
Universit•at Bielefeld

Technische Fakult•at
AG Praktische Informatik

Index-based algorithms for motif search and
their integration in a system for di�erential
genome analysis
Dissertation

Michael Beckstette





Index-based algorithms for motif search

and their integration in a system for

di�erential genome analysis

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Universit•at Bielefeld

vorgelegte

Dissertation

von

Michael Beckstette

Bielefeld, im Juni 2007



Group for Practical Computer Science
Faculty of Technology

Bielefeld University
D-33594 Bielefeld

Germany

mbeckste@TechFak.Uni-Bielefeld.DE

Genehmigte Dissertation zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)
der Technischen Fakult•at der Universit•at Bielefeld.

Vorgelegt am 27.06.2007 von Michael Beckstette,
verteidigt und genehmigt am 14.12.2007.

Gutachter:
Prof. Dr. Robert Giegerich, Universit•at Bielefeld

Prof. Dr. Stefan Kurtz, Universit•at Hamburg

Gedruckt auf alterungsbest•andigem Papier nach ISO 9706.



The reasonable man adapts himself to the world; the unreasonable one

persists in trying to adapt the world to himself. Therefore,all progress

depends on the unreasonable man.
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1 Introduction

1.1 The continuing challenge of biosequence analyis

Just about 50 years ago, Watson and Crick discovered with their pioneering work the double helix
structure of DNA [WC53], and only about 30 years ago, with the bacteriophage MS2, the �rst

genome of an organism was sequenced [FCD+ 76]. In these 50 years, several scienti�c �ndings rev-
olutionized our understanding of evolution and life, and new research disciplines like molecular

genetics and computational biology were constituted. In particular, research results from these two
interacting disciplines led to substantial scienti�c advances in the last decades. Table 1.1 on the

following page gives a time line of some of these major milestones and �ndings.

Computational biology generated new algorithms to addressand solve biological problems. Among
the most prominent ones are database search methods that allow for the comparison of nucleic or

amino acid sequences with provision for evolutionary events like mutations, insertions and dele-

tions. With the availability of such methods, the �eld of com parative sequence analysis evolved
to the probably most successful and expanding discipline incomputational biology. It became a

key discipline for the discovery and understanding of molecular mechanisms necessary for the ma-
chinery of an organism [RYW+ 00, EPC+ 00]. The foundations of this discipline go back to the

early 1970's, when it was discovered [Fit70] that conservations in the nucleic acid sequence of
genes, and accordingly in the amino acid sequence of proteins, lead to a conserved secondary and

tertiary structure, and thus to a conserved (similar) funct ion. Founded on this observation, the
comparison of sequences of molecules allows to deduce knowledge from one or several known se-

quence(s) to a new, uncharacterized sequence if the nucleicor amino acid sequence of the molecules

is conserved. This �nding has not only become the groundworkfor all of today's pairwise sequence
comparison methods [NW70, SW81, LP85, AGM+ 90, AMS+ 97] commonly used for searching large

sequence databases, but also for several motif and domain databases that contain motif descriptors
of conserved (parts) of sequences, like regular expresions[NWB98], position speci�c scoring ma-

trices [GME87], or hidden Markov models [Edd98], and their model speci�c search routines. Such
collections of diagnostic signatures [WCF+ 98, HSL+ 04, HSW03, FMSB+ 06], which often describe

functionally relevant parts of a molecule, like protein domains, transcription factor binding sites in
DNA, or catalytic active sites, have become an invaluable part for homology based annotation and

classi�cation of nucleic or amino acid sequences into functionally related groups or families.

Responsible for the abiding success of comparative sequence analysis were not only algorithmic

contributions, but also the progress in genome sequencing that generates an ever increasing amount
of sequence data available for comparative studies. This astonishing progress is re
ected in the in-

creasing number of genomes sequenced in the last years. To give an example, theGenomes OnLine
Database (GOLD) [LTHK06] lists not less than 2120 fully sequenced genomes byApril 2007, with
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1 Introduction

Year Event

1953 Discovery of the structure of the DNA double helix [WC53]

1958 Discovery of the semi-conservative replication of DNA [MS58]
1965 The �rst theory of molecular evolution; the Molecular clock concept [ZP65]

1965 Atlas of Protein Sequences, the �rst protein database [DECS65]

1966 Encryption of the genetic code is completed; �rst codon decrypted in 1961 [MN61]
1970 Needleman-Wunsch algorithm for global protein sequence alignment [NW70]

1972 Development of recombinant DNA technology, which permits isolation of de�ned frag-
ments of DNA [CCBH73]

1975 Sanger DNA sequencing [SC75]
1976 Complete genome sequence of bacteriophage MS2 (3569bp) [FCD+ 76]

1977 Maxim-Gilbert DNA sequencing [MG77]
1981 Smith-Waterman algorithm for local protein sequence alignment [SW81]

1981 Human mitochondrial genome sequenced [ABB+ 81]

1981 The concept of a sequence motif [Doo81]
1982 Phage� genome sequenced [SCH+ 82]

1982 First public GenBankrelease containing 606 sequences
1985 FASTP / FASTN sequence similarity search algorithms invented [LP85]

1987 First pro�le search algorithms [GME87]
1990 Introduction of the BLAST program (version 1) for fast sequence similarity search-

ing [AGM + 90]
1993 Protein modeling with hidden Markov models [HKB+ 93, KMSH94]

1995 First bacterial genomes (Haemophilus in
uenzae and Mycoplasma genitalium) com-
pletely sequenced [FAW+ 95, FGW+ 95]

1996 First archeal genome completely sequenced (Methanococcus jannaschii) [BWO + 96]

1996 First eukaryotic genome completely sequenced (Sacharomyces cerevisae) [GBB + 96]
1997 Introduction of gapped BLAST and PsiBLAST [AMS+ 97]

1998 The �rst genome of a multicelluar organism is sequenced (Caenorhabditis ele-
gans) [Con98]

1999 The genome sequence ofDrosophila melanogasteris sequenced [ACH+ 00]
2001 The draft sequence of the human genome becomes available [Con01]

2005 GenBankexceeds 100 gigabases
2005 454 Life Sciences announces massively parallel, high-throughput pyrosequencing ap-

proach [MEA+ 05]

Table 1.1: A brief time line of milestones in genomics and computational biology.
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Figure 1.1: Number of completely sequenced genomes per year. For 2007, the data acqui-

sition period is January through April. Data source: Genomes OnLine Database
(http://www.genomesonline.org ).

607 completed only in 2007 (see Figure 1.1). In addition, major nucleotide sequence databases like

GenBankcontinue to grow at an exponential rate, with a doubling of their number of bases ap-

proximately every 18 months [BKML + 07]. Due to the dispersal of new high-throughput sequencing
technologies [MEA+ 05], which reduce the amount of time necessary to fully sequence the genome of

some species from years to days, these numbers will increasewith an even faster rate in the future.
Another corollary of this technological progress in genomesequencing, however, is the forti�cation

of the gap between data generation and data analysis alreadyobserved today. More precisely, sev-
eral of today's widely used sequence analysis programs, e.g., pairwise sequence comparison methods

for database searching, likeBLAST [AMS+ 97] and FASTA [LP85] or search tools for conserved
sequence motifs, likeMATCH [KGR + 03], EMATRIX [WNB00], and the search tools from theHM-

Mer package [Edd98], are more and more faced with di�culties in processing these large amounts

of sequence data in reasonable time. Often this problem is alleviated by a massive increase of the
applied compute resources, like large cluster systems, though for some computational intensive

methods their application on complete genomes remains challenging even then. This problem is
mainly founded in the fact that most of today's widely used sequence analysis methods show a

running time that is at least linear in the size of the search space (i.e., length of the processed
sequences) and hence their running times su�er from the exponentially growing sequence space.

Consequently, there is a strong need for new, e�cient algorithms capable to handle tomorrows's
large amounts of sequence data. Ideally one is interested inalgorithms that show a running time

that is independent of the size of the searched sequence space.

A possible solution to this dilemma is o�ered by indexing of sequences with full text index data

structures like su�x trees [Wei73] or the more space e�cient (enhanced) su�x arrays [MM90,
AKO04]. These data structures can be built in linear time and space from the sequences to be

searched with several algorithms [Wei73, McC76, Ukk95, KS03, KSPP03, KA03] and allow for very
e�cient access to subwords. Hence they can be used to e�ciently solve many problems in sequence

3
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1 Introduction

analysis. Although it is folk knowledge since the middle of the 1980's, that there are \myriads" of
possible applications of such data structures [Apo85], in particular in the analysis of huge amounts

of sequence data, they barely found their way in today's widely used sequence analysis programs.

One of the main goals of this thesis is the utilization of full text index data structures for the
compute intensive searching with position speci�c scoringmatrices (PSSMs for short), a well known

motif model with a variety of applications in sequence analysis [GME87]. For this purpose, we
developed and implemented new index-based algorithms for searching with PSSMs, which clearly

outperform existing methods in terms of running time. We also demonstrate how index based PSSM

searching in combination with a fragment chaining approachcan be used for e�cient protein family
classi�cation, and for speeding up computation intensive database searching with hidden Markov

models. With the PoSSuM software distribution, we also provide implementations ofthe presented
algorithms in form of a 
exible command line tool.

We further integrated PoSSuMsearchas a database search method in our integrated high-throughput

sequence analysis systemGenlight, which is also a contribution of this work. Genlighto�ers an in-
teractive, biologist compatible, and user friendly environment for a variety of large-scale sequence

analysis tasks with a special focus on (di�erential) comparative genome analyses. It employs a set

oriented operational model, that allows to reuse generatedresults, and to perform complete anal-
ysis work
ows in an interactive way. The system integrates several widely used sequence analysis

methods and databases in a common environment, and is capable to perform analyses on a com-
plete genome or proteome scale by employing a distributed client server approach, even for non

index-based analysis methods. We demonstrate the practical usability of Genlight with di�erent
case studies in which the system was used and which lead to substantial new scienti�c �ndings.

1.2 Structure of this thesis

In this thesis, we present new e�cient index-based algorithms for searching with PSSMs in large

sequence sets, and their integration into an interactive system capable for large-scale di�erential
comparative genome analyses.

In the following Chapter, we start with some introductory an d motivating remarks on sequence
motifs and motif �nding. We describe di�erent modeling conc epts for sequence motifs and consensi.

This includes regular expression based motif descriptors,PSSMs and their construction principles,
Gribskov pro�les, and pro�le hidden Markov models. We discuss in detail strengths and weaknesses

of the di�erent modeling concepts.

In Chapter 3, we make several new algorithmic contributionsto the �eld of searching with PSSMs.
With algorithm ESAsearch and its variants we present new non-heuristic, index-basedalgorithms

for searching with PSSMs that achieve sublinear running time in the expected case and linear
running time in the worst case under certain assumptions. The variants include a version achieving

improved running time by operating on sequences recoded with a reduced alphabet, as well as a

version to determine the k best matching substrings for a PSSM e�ciently, without a con crete
threshold speci�cation. In various benchmark experiments for nucleotide as well as amino acid

sequences, we evaluate the performance ofESAsearch and its variants and compare our algorithms
with the best previous methods in terms of running time. We also address the problem of non-
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comparable PSSM-scores by developing a method based on dynamic programming that allows for
the e�cient computation of a matrix similarity threshold fo r a PSSM, given an E-value or p-value.

In contrast to other methods, our algorithm, called LazyDistrib , employs lazy evaluation of the
dynamic programming matrix leading to superior running tim es. We further describe thePoSSuM

software distribution implementing our algorithms.

In Chapter 4, we introduce the concept of PSSM family models to increase the power of database
searches with PSSMs. We combine algorithmESAsearch with an e�cient fragment chaining algo-

rithm to search with PSSM family models and evaluate its performance for accurate protein family

classi�cation. Therefore, we compare our approach with astate of the art hidden Markov model
based method and measure the classi�cation performance fordi�erent evaluation scenarios in terms

of sensitivity and speci�city. We further demonstrate the c apabilities of PSSM family models to act
as e�cient pre-�lters allowing to speedup database searching with the compute intensive hidden

Markov models, as is implemented in thehmmsearchprogram, dramatically.

In Chapter 5, we describe the interactive high-throughput sequence analysis systemGenlight. We
provide an in-depth report of the overall architecture, the di�erent parts of the system, and elucidate

the system's functionalities, including an overview of theintegrated analysis methods and databases.

We further demonstrate the practical useability of our system with three case studies in which
Genlightwas used, published in [MBG+ 03, BMM+ 04, SBB+ ].

In the last Chapter 6, we conclude with a review of the achieved results and discuss potential future

developments and extensions.

We round up this thesis with an appendix. It contains, in part icular, a detailed manual for the
programs included in the PoSSuM software distribution.
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2 Modeling concepts for sequence motifs

and consensi

2.1 Basic de�nitions and nomenclature

We start with some basic de�nitions and notations used throughout this thesis. Some de�nitions

may be omitted here as they are introduced later where they are needed.

De�nition 1 An alphabet A = f a0; a1; :::; ak g is a �nite, non empty set. The elements of A are

characters.

De�nition 2 A sequenceor string S of length n over an alphabet A is the concatenation of n

characters of the alphabet. In particular " denotes the empty string/sequence. ByA n we denote
the set of sequences of lengthn > 0 over A . The set of all possible sequences over an alphabetA

including the empty sequence" is denoted by A � . It holds: S 2 A n and A n � A � . A � :=
S

i � 0 A i

with A 0 := f "g and A i +1 := f aw j a 2 A ; w 2 A i g. The set of non empty sequences overA is

denoted with A + = A � nf "g. We write S as a sequence of symbols

S = s1s2s3:::sn

Here si 2 A is the i -th character of the sequence. We denote thei -th character also by S[i ]. The

length of a sequence or string, denoted byjSj, is the number of characters inS.

De�nition 3 If S = uvw for some (possibly empty) stringsu,v,w 2 A � , then

� u is a pre�x of S,

� v is a subword of S, and

� w is a su�x of S.

De�nition 4 Let S 2 A � be a sequence, then we denote the set of subwords ofS of length m by

wordsm (S) := f w 2 A m j w is a subword of Sg.

2.2 Motifs, domains, and sequence families

While the number of di�erent, naturally occurring proteins is huge, most of them can be grouped
into a limited number of families on the basis of similarities in their sequences. Proteins belonging
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2 Modeling concepts for sequence motifs and consensi

to a particular family generally share functional attribut es and in most cases are derived from an
evolutionary common ancestor. Throughout this work we use the term family for related nucleic

acid or protein sequences whose relationship extends over the entire molecule. This relationship may
be evolutionary, structural and/or functional. Examples f or well known sequence families are the

bacterial 16s rRNAs, which build together with proteins the ribosomal complex and are involved in
its enzymatic activity, or the protein family of cytochrome C molecules. Cytochrome C is a highly

conserved protein across the spectrum of species, found in plants, animals, and many unicellular

organisms. The molecule has been studied for the glimpse it gives into evolutionary biology. E.g.,
both chickens and turkeys have the identical molecule (amino acid for amino acid) within their

mitochondria, whereas ducks possess molecules di�ering byone amino acid. Similarly, both humans
and chimpanzees have the identical molecule, while rhesus monkeys possess mitochondria di�ering

by one amino acid. Cytochrome C is involved in manifold reactions and pathways inside the cell. It
can catalyze several reactions such as hydroxylation and aromatic oxidation, and shows peroxidase

activity by oxidation of various electron donors. It is also an intermediate in apoptosis, a controlled
form of cell death used to kill cells in the process of development or in response to infection or DNA

damage.

It is apparent, when studying protein sequence families, that some regions have been more conserved

than others during evolution and in some cases the sequence of an unknown protein is too distantly
related to any known protein to detect its resemblance by overall sequence alignment, but it can be

identi�ed by occurrences of conserved modules or particular residue types in its sequence. We call
such modulesdomains. They can be generally described as a family of subsequencesoccurring in

di�erent contexts. In case of amino acid sequences, a domainmay be de�ned as units of sequence
conservation or as units that independently fold into the same 3D structure. When analyzing pro-

teins, domains are omnipresent building blocks. Prominentexamples of proteins that contain several
domains with di�erent functionality as building blocks det ectable by conservations on the amino

acid sequence level are the major subunit of bacterial DNA polymerase I, also known asKlenow

fragment. The Klenow fragment, which can be isolated by proteolysis from the DNA polymerase I
holoenzyme, consists of two domains, one with DNA dependentpolymerization functionality and

one with 3'-5' exonuclease activity for proofreading during DNA replication. See Figure 2.1 for
an example of this domain structure. The Klenow fragment has a wide range of applications in

molecular biology, like the synthesis of double-stranded DNA from single-stranded templates or
the production of blunt ends in double-stranded DNA molecules by digesting away protruding 3'

overhangs with its 3'-5' exonuclease activity. Another example for typical multi domain proteins
are RNA polymerase II molecules, which catalyze the DNA dependent polymerization of RNA dur-

ing transcription. Since the revolutionary discovery of the structure of the yeast RNA polymerase
II [CBK01] 1 it is known, that RNA polymerases are more complex, multi chain molecules with a

distinct quartery structure and single chains build up from multiple domains (see Figure 2.2).

For short subsequences of high sequence similarity (withina sequence family) we use the termmotif .

These can be small protein domains, transcription factor binding sites in DNA, or the catalytic
active site of a family of enzymes. See Figure 2.2 for an example. These regions are generally

important for the function of the molecule like its binding p roperties or enzymatic activity and/or

1Very recently, in 2006, this discovery was honored with the a ward of the noble price in chemistry for Roger D.
Kornberg.
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2.2 Motifs, domains, and sequence families

Figure 2.1: The two domains of the major subunit of bacterialDNA polymerase I. Domain structure
as detected by sequence conservation (top) and the corresponding 3D structure (bottom)

(complex with duplex DNA). The amino-terminal domain (red) has 3'-5' exonuclease ac-
tivity for proofreading during replication whereas the carboxy-terminal domain (green)

is responsible for accurate replication of DNA. This Figure was generated using se-
quence analysis and sequence feature to structure mapping capabilities of the Genlight

system [BMM+ 04].
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2 Modeling concepts for sequence motifs and consensi

Figure 2.2: Domain structure of the � -chain of RNA polymerase II determined by analysis of the

amino acid sequence (top) and domain information mapped on crystallographic 3D
structure [CBK01] (bottom). The catalytic active site (mar ked with green arrow) is

located in the center of the molecule at residue positions 478-485 in the second (green
marked) domain. It contains the conserved sequence motif NADFDGD (Asn-Ala-Asp-

Phe-Asp-Gly-Asp) [ZMD + 96].
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2.3 Motif �nding

for the maintenance of its three-dimensional structure. E.g., transcription factor binding sites are
small conserved regions typically found upstream and closeto the transcription start site of a

gene. Through binding of a transcription factor, which is a protein, speci�c for the binding site,
the expression of that gene is regulated by activating or inhibiting the transcription machinery.

Suchmotifs can be identi�ed by analyzing the constant and variable properties of groups of similar
(sub)sequences. In case of proteins this often allows to derive a diagnostic signature for a family or

domain. This motif then distinguishes family members from all other unrelatedproteins2.

The use of diagnostic sequence motifs to classify nucleic acid or amino acid sequences into function-

ally related groups/families and hence predict their function(s), has a long history in the analysis
of bio-molecular sequences and is an essential and commonlyused technique today. We motivate

the importance of sequence motifs and their subsequently described motif descriptor models with a
citation from the mid-1980s of R.F. Doolittle, a well known expert in protein sequence analysis

"There are many short sequences that are often (but not always) diagnostics of certain binding

properties or active sites. These can be set into small subcollections and searched against your
sequence [Doo86]."

When dealing with sequence motifs, one basically faces two problems. The �rst, brie
y described in

the following section, is the initial detection of a yet unknown motif in a set of given sequences and
the second is its representation with an adequate motif descriptor model that pro�les the instances

of the motif in the set of sequences.

2.3 Motif �nding

One scenario in which the problem of motif �nding arises, is the discovery of binding sites of
regulatory elements like transcription factors. Considera set of upstream regions of genes, putatively

co-regulated by a common transcription factor. Such genes can be determined from a microarray
experiment by selecting genes with a common expression pattern under the same conditions. Then,

all their upstream sequences should contain a common binding site for the transcription factor,
which has to be identi�ed. Alternatively, if the transcript ion factor is already known, a popular,

applicable, experimental technique to con�rm motif bindin g and determine protein-DNA interaction
is chromatin immunoprecipitation (ChIP). ChIP is also appl icable on a large scale with its high-

throughput variant, called ChiP on chip [IHS + 01, RRW+ 00]. In a ChIP experiment, DNA with

bound transcription factors is broken up into various small parts by shearing. With the help of an
antibody, speci�c to the putatively responsible transcrip tion factor, antibody-transcription factor-

DNA complexes are precipitated. After washing out of the antibody and the transcription factor,
the selected small pieces of DNA can be ampli�ed with PCR for subsequent sequencing. We end

up with a set of sequences containing the common binding sitemotif of the transcription factor.
However, ChIP is only an option if the precise transcription factor is known and a speci�c antibody

for it is available.

2Although in literature such signatures are also called patt erns, in this thesis we use the term pattern only for
regular expression like motif descriptors, like the ones de scribed in section 2.4.
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Through either microarray or ChIP based methods, we obtain aset of DNA sequences, which we
have reason to believe, respond to the same transcription factor. The problem of motif-�nding is to

�nd the regulatory elements that these DNA sequences have incommon. In other words, we want
to �nd subsequences, that are signi�cantly over-represented in our set of sequences. More generally,

the problem of �nding a motif can be abstracted to a search problem, that takes as input a set of
sequences with some kind of commonality, like predicted similar function, or structure, or a common

context like upstream regions of putatively co-regulated genes. Then, the output consists of a set

of relatively short subsequences of the input sequences andtheir description with a motif model.
In case of regulatory DNA motifs, these subsequences are typically 8-15bp long and although they

often have a constant size, since a constant-size transcription factor must bind to the motif, they are
highly variable. Consequently it is not su�cient to �nd an ex act substring of some length common

to all sequences under consideration.

Computationally, the motif-�nding problem may be viewed as one of multiple local alignment [HS99,
FHSW04]. Given a group of sequences that share a common biological property, multiple local

alignment methods attempt to locate and align similar subsequences, which may confer this property.
That is, given protein or DNA sequences, locate a region (i.e., a substring) of �xed length from each

sequence such that a score determined from the set of regionsis optimized.

Beyond the discovery of transcription factor binding sites, there are numerous other applications

for motif �nding. E.g., one could search for functional moti fs at exon-intron boundaries, in 3'-
untranslated regions of localized RNAs, in 5'-untranslated regions of translationally regulated RNAs

or to �nd domains and motifs in sets of protein sequences.

