph with a node
for each state, and an edge between two nodes if the correspding state transition probability is
non zero (see Figurd—Z70). In contrast to a Markov model, in & HMM state transitions are not
directly observable, they are hidden. Observable is a sequee of characters generated by a sequence
of state transitions of the HMM. It is convenient to think of a n HMM as a generative model that
generates a sequence of characters from an output alphabgt := A[f g, resulting in a sequence of
observationsw = wy;wy; i wr, wi 2 A with probability  [wj ]. The process of state transitions
evolves in some dimension, often time, though not necesséyi The model is parametrized with state
transition probabilities governing the state at a time t+1, given that one knows the previous states
at time t. Markov assumptions are used to truncate the dependency ofdving to know the entire
history of states up to point t in order to assess the next statd + 1 such that only one step back is
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2.7 Hidden Markov models

Figure 2.10: Di erent states and transitions in the Genscan hidden Markov model. Genscan is a
gene-prediction algorithm that, like other HMMs, models the transition probabilities
from one part (state) of a gene to another. Here each circle osquare represents a
functional unit (a state) of a gene on its forward strand (for example Ej,;; is the 5'
coding sequence (CDS) andrm is the 3' CDS, and the arrows represent the transition
probability from one state to another). Figure adopted from Genscan manual.

required. A pass through the HMM continues from state to state according to the state transition
probabilities. For each transition an HMM generates a character from the otput alphabet A with

a certain state dependent probability, the symbol emissiorprobability [o; = wkjst = §;], wk 2 A
resulting in a stream of emitted symbols (observations), aghe process passes through the states.
If we have a nite alphabet of output symbols A and thus discrete symbol emission probabilities,
they can be described by anN jA j matrix B with

bk = [or=wkjst = Siliwk 2A ;1 j N;1 Kk jA |

[o = wkjst = Sj] denotes the probability of generating symbolwy 2 A in state S; at time t. A
state without a symbol emission probability distribution i s called a silent state. Observe that this is
no restriction to the general concept of HMMs, in which a state has no special type and each state is
a symbol emitting state, since a silent stateS; can be seen as a symbol emitting state, emitting the
empty string  with symbol emissions probability [0 = js; = Sj]=1and [o = ¢si= §]=0

6Sometimes special start- and end states are used to de ne a st art and end point for a pass through the model.
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2 Modeling concepts for sequence motifs and consensi

for all other charactersc2 A. An HMM  with discrete probability distributions is well de ned by
the triple

=(~AB): (2.38)

When using HMMs there are the following three basic problemsof interest:

1. The Evaluation Problem: Sometimes also called the likelihood problem. Given a HMM
and a sequence of observations = wy; wo;:::wr,w; 2 A , what is the production probability
[wj ]that w is generated by ?

across the model that generates the observed sequena®

3. The Learning Problem: Given model and a sequence of observations = wq;Wy;:::;Wr,
w; 2 A , how should the model parameters{; A; B ) be adjusted in order to maximize [wj ]?

To compute the production probability [wj ], we have to take all state sequences/pathgy =
Gh; %;:::;qr through into account that produce the sequence of observations = wy; wWo; @ wr,
w; 2 A , and compute and add their probabilities. We denote the set 6 paths through  producing
w by Qu and write [wj ] as

X X
wj = w;g 1= wbByw: Agig Ppw, Qgias 11T Qg 1ar Bgrwed (2.39)
42 Qw 42 Qw

Obviously, the number of paths increases exponentially wih the length of the sequence of obser-
vations and a straightforward calculation of [wj ] leads to an algorithm, solving the evaluation
problem in O 2T NT time, where 2T is the cost of computing the probability for a single path
and N T is the number of paths of lengthT. It is apparent, that this approach is infeasible in prac-
tice, even for moderate values ofl . A more e cient approach makes use of dynamic programming
and calculates [wj ] in polynomial time. In particular this algorithm is known a s the Forward
Algorithm. We make this now more precise. We de ne the problem of compubg the probability
[wj ]in terms of pre xes of the observed sequence. Let; = [wg;:::;W; S = Sij ] denote the

t. Then the following recurrences hold:

Ly
|

i1 for z%ny j 2[1;N]

X
t41 = tidj Br+r forany t2[1LT 1]7j 2 [L;N]

.—.
s
o
z
—
[
_|

(2.40)

To determine [wj ] with the Forward Algorithm we calculate the values ofO (N T) cells of the
dynamic programming matrix, spending O (N ) operations per cell. Hence the overall time complex-
ityis O N2T and the space complexity iSO (N T). In a similar way we can de ne a backward
recursion calculating [wj ]. This leads to the Backward Algorithm. Here we de ne the problem of
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2.7 Hidden Markov models
computing [wj ]interms of su xes of the observed sequence. Let; = [Wie1 ;i ;Wr; St = Sij ]

following recurrences can be used to compute [wj ] e ciently:

Tj = 1 forany j2[LN]
)(\l .
tj = t+1;i & besr forany t2 [T 117 j 2 [I;N]
i=1
[wi;iiowrj 1 = b1 L N

i=1

The complexity of the Backward Algorithm is againO N2T time and O (N T) space. Further
on, we observe that with the de nitions of and the following equation holds for arbitrary t.

[wi;:iswrj 1= it (2.42)

With the Forward or Backward algorithm, we can compute the probability [wj ] that a sequence
of observations was produced by a given model and thus solving the evaluation problem. [wj ]
can be rewritten in terms of a score or p-value and can be usechiHMM based protein family
classi cation to accept or not to accept the sequence of obseations as a new member of the family
that was used to build the model.

The HMM decoding problem can be solved with an algorithm know as the Viterbi algorithm ,
which again applies dynamic programming. It is similar to the Forward algorithm except that we
do not sum over the predecessor states at point, but taking the maximum.

sequence ending in statg¢ 2 [1;N] up to point t. Then the Viterbi algorithm can be de ned by the
following recurrences:

i1

argmaxf i a;j gt +1 (2.43)
i2[LN]

1;

t+1

If we store a pointer, pointing from .1 back to the selected predecessor state; which is the
state for which ¢ a;; i 2 [1;N], is maximal, we can calculate the most likely state sequere

recursively, starting with 1 andj =argmaxf r; gand thus solving the decoding problem. Since
1 i N

we calculate the values ofO (N T) cells of the DP matrix, spending O (N ) operations per cell, the
overall time complexity of the Viterbi Algorithm is O N?2T and the space complexity isO (N T).
Here N denotes the number of states andr is the length of the emitted sequence.

To solve the learning problem, we must nd for a given HMM  with already de ned topology and
observed data the model parameters< A; B ) that maximize [wj ]. There is no known optimal
analytical way of doing this. However, there exist algorithms that iteratively re-estimate the model
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from some arbitrary starting point which guarantee to nd a | ocal maximum. The most common
one is the Baum-Welch or forward-backward algorithm [Rab90], which is a version @& the general
expectation maximization (EM) method often used in statistics. For an accurate estimation of the
model parameters a lot of training data is needed, making theraining of the model a critical and
computationally expensive step. To give an example, consil an HMM over an alphabet containing
20 symbols, representing the 20 di erent naturally occurring amino acids. All emission probabilities
of all 20 amino acids have to be estimated in all emitting staes. Especially in pro le HMMs (a type
of an HMM with a special topology, described in the next sectbn), in which each conserved position
in the sequence is modeled by a di erent emitting state, the umber of estimated parameters can be
enormous. This phenomenon is related to over tting, which accurs when there is not enough data
to obtain good estimates for the model parameters, and consgiently the model will not generalize
adequately to new data.

2.7.2 Prole hidden Markov models

In particular successful in sequence analysis since the 198 is a special type of HMMs called
pro le hidden Markov models (pHMMs for short). pHMMs were r st introduced in [HKB * 93] and
[KMSH94] and are simple types of hidden Markov models with a ihear, left-to-right, repetitive
structure of states (see FigurdZZTl1 for an example), well sted to model multiple alignments and
probably the most popular application of hidden Markov models in computational biology. They
have been proved to be a powerful method in biological sequee analysis, especially successful in
performing sequence database searching and detecting retrechomologies [Edd98[ KBH98/ MG0?2].
pHMMs are also common in speech recognition, where they areometimes calledtime-dependent
HMMs or time-parametrized HMMs.

The pre x \pro le" is used because pHMMs are similar to and ad dress the same problem as the
formerly described PSSMs (often also called pro les). Likavise to PSSMs they are often derived
from multiple alignments of related sequences and capture @sition-speci ¢ information about how
conserved each column of the alignment is, and which residgeare likely. pHMMs are general, statis-
tical models for any system that can be represented as a sucggion of transitions between discrete
states. As a model capturing the information of a protein fanily, the discrete states correspond to
the successive columns of a protein multiple sequence aligrent. Although, in principle, pHMMs
can even be determined from unaligned sequences by successiounds of optimization, in practice,
protein pHMMs are built from curated multiple sequence alignments, like the ones collected in the
PFAM [BBD_*.00] or TIGRFAM [HSWO3] databases. For the construction of a pHMM usable as a
discriminative motif descriptor, we assume a given multipke alignment of a sequence family and a
derived consensus sequence. In contrast to general HMMs, piMs have basically three types of
states with associated special semanticanatch (M), insert (I) and delete (D) states. Match and
insert states are symbol emitting states whereas thelelete state is a silent state. Each of these
states models a position of the consensus sequence of the segce family delineated by the mul-
tiple alignment, and describes how members of the family dewate from the consensus sequence at
that position. More precisely:

The match state models that the generated character has evolved fromhe position in the
consensus sequence.
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2.7 Hidden Markov models

Figure 2.11: The transition structure of a pHMM consisting of repeated elements ofmatch (green
squares),insert (yellow diamonds) and silentdelete (red circles) states. A pass through
the pHMM starts in a special start-state and continues from gdate to state according to
the state transition probabilities, until a special end-state is reached. State transition
probabilities are given as numbers next to the directed arcs Symbol emissions and
their probabilities are given as letters and numbers insidethe state symbols.

The insert state models that the generated character has been insertedetween two neigh-
boring positions in the consensus sequence.

The self-loop on theinsert state models that several consecutive characters can be ieded
between two positions of the consensus sequence.

The delete state models that the position has been deleted from the comnsus sequence.

A path through the model always starts from the begin/start state and ends with the end state.
Likewise to general HMMs, on the path through the model, stae transitions occur with a certain
probability and in symbol emitting states, a symbol from the output alphabet is emitted with a
certain probability. To give an example, let q be the state sequence of the red marked path in Figure
[ZT1. Then q generates the sequencAlEHwith probability

[w= AIEHG ]=0:3 0:75 0:97 0:5 0:015 0:05 0:046 0:4 0:7 = 1:0541E &  (2.44)

That is, we compute [w = AIEH(q ] as the product of the state transition probabilities and
the emission probabilities of the emitted symbol along the @th through the model. Instead of
multiplying probabilities, in practice, often the log-odd scores are summed up.

The central part of a pHMM is a sequence of match states, corrgponding to columns in the multiple
alignment. Each match state emits (aligns to) a single reside, with a probability score that is
determined by the frequency that residues have been obserglein the corresponding column of
the multiple alignment. Each match state therefore has an asigned vector of jAj probabilities,
describing a probability distribution of the symbols of A. That is, in case of pHMMs, build from a
multiple alignment of amino acid sequences 20 probabilitis for scoring the 20 amino acids. Observe
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Figure 2.12: A PSSM based on probability values can be seen as pHMM consisting of a linear
sequence of match states with state transition probabilities of 1 between them. In this
view, each match state corresponds to a column in the multipe alignment and hence a
row in the PSSM. It emits a symbol from the output alphabet wit h a certain probability.
That is, the symbol emission probability distribution of a m atch state corresponds to
the distribution of scores or rather probabilities in a row of the PSSM.

that the meaning of this probability vector is similar to the meaning of a row vector in a PSSM.
More over, if the PSSM contains probability values, then they are equivalent. Hence a PSSM is
essentially equivalent to a pHMM composed only of match staés (see Figurd—212) and can be seen
as a method that looks for ungapped alignments to a consensusf a multiple alignmemﬂ. If we
extend this perception to PSSMs that include position spectc gap costs, like the Gribskov PSSMs
described in sectionCZB, the position specic gap costs cogspond to transition probabilities for
moving to an insert or delete state.

The main di erence between Gribskov's PSSMs with position eci ¢ gap costs and a pHMM is that
the PSSM model requires the transition from amatch state to an insert state and the transition
from a match state to a delete state to have both the same probability. This is dispositioral in the
sense, that an insertion in one sequence can be seen as a deletin another. In contrast to the
basic PSSM model as de ned in De nition[d, a pHMM is capable ofmodeling alignments including
insertions and deletions (with the insert and delete statesmentioned above), which allows the more
adequate description of much longer and more variable part®f conserved sequences like complete
conserved domains or complete sequences, rather than justralatively small ungapped motif.

pHMM construction from a multiple alignment

For the construction process of a pHMM from a given multiple dignment two important decisions
must be taken into account:

7In [Edd98] the author makes the distinction between pHMMs, w  hich he calls pro le models and motif HMMs which
are built of linear sets of match states and are essentially PSSMs.
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Multiple alignment:

A---K
AD--R
AD--R
SD--K
AELGR

a possible corresponding pHMM:

Figure 2.13: A possible pHMM for the given multiple alignmert. The three match statesM 1;M,; M3
correspond to the green marked columns in the alignment. Thehird and fourth column
are treated as insertions betweerM, and M3 and are modeled with the insert state
I,. The delete state D, allows to skip state M.

The topology and model length . That is, we have to decide, which columns of the multiple
alignment must be assigned to match states and which must be wdeled with insertion states.
A rule of thumb used in practice is to consider columns with mae than half gap characters
as highly variable regions that should be modeled with insefon states. See Figure 2113 for
an example.

The model parameters . Reconsider that an HMM  with a discrete probability distribution

is well de ned by the triple (~A; B ) (see Equation {Z338)). Initial probabilities ~, transition
probabilities A, and emission probabilitiesB can be estimated from the multiple alignment.
For this estimation, again pseudo-count methods are used t@void problems caused by zero
character frequencies and to adequately estimate charactalistributions.

In the following we describe the structure of a pHMM as introduced in [HKB™ 93] and [KMSH94].
Assume that the linear sequence ofmatch states is de ned e.g. by selecting those columns of the
multiple alignment that contain less than half gap characters. The next step is to deal with insertions
and deletions. Since insertions, i.e. portions of a sequeadhat do not match anything in the model,
can potentially occur at any position, we add aninsert state to each match state. Deletions, i.e.
segments of the multiple alignment andmatch states that are not matched by a sequence scored with
the model, are handled with delete states. We associate alelete state with each match state. This
allows to skip match states. Additionally we add an insert state before the rst match state to allow
to skip pre xes of the sequence before entering the rstmatch state. We call a group ofmatch, insert,
and delete states at the same consensus position in the alignment aode, and the model length is
the number of nodes between théegin and the end state. Finally we end for the multiple alignment
given in Figure ZI3 with the pHMM architecture given in Figure ZI1. Following the propposed
architecture of [KMSH94] leads to generalized models, wherin principle an insertion or deletion
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2 Modeling concepts for sequence motifs and consensi

can occur at any position in a sequence evaluated or generatavith the pHMM. A slightly di erent
pHMM topology often used in practice to model families of rehted sequences, is the so callddLAN
7 architecture, developed by Eddy [Edd98] and implemented inthe HMMER software packagE. It
is somewhat more complex, but much more exible than the orignal pHMM architecture introduced
by Krogh and coworkers in [KMSH94]. Unlike Krogh's pHMM architecture, PLAN 7 has no state
transitions from deleteto insert states and frominsert to delete states. Additional special states in
the PLAN 7 architecture even allow the construction of local alignments. Alignments can be local
with respect to sequence (i.e. allowing a match to the model mywhere within a longer sequence),
as well as with respect to the model (i.e. allowing fragmentf the model to match the sequence).
Multiple hit alignments, for instance to model repetitive p rotein domains, are also possible. For a
detailed description of the PLAN7 architecture, see theHMMER manual.

Once the structure of the pHMM is determined, the model parareters, like transition and symbol
emission probabilities have to be estimated from the multige alignment. This is analogous to solving
the formerly described learning problem. For the estimatian of symbol emission probabilities from
sample counts in the multiple alignment, the same or similarmethods as the described methods for
PSSM score estimation are used.

Observe that a pHMM de nes a discrete probability distribut ion over the whole space of sequences
or words from A respectively. Accordingly, the objective of the construcion and training process
is to control the shape of that distribution by associating the peaks of the function around members
of the sequence family represented by the multiple alignmetn That means, that the model, which
describes the consensus sequence for the family, not the seapce of any particular member, should
discriminate between true and false family members as wellsapossible. As already stated, there is
no analytical, optimal way of doing this, but in practice, it erative methods like the Baum-Welch or
forward-backward algorithm [Rab90] can be used for this tak. For a detailed description of prob-
ability estimation methods and optimal model construction in the context of pHMMs see sections
5.6 and 5.7 of [DEK98].

Sequence alignment and database searching with pHMMs

The most important application of a pHMM representing a family of sequences is nding new
sequences in a database that show a high similarity to the mebers of this family. Given a database
of sequences and a pHMM, the sequences can be aligned to the deb Here the pHMM can be seen
as a generative model and a sequence is viewed as a sequencebservations (emitted symbols).
As shown in Figure[ZTI3, in a pHMM one sequence of observatisncan be generated by di erent
hidden state sequences. If we want to align a sequenee2 A to an already trained model , we are
interested in the most probable sequence of hidden state trasitions that generates this sequence
of observations. Thus, when aligningw to , a sequence ofmatch, insert, and delete states will be
obtained. The determination of the best (most likely) sequence of state transitions is essentially equal
to solving the HMM decoding problem which can be solved with he Viterbi algorithmin O N2 T
time and O (N T) space, applying dynamic programming. HereN denotes the length ofw and T
is the number of states in . Finally, an ordered score can be determined from the compason of
the probability of the most likely state sequence to the prolability of random sequences.

8http://hmmer.wustl.edu/

46


http://hmmer.wustl.edu/

Multiple alignment:

A-- -K
AbD- -R
Ab- -R
Sb- -K
AEL GR
Al- EH
Multiple alignment:
mam --K
AD- --R
AD- --R
Sb- --K
AEL G-R
-Al EH-
Multiple alignment:
A--I--K
A-D --R
A-D --R
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2.7 Hidden Markov models

State Sequere:
Begn,M ,M,,|,M,,Erd

212!

Stake Sequerte:
Begn,D,,M,,l,L,.,D,,Erd

2172172121

State Sequere:
Beg’n,Ml, |,M,,M,,Erd

Figure 2.14: A pHMM can be seen as a process, that generates agience of characters with a cer-
tain probability, by emitting symbols in the symbol emittin g match and insert states.
Di erent paths through the model can generate the same sequegce with di erent prob-
abilities. In this example three possible paths and their stite sequences to generate the
sequenceAlEHare shown. The three match statesM1,M,, and M3 correspond to the
green marked columns in the multiple alignment. In each examle, the visited states
on the path are marked red.
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‘ Name (Release) #ModeIsH URL
Pfam (20.0) 8,296 || http://www.sanger.ac.uk/Software/Ptam/
TIGRFAM (6.0) 2,946 || http://www.tigr.org/TIGRFAMs/
SMART (5.0) 725 || http://smart.embl-heidelberg.de/
SUPERFAMILY (1.69) 4,894 || http://supfam.org/SUPERFAMILY/
CATH (3.0) 23,876 || http://www.cathdb.info/
PANTHER (6.0) 36,298 || http://www.pantherdb.org/

Table 2.5: Major existing pHMM collections

In a database search scenario with a pHMM , we can ask alternatively to the computation of the
most probable state path, how likely is it that a certain sequencew 2 A is generated by . That
is, we have to compute the production probability [wj ]. Since there can be more than one path
through that generatesw (see Figure[ZIH), we have to take all paths into account thatgenerate
w (see Equation [Z339)). Observe that this is equivalent to stving the HMM evaluation problem
and can be accomplished with theForward algorithmin O N2 T time and O(N T) space.

2.7.3 Prole HMM collections for sequence annotation and cl assi cation

Pro le HMMs are especially successful for modeling of prote families and there is an increasing
number of publicly available collections of such family moels, see TabldZl5. A common aspect of
all of these collections is, that they use the pHMM topology axd model notations of the HMMER
package [Edd98], such that they are compatible to and can beearched with the pHMM search
software of the same name. Overall, it can be said that the HMMER software package has established
a de facto standard in this eld. In the following we give a brief overvi ew of the most widely used
collections of pHMMSs, suitable for sequence annotation angbrotein family classi cation.

Pfam database

Pfam |[BCD* 04] is a large manually curated collection of multiple sequece alignments and derived
pHMMs covering many common protein domains and families. Geome projects, including both the
human and y, have used Pfam extensively for large scale funional annotation of genomic data.

Each curated family in Pfam is represented by a seed and full lgnment. The seed contains rep-
resentative members of the family, while the full alignment contains all members of the family as
detected with a pHMM constructed from the seed alignment. Seh full alignments can be large, with
the top 20 families containing over 2500 sequences each. Timeajority of known protein sequences
come from just a few thousand protein families.

TIGRFAM database

The Institute for Genomic Research protein families databae (TIGRFAM) [HSWO3] is likewise to
Pfam a collection of curated multiple sequence alignmentsgeed alignments) for protein families and
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pHMMs built from the seeds. TIGRFAM contains predominantly equivalogs (functionally de ned
subfamilies). Protein family descriptions for use in protén annotation, including trusted score cuto
and noise cuto values accompany each model. Proteins that @re above the trusted cuto s are
believed to reside within the family and those falling belowthe noise cuto s are believed to reside
outside the family. The margin of error with respect to presence or absence of a protein within a
TIGRFAM family is represented by the score range between nae and trusted cuto s. Additionally
the TIGRFAM database provides functional classi cation in formation in form of roles, in which
models are classi ed, and cross referencing to the Gene Orltmgy classi cation system [Con06].

SMART database

The Simple Modular Architecture Research Tool (SMART) [LCP_* 0€] can be used for the identi-
cation and annotation of genetically mobile domains and the analysis of domain architectures. It
contains pHMMs for more than 500 domain families found in sigialing, extracellular and chromatin-
associated proteins. The domain models are extensively aomtated with respect to phyletic distri-
butions, functional class, tertiary structures and functionally important residues.

SUPERFAMILY database

The SUPERFAMILY database [GKHCO1] provides structural (and hence implied functional) as-
signments to amino acid sequences at the protein superfanyillevel. It is a library of pHMMs
representing 1539 protein superfamilies. Superfamiliesra de ned according to the structural clas-
si cation of proteins database (SCOP) [AHB™ 04]. Each superfamily is represented by a group of
pHMMs.

CATH Protein structure classi cation database

CATH [PTS*05] is a multi level hierarchical classi cation system, tha classi es protein domain
structures at four major levels, Class(C), Architecture(A), Topology(T), and Homologous superfam-
ily (H). The level of homologous superfamilies groups togedter protein domains which are thought
to share a common ancestor and can therefore be described asrhologous. Similarities are iden-
ti ed either by high sequence identity or structure comparison. From multiple alignments of the
homologous superfamilies pHMMs are constructed, such thaeach superfamily is represented by
multiple pHMMs.

PANTHER classi cation system

The PRotein ANalysis THrough Evolutionary Relationships (PANTHER) classi cation system
[MLUL * 05] classi es proteins according to families and subfamiés. PANTHER de nes families
as groups of evolutionary related proteins and subfamiliesas related proteins that also have the
same function. Information about family and subfamily ali ations are derived from clustering of
the UniProt protein database, using a BLAST-based similarity score. Each protein family is repre-
sented by a phylogenetic tree de ning its subfamilies. Famlies and subfamilies are also represented
by pHMMs and associated with functional ontology terms. For several families and subfamilies
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2 Modeling concepts for sequence motifs and consensi

additional information and associated data such as detaild biochemical interactions in canonical
pathways are available.

2.8 Concluding remarks on sequence motif models

The di erent concepts for motif modeling presented in this chapter all have di erent advantages
and disadvantages, making it di cult to choose one single mehod as best for all kinds of possible
applications. See Table[Zb for an overview of the advantageand disadvantages of the described
motif models.

Advantages Disadvantages

Regular expressions

easy to use due to the availability of e cient discrete motif descriptor
search engines no scoring system, only binary response
fast to match

PSSMs
provide a scoring system matching is computationally more expen-
needs less sequences for model construction sive than for regular expressions
than a pHMM limited expressiveness due to missing inser-
e cient to match using index structures tion and deletion model

Gribskov pro les

provide a scoring system not very common in practice

position speci c insertion/deletion model lack of publicly available models
tools for prole construction and search-
ing were not further developed in the last
decade and are poorly conceived

pro le HMMs
full probabilistic model matching is very time consuming and hence
provide a scoring system based on proba- it is di cult to use pHMMs on a large-scale
bilistic theory proper model training may become time
insertion and deletion model consuming and challenging
very sensitive a lot of sequences are needed to train a
widely used model adequately and to avoid over tting

Table 2.6: Advantages and disadvantages of di erent motif nodeling concepts.

Discrete sequence motif descriptors, such as consensusisgys or regular expression based patterns
are relatively easy to search, and standardized searchinghgines are available. Searching with these
motif descriptors is relatively fast, since with a single msmatch parts of the text to be searched can
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2.8 Concluding remarks on sequence motif models

be skipped. Their severe drawback is, that they do not inclu@ a scoring system and give only a
binary response. As a consequence they are often an inadeda@oncept to describe biological motifs.
In contrast to regular expressions, PSSMs provide a kind ofimilarity score and increased sensitivity
although searching with PSSMs is more complex and computatinally expensive. Compared to
pHMMs much less (aligned) sequences are needed to derive a amngful PSSM which is de nitely
an advantage in practice, when modeling protein families wth only a few number of known members.
Another advantage of PSSMs is that they are a well studied, acepted and common motif model
in sequence analysis and thus various publicly available sources of curated alignment blocks and
already derived PSSMs exist. One severe drawback of PSSMs that they are xed length motifs,
which lack of an adequate insertion and deletion model. Here their capabilities especially for
modeling of longer regions is limited. This disadvantage igartially balanced in Gribskov's pro le
model, which extends the basic PSSM model by position spect gap costs. However, the pitfall with
Gribskov pro les in practice is simply the nonexistence of publicly available models. Additionally
the programs to build pro les from existing multiple alignm ents and to search with them are not
very handy to use and were not further developed in the last deade.

The most successful motif model in computational biology ae pHMMs. They are based on a fully
probabilistic model and are capable to model insertions andleletions. Further on, they yield to be
the most sensitive of the introduced motif models so far. Theprice to be paid when using pHMMs
is an increased complexity and higher computational e ort when building the model. To build a
pHMM that achieves good classi cation accuracy, a lot of moal parameters have to be trained
properly. Consequently much more sequences are needed fon adequate training of a pHMM,
compared to a PSSM, in order to avoid over tting problems. Another problem, especially occurring
when using pHMMs on a larger scale, are the running times of ta Viterbi and Forward algorithms.
These may make searching with pHMMs a time consuming procesis practice. Especially in the
absence of large cluster systems, searching with large cetttions of pHMMs on complete proteomes
can become an infeasible task.

In the following chapters, we will focus on the e cient searching of PSSM based motif models. We
will see, that some of the disadvantages of PSSMs compared tpHMMs, like the lack to model
insertions and deletions, can be compensated, making PSSMamost as sensitive as pHMMs and
that the use of su x based full text index structures lead to f ast PSSM searching algorithms, that
are well suited for large-scale PSSM matching tasks.
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3 Fast algorithms for matching position
Speci ¢ scoring matrices

3.1 Introduction

As stated in the former chapter, PSSMs are a well known and sumessfully used concept for approx-
imate motif modeling in sequence analysis. When searching ith PSSMs in nucleotide or amino
acid sequences, a high PSSM-score in some region of a sequeoften indicates a possible biological
relationship of this sequence to the family or motif characerized by the PSSM. There are sev-
eral databases utilizing PSSMs for function assignment andinnotation, e.g., PROSITE [HSL™ 04],
PRINTS [ABE * 03], BLOCKS [HGPHOU], EMATRIX [WNB99]] JASPAR [JAE_*04], or TRANS-
FAC [MEG * 03]. In addition, recently developed modeling concepts fomore complex complete regu-
latory modules consisting of several transcription factorbinding site, like the multiple-feature based
approach of [PSTBO%], also use PSSMs as atomic motif desctigrs. While there are manifold ap-
plications that employs PSSMs and PSSM containing databasgeare constantly improved, there are
only few improvements in the programs searching with PSSMsE.g., the programsFingerPrintScan
[SEA99], BLIMPS [HGPHOQ], Matinspector [QFWW095]|, and the method of [PSTBOE] still use a
straightforward O (mn)-time algorithm to search a PSSM of lengthm in a sequence of lengtm.
In [RISOZ] the authors presented a method based on Fourier &amsformation. A di erent method
introduced in [EBO5] employs data compression. To the best bour knowledge there is no software
available implementing these two methods. The most advanag program in the eld of searching
with PSSMs is EMATRIX [WNBOO], which incorporates a technique called lookaheadoring. The
lookahead scoring technique is also employed in the su x tre based method of [DNMOD]. This
method performs a limited depth rst traversal of the su x tr ee of the set of target sequences. This
search updates PSSM-scores along the edges of the su x tres.ookahead scoring allows to skip
subtrees of the su x tree that do not contain any matches to th e PSSM. Unfortunately, the method
of [DNMOQ] has not found its way into a widely available and rabust software system. A method
for the detection of transcription factor binding sites modelled with PSSMs utilizing su x trees but
no lookahead scoring was very recently described in [SSZ07h [Gon04], the development of new,
more e cient algorithms for searching with PSSMs is considered an important problem, which still
needs better solutions.

In this chapter, we brie y recall existing methods for searcing with PSSMs and present a new, non-
heuristic algorithm. With any non-heuristic PSSM searching algorithm, the performance in terms
of sensitivity and speci city solely depends on the used PSBI and threshold, i.e. given a PSSM
and threshold, all these algorithms give exactly the same rgults. For the generation of PSSMs from
aligned sequences, numerous di erent methods were descel in literature over the last decades
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[GMES7, TAK94] HH96] WNB99] KGR * 03]. Some of them were already described in detail in
sectionZ®. The algorithms presented in this chapter can da with all these types of PSSMs, since
rather than improving PSSMs, we focus on improvements in tems of time and space e ciency when
searching with PSSMs, independently of their underlying gaeration method. The overall structure
of our proposed new search algorithm is similar to the methodof [DNMOO]. However, instead of
sux trees we use enhanced sux arrays, a data structure which is as powerful as sux trees
(cf. [AKOO4]) but provides several advantages over su x trees, which make them more suitable for
searching with PSSMs.

One of our algorithmic contributions is a new technique that allows to skip parts of the enhanced
su x array containing no matches to the PSSM. Due to the skipping, our algorithm achieves an
expected running time that is sublinear in the size of the seech space (i.e., the size of the nucleotide
or protein database). As a consequence, our algorithm scadevery well for large data sizes.

Since the running time of our algorithm increases with the sze of the underlying alphabet, we devel-
oped a ltering technique, utilizing alphabet reduction, t hat achieves better performance especially
on sequences/PSSMs over the amino acid alphabet.

When searching with a PSSM, it is important to determine a sutable threshold for a PSSM-match.
Usually, the user prefers to specify a signi cance threshal (i.e., an E-value or a p-value) which has
to be transformed into an absolute score threshold for the PSM under consideration. This can be
done by computing the score distribution of the PSSM, using vell-known dynamic programming
(DP, for short) methods, e.g., [Sta89,[WNB00,[Rah03[ RMV03] Unfortunately, these methods are
not fast enough for large PSSMs. For this reason, we have delped a new, lazy evaluation algorithm
that only computes a small fraction of the complete score digibution. Our algorithm speeds up

the computation of the threshold by factor of at least 3, compared to standard DP methods. This
makes our algorithm applicable for on-the- y computations of the score thresholds.

3.2 Pattern matching with PSSMs

Recall, that a PSSM is an abstraction of a multiple alignment of related sequences and can be
de ned as a functionM :[O;m 1] A! , Wwherem is the length of M and A is a nite alphabet.
We representM by an m jAj matrix, in which each row re ects the frequency of occurrene of
each amino acid or nucleotide at the corresponding positiomf the underlying alignment. See Figure
B for an example.

From now on, let M be a PSSM of lengthm and let w[i] denote the character ofw at position i
for 0 i< m. Further on, wli:;j ] genotes the substring ofw starting at position i and ending at

position j. We de ne sc(w;M) := M (i; wl[i]) for a sequencew 2 A™ of length m. sc(w; M)
is the match score of w w.rt. M. The score rangeof a PSSM is E;e interval [sCmin (M ); SCmax (M )]
with SCpin (M) := o *minfM (i;a) ja2 Ag and sGnax (M) := % *maxf M (i;a) j a2 Ag. We

de ne the PSSM matching problemas follows:
De nition 9  Given a sequences of length n over alphabetA, a PSSMM of length m and a score

threshold th, the PSSM matching problemis to nd all positions j 2 [O;n m] in S and their
assigned match scores, such thasc(S[j:;j + m 1];M) th holds.
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3.3 Improved running time through the usage of lookahead saing
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Figure 3.1: Amino acid PSSM of lengthm = 10 of a zinc- nger motif. If the score threshold is
th =400, then only substrings beginning with C or V can match the PSSM, because all
other amino acids score below the intermediate thresholdhg = 2. That is, lookahead
scoring will skip over all substrings starting with amino acids di erent from cysteine (C)
and valine (V).

A simple algorithm for the PSSM matching problem slides alomg the sequence and computes
sc(w;M) for eachw = S[jzj + m 1], 2 [0;n m]. See Algorithm [ and Figure[32 for an
example. The running time of this algorithm is O (mn). It is used e.g., in the programsFinger-
PrintScan [SFA9Y], BLIMPS [HGPHOQ], Matinspector [QFWW95], and MATCH [KGR* 03].

Algorithm 1 : SPsearch
input : A sequenceS = Sp:::S, 1, a PSSMM of length m and a threshold th
output : All matching positions of M in S and their associatedmatchscores

forj Oton mdo
score sc(S[jzj +m 1 M);
if score th then
print "match at position j with score: score";
end
end

3.3 Improved running time through the usage of lookahead
scoring

In [WNBUOO], lookahead scoring is introduced to improve the gmple algorithm. Lookahead scoring
allows to stop the calculation of sc(w; M) when it is clear that the gl\ﬁen overall score threshold
th cannot be achieved. To be morlg preuse we de npfxsgy(w; M) == | _o M (h;w[h]), maxq :=
maxfM (d;a) ja2 Ag, and ¢ := h d+1 max, forany d 2 [O;m  1]. pfxsg(w; M) is the pre x
score of depthd. 4 is the maximal score that can be achieved in the lastn d 1 positions of the
PSSM. Let thy := th 4 be the intermediate threshold at position d. The correctness of lookahead
scoring, not shown in [WNBQU], is implied by the following Lemma:
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0123456789..... A C G T
AGCTTGCAGC..... 1 1 2 1
1+%ﬂl+l 1 211
1+1+1 2 1 1 1
iy
+1+
24+41+2 th=5

Figure 3.2: A straightforward solution for the PSSM searching problem is the SPsearchalgorithm,
which uses a sliding window technique. All subwords of the suence of the PSSM length
are scored completely according to the corresponding matxivalues. If the score is equal
to or exceeds the given thresholdth, a match is reported at the starting position of
the currently scored subword. In this example the given threshold isth = 5. Matching
subwords are marked green, mismatching subwords are markeed.

Lemma 1 The following statements are equivalent:

(1) pfxsgy(w;M) thgforalld2 [O;m 1],

(2) sc(w;M) th.

P
Proof: Suppose that[(T] holds. Then 1= f- . max, =0 and
14 1
sc(w; M) = M (h;w[h]) = pfxsG, (w;M) thy 1=th m 1= th:
h=0
Suppose that[(2] holds. Letd 2 [0;m  1]. Then
X 1 xd X 1
sc(w;M) = M (h; w[h]) = M (h; wlh]) + M (h; w[h])
h=0 h=0 h=d+1
14 1
= pfxsg(w; M) + M (h; wlh])
h=d+1

P
Hencesc(w; M) th implies pfxscy(w; M) + hm: dl+1 M (h;w[h]) th. SinceM (h;w[h]) max;,
for h 2 [O;m 1], we conclude

X 1 X 1
M (h; w[h]) maxy = ¢
h=d+1 h=d+1
and hence
w1
pfxsgg(w; M)  th M (h;w[h]) th d = thq:
h=d+1
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3.3 Improved running time through the usage of lookahead saing

The Lemma suggests a necessary condition for a PSSM-match wdh can easily be exploited: When
computing sc(w; M) by scanning w from left to right, one checks ford = 0;1;:::;m 1, if the

intermediate threshold thy is achieved. If not, the computation can be stopped. See Fige [371 for
an example of intermediate thresholds and their implicatins. A pseudocode formulation of the
lookahead scoring algorithm (herein after calledLAsearch) is given in Algorithm Z1

Algorithm 2 : LAsearch
input : A sequenceS = Sp:::S, 1, @a PSSMM of length m, a threshold th
output : All matching positions of M in S and their associatedmatchscores

ford Otom _1do

thq th m Lo maxfM(h;a)ja2Ag ;
/* calculate the intermediate thresholds thqg = th d */
end
for j Oton mdo
score 0;
ford Otom 1do
score score+ M (d; S[j + d]);
[* score= pfxsgy 1(S[zj +d 1;M)+ M(d;S[j + d]) */
if score <thgq then
break; /terminate when we miss an intermediate threshold
end
end
if score th then
print "match at position j with score: score";
end
end

If we assume that the row maxima ofM can be determined inO(1) time, such that the a priori
calculation of the vector of intermediate thresholds can beaccomplished inO (m) time instead of
O (mjAj), LAsearch runs in O (kn + m) time, where k is the average number of PSSM-positions per
sequence position actually evaluated. In the worst casek 2 O (m), which leads to the worst case
running time of O (mn), not better than the simple algorithm. However, k is expected to be much
smaller than m, leading to considerable speedups in practice. In the bestase, exact one character
of each subword of lengthm of S has to be scored leading tdO (m + n) running time.

3.3.1 Permuted lookahead scoring

The authors of [WNBOQ] also suggest a variant of (sequentigllookahead scoring, called permuted
lookahead scoring, which indeed does not a ect the worst casrunning time but can lead to an
additional speedup in practice. The basic idea is to evalua the PSSM in a permuted order with
the aim to increase the likelihood of falling short of an intemediate threshold early. Lookahead
scoring accesses the values of the PSSM sequentially from giton 1 up to m. See interior loop
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3 Fast algorithms for matching position speci ¢ scoring matrices

in Algorithm Z1 However we can score the characters of a giversubword w of length m in any
order. Wu and coworkers suppose to reorder the rows of the P3& according to the dierence
D;i = JE; M;j between the expected score; = _,, M(i;a)f(a); i 2 [Om 1] and the
maximum scoreM; = maxfM (i;a) j a2 Ag of a row i, starting with the largest di erence. Here
f (a) denotes the background probability of symbola. Hence we can determine priori a permutation
=( o0;::5; m 1) ofthe rows ofM suchthatD ; D ; holds, for any pairi;j 2 [O;m 1], i<]

and where ; indicates the position to be evaluated in stepi. That is, the intermediate thresholds
are computed according to the order given by as

w1

thq = th maxfM ( h;a)ja2Ag foranyd2 [O;m 1] (3.2)

h=d+1
Analogous to the calculation of pfxsc for sequential lookahead scoring, we compute a partial scet
scoringd characters ofw in the order given by . Let

priscy(sj ::Sj+m 1;M):= o M( q;S[ + 4): (3.2)
i=0

The substitution of the computation of function pfxsc by prtsc and the corresponding changes
in the calculation of the intermediate thresholds lead to the permuted lookahead scoring variant
for searching with PSSMs, shown in Algorithm[3. For the perfamance improvement of permuted
lookahead scoring over sequential lookahead scoring ack#éble in practice, speedups between:B
and 20:6 %, depending on the stringency oth are reported in [WNBOQ]. Although this improvement
is signi cant, we will see that the use of su x based index structures in combination with sequential
lookahead scoring lead to much higher performance improveants.

3.4 PSSM searching using su x trees

Although the LAsearch and permuted LAsearch lead to a considerable speedup in practice, the
benet in times of exponentially increasing sequence databses is limited. The severe drawback
of these techniques is, that the improvement does not a ect he (exponentially increasing) search
space and hence the running time is still linear in the size othe search space (i.e. length of the
sequences to be searched). In analogy to traditional stringnatching, the improvements introduced
by lookahead scoring can be compared to pattern preprocess] methods like the Knuth-Morris-
Pratt [KMP77]lor Boyer-Moore [BM77] algorithm that slide al ong the text to be searched and which
running time is dominated by the text length. What we are really interested in, is an algorithm that
runs independent of the sequence lengtm. This can be achieved with an indexing of the search
space.

In the SPsearchas well asLAsearch algorithm, we observe that common pre xes of subwords are re
scored again and again when sliding along the sequence. Wercavoid this by indexing all subwords
based on their pre xes. A powerful index data structure known since the early seventies [Wei43]
that became quite popular in the last years, with a wide rangeof possible applications [[Apo85] in
computational biology (cf. [Gus91)]) is the su x tree, which is well suited for our problem. A su x
tree is a Trie-like or PATRICIA-like [Mor68[ldata structure that exposes the internal structure of
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3.4 PSSM searching using su x trees

Algorithm 3 : permuted LAsearch
input : A sequenceS = sp:::S, 1, a PSSMM of length m, a threshold th
output : All matching positions of M in S and their associatedmatchscores

compute permutation = o;::: n 1 0fM suchthatD ; D, foranyi<ji;j 2[0;m 1];
ford Otom _1do
thq th m Lo omaxfM( n;a)ja2Ag ;

/* calculate the intermediate thresholds in the permuted or der */
end
for j Oton mdo
score 0;
ford Otom 1ldo
score score+ M( ¢;S[j + 4]);
[* score= prtscy 1(S[zj +m 1M)+ M( 4;S[ + 4]) */
if score <thgq then
break; //terminate when we miss an intermediate threshold
end
end
if score th then
print "match at position j with score: score";
end
end
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3 Fast algorithms for matching position speci ¢ scoring matrices

Figure 3.3: The su x tree for the string S = ACCCACAC $. Internal nodes are marked green,
leaves are marked red. Observe that the concatenation of thedge labels on a path
starting at the root node and ending at leave with leave numbe i results in the su x
of S starting at position i.

the underlying string in a deep way by containing all subwords of the string and allowing a very
e cient access. More precisely:

De nition 10  Su x tree

The sux tree T for a string S$ of length n is a rooted directed tree with exactly n leaves numbered
Oton 1.Each internal node, excluding the root node, has at leastwo child nodes and each edge is
labeled with a nonempty substring of S. No two edges out of a node can have edge-labels beginning
with the same character. The key feature of the su x tree is that for any leaf i 2 [O;n 1], the
outcome of the concatenation of the edge-labels on the pathrdm the root to leaf i exactly spells
out the sux of S that starts at position i.

The su x tree can be constructed in linear time and space with several algorithms [Wei73 [ McC76,
UKK95]. Once constructed, it can be used to e ciently solve a wide range of string processing
problems, e.g the exact matching of a pattern of lengthm in O(m) time. Figure gives an
example of a su x tree.

3.4.1 Dorohonceanu's algorithm

In [DNMOQ] the authors describe the usage of su x trees to sped up the searching with PSSMs.
Their non persistent implementation of su x trees needs 17 byte space per input character on
average. The basic idea of their method is to perform a limitel depth rst traversal of the su x
tree of the set of target sequences. In the traversal of the #e they update PSSM-scores along the
edges and make use of the fact, that for a PSSM of lengtm all subwords of lengthm which have to
be investigated are represented in the su x tree up to depth m. If and only if the overall threshold
th is reached or exceeded at deptim, the matching positions of the PSSM can be retrieved by
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3.4 PSSM searching using su x trees

A C
1 2
1 2
2 1

S=ACCCACACS
Pos:012345678

RN

Figure 3.4: Using a su x tree for searching with PSSMs. To scae all subwords of the PSSM length
m (m = 3 in this example), we have to perform a depth rst traversal up to depth 3
(green marked part of the tree). This is a direct adaptation of the SPsearchalgorithm
described in Algorithm [I.

enumerating the leaf numbers in the subtree below. As we havalready seen in the description of
the lookahead scoring method, it is not necessary to score ladubwords of lengthm completely, if
an overall threshold th is given. Again we can use intermediate thresholds as earlyt@p criterias for
the subword scoring. For PSSM searching using su x trees ths means, that we essentially do not
have to traverse the tree up to depthm completely (see Figurd=34), when incorporating lookahead
scoring. Lookahead scoring allows to skip subtrees of the sutree that do not contain any matches

to the PSSM, by checking the intermediate thresholds while he traversal (see Figure3b for an
example). Su x trees are also employed for searching with PSMs in the very recently published
STORM program [SSZ07].STORM uses McCreight's algorihtm [McC76)] for the construction ofa
non persistent su x tree.

Analysis

The complexity analysis for Dorohonceanu's algorithm, notgiven in [DNMOQ], follows the same
argumentations and leads to the same results as the analysef the ESAsearch algorithm presented
below. To avoid redundancies, we analyze the complexity of Brohonceanu's algorithm together
with the complexity of ESAsearchin section[351 on pag€d6.
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3 Fast algorithms for matching position speci ¢ scoring matrices

S=ACCCACACS
Pos:012345678

Figure 3.5: By incorporating lookahead scoring we can limitthe depth rst traversal of the su x
tree. Observe that, in contrast to the traversal shown in Figure [34, now subtrees can
be skipped, if an intermediate threshold is missed. In this gample we used an overall
threshold of th = 6.

3.5 PSSM searching using enhanced su x arrays: The
ESAsearch algorithm

As demonstrated in [DNMOQ], a su x tree is a powerful data str ucture, even for PSSM searching
and its usage can lead to remarkable speedups, especially @ the sequence space to be searched
is large. Unfortunately, the method of has not found its way into a widely available and
robust software system. Further on, an enhanced su x array, a data structure as powerful as a su x
tree, provides several additional advantages over su x trees, making it more suitable for searching
with PSSMs:

While su x trees require about 12 n bytes in the best available implementation (cf. [Kur99]),
the enhanced su x array used for searching with PSSMs only neds % bytes of space.

While the su x tree is usually only computed in main memory, t he enhanced su x array is
computed once and stored on le. Whenever a PSSM is to be seaned, the enhanced su x
array is mapped into main memory which requires no extra time

While the depth rst traversal of the su x tree su ers from th e poor locality behavior of the

data structure (cf. [GK95]), the enhanced su x array provid es optimal locality, because when
searching with PSSMs it is sequentially scanned from left taright.
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3.5 PSSM searching using enhanced su x arrays: TheESAsearchalgorithm

i suf{i] Icpli] skpl[i]| Ssufii

0 1 12 | aaaaccacac$
1 2 3 2 | aaaccacac$
2 3 2 3 | aaccacac$
3 7 1 6 [acac$

4 4 2 6 | accacac$

5 9 2 6 [ac$

6 0 0 12 | caaaaccacac$
7 6 2 9 | cacac$

8 8 3 9 [cac$

9 5 1 11 |ccacac$
10 10 1 11 (c$
11 11 0 12 |$

Figure 3.6: The enhanced su x array consisting of tables suf, Icp, skp (left) and the sux tree
(right) for sequence S = caaaaccacac. Someskp entries are shown in the tree as red
arrows: If skdi] = j, then an arrow points from row i to row j. For clarity, su xes
corresponding tosufli] are given in table Sqyf;i-

The generic nameenhanced su x array , introduced in [AKOO0Z] stands for a family of data struc-
tures, extending a su x array with additional information. Su x arrays are a well known data
structure in literature. They were introduced in 1993 by Manber and Myers [MM93] and indepen-
dently by Gonnet et al. under the name PAT array [GBYS92]. The enhanced su x array for a given
sequenceS of length n consists of three tablessuf, Icp, and skp Let $ be a symbol inA, larger than
all other symbols, which does not occur inS. suf is a table of integers in the range 0 ton, specifying

is the sequence of su xes ofS$ in ascending lexicographic order, whereS; = S[i::n  1]$ denotes
the i-th nonempty su x of the string S$, fori 2 [0;n]. See Figure[Zb for an example. Given a
sux tree, suf can be constructed inO (n) time by a depth- rst traversal of the tree. Recently
published algorithms (cf. [KS03,[KSPPO3,[KAO3]) even allowa direct construction of suf in O (n)
time, without rst constructing a su x tree. Table  suf requires 4 bytes.

Icp is a table in the range 0 ton such that lcp[0] := 0 and Icp[i] is the length of the longest common
pre x of Sgqi 1) and Sggip, for i 2 [1; n]. See Figurel3b for an example. Tablécp can be computed
in linear time given table suf [KLA*01]. In practice PSSMs are used to model relatively short, loal
motifs and hence do not exceed length 255. For searching witRSSMs we therefore do not access
values in table Icp larger than 255, and hence we can stor&p in n bytes.

skpis a table in the range 0 ton such that skyi] := min(fn+1g[f j 2 [i+1;n]j lcpfi] > lcp[j1g). In
terms of su x trees, skdi] denotes the lexicographically next leaf that does not occuin the subtree
below the branching node corresponding to the longest commopre x of Sqyqi 1) and Seygij. Figure
B8 shows this relation. Tableskpcan be computed inO (n) time given sufand Icp. For the algorithm
to be described we assume that the enhanced su x array forS has been precomputed.
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3 Fast algorithms for matching position speci ¢ scoring matrices

In a su x tree, all substrings of S of a xed length m can be scored with a PSSM by a depth rst
traversal of the tree. Using lookahead scoring, one can skipertain subtrees that do not contain

matches to the PSSM. Since su x trees have several disadvargdges (see the introduction), we
use enhanced su x arrays to search PSSMs. Like in other algathms on enhanced su x arrays

(cf. [AKOO04]), one simulates a depth rst traversal of the su x tree by processing the arrays suf
and lcp from left to right. To incorporate lookahead scoring while searching we must be able to skip
certain ranges of su xes in suf. To facilitate this, we use table skp. We will now make this more
precise.

Fori 2 [0;n], let vi = Sgygip, li =minfm;jvijg 1, andd; = max(f 1g[f d2 [0;1;]j pfxscy(vi; M)

thqg). That is, d; is the last position in the sux v; to be scored when scoringv; from left
to right, since at position d; + 1 we fall short intermediate threshold thg 1. Now observe that
d=m 1, pfxsg, (vi;M) thyn 1, sc(vi;M) th.Hence,M matches at positionj = suffi]
if and only if d = m 1. Thus, to solve the PSSM searching problem, it su ces to conpute all
i 2 [0;n] satisfyingdi = m 1. We computed; along with C;[d] = pfxsc(vi; M) for any d 2 [0; d;].
do and Cy are easily determined inO (m) time. Now let i 2 [1; n] and suppose thatd, ; and C; 1[d]
are determined ford 2 [0;d; 1]. Sincev; ; and v; have a common pre x of length Icp[i], we have
Ci[d] = C; i[d] forall d2 [0;lcp[i] 1]. Consider the following cases:

If di 1 +1 lcp[i], then compute Ci[d] for d Icp[i] whiled |; and Ci[d] thg. We obtain
di = d.

If di 1+1 < lcpfi], then let j be the minimum value in the range | + 1;n + 1] such that all

pre x we have pfxsgy(vi 1;M) = pfxsg(vr;M) forall d2 [0;di 1+1]and r 2 [i;j 1]. Hence
d 1=d forr 2 [i;j 1. f di 1 = m 1, then there are PSSM matches at all positions
suffr] forr 2 [i;j 1]. If di 1 <m 1, then there are no PSSM matches at any of these
positions. That is, we can directly proceed with indexj. We obtain j by following a chain of

These case distinctions lead to the progranESAsearch (see Algorithm @ and Function [SKipchair).

We illustrate the ideas of algorithm ESAsearch formally described above, with the following exam-
ple. Let M be a PSSM of lengthm = 2 over alphabet A = fa;cg with M (0;a) =1, M (0;c) = 3,
M (1;a) = 3, and M (1;c) = 2. For a given threshold of th = 6 we obtain intermediate thresholds
tho = 3 and th; = 6. To search with M in the enhanced su x array for sequenceS = caaaaccacac
as given in Figure[3®, we start processing the enhanced su »array suf top down by scoring the rst
SuX Sg0) = aaaaccacac$with M from left to right. For the rst character of Sg,q0) We obtain
a score ofpfxscy(Ssufioj; M) = M (0; @) = 1 which is below the rst intermediate threshold tho = 3.