Generally, we can formulate the motif �nding problem as follows. Given a set of sequencesL =
f S1; S2; : : : ; Sl g with Si 2 A � for all 1 � i � l , and a word length k > 0. For the sake of simplicity,

we assume here that a reasonablek is already known and hence takek as �xed, although in
practice this is often not the case. Letw� be a word with jw� j = k, that has the best match to

the set of sequencesL . We de�ne best based on the Hamming distance, although other distances

are also possible. Letd(w; Si ) denote the minimum Hamming distance betweenw and any word of
wordsk (Si ). Further, we de�ne the total distance between w and the set of sequencesL as

D(w; L) :=
lX

i =1

d(w; Si ): (2.1)

Then the optimal solution to the motif �nding problem is to �n d a w� 2 A k such that D(w� ; L ) is
minimized. Here the word w� in combination with the distance measureD de�nes a motif (descrip-

tor) along with the set of its instances f w1; w2; : : : ; wl j wi 2 wordsk (Si )^ 6 9w� 0 2 A k ; w� 0 6= w� :
D (w� 0; L ) < D (w� ; L )g. In general a motif de�nes a set of words and can be derived from a set of

words, and it is noted in form of a motif descriptor.

The most obvious method to solve the motif �nding problem would be simply to search exhaustively
through the set of all possiblew 2 A k , to �nd the best match. Unfortunately this exhaustive search

is very expensive and often not feasible for problem sizes occurring in practice. Observe, that there

are jAj k words of length k. Taking the total length of all sequences asn =
P l

i =1 jSi j, the running
time of the sketched algorithm isO

�
k � n � jAj k

�
, as eachw must be checked against allO (n) words

in L and each check takesO (k) time. If we can assure, that the sequences inL are error free, the
running time can be reduced toO

�
k � n2

�
by checking only the O (n) words that actually occur in
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2.4 Regular expressions as motif descriptors

L instead of all jAj k possible words of lengthk. However, this can lead to an overlooking of the
true w� , since it may be the case that the best, or true,w� is one that is very close to a number of

words occurring in L , but not exactly equal to any of them.

In practice, the motif �nding problem is usually either redu ced to an enumeration and veri�ca-
tion problem or to a multiple alignment problem. Either class of problems has been shown to be

NP-Hard [WJ94, Bra94]. Therefore numerous di�erent algorithms have been proposed, employing
various heuristics or ad hoc constraints to discover motifse�ciently [RHEC98, YTI + 98, Kei02].

These methods can be subdivided into two broad categories based on the two major algorithmic

paradigms for motif �nding. These are

� Combinatorial approaches . Programs like Consensus[HHS90] orPratt [JCH95] belong to
this category.

� Probabilistic approaches . To this category belong methods based on Expectation Maxi-

mization (EM) [LR90], like MEME [BE95a, BE95b] and methods based on Gibbs sampling
techniques [LAB+ 93, NLL95], like AlignACE [HETC00] or MotifSampler [TLM + 01].

Since a detailed description of all the di�erent variants of these paradigms is not in the scope of

this thesis, we only give a brief overview over the most widely used tools (see Table 2.1) and refer

the reader in particular to [TLB + 05, LT06]. These articles describe, compare and evaluate interms
of prediction accuracy in detail di�erent computational ap proaches for the prediction of regulatory

elements in nucleotide sequences. The described algorithmic ideas in these articles are in most cases
also applicable to amino acid sequences.

2.4 Regular expressions as motif descriptors

Once a motif has been derived from a set of related sequences,it must be described with some

kind of motif descriptor. A basic way to describe a sequence motif and historically one of the oldest
approximate pattern models in sequence analysis uses regular expressions. A regular expression,

often called apattern, is an expression that describes a set of strings. They are usually used to give
a concise description of a set, without having to list all its elements. Motif descriptors in form of

regular expressions are used to describe amino acid (see Figure 2.4) as well as nucleotide motifs. A
well known example for a nucleotide motif describable with aregular expression is the TATA-box

found in the promotor region of many prokaryotic genes. The TATA-, often also called Pribnow-box,
is a conserved cis-regulatory element. It is the binding site of either transcription factors or histones

(binding of a transcription factor blocks binding of a histone and vice versa) and is involved in the
process of transcription by RNA polymerase. It has the consensus DNA sequence50 � TATAAT� 30

but can vary slightly. E.g., TAAT, TATAT, and TAAATcan also be found. The set containing the four

strings TAAT, TATAT, TATAAT, and TAAATcan be described by the patternTAT?AA?T or alternatively,
it is said that the pattern matches each of the four strings. Here the '?' indicates that there is zero

or one occurence of the preceeding expression. In most formalisms describing regular expressions,
the following operations for their construction are provided:
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2 Modeling concepts for sequence motifs and consensi

Program Operating principle Algorithmic

paradigm

AlignAce [HETC00] Gibbs sampling algorithm that returns a series of m otifs

as PSSMs that are overrepresented in the input set.

Probabilistic

Consensus [HS99] Models motifs using PSSMs, searching for the matrix

with maximum information content.

Combinatorial

MEME [BE95b] Optimizes the expectation value of a statistic rela ted to

the information content of the motif.

Probabilistic

MotifSampler [TLM + 01] Matrix-based, motif �nding algorithm that extends

Gibbs sampling by modeling the background with a

higher order Markov model.

Probabilistic

Oligo/dyad-

analysis [HRCV00]

Detects overrepresented oligonucleotides and spaced mo-

tifs with dyad-analysis.

Probabilistic

Pratt [JCH95] Identi�es conserved motifs in a set of unaligned pro tein

sequences. The method guarantees to �nd the highest

scoring motif in a user de�ned motif class, according to

a de�ned �tness measure.

Combinatorial

PROTOMAT [HH91] Detects series of overrepresented motifs in form of un-

gapped blocks in amino acid sequences by employing a

combinatorial algorithm[SAC90] as well as a modi�cation

of Lawrence's Gibbs sampler[LAB + 93].

Combinatorial/

Probabilistic

QuickScore [RD04] Based on an exhaustive searching algorithm that esti-

mates probabilities of rare or frequent words in genomic

sequences.

Combinatorial

YMF [ST03] Uses an exhaustive search algorithm to �nd motifs wit h

the greatest z-score. Motifs are formulated as sequences

over the IUPAC alphabet

Combinatorial.

Table 2.1: Widely used motif �nders and their operating prin ciples.

� concatenation : A centered dot (�) or minus (-) concatenates two regular expressions. In

practice the concatenation operator is often not explicitly written, that is T � T = T � T = TT.

� alternation : A vertical bar separates alternatives. For example,TAAj TTAmatches TAAor

TTA, which can commonly be shortened toT(A j T)A.

� grouping : Parentheses are used to de�ne the scope and precedence of the operators. E.g.,

TAAj TTAand T(A j T)A are di�erent patterns, but they both describe the same set ofstrings.

� quanti�cation : A quanti�er after a character or group speci�es how often that preceding

expression is allowed to occur. The most common quanti�ers are ?, +, and *. The question

mark indicates that there is zero or one occurrence of the previous expression. The plus sign
indicates that there is at least one occurrence of the preceding expression and the asterisk,

also calledKleene operator, indicates there are zero, one or any number of occurrences of the
preceding expression.
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2.4 Regular expressions as motif descriptors

2 3A

4T
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A 6A

7T
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1 T

Figure 2.3: Deterministic �nite state automaton (DFA) for r egular expressionTAT?AA?T, describing
the TATA-box motif found in many gene promotors. Here state 1 is the start state and

state 7 is the only accepting state.

These rules can be combined to form arbitrarily complex expressions, which again are regular
expressions. The set of strings matched by a regular expression R is also called the semantic or

language ofR, denoted by L(R). Generally, we de�ne the syntax of regular expressions andtheir
semantic as follows.

De�nition 5 Let A be an alphabet. A regular expressionand its associatedlanguage(semantic)

L over A is de�ned as follows.

� � is a regular expression withL (� ) := f � g.

� a is a regular expression for anya 2 A with L (a) := f ag.

� If � and � are regular expressions, then� � � is a regular expression withL (� � � ) := f uvju 2
L (� ); v 2 L (� )g.

� If � and � are regular expressions, then� j � is a regular expression with L (� j � ) :=
L (� ) [ L (� ).

� If � is a regular expression, then (� ) is a regular expression withL (( � )) := L (� ).

� If � is a regular expression, then� � is a regular expression withL (a� ) :=
S

i � 0 L(� i ), where

L (� 0) := f � g and L(� i +1 ) := L (� � � i ).

In the Chomsky hierarchy of formal languages, the class of languages describable by a regular
expression is called type-3 language, or regular language.It is a subset of type-2 context free

languages, type-1 context sensitive languages and type-0 unrestricted languages. Note that, regular
languages are exactly all languages that can be decided by a (deterministic and non-deterministic)

�nite state automaton (DFA and NDFA for short).

A DFA takes in a string of input symbols. For each input symbol it will then transition to a

state given by following a transition function. While trans itioning from state to state, symbols are
accepted or rejected. When all symbols are accepted and the current state is an accepting state, the

string is accepted. We de�ne a DFA according to the following de�nition.

De�nition 6 A deterministic �nite state automaton (DFA) is a 5-tuple, (S;A ; �; s 0; A) consisting
of

1. a �nite set of states S,

15



2 Modeling concepts for sequence motifs and consensi

2. an alphabet A ,

3. a transition function � : S � A ! S,

4. a start state s0 2 S,

5. a set of accepting statesA � S.

Let M = ( S;A ; �; s 0; A) be a DFA and T = t0t1 : : : tn be a string overA . M accepts or matchesT

if and only if a sequence of statesr0; r1; : : : rn exists in S satisfying the following conditions:

1. r0 = s0

2. r i +1 = � (r i ; t i ), for i 2 [0; n � 1]

3. rn 2 A.

That is, for matching a pattern described by a regular expression we must construct the correspond-
ing DFA and process the sequence to be searched with the DFA. See Figure 2.3 for an example of

a DFA recognizing a simple sequence motif described by a regular expression.

In practice, di�erent regular expression matching enginesand tools utilizing them, like grep, awk,

or Perl , use di�erent 
avors of regular expressions with varying syntaxes and in some cases di�erent
semantics. An e�ort of standardization was undertaken by de�ning a POSIX 3 speci�cation for

regular expressions. POSIX distills the various common 
avors into just two classes,Basic Regular
Expressions(BREs), and Extended Regular Expressions(EREs). Fully POSIX-compliant tools use

one or both of the 
avors.

2.4.1 Consensus strings

For the description of the consensus of a set of sequences, e.g. a multiple alignment of related

sequences, sometimes simple strings over extended alphabets are used. These alphabets contain

special letters, representing character classes and allowto describe equivocalities in a column of the
alignment. These letters may describe subsets of the alphabet, de�ned by a common property, e.g.

polarity or hydrophobicity in case of amino acids. See Table2.2 for an example of a standardized
extended nucleotide alphabet. Obviously, these consensusstrings are regular expression, since any

character class can be written as a sequence of alternationsbetween its members.

2.4.2 Prosite patterns: Regular expressions for protein fa mily assignment

A well known collection of diagnostic sequence patterns forprotein family assignment is the PRO-

SITE database [HBB+ 06]. It contains in its latest release Rel 19.29 1331 documented patterns.

PROSITE patterns are manually curated and are derived with expert knowledge about groups or
families of sequences from multiple alignments. In particular, attention is drawn to the residues and

regions thought or proved to be important to the biological function of that group of proteins, since
they are often highly speci�c and hence discriminative descriptors. These biologically signi�cant

regions are generally:
3POSIX = P ortable O perating System I nterface for Uni x
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2.4 Regular expressions as motif descriptors

Symbol Semantic Description

R A j G purine

Y C j T pyrimidine
W A j T weak hydrogen bond

S G j C strong hydrogen bond
M A j C amino group

K G j T keto group
H A j C j T not guanine

B G j C j T not adenine

V G j A j C not thymine
D G j A j T not cytosine

N G j A j T j C any

Table 2.2: IUPAC extended nucleotide alphabet

� Enzyme catalytic sites.

� Prosthetic group attachment sites (heme, pyridoxal-phosphate, biotin, etc.).

� Amino acids involved in binding a metal ion.

� Cysteines involved in disulphide bonds, since they are involved in and important for secondary

structure formation.

� Regions involved in binding a molecule (ADP/ATP, GDP/GTP, c alcium, DNA, etc.) or an-
other protein.

If a pattern common to all sequences under consideration is found, e.g. with one of the motif �nders

presented in Table 2.1, it is screened versus the SwissProt protein database, to make sure, that it

matches all other known members of this family and only this and hence makes a good discriminative
descriptor for the protein family under consideration.

PROSITE patterns are formulated as limited regular expressions, which represent a subset of the

class of full regular expressions. In contrast to full regular expressions, they contain noKleene
operator, and alternations are only de�ned between stringsof length 1 (single characters). These

limitations have almost no negative e�ect on their ability t o describe biological sequence patterns
adequately, but allow the construction of easier matching engines and the use of fast bit-vector

algorithms, like SHIFT-AND [WM92] and/or SHIFT-OR [BYG89] . Even fast approximate match-
ing of these limited regular expressions (e.g. matching of regular expressions allowing errors) is

possible [Mye99].

The syntax of Prosite patterns

PROSITE uses the standard IUPAC one-letter code to represent the amino acids and established
widely accepted conventions for the notation of regular expression based patterns in computational

biology. The employed syntax, which is di�erent from the standard POSIX notation for regular
expressions, is given in the Table 2.3.
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2 Modeling concepts for sequence motifs and consensi

-N-P-Q- Each element in a pattern is separated from its neighbor by a - .

-N-X-Q- The symbol X is used for a position where any amino acid is accepted

N-[AST]-Q- Ambiguities are indicated by listing the acceptable amino a cids for a given position

between square brackets, i.e. in this example Alanine, Serine and Threonine.

N-f MPg-Q- Curly brackets indicate residues that are not accepted in th is position i.e. not Me-

thionine or Proline.

N-A(2,3)-Q- Repetition of an element of the pattern can be indicated by fo llowing that element

with a numerical value or a numerical range between parenthesis, i.e. in this example

N-A-A-Q and N-A-A-A-Q.

N-A(2,3)-Q> If a pattern is restricted to either the amino- or carboxy-te rminal end of a sequence,

that pattern either starts with < or respectively ends with >.

. A period ends the pattern.

Table 2.3: Syntax of PROSITE patterns

The pattern describing the TATA-box element, as given before, can be written in PROSITE syntax
as T-A-T(0,1)-A-A(0,1)-T . Beyond the pattern de�nition, a PROSITE entry contains add itional

annotation information about the sequence family characterized by the pattern, like a listing of

already known members of the family, active site position and many more. Figure A.1 on page 198
gives a concrete example of a PROSITE entry.

Although motif descriptors based on regular expressions are quite successful for protein function

prediction and family assignment [HB01], there are a numberof protein families as well as functional
or structural domains that cannot be accurately detected using this kind of motif descriptors due

to their extreme sequence divergence. In such cases alternative, more 
exible techniques are used
to build a model that describes a family of related sequencesadequately. One of these modeling

concepts are position speci�c scoring matrices which are often better suited for motif description in
heterogeneous protein families than regular expressions.

2.5 Position speci�c scoring matrices

Position speci�c scoring matrices (PSSMs), often also called position-weight matrices (PWMs),

probabilistic patterns, or pro�les, have a long history in sequence analysis (see [GME87]). They
are successfully used in nucleotide as well as in amino acid sequence analysis as approximate mo-

tif models, e.g. for the representation of transcription factor binding sites (TFBSs for short) or
conserved regions of proteins. In particular for modeling of short conserved regulatory motifs in

DNA, like TFBSs, PSSMs are the method of choice. This can alsobe seen in a comparison of 13
computational tools for TFBS prediction described in [TLB + 05], where the majority of tools uses

PSSMs to describe the predicted motifs.

The primary intuition of a PSSM is that a multiple alignment o f related sequences, which is normally

the building material for a PSSM, can reveal position-speci�c amino acid or nucleotide propensities.
If these information is properly deployed it should increase the sensitivity in a database search for

recognition of distant homologs. Many studies have shown that database searches using PSSMs as
queries are more e�ective at identifying distant protein relationships than are searches that use the
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2.5 Position speci�c scoring matrices

(A)

ABC3GLAGLA/285-305 C fs.. C aekVaeflqenp H vnl.. H
ABRUDROME/546-567 C pk.. C gkiYrsahtlrt H ledk. H
ACE1TRIRE/402-424 C repgC tkeFkrpcdltk H ekt.. H
ACE2SCHPO/475-495 C dl.. C kagFvrhhdlkr H lri.. H
ACE2YEAST/605-627 C lypn C nkvFkrrynirs H iqt.. H
ADNPHUMAN/514-535 C py.. C rstFndvekmaaH mrmv.H
ADNPMOUSE/233-254 C py.. C rstFndvekmaaH mrmv.H
ADNPRAT/234-255 C py.. C rstFndvekmaaH mrmv.H
ADR1YEAST/106-126 C ev.. C traFarqehlkr H yrs.. H
AEF1DROME/270-290 C vi.. C kkqFrqsstlnn H iki.. H
AEF1DROME/242-262 C nf.. C pkhFrqlstlan H vki.. H
AEGAECOLI/15-37 C ha.. C eiaCvmahndeqH vlsqh H
AIOL HUMAN/148-168 C nq.. C gasFtqkgnllr H ikl.. H

(B)

(C)

C2H2 type zinc finger
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Figure 2.4: Multiple alignment of C2H2 type zinc �nger domain sequences (A) and three dimensional
structure of C2H2 domain of the mouse protein Argenine N-Methyltransferase 3 (B).

Yellow marked part of structure corresponds to part of sequence shown in the multiple
alignment. As apparent in the sequence logo (C)[CHCB04], this domain family can be de-

scribed by the characteristic pattern C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H
(PROSITE Accession: PS00028). Zinc �nger domains have beenfound in numerous nu-

cleic acid binding proteins and for several members of this family zinc-dependent DNA
or RNA binding properties could be demonstrated, experimentally. The two conserved

cysteines and histidines of the C2H2 type at the extremitiesof the domain are involved

in the tetrahedral coordination of a zinc atom, when binding to DNA or RNA.
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2 Modeling concepts for sequence motifs and consensi

information of a single sequence like standard pairwise sequence comparison methods. In sequence
analysis with PSSMs, the basis for comparison is not a general purpose substitution matrix like

BLOSUM [HH89], as in traditional pairwise sequence comparison [AGM+ 90], but also structural
information implicit in the multiple alignment of related s equences used for PSSM construction.

Unlike the pairwise alignment methods, intuitively, PSSMs use the fact that certain positions in a
family of related sequences are more conserved than other positions, due to their conformational or

structural relevance, and allow substitutions less readily in these conserved positions. The PSSM

model incorporates this position speci�c information and allows, if used in a database search sce-
nario, increased sensitivity and speci�city, compared to pairwise sequence alignment methods that

use position independent general purpose scoring matriceslike BLOSUM62 or PAM120. One pop-
ular program that makes use of PSSMs for database searching is the Position-Speci�c Iterated

BLAST (PSI-BLAST) program [AMS + 97]. PSI-BLAST computes a PSSM from a set of homol-
ogous sequences and iteratively scans the database with thederived PSSM as a scoring matrix.

In each iteration the PSSM is recomputed based on the set of found sequences. A complementary
approach is used in the IMPALA software package [SWP+ 99]. IMPALA compares a single query

sequence with a database of PSI-BLAST generated PSSMs usinga variant of the Smith-Waterman
algorithm [SW81] to compute an optimal alignment between a PSSM and a sequence.

In protein sequence analysis PSSMs often help to model and toidentify structurally or functionally
important regions within a family of proteins, such as catalytic sites, substrate binding sites and

intermolecular interaction sites. Those regions are assumed to have a highly conserved tertiary struc-
ture to be biologically functional. Certain types of struct ural information, however, are not generally

captured by PSSM search methods and recent publications describe approaches to include available
structural information explicitly. The Structure-Based A lignment Tool (SALTO) [KTP + 04] for ex-

ample aligns protein query sequences to PSSMs derived from NCBI's conserved domain database
(CDD) [MBADS + 05]. The algorithm uses additional rules to compute only alignments that are

consistent with the conserved regions of domain alignmentsfrom the CDD. A di�erent more visual

approach to include structural information is used in the program 3MATRIX [BLB03]. 3MATRIX
combines sequence information determined by sequence searches with PSSMs and maps these on

structural models obtained from protein structure databases, like PDB (see Figure 2.5 for an exam-
ple). This allows to link sequence attributes like residue conservation with structural attributes, e.g.

solvent accessibility. Here again, the underlying idea is that conserved sequence motifs can be seen
as structural elements that may have the same local tertiarystructure in whatever protein they

are found in. Hence linking three dimensional information from crystallographic experiments to
PSSMs may provide new insights in the potential functional or structural contributions of residues.

In [BLB03] the authors state that the structural environmen t of conserved residues described by a
PSSM allows one to better target them for further experiments, such as mutagenesis or drug design.

2.5.1 From alignment blocks to PSSMs

The prerequisite for the construction of a PSSM is the discovery of a motif shared by several or all
members inside a family of related sequences. As already described in section 2.3, this is a basic, but

challenging task. A special type of motif often described inliterature is the block or alignment block.
An alignment block is (a part of) a gapless local multiple sequence alignment (see Figure 2.6 for an
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2.5 Position speci�c scoring matrices

Figure 2.5: 3MATRIX visualization for a sequence motif described by a PSSM represent-

ing a glycine-rich cytoskeletal associating protein (CAP-Gly) domain (InterPro ID:
IPB000938) found in the PDB structure 1LPL, a CAP-Gly protei n from Caenorhab-

ditis elegans. Di�erent shades of blue in the left model (A) visualize di�e rent degrees
of sequence conservation. In the right model (B) amino acidsare colored with a shade

of green determined by the relative solvent accessible surface area of the amino acid
at each motif position. The most solvent-exposed amino acids are also the most highly

conserved in this motif, which is an expected result for a motif known to represent a

protein-protein interaction domain. Figure taken from [BL B03].

example). The proper determination of characteristic, family speci�c alignment blocks, representing
functionally important and thus conserved regions of nucleotide or amino acid sequences, is the �rst

step in the PSSM construction process. Blocks can be carved out from fully-ungapped regions of
gap containing multiple global alignments constructed with standard multiple alignment programs,

like ClustalW [HTG + 94], DCA [SMD98, Sto98] or T-Co�ee [NHH00] or generated by using local
sequence alignment methods such as BLAST. Also some of the methods presented in section 2.3 on

page 11 for �nding a localized region of sequence similarityin a set of sequences without �rst having
to produce an alignment can be used. An example for suchab initio motif discovery methods is

the CONSENSUS program [HS95] for the prediction of regulatory motifs. Other programs like the
PROTOMAT system [HH91] even allow the fully automated detection of ordered, characteristic sets

of alignment blocks from a family of related amino acid sequences. High quality multiple alignments,

usable to derive useful alignment blocks, as well as alreadyderived PSSMs for database searching
are publicly available in several collections and databases. The following enumeration gives a brief

overview about the largest and most popular collections:

21



2 Modeling concepts for sequence motifs and consensi

� the BLOCKS database [HGPH00, HP99]
Contains groups of short multiple alignment blocks of conserved, characteristic protein se-

quences, e.g. catalytic domains and receptor sites;

� the eBLOCKS database [SLSB05, Gal05]

is a database of ungapped alignments of highly conserved regions among a protein family or
superfamily. eBLOCKS is automatically generated from all against all PSI-Blast searches in

the SwissProt database;

� the Pfam (ProteinFamilies) database [BBD+ 00]
Large collection of manually curated high quality, and automatically generated multiple align-

ments of protein families and inferred hidden Markov models;

� the TIGRFAMs protein family database

Manually curated multiple sequence alignments of protein families;

� the PRINTS database [AMG+ 06, ACF+ 00]
Database containing protein �ngerprints in form of (ordered) sets of gapless multiple align-

ments and derived PSSMs;

� the PROSITE database [HBFB99]

Collection of PSSMs and regular expressions of characteristic protein sequence motifs;

� the HAMAP protein family database [GMR+ 03]

HAMAP is a collection of multiple alignments of orthologous microbial protein families, gen-

erated manually by expert curators. They are used for the high-quality automatic annotation
of microbial proteomes in the UniProtKB/SwissProt protein knowledge base;

� the PRODOM database [CGK99]
Database containing multiple alignments of protein domain families;

� the commercial TRANSFAC database [WCF+ 98]
on eukaryotic cis-acting regulatory DNA elements and trans-acting factors, containing infor-

mation on transcription factors, regulated genes, regulatory sites and binding sites of tran-
scription factors modeled as PSSMs;

� the JASPAR database [SAE+ 04]

is a freely available, high quality transcription factor bi nding pro�le database. It is a non-
redundant and curated collection of transcription factor DNA-binding preferences of multi

cellular organisms, modeled as position speci�c scoring matrices. All models in this database
are derived from published collections of experimentally de�ned transcription factor binding

sites.

We now render the concept ofalignment blocks, PSSMs and their relationship more precisely.

De�nition 7 An Alignment block A of length m is a set of l sequences of lengthm over alphabet

A . A is represented as anl � m matrix with elements ai;j 2 A and 1 � i � l ^ 1 � j � m, with ai;j

be the j -th character of the i -th sequence.

22



2.5 Position speci�c scoring matrices

Figure 2.6: Alignment block representing a part of the multifunctional calcium/calmodulin-

dependent protein kinase II (CaMKII), a kinase enriched in synapses. CaM kinases

belong to the family of Ser/Thr protein kinases and have an extremely wide tissue
distribution.

See Figure 2.6 for an example of an alignment block. A PSSM is an abstraction of an alignment
block of related sequences (see Figure 2.7 for an example) and can be de�ned as follows.

De�nition 8 A PSSM M is a function M : [0; m� 1]�A ! R , wherem is the length of M and A is

a �nite alphabet. In case of matrices over the nucleotide alphabet we de�ne the reverse complement
M of the PSSM M as M (i; a) = M (m � 1 � i; a) for all i 2 [0; m � 1] and a 2 A = f A; C; G; T g,

where a is the Watson Crick complement of nucleotidea. That is A = T, C = G, G = C, and
T = A.

Usually M and M are represented by anm � jAj matrix, as shown in Table 2.4.

Large collections of curated, high quality alignment blocks allow the identi�cation and function

assignment of a sequence by comparing it against every alignment block. The �rst step for such a
comparison is the conversion of each block into a PSSM. Several methods for this conversion have

been developed [GME87, TAK94, TAK94, HH96, SKB+ 96, WNB99] over the last two decades. The
basic task when computing a PSSM from a given alignment blockis to estimate the probabilities of

each amino acid or nucleotide appearing at each position of the alignment block and convert them
into a scoring system that discriminates best between true positive and true negative members of

the family represented by the alignment block. The scores ineach row of a PSSM can be derived in
a number of ways, but are naturally based on the frequency distribution of the characters observed

in that position of the block, such that a nucleotide or amino acid that occurs more frequently

receives a higher score.

In the following paragraphs we describe some widely used PSSM construction methods and illustrate
the basic principles and underlying ideas. Since PSSMs are particularily used as motif descriptors

for protein families, most of the construction methods below were originally developed for amino
acid sequences.
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Sigma32 transcription factor. Position 11-20
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Figure 2.7: Multiple alignment of � 32 transcription factor sequences (top), corresponding PSSM
(center) and sequence logo based on relative frequencies (bottom) (representing block

from position 11 until position 20). Observe that high scoring values in the PSSM cor-

respond to highly conserved residues in the multiple alignment and larger character
symbols in the sequence logo.
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2.5 Position speci�c scoring matrices

(A)denin (C)ytosin (G)uanin (T)hymin

28.50 256.54 85.51 28.50

28.62 47.70 47.70 9.54

45.54 45.54 45.54 500.92
320.83 0.00 71.29 106.94

47.29 15.76 15.76 31.53
41.34 13.78 41.34 96.46

32.95 8.24 32.95 41.19
21.28 21.27 148.95 106.40

9.54 28.62 47.70 47.70

(A)denin (C)ytosin (G)uanin (T)hymin

47.70 47.70 28.62 9.54

106.40 148.95 21.27 21.28

41.19 32.95 8.24 32.95
96.46 41.34 13.78 41.34

31.53 15.76 15.76 47.29
106.94 71.29 0.00 320.83

500.92 45.54 45.54 45.54
9.54 47.70 47.70 28.62

28.50 85.51 256.54 28.50

Table 2.4: A 9� 4 PSSMM (left matrix) and its reverse complement M (right matrix) of length m =

9 over the nucleotide alphabetA = f A; C; G; T g, describing a transcription factor binding
site motif found in the promotor sequences of HOX A3 genes. HOX (homeobox) genes

and their regulation play a major role in developmental proliferation of cells. Example

taken from the TRANSFAC database.

2.5.2 Sequence weighting procedures

Families of sequences are almost always highly biased and this correlation should not be ignored
when aligning if it is su�ciently extensive. A typical prote in family in sequence databases is a highly

non-random sample of sequences where organisms with a long-term research tradition like E.coli or
D.melanogaster, pathogens with medical impact like H.pylori , or economically relevant organisms

like S.cerevisaeare heavily over-represented irrespective of their evolutionary role. Beside such issues
based on selection, statistical correlation between similar sequences may arise from their common

evolutionary origin or as a result of similar functional requirements.

For the construction of PSSMs which subsequently will be used as a motif descriptor in database
searches, it is common to �nd a group of sequences with a certain amount of diversity when con-

structing an alignment block. Some members of this group will be nearly identical, whereas others

may be as little as 20% identical, when aligned. Obviously, each of the nearly identical sequences
contributes much less information than each of the 20% identical sequences.

To compensate for over-representation among multiply aligned sequences which would lead to

PSSMs that inadequately model the underlying sequence families and that would overspecialize
to the over-represented sequences, various concepts of sequence weighting procedures have been de-

veloped. These methods give theoutlier sequences, those that do not belong to the highly similar,
over-represented group, additional importance in the calculation of the PSSM values.

For the weighting, numerical coe�cients (sequence weights) are associated with each sequence to

denote the degree of independence of this sequence from the others in the multiple alignment. For

example, low weights are given to sequences that are redundant and high weights to sequences
that are diverged. In its most drastic form, additional simi lar sequences are discarded from the

set of sequences to be aligned, i.e. they achieve a zero weight, and only highly di�erent sequences
remain [NLLL97, HSHA92]. Other techniques use the full sequence information and can be roughly
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categorized in two classes, evolutionary tree-based and sequence distance-based methods. Tree based
approaches assume that the sequences in the set under consideration have a common evolutionary

origin and are a result of divergent evolution and that an evolutionary tree can be constructed from
sequence or additional information [THG94].

The distance-based methods [HH94, LXB94] avoid the problems of tree topology and even do

not require that the sequences are related at all. Sequence weights are calculated from a residue
similarity matrix, like PAM or BLOSUM or from the amino acid t ype diversity observed in each

column of the multiple alignment. For example in the method proposed in [HH94], for each position

in a sequence, a weight inversely proportional to the numberof di�erent amino acids in the column
and the number of times the amino acid of interest appears in the column, is computed. The weight

of a sequence is then the average of the weights in all positions, normalized to sum up to 1.

The approaches for sequence weighting described so far havein common, that a single sequence
weight is assigned to a sequence. Implicitly this means, that the evolutionary rate of residue changes

is believed to be equal in all positions of the sequence. In [SER+ 99] the authors introduce a sequence
distance-based approach that incorporates position-speci�c sequence weights. They describe that

their method based on position-speci�c independent counts, produces PSSMs, that are in many

cases more powerful in detecting members of protein fold families, than e.g. PSI-BLAST derived
PSSMs [AMS+ 97]. Although many di�erent sequence weighting proceduresare described in litera-

ture, it remains to be di�cult to identify a single, best weig hting method, since the choice of the
weighting method depends both on what the resulting PSSM will be used for and the particular

group of sequences being modeled.

Methods that determine a PSSM from a set of aligned sequencesbasically face two di�culties. First,
the problem of interdependence between sequences in the underlying alignment block (biased data),

and second, the problem how to derive a PSSM from an alignmentblock adequately, especially
when the number of aligned sequences is small. The �rst problem can be addressed with sequence

weighting procedures. Principles and approaches for the second problem will be presented in the

following. For the methods to be described, we assume that the sequences in the alignment block
are already weighted to compensate selection biases and potential redundancies.

2.5.3 Basic PSSM construction principles

The �rst step when generating a PSSM is to determine a matrix based on of absolute residue
frequencies. This is also fundamental for more complex PSSMgeneration methods. In literature

such counting matrices are often also calledpro�les , position frequency matrices (PFMs for short) or
simply count matrices. Although in literature some authors distinguish between counting matrices,

pro�les, and PSSMs we use the generic term PSSM for all these types of matrices throughout this

work, since for the matching algorithms described in the next chapter, it is irrelevant how the matrix
values are determined and what their semantics are. However, we will see that some matrix value

determination principles are better suited for scoring in adatabase search scenario than others.

In a PSSM based on residue counts, each element in the matrix contains the number of occurrences
of a certain residue at a speci�c position in the alignment block. More precisely: Let A be an
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Figure 2.8: Let A be an alignment block of 5 sequences of length 3 over the nucleotide alphabet

A = f A; C; G; T g. The PSSMM with m i;a = count A (i; a) based on absolute frequencies
frequency corresponding toA is shown on the right.

alignment block of l sequences of lengthm over alphabetA , denoted byS1; : : : ; Sl , and � (i; a; k ); i 2

[0; m � 1]; a 2 A ; k 2 [1; l ] a Kronecker symbol, such that

� (i; a; k ) =

(
1; if Sk [i ] = a;
0; otherwise :

(2.2)

Now let count A be a function [0; m � 1] � A ! N de�ned as

count A (i; a) :=
lX

k=1

� (i; a; k ) = jf S 2 A j S[i ] = agj

Hence a PSSMM based on absolute frequencies (counts) is am � jAj matrix with

mi;a = count A (i; a) (2.3)

See Figure 2.8 for an example of an alignment block over the nucleotide alphabet and the corre-
sponding PSSM based on absolute frequencies.

Absolute frequencies are easily converted to relative frequencies. That is, each element of the PSSM

contains the fraction of the total number of occurrences of aresidue at a speci�c position in the

alignment block and the number of aligned sequences. Letl be the number of aligned sequences in
the alignment block, then a PSSM based on relative frequencies is am � jAj matrix M with

mi;a =
count A (i; a)

l
(2.4)

In a database searching scenario, where a PSSM is used as a descriptor for a family of related
sequences, PSSMs based on residue counts or relative frequencies are not appropriate. Counts or

relative frequencies are an imperfect representation of a column in the alignment block since they do
not take the background residue frequencies into account. For an example, reconsider the alignment

block and derived PSSM given in Figure 2.8. Herem1;G = m2;C = m3;A holds and consequently,
when using this PSSM in a database search, a guanine in the �rst position achieves the same score

as a cytosine in the second and an adenine in the third position, although it is probably more

likely to see a cytosine just by chance than a guanine, since cytosine occurs more often in the
sequences to be searched than guanine. Further, the sequences included in the alignment block are

an incomplete sample of the full set of related sequences andhence the derived counts or frequencies
can be misleading and deviate signi�cantly from the frequencies of the whole family. This leads to
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the basic problem of how to convert observed counts into truefrequencies or scores, adequately.
The set of observed counts is �nite and almost always contains zero counts for one or more amino

acids or nucleotides. However, zero frequencies are undesirable, because they may exclude true but
unusual members of a given family. Therefore, some methodology have to be used to estimate the

true frequencies at a position in the sequence based on the observed counts in the corresponding
column in the alignment block.

2.5.4 PSSMs based on odds ratios

Instead of using residue counts or relative frequencies oneideally would like to create an odds ratio
based score for each column in the alignment block. Residue counts can be converted to odds ratios

of probabilities that are expected to be observed [BH87, SH90]. Let qi;a be the unknown probability
for residuea occurring in column i of the alignment block and pa be the expected frequency ofa in

a random sequence, which can be estimated from the overall (background) frequency of residuea in
a large sequence database. As the number of sequencesl in the alignment block A grows, estimates

of qi;a should converge to the relative frequenciescount A ( i;a )
l . Thus, for su�ciently large values of l ,

we can estimate the odds ratio of residuea appearing in column i of the alignment block as

qi;a

pa
�

count A (i; a)
l � pa

(2.5)

In [HWB90] these odds ratios are directly used as score values in a PSSM. That is, a PSSM based

on odd ratios is am � jAj matrix M with

mi;a =
qi;a

pa
: (2.6)

To achieve a more convenient additive scoring system, some methods use log-odds ratios instead of
simple odds ratios [BH87, LAB+ 93]. In these methods a PSSM based on log-odd ratios is de�ned

as am � jAj matrix M with

mi;a = log
�

qi;a

pa

�
: (2.7)

In this case the PSSM valuesmi;a are the log of the ratio of two probabilities - the probabilit y that
symbol a occurs at position i in the family described by the PSSM and the probability that a occurs

at position i just by chance.pa is often also called the probability of the null model, or background
probability, since it expresses how likely it is to see symbol a by chance. Although log-odd ratios

provide a simple, additive scoring system that maximizes selectivity for observed residues, log-odd
ratio based PSSMs have some drawbacks:

� Residue similarity problem: They do not take conservative replacements of residues into

account and hence may fail to detect distantly related members of the family.

� Incomplete sample problem: There are often not enough sequences included in the align-
ment block A, making A an incomplete sample of the full set of related sequences. Inpractice,

the number of sequences needed to accurately estimate the expected amino acids at each po-
sition in a protein is often larger than the number typically available in an alignment block
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for most protein families. Moreover, it is prevalently the case that the available data is skewed
towards one or more subfamilies of the protein being modeled, such that a large fraction of

the sequences are highly redundant and minor variants of each other. In such a casecount A ( i;a )
l

is not an adequate estimate forqi;a . This problem is known as over�tting and a variety of

approaches commonly known asregularization have been developed to deal with it.

� Zero count problem: For a speci�c column i 2 [0; m � 1], count A (i; a) = 0 often holds for

somea 2 A , especially for relatively small values ofl . This converts to odd ratios of zero. A
zero count might indicate that the residue cannot occur in position i , or, which is much more

likely in most cases, it is the consequence of insu�cient knowledge about the true instances

of the model. That is, not enough truly related sequences areincluded in the alignment block
A. Additionally, in either case a technical problem arises with zero counts. count A (i; a) = 0

would lead to unde�ned values in the PSSM if scores based on logarithms are used, since
log(0) is unde�ned.

2.5.5 Average score methods

PSSMs based on simple odds ratios or log-odds ratios do not take similarities between certain

characters of the alphabet into account, for example a substitution of amino acid leucin by a
chemically similar one like isoleucin. PSSMs based on scoreaveraging methods as �rstly introduced

by Gribskov [GME87] and successfully used in [TAK94] address this issue by weighting residues with
a similarity score based on their biochemical properties. The entries of such a PSSM are calculated

by averaging scores from a substitution matrix like PAM or BLOSUM. An average is taken of all
pairwise scores obtained from the used substitution matrixfor an aligned residue and each of the

residues seen in the column under consideration. Unobserved residues receive scores based on their

presumed association with the observed residues.

For a given jAj�jAj substitution matrix S, a PSSMM based on the average score method according
to [GME87] is a matrix with

mi;a =
X

b2A

wi;b sa;b ; (2.8)

where sa;b denotes the similarity matrix score for residuea replacing residueb and wi;b is a weight

for the appearance of residueb in column i of the alignment block. For a simple average weighting
wi;b can be determined as

wi;b =
count A (i; b)

l
; (2.9)

and for logarithmic weighting as

wi;b = log
�

count A (i; b)
l

�
(2.10)

while setting count A (i; b) = 1 for any residue not appearing in column i . Consequently Gribskov's

average PSSMs address the residue similarity problem and can deal with zero counts.

The major criticism on Equation (2.8) is, that it is purely he uristic and does not rely on any
statistical model of (protein) sequence family evolution. The notion of amino acid substitution
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matrices implicitly accepts that the mutation probabiliti es or in other words the evolutionary rates
are identical at every position of the protein family, an assumption which is somehow opposite to

the basic idea of a position speci�c scoring matrix.

Observe that the odds ratio score given in Equation (2.6) canalso be interpreted as an average
score that uses a simple substitution matrixS with

sa;b =

(
1

pa
; if a = b;

0; otherwise :
(2.11)

Another approach to derive a PSSM based on average scores is described in [Alt91]. In this contri-

bution, the authors showed that any substitution matrix has a log-odds score interpretation. That
is, substitution scores can be interpreted as scaled log-odds with an implicit set of amino acid pair

substitution probabilities qa;b . More precisely,

sa;b =
1
�

log
�

qa;b

papb

�
: (2.12)

Here 1
� is a scaling factor andpa and pb denote the background probabilities of residuesa and b.

Thus Equation (2.8) can be rewritten as

mi;a =
1
�

X

b2A

wi;b log
�

qa;b

papb

�
: (2.13)

and we notice that the average score is a weighted average of log-odds ratios. To explicitly retain a

log-odd interpretation, it can be considered to weight eachodds ratio before taking the log [HH96]
as

mi;a = log

 
X

b2A

wi;b
qa;b

papb

!

: (2.14)

A potential drawback of averaging methods is that they do not take the number of sequences in the

alignment block into account. When there are only few sequences and the actual distributions of

residues in a certain column are uncertain, they make sensitive PSSMs. However, with an increasing
number of sequences, averaging substitution values reducePSSM speci�city [HH96]. The average

PSSM method also does not adequately emphasize positions that are highly conserved. Consider,
for example, a residue that is absolutely conserved in everysequence in a family of 100 sequences.

Such a position is required, often participating in critical structures or functions such as the active
site of an enzyme. Using simple average weighting (Equation(2.9)), in a PSSM based on Gribskov's

average score method such a column would result in a row of values identical to the corresponding
row for the conserved residue in the substitution matrix S (see Equation (2.8)). This inability to

properly model highly conserved residues was the motivation for a further re�nement. In [GV96]
Gribskov and Veretnik introduced a new approach for the computation of a PSSM from a given

alignment block, called evolutionary pro�les . One of their basic ideas is to take into account that

the amount of conservation among protein sequences varies widely from position to position. Thus
any position in a sequence should be allowed to evolve at its own evolutionary rate. This implies

modeling di�erent positions in a sequence using di�erent substitution matrices, each corresponding
to a rate of change at di�erent evolutionary distances.
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2.5.6 Explicit log-odd score methods

Another widely used method to deviate a PSSM from a given alignment block is introduced in

[HH96]. This method, widely simply known asHeniko� 's method, is, in contrast to Gribskov's aver-
age score method, explicitly based on log-odd scores. That is m i;a = log

�
qi;a

pa

�
with qi;a estimated

as

qi;a �
l

l + B i

count A (i; a)
l

+
B i

l + B i

bi;a

B i
: (2.15)

Before we describe this formula in more detail, reconsider that odd ratios equal to zero, caused by
zero residue frequenciescount A ( i;a )

l used for the estimation ofqi;a , have to be prevented, when using

log-odd scores. In Gribskov's average score method with logarithmic weighting (see Equations (2.8)
and (2.10)) this was addressed by simply settingcount A (i; a) = 1 for any residue not appearing

in column i . Alternatively, zero residue frequencies can be avoided byadding some kind of hypo-

thetical sequences to the alignment block. For each columni in the alignment block, this involves
adding pseudo-countsto the observed countscount A (i; a) based on some belief about the actual,

incompletely observed, distribution of residues in that column. This means that, even if a given
amino acid does not appear in a column of the alignment block,it is given a fake count. Fake counts

are also added for the amino acids which appear in the column,e.g. we add one to each count.
This is the simplest pseudo-count method also known as Laplace's rule. When probabilities are

calculated, the fake counts are treated exactly like real observed counts. Thus, for simple Laplace
pseudo-counts,qi;a can be estimated as

qi;a �
count A (i; a) + 1

l + 1
(2.16)

for any a 2 A . Though this is a very simple approach to avoid the zero countproblem it has
some disadvantages and does not perform well in practice. Inthe following we will discuss more

sophisticated methods to choose the pseudo-count valuesB i and bi;a .

In Heniko�'s method (Equation (2.15)), bi;a > 0 is the number of pseudo counts added to the
observed count of residuea in column i , and B i =

P
a2A bi;a the total number of pseudo counts

added in column i . Both count A ( i;a )
l and bi;a

B i
are estimates for the probability qi;a of residue a

appearing in columni and Equation (2.15) expresses a weighted average between them. The relative

sizes ofl and B i balance, whether the observed counts dominate, whenl is large with respect to
B i or the pseudo-counts whenB i is large with respect to l . With the usage of pseudo-counts it is

guaranteed that qi;a > 0 holds for any i 2 [0; m � 1] and a 2 A . Consequently, well de�ned PSSM

scores can be computed as log-odd ratios according to Equation (2.7).

Another PSSM construction method explicitly based on log-odd scores is described in [LAB+ 93].
Here qi;a values are estimated as

qi;a �
count A (i; a) + B i � pa

l + B i
: (2.17)

That is, pseudo countsB i are added to the observed countscount A (i; a) in proportion to the back-
ground probability pa for some residuea. This has the appealing feature, thatqi;a is approximately

equal to the background probability pa if only a few sequences are available, i.e. all the real counts
are very small compared toB i . At the other extreme, where many sequences are available, the
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e�ect of the added pseudo-counts becomes insigni�cant andqi;a is essentially equal to the relative
frequency count A ( i;a )

l .