Hence we setdyp = 1 and notice that we can skip all su xes of S that start with character ' a'.
Further on, with a lookup in Icp[1] = 3we nd that Sgq1; and Sg,0; Share a common pre x of length
3anddg+1= 1+1< Icp[l] =3 (second case described above). The next su x that may natch

M with th = 6 is Sg,6) = Caaaaccacac$ Su xes Sqyfi; Ssuffz): - - - Ssuffs) €an be skipped since they
all share a common pre x with Sg,0 Of at least length 1. That is, they begin all with character
'a’ and would also miss the rst intermediate threshold tho = 3 when scored. We nd Sgg by

64



© 0o N o o b~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

3.5 PSSM searching using enhanced su x arrays: TheESAsearchalgorithm

Algorithm 4 : ESAsearch

input : An enhanced su x array for the sequence S$ consisting of the tablessuf, Icp and skp, a

PSSM M of length m, and a thresholdth.
output : All matching positions of M in S and their associatedmatchscores

ford Otom _1do
thq th M &, maxfM (h;a)ja2Ag ;

/* calculate the intermediate thresholds thy = th d
end
depth 0;
i 0

while i<n do
if n  m< suffi] then
while (n m< sufli))~ (i<n) do
i i+l
depth  minfdepth;lcpli]g;
end
if i nthenreturn ;

end
if depth=0 then score Oelse score C[depth 1];
d depth 1,
do
d d+1;
score  score+ M (d; Sgyij+ a);
C[d] score
while (d<m 1)~ (score thy);
if (d=m 1)~ (score th) then
print"match at position suffi] with score: score";
while i<n do

i i+1;
if lcpli] m then print"match at position suf]i] with score: score' else break;
end
else
‘ i skipchain (Icp; skp n;i; d);
end
depth lcp[i];
end

*
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Function skipchain( Icp, skp n, s, d)

input : Tables Icp and skp of an enhanced su x array, jSj denoted with n,an indexi of the i-th
smallest su x, and depth d from where to start skipping.

output : An index j of the j-th smallest su x with j>i .

begin
if i<n then
j i+1;
while (j n)” (lepj]>d) do
| § skdil+L;
end

return j ;
end

following a chain of entries in table skp skd1] = 2, skd2] = 3, and skd3] = 6. When scoring Sy
we compute pfxscy(Ssufs); M) = M (0;¢) = 3 and pfxsc, (Ssuss M) = M (0;¢) + M (1;a) = 6 and
store them for reuse inC[0] and C[1]. Sinceds =1 = m 1 =1 holds, we report suf[6] = 0 with
scoresc Sgues M = pfxsc (Ssufe;; M) = 6 as a matching position. With lookups in Icp[7] = 2
and Icp[8] = 3 we notice that Sgy7 and Sgyqe; Share a common pre x of at least two characters
with Sg,i6. Hence we reportsuf{7] = 6 and suf{8] = 8 with score C[1] = 6 as further matching
positions. We proceed with the scoring ofSg,q9;. Sincelcp[9] = 1 holds, we obtain the score for the
rst character ' ¢' from array C with pfxscy(Ssuig; M) = C[0]. After scoring the second character
of Sauife), PXSC (Ssufie;; M) = 5 < th 1 = 6 holds and we miss the second intermediate threshold
and continue with the next sux. The last two suxes  Sgypo; and Sg,q11) in suf do not have to
be considered since their lengths are smaller tham = 2 (not counting the sentinel character $)
and therefore they cannot matchM . We end up with matching positions 0, 6, and 8 ofM in S
with match score 6. To nd these matches, we processed the emmced su x array suf top down
and scored su xes from left to right, facilitating the addit ional information given in tables Icp and
skpto avoid re-scoring of characters of common pre xes of su xes and to skip su xes that cannot
match M for the given threshold.

3.5.1 Analysis

The C; arrays can be stored in a singlé€) (m) space arrayC as any stepi only needs theC; specic
to that step. C; solely depends orC; 1, and Cj[0::d 1]= C; 1[0:d 1] holds for a certaind <m,
i.e., the rst d entries in C; are known from the previous step, and thusC can be organized as a
stack. No other space (apart from the space for the enhancedus< array) depending on input size
is required for ESAsearch leading to an O (m) space complexity.

The worst case forESAsearch occurs, ifth  scnin (M) (M matches at each position inS), and no
sux of S shares a common pre x with any other su x. In this case lookahead scoring does not
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3.5 PSSM searching using enhanced su x arrays: TheESAsearchalgorithm

give any speedup and every su x must be read up to depthm, leading to an O (nm) worst case
time complexity. This is not worse but also not better than th e complexity for LAsearch. Next we
show that, independent of the chosen thresholdth, the overall worst case running time boundary
for ESAsearchdrops to O (n + m) under the assumption that

n jAj m+m 1 (3.3)
holds.

The shorter the common pre xes of the neighboring su xes, the slowerESAsearchruns. Thus to
analyze the worst case, we have to consider sequences contag as many di erent substrings of
some lengthq as possible. Observe that a sequence can contain at mogj @ di erent substrings of
length g > 0, independent of its length. To analyze the behavior ofESAsearch on such a sequence,
we introduce the concept of su x-intervals on enhanced su x arrays, similar to Icp-intervals as
used in [AKO0A].

Denition 11  Aninterval [i;j], 0 i ] n, is a su x-interval with oset ~ 2 f0;:::;ng, or
“-su x-interval , denoted “{[i;] ], if the following three conditions hold:

1. lepfi] <
2. lcpfj +1] <°
3. lcplk] ° forallk2fxji+1l x jg
An Icp-interval, or "-interval, with Icp-value ~ 2 0;:::;ngis a su x-interval “{[i;j Jwith i<j and

Every Icp-interval “{[i;] ] of an enhanced su x array for text S corresponds to an internal nodev in
a sux tree for S, and the length of the string spelled out by the edge labels orthe path from the

root node to v is equal to *. Leaves are represented as singleton intervals{[i;j J with i = j. We say
that su x-interval  “{[i;j ] embeds su x-interval “*{[k;l], ifand only if ** >~ ,i k<I| j,and
if there is no su x-interval “Y[r;s]with “<* %< * andi r k<l s j.Asan example for

*-su x-intervals, consider the enhanced su x array given in  Figure 28. [G 5] is a 1-su x-interval,
becausdcp[0] =0 < 1,lcp[5+1] =0 < 1, andlcpk] 1;forallk,1 k 5. Sux-interval 2{[3 ;5]
is embedded in 1{[Q 5], but 3{[0;1] is not.

Consider an enhanced su x array of a sequence which containgll possible substrings of length
g. There arejAj 1-su x-intervals, jAj? 2-su x-intervals, and so on. Consequently, up to depth g,
there are a total of

xa A 9L A
i A 1A
Eq = A= ———————— 3.4
T A A1 (3.4)
*-su x-intervals (1 : g). This corresponds to the number of internal nodes and leaw in

a sux tree, which is atomic up to at least depth q under our assumptions. Note that due to
this correspondence, statements on the complexity oESAsearch also hold for the complexity of
Dorohonceanu's su x tree based PSSM searching algorithm decribed in sectionf3Z1 on pagE®0.

Since we are considering sequences that contain all posstbsubstrings of lengthq, there are jAj ¢
d-su x-intervals at any depth d, 1 d g. Let d{[i;j ] be a d-su x-interval. We know that
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3 Fast algorithms for matching position speci ¢ scoring matrices

pfxscy (Vi; M) is a partial sum of pfxsc, (vi; M), and becausevi[0::d 1] = vj4q [0d 1] = i1 =

vi[0:d 1], pfxsg (vi;M) is also a partial sum of pfxsg, (vi; M) for i k j. That is, after
ESAsearch has calculatedpfxsg (vi; M) at depth d, at any su x-interval ( d+ 1){[ r; s] embedded
in d{[i;j ] it suces to only calculate the \rest” of pfxsg, (vk;M). At any depth d, the algorithm

calculates pfxscy,q (Vi M) = pfxsg (vi; M) + M (d; v [d]), meaning that all pre x scores at depth
d+1in a d-su x-interval can be computed from the pre x scores at dept h d by jAj matrix look-ups
and additions as there arejAj embedded @ + 1)-su x-intervals. There are jAj ¢ d-su x-intervals at
depth d. Hence, it takes ESAsearch a total of jAj¢ jAj matrix look-ups and additions to advance
from depth d to d+1, and thus we conclude that the algorithm requires a total of O (E,) operations
to compute all scores for all substrings of lengthg.

Suppose that ESAsearch has read sux v; in some step up to depthq 1 such that character
vi[g 1] is the last one read. Iflcp[i +1] g holds, then the algorithm has found a su x-interval

o [i;j ] with a yet unknown right boundary j, otherwisej = i. ESAsearch reports all suflk] with

k 2 [i;j ] as matching positions by scanning over tabldcp starting at position i until Icplk] < lcp[i]
(such thatit nds j = k 1), and continues with sux vy at depth Icplk]. Hence processing such a
su x-interval requires one matrix look-up and addition to ¢ ompute the score, andj i+ 1 steps
to report all matches and nd sux vg. Since su x-intervals do not overlap, the total length of
all su x-intervals at depth g can be at mostn, so the total time spent on reporting matches is
bounded by n.

There are three cases to consider when determining the timeequired for calculating the match
scores for a PSSM of lengttm. Let p:= m q.

1.Ifp=0() m = g, then the time required to calculate all match scores is inO (E,) as
discussed above.

2. fp<0( m<q), then none of the m-su x-intervals are singletons since we assumed that
the sequence under consideration contains all possible ssinings of length g, i.e., there must
be su xes sharing a common pre x of length m, and the time required to calculate all match
scores is inO (Ep).

3. Ifp>0( m>q), then every m-su x-interval can be a singleton, and all pre x scores for
the PSSM pre x of length g are calculated in O (Eq) time. However, the remaining scores for
the pending substrings of lengthp must be computed for every su x longer than @, taking
O (np) additional time, and leading to a total O (Eq+ np) worst case time complexity for
computing all match scores.

Note that a text containing jAj? dierent substrings must have a certain length, which must be
at least jAj 9. In fact, a minimum length text that contains all strings of | ength g has lengthn =
jAj9+q 1. Itrepresents ade Bruijn sequence|dB46] without wrap-around, i.e., a de Bruijn sequence
with its rst q 1 characters concatenated to its end. Since ae Bruijn sequence without wrap-
around represents the minimum length worst case, we infer im Equation ([@4) that Eq 2 O (n).
Hence, ifm = q, then it takes O (n) time to calculate all match scores. Ifm < q, then E, < Eq
and thus it takes sublinear time. If m > q, it takes O (n + np) time.
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3.5 PSSM searching using enhanced su x arrays: TheESAsearchalgorithm

[ [ suffi] [ Iplil | Sepy |

0 5 0 | aaccgtcttggc$

1 6 1 | accgtcttggc$

> 1 1 | agataaccgtcttggc$ | i | suf[i] | Icplil | Tsuffi] |

3 3 1 | ataaccgtctigge$ 0 2 0 | aaacaccc$

4 0 0 | cagataaccgtcttggc$ 1 3 2 | aacaccc$

5 7 1 | ccgtcttggc$ 2 4 1 | acaccc$

6 8 1 | cgtctiggc$ 3 6 2 | accc$

; ié i zgggc$ 4 1 0 | caaacaccc$
5 5 2 | caccc$

9 2 0 | gataaccgtcttggc$ 6 0 1 | ccaaacaccc$

10 15 1| gc$ 7 7 2 | ccc$

11 14 1 | ggc$ P 8 2 | cc$

12 9 1 | gtctigge$ 9 9 1] c$

13 4 0 | taaccgtcttggc$ 10 10 0 $

14 10 1 | tcttggc$

15 13 1 | tggc$

16 12 1 | ttggc$

17 17 0%

Figure 3.7: Minimum sized enhanced su x arrays for worst case analysis. Enhanced su x arrays for
text S = cagataaccgtcttggc , consisting of all strings of lengthm = 2 over an alphabet
of size 4 (left), and T = ccaaacaccc, consisting of all strings of lengthm = 3 over an
alphabet of size 2 (right). S and T are both de Bruijn sequences without wrap-around
for the given alphabets.

We summarize the worst case running time ofESAsearch for preprocessing a PSSMM of length
m, searching with M, and reporting all matches with their match scores, as

O(n+n maxfO;pg+ m):

Hence, the worst case running time i0 (n + m) for p 0, implying that this time complexity holds
for any PSSM of lengthm and threshold on any text of lengthn jAj ™+ m 1, as already stated

in Inequality (83).

In practice, large numbers of su xes can be skipped if the threshold is stringent enough, leading
to a total running time sublinear in the size of the text, regardless of the relation betweem
and m. ESAsearch reads a sux up to depth m unless an intermediate score falls short of an
intermediate threshold, and skips intervals with the same o greater Icp if this happens. Right
boundaries of skipped su x-intervals are found quickly by following the chain of skip-values (see
function skipchain ). It are these jumps that make ESAsearch superior in terms of running time
to LAsearch in practice. The best case is indee® (jAj) which occurs whenever there is no score in
the rst row of the PSSM that is greater than thyg.

See Figurd:3J for examples of enhanced su x arrays, constreted from texts S and T that consist
of all strings of a certain length m over some alphabet. In these enhanced su x arrays no su x
shares a pre x of length m with any other su x, forcing ESAsearchto compute scores for each
su x. But with the intermediate scores available while proc essing the su xes, it takes exactly Ep,
steps to compute the scores, as can be gured out by manually@plying ESAsearchto the depicted
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3 Fast algorithms for matching position speci ¢ scoring matrices

enhanced su x arrays. For S, exactly ‘f—l“ =20, for T, exactly 224—12 = 14 operations are needed
to compute all jJAj™ n m+ 1 possible scores (and to nd all matches sinceS and T are both

de Bruijn sequences without wrap-around). Only a single match is repwed per matching substring,

leading to Er, 2 O (n) operations to be performed during the search phase.

3.6 Further performance improvements via alphabet
transformations

Inequality (B33) provides the necessary condition forO (n + m) worst case running time. We now
assume thatm in Inequality (83] identi es not the length of a PSSM, but th e threshold dependent
expected reading deptlfor some PSSM. We denote this expected depth byn (th) m and continue
denoting the PSSM's length by m. As seen before, for PSSMs with lengthm, such that p =

m m (th), the worst case running time isO (n + n maxfO0; pg+ m), but the expected running

time is O (n + m), as on average we expecp O.

Inequality (B3) with m substituted by m (th) implies log,; (n) m (th). Thatis, to achieve linear
worst case running time for the amino acid alphabet,m (th) needs to be very small. For instance,
if n =207, then the search time is guaranteed to be linear im only for PSSMs with a maximum
length of 7, and expected to be linear for PSSMs with expectedeading depth of 7. Observe that
for jAj =4, m (th) needs to be smaller or equal to 15 to achieve linear or sublear running times.
This provides the motivation to reduce the alphabet size by ransforming A into a reduced sized
such that jA] < jAj.

In practice, for reasonably chosen thresholdsh, the performance of ESAsearch mainly depends on
the fact that often large ranges of su xes in the enhanced su x array can be skipped. This is always
the case if we drop below an intermediate threshold while caulating a pre x' score, and if that
pre x is a common pre x of other su xes. In terms of Icp-inter vals, this means that we can skip
all “-intervals with ©  m (th) on average. In contrast to su x-intervals , whose total count is in
O n? , size and number oficp-intervals depend onjAj, as illustrated in Figure 8. We observe that
smaller alphabet sizes imply (1) larger’ -intervals, and (2) an increasing number of’-intervals for
larger values of". Thus, by using reduced alphabets, we expect to skip largerrad touch fewer Icp-
intervals under the assumption that the average reading defh remains unchanged. Consequently,
we expect to end up with an improved performance ofESAsearch This raises the question for a
proper reduction strategy for larger alphabets like the amno acid alphabet, and how this strategy
can be incorporated into ESAsearch

We now describe how to take advantage of reduced alphabets a@st Iters in the ESAsearch
algorithm. Let A = fag;ay;:::;akg and = fho;by;:::;bg be two alphabets, and : Al D a
surjective function that maps a charactera 2 A to a characterb2 . We call  1(b) the character
class corresponding tab. For a sequenceS = s;S;:::S, 2 A" we denote the transformed sequence
with 8= (s1)(s2):::(sn)2 A Along with the transformation of the sequence, we transfom
a PSSM such that we have a one to one relationship between theotumns in the PSSM and the
characters in 2. We de ne the transformed PSSM® of M as follows:
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3.6 Further performance improvements via alphabet transfemations

20 symbol alphabet (red) vs. 15 symbol alphabet (blue)20 symbol alphabet (red) vs. 10 symbol alphabet (blue)

counts
counts

5000 20 / 5000 20 /
interval length interval length

20 symbol alphabet (red) vs. 8 symbol alphabet (blue) 20 symbol alphabet (red) vs. 6 symbol alphabet (blue)

counts
counts

10
5000 20 { 5000 20 /

interval length interval length

20 symbol alphabet (red) vs. 4 symbol alphabet (blue) 20 symbol alphabet {red) vs. 2 symbol alphabet (blue)

counts
counts

5000 20 i 5000 20 /
interval length

interval length

Figure 3.8: Numbers of -intervals for ~ 2 [1;20] of di erent length for various reduced alphabets.
We built the enhanced su x array with sequences from the RCSB protein data bank
(PDB) (total sequence length 4,264,239 bytes). The used ratted amino acid alphabets
are given in Figure[3TD. Note that we limited the interval lengths in the gures to 5,000
to prevent distortion.
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3 Fast algorithms for matching position speci ¢ scoring matrices

‘ (A)denin (C)ytosin  (G)uanin  (T)hymin ‘ ‘ (P)urine  P(Y)rimidine
28.50 256.54 85.51 28.50 85.51 256.54
28.62 47.70 47.70 9.54 47.70 47.70
45.54 45.54 45.54 500.92 45.54 500.92
320.83 0.00 71.29 106.94 320.83 106.94
47.29 15.76 15.76 31.53 47.29 31.53
41.34 13.78 41.34 96.46 41.34 96.46
32.95 8.24 32.95 41.19 32.95 41.19
21.28 21.27 148.95 106.40 148.95 106.40

9.54 28.62 47.70 47.7( 47.70 47.70

Figure 3.9: PSSM alphabet transformation. In the left PSSMM we used the normal four letter nu-
cleotide alphabetA = fA;C; G; T g to describe a transcription factor binding site found
in Hox A3 gene promotors. In the right PSSM [l we used a reduced two letter alphabet
A= fP;Yg that di ers only between purine (adenine or guanine) and pyrimidine (cy-
tosine or thymine) nucleotides. Hence we have two characteclasses: 1(P)= fA;Gg
and 1Y) = fC;Tg. Consequently M (i;P) = maxfM (i;a) j a 2 fA;Ggg and
R @G;Y)=maxfM(i;ja)ja2f C;Tggforalli 2 [0; 8]

De nition 12 Let M be a PSSM of lengthm over alphabet A, and : A'! A a surjective
function. The transformed PSSM K1 is de ned as a function ¥ : [0;m 1] A1 with

M (i;b):=max M(i;a)ja2 (b : (3.5)
Figure B3 gives an example of the relationship betweeM and 91 . 8 can be easily determined from

Sin O (n) time, M in O (jAj m) time, given M . We de ne the set of matches toM on S and M on
8, respectively, as

MS 1;11 2[0;n m]jsc(S[jzj +m 1;M) thg0
MS = j2[0n mljsc O +m 1™ th

Now observe that we can use matches d#l on 8, for the computation of matches ofM on S, since
MS MS. We prove that MS €IS holds for all th 2 [SCrin (M ); SCmax (M )] by proving the more
general statement given in the following Lemma.

Lemma 2 sc(w;M) sc W;® holds forallw2A™,

Proof:
X 1 X 1
sc(w;M) = M (i; w[i]) max M(i;a)ja2  (( wii])
i=0 r;ol
= M@ (wliD) = sc ;@

i=0
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3.6 Further performance improvements via alphabet transfemations
Thus the following implications follow directly
sc(w;M) th) sc w;M th
i2MS) i2M@s

and we concludeMS  ®IS holds for th 2 [SCmin (M ); SCmax (M )].

Hence we can search with® in 8 for pre Itering of matches to M in S, pro ting of longer and
larger "-intervals in 8 by extending algorithm ESAsearch as follows:

(1) Transform S into 8 and build the enhanced su x array for $;
(2) Construct M from M ;
(3) Compute s by searching with 1 on the enhanced su x array of 8 using ESAsearch

(4) For eachi 2 WS re-score match with = sc(Sfizzi + m  1;M), and report i and if and
only if th.

As a further consequence of De nition[I2 the maximum score vhies in each row ofM and & and
thus the intermediate thresholds remain unchanged in the tansformation process. Unfortunately the
necessary PSSM transformation accompanying alphabet sizeduction a ects the expected reading
depth m (th) in such a way that it increases with more degraded alphabetsand therefore reduces the
expected performance improvement. Due to maximization acording to Equation (BXB) the matrix
values in M increase and we expect a decreased probability of falling sit of an intermediate
threshold early. Observe that there is a trade-o between ircreased expected reading depth and
increased Icp-interval sizes at low reading depths. Therefre it is desirable to minimize the e ect of
maximization by grouping PSSM columns with similar score vdues, i.e., highly correlated columns.
Since PSSMs re ect the properties of the underlying multiple alignment, we expect correlations of
PSSM columns according to biologically motivated symbol ginilarities. Hence character correlation
is the motivation for our alphabet reduction strategy.

3.6.1 Reduced amino acid alphabets

It is well known that various of the naturally occurring amin o acids share certain similarities, like
similar physiochemical properties. Accordingly, the compexity of protein sequences can be reduced
by sorting these amino acids with similarities into groups axd deriving a transformed, reduced
alphabet [LEWWQO3]. These reduced alphabets contain symbd that represent a speci ¢ character
class of the original alphabet.

Since PSSMs and the sequences to be searched have to be encoader the same alphabet, we are
more interested in a single reduced alphabet suitable for 4iPSSMs under consideration, than in
PSSM-speci c reduced alphabets. The latter implies an unaceptable overhead of index generation
for sequences over PSSM-speci ¢ alphabets, even though it ay result in a lower expected reading
depth. The basis for our reduction of the 20-letter amino acil alphabet to smaller alphabets are
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3 Fast algorithms for matching position speci ¢ scoring matrices

N Wb~ 01T OO @

Figure 3.10: Reduction of the amino acid alphabet into smakr groups. Amino acid pairs are it-
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eratively grouped together based on ther correlationsc,,, (see Equation [3®) for the
de nition of c4p), Starting with the most correlated pairs, until al amino acids are
divided into the desired number of groups. Here we used BLOSM50 similarities for
the determination of c,p. Observe that, hydrophobic amino acids, especially (LVIM)
and (FYW) are conserved in many reduced alphabets. The samesitrue for the polar
(ST), (EDNQ), and (KR) groups. The smallest alphabet contains two groups that can
be categorized broadly as hydrophobic/small (LVIMCAGSTPF YW) and hydrophilic
(EDNQKRH).



3.7 A unifying view on SPsearch LAsearch, and ESAsearch

correlations indicated by the BLOSUM similarity matrix as d escribed in [MWLOQ]. That is, amino
acid pairs with high similarity scores are grouped together(see Figure[3ID for an example). Leh
and b be two amino acids andY a 20 20 score matrix, then a measure of amino acid correlation
Ca:b betweena and b can be de ned as
P
7o Yaii Yo

| |d
20 2 20 2
i=1 Yai i=1 Yb;i

(3.6)

Ca;b =

and amino acid pairs can be iteratively grouped together acording to their correlations, starting
with the most correlated pairs, until all the amino acids are divided into the desired number of
groups.

3.7 A unifying view on SPsearch, LAsearch, and ESAsearch

In the following, we recapitulary take a unifying view on algorithms SPsearch LAsearch, and
ESAsearch focussing on similarities and di erences. For the considezd example given in Figure
BT, let M be a PSSM of lengthm = 3 over the nucleotide alphabet A = fA;C;G;Tg with
M(@;A) =2, M(i;C) =3, M(i;G) =4, and M(i;T) =5 forany i 2 [0;2] andth = 12 a
given threshold. We obtain intermediate thresholds ofthy = 2, th; = 7, and th, = th = 12.
The sequence of lengttn = 21, to be scanned for matches oM is denoted with S and given as
S = ACCCACCGTACGTAACAGMGAN (S$) = fwjS$ = vw™rjwj m~rv;w2 A ~$2Ag we
denote the set of su xes of S$ with a length of at least m. All three algorithms nd all positions

j 2[0;n m]in S and their assigned match scores, such thasc(S[j::j + m 1];M) th holds. To
do so,SPsearchand LAsearch slide along the sequence, calculatec(w; M) for eachw 2 words, (S),
and report positions j 2 [0;jSj 1] for which sc(S[j:;j + m 1];M) th holds. This is equal to
scoring the rst m characters of each element oV (S$). Since the order in which su xes of S are
scored is neither relevant forSPsearchnor LAsearch, both algorithms can be viewed as operating
on the sux array suf of S$. See (A) and (B) in Figure 311 for an example. Characters tht
have to be scored are marked red in this Figure. Characters, hose scoring is avoided when using
lookahead scoring by falling short of an intermediate threfiold are marked green. Forth = 12
the only matching substrings of S are CGTand CTGoccuring at text positions 6, 10, and 17. By
incorporating information from table Icp we can reuse pre x scores of su xes with common pre xes
and avoid additional character scorings.lcp[i] gives us the length of the common pre x of su xes
suffi 1] and suffi]. For an example, see the blue marked characters in sectiorC| in Figure BTl
Facilitating information stored in table skp allows to directly skip ranges of su xes for which no
characters need to be scored and hence avoids to check the wak in table Icp for su xes in this
ranges. This leads to algorithmESAsearch and is shown in section (D) of Figure[3Tll by the yellow
marked parts of the su x array. Entries in table skpgive the index position of the next su x in suf
to be considered.

By using lookahead scoring and information from tableslcp and skp, the total humber of scored
characters in this example can be reduced from 579Psearchsee (A)) to 19 (ESAsearch see (D)).
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3 Fast algorithms for matching position speci ¢ scoring matrices

(A):  SPsearch

sufli]
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AACACTGA
ACACTGA

ACICACCGTACGTAACACT

ACGTACGTAACACTGA
ACSTAACACTGA

ACGA

A

CACGTACGTAACACTGA

CATGA

QCACCGTACGTAACACTG,
CCACCGTACGTAACACTG

CCTACGTAACACTGA
CQGRACACTGA

CGRCGTAACACTGA

CTRA

GA

GTACACTGA
GTAEGTAACACTGA
TAACACTGA
TACGTAACACTGA
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(B):  LAsearch
i suffi] S suf [i]
0 13 ARACTGA
1 14 AGCTGA
2 0 AGCACCGTACGTAACACTGA
3 4 AGCGTACGTAACACTGA
4 9 AGTAACACTGA
5 16 ACGA
6 20 A
7 3 CACGTACGTAACACTGA
8 15 CATGA
9 2 CGCCGTACGTAACACTG
10 1 CTACCGTACGTAACACTGA
11 5 CGTACGTAACACTGA
12 CGRACACTGA
13 | 6] CGRCGTAACACTGA
14 cTa
15 19 GA
16 11 GTACACTGA
17 7 GTAGTAACACTGA
18 12 TA/CACTGA
19 8 TAGTAACACTGA
20 18 TGA
(D):  ESAsearch

i suffi] lepli] skpli] S suf [i]

0 13 21 ARCACTGA

1 14 6 AC'CTGA

2 0 ACCCACCGTACGTAACH:T

3 4 3 ACCGTACGTAACACTGA

4 9 2 5 ACGTAACACTEA

5 16 2 5

6 6 A

7 21 CACGTACGTAACACTGA

8 81\

9 14 CC’CCGTACGTAACACTGA
10 1 CCCACCGTACGTAACA]:TC
1 11 CCGTACGTAACACGA
12 14 CGRACACTGA
13 13 CGRCGTAACACTGA
14 14 CTRA
15 21 GA
16 17 GTACACTGA
17 7 171\ GTACGTAACACTGA
18 12 21 TA/CACTGA
19 8 19 TACGGTAACACTGA
20 18 20 TGA

IGA

Figure 3.11: Algorithms SPsearch (A), LAsearch (B), LAsearch facilitating information from ta-
ble Icp (C), and ESAsearch (D) in comparison. For a detailed explanation of color
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3.8 Finding an appropriate threshold for PSSM searching

x 10° Empirical score and cumulative score distributions of different BLOCKS PSSMs
9 T T T 1
IPB001073A IPB001073A
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Figure 3.12: Empirical score ( [sc(w; M) = x], see left) and cumulative score ( [sc(w;M) X], see
right) distributions of di erent PSSMs from the PRINTS data base. For the distribu-
tions, we searched with the PSSMs in the protein data bank (PIB) and sampled their
match scores. Observe that for di erent PSSMs a xed score cto (x-axis) corresponds
to di erent probability values (y-axis).

3.8 Finding an appropriate threshold for PSSM searching

3.8.1 Probabilities and expectation values

The results of PSSM searches strongly depend on the choice ah appropriate threshold value th.

A small threshold may produce a large number of false positig matches without any biological
meaning, whereas meaningful matches may not be found if thehreshold is too stringent. PSSM-
scores are not equally distributed and thus scores of two dierent PSSMs are not comparable. This
is even true for PSSMs taken from the same collection (see Fige [3712).

It is therefore desirable to let the user de ne a signi cancethreshold instead. The expected number
of matches in a given random sequence database (E-value) iswidely accepted measure of the
signi cance. We can compute the E-value for a known backgrond distribution and length of the
database by exhaustive enumeration of all substrings. Howeer, the time complexity of such a
computation is O (jAj™m) for a PSSM of length m. If the values in M are integers within a
certain range [min ;rmax ] Of SizER = rmax  'min + 1, then dynamic programming (DP) methods
(cf. [Sta89,WNBOO,[Rah03]) allow to compute the probability distribution (and hence the E-value)
in O m?RjAj time.

In practice the probability distribution is often not exact ly, or completely calculated due to concerns
of speed. E.g., in theEMATRIX system [WNBOQOO] score thresholds are calculated and storecf
probability values in the interval =10 %;10 2;:::;10 “° only. Consequently, the user can only
specify one of these p-value cuto s. For the calculation of he p-value from a determined match
score, EMATRIX uses log-linear interpolation on the stored thresholds. A derent, commonly
used strategy to derive a continuous distribution function uses the extreme value distribution with
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Standard extreme value distribution compared to standard normal distribution
04 T T T T T T T T T
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Figure 3.13: The standard extreme value distributionp(x) = e * ¢ " (red) compared to the stan-
x2
dard normal distribution p(x) = p3-e2~ (green).

estimated paramters and u (see Equation [3T)) as an approximation [Cas88, EKM9l7|_ GW4] of
high scoring matches. The extreme value distribution desdbes the limit distribution of suitably

normalized maxima and is somewhat like a normal distributian, but with a positively skewed tail (see
Figure BZI3). It is de ned by the probability density functi on p(x) = e * © *, and the probability
that a random variable X exceeds<is [X x]=1 e ¢’

To use this distribution for sequence alignment scores, it s to be normalized such that the prob-
ability of a random score S exceedingx can be written as

[S x]=1 e?® oo (3.7)
where parameter is also called thedecay or scale parameter, and u is called the mode

Even though it is widely accepted that high-scoring local aignment score distributions of the popular
position independent scoring systems PAM and BLOSUM can be il approximated by an extreme
value distribution, this cannot be generalized for arbitrary PSSMs.

To check whether an extreme value distribution is a suitableapproximation for the distribution of
PSSM match scores, we sampled the match scores of PSSMs arhitily chosen from the TRANSFAC
and BLOCKS database. We randomly shu ed 1000 human promotor sequences of length 1200,
taken from the database of transcriptional start sites (DBTSS) and 1000 protein sequences of
length 365 (= average sequence length in Uniprot-SwissprQt respectively, preserving their mono-
symbol composition. From the derived random PSSM match scaes we took the best score for each
sequence and calculated the empirical cumulative distribtion function. If the match scores S are
extreme value distributed, an X-Y plot with X = SandY =In( In(S)) should appear linear, since
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Score distribution of TRANSFAC PSSM M00734 Normal Probability Plot
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Figure 3.14: Histogram, cumulative score distribution function, X-Y plot, and normal probability
plot of TRANSFAC PSSM M00734 (PSSM length m = 9).

(x u)

In In e € = (x u) holds. For the TRANSFAC PSSM shown in Figure B4, the
X-Y plot clearly indicates that an extreme value distributi on is not an appropriate approximation.
For PSSM IPB003211A (see Figurd315) from the BLOCKS databae, it seems as if the score
distribution can be approximated quite well with an extreme value distribution. However, we then
still have the problem of adequate parameter estimation forthe distribution function.

Since we do not make any assumptions about the used PSSMs in oalgorithm, neither about the
type of scores, nor the score range, a proper approximationfahe score distribution of arbitrary
PSSMs is not possible, without time consuming simulations.That is why we are more interested
in an exact solution and thus we focus on the e cient computation of an exact discrete score
distribution.

3.8.2 Calculation of exact PSSM score distributions

While recent publications [Ran03,WNBOC] focus on the comptation of the complete probability

distribution, what is required speci cally for PSSM matchi ng, is computing a partial cumulative
distribution corresponding to an E-value resp. p-value speied by the user. Therefore, we have
developed a new \lazy" method to e ciently compute only a small fraction of the complete distri-

bution.

We formulate the problem we solve w.r.t. E-values and p-vales: Given a user speci ed E-value ,
nd the minimum threshold Tming (;M ), such that the expected number of matches oM in a
random sequence of given length is at most. Given a user speci ed p-value , nd the minimum
threshold Tminp ( ;M ), such that the probability that M matches a random string of lengthm
is at most . The threshold Tming ( ;M ) can be computed from Tminp ( ;M ) according to the
equation

Tming( (n m+1);M)= Tminp(;M ): (3.8)

Hence we restrict on computingTminpg ( ;M ).
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Score distribution of BLOCKS PSSM IPB003211A Normal Probability Plot
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Figure 3.15: Histogram, cumulative score distribution, X-Y plot, and normal probability plot of
a PSSM taken from the BLOCKS database (Accession: IPBO03214; PSSM length
m = 40), describing the Urel protein of Helicobacter pylori, a proton gated urea channel
[WESSQ0].

Since all strings of lengthm have a score betweerscqyin (M) and scmax (M), we conclude
Tminp (1; M) = sCyin (M) and Tminp (0; M) > SChax (M ):

To explain our lazy evaluation method, we rst consider exiging methods based on DP.

3.8.3 Evaluation with dynamic programming

We assume that at each position in sequencs&, the symbols occur independently, with probabil-
ity f(a) = %:n) jfi2[0;n 1]j S[i]= agj. Thus a substring w of length m in S occurs with
probability i";O Lt (w[i]) and the probability of observing the event sc(w; M) = t is

X ny 1
[sc(w;M) = t] = f(w[i]): (3.9
W2A M :sc(w;M )=t i=0

We obtain Tminp ( ;M ) by a look-up in the distribution:

Tminp(;M )=minftjscnin(M) t schax(M); [sc(w;M) (] o (3.10)
If the values in the PSSM M are integers in a range of widthR, dynamic programming allows to
e ciently compute the probability distribution. The dynam ic programming aspect becomes more

obvious by introducing for eachk 2 [O;m 1] the prex PSSM My : [O;Kk] A'! de ned by
M(j;a)= M(j;a) forj 2 [O;kl]anda 2 A.
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3.8 Finding an appropriate threshold for PSSM searching

Corresponding distributions Qy(t) for k 2 [O;m 1] andt 2 [SCmin (Mk); SCmax (Mk)], and Q 1(t),
are de ned by

8
<1 ift=0
Q 1(t) ==, )
- 0 otherwise
X
Qk(t) := Qk 1(t M(k;a)f(a) (3.11)
a2A

We have [sc(w;M) = t]= Qm 1(t). The algorithm computing Qy determines a set of probability

O (SCmax (M )jAj m) total time. See Figure 318 for an example.

If we allow for oating point scores that are rounded to decimal places, the time and space
requirement increases by a factor of 10 Conversely, if all integer scores share a greatest common
divisor z, the matrix should be canceled down byz.

3.8.4 Restricted probability computation

Inorderto nd Tminp ( ;M ) itis not necessary to compute the whole codomain of the digibution
function Q = Qn 1. We propose a new method only computing a partial distribution by summing
over the probabilities for decreasing threshold valuescmax (M), SCmax (M)  1;:::, until the given
p-value is exceeded (see Figurds31E,3117).

In step d we computeQ(scmax (M)  d) where all intermediate scores contributing toscnax (M) d
have to be considered. In analogy to lookahead scoring, in earowj of M we avoid all intermediate
scores below the intermediate thresholdh; because they do not contribute to0 Q(SCmax (M)  d).
The algorithm stops if the cumulated probability for thresh old scnax (M) d exceeds the given
p-value and we obtain Tminp (;M )= SCnax (M) d+1.

3.8.5 Lazy evaluation of the permuted matrix

The restricted computation strategy performs best if thereare only few iterations (i.e., Tminp ( ;M )

is close toscmax (M )) and in each iteration step the computation of Qi (t) can be skipped in an early
stage, i.e., for small values ok. The latter occurs to be more likely if the rst rows of M contain
strongly discriminative values leading to the exclusion ofthe small values by comparison with the
intermediate thresholds. An example of this situation is given in Figure[3. SinceQ(t) is invariant

to the permutation of the rows of M, we can sort the rows ofM such that the most discriminative
rows come rst. We found that the di erence between the largest two values of a row is a suitable
measure for the level of discrimination since a larger di eence increases the probability to remain
below the intermediate threshold. Since the rows oM are scanned several times, we save time by
initially sorting each row in order of descending score.

We divide the computation steps where the stepd computesQ(SCmax (M)  d): In step d =0 only
the maximal scores max, i 2 [0;m 1] in each row have to be evaluated.

In step d > O all scoresM (i;a) max; d may contribute to Q(scnax(M) d). Since in general
a score valueM (i;a) max; d also gives contribution to Q(SCnax (M) |) for | > d, we can
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3 Fast algorithms for matching position speci ¢ scoring matrices
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Figure 3.16: The simple DP scheme computes all probability vectors Qo, Qi1, Q2 completely within the
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green marked area, corresponding to score ranges of pre x PSMs M. In contrast to the

simple scheme, the restricted probability computation met hod computes only the upper end
of the probability distribution until the given p-value thr  eshold is exceeded, omitting parts of
the green area. In this example we show how to compute the scoe threshold Tming ( ;M )
for PSSM M of length m = 3 and a score range of [4 11] corresponding to a given p-value
threshold of = % For simplicity we assume a uniform character distribution of f (A) =

f(C) = f(G) = f(T) = % Cells of the matrix that are computed in the step actually

under consideration are marked red. In step d = 0, see (A), the algorithm computes Q»(11)
recursively for all paths through M that achieve a score of 11, i.e.Q2(11) = Qi(8) f(G),
Q1(8) = Qo(4) f(G), Qo(4)= Q 1(0) f(A)=1 % since AGGs the only path achieving score
11. It follows Q2(11) = 6i4. In step d = 1 all paths achieving a score of 11 d = 10 to determine
Q2(10) are computed, see (B). We concludeQ»(10) = % In this step, DP allows to reuse value
Q1(8) without recomputation. In step d =2, see (C) values Q1(7) and Qo(3) can be reused to

compute Q2(9) = . In step d = 2 the cumulated probability Q2(11) + Q2(10) + Q2(9) = =
5
method skips the rest of the computation. We obtain a score th reshold ofth = 10 correponding

to the given p-value threshold = 1.

exceeds the given p-value threshold of = and the restricted probability computation



3.8 Finding an appropriate threshold for PSSM searching

Computation of the restricted cumulative probability distribution
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Figure 3.17: Computation of the partial cumulative distrib ution function. Observe that in order
to determine Tminp (;M ) for = 0:3 we do not have to calculate the complete
distribution in the score range [SCmin (M ); SCmax (M )]. It is su cient to calculate only
the upper end (green area) starting with sCmax (M) until  [X  S]
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3 Fast algorithms for matching position speci ¢ scoring matrices

save time by storing Qij(max; |I) for | > d, in step d in a bu er and reusing the bu er in steps

d+1;d+2;:::. This allows for the computation of Qy(scmax(M) d) only based on the buer
and scoresM (i;a) = max; d while scoresM (i;a) > max; d,i 2 [O;m 1], can be omitted. We
therefore have developed an algorithmLazyDistrib employing lazy evaluation of the distribution.

That is, given a threshold th, the algorithm only evaluates parts of the DP vectors necesay to

determine Qg(th) and simultaneously saves sub-results concerned with scerth in an additional

bu er matrix Pbuf (instead of recomputing them later, see Figurd_318). This$ described by the
following recurrence:

Qu(th d) = Pbuf(th )+
Qx 1(th d Mk a)f (a)

a2A :M(ks%) maxy, d
Pbuf (th d) := Qc 1(th d Mk a)f (a) (3.12)

a2A ‘M (k;a)<maxy d

In the present implementation, the algorithm assumes indegndently distributed symbols. The algo-
rithm can be extended to an orderd-Markov model (w.r.t. the background alphabet distributio n).
This increases the computation time by a factor ofjAj 9.

The modus operandiof algorithm LazyDistrib

We illustrate the underlying ideas of algorithm LazyDistrib with Figure BZI8. In the example given
in this Figure, we use the same PSSMM, character distribution, and p-value threshold = %
as in Figure [3I6. However, in each row of the PSSM the scoregeasorted in descending order,
and the rows are sorted with the most discriminant row coming rst (see coloured PSSMs for this
relationship). Observe that the LazyDistrib algorithm evaluates the DP vectors non-recursively top-
down. Cells computed in the actual step are marked red. In stgp d = 0 the algorithm computes
Q2(11) by evaluating paths through the PSSM contributing to Q»(11), which is in this example
only the high scoring path GGAlIntermediate results of Qg(4), Q1(7), and Q»(11) are collected
in buers Pbufy(4), Pbuf,(7), and Pbuf,(11) rst, and nally copied to the correponding cells
in Q. See (A) for the situation after step d = 0 has been completed. In stepd = 1, see (B),
the algorithm computes Q»(10), starting in row k = 1 with the determination of Pbuf,(6) and
Q1(6). That is, Q1(6) = Pbuf,(6) = Qo(4) f(A)+ Qo(4) f(C)+ Qo(4) f(T)= %. Analogously
Q2(10) and Pbuf,(10) are computed based orQ1(7) and Q1(6). Additionally Pbuf,(9) is lled for
further reuse in subsequent stepsi+1,d+2;:::. We compute Pbuf,(9) = Q1(6) f(C) = %. The
algorithm can directly start in row k = 1 with the computation of Q1(6) instead of Qq(3) since
a score of 3 cannot be achieved by the rst pre x PSSMMg. Only score 4 of My contributes to
Q2(10), scores 2 and 1 do not. In stepd = 2, see (C), the algorithm computes Q,(9), starting
in row k = 0. Pbuf,(9) is computed reusing the partial sum calculated in previais steps, such
that Pbuf,(9) = % + Q1(7) f(T)+ Pbuf,(5) f(A) = %, and then copied to Q2(9). Pbuf,(4),
Pbuf,(8), and Pbuf,(7) are lled based on Pbuf,(2), Q1(6), Pbuf,(5), and Q1(5) for further reuse.
After step d = 2 the rest of the computation can be skipped since the cumulged probability
Q2(11) + Q2(10) + Q2(9) = % exceeds the given p-value = % and we obtain a score threshold of
th =10 corresponding to
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3.8 Finding an appropriate threshold for PSSM searching
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Figure 3.18: Probability computation using lazy evaluation of the DP matrix. For a detailed expla-
nation, see example given in sectiofiz3.8.5 on the facing page
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3 Fast algorithms for matching position speci ¢ scoring matrices

3.9 Threshold independent PSSM matching: The k-best
algorithm

In some application scenarios it is even di cult to specify a meaningful signi cance threshold for

the search with PSSMs that di ers appropriately between true positive and true negative matches.
This is in particular true for relatively short PSSMs of low signi cance, like PSSMs representing
transcription factor binding site motifs where the signal-to-noise ratio is very low. In such cases it
is desirable to e ciently determine the, say, k best hits of a PSSM in a sequence without specifying
a cuto for their match score, E-value or p-value. Here k best means thek highest scoring PSSM
matches. We now render this more precisely.

De nition 13  Let M be a PSSM of lengthm, T a text of length n, k 0 the number of best

a sequence of score, position pairs for each of the potentimhatching positions of M in T, with
Si=sc(Tpipp+m 1 ;M)andp 2 [O;m n+1]. We de ne a permutation :f0;1;:::;n
m+1g!f O;L:::5;n m+lgwith ()< (j) , S S and denote the inverse of by

1. Then the k-best matching problemis to determine a sequenceMS of length k with MS =
(S 10P 1) (S 1P 11)iiH(S 1k 1P 1k 1)

As a straightforward solution we could use the minimal posdile score of the PSSMM under
consideration as the thresholdth. That is, th = scymin (M ). This guarantees to nd all possible
matches ofM in S and no match which probably belongs to thek-best matches is missed. After the
searching phase, the resulting matches then have to be sodein descending order of their match
score and nally the rst k hits are reported.

Although with this approach, we nd the k best PSSM matches, ifS contains at leastk subwords
of length m, it is inapplicable in practice, especially for longer segences. Usingh = scyin (M) has
the corollary that sc(w;M) th holds for all w 2 words, (S). Thus, n m + 1 matches have to
be stored and sorted after the searching phase. A more sevedeawback is, that for th = scpin (M)

we cannot make use of lookahead scoring, because accordirgltemmall on pagd35 the following
implication holds:

sc(w;M) th for all w 2 words, (S)
) pfxsg(w;M) thy foralld2 [O;m  1]* w2 words, (S):

Hence we have to score each of th® (n) subwordsw 2 words, (S) completely which takes O (m)
time, leading to a time complexity of O(mn) independent of k and we obtain no benet from
lookahead scoring.

To compute the k best matches of a PSSM more e ciently, we propose two new algathms named
ESAsearchKb and LAsearchKb, that dynamically adjust the used cuto th while searching. Both
are variants of the former describedESAsearchand LAsearch algorithms respectively. ESAsearchKb
traverses an enhanced su x array of the set of target sequenes top down like ESAsearch whereas
LAsearchKb operates on the concatenated target sequences and processkem from left to right.

Both algorithms update th based on the match scores of PSSM matches found so far whileqaressing.
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3.9 Threshold independent PSSM matching: Thek-best algorithm
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Figure 3.19: Number of intermediate threshold updates for derent PSSMs from the BLOCKS
database when usingESAsearchKb for values of k = 10 and k = 1;000. The mean
(62:93 for k = 10 and 41611 for k = 1;000) and the standard deviation (1387 for
k =10 and 124:2 for k = 1,;000) are shown in green and purple.

The algorithms start, with th = scqin (M) until k matches toM are found. For simplicity we explain
the algorithms in terms of sets, instead of using sequencesan De nition 31 We denote the set of
match scores of matches found byVS, analogously. Along with MS we store the matching positions
corresponding to the members ofMS and update this list accordingly to updates of MS. Once
k matches are found andjMSj = k holds, ESAsearchKb and LAsearchKb determine the minimal
matchscoresceymin (MS) = min f MSg in MS to update the threshold th. Both algorithms continue
searching with th = scymin - TO use lookahead scoring, we additionally have to update th vector
of intermediate thresholds, based on the new value ofh. This can be done inO(m) time if we
determine and store the maximum values may = maxfM (d;a) j a2 Ag of each row inM a priori.
For each subsequent matching substringv we checksc(w; M) > thH and update MS if necessary,

by
1. removal of the lowest match scoresceyrmin (MS) from MS and

2. insertion of the new match scoresc(w;M).

From the updated set of match scores, we again determin8ceurmin (MS) to update th. We apply
this procedure whenever we nd a new PSSM match withsc(w; M) > th, until we have processed
our enhanced su x array, or in case of LAsearchKb, the text, completely. Finally we sort the match
scores included inMS and report them and their corresponding matching positions

Whenever we updateth we have to recomputesceyrmin (MS). Consequently the determination of
Scurmin (M S) is a critical point for the performance of both algorithms. To determine Sceyrmin (MS)
e ciently, we could use a binary search tree as the data strudure for the organisation of MS. This
would allow us to retrieve sceyrmin (MS) in O (log(k)) time, where k = jMSj and log(k) is the

10Observe that we have to perform this check, because sc(w;M ) can also be equal to th.
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3 Fast algorithms for matching position speci ¢ scoring matrices

Used thresholds at sutab position i Used thresholds at sequence position i

2000 2000

" LAsearchkb kel ——

ESAsearchkb k=10 -------- LAsearchkb k=10 --------
k=100 1500 I k=100

ESAsearchkb k=1 ———

1500

1000

Threshold th
Threshold th

et
Jig'ryfl ,,,,, F’I—J 77777 |
500 o )
N 1000
- 1500 b

1 10 100 1000 10000 100000 1e+06 1e+07 1 10 100 1000 10000 100000 1e+06 1e+07
log(i) log(i)

Figure 3.20: Increase ofth , when processing the su xes of S in the lexicographical order of the
sux array suf (left) and in the order of there occurence inS for di erent values of k
and an arbitrarily chosen PSSM from the BLOCKS database (Acession: IPB001140A).
The enhanced su x array was built from protein sequences fran the PDB database.

height of the tree. Thus this operation would be fast if the haght of the tree is small. The drawback
of using normal unbalanced binary search trees is, that theycan degenerate. In such a case their
performance may be not better than with a plain linked list.

A more appropriate data structure for our problem is a red-black tree. A red-black tree is a balanced
binary search tree with one extra bit of storage per node, itscolor, which can be eitherred or black
By constraining the way that nodes may be colored on any path fom the root to a leaf, red-
black trees ensure that no path is more than twice as long as another, so the tree is approximately
balanced. It can be shown that a red-black tree withn internal nodes has height at most 2 logf +1)
(c.f. [TLRSOI)), hence red-black trees make good search tes and are well suited for our problem
to determine sccumin (MS) e ciently. By using red-black trees we can guarantee to perform this
operation in O (log(n)) time. The same is true for node-insertion and -deletion ogrations. Tree-
rebalancing operations, which are necessary after insertralelete operations to guarantee that the
red-black tree properties are not violated, can also be aceoplished in O (log(n)) time. Hence red-
black trees t our requirements and we use them for the organtation of the set of matchesMS.

Both proposed algorithms - ESAsearchKband LAsearchKb - perform best, if the determined thresh-
old th = sceymin (MS) quickly increases, while processing the enhanced su x aray top down and
the concatenated sequences from left to right respectivelyA higher threshold increases the like-
lihood of falling short of an intermediate threshold early, resulting in less scored characters and
increased overall performance. FOESAsearchKh, in turn, this increases the likelihood to make use
of common pre xes of su xes and skip larger parts of the su x a rray suf.

The increase ofth while searching is in uenced by k and the distribution of high PSSM scores in
the text and in the enhanced su x array respectively. The distribution in turn obviously depends
strongly on the PSSM under consideration. As shown in Figurg3T9, the number of necessary
threshold updates can strongly vary between di erent PSSMs This is especially true for larger
values ofk.
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3.10 Implementation and computational results

For an example of the concrete changes dh for an arbitrarily chosen PSSM when searching with
ESAsearchKb and LAsearchKb see Figure[32D. Observe, that the di erent order in which suxes
are scored in ESAsearchKb and LAsearchKb has only marginal in uence on the changes ofth
while processing, apparent by the similar shape of the graphin Figure[32Z0. We performed further
analyses on the in uences of di erent values ofk on the number of threshold updates, number of
touched su xes when using ESAsearchKb and total running time (see Experiment 9 in the next
section).

3.10 Implementation and computational results

We implemented SPsearch LAsearch, LAsearchKb, ESAsearch ESAsearchKb and LazyDistrib in
C. SPsearch LAsearch and ESAsearch are capable to handle reduced alphabets. The program was
compiled with the GNU C compiler (version 3.1, optimization option -O3). All measurements were
performed on a 8 CPU Sun UltraSparc IIl computer running at 900MHz, with 64GB main memory
(using only one CPU and a small fraction of the memory). Enharted su x arrays were constructed
with the program mkvtree, see [[KurO5b].

We performed nine experiments comparing di erent programsfor searching PSSMs. Tabld=3]1 gives
more details on the experimental input for Experiments 1-6.Results are given in Table[32 (Exp.
1-5) and Figures[32Zl and—322 (Exp. 6). For Experiment 7, se€igures[3Z3 and32W. Figurd—325
gives the results of Experiment 8. Results of Experiment 9 ag given in Table[33.