Although, with adding pseudo-counts to observed counts thezero count problem and to some extent

the over�tting problem, since pseudo-counts can be used as regularizers, are addressed in general,
it remains open how to choose an adequate number of pseudo-counts.

Determination of pseudo counts

Several di�erent methods for calculating pseudo counts have been proposed over the last decade.

In [LAB + 93] bi;a is simply taken to be proportional to the overall frequency of residue a in a
sequence. That isbi;a = B i � pa . A major criticism of this method is, that it does not take possible

constraints imposed by residues observed in a column into account. For example if a certain residue
a is observed, then the pseudo-count for residuesb with high substitution probabilities pb;a (like

leucine-isoleucine mutations) should be higher than the background frequencypa would imply and
the pseudo-count for residues with low substitution probabilities should be less. This drawback was

the motivation for an improvement introduced in [TAK94]. Mo re precisely, letpa;b be the probability

that residue b is substituted by residue a, then the pseudo-countbi;a can be calculated based on
residue substitution probabilities as

bi;a = B i

X

b2A

pb;a : (2.18)

This approach takes residue similarities into account by adding substitution probabilities, but the
residues actually observed in a certain column are neglected. To take the observed residues into

account, the authors of [TAK94] propose to calculatebi;a as

bi;a = B i �
X

b2A

count A (i; b)
l

pb;aP
b2A pb;a

: (2.19)

A similar method using similarity scores instead of substitution probabilities was proposed in [Cla94].

Selecting the total number of pseudo-counts

So far, we described approaches for determination of pseudocounts bi;a that are added to the

observed count of residuea in column i of the alignment block, given the total number of pseudo

counts B i . It remains open, how to adequately chooseB i . In literature, B i is often estimated to be
some function of the number of sequences in the alignment block, independent ofi . For example, in

[LAB + 93, TAK94] the authors choseB i �
p

l based on empirical estimations. In [HH96] the authors
report that this choice is not ideal, especially when the number of sequences in the alignment block

is small, since the number of pseudo-counts can never exceedthe number of counts. They propose to
compute position-based pseudo countsB i for each columni 2 [0; m � 1], instead of using the same

number of pseudo-counts for all columns of the alignment block. The basis for their computation
of B i is to take residue diversity into account. That is, a conserved column in the alignment block

requires fewer total pseudo counts than a diverse column. Let Ri be the number of observed di�erent
residues in columni . Then the position speci�c number of pseudo countsB i is computed as

B i = 
R i ; (2.20)
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where 
 is an empirically determined positive number. Since 1� Ri � jAj holds, it follows that:


 � 
 � Ri � minf 
 � l; 
 � jAjg (2.21)

Using position based pseudo-counts, Equation (2.15) can berewritten as

qi;a �
l

l + 
R i

count A (i; a)
l

+

R i

l + 
R i

bi;a


R i
: (2.22)

Hence for position based pseudo-counts, pseudo-counts dominate observed counts, if l < 
 � jAj

holds. For l > 
 � jAj observed counts always dominate, regardless ofRi . As a consequence Equation
(2.15) tends to count A ( i;a )

l for larger values of l , as required. For a highly conserved column in the

alignment block, that is Ri = 1, observed counts dominate, if l > 
 .

Pseudo-counts based on Dirichlet mixtures

Another sophisticated method to compute position speci�c pseudo-counts, similar in their general

form to the substitution probability method (see Equation ( 2.19)), is known as Dirichlet-mixtures.
The mixtures are created by statistical analysis of the distribution of amino acids at particular

positions in a large number of proteins. Rather than using pairwise residue substitution data,
probabilities qi;a are derived from mixtures of Dirichlet densities computed using prior informa-

tion [BHK + 93, SKB+ 96]. Here a Dirichlet density is a probability density over all possible combina-

tions of amino acids appearing in a given position. It gives high probability to certain distributions
and low probability to others. For example, a particular Dir ichlet density may give high proba-

bility to conserved distributions where a single amino acidpredominates over all others. Another
possibility is a density where high probability is given to amino acids with a common identifying

feature, such as the subgroup of hydrophobic amino acids. Now, the idea is to incorporate such
prior information about residue distributions that typica lly occur in columns of multiple alignments

into the process of building a statistical model. In [SKB+ 96] the authors present a method to con-
dense the information in databases of multiple alignments into a mixture of Dirichlet densities over

amino acid distributions and to combine this prior informat ion with the observed amino acid counts

count A (i; a); a 2 A , to form more e�ective estimates of the expected distributions.

2.5.7 Construction of amino acid PSSMs in the BLOCKS databas e

PSSMs used in the BLOCKS database searching applicationBLIMPS [HHAP95] are based on log-

odd scores (see Equation (2.7)). Probabilitiesqi;a are estimated according to Equation (2.15) and
pseudo-countsbi;a based on substitution probabilities are computed using Equation (2.19). Position

based pseudo-countsB i are determined using Equation (2.20). Hence a PSSM derived from an
alignment block A of length m of protein sequences, as used by theBLIMPS program, is a m � 20

matrix M with

mi;a = log
�

qi;a

pa

�
(2.23)
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with

qi;a =
l

l + 
 � Ri
�

count A (i; a)
l

+

 � Ri

l + 
 � Ri
�


 � Ri
P

b2A
count A ( i;b ) �pb;a

l �
P

c 2A pc;a


 � Ri

=
count A (i; a)

l + 
 � Ri
+


 � Ri

l + 
 � Ri
�
X

b2A

count A (i; b) � pb;a

l �
P

c2A pc;a
(2.24)

(2.25)

2.5.8 Wu's minimal risk scoring matrices

In [WNB99] a minimal-risk method for the estimation of frequencies of amino acids at a conserved
position in a protein family is introduced. The method �nds t he optimal weighting between a set

of observed amino acid counts and a set of pseudo-frequencies which represent prior information
about the frequencies, by computing the optimal number of pseudo-counts to add. Optimality is

de�ned by a criterion called risk, which is the expected distance between the estimated frequencies
and true population frequencies, determined from the background distribution of amino acids or

from applying a substitution matrix to the observed data. Th e optimal weighting is computed by
minimizing the risk, measured by either a squared-error or relative-entropy metric. The resulting

frequency estimates are then used to estimate the probabilities qi;a and minimal-risk PSSMs are

constructed based on log-odd scores, like the PSSMs used byBLIMPS described above (see Equation
(2.23)). The method is implemented in the programeMatrix-maker 4. Furthermore several databases

exist containing PSSMs constructed with the minimal-risk method, e.g. the databaseseBLOCKS
[SLSB05] andeSIGNAL 5.

In the following, we describe the main ideas of minimal-riskPSSMs more precisely. Let~̂f i , i 2
[0; m � 1] be a vector of dimensionjAj , with f̂ i;a = mi;a and mi;a de�ned according to Equation

(2.4), that denotes the observed frequencies of symbolsa 2 A in column i of the alignment block.

These frequencies are generated by some unknown true population frequencies ~f i , which should be
estimated by ~f �

i as well as possible. Wu and coworkers propose to estimate an optimal f �
i;a as a

weighted sum of the observed frequencies and pseudo-frequencies,

f �
i;a (� i ; � i;a ) = (1 � � i )f̂ i;a + � i � i;a : (2.26)

The � i values are weights and� i;a denote the pseudo-frequency of symbola in column i of the

alignment block. The method allows to use background frequencies, as well as substitution pseudo-
frequencies for the determination of� i;a . That is

� i;a =

(
f (a); [Background frequencies]
P

b2A Sa;b � f̂ i;a [Substitution frequencies]:
(2.27)

Here f (a) denotes the background frequency for symbola and S is a jAj � jAj substitution matrix

containing residue similarity information, e.g. a PAM or BL OSUM matrix. Then, Sa;b represents
the conditional probability of seeing amino acid a given amino acid b. To solve Equation (2.26)

we have to compute a weight� , such that ~f �
i approximates ~f i as well as possible. To estimate an

4http://brutlag.stanford.edu/ematrix-maker
5http://brutlag.stanford.edu/esignal/
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optimal weight � , denoted by � � , a criterion of optimality called risk is de�ned as the expected
distance between estimated frequencies~f �

i and the yet unknown true frequencies~f i . For given ~̂f i

and ~� i , we advocate to choose parameters that minimize the distance between ~f �
i and ~f i . Distance

computation can be performed using a squared error metric orbased on relative entropy, leading

to the following de�nitions of risk R:

R = E
�

j ~f �
i � ~f i j2

�
=

( P
a2A E(f �

i;a � f i;a )2 [Squared error]
P

a2A E
�

f �
i;a log

�
f �

i;a

f i;a

��
[Relative entropy]:

(2.28)

Evaluation experiments performed in [WNB99] showed that PSSMs using the squared error metric
for frequency estimation perform better than PSSMs using the relative entropy metric. Hence we

restrict in the following on the �rst to explain the method. F or the squared error metric, Wu and
coworkers showed that weight� �

i is optimal, if the following two relationships between � �
i and the

true frequencies ~f i hold.

� �
i =

8
<

:

1�
P

a 2A f 2
i;a

1�
P

a 2A f 2
i;a + l

P
a 2A ( f i;a � f (a)) 2 [Background frequencies]

1�
P

a 2A (Sa;a f i;a + f i;a ( f i;a � si;a ))
1+

P
a 2A [( l � 1)( f i;a � si;a )2 � 2Sa;a f i;a +

P
b2A S2

a;b f i;b ] [Substitution frequencies]
(2.29)

where

si;a =
X

b2A

Sa;b f i;b (2.30)

For a detailed derivation of Equation (2.29) from Equation (2.28) see the Appendix in [WNB99].

The �rst case in Equation (2.29) describes the relationship when using background frequencies
as pseudo frequencies� i;a , the second case when using substitution frequencies. WithEquation

(2.29) an initial estimate for the unknown frequencies ~f i can be used to achieve a better estimate.

More precisely, the initial estimate for ~f i serves as a starting point to determine (1) a weight� �

using Equation (2.29) and (2) (more accurate) frequencies~f �
i by using � � in Equation (2.26). This

procedure may be applied iteratively, but when the number ofsequences in the alignment block is
small, an iterative approach can lead to progressive over�tting and poor estimates. As an initial

estimate, Wu chose

f i;a =
count A (i; a)

l + B
+

B � � i;a

l + B
; a 2 A : (2.31)

Here B denotes the total number of pseudo-counts to add and was chosen by Wu proportional to

the number of sequencesl as B =
p

l .

Finally the score values of a minimum risk PSSM are computed as log-odd scores from the frequency

estimates as

mi;a = log
�

f �
i;a

f (a)

�
; i 2 [0; m � 1]; a 2 A : (2.32)

2.5.9 Construction of nucleotide PSSMs in the TRANSFAC data base

As a �nal example of a construction method for PSSMs from a given alignment block we describe
the PSSM building process in theTRANSFAC database. In TRANSFAC the PSSMs represent-

ing transcription factor binding site motifs are generated based on weighted, relative frequencies
([KGR + 03] and personal communication with A.Kel). Again, let f̂ i;a = count A ( i;a )

l be the observed
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Figure 2.9: A multiple alignment of length seven of �ve nucleotide sequences (left) and a corre-

sponding PSSM, containing relative frequencies and position speci�c gap costs (right)

relative frequency of nucleotidea to occur in column i . Then a TRANSFAC PSSM of length m is

a m � jf A; C; G; T gj matrix M with

mi;a = I (i ) � f̂ i;a : (2.33)

Here the observed relative frequencyf̂ i;a is weighted with the information vector I (i ) de�ned as

I (i ) :=
X

a2 �

f̂ i;a � ln( jAj � f̂ i;a ): (2.34)

The information vector describes the conservation of the position i in a matrix. The intention here

is, that the multiplication of the frequencies with the info rmation vector should result in a higher
acceptance of mismatches in less conserved regions, whereas mismatches in highly conserved regions

are very much discouraged. In [KGR+ 03] the authors claim, that this leads to a better performance

in recognition of transcription factor binding sites, compared with methods that do not use the
information vector [KKMBW99].

2.6 Gribskov's pro�le model

Gribskov's pro�le model, introduced and described in [GME87] and [GLE90], extends the concept

of PSSMs according to De�nition 8 on page 23 by facilitating position-dependent penalties for
the modeling of insertions and deletions. The underlying idea is, that insertions and deletions in

multiple alignments of related sequences occur at di�erentpositions with di�erent frequencies,
depending of the variability or degree of conservation at these positions. Accordingly, position

dependent insertion/deletion (gap) costs should be incorporated into the PSSM model. In Gribskov's
pro�le model, an additional column in the matrix contains th ese information. See Figure 2.9 for an

example of a PSSM with position speci�c gap costs derived from a gap-containing multiple sequence

alignment. Observe, that in this model no di�erence is beingmade between insertion and deletion
costs, since an insertion in one sequence can be viewed as a deletion in another.

To use a Gribskov pro�le in a database search, sequences are aligned to the pro�le using dynamic

programming and the alignment is rated with a score. The general idea of the method is similar
to the alignment of two sequences and can be extended to the comparison of two pro�les [Got93].
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2.6 Gribskov's pro�le model

In case of aligning a single sequence to a Gribskov pro�le, the pro�le is viewed as a string, where
each row represents a character. The objective is to computean optimal alignment of the string

and the Gribskov pro�le where the score re
ects how well the string �ts the pro�le. We make this
more precise now.

Let M t : [0; m � 1] � A t ! R , be a PSSM over a �nite alphabet A t = A [ ftg that includes

a special gap symbolt . For an alignment of a sequenceS = s0 : : : sn and a PSSM with position
speci�c gap costsM t , we need a scoring function that should express the aberration of a character

c 2 A of S from the j -th row of M t , j 2 [0; m � 1]. We assume that a pairwise scoring function

� : A t � A t ! R for all characters in A t exists. This can be based on normal PAM or BLOSUM
scoring matrices. Assume thatM t is based on relative frequencies, then we may choose the scoring

function

score(c; i) =
X

c02A t

� (c; c0)M t (c0; i ); i 2 [0; m � 1] (2.35)

to model a position dependent scoring. This function performs a weighted comparison of a character
c with the values of row i of M t and with the characters occurring in column i of the multiple

alignment respectively. E.g., the score for matching character G to the second row of the pro�le
given in Figure 2.9 isscore(G; 2) = 0 :2�� (G; A)+0 :4�� (G; C)+0 :4�� (G; T ). The optimal alignment of

the sequenceS and the PSSM with position speci�c gap costsM t can now be computed by applying
dynamic programming. We denote the optimal alignment of the pre�x s0; : : : ; si of S and the j -

th row vector of M t ; j 2 [0; m � 1] with V (i; j ). With the following recurrences for the dynamic
programming matrix

V (i; � 1) =
X

k � i

� (t ; sk ) � jAj � M t (k; t )

V (� 1; j ) =
X

k � j

score(k; t )

V (i; j ) = max

8
><

>:

V (i � 1; j � 1) + score(j; s i );

V (i � 1; j ) + � (si ; t ) � jAj � M t (j; t );
V (i; j � 1) + score(j; t )

the optimal alignment between a sequenceS of length n + 1 and a PSSM with position speci�c gap

costsM t of length m can be calculated inO(jA t jmn) time and O(mn) space. Likewise for pairwise
sequence alignment, this algorithm can be extended to an algorithm using an a�ne gap-cost model

with the same time and space complexity.

In practice PSSMs with position speci�c gap costs are not prevalent. To our knowledge they are

only used as (additional) motif descriptors in the PROSITE [HBFB99] and HAMAP [GMR + 03]
databases. In most situations where it is necessary to include gap information, due to practical con-

cerns, like the need to model longer or more variable parts ofsequences, a di�erent motif descriptor
model like the subsequently described (pro�le) hidden Markov models are used.
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2.7 Hidden Markov models

Originally developed and applied to problems in speech recognition in the late 1960's and early

1970's, hidden Markov models became very popular in bioinformatics in the late 1980's and early
1990's. Since then they have found many applications, e.g. gene prediction [BK97, Bur98], recog-

nition of transmembrane domains in proteins [KLvHS01] or protein family classi�cation. They are
successfully used as sequence family models [BCD+ 04, HSW03] to re
ect how the sequences of the

family relate by substitutions, insertions and deletions to the consensus sequence of the family. Since

HMMs are general probabilistic models with a wide range of possible application and not limited
to problems in bioinformatics, we start with a brief introdu ction of the underlying general theory,

before focusing on a special type of HMMs often used in sequence analysis.

2.7.1 Foundations of hidden Markov model theory

A hidden Markov model (HMM for short) � over an alphabetA describes a probability distribution

over the set of �nite words w 2 A � . Let P [wj� ] be the probability of w under the model � . We call

P [wj� ] the production probability of � for the sequencew. An HMM can be used to characterize
a family of sequences by assigning a production probabilityto a sequencew screened versus the

model � , giving a measure of how likely it its, that w belongs to the family described by� . If the
production probability P [wj� ] is signi�cant, w matches the model and can be seen as a new member

of the sequence family described by this HMM.

Similar to a Markov Model, an HMM consists of a set of statesf S1; S2; : : : ; SN g and transitions
connecting states. Each state has a local probability distribution, the state transition probabilities,

describing the probability of a certain state transition. L et st denote the state of an HMM � at
point t. State transition probabilities for N states can be de�ned by aN � N matrix A with

ai;j = P [st = Sj jst � 1 = Si ]; i; j 2 [1; N ] (2.36)

expressing the probability for a transition from state Si at point t � 1 to state Sj at point t. For

the initialization of the stochastic process, we de�ne starting probabilities � i for each stateSi . The
resulting vector ~� is de�ned as

� i = P [s1 = Si ]; i 2 [1; N ]: (2.37)

The transition structure of a discrete HMM can be described as a directed graph with a node
for each state, and an edge between two nodes if the corresponding state transition probability is

non zero (see Figure 2.10). In contrast to a Markov model, in an HMM state transitions are not
directly observable, they are hidden. Observable is a sequence of characters generated by a sequence

of state transitions of the HMM. It is convenient to think of a n HMM as a generative model that
generates a sequence of characters from an output alphabetA � := A[f � g, resulting in a sequence of

observationsw = w1; w2; : : : ; wT , wi 2 A � with probability P [wj� ]. The process of state transitions

evolves in some dimension, often time, though not necessarily. The model is parametrized with state
transition probabilities governing the state at a time t + 1, given that one knows the previous states

at time t. Markov assumptions are used to truncate the dependency of having to know the entire
history of states up to point t in order to assess the next statet + 1 such that only one step back is

38



2.7 Hidden Markov models

Figure 2.10: Di�erent states and transitions in the Genscan hidden Markov model. Genscan is a

gene-prediction algorithm that, like other HMMs, models the transition probabilities

from one part (state) of a gene to another. Here each circle orsquare represents a
functional unit (a state) of a gene on its forward strand (for example E init is the 5'

coding sequence (CDS) andE term is the 3' CDS, and the arrows represent the transition
probability from one state to another). Figure adopted from Genscan manual.

required. A pass through the HMM continues from state to state according to the state transition

probabilities6. For each transition an HMM generates a character from the output alphabet A � with
a certain state dependent probability, the symbol emissionprobability P [ot = wk jst = Sj ], wk 2 A � ,

resulting in a stream of emitted symbols (observations), asthe process passes through the states.

If we have a �nite alphabet of output symbols A � and thus discrete symbol emission probabilities,
they can be described by anN � jA � j matrix B with

bj;k = P [ot = wk jst = Sj ]; wk 2 A � ; 1 � j � N; 1 � k � jA � j

P [ot = wk jst = Sj ] denotes the probability of generating symbolwk 2 A � in state Sj at time t. A

state without a symbol emission probability distribution i s called a silent state. Observe that this is
no restriction to the general concept of HMMs, in which a state has no special type and each state is

a symbol emitting state, since a silent stateSj can be seen as a symbol emitting state, emitting the

empty string � with symbol emissions probability P [ot = � jst = Sj ] = 1 and P [ot = cjst = Sj ] = 0

6Sometimes special start- and end states are used to de�ne a st art and end point for a pass through the model.
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2 Modeling concepts for sequence motifs and consensi

for all other characters c 2 A . An HMM � with discrete probability distributions is well de�ned by
the triple

� = ( ~�; A; B ): (2.38)

When using HMMs there are the following three basic problemsof interest:

1. The Evaluation Problem: Sometimes also called the likelihood problem. Given a HMM�

and a sequence of observationsw = w1; w2; : : : wT , wi 2 A � , what is the production probability
P [wj� ] that w is generated by� ?

2. The Decoding Problem: Given model � and a sequence of observationsw = w1; w2; : : : ; wT ,

wi 2 A � , what is the most likely state sequenceq = q1; q2; : : : ; qT with qi 2 f S1; S2; : : : ; SN g
across the model that generates the observed sequencew?

3. The Learning Problem: Given model � and a sequence of observationsw = w1; w2; : : : ; wT ,

wi 2 A � , how should the model parameters (~�; A; B ) be adjusted in order to maximize P [wj� ]?

To compute the production probability P [wj� ], we have to take all state sequences/pathsq =

q1; q2; : : : ; qT through � into account that produce the sequence of observationsw = w1; w2; : : : wT ,
wi 2 A � , and compute and add their probabilities. We denote the set of paths through � producing

w by Qw and write P [wj� ] as

P [wj� ] =
X

q2 Qw

P [w; qj� ] =
X

q2 Qw

� q1 bq1 ;w 1 � aq1 ;q2 � bq2 ;w 2 � aq2 ;q3 � : : : � aqT � 1 ;qT � bqT ;w T : (2.39)

Obviously, the number of paths increases exponentially with the length of the sequence of obser-

vations and a straightforward calculation of P [wj� ] leads to an algorithm, solving the evaluation

problem in O
�
2T � N T

�
time, where 2T is the cost of computing the probability for a single path

and N T is the number of paths of lengthT . It is apparent, that this approach is infeasible in prac-

tice, even for moderate values ofT . A more e�cient approach makes use of dynamic programming
and calculates P [wj� ] in polynomial time. In particular this algorithm is known a s the Forward

Algorithm . We make this now more precise. We de�ne the problem of computing the probability
P [wj� ] in terms of pre�xes of the observed sequence. Let� t;i = P [w1; : : : ; wt ; st = Si j� ] denote the

probability of observing the partial observation sequencew1; : : : ; wt and being in state Si at point
t. Then the following recurrences hold:

� 1;j = � j bj; 1 for any j 2 [1; N ]

� t +1 ;j =

 
NX

i =1

� t;i ai;j

!

bj;t +1 for any t 2 [1; T � 1] ^ j 2 [1; N ]

P [w1; : : : ; wT j� ] =
NX

i =1

� T;i (2.40)

To determine P [wj� ] with the Forward Algorithm we calculate the values ofO (N � T) cells of the
dynamic programming matrix, spending O (N ) operations per cell. Hence the overall time complex-

ity is O
�
N 2T

�
and the space complexity isO (N � T). In a similar way we can de�ne a backward

recursion calculating P [wj� ]. This leads to the Backward Algorithm. Here we de�ne the problem of
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2.7 Hidden Markov models

computing P [wj� ] in terms of su�xes of the observed sequence. Let� t;i = P [wt +1 ; : : : ; wT ; st = Si j� ]
be the probability to observe the sequencewt +1 ; : : : ; wT and being in state Si at point t. Then the

following recurrences can be used to computeP [wj� ] e�ciently:

� T;j = 1 for any j 2 [1; N ]

� t;j =
NX

i =1

� t +1 ;i aj;i bi;t +1 for any t 2 [T � 1; 1] ^ j 2 [1; N ]

P [w1; : : : ; wT j� ] =
NX

i =1

� i bi; 1� 1;i (2.41)

The complexity of the Backward Algorithm is again O
�
N 2T

�
time and O (N � T) space. Further

on, we observe that with the de�nitions of � and � the following equation holds for arbitrary t.

P [w1; : : : ; wT j� ] =
NX

i =1

� t;i � t;i (2.42)

With the Forward or Backward algorithm, we can compute the probability P [wj� ] that a sequence
of observations was produced by a given model� and thus solving the evaluation problem. P [wj� ]

can be rewritten in terms of a score or p-value and can be used in HMM based protein family
classi�cation to accept or not to accept the sequence of observations as a new member of the family

that was used to build the model.

The HMM decoding problem can be solved with an algorithm known as the Viterbi algorithm ,

which again applies dynamic programming. It is similar to the Forward algorithm except that we
do not sum over the predecessor states at pointt, but taking the maximum.

Let � t;j denote the highest probability that the partial observatio n sequencew1; : : : ; wt and state

sequence ending in statej 2 [1; N ] up to point t. Then the Viterbi algorithm can be de�ned by the
following recurrences:

� 1;j = � j bj; 1

� t +1 ;j = argmax
i 2 [1;N ]

f � t;i ai;j gbj;t +1 (2.43)

If we store a pointer, pointing from � t +1 ;j back to the selected predecessor state� t;i which is the

state for which � t;i � ai;j ; i 2 [1; N ], is maximal, we can calculate the most likely state sequence

recursively, starting with � T;j � and j � = argmax
1� i � N

f � T;i g and thus solving the decoding problem. Since

we calculate the values ofO (N � T) cells of the DP matrix, spending O (N ) operations per cell, the

overall time complexity of the Viterbi Algorithm is O
�
N 2T

�
and the space complexity isO (N � T).

Here N denotes the number of states andT is the length of the emitted sequence.

To solve the learning problem, we must �nd for a given HMM � with already de�ned topology and

observed data the model parameters (~�; A; B ) that maximize P [wj� ]. There is no known optimal
analytical way of doing this. However, there exist algorithms that iteratively re-estimate the model
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2 Modeling concepts for sequence motifs and consensi

from some arbitrary starting point which guarantee to �nd a l ocal maximum. The most common
one is the Baum-Welch or forward-backward algorithm [Rab90], which is a version of the general

expectation maximization (EM) method often used in statistics. For an accurate estimation of the
model parameters a lot of training data is needed, making thetraining of the model a critical and

computationally expensive step. To give an example, consider an HMM over an alphabet containing
20 symbols, representing the 20 di�erent naturally occurring amino acids. All emission probabilities

of all 20 amino acids have to be estimated in all emitting states. Especially in pro�le HMMs (a type

of an HMM with a special topology, described in the next section), in which each conserved position
in the sequence is modeled by a di�erent emitting state, the number of estimated parameters can be

enormous. This phenomenon is related to over�tting, which occurs when there is not enough data
to obtain good estimates for the model parameters, and consequently the model will not generalize

adequately to new data.

2.7.2 Pro�le hidden Markov models

In particular successful in sequence analysis since the 1990's is a special type of HMMs called

pro�le hidden Markov models (pHMMs for short). pHMMs were �r st introduced in [HKB + 93] and
[KMSH94] and are simple types of hidden Markov models with a linear, left-to-right, repetitive

structure of states (see Figure 2.11 for an example), well suited to model multiple alignments and

probably the most popular application of hidden Markov models in computational biology. They
have been proved to be a powerful method in biological sequence analysis, especially successful in

performing sequence database searching and detecting remote homologies [Edd98, KBH98, MG02].
pHMMs are also common in speech recognition, where they are sometimes calledtime-dependent

HMMs or time-parametrized HMMs.

The pre�x \pro�le" is used because pHMMs are similar to and ad dress the same problem as the
formerly described PSSMs (often also called pro�les). Likewise to PSSMs they are often derived

from multiple alignments of related sequences and capture position-speci�c information about how

conserved each column of the alignment is, and which residues are likely. pHMMs are general, statis-
tical models for any system that can be represented as a succession of transitions between discrete

states. As a model capturing the information of a protein family, the discrete states correspond to
the successive columns of a protein multiple sequence alignment. Although, in principle, pHMMs

can even be determined from unaligned sequences by successive rounds of optimization, in practice,
protein pHMMs are built from curated multiple sequence alignments, like the ones collected in the

PFAM [BBD + 00] or TIGRFAM [HSW03] databases. For the construction of a pHMM usable as a
discriminative motif descriptor, we assume a given multiple alignment of a sequence family and a

derived consensus sequence. In contrast to general HMMs, pHMMs have basically three types of
states with associated special semantics:match (M), insert (I) and delete (D) states. Match and

insert states are symbol emitting states whereas thedelete state is a silent state. Each of these

states models a position of the consensus sequence of the sequence family delineated by the mul-
tiple alignment, and describes how members of the family deviate from the consensus sequence at

that position. More precisely:

� The match state models that the generated character has evolved from the position in the
consensus sequence.
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Figure 2.11: The transition structure of a pHMM consisting of repeated elements ofmatch (green

squares),insert (yellow diamonds) and silent delete(red circles) states. A pass through
the pHMM starts in a special start-state and continues from state to state according to

the state transition probabilities, until a special end-state is reached. State transition
probabilities are given as numbers next to the directed arcs. Symbol emissions and

their probabilities are given as letters and numbers insidethe state symbols.

� The insert state models that the generated character has been insertedbetween two neigh-

boring positions in the consensus sequence.

� The self-loop on the insert state models that several consecutive characters can be inserted

between two positions of the consensus sequence.

� The delete state models that the position has been deleted from the consensus sequence.

A path through the model always starts from the begin/start state and ends with the end state.

Likewise to general HMMs, on the path through the model, state transitions occur with a certain
probability and in symbol emitting states, a symbol from the output alphabet is emitted with a

certain probability. To give an example, let q be the state sequence of the red marked path in Figure
2.11. Then q generates the sequenceAIEHwith probability

P [w = AIEH; qj� ] = 0 :3 � 0:75� 0:97� 0:5 � 0:015� 0:05� 0:046� 0:4 � 0:7 = 1:0541E � 6: (2.44)

That is, we compute P [w = AIEH; qj� ] as the product of the state transition probabilities and

the emission probabilities of the emitted symbol along the path through the model. Instead of
multiplying probabilities, in practice, often the log-odd scores are summed up.

The central part of a pHMM is a sequence of match states, corresponding to columns in the multiple

alignment. Each match state emits (aligns to) a single residue, with a probability score that is

determined by the frequency that residues have been observed in the corresponding column of
the multiple alignment. Each match state therefore has an assigned vector of jAj probabilities,

describing a probability distribution of the symbols of A . That is, in case of pHMMs, build from a
multiple alignment of amino acid sequences 20 probabilities for scoring the 20 amino acids. Observe
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Figure 2.12: A PSSM based on probability values can be seen asa pHMM consisting of a linear

sequence of match states with state transition probabilities of 1 between them. In this
view, each match state corresponds to a column in the multiple alignment and hence a

row in the PSSM. It emits a symbol from the output alphabet wit h a certain probability.
That is, the symbol emission probability distribution of a m atch state corresponds to

the distribution of scores or rather probabilities in a row of the PSSM.

that the meaning of this probability vector is similar to the meaning of a row vector in a PSSM.
More over, if the PSSM contains probability values, then they are equivalent. Hence a PSSM is

essentially equivalent to a pHMM composed only of match states (see Figure 2.12) and can be seen
as a method that looks for ungapped alignments to a consensusof a multiple alignment7. If we

extend this perception to PSSMs that include position speci�c gap costs, like the Gribskov PSSMs
described in section 2.6, the position speci�c gap costs correspond to transition probabilities for

moving to an insert or delete state.

The main di�erence between Gribskov's PSSMs with position speci�c gap costs and a pHMM is that

the PSSM model requires the transition from amatch state to an insert state and the transition
from a match state to a delete state to have both the same probability. This is dispositional in the

sense, that an insertion in one sequence can be seen as a deletion in another. In contrast to the
basic PSSM model as de�ned in De�nition 8, a pHMM is capable ofmodeling alignments including

insertions and deletions (with the insert and delete statesmentioned above), which allows the more
adequate description of much longer and more variable partsof conserved sequences like complete

conserved domains or complete sequences, rather than just arelatively small ungapped motif.

pHMM construction from a multiple alignment

For the construction process of a pHMM from a given multiple alignment two important decisions
must be taken into account:

7 In [Edd98] the author makes the distinction between pHMMs, w hich he calls pro�le models and motif HMMs which
are built of linear sets of match states and are essentially PSSMs.
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Begin End

A - - - K
A D - - R
A D - - R
S D - - K
A E L G R

A - - - K
A D - - R
A D - - R
S D - - K
A E L G R

A - - - K
A D - - R
A D - - R
S D - - K
A E L G R

A - - - K
A D - - R
A D - - R
S D - - K
A E L G R

M1 M2 M3

Multiple alignment:

a possible corresponding pHMM:

I2

D2

Figure 2.13: A possible pHMM for the given multiple alignment. The three match statesM 1; M 2; M 3

correspond to the green marked columns in the alignment. Thethird and fourth column
are treated as insertions betweenM 2 and M 3 and are modeled with the insert state

I 2. The delete state D2 allows to skip state M 2.

� The topology and model length . That is, we have to decide, which columns of the multiple

alignment must be assigned to match states and which must be modeled with insertion states.
A rule of thumb used in practice is to consider columns with more than half gap characters

as highly variable regions that should be modeled with insertion states. See Figure 2.13 for
an example.

� The model parameters . Reconsider that an HMM � with a discrete probability distribution
is well de�ned by the triple ( ~�; A; B ) (see Equation (2.38)). Initial probabilities ~� , transition

probabilities A, and emission probabilitiesB can be estimated from the multiple alignment.
For this estimation, again pseudo-count methods are used toavoid problems caused by zero

character frequencies and to adequately estimate character distributions.

In the following we describe the structure of a pHMM as introduced in [HKB+ 93] and [KMSH94].
Assume that the linear sequence ofmatch states is de�ned e.g. by selecting those columns of the

multiple alignment that contain less than half gap characters. The next step is to deal with insertions
and deletions. Since insertions, i.e. portions of a sequence that do not match anything in the model,

can potentially occur at any position, we add an insert state to each match state. Deletions, i.e.
segments of the multiple alignment andmatch states that are not matched by a sequence scored with

the model, are handled with delete states. We associate adelete state with each match state. This
allows to skip match states. Additionally we add an insert state before the �rst match state to allow

to skip pre�xes of the sequence before entering the �rstmatch state. We call a group ofmatch, insert,

and delete states at the same consensus position in the alignment anode, and the model length is
the number of nodes between thebegin and the end state. Finally we end for the multiple alignment

given in Figure 2.13 with the pHMM architecture given in Figu re 2.11. Following the propposed
architecture of [KMSH94] leads to generalized models, where in principle an insertion or deletion
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can occur at any position in a sequence evaluated or generated with the pHMM. A slightly di�erent
pHMM topology often used in practice to model families of related sequences, is the so calledPLAN

7 architecture, developed by Eddy [Edd98] and implemented inthe HMMER software package8. It
is somewhat more complex, but much more 
exible than the original pHMM architecture introduced

by Krogh and coworkers in [KMSH94]. Unlike Krogh's pHMM architecture, PLAN 7 has no state
transitions from delete to insert states and frominsert to deletestates. Additional special states in

the PLAN 7 architecture even allow the construction of local alignments. Alignments can be local

with respect to sequence (i.e. allowing a match to the model anywhere within a longer sequence),
as well as with respect to the model (i.e. allowing fragmentsof the model to match the sequence).

Multiple hit alignments, for instance to model repetitive p rotein domains, are also possible. For a
detailed description of the PLAN7 architecture, see theHMMER manual.

Once the structure of the pHMM is determined, the model parameters, like transition and symbol

emission probabilities have to be estimated from the multiple alignment. This is analogous to solving
the formerly described learning problem. For the estimation of symbol emission probabilities from

sample counts in the multiple alignment, the same or similarmethods as the described methods for
PSSM score estimation are used.

Observe that a pHMM de�nes a discrete probability distribut ion over the whole space of sequences
or words from A � respectively. Accordingly, the objective of the construction and training process

is to control the shape of that distribution by associating the peaks of the function around members
of the sequence family represented by the multiple alignment. That means, that the model, which

describes the consensus sequence for the family, not the sequence of any particular member, should
discriminate between true and false family members as well as possible. As already stated, there is

no analytical, optimal way of doing this, but in practice, it erative methods like the Baum-Welch or
forward-backward algorithm [Rab90] can be used for this task. For a detailed description of prob-

ability estimation methods and optimal model construction in the context of pHMMs see sections
5.6 and 5.7 of [DEK98].

Sequence alignment and database searching with pHMMs

The most important application of a pHMM representing a family of sequences is �nding new
sequences in a database that show a high similarity to the members of this family. Given a database

of sequences and a pHMM, the sequences can be aligned to the model. Here the pHMM can be seen
as a generative model and a sequence is viewed as a sequence ofobservations (emitted symbols).

As shown in Figure 2.14, in a pHMM one sequence of observations can be generated by di�erent
hidden state sequences. If we want to align a sequencew 2 A � to an already trained model � , we are

interested in the most probable sequence of hidden state transitions that generates this sequence
of observations. Thus, when aligningw to � , a sequence ofmatch, insert, and delete states will be

obtained. The determination of the best (most likely) sequence of state transitions is essentially equal

to solving the HMM decoding problem which can be solved with the Viterbi algorithm in O
�
N 2 � T

�

time and O (N � T) space, applying dynamic programming. HereN denotes the length ofw and T

is the number of states in � . Finally, an ordered score can be determined from the comparison of
the probability of the most likely state sequence to the probability of random sequences.

8http://hmmer.wustl.edu/
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Multiple alignment:

Begin End

State Sequence:
Begin,M1,M2,I2,M3,End

State Sequence:
Begin,D1,M2,I2,I2,I2,D3,End

State Sequence:
Begin,M1,I1,M2,M3,End

M1 M2 M3

I0 I1 I2 I3

D3D2D1

D1
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I0

I0
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Figure 2.14: A pHMM can be seen as a process, that generates a sequence of characters with a cer-

tain probability, by emitting symbols in the symbol emittin g match and insert states.

Di�erent paths through the model can generate the same sequence with di�erent prob-
abilities. In this example three possible paths and their state sequences to generate the

sequenceAIEHare shown. The three match statesM 1,M 2, and M 3 correspond to the
green marked columns in the multiple alignment. In each example, the visited states

on the path are marked red.
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Name (Release) #Models URL

Pfam (20.0) 8,296 http://www.sanger.ac.uk/Software/Pfam/

TIGRFAM (6.0) 2,946 http://www.tigr.org/TIGRFAMs/

SMART (5.0) 725 http://smart.embl-heidelberg.de/
SUPERFAMILY (1.69) 4,894 http://supfam.org/SUPERFAMILY/

CATH (3.0) 23,876 http://www.cathdb.info/
PANTHER (6.0) 36,298 http://www.pantherdb.org/

Table 2.5: Major existing pHMM collections

In a database search scenario with a pHMM� , we can ask alternatively to the computation of the

most probable state path, how likely is it that a certain sequencew 2 A � is generated by� . That
is, we have to compute the production probability P [wj� ]. Since there can be more than one path

through � that generatesw (see Figure 2.14), we have to take all paths into account thatgenerate
w (see Equation (2.39)). Observe that this is equivalent to solving the HMM evaluation problem

and can be accomplished with theForward algorithm in O
�
N 2 � T

�
time and O (N � T) space.

2.7.3 Pro�le HMM collections for sequence annotation and cl assi�cation

Pro�le HMMs are especially successful for modeling of protein families and there is an increasing

number of publicly available collections of such family models, see Table 2.5. A common aspect of

all of these collections is, that they use the pHMM topology and model notations of the HMMER
package [Edd98], such that they are compatible to and can be searched with the pHMM search

software of the same name. Overall, it can be said that the HMMER software package has established
a de facto standard in this �eld. In the following we give a brief overvi ew of the most widely used

collections of pHMMs, suitable for sequence annotation andprotein family classi�cation.

Pfam database

Pfam [BCD+ 04] is a large manually curated collection of multiple sequence alignments and derived
pHMMs covering many common protein domains and families. Genome projects, including both the

human and 
y, have used Pfam extensively for large scale functional annotation of genomic data.

Each curated family in Pfam is represented by a seed and full alignment. The seed contains rep-
resentative members of the family, while the full alignment contains all members of the family as

detected with a pHMM constructed from the seed alignment. Such full alignments can be large, with
the top 20 families containing over 2500 sequences each. Themajority of known protein sequences

come from just a few thousand protein families.

TIGRFAM database

The Institute for Genomic Research protein families database (TIGRFAM) [HSW03] is likewise to
Pfam a collection of curated multiple sequence alignments (seed alignments) for protein families and
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pHMMs built from the seeds. TIGRFAM contains predominantly equivalogs (functionally de�ned
subfamilies). Protein family descriptions for use in protein annotation, including trusted score cuto�

and noise cuto� values accompany each model. Proteins that score above the trusted cuto�s are
believed to reside within the family and those falling belowthe noise cuto�s are believed to reside

outside the family. The margin of error with respect to presence or absence of a protein within a
TIGRFAM family is represented by the score range between noise and trusted cuto�s. Additionally

the TIGRFAM database provides functional classi�cation in formation in form of roles, in which

models are classi�ed, and cross referencing to the Gene Ontology classi�cation system [Con06].

SMART database

The Simple Modular Architecture Research Tool (SMART) [LCP + 06] can be used for the identi-
�cation and annotation of genetically mobile domains and the analysis of domain architectures. It

contains pHMMs for more than 500 domain families found in signaling, extracellular and chromatin-
associated proteins. The domain models are extensively annotated with respect to phyletic distri-

butions, functional class, tertiary structures and functionally important residues.

SUPERFAMILY database

The SUPERFAMILY database [GKHC01] provides structural (an d hence implied functional) as-

signments to amino acid sequences at the protein superfamily level. It is a library of pHMMs
representing 1539 protein superfamilies. Superfamilies are de�ned according to the structural clas-

si�cation of proteins database (SCOP) [AHB+ 04]. Each superfamily is represented by a group of
pHMMs.

CATH Protein structure classi�cation database

CATH [PTS + 05] is a multi level hierarchical classi�cation system, that classi�es protein domain

structures at four major levels, Class(C), Architecture(A), Topology(T), and Homologous superfam-

ily (H). The level of homologous superfamilies groups together protein domains which are thought
to share a common ancestor and can therefore be described as homologous. Similarities are iden-

ti�ed either by high sequence identity or structure compari son. From multiple alignments of the
homologous superfamilies pHMMs are constructed, such thateach superfamily is represented by

multiple pHMMs.

PANTHER classi�cation system

The PRotein ANalysis THrough Evolutionary Relationships ( PANTHER) classi�cation system
[MLUL + 05] classi�es proteins according to families and subfamilies. PANTHER de�nes families

as groups of evolutionary related proteins and subfamiliesas related proteins that also have the

same function. Information about family and subfamily a�li ations are derived from clustering of
the UniProt protein database, using a BLAST-based similarity score. Each protein family is repre-

sented by a phylogenetic tree de�ning its subfamilies. Families and subfamilies are also represented
by pHMMs and associated with functional ontology terms. For several families and subfamilies
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additional information and associated data such as detailed biochemical interactions in canonical
pathways are available.

2.8 Concluding remarks on sequence motif models

The di�erent concepts for motif modeling presented in this chapter all have di�erent advantages

and disadvantages, making it di�cult to choose one single method as best for all kinds of possible
applications. See Table 2.6 for an overview of the advantages and disadvantages of the described

motif models.

Advantages Disadvantages

Regular expressions

� easy to use due to the availability of e�cient

search engines

� fast to match

� discrete motif descriptor

� no scoring system, only binary response

PSSMs

� provide a scoring system

� needs less sequences for model construction

than a pHMM

� e�cient to match using index structures

� matching is computationally more expen-

sive than for regular expressions

� limited expressiveness due to missing inser-

tion and deletion model

Gribskov pro�les

� provide a scoring system

� position speci�c insertion/deletion model

� not very common in practice

� lack of publicly available models

� tools for pro�le construction and search-

ing were not further developed in the last

decade and are poorly conceived

pro�le HMMs

� full probabilistic model

� provide a scoring system based on proba-

bilistic theory

� insertion and deletion model

� very sensitive

� widely used

� matching is very time consuming and hence

it is di�cult to use pHMMs on a large-scale

� proper model training may become time

consuming and challenging

� a lot of sequences are needed to train a

model adequately and to avoid over�tting

Table 2.6: Advantages and disadvantages of di�erent motif modeling concepts.

Discrete sequence motif descriptors, such as consensus strings or regular expression based patterns

are relatively easy to search, and standardized searching engines are available. Searching with these
motif descriptors is relatively fast, since with a single mismatch parts of the text to be searched can
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be skipped. Their severe drawback is, that they do not include a scoring system and give only a
binary response. As a consequence they are often an inadequate concept to describe biological motifs.

In contrast to regular expressions, PSSMs provide a kind of similarity score and increased sensitivity
although searching with PSSMs is more complex and computationally expensive. Compared to

pHMMs much less (aligned) sequences are needed to derive a meaningful PSSM which is de�nitely
an advantage in practice, when modeling protein families with only a few number of known members.