In these experimentsESAsearch performed very well, especially on nucleotide PSSMs, see pgr-
iments 2, 4, and 8. It is faster than Matlinspector by a factor between 63 and 1,037, depending
on the stringency of the given thresholds. The commercial agancement of Matinspector, called
MATCH , was not available for our comparisons, but based on [MEG03] we presume a running
time comparable to Matinspector. Compared to LAsearch, ESAsearchis faster by a factor between
17 (MSS=0.80) and 196 (MSS=0.95) (see Experiment 2). On largr nucleotide sequences (see Ex-
periment 4) the speedup factors increase, ranging from 58 (MS=0.85) to 275 (MSS=0.95). See
Table B for the de nition of MSS. In the experiments using protein PSSMs, ESAsearch is faster
than the method of [DNMOO] by a factor between 1.5 and 1.8 (sedxperiment 1). This is due
to the better locality behavior of the enhanced su x array co mpared to a su x tree. For larger
p-values LAsearch performs slightly better than ESAsearch Increasing the stringency, the perfor-
mance ofESAsearchincreases, resulting in a speedup of factor 1.5 for a p-valuef 10 4°. We explain
this behavior by the larger alphabet size, resulting in shoter common pre xes and therefore smaller
skipped areas of the enhanced su x array. With increasing stingency of the threshold, the expected
reading depth decreases, resulting in larger skipped areasf the enhanced su x array. Compared
to the FingerPrintScan program, ESAsearch achieves a speedup factor between 3.8 and 470, see
Experiment 3. In comparison to Blimps, the PSSM-searching program of the BLOCKS database,
ESAsearchis faster by a factor of 23 (see Experiment 5) for the chosen tleshold. In Experiment 6
(see Figures=321 anf322), we measured the in uence of alphet reductions on the running time of
ESAsearchand LAsearch when using protein PSSMs. Compared to the performance dESAsearch
operating on the normal 20 letter amino acid alphabet a speedp up to factor 2 can be achieved
when using a 4 letter alphabet and a p-value cuto of 10 2°. Observe that, when usingLAsearch
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3 Fast algorithms for matching position speci ¢ scoring matrices

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6
# searched sequences 59,021 30,964 19,111 1( H.s. Chr. 6) 19,111 19,111
total length 20.2 MB 37.2 MB 4.3 MB 162.9 MB 4.3 MB 4.3 MB
sequence source see [BNMOOL DBTSS 5.1 RCSB PDB Sanger V1.4 RCSB PDB RCSB PDB
sequence type/PSSM type protein DNA protein DNA protein protein
# PSSMs 4,034 220 11,411 577 28,337 11,411
PSSM source see [DNMOOL Matinspector PRINTS 38 TRANSFAC Prof. 6.2 BLOCK S 141 PRINTS 38
avg. length of PSSMs 29.74 14.21 17.32 13.33 26.3 17.37
index construction (sec) 41 146 10.2 586 10.2 10.2
mdc (sec) 1960 1486 11871 1486

Matinspector
FingerPrintScan

Blimps

DNO0O

LAsearch

ESAsearch

ESAsearch (reduced A)
LAsearch (reduced A)

Table 3.1: Performed experiments and experimental input. Qrerview of the sequences and PSSMs
used in the performed experiments. For the experiments thatuse p-value or E-value cut-
0s, we precomputed the cumulative score distributions and stored them on le. mdc
is the time needed for this task. In Experiment 1 we measuredtie running time of the
Java-program from [DNMOQ], referred to by DNOO. We ran DNOO with a maximum of
2 GB memory assigned to the Java virtual machine.DNOO constructs the su x tree
in main memory and then performs the searches. For a fair comgrison, we therefore
measured the total running time, and the time for matching the PSSMs (without suf-
X tree construction). For Experiment 2, we implemented the matrix similarity scoring
scheme (MSS) oMatInspector and matched the PSSMs against both strands of the DNA
sequences with di erent MSS cuto values. The MSS of PSSMM of length m and a se-
quencew 2 A™ is de ned as MSS = :ccn:a"x‘“'(v'M)) Sgcm;?n((’\fw)) and hence given an MSS cuto

value, the thresholdth is determined asth = MSS (SCmax (M)  SCmin (M ))+ SCmin (M). In
literature the MSS is sometimes also calledunctional depth of a PSSM [BT04]. Instead
of using the reverse strand we use the reverse complemeht of the PSSM M, de ned
by M(i;a)= M(m 1 i@ foralli2[0;m 1]anda?2 A, wherea is the Watson
Crick complement of nucleotidea. This allows to use the same enhanced su x array for
both strands. In Experiment 5 we used a PERL-based wrapper fothe Blimps program
shipped with the BLIMPS distribution to do bulk sequence seaches. The overhead for
the PERL interpreter call was found to be negligible. For Experiment 6 we used the
reduced alphabets given in Figurd=310. The last seven rowshew which programs were
used in which experiment.
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3.10 Implementation and computational results

Experiment 1: 4,034 PSSMs in 20.2 MB protein sequences Experiment 2: 220 PSSMs in 37.2 MB DNA
p-value DNOO DNOO LAsearch ESAsearch MSS Matinspector LAsearch ESAsearch
(total time)  (search) +41 sec. +32 sec.
10 ©° 65,808 64,939 39,839 41,813 0.80 12,773 3,605 202
10 2 38,773 37,706 23,786 24,378 0.85 12,567 3,189 108
10 % 21,449 20,362 14,111 13,084 0.90 12,487 2,818 53
10 40 9,606 8,533 8,067 5,374 0.95 12,445 2,356 12
1.00 12,429 885 1
Experiment 3: 11,411 PSSMs in 4.3 MB protein sequences Experiment 4: 577 PSSMs in 162.9 MB DNA
E-value FingerPrintScan LAsearch ESAsearch MSS LAsearch ESAsearch
+10 :2 sec. +586 sec.
10 © 4,733 3,423 1,244 0.85 18,446 318
10 ® 4,710 486 52 0.90 16,376 150
10 ¥ 4,706 27 10 0.95 13,764 50
1.00 5,294 1
Experiment 5: 28,337 PSSMs in 4.3 MB protein sequences
raw- th Blimps LAsearch ESAsearch
+10 :2 sec.
945 271:30:16 16:03:12 11:35:58

Table 3.2: Results of Experiments 1-5. Experiment 1. Runnig times in seconds of the dierent

PSSM searching methods at di erent levels of stringency, wien searching for 4,034 amino
acid PSSMs in 59,021 sequences (21.2 MB) from SwissProt. Tee are the same PSSMs
and sequences used in the experiments df [DNMDO]. Experimer2: Running times in
seconds oMatlnspector, LAsearch, and ESAsearch when searching 220 PSSMs on both
strands of 37.2 MB DNA sequence data at di erent matrix similarity score (MSS) cuto s.
Experiment 3: Running times in seconds ofFingerPrintScan, LAsearch, and ESAsearch
when searching all 11,411 PSSMs from the PRINTS database irhe RCSB protein data
bank (PDB) for di erent E-values. Experiment 4: Running tim es in seconds of Asearch
and ESAsearchwhen searching 577 PSSMs in H. sapiens chr. 6 at di erent maixk similar-
ity score (MSS) cuto s. Experiment 5: Running times in hh:mm:ss of Blimps, LAsearch,
and ESAsearchwhen searching all 28,337 PSSMs from the BLOCKS database in [BB.
We used a raw score threshold of 945 as suggested in tlilimps documentation for
searching large databases. For each experiment, the addithal time needed for the con-
struction of the enhanced su x array is shown in the head of the ESAsearch column.
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Figure 3.21: Experiment 6: Relative deviations of running time of ESAsearch when using reduced
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alphabets at di erent levels of stringency. We measured therelative percentage devi-
ation with respect to the running time when using the standard 20 letter amino acid
alphabet (= 0%). We searched with 11,411 PSSMs from the PRINTS database (Rel. 38)
in the RCSB Protein Data Bank (PDB) with a total sequence length of 4.3 MB. In

this example, the maximum performance improvement is achieed for an alphabet of
size 4 and a p-value cuto of =10 20,



3.10 Implementation and computational results

The influence of alphabet reduction on the running time of LAsearch
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Figure 3.22: Experiment 6: Relative deviations of running ime of LAsearch when using reduced
alphabets at di erent levels of stringency. The experimenial input and setup was the
same as in FigurdZ32l. FolLAsearch alphabet reduction has a negative e ect on the
running time, indicated by brighter colors.
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Running time [sec]

400

350

300

250

200

150

100

50

Scaling behaviour of ESAsearch

' ' ' ' ESAsearch MSS=0.95 —+—
: ESAsearch MSS=0.85 -
SN N R -
P ,’,:%—f - -]
T |
¥ :
X ‘ ‘
e i i i i i i i i
20 40 60 80 100 120 140 160

Search space [MB]

Figure 3.23: Experiment 7: Scaling behavior ofESAsearch when searching with 577 TRANSFAC

94
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similarity cuto values (MSS). The subsets are pre xes of human chromosome 6 of
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with 577 TRANSFAC PSSMs in the database of transcriptional gart sites (DBTSS Rel.

4.0) containing 23,410 human and mouse promotor sequencesthv a total sequence
length of 27MB. Measurements were performed for di erent marix similarity score

values (MSS), representing di erent levels of stringency.



3.10 Implementation and computational results

(A) 577 TRANSFAC PSSMs in 27MB nucleotide sequences (DBTSS R el 4.0):
ESAsearchKb
k #th updates #touched su xes (%)  running time [sec]  speedup o ver LAsearchKb
1 24,115 (41.8;33.1) 43,883 (0.15) 20.7 65
10 54,391 (94.3;92.5) 111,252 (0.39) 46.5 36
100 244,261 (423.3;497.7) 227,208 (0.80) 93.7 23
1000 1,415,292 (2452.8;3,132.0) 474,184 (1.68) 210.8 13
LAsearchKb
k #th updates running time [sec]
10,249 (17.8;5.0) 1351.6
10 66,257 (114.8;36.2) 1710.5
100 506,606 (878.0;363.7) 2160.0
1000 | 3,451,915 (5,982.5;3,518.0) 2754.4

(B) 28,337 BLOCKS PSSMs in 4.3 MB protein sequences (PDB):

ESAsearchKb
#th updates #touched su xes (%)  running time [min]  speedup o ver LAsearchKb
522,918 (18.4;4.6) 1,609,021 (37.3) 452.6 1.36
10 1,783,023 (62.9;13.9) 1,956,327 (45.88) 588.9 1.26
100 6,628,970 (233.9;54.6) 2,079,215 (48.76) 649.0 1.33
1,000 11,789,765 (416.1;124.2) 2,149,793 (50.41) 723.9 1.31
LAsearchKb
k #th updates running time [min]
1 479,614 (16.9;3.8) 616.5
10 1,563,197 (55.1;9.6) 7475
100 8,306,508 (293.1;66.8) 869
1,000 11,526,692 (406.8;118.6) 947

Table 3.3: Experiment 9: Measurements of the inuence of dierent values of k on the

number of threshold updates, number of touched suxes, and te total running
time for ESAsearchKb and LAsearchKb. We performed experiments on nucleotide
PSSMs/sequences (see (A)) as well as on amino acid PSSMs/semces (see (B)). We
counted the total number of threshold updates for all PSSMs ad calculated the mean
and the standard deviation (values are given in brackets). ®lumn #touched su xes gives
the number of su xes on average (total number divided by number of used PSSMs) for
which ESAsearchKb has to score at least one new character. The percentage valu all
su xes is given in brackets. For ESAsearchKb the last column shows the speedup of
ESAsearchKb over LAsearchKb for the same value ofk. For algorithm LAsearchKb the
number of touched su xes is not shown, sinceLAsearchKb processes always the complete
sequence, independent of the value .

97



3 Fast algorithms for matching position speci ¢ scoring matrices

(see Figure[32ZPR), alphabet reduction has a negative e ect pto 4 times on the running time and
hence using alphabet reduction in combination with algorithm LAsearch makes no sense in practice.
This is due to the increased expected reading deptim (th) for degraded alphabets, which is for
LAsearch not counterbalanced by increased Icp-interval sizes, sireno enhanced su x array is used
in this algorithm. Experiment 7 (see Figures[ZZB and=324) sows that the expected running time
of ESAsearch is sublinear, whereasLAsearch runs in linear time. In Experiment 8, we compared
the running times of ESAsearch and LAsearch with our own implementation of SPsearch This
experiment shows that the SPsearchalgorithm, running in O (nm) time, although still widely used,
is de nitly inappropriate for larger PSSM matching tasks. | n Experiment 9 we investigated the
in uences of di erent values of k on the number of threshold updates, number of touched su xes
when using ESAsearchKb and total running time (see Table [333). Here ESAsearchKb achieves a
speedup of factor 13 (fork = 1000) upto 65 (for k = 1) over LAsearchKb on nucleotide PSSMs and
a speedup of factor 1.3 on amino acid PSSMs. It has been shapedt in practice, that ESAsearchKb
and LAsearchKb are especially useful when searching for transcription faor binding site motifs
in large data sets, since it is dicult to specify a reasonable p-value or E-value cuto for these
short motifs of low signi cance. In a nal experiment, we compared algorithm LazyDistrib with the
DP-algorithm computing the complete distribution. LazyDistrib shows a speedup factor between 3
and 330 on our test set, depending on the stringency of the theshold (see Tabld=314).

We also note, that motivated by the rst description of the LazyDistrib algorithm in [BSH™ 04], in
[MGUO6] the authors reimplemented LazyDistrib in the functional programming language Haskell,
taking advantage of the built-in non strictness of the language. Whereas in our implementation in
C some e ort has to be spend on the simulation of laziness in aeager language, in Haskell this has
not be adressed explicitly, since lazy evaluation is a builin concept of the programming language.
Accordingly, algorithm LazyDistrib can be formulated in Haskell on less than a page, while the C
implementation consists of some hundred lines of code. Alseemarkable, for an implementation in
a functional programming language, is the reported speedupn [MGO6|. The authors report for a
test set containing a small fraction of PSSMs from the PRINTS database a speedup factor between
4.3 for a p-value of 10 %% and 172 for a p-value of 1030 over the DP-algorithm computing the
complete distribution. Though, this is in the same range as he speedup of our implementation of
LazyDistrib with hand-coded laziness (see TablEZ34), the absolute ruring times di er signi cantly.
E.g to compute a score threshold corresponding to a P-valueuto of =10 1° for 1;000 PRINTS
PSSMs, Malde and coworkers report a running time of 306 secals using a 1.13 GHz system. The
C implementation of LazyDistrib needs 485.3 seconds for all 1411 PRINTS PSSMs for the same
p-value cuto on a 900 MHz system.

3.11 PoSSuM software distribution

Our software tool PoSSuMsearchimplements all algorithms and ideas presented in this worknamely
SPsearch LAsearch, ESAsearch and LazyDistrib. A user can search for PSSMs in enhanced su x
arrays built by mkvtree from the Vmatch package, as well as on plain sequence data ifasta |,
GenBank EMBL, or Swiss-Protformat. The search algorithm can be chosen from the commandde.
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3.11 PoSSuM software distribution

p-value simple DP LazyDistrib speedup factor
10 1 1,486 485.8 3
10 2 1,486 92.5 95
10 ¥ 1,486 8.9 166
10 1,486 45 330

Table 3.4: Running times in seconds when computing score tlesholds for all 11,411 PSSMs from the
PRINTS database (Rel. 38), given di erent p-values. Running times given in this table
are measurements performed with improved versions of the siple DP and LazyDistrib
algorithms and thus are much lower than the times given in [B$™ 04].

PSSMs are speci ed in a simple plain text format, where one ke may contain multiple PSSMs. See
Example in section[AZ on pagd201. The alphabet a PSSM reafe to, and alphabet character to
PSSM column assignments can be speci ed on a per-PSSM bas@ fmost exible alphabet support.
All implemented algorithms, except the k-best variants, support alphabet transformations. PSSMs
can contain integer as well as oating point scores. To prevat rounding errors for integer based
PSSMs, PoSSuMsearchuses integer arithmetics for these, resulting in an additimal speedup on
most CPU architectures. Searching on the reverse strand ofucleotide sequences is implemented by
PSSM transformation according to Watson-Crick base pairirg (see De nition Bl on pagelZB). Hence
it is su cient to build the enhanced su x array for one strand only. This can then be used to search
both strands.

The cuto can be speci ed as p-value, E-value, MSS (matrix similarity score), or raw score threshold.
If only the best matches with the highest scores need to be knen, then PoSSuMsearchcan be asked
to report only the k highest scoring matches without even specifying an expliticuto . To do so,
the search algorithms ESAsearchKb and LAsearchKb variants) dynamically adapt the threshold
during the search. When using p- or E-values, the score thrémld is determined by either the
new lazy dynamic programming algorithm (LazyDistrib), or read from le that stores the complete
precalculated probability distribution. Background dist ributions can be speci ed arbitrarily by the
user, or determined from a given sequence database. We pralé a tool, PoSSuMdist, to generate a
compressed le containing the complete precalculated probbility distribution for a set of PSSMs.

PSSM matches can be sorted by specifying a list of sort keysike p-value, match score, sequence
number, and so on. The output formats of PoSSuMsearchprint out all available information about

a match, either in a human readable format, tab delimited, or in machine readable, XML-based
CisML [HWO04]. PoSSuMsearchas well asPoSSuMdist support multi-threading for a further reduc-
tion of running time on multi CPU machines. See Figured.32b ad 321 for the additional speedup
that can be achieved when facilitating multiple CPUs.

The PoSSuM software distribution includes the searching toolPoSSuMsearchitself, and additional
tools to determine character frequencies from sequence datfor probability distribution calculation,
and PSSM format converters forTRANSFAC , BLOCKS, PRINTS , and EMATRIX style PSSMs.
See Table[[3b for a list of included programs. Detailed desigtions of the programs included in
PoSSuM software distribution, their command line interfaces, and used le- and output formats are
given in the Appendix &2l on pagelT9D.
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Figure 3.26: Scaling behaviour of the multithreaded versio of PoSSuMsearch operating in
ESAsearch mode. We measured the running time in seconds needed for sehing
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Scaling behaviour of the multithreaded variant of possumdist
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Figure 3.27: Scaling behaviour of the multithreaded varian of PoSSuMdist We measured the time
needed for the calculation of complete score distributionsand their persistent, com-
pressed storage. We used 28,333 protein PSSMs from the BLOKdatbase (Rel. 14.1)
with an average length of 26.3 using di erent numbers of CPUs
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Program Description

PoSSuMsearch Searching tool, that implements ESAsearch LAsearch, SPsearch
ESAsearchKb LAsearchKb, and LazyDistrib algorithms.
PoSSuMdist  Generates a compressed le containing the complete precaltated
probability distribution for a set of PSSMs.
PoSSuMfreq  Utility program to calculate character frequencies from given se-
quence data, usable folLazyDistrib and PoSSuMdist.
transfac2gen  Converts PSSMs from TRANSFAC format into PoSSuMsearch
compatible format.
prints2gen Converts PSSMs from PRINTS format into PoSSuMsearchcom-
patible format.
ematrix2gen  Converts PSSMs from EMATRIX format into PoSSuMsearch
compatible format.
cdd2gen Converts CDD and PsiBlast checkpoint le PSSMs into PoSSuM-
search format.
mkvtree Program from the Vmatch package of S.Kurtz to build enhanced
Su X arrays.

Table 3.5: Programs included in the PoOSSuM software distribution.

3.12 Discussion and concluding remarks

We presented in this chapter a new non-heuristic algorithm,called ESAsearch to e ciently nd
matches of PSSMs in large databases. Our approach preproses the search space, e.g., a complete
genome or a set of protein sequences, and builds an enhancadxsarray that is stored on le.
This allows the searching of a database with a PSSM in sublirer expected time. Our analysis of
ESAsearch revealed sublinear runtime in the expected case, and linearuntime in the worst case
for sequences not shorter thanfAj™ + m 1, wherem is the length of the PSSM andA a nite
alphabet. The enhanced su x array, on which the method is based, requires only % bytes. This is

a space reduction of more than 45 percent compared to the hrbytes implementation of [DNMOQ].
For a summarization of the time and space complexities oESAsearch LAsearch, and SPsearchsee
Table B8.

Since ESAsearch bene ts from small alphabets, we presented a variant operahg on sequences
recoded according to a reduced alphabet. We also addresselget problem of non-comparable PSSM-
scores by developing a method which allows the e cient comptation of a matrix similarity threshold
for a PSSM, given an E-value or a p-value. Our method is basedrodynamic programming and,
in contrast to other methods, it employs lazy evaluation of the dynamic programming matrix. For
application scenarios, where it is di cult to specify a meaningful PSSM score cuto , we developed
variants of ESAsearch and LAsearch, that adjust dynamically the threshold th while searching and
report the k- best matches of a PSSM without the need for the user to spegifa cuto value.

We evaluated algorithm ESAsearch with nucleotide PSSMs and with amino acid PSSMs. We per-
formed various experiments in which, compared to the best pevious methods,ESAsearch shows
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speedups of a factor between 17 and 275 for nucleotide PSSMmd speedups up to factor 1.8 for
amino acid PSSMs. Comparisons with the most widely used pragms even show speedups by a
factor of at least 3.8. Alphabet reduction yields an additional speedup factor of 2 on amino acid
sequences compared to results achieved with the 20 symbolastdard alphabet. The lazy evaluation
method is also much faster than previous methods, with speags of a factor between 3 and 330.
This new algorithm for accurate on-the-y calculations of thresholds has the potential to replace
formerly used approximation approaches.

Beyond the algorithmic contributions, we provide with the PoSSuM software distribution, a robust,

well documented, and easy to use software package, implemtary the ideas and algorithms presented
in this chapter. The PoSSuM software distribution has already been successfully usediia large-scale
study for the structural analysis of the core promoter in mammalian and plant genomes|[FSD 05]

and it constitutes the fundamental search engine for transdption factor binding site PSSMs in the

CoryneRegNet software system for the reconstruction and amparison of transcriptional regulatory

networks in prokaryotes [BBC* 06, [BRT0S6]. Further, PoSSuMsearchis integrated into the Genlight

system [BMM™ 04] as a screening method for amino acid PSSMs from the PRINT@nd BLOCKS

databases.
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3 Fast algorithms for matching position speci ¢ scoring matrices

Implementations Time complexity Space complexity Comment
Algorithm: SPsearch

Matinspector , O (nm) O(n+m) O (nm) running time in the

MATCH , Fin- best-, average-, and worst case.

gerPrintScan,
Blocksearch,

BLIMPS ,
PoSSuMsearch
Algorithm: LAsearch
EMATRIX O (kn) O(n+ m) The worst case running time
PoSSuMsearch is O (nm), since in the worst

casek 2 O (m). In practice, k

is expected to be much smaller
than m, leading to considerable

speedups. In the best case, ex-
act one character of each sub-
word of length m of S has to

be scored leading to O (n + m)

running time.

Algorithm: ESAsearch

PoSSuMsearch O (n+ n maxf0;pg+ m) O(On+ m) The worst case running time is
O (n+ m), since p 0 holds
for any PSSM of length m and
threshold on any text of length
n jAj ™+ m 1. In practice,
large numbers of su xes can be
skipped if the threshold is strin-
gent enough, leading to a total
running time sublinear in the
size of the text, regardless of the
relation between n and m.

Table 3.6: Summary of the time and space complexities oSPsearch LAsearch, and ESAsearch
when searching with a PSSM of lengthm in a text S of length n over alphabet A.
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4 PSSM family models for sequence family
classi cation

4.1 Increasing the expressiveness of PSSM-based database
searches

We have seen, that searching with PSSMs in combination with ehanced su x arrays is very
e cient and lead to algorithms with superior performance compared to existing methods. However,
compared to other approximate motif description models, PSMs have the severe drawback, that
they are xed length motifs, build from gapless (parts of) multiple alignments, that do not allow
for possible gaps. Consequently, one single insertion or tgion in the sequence to be searched with
a PSSM, can yield to a misleading overlooking (false negates) of the motif represented by the
PSSM. Hence, PSSMs are often only used to represent short hity conserved regions of nucleotide
or amino acid sequences or regions that have a constant lerfyt like transcription factor binding
sites. Though, using only short PSSMs can increase the setisity in a database search, speci city
decreases, since the signi cance of a PSSM match is corretat with its length (see Equation (39)).
Accordingly, biological relevant matches of short PSSMs ag di cult and sometimes impossible to
distinguish from spurious ones and the explanatory power of single short PSSM match is limited,
in particular in larger data sets. This is a known problem e.g, in the eld of transcription factor
binding site prediction on whole genomes or chromosomes @¢RMV03]).

Alternatively, we could use a di erent motif model, e.g., one that allows for gaps, like Gribskov's
PSSMs with position specic gap costs (see sectiolid.6 on pad38) or prole hidden Markov
models (see sectiolZ712 on padel42). These types of modele dess vulnerable to insertions
and deletions caused by evolutionary mutation events and this can be used to describe longer
regions of sequences. On the downside, incorporation of gajis computationally expensive and it is
unclear how to e ciently use enhanced su x arrays when allow ing gaps. Further on, it is unknown,
how to calculate exact statistics necessary to address theigni cance of matches of such models
that incorporate gaps. They are based on approximations andcempirically determined parameters
[ABOHOT YHOT].

Instead of using a completely di erent motif model, we propose to increase the power of PSSM based
motif searches by using chains of multiple ordered PSSMs as descriptor for a family of related
sequences. The method, to be described, is a combination di¢ ESAsearchalgorithm for fast PSSM
matching with an e cient chaining algorithm incorporating ordering information of PSSMs and is
in particular applicable for protein family classi cation and detection of distant homologies.
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Figure 4.1: Conserved order of matches of a protein ngerprt describing the CagA exotoxin of
the human pathogenHelicobacter pylori (PRINTS-ID: TYPE4SSCAGA), a well known
virulence factor linked to the more severe forms of gastric lcers and duodendal cancers
caused by some strains oH.pylori. The PRINTS ngerprint representing the CagA
family contains eleven PSSMs in a de ned order. The group pasions, shown in red in
this gure, specify the order of PSSM motif occurrences in tre alignment of the CagA
family sequences from left to right. Figure taken from the Genlight system.

4.2 Using multiple ordered PSSMs for sequence classi catio n

Sequence families can often be characterized by more than emotif derived from di erent conserved
regions of the sequence. Reconsider that these motifs can determined in a local multiple alignment
of the family sequences or from gapless blocks, excised froangap containing multiple alignment.
We assume that the ordering of these motifs is evolutionary onserved and that family members
will contain some or all the motifs, usually with a highly conserved ordering. For an example of
order conservation see Figur€Z]1. In this example the CagAxatoxin protein family is represented
by eleven PSSMs determined from the multiple alignment of tke family members. Observe that
the order of PSSMs matches is conserved when they were screghversus a new member of the
modeled family like the CAG_HELPJ protein sequence used in this example. This observatin
motivates an extension of our PSSM searching algorithms byricorporating ordering information of
multiple PSSMs derived from a family of related sequences.nistead of single PSSM matches, our
algorithm reports chains of PSSM matches that occur in a consrved order. Compared to approaches
using a single motif only, with the incorporation of multipl e PSSMs representing multiple conserved
motifs of a sequence family in a speci ¢ order, the diagnosti power in a database search scenario like
protein family classi cation, can be increased. See FigurBLd for the e ect of using chains of multiple
ordered PSSMs compared to single PSSMs. When reporting sifgghigh scoring PSSM matches only,
we obtain multiple false positive hits, caused by the limited signi cance and explanatory power of
short PSSMs and it remains di cult to con dently classify th e sequence to a certain family based
on these single PSSM matches (FigurE-4.2 (A)). Hence, an e éiwe search algorithm therefore has
to take the cooccurrence and order of matching PSSMs of the sae family into account and must
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4.3 PSSM family models

de ne a rankable score for the chain of matches. This increass the speci city of the database search
and may reduce the number of false positive matches dramatally. In the example given in Figure

2 (B)) all false positive matches are eliminated. Here thetop scoring chains are all true positives
and exactly describe the ve catalytic domains of the ARO multi domain protein of bakers yeast

(S.cerevisag.

As apparent from Figure[232, by facilitating a set of multipl e ordered PSSMs to describe a family of
related sequences and by reporting of results with presergeordering only, we can counterbalance
the lack of specicity of short PSSMs. That is, we benet of the increased sensitivity of short
PSSMs, without losing speci city as it is the case when usingsingle short PSSMs. Ordered sets of
motifs adaptable for deviations of PSSMs, sometimes also dad ngerprints, are available in form
of alignment blocks in several database. Thé®RINTS[ACFE* 00] and BLOCKS/BLOCKS+ databases
[HGPHOQ, [HP9Y] are two examples of large collections of suchgerprints representing specic
protein families. BLOCKS for instance contains in its current release (Rel 14.3 April2007) 29,068
PSSMs describing 5,900 protein families. In addition, ordeed sets of alignment blocks which may
serve as input for the construction of multiple ordered PSSM can be easily excised from multiple
alignments of related sequences. Hence, basically all prein family collections like Pfam [EMSB™ 0€],
TIGRFAM [HSWO03], Smart [LCP™ 0€], etc., which o er manually curated, high quality alignm ents
of protein family members are applicable for deviation of mutiple, ordered PSSMs constituting a
descriptor for these families.

4.3 PSSM family models

From now on, we employ the term PSSM family model for an ordered set of PSSMs used as a

(A) for an example. We denote the start and end position ofA;, i 2 [1;L] in the multiple alignment
by li andr;, I; ri, and de ne a binary ordering relation C on A, such that A; CA;, i;j 2 [1;L]if
and only if rj <I;. Then we de ne a PSSM family model as follows.

Let (I;i;j ) denote a match to PSSMM, | 2 [1;L],i j,oflengthm; = i+1ina sequence
S of length n. It holds sc(S[i:;j ]; M) th;, whereth, is the threshold used for searching withM.
Then the set containing all matches of allL PSSMs ofM in S is de ned as

MSwm ;s = f(i;j )i 2 [LL]~ 6 2 [0n 1]7 sc(S[izj ;M) thig: (4.1)

For any tuple h = (1;i;j ) 2 MSy .s we employ the notation h:l := I, h:i := i, and h;j := | to
identify the components of h.

De nition 15 Let be a binary ordering relation on MSy .s such that (I;;ir;jr) (Is;is;js) if
and only if I, <lg andj,; <is. A match to a PSSM family model M of length L is a sequence of
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(A) Reporting single PSSM matches
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Figure 4.2: Screening of the ARO protein from yeast vs. the BIOCKS database. ARO is a pentafunc-
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tional protein that catalyzes ve of seven steps in the chorsmate biosynthesis pathway.
Observe that when using single PSSMs, a lot of unrelated, spious matches are found
(A), whereas when using multiple ordered PSSMs and reportig high-scoring chains
with preserved order only (B), the number of false positive matches is strongly reduced
and each of the ve domains of the ARO protein is correctly identi ed. For a detailed
de nition of high-scoring chains and chain scores, see coesponding text.



4.3 PSSM family models

matches (or chain for short) Gy .s = hi;hy;:::;hg suchthath; 2 MSy s forl i k,andk L,
and h; hiv1,andhizl<his:lforl i<k .We call Gy s a collinear, non-overlapping sequence,
or chain, of length k and h;;i 2 [1;k], a member or fragment ofGy s.

To incorporate a measure of match quality into PSSM family madels, we compute thechain score
of a chain. It is based onfragment scores assigned to each element oMSy .5, expressing their
quality. More precisely, let fsc be a function, that assigns a positive score to each fragmertt; 2
MSw s, 1 i Kk, in chain Gy .s. This can be for example the p-value ofh; or its match score
sc(Sthi:i:hij]; Mhi;|)EI. We de ne the chain score for chain Gy .s = hy;hy; i hg as

X
csc(Gu s) = fsc(hi): 4.2)

i=1

In the context of protein family classi cation, a sequence s searched with several PSSM family
models, derived from multiple alignments representing di erent protein families. The classi cation
into a certain family should be based on the quality of thebest match of a sequence to the corre-
sponding family model. Hence the rst objective is to determine the best chain of PSSM matches
in a sequenceS for a given family model M . This is stated in the following problem de nition.

De nition 16  Given a PSSM family modelM = Mq;M»;:::M_ of length L, a sequenceS of

PSSM matchesMSy s de ned according to Equation (1) with their associated fragment scores,
the PSSM chaining problemis to determine a chainG, .5 such that csc G, .5 is maximal among
all possible chains. We call such a chain amptimal chain and denote its score with

csc m ;s = csc Gy .s =maxfcsc(Gu ;s) j Gu ;s is achain forM on Sg: (4.3)

With the de nition of optimal chains and their chain scores we introduce a quanti able, rakable
criteria of match quality to our PSSM family model concept that allows to use PSSM family models

collection of T PSSM family models, representingl distinct protein families. Further, let csc g.s =
maxfcsc v ;s | M i 2 Fg be the maximal score of all optimal chains inS over all family models
in F, then we classifyS into the family represented by M 2 F if and only if cSCg.s = CSC wm s.
That is, we classify the sequence under consideration intohe family whose family model generates
the highest scoring optimal chain. In practice it is often useful to employ a threshold constraint,
like a minimal neccessary chain length, as a lower boundaryof classi cation. That is, sequences
not satisfying this constraint are rejected.

Since the PSSM chaining problem is a variation of the more gesral multi-dimensional fragment
chaining problem (c.f. [AOQ3H, [AO034,[AO05]) we solve the PSM chaining problem by utilizing

algorithms from this eld. In the following we brie y recons ider the main ideas of existing solutions.
We roughly follow with our description an introduction to tw o dimensional fragment chaining, given
in [KurO5a] adapted to our concrete problem of nding an optimal match to a PSSM family model.

1Observe, that for a PSSM M that may generate non-positive match scores, i.e., scmin (M) 0, these scores can be
easily shifted to non-negative scores by adding scmin (M ).
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M e M | =t (11,

0 1 positions

Figure 4.3: (A) Non-overlapping alignment blocks (cyan), excised from ungapped regions of a
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multiple alignment. Since I; ri < Ij ri for all i;j 2 [1;5]"~ i < j holds,
A = A1 Az A3z AgAs is an ordered sequence of non overlapping alignment blocks
suitable to construct a PSSM family modelM = Mj;M2;M3;My4; Ms. (B) Matches of
Mi;i 2 [1;5], on sequences, sorted in ascending order of their matching positions. (C)
Graph based representation of the matches df1;;i 2 [1; 5]. An optimal chain of collinear
non-overlapping matches is determined, by computing an opgmal path in the directed,
acyclic graph. Observe that not all edges in the graph are shen in this example and
that the optimal chain (indicated here by their red marked members) is not necessarily
the longest possible chain.



4.3 PSSM family models
4.3.1 Computation of optimal PSSM chains

The problem of computing an optimal chain of PSSM matches carbe solved with a well known
graph-based algorithm described in[[VA89], which is also usd in the rst version of the multiple
genome alignment tool MGA [HKOOZ]. Adopted to the PSSM chaining problem, the ideas of the
algorithm are as follows. LetG = (V; E) be a directed, weighted, acyclic graph, where each vertex
v 2 V represents an element oMSy .s and E is a set of weighted, directed edges. There is an edge
pointing from vertex u to vertex v with score (weight) fsc(v) if and only if u  v. See part (C) of
Figure L3 for an example of such a graph. That is, there is andge in G pointing from u to v if and
only if u and v are collinear w.r.t. their matching positions in sequenceS (see part (B) in Figure
E3) and the positions of their corresponding PSSMs in the PSM family model M (see part (A)
in Figure E3). Hence all paths through G represent valid chainsGy .s according to De nition I5]
and therefore matches toM . An optimal chain corresponds to a path of maximal score. Sine G
is acyclic we can compute them as follows. Letsc (v) be the maximum score of all chains ending
with fragment v. As all fragment scores are positive, the following recurrace for the computation
of csc (v) holds:

csc (v) = fsc(v) + max(fOg[f csc (u)ju  vg): (4.4

By utilizing dynamic programming, we can compute an optimal chain C y .s and its chain score
CSC M s in (])_)(jVj + JEj) time. Let K = jMSy .sj, then G contains K vertices connected by a
maximum of iKzl i = KZT"K edges. Hence the time complexity can be rewritten a® K? and the
algorithm computing an optimal chain from K PSSM matches has a run time that is quadratic in
the number of PSSM matches and take®© (K ) space. In [AOQ05] the authors present an optimization
that improves the O K? time bound to O (K logK ) by considering the geometric nature of the
problem. In the following, we brie y describe the main ideasof their algorithm. To compute csc (v)
according to Equation @3) we have to maximize the score oweall u 2 MSy, .5 satisfyingu  v.

Reconsider, that for any two PSSM matchesu;v 2 MSy, s,
u=_leir;jr) v=_Is;is;js), I <ls ™ jr<is: (4.5)

Furthermore in geometric terms, a PSSM matchv = (ls;is;js) 2 MSy .s can be viewed as a line
in a two dimensional space starting at position {s;ls) and ending at position (js;ls) (see Figure
3 part (C)). Hence to determine csc (v) we have to maximize over all PSSM matches in the
rectangle de ned by the lower left corner point (0; 0) and the upper right corner point (j s;ls), which
is basically a two dimensional search problem. INJAOOS5] theauthors show that this two dimensional
search problem can be reduced to a one dimensional search ptem by processing the elements of
MSw -s in ascending order with respect to their matching positionsin the sequenceS or in the
order of PSSMs as de ned byM . Hence, an e cient organization of the elements of MSy, .s is
advantageous and allows to reach thé (K logK) time bound. This can be accomplished by using
balanced binary search trees, for instance AVL- or Red-Blak-Trees for the organization ofMSy s .
For a more detailed description of the algorithm see[[AO03b/AO0S].
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Analysis of ESAsearch with fragment chaining

in M and K the total number of matches of all PSSMsM;, i 2 [1;L]. Then the time complexity for
the combined algorithm composed ofESAsearch for PSSM match determination and the fragment
chaining approach of [AO05]isO (L (n+ m + K logK)). Although in practice K is much smaller
than n, in the worst caseK 2 O (n) holds, leading to a total worst case time complexity of

O(n+m +n logn): (4.6)

This time complexity holds for any PSSM of length m and threshold on any text of length n
A™ +m 1.

4.4 Integration of PSSM family models into PoSSuMsearch

To incorporate our concept of PSSM family models, we extende our search toolPoSSuMsearchby
integrating the fragment chaining algorithm of [A005] for chaining of matches to PSSMs.

In the rst phase, PoSSuMsearchcomputes single PSSM matches for the PSSMs of a family model
using algorithms ESAsearch LAsearch, or evenSPsearch depending on the user's choice. In the sec-
ond phase PSSM matches obtained in phase one and their ordeg information are used to compute
optimal chains of PSSM matches according to the order givenn the family model. To formulate
these orders, we augmented the PSSM e format to support graping and ordering information
for PSSMs enabling the description of PSSM family models. Wh these models PoSSuMsearch
can compute and report for each sequencg and family model M the optimal chain G, .5 and its
chain scorecsc y .s. We added two modes of operation toPoSSuMsearch namely pssmsearchand
seqclasswith the following semantics.

Mode pssmsearchallows sequence classi cation based on a, typically smalljbrary of PSSM
family models. This mode requires a numeric argumenk. Per family model the (up to) k best
matching sequences are reported.

Mode seqclassallows sequence classi cation based on a, typically largdibrary of PSSM family
models. With user speci ed numeric argumentk, per sequence the (up to)k best matching
PSSM family models are reported.

Hence modepssmsearchmimics the modus operandiof program hmmsearch whereas modeseqclass
is comparable to program hmmpfam. To further integrate PSSM family models into PoSSuM-
search seamlessly, we added additional ltering constraints like minimal (relative) chain length,
output formats and sort keys operating on chains and there atributes instead of single PSSM
matches. Graphical result visualization and a web user inteface is available inside the Genlight sys-
tem [BMM _* 04, [BSS04] wherePoSSuMsearchwith PSSM match chaining is used as an integrated
search method for theBLOCKS and PRINTS databases. For examples of visualize®PoSSuMsearch
results see FigurdZP on page_1D8.
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4.5 Performance of PSSM family models for protein family
classi cation

Detection of protein families in large databases is one of th principal research objectives in struc-
tural and functional genomics. Protein family classi cati on can signi cantly contribute to the de-
lineation of functional diversity of homologous proteins, the prediction of function based on domain
architecture or the presence of sequence motifs as well asmparative genomics, providing valuable
evolutionary insights.

To evaluate the suitability of PoSSuMsearchemploying PSSM family models for fast and accurate
protein family classi cation, we rigorously tested and validated our method in several database
search scenarios. Therefore, we carried out extensive ddiase searches with a large collection of
protein families focusing on the ability to discriminate between homologs and non-homologs. For the
experiments described in this chapter, we always useBoSSuMsearchoperating in pssmsearchmode
with algorithm ESAsearch for PSSM matching. For simplicity we refer to it as just PoSSuMsearch
without mentioning each time that we use ESAsearch and chaining of PSSM matches.

To evaluate a database search method likePoSSuMsearch we have to determine its sensitivity
and speci city since the overall performance or quality of amethod is always a combination of its
sensitivity, also called coverage, and its speci city. Onede nes a method's sensitivity as its ability
to detect as many true positive relationships (true membersof the family described by the PSSM
family model) and thus generate as few false negative resudt(erroneously missed members) as
possible. Analogical, the speci city of a method is de ned & its ability to select only sequences
with a true relationship and thus to generate as few false pdsves (erroneously found members)
as possible. We measured the performance #foSSuMsearchin terms of sensitivity, speci city and
running time and compared the results with a hidden Markov madel based state-of-the-art ap-
proach. Database searches using pro le hidden Markov moddbased approaches (c.f[[DEK98]) are
yield to be very sensitive and speci ¢ [RVO]1]. Hence a perfanance evaluation assessing sensitivity
and speci city of our PSSM family model based approach compeed with a hidden Markov model
based method is a meaningful and ambitious benchmark. We ctsg as a representative of methods
employing HMMs the widely used hmmsearch program [Edd9€] from Sean Eddy'sHMMER pack-
age version 2.3.2. For the conducted experiments, we used éhdatabase search method evaluation
framework PHASE4 [Reh(02]. The method-independentstate of truth essential for the expressive-
ness of the evaluation experiments is de ned by sequences thiknown relationships taken from
the SCOP (Structural Classi cation of Proteins) database [AHB ™ 04] release 1.53SCOPis a multi
level hierarchy of protein sequences taken from the RCSB ptein data bank (PDB). Thus, all se-
quences included inSCOPhave a known tertiary structure and they can be classi ed into families
based on their structural similarities, instead of sequene similarities. The classi cation hierarchy
was constructed manually by expert knowledge and comparists of structures and re ects both,
structural and evolutionary relatedness of proteins. Thisunique feature makes theSCOP database
a frequently used benchmark data set for database search mebds [BCH98,[KBH9E]. Inside SCOR,
families are organized into certain superfamilies, which gain are members of certain folds. Families,
superfamilies, and folds also constitute the three major leels of the hierarchy. For theses levels the
following characteristics are assumed to be true:
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Evaluation Scenario Description

Experiment 1: For each superfamily: For each family, half of its sequences are

Very close relationship chosen as test sequences, and the remaining ones are chosers a

(family half one model) training sequences. The sequences of the surrounding supdamily
are ignored in the evaluation.

Experiment 2: For each superfamily, half of the sequences of each of its fan

Close relationship (family lies are chosen as training sequences and the remaining oneare

halves one model) chosen as test sequences.

Experiment 3: From a superfamily, each family in turn is chosen to provide t he

Distant relationship test sequences. The remaining families within that superfamily

(distant family one model) provide the training sequences.

Table 4.1: Evaluation scenarios used in the performed exp@nents to assess method sensitivity and
speci city.

Family

Members of a family have a clear evolutionary relationship ad hence a common or similar
structure and function. Generally, this means that pairwise residue identities between proteins
inside a family are 30% and greater. However, in some casesrslar functions and structures
provide de nitive evidence of common descent in the absencef high sequence identity, e.g.
many globins form a family although some members have sequea identities of less than 15%.

Superfamily

Members of a superfamily have probably a common evolutionar origin. Superfamilies contain
proteins that have low pairwise sequence identities, but whbse structural and functional fea-
tures suggest that a common evolutionary origin and commonudnction is probable. Examples
for members that form a superfamily are actin, the ATPase donain of heat shock proteins,
and hexakinase.

Fold

Proteins are de ned as having a common fold if they have the sae major secondary struc-
tures (alpha helices and beta sheets) in the same arrangemieand with the same topological
connections. Proteins placed together in the same fold catgory may not have a common
evolutionary origin or function.

4.5.1 Employed data set and evaluation scenarios

To minimize the in uence of redundancies, which are abundahin the SCOPdatabase, on the results
of our experiments we used the non-redundanPDB90 subseE of SCOP (Rel. 1.53). This subset
consists of a total of 4,861 amino acid sequences classi entd 1,358 families and 853 superfamilies.

We performed three experiments with di erent evaluation scenarios to test our method's ability to
detect (1) very close relationships, (2) close relationslgs, and (3) distant relationships. In these
experiments we separated theSCOP sequences into di erent training- and test-sets. Table[Z1and

2Subset of SCOP/PDB sequences with pairwise homology of less or equal 90 percent.
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(A)
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Figure 4.4: Construction of trainings- and test-sets for (A) very close relationships (family half one
model scenario), (B) close relationships (family halves oa model scenario), and (C)
distant relationships (distant family one model scenario)
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Figure L4 give more details on the construction process ofraining- and test-sets in the di erent
evaluation scenarios. Since some superfamilies ®COP contain only one family and some families
consist only of very few member sequences, we employed thdlfoving constraints when selecting
superfamilies and families for evaluation. Only superfarriies are selected that are comprised of at
least two families. From these superfamilies, families wear chosen to be test families, if both the
family itself and the remainder of the superfamily contained at least 5 sequences each. Concrete
numbers of resulting trainings/test sets in the di erent ev aluation scenarios are given in the captions
of the result gures shown in section[Z5B on the facing pageNote that training sequences are always
ignored in the evaluation.

4.5.2 Model construction and scoring

From each training set we constructed a PSSM family model foruse with PoSSuMsearchand
a pro le hidden Markov model for hmmsearch respectively. With these models, we subsequently
search the sequences in the corresponding test set. Both meldtypes are derived from a multiple
alignment, which we compute from each training set usingCLUSTALW [HTG ™ 94] with default
parameters. For deviation of calibrated pro le hidden Markov models, we applied the programs
hmmbuild and hmmcalibrate from the HMMER package. To construct PSSM family models, we
rst excised all ungapped blocks of length 6-12 from the muliple alignments retaining their order
and deviated from the blocks PSSMs based on simple log-oddatios according to Equation (Z1) in
section[Z52 on pag€38. For this, we estimated residue prabilities of observing a certain residue
in a column of the alignment block from relative frequencies

To score potential matches to a PSSM family model derived fran a training set, we usePoSSuM-
search operating in pssmsearchmode. More precisely, letM be a PSSM family model of some
training set and let DB denote the set of all sequences i?DB90, then we computecsc y s =
csc(C u s) foreachS 2 DB.

For the computation of high-scoring chains in our experimeits, we de ne the fragment score for a
match h =(1;i;j ) of PSSMM,;1 2 [1;L], of length m; = j i+ 1 in a sequenceS of length n as

In (@ (h)" ™*).
In(n) '

fsc(h) = 4.7)
Here (h) denotes the probability for the event that PSSM M| matches a random sequence of length
m, with at least scoresc(S][i:;j ]; M) by chance. Observe that (h) can e ciently be determined in
an exact manner with algorithm LazyDistrib described in sectio"38 on pageB1. Thus, (1 (h))
is the probability for the complementary event, that M, does not match such a random sequence,
and (1 (h))" ™*! is the probability that there is no match in n m, +1 sequences of lengthm,,
corresponding to the number of possible di erent matching positions of M in a sequence of length.
Conversely,1 (1  (h))" ™*! isthe probability for the event, that there is at leastoneinn m +1
random sequences of lengtim, that matches M| with a score of at leastsc(S][i:;j ]; M,). Since the
fragment chaining algorithm computes chain scores by addig fragment scores (see Equatiorn{Z4]2)),
we take the logarithm to archive multiplication of probabil ittes 1 (1 (h))" ™*1. These strongly
depend on the sequence length, therefore we divide them by In(n) for compensation.
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With fragment scores based on exact p-values according to Egtion (7)), we de ne the chain score

csc(C) = X fsc(hi): (4.8)
i=1
Models constructed from training sets as described in seath L5 on pagdTl4 and Figur€&44
on pagelTTIh, served as input for database searches wittmmsearch running in domain mode and
PoSSuMsearch For each model, we searched with both programs in th&DB90 for sequences of the
test-set corresponding to the used model. In these search#wesholds were set in a very relaxed way
that resulted in reporting all sequences, irrespective of heir score. More precisely, fohmmsearch
we chose an E-value cuto of 10 and forPoSSuMsearchwe chose a single PSSM p-value cuto of
0.1. Matches to a model were sorted in descending order of tireachieved method speci c score.
As method speci c scores we use foPoSSuMsearchgiven a family model M the best chain score
csc v s for a certain sequenceS, computed according to Equation {Z8) and [ZT) respectivéy.
Matches reported by hmmsearch were ranked by sequence classi cation score the default result
ranking score ofhmmsearch The sequence classi cation scorealso calledoverall model scorgis a
log-odds score de ned as
[S ]
[Sjnull ]
Here [Sj ] denotes the production probability that sequence S is generated by model and
[Sjnull ] is the probability that S is generated by the null or background model expressing the
probability of seeing S just by chance.

SGmm =log, (4.9)

Finally, we obtain for each training set and model type (pHMM as well as PSSM family model) a list
of matching sequences sorted in descending order of the mettl speci ¢ score and thus descending
match quality. These lists of results are the foundation forthe subsequent evaluation.

4.5.3 Performance evaluation and results
Assessment of sensitivity and speci city

To assess the sensitivity and speci city of our PSSM family nodel approach and to compare the
classi cation accuracy with hmmsearch we process the lists of results computed by each method
for each model top down, counting true- and false positive mi&ches. This is feasible, since (true)
family- and superfamily memberships are known from theSCOPclassi cation. To provide an overall
assessment of the methods' performances, we determined thmercentage true positive value in
all test sets (also called thecoveragé for di erent counts of false positives and plotted the false
positive counts versus the average percent coverage for thtaree di erent evaluation scenarios (see
Figures[43 [4®, andZl’). This is a widely used method to mesure the sensitivity and speci city of
database search methodd [ADRFQ4]. The resulting graphs (geFigures[Z5 [ZPB[Z17) describe how
many percent true positives (y-axis) a method detects, if a ertain number of false positives (x-axis)
is accepted. In particular the percentage true positive valie for 50 accepted false positives (FP50
value for short) is a commonly used value to characterize a dabase search method's performance
in terms of sensitivity and speci city.
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Figure 4.5: Experiment 1: Very close relationships (familyhalf one model evaluation scenario). Clas-
si cation performance of PoSSuMsearchand hmmsearchwhen detecting very closely re-
lated sequences. We used 258 models built from training setepresenting 258 di erent
protein families. The number of false positives is given onhe x-axis, the y-axis gives
the average percentage true positives. For details on traimg- and test-set generation
see corresponding text.

In our experiments PoSSuMsearchreached an FP50 value of 88.6% when applied to very closely
related proteins (Experiment 1, see Figure[4b), 79.8% for losely related sequences (Experiment
2, see Figure[Zkb), and 45.3% for distantly related sequensgExperiment 3, see Figure[Z4l7). For
hmmsearchwe achieved FP50 values reaching from 91.8% (very close rélanships, see FigurdZb
over 84.2% (close relationships, see Figufe—4.6) down to 886 (distant relationships, see Figure
). For a summary of detection rates for di erent numbers o allowed false positives see TablE™.2.

Running time and scalability

In a fourth experiment, we measured the running times and scking behavior of PoSSuMsearchusing
PSSM family models and compared them to the hidden Markov moeél basedhmmsearch program.
To analyze the fraction of the total running time spent for chaining of PSSM matches, we also
measured the running time of PoSSuMsearchwithout chaining for the same experimental setup.
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Figure 4.6: Experiment 2: Close relationships (family hales one model evaluation scenario). Clas-
si cation performance of PoSSuMsearchand hmmsearchwhen detecting closely related
sequences. We used 179 models made from the trainings setsthis experiment. For
details on training- and test-set generation see correspating text.

Evaluation scenario PoSSuMsearch using PSSM family models hmmsearch

FPO FP25 FP50 FPO FP25 FP50
Very close relationships | 81.8% 86.9% 88.6% 87.3% 91.0% 91.8%
Close relationships 71.1% 78.6% 79.8% 77.7% 82.9% 84.2%
Distant relationships 35.0% 41.7% 45.3% 36.1% 43.9% 46.9%

Table 4.2: Average true positive detection rates ofPoSSuMsearchusing PSSM family models and
hmmsearchfor di erent numbers of allowed false positives (FP).
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Distant relationships
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Figure 4.7: Experiment 3: Distant relationships (distant family one evaluation scenario). Classi -
cation performance ofPoSSuMsearchand hmmsearchwhen detecting distantly related

sequences. We used 320 models in this experiment. For detaibn training- and test-set
generation see corresponding text.
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Running time and scaling behaviour of possumsearch (ESAsearch) using PSSM family models
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Figure 4.8: Experiment 4: Running times in seconds and scalg behavior of PoSSuMsearchop-
erating in ESAsearch (top), LAsearch mode (center) and hmmsearch (bottom) when
searching with 100 PSSM family models and pro le hidden Marlov models respectively,
representing the rst 100 protein families in PFAM on subsets ofSwiss-Protof di erent
sizes.
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4 PSSM family models for sequence family classi cation

For our experiment, we constructed PSSM family models for tle rst 100 protein families listed
in Pfam (Rel. 21.0) [EMSB" 06]. We excised alignment blocks of length 5-8 from thePfam-seed
alignments of these families and deviated PSSMs as descritheén section [£52. This resulted in
100 PSSM family models consisting of 2,038 single PSSMs withn average length of 78. Along
with the construction of PSSM family models we generated fron the same seed alignments 100
pHMMs using hmmbuild. That is, we obtained 100 PSSM family models and pHMMs desching
the rst 100 Pfam protein families. We applied these models toPoSSuMsearchand hmmsearch
respectively and measured the running time needed for sedning on subsets of di erent sizes of
the Swiss-Protdatabase (UniProtKB/Swiss-ProtRel. 49.2) containing 212,425 amino acid sequences
with a total sequence length of 78MB. Forhmmsearchwe used a moderately chosen E-value cuto
of 10 5. Reconsider, that the running time of PoSSuMsearchdepends on the stringency of the used
cuto, in particular when using algorithms ESAsearch or LAsearch. Hence for a fair comparison
of running times of both methods, the cuto for PoSSuMsearchhas to be adjusted appropriately.
Regrettably, E-values or p-values of di erent database seech methods are in the majority of cases
not comparable. In case ofPoSSuMsearchwith fragment chaining, this remains even more di cult
due to the lack of accurate statistics for high-scoring PSSI\/t:hainﬁ. However, manual inspection of
results obtained for di erent levels of stringency revealal that for the majority of tested families a
single PSSM p-value cuto of =10 # underestimates the level of stringency ohmmsearch using
an E-value cuto of 10 °. That is, PoSSuMsearchoperates less stringent thanhmmsearch and is
not favored in terms of running time by operating on a higher level of stringency. Hence, we chose
for our benchmark experiments a p-value cuto of =10 4 for searching with PSSM family models
using PoSSuMsearch

Measurements were performed on a 8 CPU Sun UltraSparc Il coputer with a CPU clock speed
of 900MHz and 64GB main memory (using only one CPU and a smallriction of the memaory). We

measured the running times forhmmsearch and PoSSuMsearchoperating in ESAsearch mode as
well as in LAsearch mode (see FigurdZ]8). BothPoSSuMsearchvariants employ the fast chaining

algorithm of [AO05] on the obtained PSSM matches to compute ér each PSSM family model high-
scoring chains. In this experimentPoSSuMsearchperformed very well. Running times were in the
range between 73 seconds for a 1MB subset &wiss-Protup to 2:2 10° seconds for the whole 78MB
when employing PoSSuMsearchoperating in ESAsearch mode and between 73. seconds (1MB)
and 1:59 10* seconds (78MB) when usind_Asearch. To accomplish the same task withhmmsearch
utilizing 100 pHMMs built from the same seed alignments it took between 489 10° seconds (1MB)
and 3:82 10° seconds (78MB) (see FigurE4l8). That isPoSSuMsearchapplying ESAsearchachieved
speedup factors between 67 and 171 ovétmmsearchand between 29 and 7:2 over PoSSuMsearch
operating in LAsearch mode.