Another advantage of PSSMs is that they are a well studied, accepted and common motif model

in sequence analysis and thus various publicly available resources of curated alignment blocks and
already derived PSSMs exist. One severe drawback of PSSMs is, that they are �xed length motifs,

which lack of an adequate insertion and deletion model. Hence their capabilities especially for
modeling of longer regions is limited. This disadvantage ispartially balanced in Gribskov's pro�le

model, which extends the basic PSSM model by position speci�c gap costs. However, the pitfall with
Gribskov pro�les in practice is simply the nonexistence of publicly available models. Additionally

the programs to build pro�les from existing multiple alignm ents and to search with them are not
very handy to use and were not further developed in the last decade.

The most successful motif model in computational biology are pHMMs. They are based on a fully

probabilistic model and are capable to model insertions anddeletions. Further on, they yield to be

the most sensitive of the introduced motif models so far. Theprice to be paid when using pHMMs
is an increased complexity and higher computational e�ort when building the model. To build a

pHMM that achieves good classi�cation accuracy, a lot of model parameters have to be trained
properly. Consequently much more sequences are needed for an adequate training of a pHMM,

compared to a PSSM, in order to avoid over�tting problems. Another problem, especially occurring
when using pHMMs on a larger scale, are the running times of the Viterbi and Forward algorithms.

These may make searching with pHMMs a time consuming processin practice. Especially in the
absence of large cluster systems, searching with large collections of pHMMs on complete proteomes

can become an infeasible task.

In the following chapters, we will focus on the e�cient searching of PSSM based motif models. We

will see, that some of the disadvantages of PSSMs compared topHMMs, like the lack to model
insertions and deletions, can be compensated, making PSSMsalmost as sensitive as pHMMs and

that the use of su�x based full text index structures lead to f ast PSSM searching algorithms, that
are well suited for large-scale PSSM matching tasks.
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3 Fast algorithms for matching position

speci�c scoring matrices

3.1 Introduction

As stated in the former chapter, PSSMs are a well known and successfully used concept for approx-

imate motif modeling in sequence analysis. When searching with PSSMs in nucleotide or amino
acid sequences, a high PSSM-score in some region of a sequence often indicates a possible biological

relationship of this sequence to the family or motif characterized by the PSSM. There are sev-
eral databases utilizing PSSMs for function assignment andannotation, e.g., PROSITE [HSL+ 04],

PRINTS [ABF + 03], BLOCKS [HGPH00], EMATRIX [WNB99], JASPAR [SAE + 04], or TRANS-
FAC [MFG + 03]. In addition, recently developed modeling concepts formore complex complete regu-

latory modules consisting of several transcription factorbinding site, like the multiple-feature based

approach of [PSTB05], also use PSSMs as atomic motif descriptors. While there are manifold ap-
plications that employs PSSMs and PSSM containing databases are constantly improved, there are

only few improvements in the programs searching with PSSMs.E.g., the programsFingerPrintScan
[SFA99], BLIMPS [HGPH00], MatInspector [QFWW95], and the method of [PSTB05] still use a

straightforward O (mn)-time algorithm to search a PSSM of length m in a sequence of lengthn.
In [RJS02] the authors presented a method based on Fourier transformation. A di�erent method

introduced in [FB05] employs data compression. To the best of our knowledge there is no software
available implementing these two methods. The most advanced program in the �eld of searching

with PSSMs is EMATRIX [WNB00], which incorporates a technique called lookahead scoring. The

lookahead scoring technique is also employed in the su�x tree based method of [DNM00]. This
method performs a limited depth �rst traversal of the su�x tr ee of the set of target sequences. This

search updates PSSM-scores along the edges of the su�x tree.Lookahead scoring allows to skip
subtrees of the su�x tree that do not contain any matches to th e PSSM. Unfortunately, the method

of [DNM00] has not found its way into a widely available and robust software system. A method
for the detection of transcription factor binding sites modelled with PSSMs utilizing su�x trees but

no lookahead scoring was very recently described in [SSZ07]. In [Gon04], the development of new,
more e�cient algorithms for searching with PSSMs is considered an important problem, which still

needs better solutions.

In this chapter, we brie
y recall existing methods for searching with PSSMs and present a new, non-

heuristic algorithm. With any non-heuristic PSSM searching algorithm, the performance in terms
of sensitivity and speci�city solely depends on the used PSSM and threshold, i.e. given a PSSM

and threshold, all these algorithms give exactly the same results. For the generation of PSSMs from
aligned sequences, numerous di�erent methods were described in literature over the last decades
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[GME87, TAK94, HH96, WNB99, KGR + 03]. Some of them were already described in detail in
section 2.5. The algorithms presented in this chapter can deal with all these types of PSSMs, since

rather than improving PSSMs, we focus on improvements in terms of time and space e�ciency when
searching with PSSMs, independently of their underlying generation method. The overall structure

of our proposed new search algorithm is similar to the methodof [DNM00]. However, instead of
su�x trees we use enhanced su�x arrays, a data structure which is as powerful as su�x trees

(cf. [AKO04]) but provides several advantages over su�x trees, which make them more suitable for

searching with PSSMs.

One of our algorithmic contributions is a new technique that allows to skip parts of the enhanced
su�x array containing no matches to the PSSM. Due to the skipp ing, our algorithm achieves an

expected running time that is sublinear in the size of the search space (i.e., the size of the nucleotide
or protein database). As a consequence, our algorithm scales very well for large data sizes.

Since the running time of our algorithm increases with the size of the underlying alphabet, we devel-

oped a �ltering technique, utilizing alphabet reduction, t hat achieves better performance especially
on sequences/PSSMs over the amino acid alphabet.

When searching with a PSSM, it is important to determine a suitable threshold for a PSSM-match.

Usually, the user prefers to specify a signi�cance threshold (i.e., an E-value or a p-value) which has

to be transformed into an absolute score threshold for the PSSM under consideration. This can be
done by computing the score distribution of the PSSM, using well-known dynamic programming

(DP, for short) methods, e.g., [Sta89, WNB00, Rah03, RMV03]. Unfortunately, these methods are
not fast enough for large PSSMs. For this reason, we have developed a new, lazy evaluation algorithm

that only computes a small fraction of the complete score distribution. Our algorithm speeds up
the computation of the threshold by factor of at least 3, compared to standard DP methods. This

makes our algorithm applicable for on-the-
y computations of the score thresholds.

3.2 Pattern matching with PSSMs

Recall, that a PSSM is an abstraction of a multiple alignment of related sequences and can be

de�ned as a function M : [0; m � 1]�A ! R , wherem is the length of M and A is a �nite alphabet.
We representM by an m � jAj matrix, in which each row re
ects the frequency of occurrence of

each amino acid or nucleotide at the corresponding positionof the underlying alignment. See Figure
3.1 for an example.

From now on, let M be a PSSM of lengthm and let w[i ] denote the character ofw at position i

for 0 � i < m . Further on, w[i::j ] denotes the substring ofw starting at position i and ending at

position j . We de�ne sc(w; M ) :=
P m � 1

i =0 M (i; w [i ]) for a sequencew 2 A m of length m. sc(w; M )
is the match score of w w.r.t. M . The score rangeof a PSSM is the interval [scmin (M ); scmax (M )]

with scmin (M ) :=
P m � 1

i =0 minf M (i; a) j a 2 Ag and scmax (M ) :=
P m � 1

i =0 maxf M (i; a) j a 2 Ag . We
de�ne the PSSM matching problemas follows:

De�nition 9 Given a sequenceS of length n over alphabet A , a PSSMM of length m and a score

threshold th, the PSSM matching problemis to �nd all positions j 2 [0; n � m] in S and their
assigned match scores, such thatsc(S[j::j + m � 1]; M ) � th holds.
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A C D E F G H I K L M N P Q R S T V W Y th d � d

-19 92 -45 -49 -30 -36 -38 -12 -41 -21 -22 -40 -46 -44 -44 -30 -25 16 -35 - 34 2 398
5 -17 17 22 -28 -15 -7 -23 -8 -27 -21 26 18 -7 -13 -9 9 -19 -33 -25 24 376
7 -8 -29 -28 2 -25 -10 25 -23 -4 -5 -25 -32 -26 -25 -18 13 22 -11 36 60 340

-29 99 -55 -61 -42 -45 -47 -31 -52 -34 -36 -49 -56 -55 -55 -38 -35 -29 -44 -46 159 241
-14 -22 14 22 -28 9 -8 -26 15 -27 -20 -7 -26 -3 31 -13 5 -23 -30 -24 181 219
-25 -34 -25 -16 -37 -30 -15 -36 45 -34 -26 -18 -35 -9 49 -25 -26 -33 -39 -31 230 170

7 -8 -25 -24 -19 -23 -22 4 -15 -10 -8 -19 -29 -21 11 -13 31 31 -31 -22 261 139
-34 -27 -44 -43 60 -41 -8 -16 -38 -14 -17 -39 -51 -40 -36 -39 -35 -2 1 -1 56 317 83

7 40 -16 -14 -9 -14 -6 -17 14 -20 -15 -10 -24 -11 12 15 9 -13 -16 20 357 43
-7 43 16 -7 -27 -15 -9 -24 -5 -26 -18 -6 -25 25 13 25 -8 -21 -30 -24 400 0

Figure 3.1: Amino acid PSSM of length m = 10 of a zinc-�nger motif. If the score threshold is
th = 400, then only substrings beginning with C or V can match the PSSM, because all

other amino acids score below the intermediate thresholdth0 = 2. That is, lookahead

scoring will skip over all substrings starting with amino acids di�erent from cysteine ( C)
and valine (V ).

A simple algorithm for the PSSM matching problem slides along the sequence and computes
sc(w; M ) for each w = S[j::j + m � 1], j 2 [0; n � m]. See Algorithm 1 and Figure 3.2 for an

example. The running time of this algorithm is O (mn). It is used e.g., in the programsFinger-
PrintScan [SFA99], BLIMPS [HGPH00], MatInspector [QFWW95], and MATCH [KGR + 03].

Algorithm 1 : SPsearch
input : A sequenceS = s0 : : : sn � 1, a PSSM M of length m and a threshold th

output : All matching positions of M in S and their associatedmatchscores

for j  0 to n � m do1

score  � sc(S[j::j + m � 1]; M ) ;2

if score � th then3

print "match at position j with score: score";4

end5

end6

3.3 Improved running time through the usage of lookahead

scoring

In [WNB00], lookahead scoring is introduced to improve the simple algorithm. Lookahead scoring

allows to stop the calculation of sc(w; M ) when it is clear that the given overall score threshold

th cannot be achieved. To be more precise, we de�nepfxscd(w; M ) :=
P d

h=0 M (h; w[h]), maxd :=
maxf M (d; a) j a 2 Ag , and � d :=

P m � 1
h= d+1 maxh for any d 2 [0; m � 1]. pfxscd(w; M ) is the pre�x

score of depthd. � d is the maximal score that can be achieved in the lastm � d � 1 positions of the
PSSM. Let thd := th � � d be the intermediate threshold at position d. The correctness of lookahead

scoring, not shown in [WNB00], is implied by the following Lemma:

55



3 Fast algorithms for matching position speci�c scoring matrices

A G C T T G C A G C .....
A C G T
1 1 2 1
1 2 1 1
2 1 1 1

1+1+1
2+1+1

2+1+2

1+1+1
1+1+1

1+1+1

0 1 2 3 4 5 6 7 8 9 .....

th=5

Figure 3.2: A straightforward solution for the PSSM searching problem is the SPsearchalgorithm,

which uses a sliding window technique. All subwords of the sequence of the PSSM length
are scored completely according to the corresponding matrix values. If the score is equal

to or exceeds the given thresholdth, a match is reported at the starting position of
the currently scored subword. In this example the given threshold is th = 5. Matching

subwords are marked green, mismatching subwords are markedred.

Lemma 1 The following statements are equivalent:

(1) pfxscd(w; M ) � thd for all d 2 [0; m � 1],

(2) sc(w; M ) � th.

Proof: (1)) (2): Suppose that (1) holds. Then� m � 1 =
P m � 1

h= m maxh = 0 and

sc(w; M ) =
m � 1X

h=0

M (h; w[h]) = pfxscm � 1(w; M ) � thm � 1 = th � � m � 1 = th:

(2)) (1): Suppose that (2) holds. Let d 2 [0; m � 1]. Then

sc(w; M ) =
m � 1X

h=0

M (h; w[h]) =
dX

h=0

M (h; w[h]) +
m � 1X

h= d+1

M (h; w[h])

= pfxscd(w; M ) +
m � 1X

h= d+1

M (h; w[h])

Hencesc(w; M ) � th implies pfxscd(w; M ) +
P m � 1

h= d+1 M (h; w[h]) � th. Since M (h; w[h]) � maxh

for h 2 [0; m � 1], we conclude

m � 1X

h= d+1

M (h; w[h]) �
m � 1X

h= d+1

maxh = � d

and hence

pfxscd(w; M ) � th �
m � 1X

h= d+1

M (h; w[h]) � th � � d = thd:

�
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3.3 Improved running time through the usage of lookahead scoring

The Lemma suggests a necessary condition for a PSSM-match which can easily be exploited: When
computing sc(w; M ) by scanning w from left to right, one checks for d = 0 ; 1; : : : ; m � 1, if the

intermediate threshold thd is achieved. If not, the computation can be stopped. See Figure 3.1 for
an example of intermediate thresholds and their implications. A pseudocode formulation of the

lookahead scoring algorithm (herein after calledLAsearch) is given in Algorithm 2.

Algorithm 2 : LAsearch
input : A sequenceS = s0 : : : sn � 1, a PSSM M of length m, a threshold th

output : All matching positions of M in S and their associatedmatchscores

for d  0 to m � 1 do1

thd  � th �
P m � 1

h= d+1 maxf M (h; a) j a 2 Ag ;2

/* calculate the intermediate thresholds thd = th � � d */

end3

for j  0 to n � m do4

score  � 0 ;5

for d  0 to m � 1 do6

score  � score+ M (d; S[j + d]);7

/* score = pfxscd� 1(S[j::j + d � 1]; M ) + M (d; S[j + d]) */
;8

if score < th d then9

break; //terminate when we miss an intermediate threshold10

end11

end12

if score � th then13

print "match at position j with score: score";14

end15

end16

If we assume that the row maxima ofM can be determined inO(1) time, such that the a priori

calculation of the vector of intermediate thresholds can beaccomplished inO (m) time instead of
O (mjAj ), LAsearch runs in O (kn + m) time, where k is the average number of PSSM-positions per

sequence position actually evaluated. In the worst case,k 2 O (m), which leads to the worst case
running time of O (mn), not better than the simple algorithm. However, k is expected to be much

smaller than m, leading to considerable speedups in practice. In the best case, exact one character
of each subword of lengthm of S has to be scored leading toO (m + n) running time.

3.3.1 Permuted lookahead scoring

The authors of [WNB00] also suggest a variant of (sequential) lookahead scoring, called permuted

lookahead scoring, which indeed does not a�ect the worst case running time but can lead to an
additional speedup in practice. The basic idea is to evaluate the PSSM in a permuted order with

the aim to increase the likelihood of falling short of an intermediate threshold early. Lookahead
scoring accesses the values of the PSSM sequentially from position 1 up to m. See interior loop
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3 Fast algorithms for matching position speci�c scoring matrices

in Algorithm 2. However we can score the characters of a givensubword w of length m in any
order. Wu and coworkers suppose to reorder the rows of the PSSM according to the di�erence

D i = jE i � M i j between the expected scoreE i =
P

a2A M (i; a)f (a); i 2 [0; m � 1] and the
maximum scoreM i = max f M (i; a) j a 2 Ag of a row i , starting with the largest di�erence. Here

f (a) denotes the background probability of symbola. Hence we can determinea priori a permutation
� = ( � 0; : : : ; � m � 1) of the rows of M such that D � i � D � j holds, for any pair i; j 2 [0; m � 1], i < j

and where � i indicates the position to be evaluated in stepi . That is, the intermediate thresholds

are computed according to the order given by� as

thd = th �
m � 1X

h= d+1

maxf M (� h ; a) j a 2 Ag for any d 2 [0; m � 1]: (3.1)

Analogous to the calculation of pfxsc for sequential lookahead scoring, we compute a partial score,
scoring d characters ofw in the order given by � . Let

prtscd(sj : : : sj + m � 1; M ) :=
dX

i =0

M (� d; S[j + � d]): (3.2)

The substitution of the computation of function pfxsc by prtsc and the corresponding changes
in the calculation of the intermediate thresholds lead to the permuted lookahead scoring variant

for searching with PSSMs, shown in Algorithm 3. For the performance improvement of permuted
lookahead scoring over sequential lookahead scoring achievable in practice, speedups between 5:8

and 20:6 %, depending on the stringency ofth are reported in [WNB00]. Although this improvement
is signi�cant, we will see that the use of su�x based index structures in combination with sequential

lookahead scoring lead to much higher performance improvements.

3.4 PSSM searching using su�x trees

Although the LAsearch and permuted LAsearch lead to a considerable speedup in practice, the

bene�t in times of exponentially increasing sequence databases is limited. The severe drawback

of these techniques is, that the improvement does not a�ect the (exponentially increasing) search
space and hence the running time is still linear in the size ofthe search space (i.e. length of the

sequences to be searched). In analogy to traditional stringmatching, the improvements introduced
by lookahead scoring can be compared to pattern preprocessing methods like the Knuth-Morris-

Pratt [KMP77] or Boyer-Moore [BM77] algorithm that slide al ong the text to be searched and which
running time is dominated by the text length. What we are really interested in, is an algorithm that

runs independent of the sequence lengthn. This can be achieved with an indexing of the search
space.

In the SPsearchas well asLAsearch algorithm, we observe that common pre�xes of subwords are re-

scored again and again when sliding along the sequence. We can avoid this by indexing all subwords

based on their pre�xes. A powerful index data structure known since the early seventies [Wei73]
that became quite popular in the last years, with a wide rangeof possible applications [Apo85] in

computational biology (cf. [Gus97]) is the su�x tree, which is well suited for our problem. A su�x
tree is a Trie-like or PATRICIA-like [Mor68] data structure that exposes the internal structure of
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3.4 PSSM searching using su�x trees

Algorithm 3 : permuted LAsearch
input : A sequenceS = s0 : : : sn � 1, a PSSM M of length m, a threshold th

output : All matching positions of M in S and their associatedmatchscores

compute permutation � = � 0; : : : � m � 1 of M such that D � i � D � j for any i < j; i; j 2 [0; m � 1];1

for d  0 to m � 1 do2

thd  � th �
P m � 1

h= d+1 maxf M (� h ; a) j a 2 Ag ;3

/* calculate the intermediate thresholds in the permuted or der */

end4

for j  0 to n � m do5

score  � 0 ;6

for d  0 to m � 1 do7

score  � score+ M (� d; S[j + � d]);8

/* score = prtscd� 1(S[j::j + m � 1]; M ) + M (� d; S[j + � d]) */

;9

if score < th d then10

break; //terminate when we miss an intermediate threshold11

end12

end13

if score � th then14

print "match at position j with score: score";15

end16

end17
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Figure 3.3: The su�x tree for the string S = ACCCACAC $. Internal nodes are marked green,

leaves are marked red. Observe that the concatenation of theedge labels on a path
starting at the root node and ending at leave with leave number i results in the su�x

of S starting at position i .

the underlying string in a deep way by containing all subwords of the string and allowing a very
e�cient access. More precisely:

De�nition 10 Su�x tree

The su�x tree T for a string S$ of length n is a rooted directed tree with exactly n leaves numbered
0 to n � 1. Each internal node, excluding the root node, has at least two child nodes and each edge is

labeled with a nonempty substring ofS. No two edges out of a node can have edge-labels beginning
with the same character. The key feature of the su�x tree is that for any leaf i 2 [0; n � 1], the

outcome of the concatenation of the edge-labels on the path from the root to leaf i exactly spells
out the su�x of S that starts at position i .

The su�x tree can be constructed in linear time and space with several algorithms [Wei73, McC76,

Ukk95]. Once constructed, it can be used to e�ciently solve a wide range of string processing
problems, e.g the exact matching of a pattern of lengthm in O(m) time. Figure 3.3 gives an

example of a su�x tree.

3.4.1 Dorohonceanu's algorithm

In [DNM00] the authors describe the usage of su�x trees to speed up the searching with PSSMs.
Their non persistent implementation of su�x trees needs 17 byte space per input character on

average. The basic idea of their method is to perform a limited depth �rst traversal of the su�x

tree of the set of target sequences. In the traversal of the tree they update PSSM-scores along the
edges and make use of the fact, that for a PSSM of lengthm all subwords of lengthm which have to

be investigated are represented in the su�x tree up to depth m. If and only if the overall threshold
th is reached or exceeded at depthm, the matching positions of the PSSM can be retrieved by
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S = A C C C A C A C $
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Figure 3.4: Using a su�x tree for searching with PSSMs. To score all subwords of the PSSM length
m (m = 3 in this example), we have to perform a depth �rst traversal up to depth 3

(green marked part of the tree). This is a direct adaptation of the SPsearchalgorithm
described in Algorithm 1.

enumerating the leaf numbers in the subtree below. As we havealready seen in the description of

the lookahead scoring method, it is not necessary to score all subwords of length m completely, if
an overall threshold th is given. Again we can use intermediate thresholds as early stop criterias for

the subword scoring. For PSSM searching using su�x trees this means, that we essentially do not
have to traverse the tree up to depthm completely (see Figure 3.4), when incorporating lookahead

scoring. Lookahead scoring allows to skip subtrees of the su�x tree that do not contain any matches

to the PSSM, by checking the intermediate thresholds while the traversal (see Figure 3.5 for an
example). Su�x trees are also employed for searching with PSSMs in the very recently published

STORM program [SSZ07].STORM uses McCreight's algorihtm [McC76] for the construction ofa
non persistent su�x tree.

Analysis

The complexity analysis for Dorohonceanu's algorithm, not given in [DNM00], follows the same
argumentations and leads to the same results as the analysisof the ESAsearchalgorithm presented

below. To avoid redundancies, we analyze the complexity of Dorohonceanu's algorithm together
with the complexity of ESAsearch in section 3.5.1 on page 66.
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S = A C C C A C A C $
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Figure 3.5: By incorporating lookahead scoring we can limitthe depth �rst traversal of the su�x
tree. Observe that, in contrast to the traversal shown in Figure 3.4, now subtrees can

be skipped, if an intermediate threshold is missed. In this example we used an overall
threshold of th = 6.

3.5 PSSM searching using enhanced su�x arrays: The

ESAsearch algorithm

As demonstrated in [DNM00], a su�x tree is a powerful data str ucture, even for PSSM searching
and its usage can lead to remarkable speedups, especially when the sequence space to be searched

is large. Unfortunately, the method of [DNM00] has not found its way into a widely available and
robust software system. Further on, an enhanced su�x array, a data structure as powerful as a su�x

tree, provides several additional advantages over su�x trees, making it more suitable for searching

with PSSMs:

� While su�x trees require about 12 n bytes in the best available implementation (cf. [Kur99]),

the enhanced su�x array used for searching with PSSMs only needs 9n bytes of space.

� While the su�x tree is usually only computed in main memory, t he enhanced su�x array is

computed once and stored on �le. Whenever a PSSM is to be searched, the enhanced su�x
array is mapped into main memory which requires no extra time.

� While the depth �rst traversal of the su�x tree su�ers from th e poor locality behavior of the

data structure (cf. [GK95]), the enhanced su�x array provid es optimal locality, because when
searching with PSSMs it is sequentially scanned from left toright.
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3.5 PSSM searching using enhanced su�x arrays: TheESAsearchalgorithm

   i        suf[i]       lcp[i]       skp[i]  Ssuf[i]

  0            1                          12   aaaaccacac$
  1            2             3             2   aaaccacac$
  2            3             2             3   aaccacac$
  3            7             1             6   acac$
  4            4             2             6   accacac$
  5            9             2             6   ac$
  6            0             0           12   caaaaccacac$
  7            6             2             9   cacac$
  8            8             3             9   cac$
  9            5             1           11   ccacac$
10          10             1           11   c$
11          11             0           12   $

 accacac$
 ccacac$

 ccacac$
 ac$
 cacac$
 $
 aaaaccacac$
          ac$
          $

    cacac$
    $

$

a

a

a
a

c c

c

Figure 3.6: The enhanced su�x array consisting of tables suf, lcp, skp (left) and the su�x tree
(right) for sequence S = caaaaccacac. Someskp entries are shown in the tree as red

arrows: If skp[i ] = j , then an arrow points from row i to row j . For clarity, su�xes
corresponding tosuf[i ] are given in table Ssuf[i ].

The generic nameenhanced su�x array , introduced in [AKO02] stands for a family of data struc-
tures, extending a su�x array with additional information. Su�x arrays are a well known data

structure in literature. They were introduced in 1993 by Manber and Myers [MM93] and indepen-
dently by Gonnet et al. under the name PAT array [GBYS92]. The enhanced su�x array for a given

sequenceS of length n consists of three tablessuf, lcp, and skp. Let $ be a symbol inA , larger than
all other symbols, which does not occur inS. suf is a table of integers in the range 0 ton, specifying

the lexicographic ordering of the n + 1 su�xes of the string S$. That is, Ssuf[0] ; Ssuf[1] ; : : : ; Ssuf[n ]

is the sequence of su�xes ofS$ in ascending lexicographic order, whereSi = S[i::n � 1]$ denotes

the i -th nonempty su�x of the string S$, for i 2 [0; n]. See Figure 3.6 for an example. Given a

su�x tree, suf can be constructed in O (n) time by a depth-�rst traversal of the tree. Recently
published algorithms (cf. [KS03, KSPP03, KA03]) even allowa direct construction of suf in O (n)

time, without �rst constructing a su�x tree. Table suf requires 4n bytes.

lcp is a table in the range 0 ton such that lcp[0] := 0 and lcp[i ] is the length of the longest common
pre�x of Ssuf[i � 1] and Ssuf[i ], for i 2 [1; n]. See Figure 3.6 for an example. Tablelcp can be computed

in linear time given table suf [KLA + 01]. In practice PSSMs are used to model relatively short, local
motifs and hence do not exceed length 255. For searching withPSSMs we therefore do not access

values in table lcp larger than 255, and hence we can storelcp in n bytes.

skp is a table in the range 0 ton such that skp[i ] := min( f n +1 g [ f j 2 [i +1 ; n] j lcp[i ] > lcp[j ]g). In

terms of su�x trees, skp[i ] denotes the lexicographically next leaf that does not occur in the subtree
below the branching node corresponding to the longest common pre�x of Ssuf[i � 1] and Ssuf[i ]. Figure

3.6 shows this relation. Tableskpcan be computed inO (n) time given suf and lcp. For the algorithm
to be described we assume that the enhanced su�x array forS has been precomputed.
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3 Fast algorithms for matching position speci�c scoring matrices

In a su�x tree, all substrings of S of a �xed length m can be scored with a PSSM by a depth �rst
traversal of the tree. Using lookahead scoring, one can skipcertain subtrees that do not contain

matches to the PSSM. Since su�x trees have several disadvantages (see the introduction), we
use enhanced su�x arrays to search PSSMs. Like in other algorithms on enhanced su�x arrays

(cf. [AKO04]), one simulates a depth �rst traversal of the su�x tree by processing the arrays suf
and lcp from left to right. To incorporate lookahead scoring while searching we must be able to skip

certain ranges of su�xes in suf. To facilitate this, we use table skp. We will now make this more

precise.

For i 2 [0; n], let vi = Ssuf[i ], l i = min f m; jvi jg � 1, and di = max( f� 1g [ f d 2 [0; l i ] j pfxscd(vi ; M )
� thdg). That is, di is the last position in the su�x vi to be scored when scoringvi from left

to right, since at position di + 1 we fall short intermediate threshold thdi +1 . Now observe that
di = m � 1 , pfxscm � 1(vi ; M ) � thm � 1 , sc(vi ; M ) � th. Hence,M matches at position j = suf[i ]

if and only if di = m � 1. Thus, to solve the PSSM searching problem, it su�ces to compute all
i 2 [0; n] satisfying di = m � 1. We computedi along with Ci [d] = pfxscd(vi ; M ) for any d 2 [0; di ].

d0 and C0 are easily determined inO (m) time. Now let i 2 [1; n] and suppose thatdi � 1 and Ci � 1[d]
are determined for d 2 [0; di � 1]. Since vi � 1 and vi have a common pre�x of length lcp[i ], we have

Ci [d] = Ci � 1[d] for all d 2 [0; lcp[i ] � 1]. Consider the following cases:

� If di � 1 + 1 � lcp[i ], then compute Ci [d] for d � lcp[i ] while d � l i and Ci [d] � thd. We obtain
di = d.

� If di � 1 + 1 < lcp[i ], then let j be the minimum value in the range [i + 1 ; n + 1] such that all
su�xes vi ; vi +1 ; : : : ; vj � 1 have a common pre�x of lengthdi � 1+1 with vi � 1. Due to the common

pre�x we have pfxscd(vi � 1; M ) = pfxscd(vr ; M ) for all d 2 [0; di � 1 +1] and r 2 [i; j � 1]. Hence

di � 1 = dr for r 2 [i; j � 1]. If di � 1 = m � 1, then there are PSSM matches at all positions
suf[r ] for r 2 [i; j � 1]. If di � 1 < m � 1, then there are no PSSM matches at any of these

positions. That is, we can directly proceed with index j . We obtain j by following a chain of
entries in table skp: compute a sequence of valuesj 0 = i , j 1 = skp[j 0]; : : : ; j k = skp[j k � 1] such

that di � 1 + 1 < lcp[j 1]; : : : ; di � 1 + 1 < lcp[j k � 1], and di � 1 + 1 � lcp[j k ]. Then j = j k .

These case distinctions lead to the programESAsearch (see Algorithm 4 and Function skipchain).

We illustrate the ideas of algorithm ESAsearch, formally described above, with the following exam-
ple. Let M be a PSSM of lengthm = 2 over alphabet A = f a; cg with M (0; a) = 1, M (0; c) = 3,

M (1; a) = 3, and M (1; c) = 2. For a given threshold of th = 6 we obtain intermediate thresholds
th0 = 3 and th1 = 6. To search with M in the enhanced su�x array for sequenceS = caaaaccacac

as given in Figure 3.6, we start processing the enhanced su�xarray suf top down by scoring the �rst
su�x Ssuf[0] = aaaaccacac$ with M from left to right. For the �rst character of Ssuf[0] we obtain

a score ofpfxsc0(Ssuf[0] ; M ) = M (0; a) = 1 which is below the �rst intermediate threshold th0 = 3.
Hence we setd0 = � 1 and notice that we can skip all su�xes of S that start with character ' a'.

Further on, with a lookup in lcp[1] = 3 we �nd that Ssuf[1] and Ssuf[0] share a common pre�x of length

3 and d0 + 1 = � 1 + 1 < lcp[1] = 3 (second case described above). The next su�x that may match
M with th = 6 is Ssuf[6] = caaaaccacac$. Su�xes Ssuf[1] ; Ssuf[2] ; : : : Ssuf[5] can be skipped since they

all share a common pre�x with Ssuf[0] of at least length 1. That is, they begin all with character
'a' and would also miss the �rst intermediate threshold th0 = 3 when scored. We �nd Ssuf[6] by
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Algorithm 4 : ESAsearch
input : An enhanced su�x array for the sequenceS$ consisting of the tablessuf, lcp and skp, a

PSSM M of length m, and a threshold th.

output : All matching positions of M in S and their associatedmatchscores

for d  0 to m � 1 do1

thd  � th �
P m � 1

h= d+1 maxf M (h; a) j a 2 Ag ;2

/* calculate the intermediate thresholds thd = th � � d */

end3

depth  0;4

i  0;5

while i < n do6

if n � m < suf[i ] then7

while (n � m < suf[i ]) ^ (i < n ) do8

i  i + 1;9

depth  min f depth; lcp[i ]g;10

end11

if i � n then return ;12

end13

if depth = 0 then score  0 else score  C[depth � 1];14

d  depth � 1;15

do16

d  d + 1;17

score  score+ M (d; Ssuf[i ]+ d);18

C[d]  score;19

while (d < m � 1) ^ (score � thd);20

if (d = m � 1) ^ (score � th) then21

print"match at position suf[i ] with score: score";22

while i < n do23

i  i + 1;24

if lcp[i ] � m then print"match at position suf[i ] with score: score" else break;25

end26

else27

i  skipchain (lcp; skp; n; i; d );28

end29

depth  lcp[i ];30

end31
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3 Fast algorithms for matching position speci�c scoring matrices

Function skipchain( lcp, skp, n, s, d)

input : Tables lcp and skp of an enhanced su�x array, jSj denoted with n,an index i of the i -th

smallest su�x, and depth d from where to start skipping.
output : An index j of the j -th smallest su�x with j > i .

begin1

if i < n then2

j  i + 1 ;3

while (j � n) ^ (lcp[j ] > d ) do4

j  skp[j ] + 1 ;5

end6

else7

j  n ;8

end9

return j ;10

end11

following a chain of entries in table skp: skp[1] = 2, skp[2] = 3, and skp[3] = 6. When scoring Ssuf[6]

we compute pfxsc0(Ssuf[6] ; M ) = M (0; c) = 3 and pfxsc1(Ssuf[6] ; M ) = M (0; c) + M (1; a) = 6 and

store them for reuse inC[0] and C[1]. Sinced6 = 1 = m � 1 = 1 holds, we report suf[6] = 0 with
score sc

�
Ssuf[6] ; M

�
= pfxsc1(Ssuf[6] ; M ) = 6 as a matching position. With lookups in lcp[7] = 2

and lcp[8] = 3 we notice that Ssuf[7] and Ssuf[8] share a common pre�x of at least two characters
with Ssuf[6] . Hence we reportsuf[7] = 6 and suf[8] = 8 with score C[1] = 6 as further matching

positions. We proceed with the scoring ofSsuf[9] . Since lcp[9] = 1 holds, we obtain the score for the
�rst character ' c' from array C with pfxsc0(Ssuf[9] ; M ) = C[0]. After scoring the second character

of Ssuf[9] , pfxsc1(Ssuf[9] ; M ) = 5 < th 1 = 6 holds and we miss the second intermediate threshold

and continue with the next su�x. The last two su�xes Ssuf[10] and Ssuf[11] in suf do not have to
be considered since their lengths are smaller thanm = 2 (not counting the sentinel character $)

and therefore they cannot match M . We end up with matching positions 0, 6, and 8 ofM in S
with match score 6. To �nd these matches, we processed the enhanced su�x array suf top down

and scored su�xes from left to right, facilitating the addit ional information given in tables lcp and
skp to avoid re-scoring of characters of common pre�xes of su�xes and to skip su�xes that cannot

match M for the given threshold.

3.5.1 Analysis

The Ci arrays can be stored in a singleO (m) space arrayC as any stepi only needs theCi speci�c

to that step. Ci solely depends onCi � 1, and Ci [0::d � 1] = Ci � 1[0::d � 1] holds for a certaind < m ,

i.e., the �rst d entries in Ci are known from the previous step, and thusC can be organized as a
stack. No other space (apart from the space for the enhanced su�x array) depending on input size

is required for ESAsearch, leading to an O (m) space complexity.

The worst case forESAsearch occurs, if th � scmin (M ) (M matches at each position inS), and no
su�x of S shares a common pre�x with any other su�x. In this case lookahead scoring does not
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3.5 PSSM searching using enhanced su�x arrays: TheESAsearchalgorithm

give any speedup and every su�x must be read up to depthm, leading to an O (nm) worst case
time complexity. This is not worse but also not better than th e complexity for LAsearch. Next we

show that, independent of the chosen thresholdth, the overall worst case running time boundary
for ESAsearch drops to O (n + m) under the assumption that

n � jAj m + m � 1 (3.3)

holds.

The shorter the common pre�xes of the neighboring su�xes, the slowerESAsearch runs. Thus to

analyze the worst case, we have to consider sequences containing as many di�erent substrings of
some lengthq as possible. Observe that a sequence can contain at mostjAj q di�erent substrings of

length q > 0, independent of its length. To analyze the behavior ofESAsearch on such a sequence,
we introduce the concept of su�x-intervals on enhanced su�x arrays, similar to lcp-intervals as

used in [AKO04].

De�nition 11 An interval [ i; j ], 0 � i � j � n, is a su�x-interval with o�set ` 2 f 0; : : : ; ng, or

`-su�x-interval , denoted `{ [ i; j ], if the following three conditions hold:

1. lcp[i ] < `

2. lcp[j + 1] < `

3. lcp[k] � ` for all k 2 f x j i + 1 � x � j g

An lcp-interval, or `-interval, with lcp-value ` 2 f 0; : : : ; ng is a su�x-interval `{ [ i; j ] with i < j and

lcp[k] = ` for at least onek 2 f i + 1 ; : : : ; j g.

Every lcp-interval `{ [ i; j ] of an enhanced su�x array for text S corresponds to an internal nodev in
a su�x tree for S, and the length of the string spelled out by the edge labels onthe path from the

root node to v is equal to `. Leaves are represented as singleton intervals,`{ [ i; j ] with i = j . We say

that su�x-interval `{ [ i; j ] embeds su�x-interval `+ { [ k; l ], if and only if `+ > ` , i � k < l � j , and
if there is no su�x-interval `0{ [ r; s] with ` < ` 0 < ` + and i � r � k < l � s � j . As an example for

`-su�x-intervals, consider the enhanced su�x array given in Figure 3.6. [0; 5] is a 1-su�x-interval,
becauselcp[0] = 0 < 1, lcp[5 + 1] = 0 < 1, and lcp[k] � 1; for all k, 1 � k � 5. Su�x-interval 2{ [3 ; 5]

is embedded in 1{ [0; 5], but 3{ [0 ; 1] is not.

Consider an enhanced su�x array of a sequence which containsall possible substrings of length
q. There are jAj 1-su�x-intervals, jAj 2 2-su�x-intervals, and so on. Consequently, up to depth q,

there are a total of

Eq =
qX

i =1

jAj i =
jAj q+1 � jAj

jAj � 1
(3.4)

`-su�x-intervals (1 � ` � q). This corresponds to the number of internal nodes and leaves in

a su�x tree, which is atomic up to at least depth q under our assumptions. Note that due to
this correspondence, statements on the complexity ofESAsearch also hold for the complexity of

Dorohonceanu's su�x tree based PSSM searching algorithm described in section 3.4.1 on page 60.

Since we are considering sequences that contain all possible substrings of lengthq, there are jAj d

d-su�x-intervals at any depth d, 1 � d � q. Let d{ [ i; j ] be a d-su�x-interval. We know that
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3 Fast algorithms for matching position speci�c scoring matrices

pfxscd (vi ; M ) is a partial sum of pfxscq (vi ; M ), and becausevi [0::d � 1] = vi +1 [0::d � 1] = : : : =
vj [0::d � 1], pfxscd (vi ; M ) is also a partial sum of pfxscq (vk ; M ) for i � k � j . That is, after

ESAsearch has calculatedpfxscd (vi ; M ) at depth d, at any su�x-interval ( d + 1) { [ r; s] embedded
in d{ [ i; j ] it su�ces to only calculate the \rest" of pfxscq (vk ; M ). At any depth d, the algorithm

calculates pfxscd+1 (vr ; M ) = pfxscd (vi ; M ) + M (d; vr [d]), meaning that all pre�x scores at depth
d+1 in a d-su�x-interval can be computed from the pre�x scores at dept h d by jAj matrix look-ups

and additions as there arejAj embedded (d + 1)-su�x-intervals. There are jAj d d-su�x-intervals at

depth d. Hence, it takesESAsearch a total of jAj d � jAj matrix look-ups and additions to advance
from depth d to d+1, and thus we conclude that the algorithm requires a total of O (Eq) operations

to compute all scores for all substrings of lengthq.

Suppose that ESAsearch has read su�x vi in some step up to depth q � 1 such that character
vi [q � 1] is the last one read. If lcp[i + 1] � q holds, then the algorithm has found a su�x-interval

q{ [ i; j ] with a yet unknown right boundary j , otherwise j = i . ESAsearch reports all suf[k] with
k 2 [i; j ] as matching positions by scanning over tablelcp starting at position i until lcp[k] < lcp[i ]

(such that it �nds j = k � 1), and continues with su�x vk at depth lcp[k]. Hence processing such a
su�x-interval requires one matrix look-up and addition to c ompute the score, andj � i + 1 steps

to report all matches and �nd su�x vk . Since su�x-intervals do not overlap, the total length of

all su�x-intervals at depth q can be at most n, so the total time spent on reporting matches is
bounded by n.

There are three cases to consider when determining the time required for calculating the match

scores for a PSSM of lengthm. Let p := m � q.

1. If p = 0 ( ) m = q), then the time required to calculate all match scores is inO (Eq) as
discussed above.

2. If p < 0 () m < q ), then none of the m-su�x-intervals are singletons since we assumed that
the sequence under consideration contains all possible substrings of length q, i.e., there must

be su�xes sharing a common pre�x of length m, and the time required to calculate all match
scores is inO (Em ).

3. If p > 0 () m > q ), then every m-su�x-interval can be a singleton, and all pre�x scores for
the PSSM pre�x of length q are calculated in O (Eq) time. However, the remaining scores for

the pending substrings of lengthp must be computed for every su�x longer than q, taking

O (np) additional time, and leading to a total O (Eq + np) worst case time complexity for
computing all match scores.

Note that a text containing jAj q di�erent substrings must have a certain length, which must be
at least jAj q. In fact, a minimum length text that contains all strings of l ength q has length n =

jAj q+ q� 1. It represents ade Bruijn sequence[dB46] without wrap-around, i.e., a de Bruijn sequence

with its �rst q � 1 characters concatenated to its end. Since ade Bruijn sequence without wrap-
around represents the minimum length worst case, we infer from Equation (3.4) that Eq 2 O (n).

Hence, if m = q, then it takes O (n) time to calculate all match scores. If m < q , then Em < E q

and thus it takes sublinear time. If m > q , it takes O (n + np) time.
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i suf[i ] lcp[i ] Ssuf[i ]

0 5 0 aaccgtcttggc$

1 6 1 accgtcttggc$

2 1 1 agataaccgtcttggc$

3 3 1 ataaccgtcttggc$

4 0 0 cagataaccgtcttggc$

5 7 1 ccgtcttggc$

6 8 1 cgtcttggc$

7 11 1 cttggc$

8 16 1 c$

9 2 0 gataaccgtcttggc$

10 15 1 gc$

11 14 1 ggc$

12 9 1 gtcttggc$

13 4 0 taaccgtcttggc$

14 10 1 tcttggc$

15 13 1 tggc$

16 12 1 ttggc$

17 17 0 $

i suf[i ] lcp[i ] Tsuf[i ]

0 2 0 aaacaccc$

1 3 2 aacaccc$

2 4 1 acaccc$

3 6 2 accc$

4 1 0 caaacaccc$

5 5 2 caccc$

6 0 1 ccaaacaccc$

7 7 2 ccc$

8 8 2 cc$

9 9 1 c$

10 10 0 $

Figure 3.7: Minimum sized enhanced su�x arrays for worst case analysis. Enhanced su�x arrays for
text S = cagataaccgtcttggc , consisting of all strings of lengthm = 2 over an alphabet

of size 4 (left), and T = ccaaacaccc, consisting of all strings of length m = 3 over an

alphabet of size 2 (right). S and T are both de Bruijn sequences without wrap-around
for the given alphabets.

We summarize the worst case running time ofESAsearch for preprocessing a PSSMM of length

m, searching with M , and reporting all matches with their match scores, as

O (n + n � max f 0; pg + m) :

Hence, the worst case running time isO (n + m) for p � 0, implying that this time complexity holds
for any PSSM of length m and threshold on any text of length n � jAj m + m � 1, as already stated

in Inequality (3.3).

In practice, large numbers of su�xes can be skipped if the threshold is stringent enough, leading

to a total running time sublinear in the size of the text, regardless of the relation betweenn
and m. ESAsearch reads a su�x up to depth m unless an intermediate score falls short of an

intermediate threshold, and skips intervals with the same or greater lcp if this happens. Right
boundaries of skipped su�x-intervals are found quickly by f ollowing the chain of skip-values (see

function skipchain ). It are these jumps that make ESAsearch superior in terms of running time
to LAsearch in practice. The best case is indeedO (jAj) which occurs whenever there is no score in

the �rst row of the PSSM that is greater than th0.

See Figure 3.7 for examples of enhanced su�x arrays, constructed from texts S and T that consist

of all strings of a certain length m over some alphabet. In these enhanced su�x arrays no su�x
shares a pre�x of length m with any other su�x, forcing ESAsearch to compute scores for each

su�x. But with the intermediate scores available while proc essing the su�xes, it takes exactly Em

steps to compute the scores, as can be �gured out by manually applying ESAsearch to the depicted
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3 Fast algorithms for matching position speci�c scoring matrices

enhanced su�x arrays. For S, exactly 43 � 4
4� 1 = 20, for T , exactly 24 � 2

2� 1 = 14 operations are needed

to compute all jAjm � n � m + 1 possible scores (and to �nd all matches sinceS and T are both
de Bruijn sequences without wrap-around). Only a single match is reported per matching substring,

leading to Em 2 O (n) operations to be performed during the search phase.

3.6 Further performance improvements via alphabet

transformations

Inequality (3.3) provides the necessary condition forO (n + m) worst case running time. We now

assume thatm in Inequality (3.3) identi�es not the length of a PSSM, but th e threshold dependent
expected reading depthfor some PSSM. We denote this expected depth bym� (th) � m and continue

denoting the PSSM's length by m. As seen before, for PSSMs with lengthm, such that p =
m � m� (th), the worst case running time is O (n + n � max f 0; pg + m), but the expected running

time is O (n + m), as on average we expectp � 0.