In our experiment hmmsearch shows a running time linear in the size of the searched sequee
space (see Figurd—418). This is an expected behavior inducedy the applied Forward algorithm
(see Equation [Z4D)). By contrast, PoSSuMsearchoperating in ESAsearch mode and employing
chaining on the obtained PSSM matches shows clearly sublim& running time. We further found,
that the overall running time is dominated by the time that al gorithm ESAsearch needs to nd
matches for the PSSMs belonging to a family model. For examp from the 2,178 seconds needed

3We will address the problem of score statistics of high-scor ing PSSM chains in section £5.ZJon the next page.
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Chain score distribution (chain length > 1)
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Figure 4.9: Histograms of csc f.s on 10° random sequences of constant lengthsn 2
182 365 730 1460 2920 5840y . The used collection of PSSM family modelsF con-
tains 5,732 family models taken fromBLOCKSRel. 14.1.

by PoSSuMsearchto apply the 100 PSSM family models to the wholeSwiss-Protonly 325 seconds
(14.9%) were spent on chaining of PSSM matches.

4.5.4 The signi cance of PSSM chain scores

Although chain scores computed according to Equation[ZB)yand @) abstract from the underlying
PSSM raw scores by using p-values and give a good rankable seoit is preferable to have a p-value
or E-value as a measure of signi cance for a chain of PSSM maltes. Such a p-value corresponding
to a chain scorecsc(Gy -s) should express the probability of obtaining a match to the PSSM family
modelM of at least scorecsc(Gy :s) in a random sequence. This would allow more meaningful user
speci ed p-value or E-value cuto s instead of raw chain scoe cuto s.

To de ne a meaningful p-value and hence to assess the signiance of PSSM chain scores, we have
to compute or at least approximate properly the chain score dstribution. In literature very little is
known about approximations of combined score distributiors like our chain scores. In[[BG98b] and
[BG984] the authors propose an intuitive method, implemened in the search toolMAST (Motif
Alignment and Search Tool), for combining sources of evidece (matches of multiple motifs char-
acterizing a sequence family) that yields a p-value for the omplete evidence (membership of a
sequence to this family). They use the product of p-values oingle motif matches to derive a com-
bined p-value. This is basically similar to our de nition of chain scores according to Equation[[Z18)
and @) except that we take the sequence lengtim into account and add logarithms of probabilities
instead of multiplying probabilities. However, in contrast to our PSSM family models, the method
of [BG98H] does not take the order of match occurrences into@ount and it reveals unclear how this

123



4 PSSM family models for sequence family classi cation

additional constraint in uences the distribution of chain scores and the accuracy of the combined
p-valueﬂ.

To get an idea of the shape of this distribution, we sampled sores of high scoring chains on a
large data set of random data. In this experiment, we used thechain score function as de ned in
Equation (E8) and (). To analyze potential dependencis of the chain score on the length of the
matched sequence, we generated sets of®1tandom sequences each, for di erent sequence lengths.
As lengths we chose multiples of the average sequence lengthSwiss-Protdetermined asnayg = 365,
namely 182, 365, 730, 1460, 2920, and 5840, resembling thadéh spectrum of proteins. In these
random data sets we retained the relative amino acid frequeties of Swiss-Prot We searched with
5,732 PSSM family models jFj = 5;732) taken from the BLOCKS database (Rel. 14.1) consisting
of 28,333 single PSSMs with an average length of 25on our data sets of random sequences using
PoSSuMsearchoperating in seqclassmode fork = 1 and a relaxed p-value cuto for a single PSSM
match of 10 2. That is, we computed the chain score of a match to a PSSM famyl model and
tabulated for each of our random sequenceS scorecsc ¢ s, the score of the highest scoring chain
of all family models. For these scores we calculated the digbution. See Figure[L3 for the results
of our sampling experiments. Although we already tried to canpensate for dependencies of chain
scores on the lengthn of the matched sequence by division by Ind) (see Equation {Z1)), such an
dependency still exists. This is in particular apparent in the histogram shown in Figure[ZID. For
this Figure we sampled chain scoressc y -s for two PSSM family models describing two TIGRFAM
protein families and containing a di erent number of PSSMs d length 6 to 10 on two sets of 16
random sequences of length 184 and 1472 respectively . We i that the distribution of high
chain scores depends on the sequence length and it is much nedikely to achieve a high chain score
in a longer sequence than in a shorter one. Also the number of &SMs in a family model seems to
in uence the chain score, such that models consisting of a lgher number of single PSSMs incline to
achieve higher chain scores. For an example see the blue aneldrhistogram in Figure[ZI0. A more
detailed analysis of the distribution of high PSSM chain sceoes (see FigurdZ 1) revealed a further
interesting aspect. As indicated by the X-Y plots in Figure BT, distributions of high PSSM chain
scores derived from a single PSSM family model can be appraxiated quite well with an extreme
value distribution. This may lead in the future, if an acceptable length normalization of chain scores
can be found, to an approximation of the chain score distribtion on a per model basis and in turn
to reliable statistics with p-values and E-values correspading to chain scores.

4.6 Accelerating HMM based database searches with PSSM
family models

Pro le hidden Markov models (pHMMs) are currently the most p opular modeling concept for pro-
tein families. They provide very sensitive family descriptors, and sequence database searching with
models from major pHMM collections has become a standard tdsin today's sequence analyses and
genome annotation pipelines. On the downside, database sesing for pHMMs with programs like
hmmsearch or hmmpfam is computationally expensive. The application of the progams to com-

4Interestingly, incorporation of match order is mentioned a s a promising constraint to increase speci city in the
outlook of [BGI8b]
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Figure 4.10: Histogram ofcsc y .s for two PSSM family models containing a di erent number of
single PSSMs on 18 random sequences of lengths 184 and 1472. The two investigat
PSSM family models describeTIGRFAM protein families TIGR00001 (modeled with 8
single PSSMs) and TIGR00004 (modeled with 15 single PSSMs).
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Chainscore distribution for TIGR00001/riL35, n=184
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Figure 4.11: Cumulative chain score distributions, X-Y plots, and normal probability plots of PSSM
family models for two TIGRFAM families (TIGR00001 and TIGR00004) for two di erent
sequence lengths 184 and 1472. Color assignments are the saes in Figure[ZID.
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plete proteomes, or even whole protein databases likBwiss-Protor UniProtKB/TrEMBL , demands
massive amounts of compute resources or highly specializédhrdware [TIm0§].

We propose a new method to speed upmmsearch Our approach employs the simpler PSSM family
models and fast PSSM matching using algorithmESAsearchto Iter the search space for subsequent
database searches with pHMMSs corresponding to this familig.

4.6.1 Model specic trusted- and noise cuto s

Accompanied to the traditional user de ned E-value cuto s t o control the signi cance level of a
database search, major protein family databases use addidnal cuto s to judge between true positive
and false positive matches. For instance pHMMs of protein fanilies from the Pfam or TIGRFAM
databases contain additionaltrusted- and noise-cuto s. These cuto s, set with expert knowledge
of the modeled family by the database curators, are used by ppgrams from the HMMER package
as cuto values for the sequence classi cation score(see Equation [Z9)) for searches on a de ned
signi cance level. The trusted cuto is the lowest score for sequences included in the protein faip
described by the model. Hence, it is assumed as a lower scoreundary for true members of the
family and is therefore often used in automatic annotation ppelines of genome annotation systems.
Contrary, the noise cuto is the highest score known so far of a sequence not belonging the
family. For this reason it can be seen as an upper score boundafor sequences assumed not to
belonging to the family. This cuto is often used for manual searches with increased sensitivity.
The range between both cuto s marks a gray zone in which the okained matches require manual
inspection. Using prede ned trusted- or noise cuto s recorded in the model entries, searches with
di erent levels of stringency and in contrast to E-value cuto s independent from the size of the
searched sequence space can be performed.

In the following, we demonstrate that even in the absence of ecurate statistics and signi cance
values for PSSM chain scores, we can mapusted and noise cuto s to single PoSSuMsearchPSSM
p-value cuto s, allowing PoSSuMsearchand hmmsearchto operate on a similar level of sensitiv-
ity. This permits to use PoSSuMsearchas a pre- Iter for search space reduction for the compute
intensive hidden Markov model basedhmmsearch The intention behind this ltering and search
space reduction approach with PSSM family models is an expéed reduction of overall running
time of the combined approach consisting oPoSSuMsearchand subsequenthimmsearchover direct
hmmsearch To achieve this, we propose the subsequently described pcedure.

4.6.2 PSfamSearch: Search space reduction with PSSM family models

We start by searching with a pHMM representing a protein family in a large protein database like
Swiss-Protusing hmmsearchwith the model's trusted cuto s and tabulate all matching sequences.
From the seed alignment of the employed pHMM we construct a PSM family model as described in
section[Z52 and use this family model to iteratively seark Swiss-Protusing PoSSuMsearch In each
iteration we relax the p-value cuto until we nd all sequenc es also detected bynmmsearchusing the
modelstrusted cuto (TC) and noise cuto (NC) respectively. With this procedure we determine
p-value cuto s denoted by t¢c and nc¢ corresponding to the pHMMs trusted cuto and noise
cuto in terms of sensitivity. That is, we operate with PoSSuMsearchand our calibrated PSSM

127



4 PSSM family models for sequence family classi cation

Search space reduction through PSSM family model prefiltering
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Figure 4.12: Search space reduction through PSSM family maal pre- ltering. We measured the
number of sequences passing pre- Itering of the search spaavith PoSSuMsearchusing
PSSM family models (x-axis, logscale). p-value cuto s are djusted to nd at least the
same matches ashmmsearch using trusted- and noise cuto s for the rst 20 protein
families of the TIGRFAM database (Rel. 6.0). The red bar shows the total number of
sequences in the use®wiss-Protrelease 51.7 (259,034 protein sequences with a total
length of 122MB) needed to be searched by direchmmsearchwithout ltering.

family model on the same level of sensitivity adhhmmsearchemploying the pHMM, but with possibly
reduced speci city. Observe that the set of matching sequeoes detected byPoSSuMsearchusing
cuto tc or nc may be a super-set of the set of sequences detected hjnmsearchemploying the
pHMMs trusted- and noise cuto . However, since we are interested in using PSSM family model
searched with PoSSuMsearchas a pre- Iter for search space reduction forhmmsearch sensitivity
is more important than specicity. Once t¢c and yc are computed on a large protein database
like Swiss-Prot they can be stored together with the PSSM family model on le for reuse. That
is, for further searches with hmmsearch using the model's trusted- or noise cuto we can use
PoSSuMsearchusing cuto tc or yNc as a lter and apply the compute intensive hmmsearch
only on sequences that contain matching chains to the PSSM faily model. Sequences that contain
no matching chains are thus Itered out. Since sequences ctoaining matching chains constitute
only a small fraction of all sequences to be searched and se®oSSuMsearchis much faster than
hmmsearch we expect a reduced overall running time.

From now on we use the termPSfamSearchto denote the combined approach consisting oPoS-
SuMsearch using PSSM family models for pre- ltering and subsequent aplication of hmmsearch
on the ltered sequence set.
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Figure 4.13: Running time reduction by PSSM family model bagd pre- Itering. We measured the
total running time in minutes needed to search with models rgresenting the rst 20
protein families in TIGRFAM, in the complete Swiss-Protdatabase (Rel. 51.7) for direct
hmmsearch (red bars) and the family model ltering approach with PoSSuMsearch
(yellow and green bars) for the two di erent signi cance levels given by trusted- and
noise cuto s.

4.6.3 Evaluation and computational results

We tested PSfamSearchwith the rst 20 out of 2,946 pHMMs of the TIGRFAM database (Rel. 6.0)
on the complete Swiss-Protdatabase (Rel. 51.7, 122MB protein sequence data). We determined
PoSSuMsearchp-value cuto s corresponding to hmmsearch trusted cuto s as well asnoise cuto s
with the iterative procedure described above. We measuredhe search space reduction (see Figure
ET2) and the total running times needed by PSfamSearchand compared them with hmmsearch
operating on the un ltered data set (see Figure[ZIB). Runnng times for the ltered approach are
total running times including times needed for search spaceeduction with PoSSuMsearchand
subsequent application ofhmmsearchon the Itered Itered sequence space. In these experiments
PSSM family model based Itering reduces the search space ahence the overall running time dra-
matically. For example, for TIGRFAM family YbaK_EbsC (TIGRFAM Accession: TIGR00011) only
5 sequences remain after the Itering step and are handed ovédo hmmsearchto score them instead
of all 259; 034 Swiss-Protsequences without ltering. Filtering with p-value cuto s corresponding
to the less stringent noise cuto s revealed in the worst case (familyril35, TIGRFAM Accession:
TIGRO00001) even still a search space reduction of 50%.

The overall running time needed for searching is reduced frm 1; 4002 minutes required by standard
hmmsearchto only 10:1 minutes for PSfamSearchwhen usingtrusted cuto s. This is a speedup of
factor 138. Usingnoise cuto s the achieved speedup factor is still 45.

We explicitly note, that we obtain with PSfamSearchand direct hmmsearch operating on the full
sequence set, exactly the same results. HencBpSSuMsearchworks in this scenario as a perfect,
lossless lIter. This is not too surprising, since thresholag were trained/adjusted on the same set of
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sequences that was searched afterwards employing these #wsholds. This raises the question, how
well the calibrated p-value cuto s generalize to sequencesot included in the training set used for
threshold determination.

4.6.4 Cuto calibration strategies

The determination of a proper family speci ¢ p-value cuto i s crucial for the sensitivity as well as
speedup ofPSfamSearch A too stringent cuto results in too radical search space reduction which

in turn has the e ect, that PSfamSearchmisses to many matches. Contrary, a too relaxed cuto

a ects the obtained speedup factor negatively due to insu cient reduction of the search space. In
the following we investigate and evaluate three di erent strategies for cuto calibration. Namely,

cuto calibration based on family seeds,
cuto calibration based on hmmsearchmatches obtained on a smaller sample setSwiss-Pro},

cuto calibration based on UniProtKB/TrEMBL results with training- and test-set separation.

Cuto calibration based on family seeds

To employ family seeds for the calibration of p-value cuto s, we derived PSSM family models from
the families' seed alignments and adjusted the p-value cuts for PoSSuMsearchso that all members
of the seed alignment of a protein family were found by the modl. Subsequently, we used these
calibrated cutos on the UniProtKB/TrEMBL database (Rel. 35.0) containing 3,874,166 protein
sequences comprising 1,260,291,226 amino acids wifSfamSearch and compared the achieved
results with direct hmmsearch using the modelstrusted cuto s. Detailed results for the rst 20
TIGRFAM protein families are given in Table[Z3. In this experiment, direct hmmsearch returned
for all 20 families a total of 7; 588 matches scoring above thérusted cuto . Using PSfamSearchwe
obtained 7;005 matches also detected by direchmmsearch and missed 583. Although on average
overall tested TIGRFAM families, PSfamSearchusing p-value cuto s trained on family seeds returned
88:86% of all direct hmmsearch results, for some diverse families the determined cuto s wee too
stringent. An example for such a family is cop-IBP. For this family PSfamSearchmissed with the
determined cuto of 0:00021 more than 96% (207 of 214) of the sequences detected loymsearch
The same problem arose for familytaut for which more than 47% (80 of 168) of thehmmsearch
matches were missed. We identi ed for this behavior the folbwing two main reasons:

Some protein families are too diverse to be represented praply by a single seed alignment.
These families are de ned bytrusted cuto s much lower than the scores obtained for the
seed sequences. Hence, the sequences included in the se@halent are not a representative
sample for the family and thus inappropriate for cuto calib ration.

Some seed alignments sometimes simply does not contain ergiu sequences for a proper
representation of the family. Such an example is familycop-IBP for which the seed alignment
contains 4 sequences only.

We conclude that family seeds are not well suited for p-valuecuto calibration.
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TET

#matches

TIGRFAM #seqs in red. | % of total seq. | #matches in | matches in . . PoSSuMsearch| #seed
family (hmmsearch space space red. space red. space[%)] #missed) missed[3] Cuto ¢ segs.
using TC)

riL35 242 51,842 1.33815 241 99.59 1 0.41 2.65E-004 24
ribS16 328 310 0.00800 310 94.51 18 5.49 2.44E-006 20
cop-IBP 214 8 0.00021 7 3.27 207 96.73 1.25E-006 4
I-PSP 517 520 0.01342 470 90.91 47 9.09 1.25E-006 19
RIUA _subfam 1,038 1748 0.04512 1033 99.52 5 0.48 3.81E-006 16
mraW 349 343 0.00885 337 96.56 12 3.44 1.00E-007 8
Tigr0007 223 287 0.00741 223 100 0 0 1.25E-006 23
infA 327 380 0.00981 298 91.13 29 8.87 1.82E-005 13
ribL28 372 16,278 0.42017 355 95.43 17 4.57 1.69E-004 22
TatD 563 856 0.02210 558 99.11 5 0.89 1.95E-006 18
Ybak_EbsC 255 297 0.00767 249 97.65 6 2.35 3.05E-006 17
ribL29 487 28,883 0.74553 451 92.61 36 7.39 1.69E-004 27
taut 168 88 0.00227 88 52.38 80 47.62 3.81E-006 6
arsC 302 233 0.00601 231 76.49 71 23.51 1.00E-007 6
ackA 438 438 0.01131 415 94.75 23 5.25 1.00E-008 8
cmk 344 362 0.00934 342 99.42 2 0.58 1.25E-006 8
panC 358 374 0.00965 344 96.09 14 3.91 1.00E-008 5
prfA 244 609 0.01572 244 100 0 0 1.00E-008 11
prfB 472 697 0.01799 469 99.36 3 0.64 1.00E-008 6
rpiA 347 348 0.00898 340 97.98 7 2.02 1.25E-006 23
Avg: 379.4 5,245.05 0.14 350.25 88.86 29.15 11.16 3.38E-005 14.2

Table 4.3: Results ofPoSSuMsearchcuto calibration based on seed alignment members for
on UniProtKB/TrEMBL .

rst 20 TIGRFAM models. Detection rates measured
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4 PSSM family models for sequence family classi cation

Cuto calibration based on Swiss-Prot matches

As a second strategy for cuto calibration, we analyzed the sability of cuto s determined from a
relatively large training set. Therefore, we determinedPoSSuMsearchp-value cuto s corresponding
to hmmsearch trusted cuto s on the Swiss-Protdatabase for the rst 20 protein families listed
in TIGRFAM. With these cuto s we searched in the completeUniProtKB/TTEMBL database (Rel.
35.0) and compared the results oPSfamSearchwith direct hmmsearchusing trusted cuto s . Direct
hmmsearch returned for all 20 families a total of 7;588 matches scoring above thérusted cuto .
Using PSfamSearchwe obtained 7 487 matches also detected by direchmmsearch That is, our
Itering approach returned 98:67% of the results detected by directhmmsearch but in a fraction
of running time. See Table[Z% for the detailed results.

The fact that PSfamSearchmissed a few matches (23%) is caused by the incomplete representation
of some of the families inSwiss-Prot making it impossible to derive a meaningful cuto for the
whole family based onSwiss-Protsequences only. This is in particular true for family cop-I1BP. For
this family PSfamSearch missed 51 out of 214 (283%) hmmsearch matches with the employed
p-value cuto . We further note, that the majority of matches missed by PSfamSearchachieved an
hmmsearch sequence classi cation scor@ear the trusted cuto boundaries. That is, caused by the
incomplete representation of some families inSwiss-Prot p-value cuto s for PoSSuMsearchwere
chosen too stringently. Another disadvantage of usingnmmsearch matches for a pHMM obtained
on Swiss-Protfor cuto calibration is, that it reveals still unclear how w ell the determined cuto
can be generalized for new family members not contained iBwiss-Prot It may be the case, that
the complete family consists of Swiss-Protsequences and the cuto is then adjusted to nd exactly
these sequences.

Overall it seems more appropriate to adjustPoSSuMsearchcuto values on a more complete set,
probably UniProtKB/TrEMBL itself, or even more ideally on the set of all true family memkters
known so far and to demonstrate the generalization abilities of determined cuto s with clearly
separated training- and test-sets.

Cuto calibration based on UniProtKB/TrEMBL results with t raining- and test-set separation

As a third strategy for model parameter determination, we built PSSM family models from the
families' seed alignments for the rst 20 families listed inTIGRFAM and calibrated the p-value cuto s
and minimal chain lengths to match all sequences of a trainig set containing half of the sequences
returned by direct hmmsearch on UniProtKB/TrEMBL using the pro le hidden Markov models'
trusted cutos. That is, we adjusted sensitivity according to the sensitivity level of hmmsearch
operating with trusted cuto s. Employing these models and cuto s in a database search on complete
UniProtKB/TrEMBL , PSfamSearchreturned more than 99.7% of the original results determinedby
hmmsearch including their E-values and scores. Only 14 of 7,574 matabs (0.23%) were missed.
With p-value cuto s calibrated to match the sensitivity lev el of hmmsearch using noise cuto s,
PSfamSearcheven detected 99.8% of theammsearchwhile missing only 18 out of 9,137 sequences.
See FigurdZI¥ and TableEZ15 and4.6 for detailed results tis experiment.

It took PSfamSearchonly 146 minutes on one UltraSPARC IIl CPU running at 900Mhz, to
search with the rst 20 TIGRFAM families, instead of more than 7 days for directhmmsearchusing
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#matches
TIGRFAM #matches . .
No. . hmmsearch | #missed missed[%0]
family PSfamSearch .
using TC

1 riL35 241 242 1 0.41
2 ribS16 324 328 4 1.22
3 cop-1BP 163 214 51 23.83
4 I-PSP 510 517 7 1.35
5 | RIUA _subfam 1,035 1,038 3 0.29
6 mrawW 349 349 0 0
7 | TIGR00007 223 223 0 0
8 infA 321 327 6 1.83
9 ribL28 372 372 0 0
10 TatD 563 563 0 0
11| Ybak EbsC 249 255 6 2.35
12 ribL29 485 487 2 0.41
13 taut 152 168 16 9.52
14 arsC 302 302 0 0
15 ackA 438 438 0 0
16 cmk 343 344 1 0.29
17 panC 358 358 0 0
18 prfA 244 244 0 0
19 rpfB 471 472 1 0.21
20 rpiA 344 347 3 0.86
| total: | | 7,487(98.67%) | 7,588(100%) | 101(1.33%) | avg: 2.13

Table 4.4: Comparison of results obtained withPSfamSearchand direct hmmsearch when search-
ing with rst 20 TIGRFAM models onUniProtKB/TrEMBL . Cuto s for PSfamSearchwere
calibrated based onhmmsearch matches onSwiss-Protusing the modelstrusted cuto s.
Columns ve and six give the total number and percentage of maches missed byPS-
famSearch In this experiment PSfamSearchdetected 9867% of the matches detected by
hmmsearch
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4 PSSM family models for sequence family classi cation

Seach spacereduction through PS# family mocel prefiltering
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Figure 4.14: Reduction ofUniProtKB/TrEMBL achieved by PSSM family model Itering for the rst
20 TIGRFAMs families. Green (yellow) bars indicate the e ective numbe of sequences
to be searched withhmmsearch (x-axis, logscale) when using p-value cuto s adjusted
to match trusted cutos (noise cutos). The red bar shows the total number of se-
guences in theUniProtKB/TrEMBL (3,874,166 protein sequences with a total length of

1:26GB) needed to be searched by direchmmsearchwithout ltering.

the modelstrusted cutos. That is, PSfamSearchachieves a speedup of factor 72 over direct
hmmsearch while retaining more than 99:7% of the original results. Using the less stringentnoise
cuto s PSfamSearch reduces the search space to only:84% of the original search space size with a
sensitivity of 99:7% (see TabldZb) and a speedup of factor of 15 over direct hmmsearch Extrap-
olated to all 2,946 TIGRFAM families we estimate a running time of 14:9 days for PSfamSearch
and 302 years for directhmmsearchusing the modelstrusted cuto s.

Overall, we observe, that cuto calibration on a test set determined from search results of the
pHMM on UniProtKB/TrEMBL outperforms the former mentioned calibration strategies and leads
to cuto s with very well generalization characteristics. A ccordingly this strategy is well suited for
determination of cuto s with good sensitivity and search space reduction characteristics.
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TIGR family #seqs  In | % of total | P-value min. chain #found #missed | found[%] | missed[%]
red. Space | seq. space | cuto length
riL35 21,878 0.56 | 4.44E-05 2 239 3 98.76 1.24
rbS16 164,203 4.24 | 1.46E-05 2 328 0 100.00 0.00
cop-1BP 108,907 2.81| 1.08E-04 2 213 1 99.53 0.47
I-PSP 710 0.02 | 1.82E-05 4 514 3 99.42 0.58
RIUA _subfam 2,303 0.06 | 1.82E-05 4 1,038 0 100.00 0.00
mraw 358 0.01| 2.44E-06 4 348 1 99.71 0.29
TIGRO0O007 299 0.01| 5.96E-06 4 223 0 100.00 0.00
infA 24,280 0.63| 1.69E-04 3 326 1 99.69 0.31
ribL28 227,473 5.87 | 1.01E-03 3 371 1 99.73 0.27
TatD 907 0.02 | 7.45E-06 4 561 2 99.64 0.36
Ybak EbsC 330 0.01| 1.16E-05 3 255 0 100.00 0.00
ribL29 313,713 8.1 | 2.27E-05 1 487 0 100.00 0.00
taut 163,417 4,22 | 1.46E-05 1 167 1 99.40 0.60
arsC 382 0.01| 1.00E-06 2 302 0 100.00 0.00
ackA 470 0.01| 1.00E-06 4 438 0 100.00 0.00
cmk 373 0.01| 7.45E-06 4 343 1 99.70 0.30
panC 396 0.01| 2.44E-06 6 358 0 100.00 0.00
prfA 485 0.01| 1.00E-07 6 244 0 100.00 0.00
rpfB 603 0.02 | 1.00E-06 7 472 0 100.00 0.00
rpiA 1,629 0.04 | 3.55E-05 4 347 0 100.00 0.00
Average: 51,655.8 1.33 | 7.48E-005 3.55 99.78 0.22

Table 4.5: Results of p-value cuto calibration based onhmmsearch matches obtained onUniProtKB/TrEMBL using trusted cuto s. Cuto s were
calibrated such that half of the sequences (training set) pas PoSSuMsearch Itering. Column 2 and 3 give the absolute number and
percentage of sequences passing the lter. Numbers of founand missed family sequences on completgniProtKB/TrEMBL are given
in column 6 and 7.
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TIGR family #seqs in | % of total | Pvalue | min.chain | e 0 | e | foundpoe] | missed(o)
red. Space | seq. space | cuto length
rL35 488102 12.6 | 3.31E-004 2 265 2 99.25 0.75
rbS16 348187 8.99 | 6.46E-004 3 329 0 100 0
cop-IBP 239167 6.17 | 1.26E-003 4 223 0 100 0
I-PSP 4351 0.11 | 3.55E-005 3 675 5 99.26 0.74
RIUA _subfam 19315 0.5 | 2.84E-005 3 1496 0 100 0
mraW 369 0.01 | 4.77E-006 4 355 1 99.72 0.28
TIGROO007 299 0.01 | 5.96E-006 4 270 0 100 0
infA 24280 0.63 | 5.17E-004 3 329 2 99.4 0.6
ribL28 293362 7.57 | 1.58E-003 4 375 1 99.73 0.27
TatD 91600 2.36 | 1.36E-004 4 950 0 100 0
Ybak EbsC 149252 3.85 | 3.31E-004 4 329 2 99.4 0.6
ribL29 1621658 41.86 | 1.01E-003 2 507 0 1000
taut 507491 13.1 | 5.55E-005 1 334 1 99.7 0.3
arsC 34857 0.9 | 2.84E-005 2 327 1 99.7 0.3
ackA 470 0.01 | 1.00E-006 4 465 0 100 0
cmk 107685 2.78 | 8.67E-005 3 366 1 99.73 0.27
panC 73506 1.9 | 1.82E-005 2 408 0 100 0
prfA 604 0.02 | 1.00E-007 5 275 0 100 0
rpfB 678 0.02 | 1.00E-007 4 482 0 100 0
rpiA 56059 1.45| 6.94E-005 3 359 2 99.45 0.55
Average: 203,064.6 5.24 | 3.07E-004 3.2 Total: 9,119 | Total: 18 99.77 0.23
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Table 4.6: Results of p-value cuto calibration based onhmmsearch matches obtained onUniProtKB/TrEMBL using noise cuto s. Cuto s were
calibrated such that half of the sequences (training set) pas PoSSuMsearch Itering. Column 2 and 3 give the absolute number and
percentage of sequences passing the Iter. Numbers of founand missed family sequences on completdniProtKB/TrEMBL are given
in column 6 and 7.
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4.7 Discussion and concluding remarks on performed experiments

In this chapter we presented the combination of the formerlyintroduced ESAsearch algorithm with
a fast fragment chaining approach to e ciently search with P SSM family models in large data
sets. We extended our search tooPoSSuMsearchwith the algorithm of [AO05] and evaluated the
performance of the combined method in terms of sensitivity &ad speci city as well as total running
time. In addition, we compared the obtained results to astate of the art pHMM based approach
represented in our experiments by the well knowrhmmsearchprogram from the HMMER package.

The experiments assessing the sensitivity and speci cityn di erent evaluation scenarios show that
for protein classi cation on the family and superfamily level, PSSM family models achieved a clas-
si cation performance only marginally inferior to the perf ormance of pHMMs, which yield to be the
most sensitive modeling approach for detecting distant homlogies. Although PSSM family mod-
els are much simpler than the full probabilistic pHMMs, the measured FP50 value of PSSM family
models is only 32 percentage points below the FP50 value achieved bgmmsearchin the experiment
evaluating the method's ability to detect very close relationships (see Figuré&Zl). In the experiments
assessing the detection performance of close and distantia¢ionships the advance othmmsearchover
PoSSuMsearchwas even only 44 and 16 percentage points respectively, when accepting 50 false
positive matches. Hence, PSSM family models perform nearlgs accurate as pHMMs. Additionally,
there are indications that the classi cation performance d PSSM family models for protein family
assignment can be further improved. Observe, that the PSSMdmily model construction process
is really straightforward yet and in the performed experiments, simple log-odds ratios are used for
PSSM deviation (see sectiol_Z5l4 on padeR8) from excisedgament blocks instead of the more
sophisticated methods incorporating pseudo-counts desityed in sectionsIZ5Y on pagE—33 arld 2.3.8
on page3t. Preliminary results, not shown in this thesis, idicate, that PSSM construction methods
using pseudo-counts increase the classi cation performaze signi cantly. Another starting point for
further improvements is how ungapped alignment blocks are xcised from the underlying multiple
alignment. One can think of using ungapped but overlapping tles for PSSM deviation instead of non
overlapping blocks. This should give a better coverage of tb multiple alignment and may lead to
a PSSM family model representing the sequence family more aarately. Additionally, the distance
between blocks or tiles in the alignment could be incorporatd into the chain score function. This
should increase the speci city of PSSM family models.

Still an open problem is the e cient determination of accurate statistics for PSSM chain scores
without the need for time consuming sampling. Although chain scores as de ned by Equation [ZB)
and @) performed well for sequence classi cation (see Eperiments 1 to 3) the score sampling on
random sequences clearly showed a strong dependency on tlengith of the matched sequence. At
the time of this writing it is not clear, if this problem can be solved by additional normalizations
that nally may lead to a continuous distribution function f or high chain scores.

The surprisingly well performance of PSSM family models forprotein family classi cation in terms

of sensitivity and speci city appears in an even brighter light, when the total running time needed
by PoSSuMsearchand hmmsearchto accomplish the same task is taken into account. For the setp
of experiment 4 (see sectiolZ5l3 on pade_118), it tooRoSSuMsearchless than 40 minutes to
search with 100 PSSM family models built from the rst 100 Pfam protein families on the complete
Swiss-Protdatabase using a p-value cuto of =10 4, whereashmmsearchemploying an E-value
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4 PSSM family models for sequence family classi cation

cuto of 10 ° needed more than 4 days ( 105 hours) for this task. That is PoSSuMsearchachieved

a speedup of factor 171 ovehmmsearch Observe, that we measured the running time only for the

rst 100 out of 8957 families listed in the current Pfam release 21.0. By linear extrapolation of the

measured running time to all 8957 families listed inPfam Release 21.0, we assume a running time

for searching with all family models on Swiss-Protfor hmmsearchof 391 days compared to only
54:8 hours for PoSSuMsearch

In the experiments using PSSM family models for search spaceeduction for hmmsearch the com-
bined approach PSfamSearch) using PoSSuMsearchfor pre- Itering and subsequently hmmsearch
also performed very well.

Since the achieved speedups as well as the sensitivity 8fSfamSearchstrongly depend on the cho-
sen p-value cuto, we tested di erent strategies for threshold determination. In our experiments,
the achieved speedups oPSfamSearchwere in the range between 72 and 138 when using p-value
cuto s corresponding to trusted cutos and between 152 and 45 for p-values adjusted to match
the signi cance level of the models'noise cuto s. The highest speedup factor forPSfamSearchover
hmmsearch of 138 was obtained when searching with models for the rst 20TIGRFAM families
on Swiss-Protwith p-value cuto s calibrated according to hmmsearch matches onSwiss-Protusing
trusted cuto s (see sectio’ZE13 on pade1P9). With a clear separation ofaining- and test-sets for
cuto determination, necessary to derive cuto s with good generalization characteristics, PSfam-
Search also achieved speedups between 72 and:25wnith more than 99:7 sensitivity when searching
with models for the rst 20 TIGRFAM families on completeUniProtKB/TrEMBL (see sectiolZt6M1
on pagel[T3P). Extrapolated to all 2946 TIGRFAM models we expect a reduction of running time
from more than  2:84 years for direct hmmsearch using trusted cutos to only 15 days for
PSfamSearch

In particular, the extremely long running times and the linear time scaling behavioH of pHMM based
methods employing the Forward, Backward, or Viterbi algorithm (see Figure[Z38) make them more
and more challenging and sometimes even infeasible to dispe in today's sequence database search
scenarios. In the future this problem will get even more tighening as sequence databases still grow
at an exponential rate. Additionally new, revolutionary hi gh-throughput sequencing techniques like
454 sequencing IMEA 05] will certainly amplify this growth in the near future. Ne vertheless, pHMM
based database searches are an indispensable, standardkas today's genome annotation pipelines.
For instance the majority of member databases of the InterPp classi cation system [MAA™ 07], a
widely used system for protein annotation purposes, employamily information in form of pHMMs.
The applied classi cation procedure InterProScan [QSPT 05] includes searches with all pHMMs
from the Pfam [EMSB™ 0€], TIGRFAM [HSWO3], Superfamily[GKHCOI], PIRSFIWNH* 04], Gene3D
[YMM * 0€], Smart [LCP* 0€], and Panther [MLUL * 05] databases. Especially these pHMM based
database searches rendénterProScan into a very compute intensive application whose employment
on a large scale is even challenging on huge cluster systems.

To solve this dilemma much e ort has been spent on improving tie running time of pHMM based
database search tools. Some approaches for improvement uparallelism techniques and/or fast,
extended, CPU speci ¢ instructions sets, like SSE/SSE2 (Steaming Single Instruction/Multiple
Data Extensions) [WQCOg, [Dep03]. Also discussed is the aplation of pruning techniques (c.f.

SLinear in the length of the searched sequence.
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[PBO5)), like the employment of the Beam-Search algorithm [Low76] instead of the full Viterbi
algorithm. The probably most successful accelerations avtable, are the commercialDeCypher ©
and BioBoost ¢ HMMer solutions sold by TimeLogic R and progeniq R respectively. They im-
plement among other things the programhmmsearchin hardware on special hardware acceleration
boards usingField Programmable Gate Arrays (FPGAS). In benchmark experiments published by
TimeLogic ® a speedup up to factor 180 for a singleDeCypher © accelerator board over stan-
dard hmmsearch is reported [Tim06]. progeniq R reports for the BioBoost ©HMMer board a
speedup of factor 40 over standarcdhmmsearchrunning on an AMD Athlon 64 3500+ [Pro07]. Con-
sidering, that our experiments revealed forPoSSuMsearchspeedups up to factor 171 over standard
hmmsearch and for PSfamSearchup to factor 138, we observe that our purely software based ael-
eration of hmmsearchcompares well with what is achieved by costly, specialized &rdware solutions
like DeCypher © or BioBoost ¢ HMMer. We note, that this speedup comes from an algorithmic
as well as a conceptual advancement:

the speed of index based PSSM searching, and

the astonishing fact that pHMMs can be approximated well with the simpler PSSM family
models and achieve a similar performance for protein familclassi cation as the widely used
more complex pHMMs.

For these reasons, we make up our discussion and concludingmarks with a comparison of PSSM
family models and pHMMs focusing on similarities and di erences.

4.7.1 Comparison of pHMMs and PSSM family models

Consider that a PSSM is essentially equivalent to a pHMM conisting of a linear sequence ofmatch
states only, with state transition probabilities of 1 between them, as described in sectiofiZ712 and
shown in Figure[ZI2. That is, eachmatch state corresponds to a column in the multiple alignment
and hence a row in the PSSM. It emits a symbol from the output aphabet with a certain probability
depending on the probability/score distribution in the cor responding PSSM row. This perception
also holds for PSSM family models like the modeM = M;M,; M3 given in Figure T3 consisting
of three PSSMs of lengthsiM1j = 4, jM,j = 2, and jM3j = 3. In contrast to a pHMM where each
match state is connected with aninsert state and eachmatch state can be skipped by adelete
state (see FiguredlZTll on pagE33), in the PSSM family model bitrary insertions are only allowed
between single PSSMs, andielete states allow only to skip complete PSSMs. That is, PSSM fami}
models combined with the employed chaining approach allow

arbitrary insertions between single PSSMs of a family modeband

arbitrary deletions of complete PSSM.

Consequently a PSSM family model is, compared to a pHMM, a siritar but more restrictive model-
ing approach for a family of related sequences. In additionPSSM family models are not necessarily

6This holds at least for our chaining approach and de nition o f chain scores (see section[Z-3 on pageLT¥). However,
one can also think of a local chaining incorporating some kind of gap penalties instead o f the currently used more
global one.
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M, M M

2 3

Figure 4.15: A pHMM like view on PSSM family models. Shown is aPSSM family model M =
M1;M3; M3 consisting of 3 PSSMs. Likewise to the common pHMM graph viewblue
squares denotematch states, insert states are drawn as yellow diamonds andlelete
states are given by red circles. Valid state transitions aredrawn as unlabeled black arcs.
Observe that each path throughM starting in the Begin state and ending in stateEnd
corresponds to a valid chain of PSSM matches and hence a matdb M according to
De nition I5Jon page [IU4.

fully probabilistic, since they can consist of PSSMs contaiing arbitrary score values. Also in a
PSSM family model, transitions from/to an insert or delete state are unweighted. Hence much less
parameters have to be trained from the underlying data. This in turn allows the construction of
meaningful PSSM family models from multiple alignments cortaining much fewer aligned sequences
than are necessary for proper pHMM derivation.
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5 Genlight - a system for interactive,
high-throughput, di erential genome
analysis

5.1 Motivation

Even today and more severe in the future, advancements in hig-throughput sequencing techniques
that reduce the time needed for sequencing an organism's geme from several years to a few days,
will lead to a growing gap between data collection and data iterpretation. With the increasing
amount of data that needs to be analyzed there is not only a stong demand for e cient compu-
tational methods generating accurate and reliable resultsbut also for integrative approaches and
systems that allow to rapidly apply and combine several anajsis methods in a user-friendly fashion,
even in data rich application scenarios. The support of di erent analysis methods for the same task
does not only introduce more exibility, but also allows to i dentify method speci ¢ weaknesses in
certain application scenarios more quickly. Once such de iencies are identi ed, the ability of com-
bining di erent methods may allow to balance them and hence ncrease the overall quality of the
results. In addition, with increasing numbers of complete gnome sequences, tasks are shifting from
single gene to complete genome or proteome analyses, and nyarew questions regarding similarities
and di erences between the sequenced organisms arise in niple genome comparison approaches.
An even strong commercial interest exists in genome compaons of pathogenic organisms, since
they can lead to new insights in the principles of pathogeniy and infection [GEB* 01, [HDB94g].
Pathogen genome sequencing projects have provided a wealtif data in this eld that need to be
set into context of pathogenicity and the outcome of infectons to understand and interfere with
deseases caused by microbial pathogens.

One of the new challenging questions is the di erentiation ketween species speci c and common
genesl[HdITV03,[Koo038]. This is also a fundamental questiamin the target-based approach in the
development of either narrow-spectrum or broad-spectrum atibiotics. For instance, among the key
criterias that must be met by an anti-microbial drug target are

target pathogen spectrum,
target selectivity,

target essentiality, and
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target function, i.e., the biochemical function of the target needs to be characterized. This
includes among other things the gathering of information alout structure, potential active
and binding sites, etc.

Genes satisfying these criteria and hence making a promisgnanti-microbial drug target can be
identi ed and evaluated by comparing all relevant pathogen genomes with the host genomes. Genes
that show to be conserved in these large-scale comparisongrass di erent pathogens often turn
out to be essential and hence may represent target candidasefor new broad-spectrum antibiotics.
Di erential or subtractive analyses can reveal those geneghat are conserved in all or most of the
pathogenic bacteria but not in eukaryotes. These are the masobvious candidates for drug targets.
Species-speci ¢ genes, also identi able by di erential g@ome comparisons, may o er the possibility
to design drugs against a particular, narrow group of patho@ns.

Di erent studies [DDSS01], [HDB98] already proved the potental of di erential genome analyses,
often also called di erential comparative genomics, espdally in combination with the analysis of

functional relevant sequence motifs or domains describablwith one of the motif models introduced
in chapter [, to detect new drug target candidates. Such proedures often include the application
of a variety of bioinformatics methods and searches in di eent databases to retrieve a maximum of
information about the sequence or gene under considerationfo be feasible in practice, especially
on a larger, genomic scale, integrated and scalable solutis are necessary that support the user in
this data rich problem environment. Unfortunately, the num ber and exibility of existing systems is

not su cient or to the least very limited. Hence there is a str ong need for new integrated solutions.

In the following section, we will give a brief overview of exsting and conceptional related systems
and explain why they are not well suited to solve our sketchedbroblem scenario.

5.1.1 Genome annotation systems: Related concepts with di erent focus

Although the integration of various bioinformatics methods and automated sequence homology
searches are widely used techniques in genome annotationssgms, such asviagpie [GS96h,GS96A],
PEDANT [FAH.*.01], genomeSCOUT [SCKOJ] and GenDB [MGM * 03], the objective of these sys-
tems mostly focuses on textual annotation of genes only. Anmportant point, often neglected in
existing systems, is the querying and mining of stored datagspecially query capabilities that allow
to combine di erent, derived attributes or characteristic s. More precisely, high-level queries like the
following, combining several attributes of a gene or protei, are hardly possible.

Which outer membrane proteins involved in metabolism M, andinked to apoptosis from the pathogen
organism A are highly conserved in pathogen organism B but ¢k a counterpart in apathogen or-
ganism C and host organism D?

The de ciencies of existing systems to answer such queries ioften founded in the way they inter-
nally organize and store data. For instance theGenDB system, a widely used genome annotation
system for prokaryotes, uses a proprietary object relatioal mapping layer that allows a persistent
storage of the used object oriented data model in an underlyig relational database management
system. Although this mapping layer admits an easy and almok seamless storage of objects in
an relational database while abstracting from the underlyng relational data model, the relational
data model generated from the applications object model is at well suited to be queried with rela-
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tional database query languages like SQL, any longer. As a csequence the retrieval of non-trivial
information becomes problematic. Especially more complexqueries joining multiple attributes of
di erent database tables, are nearly impossible to formulde or su er at least from bad response
times. To solve this issue, an annoying and often redundant ppgramming overhead on the applica-
tion level is needed for implementing higher-level functimalities, which could be easily accomplished
with standard SQL-queries and a well designed, query optinded, relational data modeﬂ.

The commercial genome annotation systengenomeSCOUT, which is no longer available due to
limited commercial success, stored its data in simple ASClformatted at les and used the data
integration system SRS [EUA96] for information retrieval and basic data mining tasks. Although
SRS basically o ers some exibility aimed to easily integrate proprietary data from for example
in-house sequencing projects, this bene t is only of practtal use with extensive programming skills
and knowledge of the system.

The aforementioned de ciencies of genome annotation systas like insu cient data querying and
mining capabilities should not brush o these systems. We jst reveal that traditional genome
annotation systems are simply not designed for extensive cgrying and mining of data.

When we focus on automated di erential genome comparisonsyery little is found in literature on
that topic. To the best of our knowledge, only three noncommecial, initial attempts have been made
to develop computational systems, that support these kindsof analyses, namely Seebugs [BDD98],
FindTarget [CGKOI], and Ditool [CGKOZ]. All of these provide limited functionality and ex ibility,
i.e., they are very limited in their supported sequence comprison methods, and neither integrate
additional databases for sequence motif analyses, nor do dy support subsequent analyses including
generated results inside the systems. That is, they do not &w reusability of derived results for
the step by step modeling of more compley analysis work owsFurther, all systems operate on
precalculated data and do not allow for interactive on-the-y analyses.

The de ciencies of existing systems were the motivation forthe development of the Genlight sys-
tem [BSS04,.BMM™ 04], a versatile and powerful system for interactive high-hroughput sequence
analysis and di erential comparative genomics with extensve data querying capabilities ful lling
the subsequently described requirement de nitions.

5.2 Requirement de nitions and design goals

Genlight follows the overall paradigma of a highly integrated system suited to perform a wide
range of large-scale sequence analysis tasks in an intera@ way with features to combine, reuse,
and query derived results. In particular, Genlightwas developed to ful Il the following requirement
de nitions:

support for the discovery or prioritization of potential new drug targets in silico by highly
automated di erential comparative analyses and user speced selection criteria;

automatic genomic scale analyses in reasonable time, withui the need for specialized hardware
or large and expensive cluster systems;

1We note at this point that this is a prevalent problem of objec t relational mapping solutions, that try to store
hierarchically organized objects in a atter relational da  tabase schema.
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interactive as well as asynchronously executed large-s@hnalyses;

integration of a wide range of bioinformatics analysis metlods, each applicable on genomic
scale data;

scalability;
integration of various publicly available sequence and maf databases;
structured storage of computed results, that allow for extensive querying and mining;

support for user de ned queries and Iters operating on geneated data whose results are
persistently stored inside the system;

reusability of generated results to allow protocol based sp by step modeling of more complex
analysis work ows;

concurrent multi user capabilities with project and accesscontrol management;

dynamic presentation and visualization of computed resuls through an easy to use, but still
exible, platform independent interface;

data import and export capabilities which support commonly used exchange formats.

Although each of the requirements listed above can be indidually achieved with existing software
solutions, to the best of our knowledge, no publicly availatle system exists combining all require-
ments in a single integrated approach.

5.3 System architecture and implementation
The Genlightsystem consists of four major parts as shown in Figur&5l1:

a web-based user interface for the communication with the sstem,
the Genlightserver, providing queuing, scheduling, and dispatching gaabilities,
client components to carry out various bioinformatics analsis tasks in an asynchronous way,

and a database component for storing, modifying, and accesgy data.

To allow asynchronously executed, large scale sequence dysis tasks in an interactive system,
Genlight uses a distributed client server approach. The core of the stem, i.e., the client and
server components, implementing the distributed executim engine with its queuing, scheduling and
dispatching components are written in the C programming larguage and access the database via
PostgreSQL's native C language interfacelibpg. To ensure a maximum of robustness and fault
tolerance, which is in particular important in a distribute d system, the server as well as the client
component are implemented using multi threading for connetion supervision and make use of
backlog techniques. This allows to detect the failure of a copute node, deactivate this node in the
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Figure 5.1: A schematic overview of theGenlightsystem architecture

virtual compute cluster, and allow to resubmit the assignedtask to a di erent node. Further, run
time errors of an integrated analysis method do not a ect the client application.

The system is capable to serve multiple users. This is achi@d with, among other things, the
transaction mechanisms of the underlying database systentfor persistent data storage and access
using SQL queries,Genlightemploys the ORDBMS (Object Relational Database ManagementSys-
tem) PostgreSQL, though any other full SQL99 compliant DBMS (Database Management System)
should also work. The system makes use of PostgreSQL's objeariented features like inheritance
(see sectiorfB5b on page_Ib8) and transaction capabilitie®tensure data integrity and consistency.

The web interface is written in the server side scripting larguage PHP. PHP scripts retrieve data
from the underlying PostgreSQL database and generate dynaim HTML pages which are subse-
quently delivered by the Apache web server to the user's web towser. Dynamic visualizations of
results are performed using the GD graphics library.

In the following we describe the underlying concepts of the rain parts of Genlightand the func-
tionalities they provide.

5.4 Concepts and functionality

5.4.1 The set oriented concept

The structured storage, ensuring reusability of generatedesults, is a critical point for the protocol
based step by step modeling of complex experiments and workws often neglected in bioinformatics
applications. In Genlightthe reuse of derived results is a central concept, anchoredhithe basic
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Figure 5.2: A bipartite graph as a model for aHit-set.

system design. It is achieved by a set oriented data model wiht only two basic data object types:
Seg-setsand Hit-sets. A Seq-setQ = fS;;Sp;:::;Syg is basically an ordered séd of n = jQj
sequences over a prede ned alphabe#, which is usually the nucleotide or amino acid alphabet.
All sequencesS; 2 A*, i 2 [1;n] are of one kind, either nucleic acid or protein. That can be ér
example all proteins of a certain organism in the order of th& occurrence in the organisms genome.
A specialized form of aSeq-setis the Cluster-set which contains for each sequence entry additional
information that allows a partitioning of the Seq-setinto sub sets. This allows to model the clustering
of Seg-sets Although Seg-setscontain additional sequence speci ¢ informations for eaclsequence,
like ID, length, molecular weight and in case of amino acid sguences molar absorption coe cient
and isoelectric point, etc., we neglect these additional iformations in the following remarks for
reasons of simplicity.

A Hit-set is a set of sequence pairs, de ned by a comparison operationebween two Seg-setsand
its user de ned parametrization, e.g., the set of all sequene pairs detected by a homology search
between two Seg-sets Observe that a sequence comparison operation between a gie query se-
quence and a set of sequences to be searched (compared) ebtlies a one to many relationship.
Consequently, in case of comparing twdSeg-setsQ and D, the resulting Hit-set de nes a many to
many relationship Hg,po Q D = f(q;d jg2 Q" d2 Dg between sequences fron® and D
and hence can be seen as a directed, weighted, bipartite grapas shown in Figure[2P with vertices
corresponding to sequences of the tw&eqg-setsand edges corresponding to the pair relationship
weighted with a feature vector fg4. The feature vectorsfgy contain additional information, fur-
ther characterizing the speci ¢ sequence pair ¢; d) (e.g. statistical signi cance of the relationship,
alignment scores, percentage of identity inside aligned igion, etc.).

5.4.2 Operations on Seg-sets and Hit-sets

Genlightsupports various operations that can be applied toSeq-setsand Hit-sets. The result of each
operation is again a newSeqg-setor Hit-set. A Hit-set lter, for instance, which can be pre-de ned
in the system or user de ned, generates a newit-set with sequence pairs satisfying the respective
Iter condition. Filter criteria for Hit-sets can be any of the attributes associated with a sequence
pair, like E-value, score(-ranges), rank, alignment covesge rate, percentage of identity/positives,

2For sake of simplicity we speak of ordered sets instead of tup les.
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etc. Two Hit-sets may be combined with a lter to determine, for example, bi-directional best hits,
where "best" can be de ned on method speci c ranking or other attributes. Additionally, Genlight
comes with a collection of prede ned Iters for more complex ltering tasks. A detailed list of
prede ned lters and their semantics are given in the Appendix in Table B5]

Sequence lters generate newSeg-setsand extraction operations convert a Hit-set to a new Seq-
set depending on speci ed criteria (see Tabldh11). This procedre follows the software engineering
concept of compositionality and allows an interactive step by step modeling of complex wdk ows
as schematically drafted in Figure[®:B.