Inequality (3.3) with m substituted by m� (th) implies logjAj (n) � m� (th). That is, to achieve linear

worst case running time for the amino acid alphabet,m� (th) needs to be very small. For instance,
if n = 207, then the search time is guaranteed to be linear inn only for PSSMs with a maximum

length of 7, and expected to be linear for PSSMs with expectedreading depth of 7. Observe that
for jAj = 4, m� (th) needs to be smaller or equal to 15 to achieve linear or sublinear running times.

This provides the motivation to reduce the alphabet size by transforming A into a reduced size bA
such that j bAj < jAj .

In practice, for reasonably chosen thresholdsth, the performance ofESAsearch mainly depends on

the fact that often large ranges of su�xes in the enhanced su� x array can be skipped. This is always

the case if we drop below an intermediate threshold while calculating a pre�x' score, and if that
pre�x is a common pre�x of other su�xes. In terms of lcp-inter vals, this means that we can skip

all `-intervals with ` � m� (th) on average. In contrast to su�x-intervals , whose total count is in
O

�
n2

�
, size and number oflcp-intervals depend onjAj , as illustrated in Figure 3.8. We observe that

smaller alphabet sizes imply (1) larger`-intervals, and (2) an increasing number of`-intervals for
larger values of`. Thus, by using reduced alphabets, we expect to skip larger and touch fewer lcp-

intervals under the assumption that the average reading depth remains unchanged. Consequently,
we expect to end up with an improved performance ofESAsearch. This raises the question for a

proper reduction strategy for larger alphabets like the amino acid alphabet, and how this strategy

can be incorporated into ESAsearch.

We now describe how to take advantage of reduced alphabets asfast �lters in the ESAsearch
algorithm. Let A = f a0; a1; : : : ; ak g and bA = f b0; b1; : : : ; bl g be two alphabets, and � : A ! bA a

surjective function that maps a character a 2 A to a character b 2 bA. We call � � 1(b) the character
class corresponding tob. For a sequenceS = s1s2 : : : sn 2 A n we denote the transformed sequence

with bS = �( s1)�( s2) : : : �( sn ) 2 bA n . Along with the transformation of the sequence, we transform
a PSSM such that we have a one to one relationship between the columns in the PSSM and the

characters in bA . We de�ne the transformed PSSM cM of M as follows:
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Figure 3.8: Numbers of`-intervals for ` 2 [1; 20] of di�erent length for various reduced alphabets.
We built the enhanced su�x array with sequences from the RCSB protein data bank

(PDB) (total sequence length 4,264,239 bytes). The used reduced amino acid alphabets
are given in Figure 3.10. Note that we limited the interval lengths in the �gures to 5,000

to prevent distortion.
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(A)denin (C)ytosin (G)uanin (T)hymin

28.50 256.54 85.51 28.50

28.62 47.70 47.70 9.54

45.54 45.54 45.54 500.92
320.83 0.00 71.29 106.94

47.29 15.76 15.76 31.53
41.34 13.78 41.34 96.46

32.95 8.24 32.95 41.19
21.28 21.27 148.95 106.40

9.54 28.62 47.70 47.70

(P)urine P(Y)rimidine

85.51 256.54

47.70 47.70

45.54 500.92
320.83 106.94

47.29 31.53
41.34 96.46

32.95 41.19
148.95 106.40

47.70 47.70

Figure 3.9: PSSM alphabet transformation. In the left PSSMM we used the normal four letter nu-
cleotide alphabetA = f A; C; G; T g to describe a transcription factor binding site found

in Hox A3 gene promotors. In the right PSSM cM we used a reduced two letter alphabet
bA = f P; Yg that di�ers only between purine (adenine or guanine) and pyrimidine (cy-

tosine or thymine) nucleotides. Hence we have two characterclasses: �� 1(P) = f A; Gg
and � � 1(Y ) = f C; Tg. Consequently cM (i; P ) = max f M (i; a) j a 2 f A; Ggg and
cM (i; Y ) = max f M (i; a) j a 2 f C; Tgg for all i 2 [0; 8]

De�nition 12 Let M be a PSSM of lengthm over alphabet A , and � : A ! bA a surjective
function. The transformed PSSM cM is de�ned as a function cM : [0; m � 1] � bA ! R with

cM (i; b) := max
�

M (i; a) j a 2 � � 1(b)
	

: (3.5)

Figure 3.9 gives an example of the relationship betweenM and cM . bS can be easily determined from

S in O (n) time, cM in O (jAj m) time, given M . We de�ne the set of matches toM on S and cM on
bS, respectively, as

MS := f j 2 [0; n � m] j sc(S[j::j + m � 1]; M ) � thg

dMS :=
n

j 2 [0; n � m] j sc
�

bS[j::j + m � 1]; cM
�

� th
o

:

Now observe that we can use matches ofcM on bS, for the computation of matches ofM on S, since

MS � dMS . We prove that MS � dMS holds for all th 2 [scmin (M ); scmax (M )] by proving the more
general statement given in the following Lemma.

Lemma 2 sc(w; M ) � sc
�

bw; cM
�

holds for all w 2 A m .

Proof:

sc(w; M ) =
m � 1X

i =0

M (i; w [i ]) �
m � 1X

i =0

max
�

M (i; a) j a 2 � � 1(�( w[i ]))
	

=
m � 1X

i =0

cM (i; �( w[i ])) = sc
�

bw; cM
�

:

�
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Thus the following implications follow directly

� sc(w; M ) � th ) sc
�

bw; cM
�

� th

� i 2 MS ) i 2 dMS

and we conclude:MS � dMS holds for th 2 [scmin (M ); scmax (M )].

Hence we can search withcM in bS for pre�ltering of matches to M in S, pro�ting of longer and
larger `-intervals in bS by extending algorithm ESAsearch as follows:

(1) Transform S into bS and build the enhanced su�x array for bS;

(2) Construct cM from M ;

(3) Compute dMS by searching with cM on the enhanced su�x array of bS using ESAsearch;

(4) For each i 2 dMS re-score match with � = sc(S[i::i + m � 1]; M ), and report i and � if and
only if � � th .

As a further consequence of De�nition 12 the maximum score values in each row ofM and cM and

thus the intermediate thresholds remain unchanged in the transformation process. Unfortunately the
necessary PSSM transformation accompanying alphabet sizereduction a�ects the expected reading

depth m� (th) in such a way that it increases with more degraded alphabets, and therefore reduces the
expected performance improvement. Due to maximization according to Equation (3.5) the matrix

values in cM increase and we expect a decreased probability of falling short of an intermediate
threshold early. Observe that there is a trade-o� between increased expected reading depth and

increased lcp-interval sizes at low reading depths. Therefore it is desirable to minimize the e�ect of
maximization by grouping PSSM columns with similar score values, i.e., highly correlated columns.

Since PSSMs re
ect the properties of the underlying multiple alignment, we expect correlations of

PSSM columns according to biologically motivated symbol similarities. Hence character correlation
is the motivation for our alphabet reduction strategy.

3.6.1 Reduced amino acid alphabets

It is well known that various of the naturally occurring amin o acids share certain similarities, like
similar physiochemical properties. Accordingly, the complexity of protein sequences can be reduced

by sorting these amino acids with similarities into groups and deriving a transformed, reduced
alphabet [LFWW03]. These reduced alphabets contain symbols that represent a speci�c character

class of the original alphabet.

Since PSSMs and the sequences to be searched have to be encoded over the same alphabet, we are

more interested in a single reduced alphabet suitable for all PSSMs under consideration, than in
PSSM-speci�c reduced alphabets. The latter implies an unacceptable overhead of index generation

for sequences over PSSM-speci�c alphabets, even though it may result in a lower expected reading
depth. The basis for our reduction of the 20-letter amino acid alphabet to smaller alphabets are
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jAj
L V I M C A G S T P F Y W E D N Q K R H 20

LVIM C A G S T P FY W E D N Q KR H 15

LVIM C A G ST P FYW EDNQ KR H 10

LVIMC AG ST P FYW EDNQ KR H 8

LVIMC AGST P FYW EDNQ KRH 6

LVIMC AGSTP FYW EDNQ KRH 5

LVIMC AGSTP FYW EDNQKRH 4

LVIMCAGSTP FYW EDNQKRH 3

LVIMCAGSTPFYW EDNQKRH 2

Figure 3.10: Reduction of the amino acid alphabet into smaller groups. Amino acid pairs are it-

eratively grouped together based on ther correlationsca;b (see Equation (3.6) for the
de�nition of ca;b), starting with the most correlated pairs, until al amino ac ids are

divided into the desired number of groups. Here we used BLOSUM50 similarities for
the determination of ca;b . Observe that, hydrophobic amino acids, especially (LVIM)

and (FYW) are conserved in many reduced alphabets. The same is true for the polar
(ST), (EDNQ), and (KR) groups. The smallest alphabet contains two groups that can

be categorized broadly as hydrophobic/small (LVIMCAGSTPF YW) and hydrophilic

(EDNQKRH).
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correlations indicated by the BLOSUM similarity matrix as d escribed in [MWL00]. That is, amino
acid pairs with high similarity scores are grouped together(see Figure 3.10 for an example). Leta

and b be two amino acids andY a 20� 20 score matrix, then a measure of amino acid correlation
ca;b betweena and b can be de�ned as

ca;b :=

P 20
i =1 Ya;i Yb;i� P 20

i =1 Y 2
a;i

� � P 20
i =1 Y 2

b;i

� (3.6)

and amino acid pairs can be iteratively grouped together according to their correlations, starting

with the most correlated pairs, until all the amino acids are divided into the desired number of
groups.

3.7 A unifying view on SPsearch, LAsearch, and ESAsearch

In the following, we recapitulary take a unifying view on algorithms SPsearch, LAsearch, and

ESAsearch focussing on similarities and di�erences. For the considered example given in Figure
3.11, let M be a PSSM of length m = 3 over the nucleotide alphabet A = f A; C; G; T g with

M (i; A ) = 2, M (i; C ) = 3, M (i; G) = 4, and M (i; T ) = 5 for any i 2 [0; 2] and th = 12 a

given threshold. We obtain intermediate thresholds of th0 = 2, th1 = 7, and th2 = th = 12.
The sequence of lengthn = 21, to be scanned for matches ofM is denoted with S and given as

S = ACCCACCGTACGTAACACTGA. With W (S$) = f wjS$ = vw ^ j wj � m ^ v; w 2 A � ^ $ =2 Ag we
denote the set of su�xes of S$ with a length of at least m. All three algorithms �nd all positions

j 2 [0; n � m] in S and their assigned match scores, such thatsc(S[j::j + m � 1]; M ) � th holds. To
do so,SPsearchand LAsearch slide along the sequence, calculatesc(w; M ) for eachw 2 wordsm (S),

and report positions j 2 [0; jSj � 1] for which sc(S[j::j + m � 1]; M ) � th holds. This is equal to
scoring the �rst m characters of each element ofW (S$). Since the order in which su�xes of S are

scored is neither relevant forSPsearchnor LAsearch, both algorithms can be viewed as operating

on the su�x array suf of S$. See (A) and (B) in Figure 3.11 for an example. Characters that
have to be scored are marked red in this Figure. Characters, whose scoring is avoided when using

lookahead scoring by falling short of an intermediate threshold are marked green. Forth = 12
the only matching substrings of S are CGTand CTGoccuring at text positions 6, 10, and 17. By

incorporating information from table lcp we can reuse pre�x scores of su�xes with common pre�xes
and avoid additional character scorings.lcp[i ] gives us the length of the common pre�x of su�xes

suf[i � 1] and suf[i ]. For an example, see the blue marked characters in section (C) in Figure 3.11.
Facilitating information stored in table skp allows to directly skip ranges of su�xes for which no

characters need to be scored and hence avoids to check the values in table lcp for su�xes in this

ranges. This leads to algorithmESAsearchand is shown in section (D) of Figure 3.11 by the yellow
marked parts of the su�x array. Entries in table skpgive the index position of the next su�x in suf

to be considered.

By using lookahead scoring and information from tableslcp and skp, the total number of scored
characters in this example can be reduced from 57 (SPsearchsee (A)) to 19 (ESAsearch see (D)).

75



3 Fast algorithms for matching position speci�c scoring matrices

(A): SPsearch

i suf[i] S suf [ i ]
0 13 AACACTGA

1 14 ACACTGA
2 0 ACCCACCGTACGTAACACTGA

3 4 ACCGTACGTAACACTGA

4 9 ACGTAACACTGA

5 16 ACTGA
6 20 A

7 3 CACCGTACGTAACACTGA

8 15 CACTGA

9 2 CCACCGTACGTAACACTGA

10 1 CCCACCGTACGTAACACTGA
11 5 CCGTACGTAACACTGA

12 10 CGTAACACTGA

13 6 CGTACGTAACACTGA

14 17 CTGA

15 19 GA
16 11 GTAACACTGA

17 7 GTACGTAACACTGA

18 12 TAACACTGA

19 8 TACGTAACACTGA
20 18 TGA

(B): LAsearch

i suf[i] S suf [ i ]
0 13 AACACTGA

1 14 ACACTGA
2 0 ACCCACCGTACGTAACACTGA

3 4 ACCGTACGTAACACTGA

4 9 ACGTAACACTGA

5 16 ACTGA
6 20 A

7 3 CACCGTACGTAACACTGA

8 15 CACTGA

9 2 CCACCGTACGTAACACTGA

10 1 CCCACCGTACGTAACACTGA
11 5 CCGTACGTAACACTGA

12 10 CGTAACACTGA

13 6 CGTACGTAACACTGA

14 17 CTGA

15 19 GA
16 11 GTAACACTGA

17 7 GTACGTAACACTGA

18 12 TAACACTGA

19 8 TACGTAACACTGA
20 18 TGA

(C): LAsearch using lcp information

i suf[i] lcp[i] S suf [ i ]
0 13 0 AACACTGA
1 14 1 ACACTGA

2 0 2 ACCCACCGTACGTAACACTGA

3 4 3 ACCGTACGTAACACTGA

4 9 2 ACGTAACACTGA
5 16 2 ACTGA

6 20 1 A

7 3 0 CACCGTACGTAACACTGA

8 15 3 CACTGA

9 2 1 CCACCGTACGTAACACTGA
10 1 2 CCCACCGTACGTAACACTGA

11 5 2 CCGTACGTAACACTGA

12 10 1 CGTAACACTGA

13 6 4 CGTACGTAACACTGA

14 17 1 CTGA

15 19 0 GA

16 11 1 GTAACACTGA

17 7 3 GTACGTAACACTGA

18 12 0 TAACACTGA
19 8 2 TACGTAACACTGA

20 18 1 TGA

(D): ESAsearch

i suf[i] lcp[i] skp[i] S suf [ i ]
0 13 0 21 AACACTGA

1 14 1 6 ACACTGA

2 0 2 5 ACCCACCGTACGTAACACTGA

3 4 3 3 ACCGTACGTAACACTGA

4 9 2 5 ACGTAACACTGA

5 16 2 5 ACTGA

6 20 1 6 A

7 3 0 21 CACCGTACGTAACACTGA

8 15 3 8 CACTGA

9 2 1 14 CCACCGTACGTAACACTGA

10 1 2 11 CCCACCGTACGTAACACTGA

11 5 2 11 CCGTACGTAACACTGA

12 10 1 14 CGTAACACTGA

13 6 4 13 CGTACGTAACACTGA

14 17 1 14 CTGA

15 19 0 21 GA

16 11 1 17 GTAACACTGA

17 7 3 17 GTACGTAACACTGA

18 12 0 21 TAACACTGA

19 8 2 19 TACGTAACACTGA

20 18 1 20 TGA

Figure 3.11: Algorithms SPsearch (A), LAsearch (B), LAsearch facilitating information from ta-

ble lcp (C), and ESAsearch (D) in comparison. For a detailed explanation of color

semantics, used PSSM, and thresholdth, see text.
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Figure 3.12: Empirical score (P [sc(w; M ) = x], see left) and cumulative score (P [sc(w; M ) � x], see
right) distributions of di�erent PSSMs from the PRINTS data base. For the distribu-

tions, we searched with the PSSMs in the protein data bank (PDB) and sampled their
match scores. Observe that for di�erent PSSMs a �xed score cuto� (x-axis) corresponds

to di�erent probability values (y-axis).

3.8 Finding an appropriate threshold for PSSM searching

3.8.1 Probabilities and expectation values

The results of PSSM searches strongly depend on the choice ofan appropriate threshold value th.

A small threshold may produce a large number of false positive matches without any biological
meaning, whereas meaningful matches may not be found if the threshold is too stringent. PSSM-

scores are not equally distributed and thus scores of two di�erent PSSMs are not comparable. This
is even true for PSSMs taken from the same collection (see Figure 3.12).

It is therefore desirable to let the user de�ne a signi�cancethreshold instead. The expected number
of matches in a given random sequence database (E-value) is awidely accepted measure of the

signi�cance. We can compute the E-value for a known background distribution and length of the
database by exhaustive enumeration of all substrings. However, the time complexity of such a

computation is O (jAj m m) for a PSSM of length m. If the values in M are integers within a
certain range [rmin ; rmax ] of sizeR = rmax � rmin + 1, then dynamic programming (DP) methods

(cf. [Sta89, WNB00, Rah03]) allow to compute the probability distribution (and hence the E-value)
in O

�
m2RjAj

�
time.

In practice the probability distribution is often not exact ly, or completely calculated due to concerns

of speed. E.g., in theEMATRIX system [WNB00] score thresholds are calculated and stored for

probability values in the interval � = 10 � 1; 10� 2; : : : ; 10� 40 only. Consequently, the user can only
specify one of these p-value cuto�s. For the calculation of the p-value from a determined match

score, EMATRIX uses log-linear interpolation on the stored thresholds. A di�erent, commonly
used strategy to derive a continuous distribution function uses the extreme value distribution with
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estimated paramters� and u (see Equation (3.7)) as an approximation [Cas88, EKM97, GW94] of

high scoring matches. The extreme value distribution describes the limit distribution of suitably
normalized maxima and is somewhat like a normal distribution, but with a positively skewed tail (see

Figure 3.13). It is de�ned by the probability density functi on p(x) = e� x � e� x
, and the probability

that a random variable X exceedsx is P [X � x] = 1 � e� e� x
.

To use this distribution for sequence alignment scores, it has to be normalized such that the prob-
ability of a random score S exceedingx can be written as

P [S � x] = 1 � e� e� � ( x � u )
; (3.7)

where parameter� is also called thedecay, or scale parameter, and u is called the mode.

Even though it is widely accepted that high-scoring local alignment score distributions of the popular

position independent scoring systems PAM and BLOSUM can be well approximated by an extreme
value distribution, this cannot be generalized for arbitrary PSSMs.

To check whether an extreme value distribution is a suitableapproximation for the distribution of

PSSM match scores, we sampled the match scores of PSSMs arbitrarily chosen from the TRANSFAC
and BLOCKS database. We randomly shu�ed 1000 human promotor sequences of length 1200,

taken from the database of transcriptional start sites (DBTSS) and 1000 protein sequences of

length 365 (= average sequence length in Uniprot-Swissprot), respectively, preserving their mono-
symbol composition. From the derived random PSSM match scores we took the best score for each

sequence and calculated the empirical cumulative distribution function. If the match scores S are
extreme value distributed, an X-Y plot with X = S and Y = ln( � ln(S)) should appear linear, since
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Figure 3.14: Histogram, cumulative score distribution function, X-Y plot, and normal probability
plot of TRANSFAC PSSM M00734 (PSSM length m = 9).

ln
�

� ln
�

e� e� � ( x � u )
��

= � � (x � u) holds. For the TRANSFAC PSSM shown in Figure 3.14, the
X-Y plot clearly indicates that an extreme value distributi on is not an appropriate approximation.

For PSSM IPB003211A (see Figure 3.15) from the BLOCKS database, it seems as if the score
distribution can be approximated quite well with an extreme value distribution. However, we then

still have the problem of adequate parameter estimation forthe distribution function.

Since we do not make any assumptions about the used PSSMs in our algorithm, neither about the
type of scores, nor the score range, a proper approximation of the score distribution of arbitrary

PSSMs is not possible, without time consuming simulations.That is why we are more interested

in an exact solution and thus we focus on the e�cient computation of an exact discrete score
distribution.

3.8.2 Calculation of exact PSSM score distributions

While recent publications [Rah03, WNB00] focus on the computation of the complete probability
distribution, what is required speci�cally for PSSM matchi ng, is computing a partial cumulative

distribution corresponding to an E-value resp. p-value speci�ed by the user. Therefore, we have
developed a new \lazy" method to e�ciently compute only a small fraction of the complete distri-

bution.

We formulate the problem we solve w.r.t. E-values and p-values: Given a user speci�ed E-value� ,
�nd the minimum threshold Tmin E (�; M ), such that the expected number of matches ofM in a

random sequence of given length is at most� . Given a user speci�ed p-value� , �nd the minimum

threshold Tmin P (�; M ), such that the probability that M matches a random string of lengthm
is at most � . The threshold Tmin E (�; M ) can be computed from Tmin P (�; M ) according to the

equation

Tmin E (� � (n � m + 1) ; M ) = Tmin P (�; M ): (3.8)

Hence we restrict on computingTmin P (�; M ).
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Figure 3.15: Histogram, cumulative score distribution, X-Y plot, and normal probability plot of
a PSSM taken from the BLOCKS database (Accession: IPB003211A; PSSM length

m = 40), describing the UreI protein of Helicobacter pylori, a proton gated urea channel
[WESS00].

Since all strings of lengthm have a score betweenscmin (M ) and scmax (M ), we conclude

Tmin P (1; M ) = scmin (M ) and Tmin P (0; M ) > scmax (M ):

To explain our lazy evaluation method, we �rst consider existing methods based on DP.

3.8.3 Evaluation with dynamic programming

We assume that at each position in sequenceS, the symbols occur independently, with probabil-
ity f (a) = (1 =n) � j f i 2 [0; n � 1] j S[i ] = ag j. Thus a substring w of length m in S occurs with

probability
Q m � 1

i =0 f (w[i ]) and the probability of observing the event sc(w; M ) = t is

P [sc(w; M ) = t] =
X

w2A m :sc(w;M )= t

m � 1Y

i =0

f (w[i ]): (3.9)

We obtain Tmin P (�; M ) by a look-up in the distribution:

Tmin P (�; M ) = min f t j scmin (M ) � t � scmax (M ); P [sc(w; M ) � t] � � g: (3.10)

If the values in the PSSM M are integers in a range of widthR, dynamic programming allows to
e�ciently compute the probability distribution. The dynam ic programming aspect becomes more

obvious by introducing for each k 2 [0; m � 1] the pre