Using a combination of comparison, Iter, and extraction operations, several proteomes, say A, B,
and C, can easily be screened for proteins common to proteonsets A and B but nonexistent in
proteome set C. Moreover, all possible intersections of A, Band C can be calculated. Evidence of
proteins with similar functions can be de ned by combinations of several homology search results
(e.g., unidirectional or bidirectional best hits), even generated by di erent homology search methods.
Further on, the results of di erent sequence comparison methods can be combined with Boolean
operators. With this concept the results of di erent alignm ent methods can be taken into account as
evidence factors for the detection of homologous genes andeaknesses in the heuristics of a single
method, which result in a false negative detection of homolgous sequences, can be balanced.

The implemented project management, provides fundamentahccess control features and allows to
store Seg-setsand Hit-sets on a per-user basis. Frequently usedseqg-setsand Hit-sets, like major
sequence databases &enBankor UniProtKB/TrEMBL , model organism comparisons, etc., can be
made available system-wide. The administrative features ee complemented by a quota system,
which allows to assign resources on a per-user and per-mettidasis. It is therefore possible to
restrict the number of Seg-setsand Hit-sets in a project or to limit the size of a Seg-setin a
comparison operation.

5.4.3 Integrated sequence analysis methods

Several di erent algorithms have been developed over the Ist decades to compare biological se-
guences and determine a concrete measure of their distance similarity in order to deduce a
common or similar biological function (c.f. [SW81,|/AGM* 90, IAMS" 97, [Pea99] ZSWMOQOD]).

The dynamic programming methods for global (i.e., the Needdman-Wunsch algorithm) or local
alignments (i.e., the Smith-Waterman algorithm) allow to obtain the optimal alignment under a
given scoring schema, in time proportional to the product ofthe lengths of the two sequences being
compared. With exponentially increasing sequence databassizes, complete exhaustive similarity
searches based on full dynamic programming are no longer feable in reasonable time. This problem
was the motivation that has led to the development of the FASTA [Pea99] andBLAST (Basic
Local Alignment Search Tool) [AGM™ 90, IAMS* 97] alignment programs, which became the most
widely used algorithms in database searches and comparatvsequence analysis. One important
aspect, which is often overlooked, is that they are based omeuristics. They achieve improved
performance compared to a full dynamic programing approachike the Smith-Waterman algorithm
[SW81] by sacri cing some sensitivity. BLAST and FASTA reduce the problem by selecting the
sequences in a database search that are thought to share sigrant similarity with the query
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Figure 5.3: Genlights operational model. The reuse of results is anchored iGenlights operational
design allowing a step by step modeling of complex analysisasks. E.g.,Seqg-set ltering
and classi cation operations result in new Seg-setsand a lItering operation applied
to a Hit-set generates a newHit-set for further reuse, containing only sequence pairs
satisfying the Itering constraints.
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Operation Result

Seg-setoperations

Iter by domain/motif composition  all sequences with a spec ied sequence motif or a combination
of sequence motifs

SCOP lter all sequences with user de ned sequence similarity to a SCOP
class, fold, superfamily, family or protein

taxonomy lter all sequences that belong to a given taxon (if taxonomy infor-
mation is available)

Iter by length sequences satisfying length constraints

intersect all sequences that are present in at least two Seg-sets

union/merge merges two or more Seq-sets

Hit-set lter

Iter by attribute values all pairs of a  Hit-set satisfying the Iter condition. Filter condi-
tion is a boolean expression over attribute values

best hit Iter selecting the best hits depending on method sp eci ¢ rankings

two-way-best hit Iter selecting bidirectional best hit pa irs depending on method spe-
ci ¢ rankings

text pattern lter all pairs that contain a given pattern int  he query or hit, or in
both descriptions of the two sequences of aHit-set entry

full query seq. length matches all pairs with an aligned region length equal to the length of the
query sequence

full hit seq. length matches all pairs with an aligned region length equal to the length of the

hit sequence

extraction operations

query sequences with homologs generates a nevgeg-setof sequences that have a homolog in a
Hit-set
homologs generates a newSeqg-set of sequences that are determined as

homologs in a Hit-set

query sequences with no homologs  generates a neeqg-setof sequences that have no homolog in a
Hit-set

homologs generates a newSeqg-set of sequences from DB-set that are not
present in a Hit-set

cluster set operations

di erential cluster analysis selects all clusters that con tain sequences satisfying boolean ex-
pression over Seg-setsmembership

Table 5.1: An excerpt of available operations on hit-sets ad seg-sets.
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sequence, and by locating the similar regions in the sequeas. These selective steps allow to con ne
the computationally expensive sequence alignment methodbased on dynamic programming only
to a subset of the database sequences and to restrict the serfor the best local alignment to only
subregions of the sequences. Because of concerns of speesi/thstimate the similarity between the
sequences in an approximate manner, and thus introduce a tisof missing similarities that are not
detectable with the underlying heuristics.

In Genlightwe integrated a wide range of sequence comparison algorittenincluding methods based
on full dynamic programming as well as algorithms employingheuristics. Almost all algorithms
of the BLAST [AMS*97], and FASTA [Pea90,[Pead4] family as well as the traditional Smith-
Waterman algorithm [SW81] are integrated into Genlight This enables the user to freely choose a
sequence comparison method depending on available computesources, problem and data sizes,
and experimental requirements. In particular, we will see h section[5Z8 that Genlightallows for
the application of computationally expensive operations @ a larger scale than other systems, due
to bundling of available resources.

The results of sequence comparison operations are storedliit-sets and these homology information
can directly serve as input for the probabilistic clustering algorithm Tribe-MCL [EvDOQZ]. Tribe-
MCL relies on the Markov cluster algorithm of [vDO0] for large-£ale assignment of proteins into
families based on precomputed sequence similarity inforntaon. We modi ed it, so that Tribe-MCL
directly utilizes sequence similarity information stored in Hit-sets. Results of the clustering are
stored in Cluster-sets. Thus, it integrates seamlessly intoGenlightand allows to cluster even whole
proteomes in seconds or minutes.

Adjacent to the integrated sequence comparison methods(enlightcan even compute features of
single sequences, like the ability of an amino acid sequent&form a coiled-coil conformation. Coiled-
coil structures are 2 to 5 stranded bundles of -helices which are stabilized by hydrophobic and other
interactions [NS7€&]. They are common in extracellular matix molecules to connect di erent subunits
in oligomeric proteins or in regulatory proteins like transcription factors. Coiled-coil domains are
characterized by a heptad repeat pattern in which residuesr the rst and fourth position are
hydrophobic, and residues in the fth and seventh position ae predominantly charged or polar.
This pattern can be used to predict coiled-coil domains in anmo acid sequences with computational
methods. Genlightmakes use of theCOILS program [LVDS91],|[Lup9€] to detect potential coiled-coil
regions of protein sequences.

In particular useful for wet-lab work is Genlights capability to determine basic sequence features,
like a sequence's G/C content, molecular weight, molar absgtion coe cient, isoelectric point, or
charge.

5.4.4 Integrated protein domain and family databases

Protein evolution has employed a repertoire of a few thousat elementary modules or domains,
which form the building blocks of today's proteins. Since stucture and molecular function is largely
conserved within domain families, computational methods ér domain identi cation have become
powerful tools in sequence function annotation, structurefunction analysis. Searching for conserved
domains can be helpful in particular to

150



5.4 Concepts and functionality

Method Explanation

BLASTN Nucleotide Blast: Nucleotide query vs. nucleotide DB

BLASTP Protein Blast: Protein query vs. protein DB

BLASTX Translated nucleotide query vs. protein DB

TBLASTN Protein query vs. translated nucleotide DB

TBLASTX Translated query vs. translated nucleotide DB

psiBLAST Position speci c iterated Blast: Protein query vs. protein DB

FASTA Nucleotide query vs. nucleotide DB or protein query vs. proein DB

FASTX/Y Nucleotide query vs. protein DB

TFASTA Translated nucleotide query vs. translated nucleotide DB

SSEARCH Smith-Waterman algorithm: Nucleotide query vs. nucleotide DB or protein
query vs. protein DB

rpsBLAST Reverse position speci ¢ Blast: Protein query vs.CDD models

hmmpfam Protein query vs. HMM database, like Pfam, TIGRFAM or Smart

PoSSuMsearch Protein query vs. PRINTS and BLOCKS databases employing PSSM family
models and fast fragment chaining as described in chaptdd 4ropage[10b

COlILS Detection of coiled-coiled regions in proteins

Tribe-MCL Markov based clustering of protein sequences

Table 5.2: An excerpt of supported sequence analysis methad

locate functional domains within a protein,

predict the function of a protein whose function is unknown,

establish evolutionary relationships across protein faniies,

predict the structure of a protein of unknown structure.

High quality functional and structural annotation informa tion about protein domains and protein
families is available in several manually curated database Genlightintegrates these heterogeneous
data sources and their speci ¢ screening and search methods one common environment and al-

lows to rapidly combine derived results. More precisely, fothe discovery of conserved domains, we
integrated (i) the hidden Markov model based databasesPfam [EMSB™ 0€], TIGRFAM [HSWO03],
Smart [LCP™ 06], CATH [PTS* 05], and Superfamily[GKHCUOI], (ii) National Center for Biotech-

nology Information's (NCBI for short) PSSM based conserveddomain database CDD for short)
[MBADS * 05], and (iii) the PSSM family model based database$RINTS [AMG ™ 06] and BLOCKS
[HGPHOQ]. The CDD is a collection of sequence alignments and PSSMs represergi protein do-
mains conserved in molecular evolution and hence de nes théeatures that are conserved within
each domain family. Therefore, theCDD can serve as a classi cation resource that groups proteins
based on the presence of these prede ned domains. To idengiftonserved domains in a protein se-
quence by screening versus th€DD, Genlightemploys the reverse position speci BLAST variant

rpsBLAST . With rpsBLAST the query sequence is compared to @siBLAST generated PSSM
prepared from the underlying conserved domain alignment. Ascreening versusCDD can also reveal
insights in the structure of a protein, since CDD entries are linked to three dimensional structure
data of the molecular modeling databaseMMDB [WAC * 07]. This allows the user to identify the
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Figure 5.4: Visualization of the three dimensional locatio of a protein sequence (marked gray in the
pairwise alignment and yellow in the multiple CDD alignment and the MMDB structure
model) using the external viewer applicationCn3D.

3D location of conserved regions of the protein query with eternal viewer applications like Cn3D

[MBPS*027] (see Figurd 5} for an example) and to directly retrieve liree dimensional model data
for further structure based studies.

To search in HMM based databases likePfam, TIGRFAM, etc., Genlight makes use of thehmm-
pfam [Edd98] program from the HMMer package. The databasePRINTS and BLOCKSare searched
with PoSSuMsearchemploying PSSM family models and fast chaining of PSSM matcés.

A further advantage of the integration of a variety of di ere nt databases and search methods is
the ability to balance method speci c de ciencies in the detection of certain homologies and the
incompleteness of protein family databases. As shown in Figre[53, di erent methods and screenings
versus di erent databases reveal dierent results. Hence 1 is often not su cient to screen the
sequences under consideration only against one databas@enlightcan easily perform searches in
several di erent databases and allows to access the persittly stored results in an integrated
manner.

5.4.5 Supported protein classi cation schemes

When dealing with complete proteomes of multiple organismsthe focus may shift from detailed
single protein to complete proteome analyses, depending othe level of detail necessary to an-
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Figure 5.5: Searches in di erent databases reveal di erentresults. In this example a multi domain

protein from S.cerevisaeconsisting of ve functional domains, was screened versuBfam,
TIGRFAM, and Smart using method hmmpfam, and versusPRINTS and BLOCKS using
PoSSuMsearch Observe that the screening againstTIGRFAM detects only three and
searching inPRINTS using PoSSuMsearcheven only one domain. Responsible for these
varying results are missing signatures/models in some datsases.
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swer a certain type of question. For this purpose, function classi cation systems allow a broader
view on and comparison of an organism's genome or proteome lglassifying genes in a relatively
small number of functional categories. Hereby, the number bavailable categories and hence the
employed abstraction level depends on the classi cation dema utilized. For maximal exibil-
ity the integration of di erent classi cation systems with di erent abstraction levels is essential.
For the functional classi cation of sequences,Genlightintegrates the COG (Cluster of Orthologous
Groups) [TKL97] TNG * 01] database containing annotated clusters of prokaryotigroteins and its
eukaryotic complement KOG (euKaryotic cluster of Orthologous Groups) [TFJ* 03] including their
crude, but widely used functional classi cation schema. Tre COG KOG databases are an attempt
to classify the complete complement of proteins (both predited and characterized) encoded by
complete genomes. Each COG and KOG respectively is a group dhree or more proteins that
are inferred to be orthologs, i.e., they are direct evolutimary counterparts and assumed to share a
common function. The COGrelease integrated intoGenlightconsists of 4873 COGs, which include
136,711 proteins (71% of all encoded proteins) from 50 baat@l genomes, 13 archaeal genomes,
and 3 genomes of unicellular eukaryotes. The eukaryotic cauerpart KOG includes proteins from
7 eukaryotic genomes: three vertebrates (the nematod€.elegans the fruit y D.melanogasterand
H.sapieng, one plant (A.thaliana), two fungi ( S.cerevisaeand S.pombg, and the intracellular mi-
crosporidian parasite Encephalitozoon cuniculi The KOG version integrated into Genlightconsists
of 4; 852 clusters of orthologs, which include 59838 proteins, or approximately 54% of the 110,655
analyzed eukaryotic gene products. Classi cation of nucletide as well as protein sequences into
one of the 25 functional COG KOG categories can be performed withGenlightdue to homology
to COd KOG sequences. InsideCOG KOG these categories are further classi ed into 4 top-level
categories:

1. Information Storage and Processing;
2. Cellular processes and signaling;
3. Metabolism;

4. Poorly characterized.

Although this functional classi cation is very crude, itis still widely used, in particular when dealing
with prokaryotic sequences. See FigurEhl6 for an example tifie classi cation of the C.glutamicum
proteome into COG categories with Genlight A more detailed functional classi cation of sequences
can be achieved with thePfam clan [EMSB™ 0€] or TIGR role functional classi cation systems also
integrated into Genlight

Pfam clans allow a grouping of singlePfam families into a hierarchical classi cation called clans
and hence provide a hierarchical view of a diverse range of pteins families. A clan contains two or
more Pfam families that have arisen from a single evolutionary origin Evidence of their evolutionary
relationship is usually determined by similar tertiary str uctures, or when structures are not available,
by common sequence motifsPfam clans provide a level of detail which is a little bit broader than
the protein family level. In its latest release, Pfam contains 262 di erent clans consisting of 1676
single Pfam families. Classi cation into clans in Genlightis performed due to homology toPfam
models. In contrast to Pfam clans, TIGR roles are a more detailed two level classi cation concept
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Figure 5.6: Functional classi cation of the C.glutamicum proteome based on homology to thaCOG
database with Genlight In this example, the classi cation criteria, which can be user
de ned, was aBLASTP hit with an E-value of at most 10 ° and the additional require-
ment that the matching region covers at least 50 percent of te matched COGsequence.
Assignment of functional categories was performed based atne highest scoring hit.
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Classi cation schema

Abstraction level

Classi cation cri

teria

COG/ KOG functional

25 categories organized in 4 top-

Best BLAST , FASTA, SSEARCH

categories level categories. hit vs. COGKOG sequence
database satisfying  additional
constraints (e.g. E-value or cover-
age).
TIGR roles Two level classication with 105 Best hit to TIGRFAM model library
sub roles organized in 21 main roles. satisfying E-value constraint.
Pfam clans 262 clans representing 1676 Pfam (Best) hit to Pfam model library

families.

satisfying E-value constraint.

CATH protein
structure classi cation

Hierarchical classi cation of protein
domain structures at the four ma-
jor levels: (C)lass, (A)rchitecture,
(T)opology, and (H)omologous su-
perfamily.

(Best) hit to CATH pHMM model
library satisfying E-value con-
straint.

SCOP structural
classi cation

Hierarchical classi cation of pro-
teins at the class, fold, superfamily,
and family level.

(Best) psiBLAST hit vs. SCOP
sequence database satisfying addi-
tional E-value constraint.

Table 5.3: Supported classi cations schemas, abstractiomevel, and employed classi cation criteria.

consisting of main roles and sub roles and allow to classify rpteins on the basis of matches to
TIGRFAM pHMM family models. Currently this classi cation schema distinguishes 105 sub roles
organized into 21 main role categories.

Beyond the above mentioned functional classi cation systens, Genlightsupports two classi cation
schemas focusing on structural similarities and di erence, namely the multi level hierarchical clas-
si cation systems SCOPand CATH.

For a recapitulating overview of supported classi cation schemas and the classi cation criteria
employed insideGenlight see Table[&B.

5.4.6 Gene ontologies: a unifying vocabulary for cross database queries

For historical reasons, di erent database use di erent terminologies and naming conventions, intro-
ducing an arti cial heterogeneity which makes it complicated to query these resources in a combined
fashion. For example, if we were searching for new targets faantibiotics, we might want to nd

all the gene products that are involved in bacterial protein synthesis, and that have signi cantly

di erent sequences or structures from those in humans. Curently, one database describes these
molecules as being involved in \translation", whereas anoher uses the phrase \protein synthesis"
and hence without knowledge about these di erent naming corentions, it is di cult to nd func-
tionally equivalent terms and thus related or equivalent seqjuences. An attempt to overcome this
problem is the Gene Ontology GO for short) project [Con00]. GOs provide a controlled vocabulary
to describe genes and gene products, addressing the problsmesulting from di erent terminologies
currently used in di erent databases. Therefore, GO contains three structured controlled vocabular-
ies (ontologies) that describe gene products in terms of the associated biological processes, cellular

156



5.4 Concepts and functionality

components, and molecular functions in a species-indeperdt manner. The usage ofGO terms by
collaborating databases enables uniform queries acrossem.

In Genlight such terms can be assigned by the system, inferred from theespective assignment of the
integrated databases.Genlightcontains mapping to GO terms for entries from the Pfam, TIGRFAM,
Smart, and PRINTS databases, and hence allows to query results from these ragsaes using GO
terms. SinceGO is a structured ontology, queries at di erent levels of abstaction are possible. For
instance, one can us&Oterms to nd all gene products in an organisms genome that arenvolved
in signal transduction, or one can zoom in on all the receptoityrosine kinases.

5.4.7 User de ned sequence databases

In addition to the databases integrated into Genlightdescribed above, the system allows to import
any sequence collection available infGenBank Swiss-Prot or Fasta format. Such an user de ned
sequence collection can contain just a few sequences thatalld be analyzed with Genlights inte-
grated analysis methods, a complete proteome, or even a wholkequence database lik&wiss-Prot
or UniProtKB/TrEMBL . Imported sequence collections are treated as normal prite Seq-setsin the
user's project workspace or can be made available as a systemide resource by theGenlightad-
ministrator. This means that major public sequence databags, genomes and proteomes of model
organisms of interest, or proprietary in-house sequence da can be imported and made accessible
system-wide if required. This concept saves resources and@ds data redundancy.

5.4.8 Asynchronous distributed execution of sequence analysis tasks

The comparison of whole genomes or proteomes, or their use aglery sets for searches in large
databases likeGenBankor Swiss-Protis a challenging and time consuming task. To compare, for
instance, the mouse proteome to the human proteome by pairge sequence comparison, 53,847
(International Protein Index (IPI) release 3.28, April 2007 |[KDW " 04]) single homology searches
with programs like BLAST , FASTA, or the time-consuming Smith-Waterman full alignment method
versus the human proteome set comprised of 68,020 protein gaence (IP1 3.28, April 2007) have
to be performed. To handle such comparison tasks in a multi-ser capable, interactive system with
the need of guaranteed, adequate response times, the inddual comparison calculations have to be
done asynchronously. To accomplish thisGenlightuses queuing mechanisms and a distributed client-
server approach with multiple compute clients carrying out parts of comparison- or other sequence
analysis tasks (see FigurédBl1l on pade_145). After submissimf such a task, it is asynchronously
executed by the distributed execution system. This processeither in uences other users ofGenlight
nor does it block the interactive work with the system while processing. Once computation has
nished, the results are directly accessible inside the syem. Sequence analysis tasks can be added
to, suspended from execution, or deleted from the systems [pqueue at any time. Even changes
to job priorities a ecting execution order are possible. The complete queue management can be
performed with a comfortable web interface.

To process queued entries, the system has its own schedulirapd dispatching component, which
allows a parallel, distributed execution of comparison jols and can form a virtual cluster system
of regular workstations for high throughput analysis tasks This allows to use existing compute re-
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Query Set DB Set Method Running time [hh:mm:ss]
H.pylori H.in uenzae BLASTP 00:00:32
H.pylori V.cholerae psiBLAST (10 iterations) 00:03:22

L.innocua L.monocytogenes BLASTN 00:00:27
H.pylori CDD rpsBLAST 00:03:41

S.typhimurium A.thaliana BLASTP 00:03:48
H.pylori Pfam hmmpfam 04:41:33
H.sapiens M.musculus BLASTP 02:17:30

Table 5.4: Running times for di erent comparison methods usng the Genlightvirtual cluster system
with 25 SUN UltraSparc 1l CPUs on di erent workstations.

sources and often eliminates the necessity for a dedicatedmpute cluster. The integrated dispatcher
splits sequence comparison tasks between twBeq-setsinto smaller work units of user de ned size
which are subsequently distributed to the available comput nodes, thus balancing the overall load
over the available compute resources. The two major strendts of this approach are the complete in-
tegration into one system without the need for di cult to ins tall third party batch-queuing systems
and a high robustness of the system. The latter is achieved bynethods to insure data integrity,
like a backlog technique, transactions, and connection sugrvision, during distributed execution.
Compute nodes can be added to and deleted from the virtual clster system by starting or stopping
the Genlightclient component on a workstation, via the cluster node mangement interface (see
Figure &4). The cluster node management interface also prades information about each compute
node, the node's status, and the overall progress of the taskurrently processed.

The possibility to temporarily include or exclude certain computers at any time, makes the virtual
cluster very exible. For instance, departmental workstations can be excluded during working hours
and included during the night to use idle compute-power.

Since the Genlightclient application is available for di erent hardware arch itectures and operating
systems, and platform independent communication betweenGenlightserver and compute clients
is implemented, the compute resources of computers runningli erent operating systems can be
bundled in one heterogeneous virtual cluster system. Up to aw, Genlightsupports (and is tested
on) Sparc/Solaris, x86/Solaris, x86/Linux, and Mips/IRIX platforms. The distributed computing
approach allows comparisons of complete genomes or proteesin short time periods. The overall
running time is nearly inversely proportional to the number of CPUs used (see Figurd—5l8). For
concrete examples of running times of di erent sequence coparison and analysis methods using
Genlights virtual cluster system see Table[G.H.

5.5 Database schema

Genlight uses the ORDBMS (Object Relational Database Management Syem) PostgreSQL for
data storage and access, thouglenlighthas been designed with other SQL99 compliant DBMS in
mind. The system makes use of PostgreSQL's object orientecehtures and transaction capabilities
to ensure data integrity and consistency.
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ENLIGHT

IT NO.|GLOBAL NODE 5

-

R gy MO T ieves

Figure 5.7: The virtual cluster management interface givesa detailed overview of the progress of a
sequence analysis job, estimated duration, and real-timetatus of compute nodes. Users
with system administrator privileges can start, stop, add, or remove compute nodes at

any time.
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200 T T T - - - -
<— _192 min I running time in minutes

180 192/#CPUs
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Number of used single CPU machines (SUN UltraSparcll 400Mhz)

Figure 5.8: Scaling behavior of the distributed computing gproach. Running times for aBLASTP
comparison ofHelicobacter pylori proteome consisting of 1487 proteins and the complete
Swiss-Protdatabase for di erent numbers of CPUs used.

The interactive character of Genlight its concurrent multi user capabilities, and its need to stae
calculated data on demand requires more complexity in the irplementation of the data model
than it would be the case in single user systems with pre-caldated, static data. In particular
the \dynamics" introduced by the requirement to store data from user speci ed sequence analysis
operations on demand, have to be supported in the data model.

In the following we describe by example the set oriented corept of Genlights data model and show
how this functional concept is represented in the physical dta model. Recall, that the set oriented
concept consisting ofSeq-setsand Hit-sets, described in sectio 2411 on padeIH#5, is one Gknlight
fundamental concepts. The information contained in Seg-setsand Hit-sets is persistently stored in
database tables. In case oHit-sets, the database tables re ect the method-speci c attributes of
the sequence comparison methods that generated the data ctained in a Hit-set. For this purpose,
Genlightemploys method speci c template tables for the various supprted sequence comparison
methods. Each time aSeg-setor Hit-set needs to be generated, by import, comparison oBeq-sets
or through the application of one of the Seqg-setand Hit-set operations described in sectiol 2412
on pagelI4b by the user, a new database table for thiSeg-setor Hit-set is automatically created
as a child table by table inheritance from the method speci ctemplate table. Hence, this process of
instantiation results in a newly generated table, which canbe seen as an instance of the template.
This template instance is then unambiguously referenced by catalog table entry that stores addi-
tional parameters like generating method, e.g., for aHit-set table the sequence comparison method
used, parametrization of the method, etc. Accordingly, catlog tables contain information globally
characterizing a complete template instance instead of edcof the instance's entries. They are fur-
ther necessary for the organization and administration of emplate instances. We now explain the
concept of template instantiation with a small excerpt of Genlights data model. Figure[E9 gives a
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BLAST Hit-sets Method specific templates

Instantiation of template

seq_set_template

shal_seq_id CHARACTER(40)
serial_id SERIAL

segnum INTEGER
description  TEXT

length INTEGER
sequence TEXT

Relationshia

stantiation of template

fastahits_template
query_shal_id CHARACTER(40)
hit_shai_id CHARACTER(40)
query_org_set_id INTEGER
db_org_set_id INTEGER
query_desc TEXT
d hit_desc TEXT
. query_length INTEGER
FASTA Hitsel — hit_bit_score  DOUBLE PRECISION|
fastaisBnsiance s hit_evalue DOUBLE PRECISION
FK query_shal_id CHARACTER(40) hit_zscore DOUBLE PRECISION
FK hit_shal_id CHARACTER(40) hit_swscore INTEGER
query_org_set_id INTEGER hit_positives INTEGER
db_org_set_id INTEGER hit_identities. INTEGER
query_desc TEXT hit_gaps INTEGER
hit_desc TEXT hit_overlap INTEGER
query_length INTEGER hit_len INTEGER
hit_bit_score DOUBLE PRECISION hit_rank INTEGER
hit_evalue DOUBLE PRECISION| hit_query_from  INTEGER
hit_zscore DOUBLE PRECISION| hit_query_to INTEGER
hit_sw score INTEGER hit_hit_from INTEGER
hit_positives INTEGER hit_hit_to INTEGER
hit_identities INTEGER query_dsp_start INTEGER
hit_gaps INTEGER query_dsp_end INTEGER
hit_overlap INTEGER hit_dsp_start INTEGER
hit_len INTEGER hit_dsp_end INTEGER
hit_rank INTEGER hit_orientation CHARACTER(1)
hit_query_from  INTEGER query_align TEXT
hit_query_to INTEGER hit_align TEXT
hit_hit_from INTEGER midline_align TEXT
hit_hit_to INTEGER
query_dsp_start INTEGER
query_dsp_end  INTEGER
hit_dsp_start INTEGER
hit_dsp_end INTEGER
hit_orientation CHARACTER(1)
query_align TEXT R
hit_align TEXT Leqend_' . .
miding. align TEXT PK: Primary Key constraint; unigue and not null
FK serial_id INTEGER FK: Foreign key constraint, not null
FK segnum INTEGER

Figure 5.9: Instantiation of template tables and relationships between database tables representing
Seqg-setsand Hit-sets. For details see corresponding text.
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shapshot of the database schema containin@eq-setsand Hit-sets. The three sequence sethuman

mouseand rat are instantiated from the Seg-settemplate table seq_set _template . Template in-

stantiation is shown by arcs annotated with a circle/equal 9gn connecting template and instance. A
Seg-setcontains beside the attributesdescription , length , and sequence three unique primary

keys, namely the sequence identi ershal _seq-id, the serialserial _id for auto numbering of entries

necessary for sequential processing of &eg-set and seqnum denoting the position of an entry in

the set of sequences at import time of thisSeq-seﬂ. At import time shal_seq_id acts even as a
primary key constraint for the template table seqg_template , but this constraint can be violated

through set operations over time. However,shal_seq.id uniquely identi es a sequence entry in a
Seg-set In section[557 we will give more details about theshal_seq-id identi er concept.

Further shown in Figure BEE9 are three method speci c Hit-sets, namely blasthits _instancel ,
blasthits _instance2 ,andfastahits _instancel instantiated from the two template tables blast-
hits _template and fastahits _template , respectively. Observe, that aHit-set Hq.p is the result
of a sequence comparison operation between twBeg-sets say Q and D and de nes a relation
between the sequences o) and the sequences oD. This is re ected in the data model by at-
tributes query _shal_id and hit _shal_id of a Hit-set table which are foreign key constraints for
the shal_seq-id sequence identi er of two Seg-sets For example, table blasthits _nstancel de-
nes a relation between sequences fronseg-setshumarand mouse and table fastahits _instancel
de nes a relation (homology as detected byFASTA ) between Seg-setsmouseand rat . Between a
Seg-setQ and a Hit-set Hg.p de ned over this Q, there is a one to many relationship since one
sequence fromQ may match multiple sequences inD. Since aHit-set Hg.p de nes a one to many
relationship for both involved Seg-setsQ and D, it establishes amany to many relationship between
sequences fronQQ and sequences fronD.

5.5.1 The internal sequence identi er concept

A central point for a database driven sequence analysis systn is the ability to uniquely identify a
single sequence. For this purpose, many di erent identi er concepts have been developed in recent
years. Such developments were in particular furthered by tle maintainers of large public sequence
collections like GenBankor UniProtKB/TrEMBL . Since Genlight can use sequence data from any
resource, even proprietary in-house sequences, it cannotly on the existence of a specic public
identi er like a GenBankaccession numberor Swiss-Protprotein id. Therefore, Genlight needs its
own internal identi er concept that allows to uniquely iden tify a sequence, taking the following
attributes into account:

the sequence itself,
its annotation/description and

its Seg-setmembership at import time.

This allows to di erentiate between distinct entries for th e same sequence even if they share the
same description in two dierent Seg-sets which is essential for some ofGenlights Seg-set set

30Observe that, though being identical at import time, serial _id and segnum can di er over time for instance due
to application of set operations.
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operations. To combine these three attributes into one unige identi er, Genlightcomputes SHA-1
hash keys from these attributes. These 160 bit long keys actsaprimary keys in the database tables
representing aSeg-set(see attribute shal_seq_id in table humann Figure EZ9) and hence as foreign
keys in database tables representing dlit-set (see attributes query _shal_id and hit _shal_id in
table blasthits _instancel in Figure BE9).

5.5.2 The handiness of the set oriented concept

We will now give some examples for the handiness of the set @mted concept, and describe ex-
emplarily how its implementation in the physical data model allows to answer biological relevant
guestions using standard SQL-queries easily. Such queriese automatically generated by the scripts
implementing Genlights web interface depending on user speci ed criteria.

User de ned Hit-sets ltering

Filtering of Hit-sets based on user de ned criteria is a straightforward task in Genlight Assume
that we are only interested in homologous sequence pairs dafying a certain E-value constraint,
say having an E-value lower than 10 0. Let H 5 .g be aHit-set containing pair relationships resulting
from a BLAST based comparison between the tw&eq-setsA and B, then the following SQL-query
selects all entries ofH 5. satisfying this constraint.

SELECT * FROM Ha g WHERE hsp_evalue 1019;

Identi cation of conserved gene orders and genome rearrang ements

When analyzing complete genomes or proteomes of prokaryate a common task is not only the

identi cation of homologous sequences, but also the identcation of conserved gene orders since
they reveal information about global genome rearrangemerst, such like, translocations, inversions,
duplications or deletions. These genome-wide mutations & believed to be more neutral than local
mutations such as substitutions, insertions, and deletios. Therefore, phylogenetic investigations
of genome rearrangement events are less biased by the hypetis of neutral evolution [PH88].

Genlightcan support the detection of genome rearrangements as folks. Let A and B be two Seg-

sets containing genes from two prokaryotic genomes in the order fotheir occurrence in the genome
and a Hit-set Ha.g containing homology results from aBLAST based comparisoﬂ of sequences
from A versus sequences frorB. Then, the SQL-Query

SELECT tl.segnum,
t2.seqnum,
t3.hsp _bit _score
FROM A t1,
B t2,
Ha g t3
WHERE tl.shal _seq_id = t3.query _shalid AND
t2.shal _seq.id = t3.hit _shal.id AND

4FASTA or Smith-Waterman based homology information can also be used.
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t3.hsp _rank = 1
ORDER BY tl.seqgnum ASC ;

determines triples consisting of two sequence numbers idéfying a gene's or protein's position in
each of the genomes and an alignment score as a measure of tleggences homology. Due to the
constraint hsp_rank=1 , only the top ranked hit, if it exists, for each sequence fromA is considered.
Genlightallows to visualize these informations in form of a XY plot directly, with optional color
coding of hit quality. In such a XY plot, conservation of gene order and genomic rearrangements
become directly visible (see Figurd510).

Determination of bidirectional-best hits

Sequence comparison methods likBLAST or FASTA introduce a kind of asymmetry into sequence
comparisons due to their implied scoring functions. That is a query/hit pair of sequences 6;;S,)

resulting from a unidirectional comparison of S; versusS, may achieve a di erent score than the
reverse pair Sz; S1). This causes problems in homology based function assignmts based onbest
hits, since although S, may be the highest scored (best) homolog found foS; when usingS; as
the query, this neither necessarily implies thatS; is found with the same score nor that this is the
highest score, when usings, as query. This issue is often addressed by using bidirecti@-best hits

instead of unidirectional-best hits. A bidirectional-best hit is de ned as follows.

De nition 17 Let A = fgj g is gene of organism &, B = fh j h is gene of organism g be two
Seg-setsand Sp.s : A B! , Sg:a B Al be two scoring functions that assign to each
pair g 2 A, h 2 B a score expressing the homology betweeg and h, and h and g respectively.
Then, pair g;h is a bidirectional best pair or hit i. Sa.g(g;h)  Sa:s(g;h9 for all h®2 B and
Se:a(h;g)  Sg.a(h; g% forall g°2A.

With Genlights set oriented data model, method speci ¢ bidirectional-bkest hits can be easily de-
termined from two reverse, unidirectional comparisons. Moe precisely, letA and B be two Seg-sets
and Ha g, Hg:a be two Hit-sets containing homology results from two unidirectional compaisons
between sequences fromA and sequences fronB. Then, the subsequently given SQL-query selects
pair relationships satisfying the bidirectional-best hit criteria.

SELECT tl.query _desc,
t2.query _desc,

FROM Ha g tl,

Hg,a t2,

WHERE tl.query _shal.d = t2.hit _shal.id AND
tl.hit _shal.id = t2.query _shal.id AND
tl.hsp _rank = t2.hsp _rank AND
t2.hsp _rank = 1;

Observe, that unidirectional-best hits are specied with the attribute constraint hsp_rank=1
Attribute hsp_rank ranks the pair relationships found by the comparison methodaccording to
their method speci ¢ score. This is due to concerns of speedna allows to retrieve the best pair of
a Hit-set e ciently and avoids to maximize the score over several enties.
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Figure 5.10: Visualization of genomic rearrangements beteen the actino bacteriasC.glutamicum
and C.jeikeium (top), and C.glutamicum and C.diptheriae (bottom) using Genlight
The upper plot clearly shows genomic inversions. Respondib for the gap visible in
the lower plot is a bacteriophage inserted into the genome o€.glutamicum [KBB * 03].
Relationships between genes were determined with Hlit-set containing bidirectional-
best BLAST hit information. Data points are colored based on alignmentbit scores.

165



5 Genlight - a system for interactive, high-throughput, di erential genome analysis
Di erential comparative analyses

Di erential comparative genome analyses have been succestly used to identify species specic
genes or genes responsible for a certain phenotype [RZ@Z]. They can help, for instance, to identify

genes responsible for the pathogenicity of an organism by aaparison of the organism's genome with
closely related apathogenic organisms. Such analyses irlve the inclusion of genes with a homolog
in organisms sharing a certain phenotype (the pathogenicif) and an exclusion of genes with a
homolog in an organism not showing this phenotype (being apéogenic). Assume that we have
the proteomes of two organisms A and B showing a certain pherigpe and the proteome of a third

organism C not showing this phenotype. Then, it would be inteesting to identify genes of A also
existing in B, but not in C under the assumption that these genes, or at least some of them, are
responsible for the observed common phenotype of A and B.

Such questions can be answered wittGenlights data model using standard SQL queries. More
precisely, let A, B, C be three Seg-setsand Ha.g and Ha.c be two Hit-sets de ning a (homology
based) relationship between members fromA and B and A and C respectively. Then SQL-query

SELECT shal_seq-id FROM A
INTERSECT  ( SELECT query_shalid FROM Ha g)
EXCEPT ( SELECT query_shalid FROM Ha c);

determines all sequence identi ers of sequences i that have a counterpartin B de ned by Ha s
and no counterpart in C according to Ha.c. To determine the desired result we employ the SQL
concept of select chaining. That is, we combine sever@ELECT statements with INTERSECT
and EXCEPT clauses. The semantics of these clauses are analogical tethomonymous operations
in set theory.

Select chaining also enables us to ask queries of type \Whichenes ofA have a homolog inB OR
C?". The logical OR can be modeled using thdUNION clause as follows:

SELECT shal-seqg.id FROM A

INTERSECT  (( SELECT query_shalid FROM Ha g)
UNION
( SELECT query_shalid FROM Ha ¢)
)

5.5.3 More complex queries using computed sequence attribu tes

Beside the concept ofHit-sets for the pairwise comparison of sequence$;enlightintegrates various
protein family and motif databases with their speci ¢ search methods and sequence classi cation
schemas (see sectidn’.4.4 on page150 and secfion3.4.5 oggidb2). Once these database searches
are performed for the sequences of songeq-sef their results are persistently stored in database
tables also instantiated from method speci ¢ templates. The computed information can then be
combined for more complex analysis tasks. FigurE 511 shoven excerpt of Genlights data model
after the sequences ofeg-sethumanwere screened versus databas@8dGRFAM, Pfam, Smart, CDD,
COG and PRINTS
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Figure 5.11: An excerpt of Genlight data model showing relationships between &eq-set (ta-
ble huma, results of dierent sequence analysis methods (tablegigrfam _matches,
pfam.matches, prints _matches etc.), gene ontology mappings (tables pfam2gaq

etc.), and functional classication schemas (tables tigr _role _-names

prints2go
tigr _role _link etc.). For details, see corresponding text.
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By incorporation of the results of these database searchesd classi cation information, it is now
possible to perform more complex queries on the data. Assumthat we are interested in all human
proteins containing a death domain, since we know in advance¢hat death domains are related to
apoptosis, the programmed cell death in multi cellular organisms. The death domain [CI9%] is a
heterodimerization domain present in several proteins inelved in apoptotic signal transduction.
Over-expression of these proteins usually leads to cell déa Since death domains constitute a
heterogeneous domain family, they are described by sever&fam models belonging toPfam clan
Death Domain Superfamily. Thus to identify proteins with a death domain, we should quey the
human protein Seg-setfor sequences classi ed with a certain con dence to this?fam clan instead of
looking for matches to a singleDeath Domain Pfam model. This is accomplished with the following
SQL quer)E:

SELECT description
FROM  human
WHERE shal_seqg.id IN
( SELECT query_shal.id
FROM  pfam.matches
WHERE  hit _evalue 10° AND
pfam_model.id IN
( SELECT pfam.model.id
FROM  pfam2clans
WHERE clan.id IN
( SELECT clan .id
FROM pfam.clan _info
WHERE clan _description="Death Domain Superfamily'

To take only su ciently con dent classi cations into accou nt, we restrict the Pfam matches to those
having an E-value lower or equal to 10 °. In the above query we make use of sub queries instead of
joining the involved tables. Here all sub queries may returnmultiple rows which are processed by
the comparison operatorIN . Operator IN is similar to the 2 operator in mathematics.

We already addressed the problem of di erent terminologiesused in di erent databases and de-
scribed the Gene Ontologycontrolled vocabulary as an approach to solve this issue. Inhe follow-
ing, we will show how we can make use oGO terms to collect results from di erent data sources
employing di erent naming conventions. Observe, that in the above query example we looked for
death domains as single indicator for a sequence to be invadd in apoptosis and the only evidence
factor for the existence of such a domain, taken into accountwas a hit to a Pfam model. Basically,
we face here two problems.

1. Itis unlikely that the death domain is the only domain link ed to apoptosis, which is a process
that involves an orchestrated series of biochemical eventHence, there may be proteins not
containing a death domain, but which nevertheless play a cetnal role in the process of cell
death. With the above query we would fail to detect these proeins.

5For the following examples we use the data model as given in Fi gure BT
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2. Domain/motif databases, even large ones likdPfam, are often incomplete in certain areas or
contain suboptimal models which do not detect all related squences (of a family). Hence,
a dierent model taken from a di erent database may further d etect proteins involved in
apoptosis.

To overcome these pitfalls we have to consider results fromesrches in multiple di erent databases.
To address the problem of di erent naming conventions we useGO terms for querying instead of
attributes of certain database entries. This procedure impies that entries of databases likePfam,

TIGRFAM, etc. can be mapped toGO categories. Such mappings, which are built with expert
knowledge and are freely available for certain domain and mtif databases, are also integrated
into Genlight Therefore, it is possible to (i) look up from the gene ontolgy (all) entries linked to

apoptosis, (ii) to look up with the mapping information the m odel identi ers of databases likePfam,

TIGRFAM, or Smart, and (iii) to nally return the sequences matching these models. This can be
performed with the following SQL-query.

SELECT description FROM human WHERE shad_id IN (
(SELECT queryshal.id FROM pfammatches WHERE hievalue 10° AND pfammodelid IN (
SELECT pfammodel.id FROM pfam2go WHERE.igoIN (
SELECT gad FROM gaerms WHERE name='apoptosis’

)

)
UNION
(SELECT queryshal.id FROM tigrfam_matches WHERE hievalue 10° AND tigrfam _model_id IN (
SELECT tigrfam-model_-id FROM tigrfam2go WHERE gd IN (
SELECT gad FROM gaerms WHERE name='apoptosis’

)

)
UNION

(SELECT queryshal.id FROM smartmatches WHERE hievalue 10° AND smartmodel.id IN (
SELECT smarmodel.id FROM smart2go WHERE _igb IN (
SELECT gad FROM gderms WHERE name='apoptosis'
)

)
UNION
(SELECT DISTINCT tl.shalseq-id FROM prints _matches t1, prints _chains t2
WHERE tl.chainid=t2.chain _id AND
t2.p _value 103 AND
t2.chain _length > 2 AND
tl.prints _modelid IN (
SELECT prints_model.id FROM prints2go WHERE g IN (
SELECT gad FROM gdgerms WHERE name='apoptosis’

This query selects all sequences (more precisely their defations) from our Seq-sethumanthat
contain a match of reasonable quality to one of the databaseBfam, TIGRFAM, Smart, and PRINTS
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(stored in tables pfam.matches, tigrfam _matches, smart_matches, etc.) by chaining SELECT
statements, speci c to retrieve certain database search raults, with the UNION clause. Addition-
ally, to be picked up by the query, sequences have to match dabase entries that are linked with
the mapping tables pfam2gq tigrfam2go , smart2go, and prints2go via attribute go _id to the GO
term apoptosis

5.5.4 Genlight as a data warehouse

Figures[29 on pagdI81 anf 511 on pa@e167 clearly show th@enlight data model is not fully
normalized, according to normalization forms known in reldional database theory [Ken83]. This
process ofdenormalization is common for systems intended forOLAP (On Line Analytical Pro-
cessing). In contrast to OLTP (On Line Transaction Processing) systems, which are desigd for
handling a high volume of transactions, like inserting/deleting or modifying relatively small amounts
of data, and hence often employing highly normalized data mdels, OLAP systems are primarily
designed for read-only reporting and data analysis. E.g.,dr the purpose of data analyses a high level
of normalization often has an disadvantageous e ect on quer response times, since normalization
splits related data into several database tables, which, hee to be combined again for querying,
using costly table joining operations.

For Genlightshort query response times are essential due to the interaiste character of the system.
Consequently the employed data model, which is optimized fo short query response times by
intended denormalization through the introduction of data redundanC)E has more characteristics
of a typical OLAP than an OLTP system. This is not in contradiction to the fact, that Genlight
also carries out several data generating analysis tasks, vidh lead to extensive data insertions and
modi cations, since these tasks are executed asynchronolysby the distributed execution approach,

and hence are independent from guaranteed response and colafion times.

Typical representatives of OLAP like systems, are the so called data warehouses. They folloan
information integration concept and integrate data from heterogeneous and distributed sources into
one system to allow a global view on the data by enabling soue data comprehensive queries and
data analyses. Following this view,Genlightalso shares several characteristics with data warehouses.
In particular, by the persistent storage of computed resuls in a query-optimized data model that
allows to combine heterogeneous information in complex quées, Genlightbuilds, while analyzing

a certain organism's genome or proteome, an integrated infonation resource from the computed
sequence analysis results. This resource can be accessedubing standard SQL queries even from
external applications as well as by a user-friendly web inteface automatically generating the needed
SQL queries and thus hiding the internals of the underlying cata model from the user.

5.6 The Genlight user interface

For interaction with the system, we developed a exible and powerful web-interface that, while
containing a high information density, is still user-friendly and easy to use. It allows the user to set
up sequence comparison jobs and to perform all operations dBeq-setsand Hit-sets described in this

6Genlight also employs B-Tree indexing of certain attribute elds to e  nsure short query response times.
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chapter, or to import/export Seg-setand Hit-set information in a completely interactive way. For
operations that cannot be handled interactively like the canparison of large Seg-setsets which are
processed asynchronously by the distributed execution enge, the processing state and progress of
computation is directly visible in the interface. Once computation has nished, these informations
are dynamically updated and the newly computed results are wailable for further analyses. This
is a major advantage in comparison to other systems, which wespre-computed data and present it
in a static way. The generated results can be viewed in tabulaas well as in graphical form, using
intuitive visualizations. Throughout this thesis, we already presented visualizations generated by
Genlightin various gures. For example the sequence to structure maping gures in chapter 2 (see
Figures[Z1 on pagdl® an 212 on padell0), the visualization$ single PSSM matches and matches
to PSSM family models in Figure[Z2 on pagé_1l8, the demonstt®n of functional classi cation of
sequences intoCOG KOG categories (see Figurédhl6 on pade_1I55), or the visualizatioof genome
rearrangements shown in Figurd5.110 on padge_Ib5.

The central place of Genlights user interface, which is also the entry point after succesful authen-
tication and project selection, is the overview page of a prect's workspace (see Figurd5.12). It
shows allSeg-sets Hit-sets and user de ned Iters available in the selected project andgives the user
a comprehensive overview of already performed or ongoing alyses. Indicated are the processing
states of certain analyses, i.e., which analyses for whicBeg-setsare already computed, which are
in processing state or waiting in the systems job-queue to bexecuted by the distributed execution
engine.

From the project overview page, the information contained n a certain Seg-setor Hit-set is quickly
accessible, following a hyper text reference. Informatiorcontained in a Hit-set is conveniently dis-
played in tabular (see Figure[5IB) as well as in graphical fons (see Figure[5.IH). Descriptions of
sequences in dlit-set can be searched using exact patterns or regular expressigredlowing a quick
navigation even in large Hit-sets. If the user is interested in further details of a Hit-set entry, like
concrete alignment information, Genlightgenerates this information on the y by comparing the two
involved sequences of &lit-set entry with the sequence comparison method that has been usetb
generate this speci cHit-set. Alignment informations are due to concerns of space not st@d in the
underlying database. Alignments are presented in coloredextual as well as in graphical form (see
Figure®I8). In case of a comparison with a nucleotide sequee being involved, additional informa-
tion about start- and stop-codons and potential open readig frames are dynamically determined
and presented in graphical form (see Figuré5.16).

Results that arose from screenings of &eqg-setversus one of the integrated domain and family
databases are also presented in a comprehensive manner inding additional derived information
like Gene Ontologyclassi cations. This allows a unifying view on the determined database search re-
sults. For an example see FigurE517 which shows the resultd a search with a protein sequence from
H.pylori versus the PRINTS database usingPoSSuMsearch Observe that both database matches,
although being di erent, are classi ed to the same GO categories.

For searches in databases with structure information avaihble, Genlightcan retrieve structure infor-
mation from the source database and allows to visualize thesinformation using structure viewer
applications like Jmol or Rasmol. This allows for direct mapping of sequence features, like tmology
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Figure 5.12: Genlights project workspace overview, showing information aboutSeq-setsand Hit-
sets of the current project. In the upper right corner, informati on about the current
project is displayed, like its name, the project id, project owner, privacy status, and
the creation time. The top of the page shows theGenlightnavigation menu. This menu
is present on almost all pages of the system and allows an easyd quick navigation
to di erent sections of the system. The upper table gives inbrmation about available
Seqg-setsand the availability of screening results versus databaselkke Pfam, TIGRFAM,
Smart, etc., whereas the two centered tables show computeHit-sets. The table at the
bottom of the page shows user de nedHit-set lters available in this project.
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ENLIGHT
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Figure 5.13: Tabular view of the content of a Hit-set. For each entry (matching sequence pair),
several attributes characterizing the entry are displayed Entries can be displayed in
sorted order using di erent sort keys, like E-value, score,rank, number of identities,

number of positives or query/hit description.
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Figure 5.14: Graphical view of aHit-set. Shown are matches resulting from aBLASTX search
of a contig sequence of the alpha proteobacteri®&erratia proteamaculans versus the
Escherichia coli proteome. Matches are colored according to the obtained ajinment
score.
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ENLIGHT

Figure 5.15: Visualization of on the y generated BLASTP alignment information for a Hit-set
entry. In the coloured textual alignment, identical amino acids are marked red, similar
amino acid (positives) are marked blue. Gaps are shown as bt dashes.
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Figure 5.16: Visualization of aFASTY alignment with additional start/stop codon and open reading
frame information. Potential open reading frames are marke as blue arrows, start
(stop) codons are shown as small green (red) boxes in the uppeart of this gure. In
this example, the aligned regions correspond to a potentiabpen reading frame in the
frame one translation of the shown nucleotide sequence.
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Figure 5.17: Visualization of database search results frona screening versus thé®RINTS database
using PoSSuMsearch Genlightallows to map obtained results directly to GO categories.
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Figure 5.18: Mapping of homology information determined bya PsSiBLAST search versus theSCOP
sequence database oRDB structures corresponding to SCOPentries.

information to the structure models, by automatically generating viewer speci ¢ script les. For an
example see Figure 5.18.

Wherever possibleGenlightalso references to external data sources allowing the usep tretrieve
additional information not contained inside the system. E.g., references to web pages describing a
certain family complement the information of the publicly available HMM collections integrated
into Genlightwith a variety of additional information. These informatio n are quickly accessible from
Genlights interface following a single hyper text reference.

5.7 Genlight case studies

5.7.1 Detection and analysis of the Smh gene family in maize

In [MBG * 03] we detected a new gene family in maizeZga may39, called Single myb histone (Smh)
family, with the help of the Genlightprototype system. We screenedGenBank ZmDB [DRF™* 03]
and Pioneer Hi-Bred (PHI)” expressed sequence tag (EST) databases witBenlights built-in se-
quence comparison and domain search methods for the occurree of the myb-like domain of human
telomeric protein TRF1. TRF1 binds to repeats at chromosomeends and has homology to the DNA-

7 http://www. pioneer.com/
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binding domain of the Myb family of transcription factors, b ut unlike most Myb related proteins,
TRF1 carries only one rather than multiple Myb-like binding motifs. We identi ed several maize
ESTs that encoded proteins with a single N-terminal myb-like domain. Together, the EST and
additional cDNA library screens uncovered cDNAs from ve related genes. The deduced protein se-
guences from ve di erent full-length cDNAs revealed a family of small basic proteins. The cDNAs
belonged to an uncharacterized gene family, th&mh gene family. Detailed sequence analysis with
Genlightrevealed a number of surprising features oEmh genes. The most remarkable aspect was
their triple-motif structure, which has not been previously described in any system, plant, animal,
fungal, or bacterial. Namely, Smh genes have

(a) an N-terminal myb like or SANT domain of the homeodomain-like superfamily of 3-helical-
bundle-fold proteins,

(b) a central region with homology to the globular domain of linker histones H1/H15, and

(c) a strong prediction signature for a coiled-coil domain rear the C-terminus.

See Figure 5.19 for the gene model ddmhl and an excerpt of the underlying Genlight analysis
results. Table 5.5 gives more details about all members of t Smh family.

Additional large scale database searches witlsenlightversusGenBankand Swiss-Protrevealed that

Smhtype genes are plant specic and include a gene family iPArabidopsis thaliana and one gene
(PcMYBL1) of parsley (Petroselinum crispum). Various wet-lab experiments with a chosen member
of the Smh family (Smh1) showed the ability to bind telomeric DNA repeats in vitro.

5.7.2 Analysis of Xenopus laevis expressed sequence tag clgters

Agglomerative clustering of Expressed Sequence Tags (ESBequences is a widely used method for
analyzing the transcriptome of a genome. Especially in orgaisms where the genome sequence is
not (yet) sequenced, the EST data is a valuable source of infoation. In [SBB * ] Genlightwas used
for extensive analysis of 31,353 tentative contig (TC) and 4,877 singleton sequences resulting from
clustering and assembly of all 350,468 ESTs of the african &l frog Xenopus laevisas were avail-
able in November 2003.Xenopus laevisis a major model organism for early embryonic vertebrate
development. Since its genome is not fully sequenced yet, iparticular due to problems introduced
by its pseudo-tetraploidity, extensive analysis of availdble EST information seems to be promising
and may lead to new insights in embryonic vertebrate biology

Our analysis of X.laevis ESTs described in [SBB ] focused on the identi cation of full length
contigs, representing potential new, yet unknown genes frm X.laevis. Therefore, sequences were
subjectto BLASTX and FASTY homology searches withGenlightin NCBI's non-redundant protein
database (NR), the proteomes of ve major model organismsif.sapiens M.musculus R.norvegicus
C.elegans D.melanogaste), X.laevis and the closely relatedX.tropicalis . We choseFASTY , which is
a version of the FASTA program that compares a DNA sequence to a protein sequence tibase by
translating the DNA sequence in all six reading frames, sine it allows in contrast to BLASTX for
frame shifts. As EST sequences contain many sequencing ers and even the assembly of clusters
cannot correct all of these, frame shift tolerant database sarching with FASTY should, though
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(A): ZmSMH1 gene model/domain structure

1 Myb/SANT linker histone H1/H5 coiled-coil domain 29¢
o T 7T
N 7 56 130 203 237 280 Cc

(B): Results of screening vs.  CDD

(C): Results of screening vs.  Smart

(D): Results of coiled-coil prediction with program COILS

Figure 5.19: An excerpt of Genlightanalysis results for ZmSMH1. For the derived domain structue
of ZMSMH1 see (A). Database searches v&£DD and Smart (see (B) and (C)) show
near the N-terminus the myb-like or SANT domain and more centered the linker his-
tone 1 and 5 domain. The analysis of potential coiled-coil famations reveals a strong

prediction signature near the C-terminus (see (D)). Plot (D) shows the probability for
coiled-coil formation using windows of width 14, 21, and 28.
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Gene GenBankAccession No. Protein (length;mass;pl) Domain  Location
ZmSMH1 AY271659 299;32.6;9.07 SANT R7-L56
H15 D130-K203

CcC K237-D280

ZmSMH3 AY280629 285;31.3;9.45 SANT K7-L56
H15 G111-v173

CcC E219-E264

ZmSMH4 AY280631 288;31.3;9.33 SANT K7-L56
H15 P115-1173

CcC V229-S260

ZmSMH5 AY280630 286;31.4;8.71 SANT R7-M56
H15 K120-v182

CcC M226-V286

ZmSMH6 AY280632 298;33;8.78 SANT R7-M56
H15 N127-K200

cC M236-A297

Table 5.5: Smhtype genes and predicted protein features. Domain names ahdatabase identi ers
for SANT are cd00167, SW13, ADA2, N-CoR, and TFIIIB DNA-bind ing domains from
NCBI's conserved domain database €DD); H15 is cd00073, linker histonel and 5 do-
mains, from CDD or smart00526, domain in histones families Jand 5 from Smart, CC is
the coiled-coil domain, which is indicated for any region wlere a peak probability exceeds
0.8. Column 3 gives the length of the amino acid sequence, themolecular weight in kilo
Dalton [kD] and the isoelectric point.
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(A): Open Reading Frames of  X.laevis contig sequence

(B): BLASTX alignment of X.laevis contig sequence

(C): FASTY alignment of X.laevis contig sequence

Figure 5.20: Comparison of aBLASTX alignment with corresponding full length FASTY align-
ment, generated with Genlight Open reading frames are indicated by blue boxes in
(a), start and stop codons by green and red boxes, respectiyl The assembled contig
sequence has a frame shift at position 1150 from frame 1 to frae 3, generating two
distinct HSPs in the BLASTX alignment (b). FASTY clearly corrects this frame shift
and generates a full alignment (c).

more CPU-intensive, maximize the length of the resulting algnments and hence allow to identify
full length contigs even if they contain frame shifts. For an example of the di erences between
BLASTX and FASTY screening results for a contig sequence containing a framéift, see Figure
5.20.

In particular, for these large-scaleBLASTX and FASTY homology searches, the distributed exe-
cution approach used inGenlightproved to be very powerful, and reduced, in combination withthe
application of external compute resources, the overall tine needed for these tasks dramatically. For
these analyses, we disposed external compute resources AetCenter of Biotechnology of Bielefeld
university as well as a huge cluster system at the supercomiimg facility of Florida state univer-
sity. Results determined with external resources were ealsi integrated using Genlights XML/XSLT
import layer (see Figure 5.1).

For full length contig identi cation di erent Hit-set lters were de ned and applied to the Hit-sets
containing FASTY screening results versus the model organismBASTY hits were categorized into
four classes, representing the quality of the full length méches (see Figure 5.21).

(1) Class 1 hits are de ned as matches covering 100% of the seence of a known protein.
Additionally, the matched protein sequence has to start with a conserved methionine has to
end at a conserved STOP codon.
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m STOP CAP3 consensus
Class 1
N /Protein P
FASTY hit
m CAP3 consensus
Class 2
N /Protein P
FASTY hit
CAP3 consensus
Class 3
N Protein P
FASTY hit
CAP3 consensus
~ N , ’
Class 4
> ~ 7/
RN N ’
- Protein P
FASTY hit

Figure 5.21: ESTs derived from di erent clones were compare to protein databases usingBLASTX
and FASTY and hits were categorized in 4 categories. Class 1 hits had tmatch the
whole protein sequence and start with an ATG in the TC and an mehionine (M) in
the protein and the hit had to end at a STOP codon. Class 2 hits tad to match the
whole protein sequence, start with an ATG in the TC and M in the protein. Class 3 had
to match the full protein sequence (without further restrictions), class 4 had to cover
the protein over almost its full length, allowing the match t o start or end maximal 10
amino acids after/before the start or end of the protein.
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Class NR Human Mouse Rat Fruit y C.elegans Xlaevis X.tropicalis
Comparison method: BLASTX

1 3,942 1,760 1,765 1,455 219 140 2,918 495
2 5,050 2,067 2,076 1,736 311 233 3,104 541
3 7,792 2,647 2,919 2,592 392 283 3,898 590
4 12,389 5,587 5,841 3,078 2,071 1,856 5,024 1,033
Comparison method: FASTY
1 5,139 2,347 2,337 1,930 268 190 3,862 660
2 6,243 2,692 2,671 2,248 383 296 4,119 721
3 9,576 3528 3,774 3,374 473 357 4,967 796
4 14,094 6,467 6,701 6,341 2,249 1,918 5,701 1,241

Table 5.6: Number of X.laevis contigs with full length BLASTX and FASTY hits in the non-
redundant protein database (NR), ve model organisms, and aailable X.laevis and
X.tropicalis proteins. Lower quality categories include sequences fromigher, more strin-
gent categories.

(2) Class 2 hits are de ned as matches covering 100% of the seence of a known protein.
Additionally, the matched sequence has to include the inital methionine.

(3) Class 3 hits are matches capable of covering 100% of the nehied protein sequence with
no additional constraints.

(4) Class 4 hits are matches that cover the protein over almasits full length, allowing the
match to start or end up to 10 amino acids after or before the sart or end of the protein
respectively.

Table 5.6 shows the numbers of full length sequences matctgnproteins for each model organism.

For a functional classication of the clustered X.laevis data set, a non-redundant sequence set
was built by selecting in each cluster a single contig. This esulted in 26,187 sequences. This non-
redundant data set was then classi ed based on homology to kown proteins from the KOG database
using SSEARCH (Smith-Waterman) with an E-value cuto of 10 5. 17,624 sequences (67.3%) had
a hit against the KOG database under these constraints and could be assigned a fctional category,
see Figure 5.22.

5.7.3 Identi cation of potential drug targets in Helicobac ter pylori

Subsequently, we describe the application of th&senlightsystem to detect potential drug targets in
the human pathogenHelicobacter pylori using Genlights integrated sequence analysis methods and
capabilities for di erential genome analyses. Parts of this study were carried out by the department
of BioChem Informatics of Intervet Innovation GmbH, our pro ject partner in the development of
the Genlightsystem, and were published in [BMM 04].

H.pylori is a spiral shaped bacterium living in the stomach and duodeanm of humans and in other
mammalians [THHM92]. Uncontrolled H.pylori infections are a major factor for duodenal ulcers,
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Functional classification based on homology to the euKaryotic clusters of Orthologous Groups (KOG) database
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Figure 5.22: Functional classi cation of 26,187 non reduna@nt X.laevis sequences based on similarity
determined with SSEARCH to the euKaryotic clusters of Orthologous Groups KOG)
database. Classi cation criteria was best hit with an E-value of at least 10 5.

gastric ulcers, stomach cancer, and non-ulcer dyspepsia [M02]. The sequencing of theH.pylori
genome (strainsH.pylori 26695 andH.pylori J99) o ers the chance to develop highly speci c treat-
ments againstH.pylori infections [TWK * 97, ALM™* 99]. With the idea of minimizing toxicological
e ects, a perfect drug target protein should have low similaity to eukaryotic proteins [GK99]. Such
genes are the most obvious candidates for drug targets. Theraitegy of this study was therefore to
nd all H.pylori proteins with low similarity to known eukaryotes.

The H.pylori J99 proteome consisting of 1,487 protein sequences was coaned to various eukaryotic
proteome sets (see Table 5.7) using thé8LASTP sequence comparison method integrated into
Genlight From the resulting Hit-sets all H.pylori proteins that have no homolog in one of the
eukaryotes with a BLASTP bit-score of at least 30 were extracted. After this initial Itering step
only 226 H.pylori sequences remained.

In a subsequent analysis step the remaining 226 protein seguces were screened for putative
drug/vaccine targets using Genlights integrated protein family and motif databases Pfam, TIGR-
FAM, Smart, PRINTS, BLOCKS and CDD. Urel, a well known drug target [STLDR98, BMSLDRO01],
which served as an internal control, was detected within thg sequence set. Urel encodes an activated
urea channel enabling urea access to intrabacterial ureasat acidic pH. Urel is necessary for the
survival of H.pylori at pH < 4:0 [MRHSMO02].
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Organism Number of protein sequences
H.sapiens (IPI) 43,426
M.musculus (IP1) 40,742
R.norvegicus (IPI) 33,028
A.thaliana 26,192
C.elegans 22,439
D.melanogaster 16,106
S.cerevisae 6,195
P.falciparum 5,257
S.pombe 5,037
E.cuniculli 1,908
G.theta 451
Total 200,781

Table 5.7: Eukaryotic proteome sets used in the comparativeanalyses.

Pfam/ BLOCKS Acc. Description

PF06160 Septation ring formation regulator, EzrA
PF07432 Histone H1-like protein Hcl

PF01098 Cell cycle protein

PF00493 MCM2/3/5 family

PF01189 NOL1/NOLP2/sun family

PF03568 Peptidase family C50
IPB001182 Cell cycle protein

Table 5.8: Pfam and BLOCKS protein families known to be involved in the cell cycle procss in
bacteria.

186



5.7 Genlight case studies

Figure 5.23: Results of database searches withl.pylori protein FTSW _HELPJ in BLOCKS using
PoSSuMsearch(top) and Pfam using hmmpfam (bottom). The results of both methods
reveal strong evidence for FtsW family membership.

Identi cation of cell cycle proteins

Vital processes, like the process of cell division, are of ggial interest for drug development. Proteins
involved in these processes are quite often fundamental antherefore are putative drug targets. In
order to nd such putative targets the remaining 226 protein sequences were screened for several
families known to be involved in the cell cycle process in baeria. More precisely, we queried
the screening results for hits to the protein families givenin Table 5.8. This query resulted in a
potential target, the cell division protein FtsW. See Figure 5.23 for matches of this protein versus
BLOCKSand Pfam models. FtsW is a polytopic membrane protein that is required for cell division

in E.coli [KBD94, 1JI * 89] and that is present in virtually all bacteria having a peptidoglycan cell
wall [LAO2, ISW* 89, HGPM98]. It is also discussed in the context of chemothepeutic intervention

of M.tuberculosis [DDBBO02].

Identi cation of surface proteins

Surface proteins playing a role in pathogen-host interactbns represent potential targets for vac-

cination [SLZA* 02]. To nd such putative targets within the specic H.pylori proteins, the 226

protein sequences were analyzed for the appearance of suwréaexposed proteins using ammmpfam

screening versusGenlights integrated Pfam database. Thirteen potential outer membrane proteins

were found in this screening (data not shown here, see [BMMO04]). These proteins could serve as
potential candidates for vaccination.

The detection of Urel, FtsW, and outer membrane proteins clarly demonstrates the ability of
Genlightto detect potential drug targets with its built in sequence analysis methods. In particular
the di erential or subtractive genome comparison approactes possible withGenlightallow to cut
down a genome scale data set to a manageable size focusing anegs or proteins with interesting,
user de ned characteristics. UreA, UreB, VacA, and other wdl known pharmaceutical targets were
not included in our analyses, since they do not pass the initil Itering step due to their signi cant
similarity to eukaryotic proteins [SJ99]. Observe that this nding is in accordance to our strategy
to detect only proteins with very low similarity to eukaryot ic proteins.
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5.8 Concluding remarks on Genlight

In this chapter, we describedGenlightan interactive system for high-throughput sequence analyis
with speci c features for di erential comparative genome analysis. Due to its distributed client
server concept that allows an asynchronous execution of segnce analysis and comparison tasks, it
is suitable for large scale analysis of nucleotide as well ggotein sequence data in reasonable time.
Genlightcan facilitate available compute resources and build a virtial cluster system from normal
department workstation computers. The overhead necessarfor managing compute nodes inside the
virtual cluster is negligible leading to an excellent scalng behavior with an overall running time
nearly inversely proportional to the number of used CPUs. This approach allows sequence analyses
on a scale otherwise only achievable with large and expengvcluster systems.Genlight contains
integrated scheduling and queuing components. Consequdwgt there is no need for specialized third
party software, which is often di cult to install and mainta in.

A unique property of Genlightis its powerful, set oriented data model, that anchors the reisability
of results in the system design and allows a protocol based ep by step modeling of complex
work ows. Genlightintegrates and automates a variety of sequence analysis mdds, including our
PSSM matching software PoSSuMsearch in a common environment, thus saving hours of tedious
work that would otherwise be needed for performing all analgis tasks sequentially and manually in a
non-integrated fashion. Due to the persistency of computedesults and extensive query capabilities,
Genlightcan also be used as a data warehouse for sequence data andwafido build organism speci c
information resources. For easy access to and interactive avk with the system we implemented a
powerful, platform-independent web interface that allows to present derived results in a clearly
arranged way and employs various result visualizations. Wealso remark, that Genlightis not just
a prototype developed in an academic environment. It is a syem ready for production and has
already been installed and is successfully used for di erdrresearch projects in the pharmaceutical
industry. Furthermore its merits were already evaluated ard have been proven valuable in several
scienti ¢ studies [MBG * 03, SBGA04, MMBBO05, SBB*].

5.8.1 Potential future developments and system extensions

Although Genlightalready supports a variety of sequence analysis methods andtegrates various
databases into a common environment, there are still sevetamethods and databases which have
not found their way into Genlightyet, but which would de nitely t in the context of the system and
could bene t from the developed generic concepts and the hig-throughput analysis infrastructure.

Integration of PoSSuMsearch and PSfamSearch as additional screening methods for pHMM
based databases

In GenlightPoSSuMsearchis currently only used for searching with PSSM family modelsfrom the
PRINTS and BLOCKS databases. We have shown that using PSSM family models in cdomnation
with fast index based PSSM searching as implemented iPoSSuMsearch is an alternative to time
consuming pHMM based methods in the context of protein famiy assignment and classi cation. In
section 4.6.2 on page 127 we further demonstrated with the enbined approachPSfamSearch that
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PSSM family models derived from pHMM seed alignments can be sed for search space reduction
and hence to speed up the search with pHMMs dramatically. Theefore, it is reasonable to integrate
PoSSuMsearchas well asPSfamSearchas additional search methods for pHMM based databases
like Pfam, TIGRFAM, CATH, Superfamily or Smart into Genlight Due to the generic and modular
structure of Genlight the integration of such new analysis methods is straightfovard and can be
easily accomplished. One can also think about the integratin of further major pHMM based protein
family collections, like for example the Pantherdatabase [MLUL* 05].

Up to now, analysis methods and databases integrated int@enlightshow a bias towards the analysis
of amino acid sequences. However, noncoding DNA and RNA seguces attracted an increased
attention in the last years since it became clear that they phy a central role in many regulatory
processes. To illustrate the potential importance of this ron-protein coding genes consider the
human genome. About 5% of the genome is evolutionarily congeed with respect to rodent genomic
sequences, and therefore is inferred to be functionally imprtant [Rat04, Mou02], but only about
one-third of the sequence under such selection is predicte® encode proteins [Con01]. In [ENCO04],
the authors state that the collective knowledge about putative functional, noncoding elements, which
represent the majority of the remaining functional sequenes in the human genome is remarkable
underdeveloped.

To the types of analyses necessary for identi cation and fuetion predicition of these noncoding
elements belong, among other things, the search for

cis-regulatory elements, like transcription factor binding sites,
microRNAs and their target sites, and

structurally conserved noncoding RNAs.

Detection of transcription factor binding sites

The search for transcription factor binding sites can be e ciently accomplished with PoSSuMsearch
using PSSMs from collections likeTRANSFAC Unfortunately, the licensing conditions of the com-
mercial TRANSFACdatabase, the major collection of binding site signatures ged in this eld, does
not allow an integration into a publicly available system like Genlight Possibly, the actually rela-
tively small open access databasdASPAR[SAE" 04] will o er a free alternative signature resource
in the future, when the number of contained binding site sigratures increases.

Methods for miRNA prediction

MicroRNAs (miRNAs for short) [Ruv01] are short single-stranded RNA molecules of about 21-23
nucleotides that post-transcriptionally regulate the expression of target genes by binding to the
target mMRNAs, and inhibit translation or facilitates cleav age of the mRNA. They are known to be
involved in several regulatory processes and hence are ofcireasing importance also for the phar-
maceutical industry. For their prediction, programs like mirscan [LGY * 03] or POMIR 1l [NKKZ06]
were developed, which probably can be integrated intdGenlightas additional analysis methods for
DNA/RNA sequences.
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Methods for miRNA target prediction

Widely used tools for the prediction of potential microRNA t arget sites are programs likeRNAhybrid

program [Reh06, RSHGO04],PicTar [KGP* 05], miranda [EJG* 03], or targetscan [LSJR* 03]. They
compute the ability of a given miRNA to bind to a given target m RNA. Such programs could
be integrated into Genlightas sequence analysis methods, establishing a pair relatiship between
two sets of nucleotide sequences, comparable to the alreadyipported pairwise alignment methods
BLAST and FASTA. Their results could then be represented in form of a method geci ¢ Hit-set

table.

Integration of methods for the detection of structurally co nserved noncoding RNAs

With the detection of microRNAs and other structurally conserved noncoding RNAs and their
involvement in several central regulatory processes, a lobf e ort was spent on the development
of computational methods and tools for their reliable detedion. In the following we briey in-
troduce existing methods and resources whose integratiomio Genlightcould be reasonable. One
important resource from this eld is the Rfamcollection of known structurally conserved noncoding
RNAs [GIMM * 05]. Rfam describes families of noncoding RNAs with covariance modsl[ED94] and
can be searched with thdNFERNAL program [Edd02]. In Genlight INFERNAL could be integrated
as an additional database screening method, comparable tche already integrated PoSSuMsearch
and hmmpfam methods.

A di erent approach, combining description of and searching for structurally conserved noncoding
RNAs is used in the thermodynamic matcher approach describeé in [HHGO6]. This may also lead in
the future to collections of programs suitable for searchig for speci c structurally conserved RNAs
and may o er an alternative to the covariance models used inRfam

A program for the detection of new structurally conserved RNAs, which works in the absence of
an available structure model is theRNAz program [WHSO05]. RNAz predicts structurally conserved

and thermodynamically stable RNA secondary structures in multiple sequence alignments. It can
be used in genome wide screenings to detect new functional RNstructures, as found in noncoding

RNAs and cis-acting regulatory elements of mRNAs.

Integration of metabolic pathway information

In recent years the Kyoto Encyclopedia of Genes and GenomeKEGG for short) [KGH * 06] has
developed to a major resource for metabolic pathways, bio mecular interactions and reaction
networks. A proper integration of the information contained in the KEGG database into Genlight
would allow for a mapping of proteins to pathway data and hene a quick assessment of existing
metabolic pathways in an organism's genome. Moreover, sojéticated di erential screenings on the
pathway level between certain organisms would become possé.
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Provision of Genlight as a web service

Under the assumption of su ciently available compute resources one can think about the develop-
ment of a web service API forGenlights analysis capabilities. This would allow an external usey or
even an external system to participate from the implementedinfrastructure and the distributed ex-
ecution approach by sending sequence data via the web serei¢o Genlightand receive, for instance,
all results obtained from a database search in one or even aflif the integrated motif and protein
family databases.
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6 Conclusions and prospects

6.1 Concluding remarks

The contributions made with this thesis can be subdivided irto two parts, namely an algorithmic
and a software engineering part. We presented not only seval algorithmic contributions to the

eld of sequence analysis using PSSMs as approximate motifascriptors, but also implemented
these newly developed algorithms in our search tooPoSSuMsearch With the Genlightsystem, we
further developed a production ready system, integratingPoSSuMsearchand a variety of existing
sequence analysis methods in a common and user-friendly @mnment suitable for interactive high-

throughput sequence analysis tasks.

Our rst main contribution is the development of a new non-heuristic algorithm, called ESAsearch
to e ciently nd matches of PSSMs in large databases. ESAsearch facilitates persistently stored
enhanced su x arrays for search space indexing and allows tosearch a database with a PSSM
in sublinear expected time. We presented a detailed compléty analysis which revealed sublinear
running time in the expected case, and linear running time inthe worst case for sequences not shorter
than JA™ + m 1j, wherem is the length of the PSSM andA a nite alphabet. We tested algorithm
ESAsearchin various experiments on nucleotide as well as amino acid da. In these experiments
ESAsearch shows speedups of factor between 17 and 275 compared to thesberevious methods
for nucleotide PSSMs, and speedups up to factor 1.8 for aminacid PSSMs. Comparisons with
the most widely used programs that all use variants of theSPsearchalgorithm for searching with
PSSMs even show speedups by a factor of at least 3.8.

Since ESAsearch bene ts from small alphabets, we developed a variant emploing alphabet reduc-
tion. In our performance experiments alphabet reduction yelds an additional speedup factor of 2
on amino acid sequences compared to results achieved with éhi20 symbol standard alphabet.

Our second main contribution addresses the problem of nonamparable PSSM-scores of di erent
PSSMs. Therefore, we developed with algorithnLazyDistrib a new method for e cient computation
of a matrix similarity threshold for a PSSM given an E-value or a p-value. LazyDistrib is based on
dynamic programming and in contrast to other methods, it employs lazy evaluation of the dynamic
programming matrix. It is much faster than existing methods and reaches speedups of a factor
between 3 and 330 depending on the stringency of the threshal In contrast to other methods,
which often use approximations to determine a PSSM threshal from a user speci ed E-value or p-
value, LazyDistrib is exact and allows accurate on-the- y calculations of thresholds. For application
scenarios, where it is dicult to specify meaningful PSSM soore thresholds, we developed two
variants, ESAsearchKb and LAsearchKb, that adjust dynamically the threshold while searching
and report the k highest scoring matches for a PSSM.
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In our third main contribution, we addressed the problem of limited expressiveness of single PSSM
matches and introduced the concept of PSSM family models. T ciently search with such models,
we combined algorithm ESAsearch with a fast fragment chaining approach. We performed severa
experiments assessing the sensitivity and speci city of ouPSSM family model approach for protein
family classi cation and assignment. In these experimentsPSSM family models achieved a clas-
si cation performance only marginally inferior to the perf ormance of pHMMs on the family and
superfamily level, which yield to be the most sensitive modkng approach for detecting distant
homologies and de ne thestate of the art in this eld. For distant relationships the percentage
of true positives when allowing 50 false positives was only .6 percentage points below the value
achieved byhmmsearch These results are astonishing, since PSSM family models amuch simpler
models than the fully probabilistic pHMMs. From our experim ental results, we conclude that PSSM
family models perform nearly as accurate as pHMMs for protai family classi cation. In addition
there are indications that the classi cation performance @an be further improved by using more
sophisticated methods for PSSM construction. The major adantage of using PSSM family models
instead of pHMMs is the dramatically reduced running time needed for searching with these models
compared to searching with pHMMSs. This is due to the use of algrithm ESAsearchfor fast PSSM
matching. In a comparable experimental set up, our search tol PoSSuMsearch also implementing
the combination of ESAsearch and the fragment chaining algorithm of [AOQ5], achieved a spedup
of factor 171 overhmmsearch

With the PoSSuM software distribution we provide a well documented softwae package implement-
ing the ideas and algorithms for e cient searching with PSSMs. Some of the included programs also
support multi-threading and hence bene ts from multiple CP Us for further speedups. ThePoSSuM
software distribution has already been successfully usedi[FSD* 05], and is an integrated analysis
method in the Genlightand CoryneRegNet [BBC" 06, BRT06] software systems.

Motivated by the surprisingly well classi cation performa nce of PSSM family models compared to
pHMMs, and the fact that database searching with pHMMs in particular on a larger scale is a chal-
lenging and time consuming task, we developed the idea of usj PoSSuMsearchwith PSSM family
models to speedup time consuming pHMM based database seaeh Therefore, we designed and
implemented PSfamSearchwhich usesPoSSuMsearchwith PSSM family models to pre- lter the
search space for subsequent application dfmmsearchon the Itered sequence set. Our benchmark
experiments revealed speedups up to factor 138 fdPSfamSearch over standard hmmsearch and
hence may o er a purely software based alternative to highlyspecialized, costly, hardware based
acceleration solutions likeDeCypher € or BioBoost ¢ HMMer. In several experiments we tested
the impact of the chosen p-value cuto on the achieved speedos as well as sensitivity ofPSfam-
Search We tested di erent strategies for threshold determination. The most promising strategy
uses a clear separation of matches obtained odniProtKB/TrEMBL into training- and test-sets. It
computes cuto s with good generalization characteristics and using these cuto s with PSfamSearch
revealed speedup factors of 72 for p-value cuto s correspating to the HMMs trusted cuto s and
15.2 for p-value cuto s corresponding to noise cuto s, compared to direct un ltered hmmsearch
while retaining more than 99.7% of the original results. Forthe rst 20 protein families listed in
the TIGRFAM database, PSSM family model based pre- Itering using this frategy for cuto deter-
mination allowed to reduce the search space to only: 2% of the original search space on average.
Extrapolated to all 2,946 models listed in the current TIGRFAM release we expect a reduction of
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running time when searching with these models inUniProtKB/TrEMBL using the modelstrusted
cutos from more than  2:84 years for directhmmsearchto only 15 days for PSfamSearch
The measured speedup factors achieved by our purely softwarsolutions PoSSuMsearchand PS-
famSearch compare well with what is achieved by the costly, specializé DeCypher ¢ hardware
solution sold by TimeLogic R . Responsible for this speedup are an algorithmic as well as eon-
ceptual advancement. The speed of index based PSSM searchiwith ESAsearch and the fact that
pHMMs can be approximated well with the related, but much simpler, PSSM family models.

As a nal contribution of this thesis, we describe Genlight a production ready, interactive system
suitable for various high-throughput sequence analysis taks with a special focus on di erential
comparative genome analyses. Beyond a variety of other metids, Genlightintegrates our database
search tool PoSSuMsearchfor e cient searching with PSSM family models from the PRINTS and
BLOCKSdatabases in large sequence sets using algorithBSAsearch Unique features ofGenlightare
its set oriented generic data model anchoring the reusabily of results in the basic system design and
the integrated distributed execution engine allowing asyrchronously executed large-scale analyses
even in the absence of costly cluster systems. These featwreombined with a user-friendly interface
make Genlightan extremely exible system with proven value and usability in several scientic
studies.

The majority of contributions made in this thesis were already evaluated and have been proven
valuable for publication in the peer reviewing procedures 6 dierent journals or conference pro-
ceedings. l.e., the algorithms dealing with e cient searching with PSSMs and the PoSSuM software
distribution have been published in [BSH" 04, BHGKO06]. We remark that [BHGKO06] was designated
as highly accessedy the journal publisher. Further, at time of this writing (J une 2007) [BHGKO06]
is ranked at second position in the publishers ranking of themost accessed contributions of the last
12 months of all contributions from members from Bielefeld University in all Biomedcentral jour-
nals. The Genlightsystem is described in [BMM 04, BSS04] and is available for non-commercial use
on http://piranha.techfak.uni-bielefeld.de/ . The presented Genlightcase studies in which
the author of this thesis was involved appeared in [MBG 03, BMM™* 04, SBB*]. A manuscript
describing the application of PSfamSearchas a fast alternative to hmmsearchis in preparation.

6.2 Prospects

Beside several ideas for futurésenlightdevelopments already mentioned in section 5.8.1 on page 188
a signi cant and still open problem is accurate statistics for PSSM chain scores without the need
for time consuming sampling. Our experiments (see Figure 4. on page 123 and Figure 4.10 on
page 125) clearly show a dependency of chainscor€ . and C:.g on the length of the matched
sequence. If this dependency can be eliminated by additionanormalizations, this may nally lead

to a continous distribution function for chain scores and hgefully to e ciently computable E-values
and p-values expressing the statistical signi cance of a again chainscore.

We have shown in this thesis that our concept of PSSM family maels is well suited to describe
protein families and to detect distant relationships. However, PSSM family models are not widely
used in practice yet. This is predominantly founded in the uravailability of searchable collections
of these models. Although we already converted thaBLOCKSand PRINTS databases into a format
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readable byPoSSuMsearchand use them inside theGenlightsystem, a future provision of widely used
pHMM based databases in form of PSSM family models is reasoiée and necessary to increase the
level of popularity and the dispersal ofPoSSuMsearch Once these conversions have been done, these
resources will become directly applicable for e cient seaching usingPoSSuMsearch The conversion
procedure may also include the proper computation of PSSM cainscore cuto s, corresponding to
pHMM trusted and noise cuto s so that PoSSuMsearchcan be used as a pre- lter for speeding up
database searches with pHMMs.
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A.1 The 20 letter amino acid alphabet

ODS<ITOZ0dpWwHAMUUZovnNn-—-—r<>»

ALA
VAL
LEU
ILE
PHE
PRO
MET
ASP
GLU
LYS
ARG
SER
THR
CYS
ASN
GLU
HIS
TYR
TRP
GLY

Alanine
Valine
Leucine
Isoleucine
Phenylalanine
Proline
Methionine
Aspartic Acid
Glutamic Acid
Lysine
Arginine
Serine
Threonine
Cysteine
Asparagine
Glutamine
Histidine
Tyrosine
Tryptophan
Glycine

Table A.1: The twenty amino acids commonly found in proteinsand their one-letter and three-letter

coding.
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A.2 PROSITE pattern entry

ID CUTINASH,; PATTERN.

AC PS00155;

DT APR-1990 (CREATED); NOV-1997 (DATA UPDATE); MAR-2085@ UPDATE).
DE Cutinase, serine active site.

PA  P-x-[STA]-X-[LIV]-[IVT]-x-[GS]-G-Y-S-[QL]-G.

NR /RELEASE=46.4,178022;

NR JITOTAL=20(20); /POSITIVE=20(20); /JUNKNOWN=0(0); /FABEPOS=0(0);

NR /FALSENEG=0; /PARTIAL=0;

CcC ITAXO-RANGE=??EP?; IMAX-REPEAT=1,

cC /SITE=11,active _site;

DR P63880, CULMYCBO , T; P63879, CUTMIYCTU , T; P63882, CUTRIYCBO , T;
DR P63881, CUTMYCTU , T; POA537, CUTEIYCBO , T; POA536, CUTAYCTU , T;
DR P00590, CUTIFFUSSO, T; Q96UTO0, CUTIEUSSO, T; Q96US9, CUTIBUSSO, T;
DR P41744, CUTALTBR , T; P29292, CUTIASCRA , T; P52956, CUTASPOR , T;
DR Q00298, CUTIBOTCI , T; P10951, CUTLCOLCA , T; P11373, CUTCOLGL , T;
DR Q8X1P1, CUHERYGR , T; Q99174, CUTFUSSC , T; P30272, CUTIMAGGR , T,
DR Q8TGB8, CUMONFR , T; Q9Y7G8, CUPYRBR , T;

3D 1AGY; 1CEX; 1CUA; 1CUB; 1CUC; 1CUD; 1CUE; 1CUF; 1CUG; 1CUB; 1CUU;
3D 1CUV; 1CUW; 1CUY; 1CUZ; 1FFA; 1FFB; 1FFC; 1FFD; 1FFE; 1OGXMA; 1XZB;
3D 1XZC; 1XZD; 1XZE; 1XZF; 1XZG; 1XZH; 1XZJ; 1XZK; 1XZL; 1XZMCUT;

DO PDOC00140;

I

Figure A.1: PROSITE entry of a pattern describing a serine adive site (PROSITE Accession:
PS00155). The pattern description in form of a limited regular expression following
the conventions as described in Section 2.4.2 on page 17 isvgh in the PA line.

A.3 PoSSuMsearch command line interface: Quick reference

Subsequently we give short explanations of thePoSSuMsearchcommand line options. Help on
these options is also provided at the command line by callingPoSSuMsearchwith option -help .
For a detailed description of the available command line paamters see the complete manual of the
PoSSuM software distribution provided in section A.4.

* PoSSuMsearch 1.3.3-chaining 64bit, compiled on Feb 14 200 7 at 14:41:21

-help Show help screen.

-version Show program version.

-db Name of a database to search in, which can be either an enha nced
suffix array, a Fasta, GENBANK, or EMBL file.

-pr Name of a profile library file.

-protein Use protein alphabet for input sequence.

-dna Use DNA alphabet for input sequence.

-smap Name of a symbol map file for input sequence alphabet.

-freq Name of a frequency file.

-uniform Assume uniform character distribution in input se quence.

-pdis Name of a precalculated probability distribution fil e.

-lazy Lazy probability evaluation.

-esa Enhanced suffix array search algorithm (only applicab le if the
input is really an enhanced suffix array).

-lahead Lookahead search algorithm.

-simple Simple search algorithm.
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-eval
-pval
-mssth
-rawth
-best
-all
-dbsize
-realpha
-sort

-pssmsearch

-seqclass

-mclen
-mrclen

-format

-fn

-rc

-

-fc

-2

-4
-ncompl

-segrange
-mult
-csfun

-nomatch
_qm

-qw
-q

A.4 The PoSSuM software distribution

An E-value to determine the threshold from.

A p-value to determine the threshold from.

A matrix similarity score (MSS) to determine the thre shold from.
Raw threshold value.

Search for k best matches for each PSSM.

Search for all PSSMs, even if they fall below the given cu toff.
Size of database for E-value tuning (optional if -ev al is used).
Use reduced alphabet for searching protein PSSMs.

Sort output by key. Valid keys are i=identifier, a=acc ession,
p=p-value, e=E-value, m=mss, s=score, n=sequence number,
o=position, r=group ID, t=group position, g=group ID/posi tion
(=rt), I=chain length.

Sequence classification based on a, typically small, library of

known family models. This option requires a numeric argumen t, k.
Per family model, the (up to) k best matching sequences are
reported.

Sequence classification based on a, typically la rge, library of
known family models. This option requires a numeric argumen t, k.
Per sequence, the (up to) k best matching family models are

reported.

Minimum chain length (default is 1).

Minimum relative chain length, reject chains short er than a given
fraction of its group size.

Output format, one of "human" (default), “cisml", " tabs", "stats",
or "null".

Search in forward direction (default).

Search for reverse complementary matches (only applica ble on DNA).
Search for reverse non-complementary matches.

Search for complementary matches (only applicable on DN A).

Search forward and reverse complementary (short for “-f n -rc").
Search in all possible ways (short for “-fn -fc -rn -rc")

When reporting complementary matches, print out th e matching
sequences as appearing in the database instead of complemen tary.
Sequence range in which to search, given as minima x pair.

Multiplier for PSSM values (default is 1.0).

Which chain score function to use. Valid functions ar e "pvalues"
(default) and "ones" (longest chains win).
Don't actually search, just set thresholds for ben chmarking and

print the time needed for that.

Suppress status messages.

Suppress warnings.

Quiet execution, suppress warnings and status messages.

A.4 The PoSSuM software distribution

A.4.1 File formats

PoSSuMsearchand PoSSuMdist require PSSMs stored in an easy to read ASCII based le format
combining features supported by other PSSM formats. Conveers are included in the PoOSSuM
software distribution to transform TRANSFAC and PRINTS PSS M libraries into PoOSSuM-PSSM
format, see Section A.4.5 on page 217. PSSMs of the BLOCKS dalbase [HP99, HGPHOOQ] or any
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PSSMs in BLOCKS format can be used detouring a conversion ird PRINTS format. Converters
for this purpose are already available, e.g., in theFingerPrintScan [SFA99] package.

The PoSSuM-PSSM format

In PoSSuM-PSSM format, each line begins with atag, followed by one white space character,
followed by some data for that tag. All strings are case-serive. There must be no white space
before the beginning of any tag. Lines may be empty to separa things. Comments are allowed and
introduced by a # character at the beginning of a line, the whole line is considred as a comment
then.

These are the general rules. Now, a PSSM is de ned in multipldines, from which the rst one reads
BEGINype

followed by some other lines making up the PSSM, and the lastihe

END

indicating the end of a PSSM. Thetype can be one ofINT or FLOATdepending on the values used
in the scoring matrix. If no oating point values occur in the matrix, then type should bet set to
INT to speed up the search as integers can be processed much fasia most machines than oats
can be.

Valid tags between a PSSM'sBEGINand ENOines are (in any order):

ID The identi er of the PSSM. This tag is required.
AC The accession of the PSSM.

DE A description; any number of DElines are allowed per PSSM. Multiple description lines are
concatenated in order of occurence and separated by full sps when displayed byPoSSuM-
search

AL An alphabet string. Each character in the string stands for cne column of the PSSM, in given
order and case-sensitive. The length of the alphabet stringletermines the width of the scoring
matrix, that is, how many columns are expected to be de ned.

AP A name of a prede ned alphabet, either PROTEINMr DNASpecifying DNAs equivalent to using
an AL line with alphabet string ACGTPROTEINs equivalent to AL ACDEFGHIKLMNPQRSTVWY
(note that the exact order of characters is important, thus the explicit speci cation of the
alphabet strings).

Only one of AL or APcan be used for a PSSM, of course, but one of them is required.

LE The \length" of the PSSM, that is the number of rows. This tag i s required.

The values of a scoring matrix are de ned usingMAtags, one line per matrix row. There must be
as many rows as speci ed in theLE line, each containing as many values as there are charactes
the alphabet, in the order imposed by the alphabet. All values are given either as integers or reals
as speci ed by the BEGINine, separated by white space. After the rst MAline, only MA empty, or
comment lines, orENDare permitted.
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The format requires matrices beinggrouped for later, optional chaining. A group of PSSMs must be
surrounded by BEGIN GROWRd ENDlines. If your application context does not require groupirg,
just start the library le with a BEGIN GROUWURe and end it with a nal ENDafter the ENDof the
last PSSM. This declares all PSSMs in the le to belong to the ame group.

Internally, each PSSM is identi ed by a tuple of group identier and group position. The group
identi er is the position of a group within the prole librar y le and the group position is the
position of a PSSM within its group. Both quantities are counted up from 0 while the pro le library
le is read, where the group position counter is reset to O forevery new group. Group identi ers
and positions can be used for sorting the output (see descrtn for -sort in Section A.4.2) or for
PSSM identi cation when post-processing the output by external programs.

A valid, arti cial example for a PSSM library le is

BEGIN GROUP

BEGIN INT

ID Some matrix identifier

AC Some accession

DE A description describing the PSSM
DE Multiple description lines are possible
AP DNA

T was specified by "AP DNA"

BEGIN FLOAT

ID Some other matrix identifier
DE Another description

AL AUCG

LE 2

# A U Cc G
MA 0.0 -35 3.2 -48

MA -42 -10 4.0 -58

END

END

Frequency le format

A frequency le consists of simple character/value pairs, me pair per line. It serves for proper
probability distribution calculation for E- and p-values f or the PSSMs based on a speci ¢ input
sequence.

A line starts with a single character, followed by white spae, followed by the relative frequency of
that character in the input sequence. The relative frequeng is a real number in the interval [0; 1],
the sum of all frequencies speci ed in one le should be D, such that they constitute a sequence
dependent character distribution.
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Comments are allowed and introduced by a# character at the beginning of a line, the whole line is
considered as a comment then. Empty lines are permitted.

A valid example for a uniform distribution on DNA data is

# Uniform nucleotide distribution.
A 0.25
C 0.25
G 0.25
T 0.25

Note that instead of \ T 0.25" it would be equivalent to specify \U 0.25" or two separate lines
reading

T 0.15
U 0.1

if the input sequence alphabet were to de ne \T" and \U" being the same. Frequencies of equivalent
characters are summed up. See below for more information alib symbol mappings.

See Section A.4.4 on page 216 for the description of a tool fafetermining relative frequencies of
characters from an input sequence.

Custom symbol mappings

To work on some sequencePoSSuMsearch PoSSuMdist, and PoSSuMfregsall need to know the
sequence's underlying alphabet. If the input sequence is a@nhanced su x array built by mkvtree?®
from the Vmatch package (seehttp://www.vmatch.de/ ), then this information is stored in the
su x array project. If the input sequence is a plain text form at like Fasta , though, the user must
either provide a symbol mapping le, or use the command line @tions -dna or -protein to specify a
prede ned (built-in) alphabet.

The format of symbol mapping les is the same as the format usd in Vmatch, which is because
the PoSSuM software distribution is based on the same libraries ad/match. Each line consists of
a string of characters that should be regarded as equal. E.gthe le

aA
cC
gG
tT

*

de nes a case-insensitive DNA alphabet. The last line speas a group of special wildcard characters
(only \ *" in the example). Actually the wildcard is just an ordinary c haracter treated in a special
way internally. Note that the symbol mapping parser is quite picky and requires the last line to be
terminated by a newline character.

1Executable binary also included in the PoSSuM software distribution.
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Internally, all characters read from the input sequence aremapped to integers, and all characters
that appear on the same line of the symbol mapping le are mapgd to the same integer such that
there is really no di erence between them internally.

Use of symbol mappings is important for several reasons:

Validation of the input sequence (invalid characters can bedetected and therefore never occur
during searching or in the output).

Special treatment for case-(in)sensitivity, or more geneally, character classes (like \t" = \T"
=\u" =\U"), is unnecessary because these cases are handled &the alphabet transformation
level.

The alphabet imposes an order on its characters by mapping tem to integers (e.g., \a" and
\A" may be mapped to 0, \c" and \C" to 1, etc.). Columns of PSSMs are ordered according to
some alphabet, too ( rst column may stand for \A", second for \C", etc.). If the order of the
input sequence alphabet is di erent from the PSSM's alphabé, then the columns of the PSSM
can be reordered according to the order of the input sequencalphabet (otherwise, the user
would be urged to provide his PSSMs with their columns in inpu sequence alphabet order),
and this can be done with character classes being handled aerctly (if the input sequence is
encoded using the alphabet from the example above and the P88has some column for \U",
then this column is read whenever a \t", \T", \u", or \U" appea rs in the input, additional
columns for any of \t", \T", or \u" will be agged as an error be cause of ambiguities).

A.4.2 PoSSuMsearch
Description

This is the main searching program. It implementsESAsearch for searching PSSMs in an enhanced
su x array, the lazy dynamic programming evaluation algori thm for threshold derivation from E-
and p-values and the fast fragment chaining algorithm of [AQD5] to compute high scoring chains
of PSSM matches. Additionally, other search algorithmsLAsearch and simple search for plain text
formats such like Fasta are implemented. As an alternative to the lazy dynamic progemming
evaluation algorithm, a precalculated probability distri bution generated by PoSSuMdist (see Sec-
tion A.4.3 on page 214) can be used to derive PSSM thresholds.

Command line options

The searching programPoSSuMsearchis called as follows:
possumsearch[options]

Valid choices for options are

-help
Show options and terminate with error code 0.
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-db dble

Name of a database to search in, which can be either an enhanteu x array, or a Fasta ,
GenBankor EMBL le. The sequence must consist of characters over the alphadt as speci ed
by the options -dna, -protein , or -smap, see below. This option is mandatory.

-pr matrix le

Name of a pro le library le. A \library" here is a collection of one or more PSSMs stored in
the format as described in Section A.4.1 on page 200. This ofn is mandatory.

-protein

-dna
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This option is equivalent to the option -smap maple wheremaple stores exactly the following
21 lines:

OZLTITTVs<O0Z40O>»0MITX"T =T

X
joy)
N

*

This speci es an alphabet of size 20 with additional wildcad symbols on the last line. See
Section A.4.1 on page 202 or th&/match manual for a more detailed explanation of the format
of symbol mapping les.

This option is equivalent to the option -smap maple wheremaple stores exactly the following
5 lines:

aA

cC

gG

tTuu
nsywrkvbdhmNSYWRKVBDHM

This speci es an alphabet of size 4 with additional wildcard symbols appearing in the fth
line. See Section A.4.1 on page 202 or theématch manual for a more detailed explanation of
the format of symbol mapping les.
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-smap map le

-freq

Specify the le storing the symbol mapping. If the given maple cannot be found in the direc-
tory where PoSSuMsearchis run, then all directories specied by the environment variable
MKVTREESMAP&&Rsearched. If de ned correctly, this contains a list of drectory paths sep-
arated by colons (\: ").

If the le can't be found, an error message is reported and theprogram exits with error code 1.
See Section A.4.1 on page 202 or th¢match manual for a more detailed explanation of the
format of symbol mapping les.

freq le

Specify the le storing the relative frequencies of characers in the input sequence. See Sec-
tion A.4.1 on page 201 for le format reference and Section A4.4 on page 216 for a description
of PoSSuMfreqs a simple program for generating frequency les from a datalase.

-uniform

-pdis

-lazy

-esa

If no frequency le is available, this option can be speci edto assume characters being dis-
tributed uniformly. Note that this option is not meant for re gular use|for accurate results,
determining the real character distribution and specifying it via -freq is mandatory.

dist le

Specify the le storing a precalculated probability distri bution as generated by PoSSuMdist
for fast computation of E- and p-values for the PSSMs. The le must match the prole

library speci ed by -pr and the alphabet of the input sequence. Because frequencyformation

was already used when the distribution was precalculated byPoSSuMdist, options -freq and
-uniform  are prohibited when using this option. See Section A.4.3 ongge 216 andPoSSuMdist
description for further information. Alternatively, -lazy can be used.

Use lazy dynamic programming for fast computation of E- and pvalues for the PSSMs as
described in [BHGKO6].

Search the PSSMs viaESAsearch as described in [BHGKO06]. This option is only valid if
the dole given to -db is an enhanced su x array which must have been built by mkvtree
beforehand.

-lahead

Search the PSSMs vid_Asearch as described in [WNB0O, BHGKO06]. This option can be used
with all kinds of input sequences.

-simple

-eval

Search the PSSMs via algorithmSPsearchas implemented in FingerPrintScan, Blocksearch
[HH91], Blimps, Matinspector, and probably others. This option can be used with all kinds d
input sequences, but should be used for debugging and benctamking only due to its inferior
e ciency.

E-value
Specify E-value cuto. This option must be combined with either -lazy or -pdis . E-value
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-pval

calculation is based on p-values, it is simply the p-value tnes database size. If combined with
-seqrange , the database size is still assumed to be the size of the wholaput sequence, not
just the range's size. Usedbsize to modify the database size for E-value calculation.

p-value
Specify p-value cuto . This option must be combined with either -lazy or -pdis .

-mssth similarity

Specify a matrix similarity score (MSS) cuto . MS-scores are PSSM scores rescaled to the
interval [0; 1] with the minimum reachable PSSM score corresponding to Orad the maximum
reachable PSSM score corresponding to 1. This scoring schenis used inMatlnspector and
Match [KGR™ 03]. The MSS of PSSMM of length m and a sequencev 2 A™ is de ned as
MSS = Sicm(a"xv;'(v'M)) . (('\,"V,)) and hence given an MSS cuto value, the thresholah is determined
asth = MSS (SCnax (M)  SCmin (M ))+ Scmin (M ). Note that because PSSM thresholds can be
derived from similarity without use of probability distributions, they will not be ¢ alculated by
default and E- and p-values will not be available in the resuts. If this information is required,
also specify-freq , -uniform , or -pdis to tell PoSSuMsearchhow the probability distributions for
displaying E- and p-values should be obtained. Iffreq or -uniform is used, a full probability
distribution must be calculated for each matching PSSM whid can be slow, usingpdis is the
better choice then.

-rawth threshold

-best

-all
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Specify a raw, global threshold for all PSSMs. As PSSM thresblds are set directly and hence
no probability distributions are required to do so, the samediscussion about E- and p-values
as for -mssth applies.

k

Find the k > 0 best (meaning highest scoring) matches per PSSM. If therera less thenk
matches, only those are printed. This option can only be usedn conjunction with -esa and
-lahead . Searching with reduced alphabets on enhanced su x arrays @ptions -realpha and
-esa ), however, does not work together with this option.

Note that since in general matches are found in di erent orde for -esa and -lahead , their results
may also slightly di er (e.g., this is the case when asking fo, say, the best three matches, but
there are actually a total of ve best equally scoring matches in the database, then two of
them never get reported|this is not a bug).

Also note that the threshold used for searching reported foreach match (the value printed
after \threshold" in human readable output, eld 9 in tab del imited output, see Section A.4.2
on page 213) is quite useless ibest is speci ed.

If a PSSM fails to code for the specied cuto, e.g., if a p-value of 10 3° was speci ed, but
the PSSM is only capable to code for a p-value of 1¢?%, then that PSSM is not searched
for by default and a warning is issued instead. If this optionis speci ed, then in these cases
the threshold is set to the maximum possible score the PSSM eayield, so it could match
nonetheless (with a p-value higher than requested, though)
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-dbsize size

Assume the database size isize as basis for E-value calculation. This option a ects E-value
calculation exclusively. By default, the original database size is used. Option-segrange does
not a ect the default value.

-realpha

-sort

This option is speci c to protein data/PSSMs. A problem with protein data is the large
alphabet (when compared to DNA) involved which slows down the ESAsearch algorithm. A

solution is to build an enhanced su x array using a smaller custom alphabet which de nes
groups of amino acids as single representative characterand to search the PSSMs on that
reduced alphabet size index.

Usually PSSMs are converted to match the input sequence alpgbet, such that an error would
be issued when a protein PSSM was searched in an enhanced suarray built with such a
reduced alphabet. The problem then is that groups of distint pro le columns are mapped to
the same sequence character representing a group, and wheoosing that character there is
no way to decide which of the PSSMs' columns should be used facoring. So to handle this
application case properly, the-realpha option must be speci ed. PSSMs are then read as if the
input sequence was encoded by the standard protein alphabegt.e., for enhanced su x arrays
as if they had been built using the-protein  option, and for at les (like Fasta ) as if -protein
had been passed td?oSSuMsearch(see description for-protein  above). PSSMs are converted
internally according to the reduced sequence alphabet andesarched in the reduced sequence,
the intermediate matches found are applied to the original ISSMs and original input sequence
to calculate the correct match scores. Since reduced alpha@is are specic to protein data,
options -rc and -fc  cannot be used together with-realpha , of course.

Note that for applying this option to an enhanced su x array, it must have been built with
the -ois option passed tomkvtree. To specify a reduced alphabet, write a symbol map le as
described in Section A.4.1 on page 202 or in th&match manual and pass that symbol map
to mkvtree via the -smap option. Using this option for at les doesn't make much sense but is
still supported, use PoSSuMsearchs -smap option then. Also don't expect any speed-up when
using reduced alphabets with theLAsearch algorithm.

All PoSSuMsearchoptions retain their original semantics even if-realpha is speci ed, e.g.,-pval
speci es a p-value cuto for the PSSMs as if they were searche directly in the protein data,
hence optionally passed frequencies or precalculated drddutions must refer to the standard
protein alphabet. See Section A.4.6 for a complete examplenohow to use this option.

There is one drawback, though: if both-esa and -best are speci ed, then this option cannot
be used. If-best is needed, uselahead or a full alphabet size version of the index (i.e., no
-realpha ) instead.

keys

Specify order in which matches should be reported. If this opon is omitted, the output is not
sorted in any special way. Thekeys argument is a string of keys the output is to be sorted by,
priority in order of keys. Valid keys are

i PSSM identi er, sorted in lexical order. This is the string t hat is speci ed in the ID tag.
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a PSSM accession, sorted in lexical order. This is the stringhat is speci ed in the ACtag.
p p-value of match, smallest rst.

e E-value of match, smallest rst.

m MSS of match, largest rst.

s Score of match, largest rst.

n Sequence number, smallest rst.

o Position of match in sequence, smallest rst.

-

Group identi er.
t Group position.

g Group identi er and position, short for \ rt "

E.g., to get results sorted by E-value in rst place and sequa&ce number in second place,
specify \-sort en". Matches with both the same E-values and sequence numbergjain are not
sorted in any special way.

Note that a pair of group identi er and group position (sort k ey \g") always identi es exactly
one PSSM, but a PSSM identi er together with its accession (®rt keys \ia " or \ ai ") may not
because multiple PSSMs with equal identi ers and accessiancan be speci ed. If unsure, use
\iag " instead of \ia " or \ aig " instead of \ ai " to make sure to have PSSMs with both the
same identi er and accession separated in the output. Also ote that speci cation of \ gia"
or \gai" is equivalent to only specifying \g" because if PSSMs are already sorted by group
identi er and position in rst place, then further sorting b y PSSM identi er or accession is not
possible (read: unnecessary). In other words, speci catio of \ g" just separates matches by
PSSM in order of occurence in the pro le library, \iag " or \ aig " arrange them in alphabetical
order and then make sure to have distinct PSSMs with equal ideti er and accession strings
being separated.

-pssmsearch k

Sequence classi cation based on a, typically small, libray of known family models. This option
requires a numeric argument,k. Per family model, the (up to) k best matching sequences
are reported. For this option matches to PSSMs are chained amwrding to the order given
in their corresponding \GROURIe nition. A group of PSSMs is also called a PSSM family
model. Employing this options, PoSSuMsearchcomputes and rports high-scoring chains of
PSSM matches instead of single PSSM matches. For fast compation of high-scoring chains
the fragment chaining algorithm of [AOO05] is applied with chain scores de ned according to
Equation (4.8) and Equation (4.7). Using this option, the mode of operation is comparable to
hmmsearchfrom the HMMER package.

-seqclass k
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Sequence classi cation based on a, typically large, libray of known family models. This option
requires a numeric argument,k. Per sequence, the (up to)k best matching family models are
reported. Likewise to \-pssmsearch" this option also employs fragment chaining. Its semantics
are comparable tohmmpfam from the HMMER package.
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-mclen k

Filtering of obtained high scoring chains based on chainlegth. Only chains consisting of at
leastk PSSM matches are reported.

-mrclen k

Filtering of obtained high scoring chains based on relativechainlength. Here k speci es the
chain length necessary for a reported result relative to thenumber of PSSMs in the corre-
sponding family model. k = 0:66 means, that the minimum length of a chain to be reported
has to be at least two third of the number of PSSMs speci ed in he family model.

-format  fmt

-fn

-rc

Specify output format, where fmt is one of

human a human readable multiline format,

cisml CisML [HWO04], an XML-based format,
tabs tab delimited output (see Section A.4.2 on page 213), or
null no output.

Search on forward strand (default). This option works with any alphabet and replaces the
-fwd option of previous versions ofPoSSuMsearch See alsorc , -rn , and -fc . See Section A.4.2
on page 211 and Figure A.2 for a more detailed explanation onhte options concerning search
directions.

Search for reverse complementary matches. This option diddes the default of searching on
the forward strand|specify an extra - to search on both strands, or use option2 or even
-4. This is a DNA speci c option, i.e., the input alphabet must b e a DNA alphabet (or in

better words, a DNA compatible alphabet, not necessarily generated via thedna option of

PoSSuMsearchor mkvtree), and, of course, the PSSMs should encode DNA motifs.

The reason for the DNA speci city is that internally the PSSM s' columns are exchanged (\A"-
column with \T"- or \U"-column and \C"-column with \G"-colu  mn), their rows are reversed
in order, and then a usual search in forward direction is doneBecausePoSSuMsearchsupports
arbitrary alphabets to be used for both, input sequences and®’SSMs, the column exchange
must be done carefully, the compatibility of both alphabets must be checked, and character
classes must be recognized (\T" and \U" could be distinct characters in the input sequence).
Note that PoSSuMsearchdoes not attempt to recognize whether the alphabets are statly
DNA or not, it just tries to nd those columns unambiguously | abelled with characters from
the DNA alphabet and exchanges them. If columns cannot be ex@anged for some reason, the
program will tell so and exit with error code 1. See Section A4.2 on page 211 and Figure A.2
for a more detailed explanation on the options concerning sarch directions. See also option

-ncompl .

A more general, non-DNA speci ¢ approach could be implemergd by requiring the user to
explicitly specify the columns to be exchanged instead of aimdetecting them, but it would be
harder to use without any gain in practical use. Expect no prddlems when using option-dna
throughout.
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-fc

Search for reverse matches. The PSSMs' rows are reversed imder and a usual search in
forward direction is done. This option works with any alphabet. See Section A.4.2 on the
next page and Figure A.2 for a more detailed explanation on tle options concerning search
directions.

Search for complementary matches. Alikerc , this is a DNA speci ¢ option, i.e., the input
alphabet must be a DNA alphabet and the PSSMs should encode DA motifs. Internally,
the PSSMs' columns are exchanged as withrc and a usual search in forward direction is
done, but the PSSMs' rows arenot reversed in order. This option replaces the (misnamed)
option -rev of previous versions ofPoSSuMsearch See Section A.4.2 on the facing page and
Figure A.2 for a more detailed explanation on the options comerning search directions. See
also option -ncompl .

-2
Short for -fn and -rc . If searching for forward and reverse complementary matche this option
is usually what you want. See Section A.4.2 on the next page ahFigure A.2 for a more detailed
explanation on the options concerning search directions.

-4
Short for all of -in , -rc , -m , and -fc . See Section A.4.2 on the facing page and Figure A.2 for
a more detailed explanation on the options concerning seahcdirections.

-ncompl

By default, the matching sequences for matches on the compteentary strand (options -rc
and -fc ) are printed out complemented, i.e.not as they appear in the input sequence. E.g.,
ACds a matching sequence to the rst PSSM in Section A.4.1 on pag 201 with a threshold
of 12 on the forward strand. A reverse complementary matchig sequence to the same PSSM
with threshold 12 is CGT possibly occuring somewhere else on the reverse complerteany
strand. In this case, the string that really occurs in the input sequence isGC/Asince the input
sequence is always considered to be the forward strand. Withut this option, the matching
sequence will be printed asCGTand as GCAotherwise. See Section A.4.2 on the facing page
and Figure A.2 for a more detailed explanation on the optionsconcerning search directions.

-segrange range

-mult
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When using-lahead or -simple , search only in a range of sequences, not all. Thenge is speci ed
as min:max pair, including the borders. A range of 30:39 will search only in sequences 30 to
39, including sequence 30 and 39. Sequence numbers alwayarsat 0.

factor

For probability distribution calculation, the values of th e scoring matrices are scaled by the
value of factor . The default value of factor is 1:0. To speed up calculation of E- and p-values
at the price of loss of precision and to reduce disk space whenriting the distribution to le
using PoSSuMdist, choose a value from interval (Q1). This e ects in a compression of PSSM
score ranges and thereby a reduction of computation time forthe probability distribution
calculation. E.g., a value of Q1 speeds up the probability distribution calculation for a PSSM
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by approximately a factor of 10 (because the PSSM's score raye is only a tenth of the original
range then), but this also means that every 10 consecutive ste values achievable by a PSSM
are condensed into one single p-value, which is likely to pruce false positives and false
negatives.

To enhance precision in some cases, choose a value greateaithl, resulting into an expansion
of score ranges. Since oating point PSSMs must be rounded tdntegers for our dynamic
programming method, a value greater than 1 can help getting letter E- and p-values for
PSSMs containing very small values.

This option should be used with great care. PSSMs with smallescore ranges are more prone
to rounding errors than those with larger ranges. Larger scee ranges result into considerably
more space consumption by the probability distribution calculation.

gm
Do not print status messages tostderr .

qw
Do not print warnings to stderr .

Quiet, do not print anything to stderr . This is equivalent to specifying both -gm and -qw.
Matches are still written to stdout .

-version

Show program version. Option--version is a synonym for this option.

There is also a multithreaded version ofPoSSuMsearch usually called possumsearch-mt. It knows
one additional option:

-j jobs
Number of simultaneous jobs. By default, without this option the number of jobs is 1. Set
the optional argument jobs to the number of physical CPUs inside your computer to get bes
performance or to a lower number to keep some CPUs free for ot processes. Ifobs exceeds
the number of CPUs, performance may su er badly.

If j is specied without jobs, PoOSSuMsearchtries to ask the operation system for the num-
ber of CPUs installed. Note that this may lead to undesired results if Hyper-Threading is
activated|measurements on a 2-processor machine with Hype-Threading enabled showed
drastically reduced performance when using four (virtual) CPUs, that was even slightly below
the performance of a single CPU doing the same task.

Both programs will terminate silently with error code 0 if no error occured. On error, they will
terminate with error code 1 and print the error to stderr .

Search directions

On any data, PoSSuMsearchsupports searching with PSSMs in forward and reverse dire@ns in
orderto nd matches to the provided PSSMs and their reverse Additionally, on DNA data, searching
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Figure A.2: The search directions supported byPoSSuMsearch If the data is DNA, then there
are four cases to consider, namely searching with a PSSM (1hiforward direction on
forward strand (option -in , default), (2) in reverse direction on reverse complementey
strand (option -rc ), (3) in reverse direction on forward strand (option -m ), and (4) in
forward direction on reverse complementary strand (option-fc ). Note that the arrows
denote directions in a biologically correct sense since DNAs commonly read from -
to 3%end. The lower strand in the gure is the complement to the upper strand, not
the reverse. In case of non-DNA data, the lower strand does rieexist, and so then do
cases (2) and (4) not.

on the complementary strand is possible. This sums up to a tadl of four cases, see Figure A.2 for
reference.PoSSuMsearcho ers command line switches to choose any combination of thee, the
default is -in  (search for matches on the forward, non-complementary strad). Specifying one of
the other options disables-in , so-in must be speci ed explicitly if this is also required. Cases 1)
and (3) can be used independently of the alphabet, cases (1)nd (2) are most commonly used on
DNA data. Whether or not cases (3) and (4) are especially usefl in practice is arguable, though,
still we provide options for these since the user usually knas better what he wants than we do.
For convenience, option-2 can be used to search for matches falling into the categoriesf cases (1)
and (2). Use option -4 to search for matches in all four possible ways.

Within PoSSuMsearch only the forward, non-complementary strand is known, as povided by the
user, represented by the upper strand in Figure A.2. Searclmg in reverse direction is implemented by
reversing the PSSM's row order, covering cases (2) and (3).€arching on the complementary strand
is accomplished by alphabet transformation, i.e., by permting the PSSM's columns according to
Watson-Crick base pairing, covering cases (2) and (4). The eqquence itself remains unchanged.
Since a match does not imply the existence of corresponding atches on the complementary strand
nor does it imply the existence of reverse matche?0SSuMsearchmust search explicitly for every
possible case, hence passing optioa results in roughly a 4-fold time consumption for the search
phase compared to when searching for a single case.

There are various possible ways one could think of to reporteverse and/or complementary matches.
In PoSSuMsearch matches are always reported with respect to the forward stand since this is the
only sequence that is explicitly represented in the compute and stored in the database. The left-
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most position of a match relative to the beginning of the seqence the match occurs in is shown
as the start position, starting with position 0, regardless of search direction. E.g., the matching

positions for the instances of cases (1) to (4) in Figure A.2 wuld be reported as marked as 2,
n 10,n 5, and 4, respectively, wheren is the number of characters in the sequence. The matching
sequence is printed in forward direction as occuring in the dtabase, so in particular, not in reverse
even if the match was found on a reverse strand. For matches othe complementary strand, the

complementary sequenceés printed as matching sequence. To get the matching sequeas as they

occure in the database (i.e., on the non-complementary forard strand), specify option -ncompl .

Tab delimited output format

This output format contains one single line per match, contaning 18 entities, separated by tabula-
tors, with the following meanings:

=

. matched PSSM's identi er (ID),
2. matched PSSM's accessionAQ,
3. matched PSSM's description DE multiple lines separated by \. "),

4. group identi er, which is the position of the group in the pro le library le that the PSSM
belongs to, starting at 0,

5. position of PSSM within its group, starting at 0O,

6. start position of the match with respect to the beginning ssquence the match occurs in, starting
at 0 (see Section A.4.2 for more details on this),

7. length of the match,

8. search direction (\fn " for forward non-complementary, \ rc " for reverse complementary, \rn"
for reverse non-complementary, fc " for forward complementary, see Section A.4.2),

9. threshold used for searching (value is useless ifest was speci ed since there is no specic
prede ned threshold in that case),

10. match score,

11. minimum score the PSSM can achieve,
12. maximum score the PSSM can achieve,
13. p-value,

14. E-value,

15. MSS,

16. matching sequence number, starting at O,

17. matching sequence description (multiple lines separad by \. "), and
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18. matching substring (see also Section A.4.2 an®oSSuMsearchoption -ncompl).

Note that tabulators in string entities (descriptions, ide nti er, etc.) are not Itered and may there-
fore cause problems when parsing an output containing such string.

If the probability distribution is not available during mat ch evaluation (maybe becausemssth or
-rawth was speci ed but neither -pdis nor -freq ), the elds for E- and p-value will still be there,

but left empty. The same is true for missing information due to lack of ACor DEtags in the PSSM
speci cation or missing sequence description. A parser reding tab delimited PoSSuMsearchoutput
should take this into account.

A.4.3 PoSSuMdist
Description

This is a supplementary program forPoSSuMsearch It is used to precalculate the complete probabil-
ity distribution which is used to derive PSSM thresholds from E- and p-values. This can be useful if
the same PSSM library is searched multiple times and lazy evaation within PoSSuMsearchshould
be circumvented. Note that a complete probability distribution may require a signi cant amount of
space on le and can take a long time to calculate.

In PoSSuMsearch it is not possible to use a generated probability distribution le with PSSM

libraries di erent from that given to PoSSuMdistto generate the distribution. It is not even possible
if PSSMs are only rearranged within, deleted from or insertd into that PSSM library. Hence the
use of precalculated probability distributions decreaseghe grade of exibility in favor of speed.

Command line options

The program for probability distribution calculation PoSSuMdist is called as follows:
possumdist [options]

Valid choices for options are

-help
Show options and terminate with error code 0.

-pr matrix le
Name of a pro le library le. A\library" here is a collection of one or more PSSMs stored in
the format as described in Section A.4.1 on page 200. This ofn is mandatory.

-protein
Generate a probability distribution le for an input sequen ce encoded by the standard protein
alphabet as described in the description oPoSSuMsearchoption -protein .

-dna
Generate a probability distribution le for an input sequen ce encoded by the standard DNA
alphabet as described in the description oPoSSuMsearchoption -dna.
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-smap map le

Generate a probability distribution le for an input sequen ce encoded by the symbol mapping
de ned in maple . See the description ofPoSSuMsearchoption -smap for more details.

-db dble

-freq

Generate a probability distribution le for the enhanced su x array dble . This option is used
for convenience to just read the symbol mapping from an enhated su x array. The enhanced
su x array itself is not read.

freq le

Specify the le storing the relative frequencies of characers in the input sequence. See Sec-
tion A.4.1 on page 201 for le format reference and Section A.4 on the next page for a
description of PoSSuMfreqgs a simple program for generating frequency les from a datalse.

-uniform

-pdis

-mult

-gm

-qw

If no frequency le is available, this option can be speci edto assume characters being dis-
tributed uniformly. Note that this option is not meant for re gular usel|for accurate results,
determining the real character distribution and specifying it via -freq is mandatory.

dist le

Specify the name of the output le storing the precalculated probability distribution. This le
can be used later byPoSSuMsearchonly in conjunction with the pro le library speci ed by
-pr and input sequences encoded by the speci ed alphabet. Notehtit the factor of -mult given
to PoSSuMdist will be encoded into distle , hence it can't be changed by a later invokation
of PoSSuMsearch See Section A.4.3 on the following page for format descripgdn and more
information.

factor
The values of the scoring matrices are always scaled by the iz of factor , which defaults to
1:0. See the description of thePoSSuMsearchoption -mult on page 210 for more details.

Do not print status messages tostderr .

Do not print warnings to stderr .

Quiet, do not print anything to stderr . This is equivalent to specifying both -gm and -qw.

-version

Show program version. Option--version is a synonym for this option.

Like for PoSSuMsearch there is also a multithreaded version ofPoSSuMdist, called possumdist-mt .
For technical reasons, it needs more RAM than the single-theaded version (sometimes much more)
becauseall probability distributions are kept in RAM and nally writte n to le as a whole after all
calculations are nished. This version knows one addition& option:

215



A Appendix

- jobs
Number of simultaneous jobs. By default, without this options the number of jobs is 1. Set
the optional argument jobs to the number of physical CPUs inside your computer to get bes
performance. See description for optionj of PoSSuMsearchin Section A.4.2 on page 211 for
additional notes, also applying to PoOSSuMdist.

Both programs will terminate silently with error code O if no error occured. On error, they will
terminate with error code 1 and print the error to stderr .

Format of the probability distribution le

A probability distribution le contains the complete proba bility distributions of all PSSMs in

the pro le library in order of occurence, written as binary stream and compressed viazlib (see
http://www.gzip.org/zlib/ ). This data is architecture dependent and can't be exchange be-
tween di erent architectures because of di erent byte orders and eventually di erent sizes of data
types. Exchanging probability distribution les between i ncompatible architectures will yield un-
predictable results, from false matches to program crashes

The distributions are written one after the other, containi ng
minscore the absolute of the minimum achievable score (unsigned irgger),
maxscore the absolute of the maximum achievable score (unsigned ietger),
the absolute of the global matrix minimum multiplied by the m atrix height (unsigned integer),
the factor speci ed by -mult when the distribution was calculated (double), and

an array of p-values of length maxscore minscoretl, ranging from minscoreto maxscore
(doubles).

All scores are scaled by the factor speci ed by-mult and rounded to integers. So, the general le
layout is simply

1. minscore| 1. maxscore| 1. global minimum | 1. factor | 1. array of p-values
2. minscore| 2. maxscore| 2. global minimum | 2. factor | 2. array of p-values

in uncompressed form. To save spacelib is used to compress the output transparently. Usegunzip
(seehttp://www.gzip.org/ ) for manual decompression if needed.

A.4.4 PoSSuMfregs
Description

For accurate results in score threshold calculation from gjni cance thresholds, the relative frequen-
cies of characters in the database need to be knowRoSSuMfregsis a simple program to determine
those frequencies and write them tostdout in the format described in Section A.4.1 on page 201.
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Command line options

The program for determining relative frequencies of charaters PoSSuMfregsis called as follows:
possumfreqs [options]

Valid choices for options are

-help
Show options and terminate with error code 0.

-db dble
Name of a database to determine the relative frequencies ofharacters from, which can be
either an enhanced su x array, or a Fasta , GenBankor EMBL le. The sequence must consist
of characters over the alphabet as speci ed by the optionsdna, -protein , Or -smap, see below.
This option is mandatory.

-protein
Generate a frequency le for an input sequence encoded by thetandard protein alphabet as
described in the description ofPoSSuMsearchoption -protein

-dna
Generate a frequency le for an input sequence encoded by thetandard DNA alphabet as
described in the description ofPoSSuMsearchoption -dna.

-smap map le
Generate a frequency le for an input sequence encoded by theymbol mapping de ned in
map le . See the description ofPoSSuMsearchoption -smap for more details.

.qm
Do not print status messages tostderr .

.qW
Do not print warnings to stderr .

-q

Quiet, do not print anything to stderr . This is equivalent to specifying both -gm and -qw.

-version

Show program version. Option--version is a synonym for this option.

A.4.5 PSSM converters

The PoSSuM software distribution comes with two simple converters,transfac2gen and prints-
2gen, to transform TRANSFAC and PRINTS PSSM libraries into PoSSuM-PSSM format, respec-
tively. They both take a single command line argument, whichis the name of a PSSM library to be
converted. The result is printed to stdout , i.e., it must be redirected to some other le to be usable
by PoSSuMsearchor PoSSuMdist.
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A.4.6 Using the PoOSSuM software distribution
Example 1: Basic operations

Build an enhanced su x array sprot from Fasta le sprot.fas containing protein data, using the
prede ned protein alphabet. To save disk space, not all posble tables are built, only those required
by PoSSuMsearch

$ mkvtree -db sprot.fas -indexname sprot -protein -tis -suf -lcp -skp -v

Generate character distribution from the previously built enhanced su x array sprot and write it to
frequencies.txt , then search all PSSMs inprofiles.txt in sprot , deriving PSSM thresholds via
the lazy dynamic programming algorithm LazyDistrib using an E-value of 10 1> and the character
distribution from frequencies.txt . The size of the database and its alphabet are known from the
sprot project.

$ possumfreqs -db sprot > frequencies.txt
$ possumsearch -pr profiles.txt -db sprot -esa -eval le-15 - lazy\
-freq frequencies.txt

Precalculate probability distribution of PSSM library le profiles.txt , write distribution to
dist.gz , and search all PSSMs with a p-value cuto of 10 ?° or less inFasta le sprot.fas via
LAsearch, which contains protein data with a character distribution stored in frequencies.txt
The alphabet of the database must be explicitly speci ed and match the alphabet used when
dist.gz was created (protein here). Perform the same search again on the previously builen-
hanced su x array via ESAsearchand then via simple search and observe the di erences in runing
time.

$ possumdist -pr profiles.txt -protein -freq frequencies. txt -pdis dist.gz

$ possumsearch -pr profiles.txt -protein -db sprot.fas -pv al 1le-20 -lahead\
-pdis dist.gz

$ possumsearch -pr profiles.txt -db sprot -pval 1e-20 -esa - pdis dist.gz

$ possumsearch -pr profiles.txt -db sprot -pval 1e-20 -simp le -pdis dist.gz

For a working example, take a look into the share/PoSSuM/examples/ directory of the PoSSuM
software distribution. Included are a Bourne shell script (demo.sh), a Fasta sequence le containing
two sequences demo.fas), and 17 PSSMs inPoSSuM-PSSM format (demo.lib ). The shell script
builds an enhanced su x array from the Fasta le and performs some searches in the enhanced
sux array and in the Fasta le. The output of the shell script can be redirected to a le and
compared to the included le results.txt  found in the examples directory.

Example 2: Using reduced alphabets

Here is a complete example on how to use therealpha option of PoSSuMsearchto speed up
ESAsearch We use a custom symbol map, calledprot8.map, containing eight character classes
to build an enhanced su x array sprot8 from the protein data in Fasta le sprot.fas . The

content of prot8.map reads
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G
ALM
v

ND

P
YFWC
KRQE
STH
BXZ*

PoSSuMsearchis used to search the pro les inprofiles.txt in sprot8 . Note that the distribu-
tion data previously generated can be used here again. Remdrar that internally the PSSMs are
treated as if the input sequence was encoded by the standardrptein alphabet, so the probabil-
ity distribution must be, too. Hence when a precalculated probability distribution should be used
in conjunction with -realpha , it must always refer to the standard protein alphabet. All r elevant
commands are shown below.

$ mkvtree -db sprot.fas -indexname sprot8 -smap prot8.map - tis -ois -suf -lcp -skp -v
$ possumfreqs -db sprot.fas -protein > frequencies.txt

$ possumdist -pr profiles.txt -protein -freq frequencies. txt -pdis dist.gz

$ possumsearch -pr profiles.txt -db sprot8 -pval 1e-20 -esa -realpha -pdis dist.gz

The results should be the same as in the example before, exdefpr the ordering.

Example 3: Computing scores for all substrings

If the scores of all substrings of a sequence need to be knowa,g. to determine a distribution

of scores, the best method is to use simple search &SAsearch in conjunction with setting the

threshold to the PSSMs' minscore This can be easily performed by using the normalized matrix
similarity scoring shema, sinceMSS =0 , th = minscore To achieve this, use something like the
following.

$ possumsearch -pr profiles.txt -db sprot -esa -mssth 0

Do not use LAsearch in this case, since here every substring must be read to its fulength anyways
and simple search avoids the extra overhead dfAsearch. Still, ESAsearchis even more preferable.

A.4.7 Messages and warnings

Both programs, PoSSuMsearchand PoSSuMdist, print progress messages to inform the user about
what the program is doing, and warnings if problems are deteted. Messages and warnings are
always printed to stderr and are therefore separated from the matches, which are alwa printed
to stdout .

Messages can safely be ignored, but if any warnings occur, yoshould read them as they could
point you to some undiscovered problem. Ignore them only if yu know they are harmless.

Most warnings are self-explanatory, but there are some thattan be confusing:
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Warnings concerning PSSM library les:

Character “x' is unde ned/de ned as a wildcard/de ned as th e special separator
character in the input alphabet.

A PSSM de nes a column for some character which is not de ned & a valid character in
the database alphabet and will therefore never contribute b a match score. Those columng
are ignored for probability distribution calculation and d uring matching. This is a com-
mon warning for e.g., protein PSSMs de ning a column for "B’ which is a wildcard in the
prede ned protein alphabet.

Character “x' may occur in the input sequence, but is not de n ed for the PSSM.

A character may occur in the database that no column is de nedfor in a PSSM. This is a bad
warning because this means that the missing column is inseed and lled with a very low,
negative score. No problem for the searching algorithms, bua big problem for probability
distribution calculation|the score range is enlarged arti cially and the calculation is likely
to abort due to insu cient memory. Expect to see this warning when e.g., trying to search
DNA PSSMs on protein data.

Character class f... g may occur in the input sequence, but no column for any
of its representatives is de ned in the PSSM.

This is just the same like above, but instead of a single chareter "x', the inserted column
stands for a set of characters. The PSSM is expected to de ne aolumn for exactly one of
them, otherwise the same will happen as described above.

Warnings concerning frequency les:

Character X' is unde ned in the input alphabet.

The frequency le de nes a frequency for some character whik is not de ned in the database
alphabet and will therefore never occur in a sequence. Thiséquency is ignored then.

Character X' is de ned as a wildcard in the input alphabet.

The frequency le de nes a frequency for a character that is ce ned as wildcard in the
database alphabet and will therefore never match. This fregency is still accounted for.

Character "' is de ned as the special separator character i n the input alphabet.

The frequency le de nes a frequency for some character thatis mapped internally to a
special separator which will never occur in a sequence. Thisequency is ignored then.

Sum of relative frequencies is not 1.0.

The sum of all frequencies should be exactly :D such that they constitute a probability
distribution. If the sum is not 1 :0, this warning is issued, but the frequencies are accepte
as provided. Note that this warning can be an artifact due to rounding errors.

If any of the rst three warnings occurs, probably the wrong frequency le for the database

alphabet was speci ed.

Searching on complementary strand withPoSSuMsearch
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A.5 Prede ned Hit-set lIters in the Genlightsystem

Characters "x' and “X' are both unde ned in the input alphabe t.

Searching on the complementary strand, reverse or not, reqtes exchanging PSSM columns,
in particular the \A"-column with \T"- or \U"-column and \C" -column with \G"-column.
PoSSuMsearchtries to nd these columns automatically, ignoring case (sothe “x' and “X'
above may stand for "a' and "A"). If there is no column for neiher the lower nor the upper
case letter of the to-be-exchanged columns, this warning Wibe issued, meaning that the
search will still proceed but with the corresponding columrs unexchanged

A.5 Prede ned Hit-set lters in the Genlight system

In addition to the user de ned Hit-set lters, Genlightcomes with several prede ned lters. Table A.5
on the next page gives an overview of these lters.
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A Appendix

Filter name Arguments Semantic/Explanation
Select only non-identical - With this Iter you can select all pairs from a Hit-set that
homolog pairs are not completely identical. Here completely identical me ans,
that they have exactly the same sequence and annotation
Select full (query) length This lter returns only sequence pairs, where the aligned re -
matches gion detected by the comparison method covers the complete
query sequence
Select full (hit) length This lter returns only sequence pairs, where the aligned re -
matches gion detected by the comparison method covers the complete
database sequence
Select full (hit) length PATTERN1 This lter returns only sequence pairs, where the aligned re -
matches starting with (e.g. ATG), gion detected by the comparison method covers the complete
PATTERNL in matching PATTERN2 database sequence and the aligned region in the query be-
query region and (e.g.- M) gins with PATTERN1 and the aligned region in the datbase
PATTERN2 in matching sequence starts with PATTERN2
hit region
Select full length protein Special Iter for BLASTX, FASTX, FASTY based Hit-sets .
matches starting with Sequence pairs passing this lter, has to match the complete
ATG/M and ending with database sequence. Further the matching area has to start
stop with the start codon ATG in the query, a methionine (M) in
the datbase sequence and has to end with one of the three
stop codons TAA,TAG or TGA.
Select almost full (query) START This lter selects only pairs, where the aligned region cov-
length matches (except OFFSET, ers the query sequence completely, except some allowed mis-
start o set, end o set) END OFFSET matches at the start and the end. The number of allowed non
matching characters is given by the two parameters \START
OFFSET" and \END OFFSET".
Select almost full (hit) START This lter selects only pairs, where the aligned region cove rs
length matches (except OFFSET, the database sequence completely, except some allowed mis-
start o set, end o set) END OFFSET matches at the start and the end. The number of allowed non
matching characters is given by the two parameters \START
OFFSET" and \END OFFSET".
Filter by keyword contained KEYWORD Sequence pairs passing this Iter have to contain the string
in query sequence header (e.g. trans- speci ed by the KEYWORD parameter as a substring in the
membrane), annotation (header) of the query sequence. Setting the OC-
OCCURENCE CURENCE parameter to \NO" negates this lter
Filter by keyword contained KEYWORD Sequence pairs passing this Iter have to contain the string
in hit sequence header (e.g. trans- speci ed by the KEYWORD parameter as a substring in the
membrane), annotation (header) in the annotation of the hit sequence.
OCCURENCE Setting the OCCURENCE parameter to \NO" negates this

Iter.

Table A.5: The prede ned lters in Genlight their parameters and semantics.

222




Bibliography

[ABB*81]

[ABF* 03]

[ABOHO01]

[ACF* 00]

[ACH* 00]

[ADRF04]

[AGM * 90]

[AHB* 04]

[AKO02]

[AKO04]

[ALM * 99]

S. Anderson, A.T. Bankier, B.G. Barrell, M.H. de Bruijn, A.R. Coulson, J. Drouin,
I.C. Eperon, D.P. Nierlich, B.A. Roe, F. Sanger, P.H. Schreer, A.J. Smith, R. Staden,
and I.G. Young. Sequence and organization of the human metdondrial genome.
Nature, 290(5806):457{465, 1981. 1.1

T. K. Attwood, P. Bradley, D. R. Flower, A. Gaulton, N. Mau dling, A. L. Mitchell,
G. Moulton, A. Nordle, K. Paine, P. Taylor, A. Uddin, and C. Zy gouri. PRINTS and
its automatic supplement, prePRINTS. Nucl. Acids Res. 31(1):400{402, 2003. 3.1

S.F. Altschul, R. Bundschuh, R. Olsen, and T. Hwa. The estimation of statistical
parameters for local alignment score distributions. Nucl. Acids Res., 29(2):351{361,
2001. 4.1

T.K. Attwood, M.D.R. Croning, D.R. Flower, A.P. Lewis, J .E. Mabey, P. Scordis,
J.N. Selley, and W. Wright. PRINTS-S: The database formerly known as PRINTS.
Nucl. Acids Res, 28(1):225{227, 2000. 2.5.1, 4.2

M.D. Adams, S.E. Celniker, R.A. Holt, C.A. Evans, J.D. Gocayne, and J.C. Venter et
al. The genome sequence of drosophila melanogast&cience 287(5461):2185{2195,
2000. 1.1

I. Alam, A. Dress, M. Rehmsmeier, and G. Fuellen. Canparative homology agreement
search. An e ective combination of homology search methodsProc. Nat. Acad. Sci.
U.S.A., 101(38):13814{13819, 2004. 4.5.3

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Li pman. Basic local align-
ment search tool. J. Mol. Biol. , 215(3):403{413, 1990. 1.1, 1.1, 2.5, 5.4.3

A. Andreeva, D. Howorth, S.E. Brenner, T.J.P. Hubbard, C. Chothia, and A.G.
Murzin. SCOP database in 2004: re nements integrate structire and sequence family
data. Nucl. Acids Res, 32(1):D226{D229, 2004. 2.7.3, 4.5

M.l. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced su x array and its
applications to genome analysis. InProceedings of the 2nd Workshop on Algorithmns
in Bioinformatics (WABI) , pages 449{463, 2002. 3.5

M.l. Abouelhoda, S. Kurtz, and E. Ohlebusch. Repladng su x trees with enhanced
su x arrays. Journal of Discrete Algorithms, 2:53{86, 2004. 1.1, 3.1, 3.5, 3.5.1

R.A. Alm, L.S. Ling, D.T. Moir, B.L. King, and E.D. Brown. = Genomic-sequence
comparison of two unrelated isolates of the human gastric p#hogen Helicobacter
pylori. Nature, 397(6715):176{180, 1999. 5.7.3

223



Bibliography

[Alt91]

[AMG * 06]

[AMS* 97]

[AO03a]

[AO03D]

[AO05]

[Apo85]

[BBC* 06]

[BBD* 00]

[BCD* 04]

[BCHO8]

[BDD98]

224

S.F. Altschul. Amino acid substitution matrices fr om an information theoretic per-
spective. J. Mol. Biol. , 219(3):555{565, 1991. 2.5.5

T.K. Attwood, A. Mitchell, A. Gaulton, G. Moulton, and L. Tabernero. The PRINTS
protein ngerprint database: functional and evolutionary applications. In M. Dunn,
L. Jorde, P. Little, and A. Subramaniam, editors, Encyclopedia of Genetics, Ge-
nomics, Proteomics and Bioinformatics. John Wiley & Sons, 2006. 2.5.1, 5.4.4

S.F. Altschul, T.L. Madden, A.A. Scha er, J. Zhang, Z. Z hang, W. Miller, and D.J.
Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs.Nucl. Acids Res, 25(17):3389{3402, 1997. 1.1, 1.1, 1.1, 2.5, 2.5.2,
5.4.3

M.l. Abouelhoda and E. Ohlebusch. A local chaining dgorithm and its applications
in comparative genomics. InProceedings of the 3rd Workshop on Algorithms in
Bioinformatics (WABI) , volume 2812, pages 1{16, Springer Berlin/Heidelberg, 2003.
Lecture Notes in Bioinformatics. 4.3

M.l. Abouelhoda and E. Ohlebusch. Multiple genome &gnment: Chaining algo-
rithms revisited. In Proceedings of the 14th Annual Symposium on Combinatorial
Pattern Matching (CPM), volume 2676, pages 1{16, Springer Berlin/Heidelberg,
2003. Lecture Notes in Computer Science. 4.3, 4.3.1

M.l. Abouelhoda and E. Ohlebusch. Chaining algorithms for multiple genome com-
parison. Journal of Discrete Algorithms, 3(2-4):321{341, 2005. 4.3, 4.3.1, 4.3.1, 4.3.1,
44,453,4.7,6.1, Ad2 A42

A. Apostolico. The myriad virtue of subword trees. In Apostolico, A. and Gali,
Z., editor, Combinatorial Algorithms on Words, volume F12, pages 85{96. Springer,
1985. 1.1, 3.4

J. Baumbach, K. Brinkrolf, L.F. Czaja, S. Rahmann, and A. Tauch. CoryneReg-
Net: An ontology-based data warehouse of corynebacterialrainscription factors and
regulatory networks. BMC Genomics, 7(1), 2006. 3.12, 6.1

A. Bateman, E. Birney, R. Durbin, S.R. Eddy, K.L. Howe, and E.L.L. Sonnhammer.
The Pfam protein families database. Nucl. Acids Res. 28(1):263{266, 2000. 2.5.1,
2.7.2

A. Bateman, L. Coin, R. Durbin, R.D. Finn, V. Hollich, S. G ri th-Jones, A. Khanna,
M. Marshall, S. Moxon, E.L.L. Sonnhammer, D.J. Studholme, C Yeats, and S.R.
Eddy. The Pfam protein families database. Nucl. Acids Res, 32(1):D138{D141,
2004. 2.7, 2.7.3

S.E. Brenner, C. Chothia, and T.J.P. Hubbard. Assesing sequence comparison meth-
ods with reliable structurally identi ed distant evolutio nary relationships. Proc. Nat.
Acad. Sci. U.S.A., 95(11):6073{6078, 1998. 4.5

R.E. Bruccoleri, T.J. Dougherty, and D.B. Davidson. Concordance analysis of mi-
crobial genomes.Nucl. Acids Res,, 26(19):4482{4486, 1998. 5.1.1



[BE95a]

[BE95h]

[BG98a]

[BG98b]

[BH87]

[BHGKO6]

[BHK * 93]

[BK97]

[BKML * 07]

[BLBO3]

[BM77]

[BMM * 04]

[BMSLDRO1]

[Bra94]

Bibliography

T. Bailey and C. Elkan. Unsupervised learning of mutiple motifs in biopolymers
using expectation maximization. Machine Learning, 21(1-2):51{80, 1995. 2.3

T. Bailey and C. Elkan. The value of prior knowledge n discovering motifs with
MEME. In Proc. of the Third International Conference on Intelligent Systems for
Molecular Biology, pages 21{29, Menlo Park, CA, 1995. AAIl Press. 2.3

T.L. Bailey and M. Gribskov. Combining evidence ushg p-values: application to
sequence homology searche®&ioinformatics, 14(1):48{54, 1998. 4.5.4

T.L. Bailey and M. Gribskov. Methods and statistics for combining motif match
scores.J. Comput. Biol., 5(2):211{221, 1998. 4.5.4, 4

O.G. Berg and P.H. Hippel. Selection of DNA binding stes by regulatory proteins.
Statistical mechanical theory to operators and promotors.J. Mol. Biol. , 193(4):723{
750, 1987. 2.5.4,25.4

M. Beckstette, R. Homann, R. Giegerich, and S. Kurtz. Fast index based algorithms
and software for matching position speci ¢ scoring matrices. BMC Bioinformatics ,
7(389):, 2006. 6.1, A.4.2

M. Brown, R. Hughey, A. Krogh, |.S. Mian, K. Splaender, and D. Haussler. Using
Dirichlet mixture priors to derive hidden Markov models for protein families. In Proc.
of the First International Conference on Intelligent Systems in Molecular Biology,
pages 47{55, Menlo Park, CA, 1993. AAAI Press. 2.5.6

C.B. Burge and S Karlin. Prediction of complete gene sructures in human genomic
DNA. J. Mol. Biol. , 268(1):78{94, 1997. 2.7

D.A. Benson, |. Karsch-Mizrachi, D.J. Lipman, J. Ostel, and D.L. Wheeler. Genbank.
Nucl. Acids Res, 35(1):D21{D25, 2007. 1.1

S. P. Bennett, L. Lu, and D. Brutlag. 3MATRIX and 3MOT IF: a protein structure
visualization system for conserved sequence motifsNucl. Acids Res., 31(13):3328{
3332, 2003. 2.5, 2.5

R.S. Boyer and J.S. Moore. A fast string searching algrithm. Communications of
the ACM, 20(10):762{772, 1977. 3.4

M. Beckstette, J.T. Mailander, R.J. Marhefer, A. Sczyrba, E. Ohlebusch,
R. Giegerich, and P.M. Selzer. Genlight: Interactive highthroughput sequence anal-
ysis and comparative genomics.Journal of Integrative Bioinformatics, 1(8):, 2004.
1.2,21,312,44,5.1.1,5.7.3,5.7.3, 6.1

S. Bury-Mone, S. Skouloubris, A. Labigne, and H.De Reuse. The Helicobacter pylori
Urel protein: role in adaptation to acidity and identi cati on of residues essential for
its activity and for acid activation. Mol. Microbiol. , 42(4):1021{1034, 2001. 5.7.3

A. et al. Brazma. Approaches to the automatic discoery of patterns in biosequences.
J. Comput. Biol., 5(2):279{305, 1994. 2.3

225



Bibliography

[BRTO6]

[BSH* 04]

[BSS04]

[BT04]

[Bur98g]

[BWO* 96]

[BYGS9]

[Cas88]

[CBKO1]

[CCBH73]

[CGK99]

[CGKO1]

226

J. Baumbach, S. Rahmann, and A. Tauch. CoryneRegNet An integrative bioinfor-
matics platform for the analysis of transcription factors and regulatory networks. In
Proceedings of the European Conference on Computational Blogy (ECCB) , 2006.
3.12,6.1

M. Beckstette, D. Strothmann, R. Homann, R. Giegerich, and S. Kurtz. PoSSuM-
search: Fast and sensitive matching of position speci ¢ saing matrices using en-
hanced su x arrays. In Proc. of the German Conference on Bioinformatics vol-
ume P-53, pages 53{64. Gl Lecture Notes in Informatics, 2004. 3.10, .3, 6.1

M. Beckstette, A. Sczyrba, and P. M. Selzer. GenlighAn interactive system for high-
throughput sequence analysis and comparative genomics. IRroc. of the German
Conference on Bioinformatics, volume P-53 . Gl Lecture Notes in Informatics, 2004.
44,51.1,6.1

M.A. Beer and S. Tavazoie. Predicting gene expressio from sequence. Cell,
117(2):185{198, 2004. 3.1

C.B. Burge. Modelling dependencies in pre-mRNA spting signals. In S. Salzberg,
D. Searls, and S. Kasif, editors,Computational Methods in Molecular Biology, pages
127{163, Amsterdam, 1998. Elsevier Science. 2.7

C.J. Bult, O. White, G.J. Olson, L. Zhou, R.D. Fleischmann, G.G. Sutton, J.A. Blake,
L.M. FitzGerald, R.A. Clayton, J.D. Gocayne, A.R. Kerlavag e, B.A. Dougherty,
J.F. Tomb, M.D. Adams, C.I. Reich, R. Overbeek, E.F. Kirkness, K.G. Weinstock,
J.M. Merrick, A. Glodek, J.L. Scott, N.S. Geoghagen, and J.C Venter. Complete
genome sequence of the methanogenic archaeon, Methanocaggannaschii. Science
273(5278):1058{1073, 1996. 1.1

R. A. Baeza-Yates and G. H. Gonnet. A new approach to &xt searching. In N. J.

Belkin and C. J. van Rijsbergen, editors, Proceedings of the 12th International Con-
ference on Research and Development in Information Retrieal, pages 168{175, Cam-
bridge, MA, 1989. ACM Press. 2.4.2

G. Castillo. Extreme Value Theory in Engineering Academic Press, 1988. 3.8.1

P. Cramer, D.A. Bushnell, and R.D. Kornberg. Structural basis of transcription.
RNA polymerase Il at 2.8 angstrom resolution. Science 292(5523):1863{76, 2001.
22,22

S.N. Cohen, A.C.Y. Chang, H.W. Boyer, and R.B. Heling. Construction of bio-
logically functional bacterial plasmids in vitro. Proc. Nat. Acad. Sci. U.S.A.,
70(11):3240{32444, 1973. 1.1

F. Corpet, J. Gouzy, and D. Kahn. Recent improvements of the ProDom database
of protein familes. Nucl. Acids Res, 27(1):263{267, 1999. 2.5.1

F. Chetouani, P. Glaser, and F. Kunst. FindTarget: software for substractive genome
analysis. Microbiology, 147(10):2643{2649, 2001. 5.1.1



[CGKO02]

[CHCBO4]

[CI95]

[Cla94]

[Con98]

[Con00]

[Con01]

[Con06]

[dB46]

[DDBBO02]

[DDSS01]

[DECS65]

[DEK98]

[Dep03]

[DNMOO]

Bibliography

F. Chetouani, P. Glaser, and F. Kunst. Di Tool: buil ding, visualizing and querying
protein clusters. Bioinformatics, 18(8):1143{1144, 2002. 5.1.1

G.E. Crooks, G. Hon, J.M. Chandonia, and S.E. Brenrer. WebLogo: A sequence logo
generator. Genome Research14(6):1188{1190, 2004. 2.4

J. Cleveland and J.N. Ihle. Contenders in FasL/TNF death signaling. Cell,
81(4):479{482, 1995. 5.5.3

J. M. Claverie. Some useful statistical propertiesof position-weight matrices. Com-
put. Chem, 18(3):287{293, 1994. 2.5.6

The C.elegans Sequencing Consortium. Genome seque of the nematode C. elegans:
a platform for investigating biology. Science 282(5396):2012{2018, 1998. 1.1

The Gene Ontology Consortium. Gene Ontologies: tddor the uni cation of biology.
Nat. Genetics, 25(1):25{29, 2000. 5.4.6

International Human Genome Sequencing ConsortiumInitial sequencing and anal-
ysis of the human genome Nature, 409(6915):860{921, 2001. 1.1, 5.8.1

The Gene Ontology Consortium. The Gene Ontology (GQ project in 2006. Nucl.
Acids Res, 34(1):D322{D326, 2006. 2.7.3

N.G. de Bruijn. A combinatorial problem. In Koninklijke Nederlands Akademie van
Wetenschappen Proceedingsvolume 49, pages 758{764, 1946. 3.5.1

P. Datta, A. Dasgupta, S. Bhakta, and J. Basu. Interaction between FtsZ and FtsW
of Mycobacterium tuberculosis. J. Biol. Chem., 277(28):24983{24987, 2002. 5.7.3

T. Dandekar, F. Du, R.H. Schirmer, and S. Schmidt. Medical target prediction
from genome sequence: combining di erent sequence analgsalgorithms with expert
knowledge and input from arti cial intelligence approaches. Computers and Chem-
istry, 26(1):15{21, 2001. 5.1

M.O. Dayho, R.V. Eck, M.A. Chang, and M.R. Sochard. Atlas of protein sequence
and structure. National Biomedical Research Foundation, Sver Spring, MD, 1965.
1.1

R. Durbin, S. Eddy, and A. Krogh. Biological sequence analysis. Probabilistic models
of proteins and nucleic acids Cambridge University Press, New York, 1998. 2.7.2,
45

Logical Depth. LDhmmer. http://logicaldepth.com/ldhmmer , 2003. 4.7

B. Dorohonceanu and C.G. Nevill-Manning. Accelerding protein classi cation using

sux trees. In in Proc. of the International Conference on Intelligent Sysems for
Molecular Biology, pages 128{133, Menlo Park, CA, 2000. AAAI Press. 3.1, 3.4,1
3.4.1, 35, 3.10, 3.10, 3.1, 3.2, 3.12

227



Bibliography

[Doo81]

[Doo86]

[DRF* 03]

[ED94]

[Edd98]

[Edd02]

[EJG* 03]

[EKM97]

[ENCO4]

[EPC* 00]

[EUA96]

[EVvDOO02]

[FAH* 01]

[FAW * 95]

[FBO5]

228

R.F. Doolittle. Similar amino acid sequences: chare or common ancestry?Science
214(4517):149{159, 1981. 1.1

R.F. Doolittle. Of URFs and ORFs: a primer on how to analyze derived amino acid
sequences University Science Books, Mill Valley, California, 1986. 2.2

Q. Dong, L. Roy, M. Freeling, V. Walbot, and V. Brendel. ZmDB, an integrated
database for maize genome researctNucl. Acids Res., 31(1):244{247, 2003. 5.7.1

S.R. Eddy and R. Durbin. RNA sequence analysis using avariance models. Nucl.
Acids Res, 22(11):2079{2088, 1994. 5.8.1

S. R. Eddy. Prole hidden Markov models. Bioinformatics, 14(9):755{763, 1998.
1.1,11,27.2,7,27.2,2.7.3,45,54.4

S.R. Eddy. A memory e cient dynamic programming alg orithm for optimal struc-
tural alignment of a sequence to an rna secondary structure BMC Bioinformatics ,
3(18), 2002. 5.8.1

A.J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander, and D.S. Marks. MicroRNA
targets in Drosophila. Genome Biol, 5(1):R1, 2003. 5.8.1

P. Embrechts, C. Klsappelberg, and T. Mikosch. Modelling Extremal Events Springer,
1997. 3.8.1

ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements)
Project. Science 306(5996):636{640, 2004. 5.8.1

G. Emilien, M. Ponchon, C. Caldas, O. Isacson, and J.M. Mépteaux. Impact of
genomics on drug discovery and clinical medicine.Quarterly journal of medicine,
93(7):391{423, 2000. 1.1

T. Etzold, A. Ulyanov, and P. Argos. SRS: information retrieval system for molecular
biology data banks. Methods Enzymol, 266:114{28, 1996. 5.1.1

AJ. Enright, S. van Dongen, and C.A. Ouzounis. An ecient algorithm for large-
scale detection of protein families.Nucl. Acids Res., 30(7):1575{1584, 2002. 5.4.3

D. Frishman, K. Albermann, J. Hani, K. Heumann, A. Metanomski, A. Zollner, and
H.W. Mewes. Functional and structural genomics using PEDANT. Bioinformatics,
17(1):44{57, 2001. 5.1.1

R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R.
Kerlavage, C.J. Bult, J.F. Tomb, B.A. Dougherty, and J.M. Me rrick. Whole-
genome random sequencing and assembly of Haemophilus in ogae Rd. Science
269(5223):496{512, 1995. 1.1

V. Freschi and A. Bogliolo. Using sequence compressi to speedup probabilistic
pro le matching. Bioinformatics, 21(10):2225{2229, 2005. 3.1



[FCD* 76]

[FGW* 95]

[FHSWO04]

[Fit70]

[FMSB* 06]

[FSD* 05]

[Galos]

[GBB* 96]

[GBYS92]

[GFB* 01]

Bibliography

W. Fiers, R. Contreras, F. Duerinck, G. Haegemann, D. Iseentant, J. Merregaert,
W. Min Jou, F. Molemans, A. Raeymaekers, A. van den Berghe, GVolckaert, and
M. Ysebaert. Complete nucleotide sequence of bacterioph@gMS2 RNA: primary
and secondary structure of the replicase geneNature, 260(5551):500{507, 1976. 1.1

C.M. Fraser, J.D. Gocayne, O. White, M.D. Adams, R.A. Clayton, R.D. Fleischmann,
C.J. Bult, A.R. Kerlavage, G. Sutton, J.M. Kelley, R.D. Frit chman, J.F. Weidman,
K.V. Small, M. Sandusky, J. Fuhrmann, D. Nguyen, T.R. Utterb ack, D.M. Saudek,
C.A. Phillips, J.M. Merrick, J.F. Tomb, B.A. Dougherty, K.F . Bott, P.C. Hu, T.S.
Lucier, S.N. Peterson, H.O. Smith, C.A. Hutchison, and J.C. Venter. The minimal
gene complement of Mycoplasma genitaliumScience 270(5235):397{403, 1995. 1.1

M.C. Frith, U. Hansen, J.L. Spouge, and Z. Weng. Firding functional sequence
elements by multiple local alignment. Nucl. Acids Res. 32(1):189{200, 2004. 2.3

W.M. Fitch. Distinguishing homologous from analogous proteins. Syst. Zool,
19(2):99{113, 1970. 1.1

R.D. Finn, J. Mistry, B. Schuster-Bockler, S. Grith-Jo nes, V. Hollich, T. Lassmann,
S. Moxon, M. Marshall, A. Khanna, R. Durbin, S.R. Eddy, E.L. Sonnhammer, and
A. Bateman. Pfam: clans, web tools, and servicesNucl. Acids Res, 34(1):D247{
D251, 2006. 1.1, 4.2,4.5.3,4.7,5.4.4,5.45

K. Florquin, Y. Saeys, S. Degroeve, P. Rouze, and Y. Van dé’eer. Large-scale
structural analysis of the core promotor in mammalian and plant genomes. Nucl.
Acids Res, 33(13):4255{4264, 2005. 3.12, 6.1

M. Y. Galperin. The molecular biology database cokction: 2005 update.Nucl. Acids
Res, 33(1):D5{D24, 2005. 2.5.1

A. Go eau, B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Gal-
ibert, J.D. Hoheisel, C. Jacq, M. Johnston, E.J. Louis, H.W. Mewes, Y. Mu-
rakami, P. Philippsen, H. Tettelin, and S.G. Oliver. Life with 6000 genes.Science
274(5287):546{567, 1996. 1.1

G. Gonnet, R.A. Baeza-Yates, and T. Snider. New inites for text: PAT trees and
PAT arrays. In Frakes, W.B. and Baeza-Yates, R.A., editor, Information Retrieval:
Algorithms and Data Structures, volume 132, pages 66{82. Prentice-Hall, New Jersy,
1992. 3.5

P. Glaser, L. Frangeul, C. Buchrieser, C. Rusniok, A. Amad, F. Baquero, P. Berche,
H. Bloecker, P. Brandt, T. Chakraborty, A. Charbit, F. Cheto uani, E. Couve,
A. de Daruvar, P. Dehoux, E. Domann, G. Dominguez-Bernal, E.Duchaud, L. Du-
rant, O. Dussurget, K.D. Entian, H. Fsihi, F. Garcia-del Por tillo, P. Garrido, L. Gau-
tier, W. Goebel, N. Gomez-Lopez, T. Hain, J. Hauf, D. Jackson L.M. Jones,
U. Kaerst, J. Kreft, M. Kuhn, F. Kunst, G. Kurapkat, E. Maduen o, A. Maitour-
nam, J.M. Vicente, E. Ng, H. Nedjari, G. Nordsiek, S. Novellg B. de Pablos, J.C.
Perez-Diaz, R. Purcell, B. Remmel, M. Rose, T. Schlueter, N.Simoes, A. Tierrez,

229



Bibliography

[GIMM * 05]

[GK95]

[GK99]

[GKHCO1]

[GLE90]

[GMES7]

[GMR* 03]

[Gon04]

[Got93]

[GS964]

[GS96b]

[Gus97]

[GV96]

[GW94]

230

J.A. Vazquez-Boland, H. Voss, J. Wehland, and P. Cossart. Cmparative genomics
of Listeria species.Science 294(5543):849{52, 2001. 5.1

S. Grith-Jones, S. Moxon, M. Marshall, A. Khanna, S.R. E ddy, and A. Bateman.
Rfam: annotating non-coding RNAs in complete genomesNucl. Acids Res., 1:121{
124, 2005. 5.8.1

R. Giegerich and S. Kurtz. A comparison of imperativeand purely functional su x
tree constructions. Science of Computer Programming 25(2-3):187{218, 1995. 3.5

M.Y. Galperin and E.V. Koonin. Searching for drug targets in microbial genomes.
Current Opinion in Biotechnology, 10(6):51{57, 1999. 5.7.3

J. Gough, K. Karplus, R. Hughey, and C. Chlothia. Assignment of homology to
genome sequences using a library of hidden Markov models theepresent all proteins
of known structure. J. Mol. Biol., 313(4):903{919, 2001. 2.7.3, 4.7, 5.4.4

M. Gribskov, R. Luethy, and D. Eisenberg. Prole analysis. Meth. Enzymol.,
183:146{159, 1990. 2.6

M. Gribskov, M. McLachlan, and D. Eisenberg. Prole analysis: Detection of dis-
tantly related proteins. PNAS, 84(13):4355{4358,1987. 1.1,1.1, 1.1, 2.5, 2.5.1, 2.5.5,
2.6,3.1

A. Gattiker, K. Michoud, C. Rivoire, A. H. Auchincloss, E . Coudert, T. Lima,
P. Persey, M. Pagni, C.J.A. Sigrist, C. Lachaize, A.-L. Veuthey, and E. Gasteifer.
Automatic annotation of microbial proteomes in Swiss-Prot. Comput. Biol. Chem.,
27(1):49{58, 2003. 2.5.1, 2.6

H.G. Gonnet. Some string matching problems from Bimformatics which still need
better solutions. J. Discrete Algorithms, 2(1):3{15, 2004. 3.1

O. Gotho. Optimal alignment between groups of sequeces and its application to
multiple sequence alignment. Comput. Appl. Biosci., 9(3):361{370, 1993. 2.6

T. Gaasterland and C.W. Sensen. Fully automated gesme analysis that re ects user
needs and preferences. A detailed introduction to the MAGPE system architecture.
Biochemie, 78(5):302{10, 1996. 5.1.1

T. Gaasterland and C.W. Sensen. MAGPIE: automated gnome interpretation.
Trends in Genetics, 12(2):76{8, 1996. 5.1.1

D. Gus eld. Algorithms on Strings, Trees, and Sequences Cambridge University
Press, New York, 1997. 3.4

M. Gribskov and S. Veretnik. Identi cation of sequence patterns with pro le analysis.
Methods Enzymol, 266:198{212, 1996. 2.5.5

L. Goldstein and M.S. Waterman. Approximations to pro le score distributions. J.
Comput. Biol., 1(2):93{104, 1994. 3.8.1



[HBO1]

[HBB* 06]

[HBFB99]

[HDBYS]

[HdITVO3]

[HETCOO]

[HGPHOO0]

[HGPM98]

[HH89]

[HH91]

[HH94]

[HHO6]

[HHAP95]

[HHGO6]

Bibliography

J.Y. Huang and D.L. Brutlag. The EMOTIF Database. Nucl. Acids Res, 29(1):202
{204, 2001. 2.4.2

N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro , P.S. Langendijk-
Genevaux, M. Pagni, and C. J. A. Sigrist. The PROSITE database. Nucl. Acids
Res, 34(1):D227{D230, 2006. 2.4.2

K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch. T he PROSITE database, its
status in 1999. Nucl. Acids Res,, 27(1):215{9, 1999. 2.5.1, 2.6

M. Huynen, T. Dandekar, and P. Bork. Dierential gen ome analysis applied to the
species-speci c features of Helicobacter pyloriFEBS Letters, 426(1):1{5, 1998. 5.1

E. Herrero, M.A. de la Torre, and E. Valentin. Comp arative genomics of yeast species:
new insights into their biology. Int. Microbiology, 6(3):183{90, 2003. 5.1

J.D. Hughes, P.W. Estep, S. Tavazoie, and G.M. Chuch. Computational identi ca-
tion of cis-regulatory elements associated with functiondly coherent groups of genes
in Saccharomyces cerevisiael. Mol. Biol., 296(5):1205{1214, 2000. 2.3

J.G. Heniko, E.A. Greene, S. Pietrokovski, and S. Heniko . Increased coverage of
protein families with the Blocks database servers.Nucl. Acids Res, 28(1):228{230,
2000. 2.5.1,3.1,3.2,4.2,5.4.4, A4.1

A.O. Henriques, P. Glaser, P.J. Piggot, and C.P. Maan. Control of cell shape and
elongation by the rodA gene in Bacillus subtilis. Molecular Microbiology, 28(2):235{
247,1998. 5.7.3

S. Heniko and J.G. Heniko . Amino acid substitution matrices from protein blocks.
Proc. Nat. Acad. Sci. U.S.A., 89(22):10915{10919, 1989. 2.5

S. Heniko and J.G. Heniko . Automated assembly of protein blocks for database
searching. Nucl. Acids Res. 19(23):6565{6572, 1991. 2.3, 2.5.1, A.4.2

S. Heniko and J.G. Heniko. Position-based sequene weights. J. Mol. Biol.,
243(4):574{578, 1994. 2.5.2

J.G. Heniko and S. Heniko . Using substitution prob abilities to improve position-
speci ¢ scoring matrices. Comput. Appl. Biosci., 12(2):135{143, 1996. 2.5.1, 2.5.5,
255,256,256, 3.1

S. Heniko, J.G. Heniko, W. Alford, and S. Pietrok ovski. Automated construc-
tion and graphical presentation of protein blocks from unaigned sequencesGene
163(2):17{26, 1995. 2.5.7

T. Hechsmann, M. Hechsmann, and R. Giegerich. Theamodynamic matchers:
Strengthening the signi cance of RNA folding energies. InProceedings of the Com-
putational Systems Conference (CSB)pages 111{121, 2006. 5.8.1

231



Bibliography

[HHS90]

[HKB * 93]

[HKOO02]

[HP99]

[HRCVO00]

[HS95]

[HS99]

[HSHA92]

[HSL* 04]

[HSWO3]

[HTG* 94]

[HW04]

[HWB90]

232

G. Hertz, G. lll Hartzel, and G. Stormo. Identicati on of consensus patterns in
unaligned DNA sequences known to be functionally related. Comput. Appl. Biosci.,
6(2):81{92, 1990. 2.3

D. Haussler, A. Krogh, M. Brown, |.S. Mian, and K. Splander. Protein modeling
with hidden Markov models: an analysis of globins. InProc. of the 26th Hawaii
International Conference on System Sciencegpages 792{802, Washington, DC, USA,
1993. IEEE Computer Society. 1.1, 2.7.2, 2.7.2

M. Hehl, S. Kurtz, and E. Ohlebusch. E cient multip le genome alignment. Bioin-
formatics, 18(1):312{320, 2002. 4.3.1

J.G. Heniko and S. Pietrokovski. Blocks+: A non-red undant database of protein
alignment blocks derived from multiple compilations. Bioinformatics, 15(6):471 {
479, 1999. 25.1, 4.2, A4d.1l

J.V. Helden, A.F. Rios, and J. Collado-Vidies. Discovering regulatory elements in
non-coding sequences by analyses of spaced dyadsucl. Acids Res. 28(8):1808{
1818, 2000. 2.3

G.Z. Hertz and G.D. Stormo. Identi cation of consensis patterns in unaligned DNA
and protein sequences: a large-deviation statistical basifor penalizing gaps. In
Proc. of the Third International Conference on Bioinformat ics and Genome Re-
search pages 201{216, Singapore, 1995. World Scienti ¢ Publistiig Co. 2.5.1

G.Z. Hertz and G. Stormo. Identifying DNA and protein patterns with statistically
signi cant alignments of multiple sequences. Bioinformatics, 15(7):563{577, 1999.
23,23

J. Heringa, H. Sommerfeldt, D. Higgins, and P. Arges. OBSTRUCT: a program to
obtain largest cliques from a protein sequence set accordinto structural resolution
and sequence similarity. Comput. Appl. Biosci., 8(6):599{600, 1992. 2.5.2

N. Hulo, C.J.A. Sigrist, V. Le Saux, P. S. Langendijk-Gerevaux, L. Bordoli, A. Gat-
tiker, E. De Castro, P. Bucher, and A. Bairoch. Recent improvements to the PRO-
SITE database. Nucl. Acids Res, 32(1):134{137, 2004. 1.1, 3.1

D. H. Haft, J. D. Selengut, and O. White. The TIGRFAMs database of protein
families. Nucl. Acids Res,, 31(1):371{373, 2003. 1.1, 2.7, 2.7.2,2.7.3,4.2,4.7,5.4.4

D. Higgins, J. Thompson, T. Gibson, J.D. Thompson, D.G. Hggins, and T.J. Gibson.

CLUSTAL W: Improving the sensitivity of progressive multip le sequence alignment
through sequence weighting, position-speci ¢ gap penaltés and weight matrix choice.

Nucl. Acids Res., 22(22):4673{4680, 1994. 2.5.1, 4.5.2

P.M. Haverty and Z. Weng. CisML: an XML-based format f or sequence motif detec-
tion software. Bioinformatics, 20(11):1815{1817, 2004. 3.11, A.4.2

S. Heniko , J.C. Wallace, and J.P. Brown. Finding pr otein similarities with nucleotide
sequence databasedMethods Enzymol, 183:111{132, 1990. 2.5.4



[IHS* 01]

[131* 89]

[ISW* 89]

[JCHO5]

[KAO3]

[KBB * 03]

[KBD94]

[KBHO8]

[KDW * 04]

[Kei02]

[Ken83]

Bibliography

V.R. lyer, C.F. Horak, C.S. Scafe, D. Bolstein, M. Snyder and P.Q. Brown. Genomic
binding sites of the yeast cell-cycle transcription factor SBF and MBF. Nature,
409(6819):533{538, 2001. 2.3

F. Ishino, H.K. Jung, M. lkeda, M. Doi, M. Wachi, and M. Mat suhashi. New mu-
tations fts-36, Its-33, and ftsW clustered in the mra region of the Escherichia coli
chromosome induce thermosensitive cell growth and divisio. Journal of Bacteriol-
ogy, 171(10):5523{5530, 1989. 5.7.3

M. Ikeda, T. Sato, M. Wachi, H.K. Jung, F. Ishino, Y. Kobay ashi, and M. Matsuhashi.
Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus
subtilis SpoVE protein, which function in cell division, cell elongation, and spore
formation, respectively. Journal of Bacteriology, 171(11):6375{6378, 1989. 5.7.3

I. Jonassen, J.F. Collins, and D.G. Higgins. Findirg exible patterns in unaligned
protein sequencesProtein Sci., 4(8):1587{1595, 1995. 2.3

P. Ko and S. Aluru. Space e cient linear time construc tion of su x arrays. In
R. Baeza-Yates, E. Chavez, and M. Chrochemore, editorsProceedings of the 14th
Annual Symposium on Combinatorial Pattern Matching (CPM), volume 2676, pages
200{210, Springer-Verlag, New York, 2003. Lecture Notes irComputer Science. 1.1,
35

J. Kalinowski, B. Bathe, D. Bartels, N. Bischo, M. Bott, A. Burkovski, N. Dusch,
L. Eggeling, B.J. Eikmanns, L. Gaigalat, A. Goesmann, M. Hatmann, K. Huth-
macher, R. Kramer, B. Linke, A.C. McHardy, F. Meyer, B. Mockel, W. Pfe erle,
A. Puhler, D.A. Rey, C. Ruckert, O. Rupp, H. Sahm, V.F. Wend isch, I. Wiegrabe,
and A. Tauch. The complete corynebacterium glutamicum ATCC 13032 genome
sequence and its impact on the production of I-aspartate-deved amino acids and
vitamins. J. Biotechnol., 104(1-3):5{25, 2003. 5.10

M.M. Khattar, K.J. Begg, and W.D Donachie. Identi ¢ ation of FtsW and character-
ization of a new FtsW division mutant of Escherichia coli. Journal of Bacteriology,
176(23):7140{7147, 1994. 5.7.3

K. Karplus, C. Barret, and R. Hughey. Hidden Markov m odels for detecting remote
protein homologies. Bioinformatics , 14(10):846{856, 1998. 2.7.2, 4.5

P.J. Kersey, J. Duarte, A. Williams, Y. Karavidopoulou, E. Birney, and R. Apweiler.
The international protein index: An integrated database for proteomics experiments.
Proteomics, 4(7):1985{1988, 2004. 5.4.8

P.A. Keich, U. Pevzner. Finding motifs in the twilig ht zone. Bioinformatics,
18(10):1374{1381, 2002. 2.3

W. Kent. A simple guide to ve normal forms in relatio nal database theory. Com-
munications of the ACM, 26(2):120{125, 1983. 5.5.4

233



Bibliography

[KGH* 06]

[KGP* 05]

[KGR* 03]

M. Kanehisa, S. Goto, M. Hattori, K.F. Aoki-Kinoshita, M . Itoh, S. Kawashima,
T. Katayama, M. Araki, and M. Hirakawa. From genomics to chemical genomics:
new developments in KEGG. Nucl. Acids Res, 34(1):D354{357, 2006. 5.8.1

A. Krek, D. Grun, M.N. Pay, R. Wolf, L. Rosenberg, E.J. Epstein, P. MacMenamin,
I. da Piedade, K.C. Gunsalus, M. Sto el, and N. Rajewsky. Combinatorial microRNA
target predictions. Nat Genet, 37(5):495{500, 2005. 5.8.1

A.E. Kel, E. Ga ling, I. Reuter, E. Cheremushkin, O.V. K el-Margoulis, and E. Win-
gender. MATCH: a tool for searching transcription factor binding sites in DNA
sequencesNucl. Acids Res,, 31(13):3576{3579, 2003. 1.1, 2.5.9, 2.5.9, 3.1, 3.2, A4.2

[KKMBW99] A. Kel, O. Kel-Margoulis, V. Babenko, and E. Winge nder. Recognition of

[KLA * 01]

[KLVHSO01]

[KMP77]

[KMSH94]

[Koo03]

[KS03]

[KSPPO3]

[KTP * 04]

234

NFATp/AP-1 composite elements within genes induced upon the activation of im-
mune cells. J. Mol. Biol., 288(3):353{376, 1999. 2.5.9

T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time Longest-
Common-Pre x Computation in Su x Arrays and its Applicatio ns. In 12th Annual
Symposium on Combinatorial Pattern Matching (CPM2001), volume 2089, pages
181{192, Springer-Verlag, New York, 2001. Lecture Notes irComputer Science. 3.5

B. Krogh, B. Larsson, G. von Heijne, and E.L.L. Somhammer. Predicting trans-
membrane protein topology with a hidden Markov model: Application to complete
genome.J. Mol. Biol., 305(3):567{580, 2001. 2.7

D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast patter n matching in strings. SIAM
Journal on Computing, 6(2):323{350, 1977. 3.4

A. Krogh, M. Mian, |.S. Splander, and D. Haussler. Hidden Markov Models in Com-
putational Biology - Applications to Protein Modeling. J. Mol. Biol., 235(5):1501{
1531, 1994. 1.1, 2.7.2, 2.7.2

E.V. Koonin. Comparative genomics, minimal gene-sts and the last universal com-
mon ancestor. Nature Reviews Microbiology 1(2):127{36, 2003. 5.1

J. Karkkainen and P. Sanders. Simple Linear Work Sux Array Construction. In
Proceedings of the 13th International Conference on Automta, Languges and Pro-
gramming. Springer, 2003. 1.1, 3.5

D.K. Kim, S. Sim, J, H. Park, and K. Park. Linear-Tim e Construction of Su x Ar-
rays. In R. Baeza-Yates, E. Chavez, and M. Chrochemore, editrs, Proceedings of the
14th Annual Symposium on Combinatorial Pattern Matching (CPM, volume 2676,
pages 186{199, Springer-Verlag, New York, 2003. Lecture Nes in Computer Science.
1.1, 35

M. G. Kann, P. A. Thiessen, A. R. Panchenko, A. A. Schae er, S. F. Altschul, and
S. H. Bryant. A structure-based method for protein alignment. Bioinformatics,
21(8):1451{1456, 2004. 2.5



Bibliography

[Kur99] S. Kurtz. Reducing the space requirement of su x trees. Software-Practice and
Experience 29(13):1149{1171, 1999. 3.5

[Kur05a] S.  Kurtz. Lecture Notes for foundations of sequene analysis.
http://www.zbh.uni-hamburg.de/teaching/SS2005/00.91 4/scriptSommer2005.pdf
2005. 4.3

[KurO5b] S.  Kurtz. The Vmatch large scale sequence analysis software.

http://www.vmatch.de/ , 2005. 3.10

[LAO2] B. Lara and A. Ayala. Topological characterization of the essential Escherichia coli
cell division protein FtsW. FEMS Microbiol. Lett. , 216(1):23{32, 2002. 5.7.3

[LAB* 93] C.E. Lawrence, S.F. Altschul, M.S. Bogouski, J.S. Liu, AF. Neuwald, and J.C.
Wooten. Detecting subtle sequence signals: A Gibbs sampln strategy for multi-
ple alignment. Science 262(5131):208{214, 1993. 2.3, 2.5.4, 2.5.6, 2.5.6, 2.5.6

[LCP* 06] I. Letunic, R.R. Copley, B. Pils, S. Pinkert, J. Schultz, and P. Bork. SMART 5:
domains in the context of genomes and networks.Nucl. Acids Res, 34(1):D257{
D260, 2006. 2.7.3, 4.2, 4.7, 5.4.4

[LFWWO03] T. Li, K. Fan, J. Wang, and W. Wang. Reduction of prot ein sequence complexity by
residue grouping. Protein Engineering, 16(5):323{330, 2003. 3.6.1

[LGY " 03] L.P. Lim, M.E. Glasner, S. Yekta, C.B. Burge, and D.B. Bartel. Vertebrate mi-
croRNA genes. Science 299(5612):1540, 2003. 5.8.1

[Low76] B. Lowerre. The Harpy Speech Recognition System Carnegie-Mellon University,
1976. 4.7
[LP85] D.J. Lipman and W.R. Pearson. Rapid and sensitive praein similarity searches.

Science 227(4693):1435{1441,1985. 1.1, 1.1, 1.1

[LR90] C.E. Lawrence and A.A. Reilly. An expectation maximization algorithm for the iden-
ti cation and characterization of common sites in unaligned biopolymer sequences.
Proteins, 7(1):41{51, 1990. 2.3

[LSIR* 03] B.P. Lewis, IH. Shih, M.W. Jones-Rhoades, D.P. Bartel, ad C.B. Burge. Prediction
of mammalian microRNA targets. Cell, 115(7):787{98, 2003. 5.8.1

[LTO6] N. Li and M. Tompa. Analysis of computational approaches for motif discovery.
Algorithms for Molecular Biology, 1(8), 2006. 2.3

[LTHKOS6] K. Liolios, N. Tavernarakis, P. Hugenholtz, and NC . Kyrpides. The Genomes On
Line Database (GOLD) v.2: a monitor of genome projects worldvide. Nucl. Acids
Res. 34(1):D332{D334, 2006. 1.1

[Lup96] A. Lupas. Prediction and analysis of coiled-coil stuctures. Meth. Enzymology
266:513{525, 1996. 5.4.3

235



Bibliography

[LVDS91]

[LXB94]

[MAA * 07]

[Mar02]

[MBADS * 05]

[MBG * 03]

[MBPS* 02]

[McC76]

[MEA* 05]

236

A. Lupas, M. Van Dyke, and J. Stock. Predicting coiled coils from protein sequences.
Science 252(5010):1162{1164, 1991. 5.4.3

R. Luthy, I. Xenarios, and P. Bucher. Improving the s ensitivity of the sequence pro le
method. Protein Sci., 3(1):139{146, 1994. 2.5.2

Nicola J. Mulder, Rolf Apweiler, Teresa K. Attwood, Amos Bairoch, Alex Bateman,
David Binns, Peer Bork, Virginie Buillard, Lorenzo Cerutti , Richard Copley, Em-
manuel Courcelle, Ujjwal Das, Louise Daugherty, Mark Dibley, Robert Finn, Wolf-
gang Fleischmann, Julian Gough, Daniel Haft, Nicolas Hulo,Sarah Hunter, Daniel
Kahn, Alexander Kanapin, Anish Kejariwal, Alberto Labarga , Petra S. Langendijk-
Genevaux, David Lonsdale, Rodrigo Lopez, lvica Letunic, Matin Madera, John
Maslen, Craig McAnulla, Jennifer McDowall, Jaina Mistry, A lex Mitchell, Anasta-
sia N. Nikolskaya, Sandra Orchard, Christine Orengo, Robetr Petryszak, Jeremy D.
Selengut, Christian J. A. Sigrist, Paul D. Thomas, Franck Valentin, Derek Wilson,
Cathy H. Wu, and Corin Yeats. New developments in the InterPro database. Nucl.
Acids Res, 35(1):D224{228, 2007. 4.7

B. Marshall. Helicobacter pylori: 20 years on.Clinical medicine, 2(2):147{152, 2002.
5.7.3

A. Marchler-Bauer, J.B. Anderson, C. DeWeese-Scott, ND. Fedorova, L.V. Geer,
M. Gwadz, S. He, D.l. Hurwitz, J.D. Jackson, Z. Ke, C. Lanczyki, C.A. Liebert,
C. Liu, F. Lu, G.H. Marchler, M. Mullokandov, B.A. Shoemaker, V. Simonyan, J.S.
Song, P.A. Thiessen, R.A. Yamashita, J.J. Yin, D. Zhang, andS.H. Bryant. CDD: a
Conserved Domain Database for protein classi cation.Nucl. Acids Res., 33(1):D192{
196, 2005. 2.5,5.4.4

C.O. Marian, S.J. Bordoli, M. Goltz, R.A. Santarella, L. P. Jackson, O. Danilevskaya,
M. Beckstette, R. Meeley, and H.W. Bass. The MaizeSingle myb histonel gene,
Smh1 belongs to a novel gene family and encodes a protein that bds telomere DNA
repeats in vitro. Plant Physiology, 133(3):1336{1350, 2003. 1.2, 5.7.1, 5.8, 6.1

A. Marchler-Bauer, A.R. Panchenko, B.A. Shoemaker, P.A Thiessen, L.Y. Geer, and
S.H. Bryant. CDD: a database of conserved domain alignmentsvith links to domain
three-dimensional structure. Nucl. Acids Res, 30(1):281{3, 2002. 5.4.4

E.M. McCreight. A space-economical su x tree construction algorithm. Journal of
the ACM, 23(2):262{272, 1976. 1.1, 3.4, 3.4.1

Marcel Margulies, Michael Egholm, William E Altman, Said Attiya, Joel S Bader,
Lisa A Bemben, Jan Berka, Michael S Braverman, Yi-Ju Chen, Zloutao Chen,
Scott B Dewell, Lei Du, Joseph M Fierro, Xavier V Gomes, Brian C Godwin, Wen
He, Scott Helgesen, Chun Heen Ho, Gerard P Irzyk, SzilveszteC Jando, Maria L |
Alenquer, Thomas P Jarvie, Kshama B Jirage, Jong-Bum Kim, Janes R Knight,
Janna R Lanza, John H Leamon, Steven M Lefkowitz, Ming Lei, Jng Li, Kenton L
Lohman, Hong Lu, Vinod B Makhijani, Keith E McDade, Michael P McKenna, Eu-
gene W Myers, Elizabeth Nickerson, John R Nobile, Ramona Plat, Bernard P Puc,



[MFG* 03]

IMG77]

IMG02]

[MGO6]

[MGM * 03]

[MLUL * 05]

[MMO9O0]

[MM93]

[MMBBO5]

[MN61]

[Mor68]

Bibliography

Michael T Ronan, George T Roth, Gary J Sarkis, Jan Fredrik Simons, John W
Simpson, Maithreyan Srinivasan, Karrie R Tartaro, Alexander Tomasz, Kari A Vogt,

Greg A Volkmer, Shally H Wang, Yong Wang, Michael P Weiner, Pengguang Yu,

Richard F Begley, and Jonathan M Rothberg. Genome sequencin in microfabri-

cated high-density picolitre reactors. Nature, 437(7057):376{380, 2005. 1.1, 1.1,
4.7

V. Matys, E. Fricke, R. Ge ers, E. Ga ling, M. Haubrock, R. Hehl, K. Hornischer,
D. Karas, A. E. Kel, O. V. Kel-Margoulis, D.-U. Kloos, S. Land, B. Lewicki-Potapov,
H. Michael, R. Munch, |. Reuter, S. Rotert, H. Saxel, M. Schee, S. Thiele, and
E. Wingender. TRANSFAC(R): transcriptional regulation, f rom patterns to pro les.
Nucl. Acids Res, 31(1):374{378, 2003. 3.1, 3.10

M. Maxam and W. Gilbert. A new method for sequencing DNA. Proc. Nat. Acad.
Sci. U.S.A., 74(2):560{564, 1977. 1.1

M. Madera and J. Gough. A comparison of pro le hidden Markov model procedures
for remote homology detection. Nucl. Acids Res., 30(19):4321{4328, 2002. 2.7.2

K. Malde and R. Giegerich. Calculating PSSM probabiities with lazy dynamic pro-
gramming. J. Functional Programming, 16(1):75{81, 2006. 3.10

F. Meyer, A. Goesmann, A.C. McHardy, D. Bartels, T. Bekel, J. Clausen, J. Kali-
nowski, B. Linke, O. Rupp, R. Giegerich, and A. Pshler. GenDB{an open source
genome annotation system for prokaryote genomesNucl. Acids Res., 31(8):2187{95,
2003. 5.1.1

H. Mi, B. Lazareva-Ulitsky, R. Loo, A. Kejariwal, J. Vand ergri, S. Rabkin, N. Guo,
A. Muruganujan, O. Doremieux, M.J. Campbell, H. Kitano, and P.D. Thomas. The
PANTHER database of protein families, subfamilies, functions and pathways. Nucl.
Acids Res, 33(1):D284{D288, 2005. 2.7.3, 4.7, 5.8.1

U. Manber and E.W. Myers. Su x arrays: A new method for on-line string searches.
In Proceedings of the ACM-SIAM Symposium on Discrete Algoritims, pages 319{327,
1990. 1.1

U. Manber and E.W. Myers. Su x arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935{948, 1993. 3.5

P. Martinez, K. Malde, M. Beckstette, and J. Baguna. The origin of bilateral animals.
A multigene approach. Comparative Biochemistry and Physiology. Abstracts of the
Society for Experimental Biology Annual Main Meeting, 141:S119{S120, 2005. 5.8

J.H. Matthaei and M.W. Nirenberg. Characteristics and stabilization of DNAase-
sensitive protein synthesis in E.coli extracts. Proc. Nat. Acad. Sci. U.S.A.,
15(47):1580{1588, 1961. 1.1

D. R. Morrison. PATRICIA - practical algorithm to re trieve information coded in
alphanumeric. Journal of the Association of Computing Machinery, 15(4):514{534,
1968. 3.4

237



Bibliography

[Mou02]

[MRHSMO2]

[MS58]

[MWLOO]

[Mye99]

[NHHO0]

INKKZ06]

[NLLO5]

[NLLL97]

INS76]

INW70]

INWB9S]

[Pea90]

[Pea94]

238

Mouse Genome Sequencing Consortium. Initial sequeing and comparative analysis
of the mouse genomeNature, 420(6915):520{562, 2002. 5.8.1

M. Mollenhauer-Rektorschek, G. Hanauer, G. Sach, and K. Melchers. Expression of
Urel is required for intragastric transit and colonization of gerbil gastric mucosa by
Helicobacter pylori. Research in microbiology 153(10):659{666, 2002. 5.7.3

M. Meselson and F.W. Stahl. The replication of DNA in Escherichia coli. Proc. Nat.
Acad. Sci. U.S.A,, 44(7):671{682, 1958. 1.1

L. R. Murphy, A. Wallgvist, and R.M. Levy. Simplied amino acid alphabets for
protein fold recognition and implications for folding. Protein Engineering, 13(3):149{
152, 2000. 3.6.1

G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM, 46(3):395{415, 1999. 2.4.2

C. Notredame, D. Higgins, and J. Heringa. T-Co ee: A novel method for multiple
sequence alignmentsJ. Mol. Biol. , 302(1):205{217, 2000. 2.5.1

J.W. Nam, J. Kim, S.K. Kim, and B.T. Zhang. ProMiR Il : a web server for the
probabilistic prediction of clustered, nonclustered, corserved and nonconserved mi-
croRNAs. Nucl. Acids Res. 34:W455{8, 2006. 5.8.1

A.F. Neuwald, J.S. Liu, and C.E. Lawrence. Gibbs motif sampling: Detection of
bacterial outer membrane repeats.Protein Sci., 4:1618{1632, 1995. 2.3

A.F. Neuwald, J.S. Liu, D.J. Lipman, and C.E. Lawre nce. Extracting protein align-
ment models from the sequence databaseNucl. Acids Res, 25(9):1665{1677, 1997.
25.2

K. Nishikawa and H.A. Scheraga. Geometrical criterd for formation of coiled-coil
structures in polypeptide chains. Macromolecules 9(3):395{407, 1976. 5.4.3

S.B. Needlemann and C.D. Wunsch. A general method agjrable to the search for
similarities in the amino acid sequence of two proteinsJ. Mol. Biol. , 48(3):443{453,
1970. 1.1, 1.1

C.G. Nevill-Manning, T.D. Wu, and D.L. Brutlag. Hig hly speci c protein sequence
motifs for genome analysis.Proc. Nat. Acad. Sci. U.S.A., 95(11):5865 { 5871, 1998.
11

W.R. Pearson. Rapid and sensitive sequence compson with FASTP and FASTA. In
Doolittle, R., editor, Methods Enzymol, volume 183, pages 63{98. Academic Press,
San Diego, CA, 1990. 5.4.3

W. R. Pearson. Using the FASTA program to search progin and DNA sequence
databases.Methods Mol. Biol., 24:307{331, 1994. 5.4.3



[Pea99]

[PH88]

[PlROS]

[Pro07]

[PSTBOS]

[PTS* 05]

[QFWW95]

[QSP* 05]

[Rab90]

[Rah03]

[Rat04]

[RD04]

[Reh02]

[Reh06]

Bibliography

W.R. Pearson. Flexible sequence similarity searatg with the FASTA3 program
package. In Misener, S. and Krawetz, S., editorBioinformatics Methods and Proto-
cols, volume 132, pages 185{219. Humana Press, Totowa, NJ, 1999. 5.4.3

J.D. Palmer and L.A. Herborn. Plant mitochondrial DN A evolves rapidly in struc-
ture, but slowly in sequence.J. Mol. Evol., 28(1-2):87{97, 1988. 5.5.2

T. Pbtz. Advanced Stochastic Protein Sequence AnalysisDissertation, Faculty of
Technology, Bielefeld University, 2005. 4.7

Progeniq BioBoost accelerator boards. Performare benchmarks: Bio-
Boost ©HMMer. http://www.progenig.com/products/ , 2007. 4.7

R. Pudimat, E. G. Schukat-Talamazzini, and R. Backofen. A multiple feature frame-
work for modelling and predicting transcription factor bin ding sites. Bioinformatics ,
21(14):3082{3088, 2005. 3.1

F. Pearl, A. Todd, I. Sillitoe, M. Dibley, O. Redfern, T. L ewis, C. Bennett, R. Mars-
den, A. Grant, D. Lee, A. Akpor, M. Maibaum, A. Harrison, T. Da liman, G. Reeves,
I. Diboun, S. Addou, S. Lise, C. Johnston, A. Sillero, J. Thomton, and C. Orengo.
The CATH domain structure database and related resources Gee3D and DHS pro-
vide comprehensive domain family information for genome aalysis. Nucl. Acids Res,
33(1):D247{D251, 2005. 2.7.3, 5.4.4

K. Quandt, K. Frech, E. Wingender, and T. Werner. Ma tind and Matlnspector: new
fast and versatile tools for detection of consensus matches nucleotide data. Nucl.
Acids Res, 23(23):4878{4884, 1995. 3.1, 3.2

E. Quevillon, V. Silventoinen, S. Pillai, N. Harte, N. Mulder, R. Apweiler, and
R. Lopez. InterProScan: protein domains identi er. Nucl. Acids Res., 33:W116{
W120, 2005. 4.7

L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. In Waibel, A. and Lee,K. F., editor, Readings in speech recognitionpages
267{296. Morgan Kaufmann Publishers Inc., San Francisco, @, 1990. 2.7.1, 2.7.2

S. Rahmann. Dynamic programming algorithms for twostatistical problems in com-
putational biology. In Proc. of the 3rd Workshop of Algorithms in Bioinformatics
(WABI) , pages 151{164. LNCS 2812, Springer Verlag, 2003. 3.1, 3183.8.2

Rat Genome Sequencing Project Consortium. Genomeegjuence of the brown norway
rat yields insights into mammalian evolution. Nature, 428(6982):493{521, 2004. 5.8.1

M. Regnier and A. Denise. Rare events and conditionakvents on random strings.
Discrete Math. Theor. Comput. Sci., 6(2):191{214, 2004. 2.3

M. Rehmsmeier. Automatic evaluation of database s&ch methods. Brie ngs in
Bioinformatics, 3(4):342{352, 2002. 4.5

M. Rehmsmeier. Prediction of microRNA targets. Methods Mol. Biol , 342:87{89,
2006. 5.8.1

239



Bibliography

[RHECO8]

[RIS02]

[RMV03]

[RRW* 00]

[RSHGO4]

[Ruv01]

[RVO1]

[RYW * 00]

[RZG* 02]

[SAC90]

[SAE* 04]

240

F.P. Roth, J.D. Hughes, P.W. Estep, and G.M. Church. Finding DNA regulatory mo-
tifs within unaligned noncoding sequences clustered by wHe-genome mRNA quan-
titation. Nature Biotechnology, 16(10):939{945, 1998. 2.3

S. Rajasekaran, X. Jin, and J.L. Spouge. The e cientcomputation of position speci ¢
match scores with the fast fourier transformation. J. Comput. Biol., 9(1):23{33, 2002.
3.1

S. Rahmann, T. Mudller, and M. Vingron. On the power of pro les for transcription
factor binding site detection. Statistical Applications in Genetics and Molecular
Biology, 2(1), 2003. 3.1, 4.1

B. Ren, F. Robert, J.J. Wyrick, O. Aparicio, E.G. Jennings, I. Simon, J. Zeitlinger,
J. Schreiber, N. Hannet, E. Kanin, T.L. Volker, C.J. Wilson, S.P. Bell, and R.A.
Young. Genome-wide location and function of DNA binding praeins. Science
290(5500):2306{2309, 2000. 2.3

M. Rehmsmeier, P. Ste en, M. Hechsmann, and R. Gigerich. Fast and e ective
prediction of microRNA/target duplexes. RNA, 10(10):1507{1517, 2004. 5.8.1

G. Ruvkun. Molecular biology: Glimpses of a tiny RNA world.  Science
294(5543):797{799, 2001. 5.8.1

M. Rehmsmeier and M. Vingron. Phylogenetic informaton improves homology de-
tection. Proteins: Structure, Function, and Genetics, 45(4):360{371, 2001. 4.5

G.M. Rubin, M.D. Yandell, J.R. Wortman, G.L. Gabor-Mikl os, C.R. Nelson, |.K.
Hariharan, M.E. Fortini, P.W. Li, R. Apweiler, W. Fleischma nn, J.M. Cherry,

S. Heniko, M.P. Skupski, S. Misra, M. Ashburner, E. Birney, M.S. Boguski,
T. Brody, P. Brokstein, S.E. Celniker, S.A. Chervitz, D. Coates, A. Cravchik,

A. Gabrielian, R.F. Galle, W.M. Gelbart, R.A. George, L.S. Goldstein, F. Gong,
P. Guan, N.L. Harris, B.A. Hay, R.A. Hoskins, J. Li, Z. Li, R.O . Hynes, S.J. Jones,
P.M. Kuehl, B. Lemaitre, J.T. Littleton, D.K. Morrison, C. M ungall, P.H. O'Farrell,

O.K. Pickeral, C. Shue, L.B. Vosshall, J. Zhang, Q. Zhao, X.H Zheng, and S. Lewis.
Comparative genomics of the eukaryotesScience 287(5461):2204{15, 2000. 1.1

J. Raymond, O. Zhaxybayeva, J.P. Gogarten, S.Y. Gerdesand R.E. Blankenship.
Whole-genome analysis of photosynthetic prokaryotes. Science 298(5598):1616{
1620, 2002. 5.5.2

H.O. Smith, T.M. Annau, and S. Chandrasegaran. Findng sequence motifs in groups
of functionally related proteins. Proc. Nat. Acad. Sci. U.S.A., 87(2):826{830, 1990.
2.3

A. Sandelin, W. Alkema, P. Engstrom, W.W. Wasserman, andB. Lenhard. JASPAR:
an open-access database for eukaryotic transcription faotr binding pro les. Nucl.
Acids Res, 32(1):D91{D94, 2004. 2.5.1, 3.1, 5.8.1



[SBB*]

[SBGAO4]

[SC75]

[SCH* 82]

[SCKO0]

[SER* 99]

[SFA99]

[SHO0]

[SJ99]

[SKB* 96]

[SLSBOS]

[SLZA* 02]

[SMD98]

Bibliography

A. Sczyrba*, M. Beckstette*, A.H. Brivanlou, R. Giegerich, and C.R. Altmann.
XenDB: Full length cDNA prediction and cross species mappitg in Xenopus laevis.
1.2,5.7.2,58,6.1

A. Sczyrba, M. Beckstette, R. Giegerich, and C.A. Atmann. Identi cation of 10,500
Xenopus laevis full length clones through EST clustering ad sequence analysis. In
Proceedings of the German Conference on Bioinformatics (G®). Discovery Notes,
volume P-53, pages 6{7. Lecture Notes in Informatics, 2004. 5.8

F. Sanger and A.R. Coulson. A rapid method for determming sequences in DNA by
primed synthesis with DNA polymerase. J. Mol. Biol. , 54(3):441{446, 1975. 1.1

F. Sanger, A.R. Coulson, G.F. Hong, D.F. Hill, and G.B. Pdersen. Nucleotide se-
guence of bacteriophage lambda DNA.J. Mol. Biol., 162(4):729{773, 1982. 1.1

C. Suter-Crazzolara and G. Kurapkat. An infrastructure for comparative genomics
to functionally characterize genes and proteinsGenome informatics, 11:24{32, 2000.
5.1.1

S.R. Sunyaev, F. Eisenhaber, I.V. Rodchenkov, B. Eiserdber, V.G. Tumanyan, and
E. Kuznetsov. PSIC: prole extraction from sequence alignnents with position-
speci ¢ counts of independent observations. Protein Engineering, 12(5):387{394,
1999. 2.5.2

P. Scordis, D.R. Flower, and T.K. Attwood. FingerPRINTScan: intelligent searching
of the PRINTS motif database. Bioinformatics, 15(10):799{806, 1999. 3.1, 3.2, A4.1

G.D. Stormo and G.W. Hartzell. Identifying protein binding sites from unaligned
DNA fragments. PNAS, 86(4):1183{1187, 1990. 2.5.4

S. Suerbaum and C. Josenhans. Virulence factors of keobacter pylori: implications
for vaccine development.Mol. Med. Today, 5(1):32{39, 1999. 5.7.3

K. Splander, K. Karplus, M. Brown, R. Hughey, A. Krogh, and D. Haussler. Dirichlet
mixtures: A method for improved detection of weak but signi cant protein sequence
homology. Comput. Appl. Biosci., 12(4):327{345, 1996. 2.5.1, 2.5.6

Q.J. Su, L. Lu, S. Saxonov, and D.L. Brutlag. eBLOCKS: enumerating conserved
protein blocks to achieve maximal sensitivity and specicity. Nucl. Acids Res,
33(1):D178{182, 2005. 2.5.1, 2.5.8

N. Sabarth, S. Lamer, U. Zimney-Arndt, P.R. Jungblut, T. F. Meyer, and D. Bumann.
Identi cation of surface proteins of Helicobacter pylori by selective biotinylation,
a nity puri cation, and two-dimensional gel electrophore sis. Journal of Biological
Chemistry, 277(31):27896{27902, 2002. 5.7.3

J. Stoye, V. Moulton, and A.W.M. Dress. DCA: An e cie nt implementation of the
divide-and-conquer multiple sequence alignment algoritm. Gene 211(2):GC45{
GC56, 1998. 2.5.1

241



Bibliography

[SSZ07]

[STO3]

[Sta89]

[STLDROS]

[Sto98]

[SW81]

[SWP* 99]

[TAK94]

[TFJ* 03]

[THG94]

[THHM92]

[TimO6]

[TKL97]

242

D.E. Schones, A.D. Smith, and M.Q. Zhang. Statistial signi cance of cis-regulatory
modules. BMC Bioinformatics , 8(19), 2007. 3.1, 3.4.1

S. Sinha and M. Tompa. YMF: a program for discovery of movel transcription factor
binding sites by statistical overrepresantion. Nucl. Acids Res. 31(13):3586{3588,
2003. 2.3

R. Staden. Methods for calculating the probabilities for nding patterns in sequences.
Comp. Appl. Biosci., 5(2):89{96, 1989. 3.1, 3.8.1

S. Skouloubris, J.M. Thiberge, A. Labigne, and H.De Reuse. The Helicobacter pylori
Urel protein is not involved in urease activity but is essental for bacterial survival
in vivo. Infection and immunity, 66(9):4517{4521, 1998. 5.7.3

J. Stoye. Multiple sequence alignment with the divde-and-conquer method. Gene
211(2):GC45{GC56, 1998. 2.5.1

T.F. Smith and M.S. Waterman. Identi cation of commo n molecular subsequences.
J. Mol. Biol., 147:195{197, 1981. 1.1, 1.1, 2.5,5.4.3

A. A. Schaeer, Y. I. Wolf, C. P. Ponting, E. U. Koonin, L. A ravind, and S.F.
Altschul. IMPALA: matching a protein sequence against a colection of PSI-BLAST
constructed position speci c scoring matrices. Bioinformatics, 15(12):1000{1011,
1999. 2.5

R.L. Tatusov, S.F. Altschul, and E.V. Koonin. Detec tion of conserved segments in
proteins: Iterative scanning of sequence databases with igihment blocks. Proc. Nat.
Acad. Sci. U.S.A,, 91(25):12091{12095, 1994. 2.5.1, 2.5.5, 2.5.6, 2.5.6, 2.5351

R.L. Tatusov, N.D. Fedorova, J.D. Jackson, A.R. JacobsB. Kiryutin, E.V. Koonin,
D.M. Krylov, R. Mazumder, S.L. Mekhedov, A.N. Nikolskaya, B .S. Rao, S. Smirnov,
A.V. Sverdlov, S. Vasudevan, Y.l. Wolf, J.J. Yin, and D.A. Natale. The COG
database: an updated version includes eukaryote88MC Bioinformatics , 4(41), 2003.
5.4.5

J.D. Thompson, D.G Higgins, and T.J. Gibson. Improved sensitivity of prole
searches through the use of sequence weights and gap exaisi@omput. Appl. Biosci.,
10(1):19{29, 1994. 2.5.2

G.R. Turbett, P.B. Hoj, R. Horne, and B.J. Mee. Puri cation and characterization
of the urease enzymes of Helicobacter species from humansdaanimals. Infection
and immunity, 12(60):5259{5266, 1992. 5.7.3

TimeLogic biocomputing solution. Performance berchmarks: HMM performance.
http://www.timelogic.com/benchmark  _hmm.htm| 2006. 4.6, 4.7

R.L. Tatusov, E.V. Koonin, and D.J. Lipman. A genomi c perspective on protein
families. Science 278(5338):631{637, 1997. 5.4.5



[TLB* 05]

[TLM * 01]

[TLRSO1]

[TNG* 01]

[TWK * 97]

[UKK95]

[VASO]

[vDOO]

[WAC* 07]

[WC53]

[WCF* 98]

[Wei73]

[WESS00]

Bibliography

M. Tompa, N. Li, T. L. Bailey, G.M. Church, B. De Moor, E. El eazar, A.V. Favorov,
M.C. Frith, Y. Fu, W.J. Kent, V.J. Makeev, A.A. Mironow, W.S. Noble, G. Pavesi,
G. Pesole, M. Regnier, N. Simonis, S. Sinha, G. Thijs, J. van ldlden, M. Vandenbo-
gaert, Z. Weng, C. Workman, C. Ye, and Z. Zhu. Assessing compational tools for
the discovery of transcription factor binding sites. Nature Biotechnology, 23(1):137{
144, 2005. 2.3, 2.5

G. Thijs, M. Lescot, K. Marchal, S. Rombauts, B. De Moor, P. Rouze, and Y. Moreau.
Higher-order background model improves the detection of ppmotor regulatory ele-
ments by Gibbs sampling. Bioinformatics, 17(12):1113{1122, 2001. 2.3

Cormen T.H., C.E. Leiserson, R.L. Rivest, and C. Stin. Introduction to algorithms,
second edition MIT Press and McGraw-Hill, 2001. 3.9

R.L. Tatusov, D.A. Natale, I.V. Garkavtsev, T.A. Tatuso va, U.T. Shankavaram, B.S.
Rao, B. Kiryutin, M.Y. Galperin, N.D. Fedorova, and E.V. Koo nin. The COG
database: new developments in phylogenetic classi catiomf proteins from complete
genomes.Nucl. Acids Res, 29(1):22{28, 2001. 5.4.5

J.F. Tomb, O. White, A.R. Kerlavage, R.A. Clayton, and G. G. Sutton. The complete
genome sequence of the gastric pathogen Helicobacter pyloNature, 388(6642):539{
547, 1997. 5.7.3

E. Ukkonen. On-line construction of su x-trees. Algorithmica, 14(3), 1995. 1.1, 3.4

M. Vingron and P. Argos. A fast and sensitive multiple alignment algorithm. Comput.
Appl. Biosci., 5:115{121, 1989. 4.3.1

S. van Dongen. Graph clustering by ow simulation. In PhD Thesis. University of
Utrecht, The Netherlands, 2000. 5.4.3

Y. Wang, K.J. Addess, J. Chen, L.Y. Geer, J. He, S. He, S. LUT. Madej, A. Marchler-
Bauer, P. A. Thiessen, N. Zhang, and S.H. Bryant. MMDB: annotating protein
sequences with entrez's 3D-structure database.Nucl. Acids Res, 35(1):298{300,
2007. 5.4.4

J.D. Watson and F.H.C. Crick. A structure for desoxyribose nucleic acid. Nature,
171(4356):737{738, 1953. 1.1

E. Wingender, X. Chen, E. Fricke, R. Ge ers, R. Hehl, I. Liebich, M. Krull, V. Matys,
and H. Michael. Databases on transcriptional regulation: TRANSFAC, TRRD, and
COMPEL. Nucl. Acids Res, 26(1):362{367, 1998. 1.1, 2.5.1

P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE
Annual Symposium on Switching and Automata Theory pages 1{11, The University
of lowa, 1973. 1.1, 3.4, 3.4

D.L. Weeks, S. Eskandari, D.R. Scott, and G. Sachs. A H+-gated urea chan-
nel: the link between Helicobacter pylori urease and gastd colonization. Science
287(5452):482{485, 2000. 3.15

243



Bibliography

[WHSO05]

[WJ94]

[WM92]

[WNB99]

[WNBOO]

[WNH* 04]

[WQCO6]

[YHO1]

[YMM * 06]

[YTI * 98]

[ZMD * 96]

[ZP65]

[ZSWMOO]

244

S. Washietl, I.L. Hofacker, and P.F. Stadler. Fast and reliable prediction of noncoding
RNAs. Proc. Nat. Acad. Sci. U.S.A., 102(7):2454{2459, 2005. 5.8.1

L. Wang and T. Jiang. On the complexity of multiple sequence alignment.J. Comput.
Biol., 1(4):337{338, 1994. 2.3

S. Wu and U. Manber. Fast text searching allowing erras. In Communications of
the ACM, volume 35, pages 83{91. ACM Press, New York, NY, USA, 1992. 2.4.2

T.D. Wu, C.G. Nevill-Manning, and D.L. Brutlag. Min imal-risk scoring matrices for
sequence analysisJ. Comput. Biol., 6(2):219{235, 1999. 2.5.1, 2.5.8, 2.5.8, 2.5.8, 3.1

T.D. Wu, C.G. Nevill-Manning, and D.L. Brutlag. Fas t probabilistic analysis of
sequence function using scoring matricesBioinformatics, 16(3):233{244, 2000. 1.1,
3.1, 3.3,3.3.1, 33.1, 3.8.1, 3.8.2, A4.2

C.H. Wu, A. Nikoloskaya, H. Huang, L.S.L. Yeh, D.A. Natale, Vinajaka C.R., Z.Z.
Hu, R. Mazumder, S. Kumar, P. Kourtesis, R.S. Ledley, B.E. Swek, L. Arminski,

Y. Chen, J. Zhang, J.L. Cardenas, S. Chung, J. Castro-AlvearG. Dinkov, and W.C.

Barker. PIRSF: family classi cation system at the Protein | nformation Ressource.
Nucl. Acids Res, 32(1):D112{D114, 2004. 4.7

J.P. Walters, B. Qudah, and V. Chaudhary. Accelerating HMMER sequence analysis
suite using conventional processors. IrProceedings of the 20th International Con-
ference on Advanced Information Networking and Aplicatiors (AINAO6) , volume 1,

pages 289{294, Washington, DC, USA, 2006. IEEE Computer Saety. 4.7

Y.K. Yu and T. Hwa. Statistical signi cance of probab ilistic sequence alignment and
related local hidden Markov models.J. Comput. Biol., 8(3):249{282, 2001. 4.1

C. Yeats, M. Maibaum, R. Marsden, M. Dibley, D. Lee, S. Addu, and C.A. Orengo.
Gene3D: Modelling protein structure, function and evolution. Nucl. Acids Res,
34(1):D281{D284, 2006. 4.7

T. Yada, Y. Totoki, M. Ishikawa, K. Asai, and K. Nakai. Aut omatic extraction of
motifs represented in the hidden Markov model from a number & DNA sequences.
Bioinformatics, 14(4):317{325, 1998. 2.3

E. Zaychikov, E. Martin, A. Denissova, M. Kozlov, V. Mark ovtsov, M. Kashlev,
H. Heumann, V. Nikiforov, A. Goldfarb, and A. Mustaev. Mappi ng of catalytic
residues in the RNA polymerase active center.Science 273(5271):107{109, 1996.
2.2

E. Zuckerkand| and L. Pauling. Molecules as documerst of evolutionary history. J.
Theoretical Biology, 8(2):357{366, 1965. 1.1

Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning
DNA sequences.J. Comput. Biol., 7(1-2):203{214, 2000. 5.4.3



	Introduction
	The continuing challenge of biosequence analyis
	Structure of this thesis

	Modeling concepts for sequence motifs and consensi
	Basic definitions and nomenclature
	Motifs, domains, and sequence families
	Motif finding
	Regular expressions as motif descriptors
	Consensus strings
	Prosite patterns: Regular expressions for protein family assignment

	Position specific scoring matrices
	From alignment blocks to PSSMs
	Sequence weighting procedures
	Basic PSSM construction principles
	PSSMs based on odds ratios
	Average score methods
	Explicit log-odd score methods
	Construction of amino acid PSSMs in the BLOCKS database
	Wu's minimal risk scoring matrices
	Construction of nucleotide PSSMs in the TRANSFAC database

	Gribskov's profile model
	Hidden Markov models
	Foundations of hidden Markov model theory
	Profile hidden Markov models
	Profile HMM collections for sequence annotation and classification

	Concluding remarks on sequence motif models

	Fast algorithms for matching position specific scoring matrices
	Introduction
	Pattern matching with PSSMs
	Improved running time through the usage of lookahead scoring
	Permuted lookahead scoring

	PSSM searching using suffix trees
	Dorohonceanu's algorithm

	PSSM searching using enhanced suffix arrays: The ESAsearch algorithm
	Analysis

	Further performance improvements via alphabet transformations
	Reduced amino acid alphabets

	A unifying view on SPsearch, LAsearch, and ESAsearch
	Finding an appropriate threshold for PSSM searching
	Probabilities and expectation values
	Calculation of exact PSSM score distributions
	Evaluation with dynamic programming
	Restricted probability computation
	Lazy evaluation of the permuted matrix

	Threshold independent PSSM matching: The k-best algorithm
	Implementation and computational results
	PoSSuM software distribution
	Discussion and concluding remarks

	PSSM family models for sequence family classification
	Increasing the expressiveness of PSSM-based database searches
	Using multiple ordered PSSMs for sequence classification
	PSSM family models
	Computation of optimal PSSM chains

	Integration of PSSM family models into PoSSuMsearch
	Performance of PSSM family models for protein family classification
	Employed data set and evaluation scenarios
	Model construction and scoring
	Performance evaluation and results
	The significance of PSSM chain scores

	Accelerating HMM based database searches with PSSM family models
	Model specific trusted- and noise cutoffs
	PSfamSearch: Search space reduction with PSSM family models
	Evaluation and computational results
	Cutoff calibration strategies

	Discussion and concluding remarks on performed experiments
	Comparison of pHMMs and PSSM family models


	Genlight - a system for interactive, high-throughput, differential genome analysis
	Motivation
	Genome annotation systems: Related concepts with different focus

	Requirement definitions and design goals
	System architecture and implementation
	Concepts and functionality
	The set oriented concept
	Operations on Seq-sets and Hit-sets
	Integrated sequence analysis methods
	Integrated protein domain and family databases
	Supported protein classification schemes
	Gene ontologies: a unifying vocabulary for cross database queries
	User defined sequence databases
	Asynchronous distributed execution of sequence analysis tasks

	Database schema
	The internal sequence identifier concept
	The handiness of the set oriented concept
	More complex queries using computed sequence attributes
	Genlight as a data warehouse

	The Genlight user interface
	Genlight case studies
	Detection and analysis of the Smh gene family in maize
	Analysis of Xenopus laevis expressed sequence tag clusters
	Identification of potential drug targets in Helicobacter pylori

	Concluding remarks on Genlight
	Potential future developments and system extensions


	Conclusions and prospects
	Concluding remarks
	Prospects

	Appendix
	The 20 letter amino acid alphabet
	PROSITE pattern entry
	PoSSuMsearch command line interface: Quick reference
	The PoSSuM software distribution
	File formats
	PoSSuMsearch
	PoSSuMdist
	PoSSuMfreqs
	PSSM converters
	Using the PoSSuM software distribution
	Messages and warnings

	Predefined Hit-set filters in the Genlight system


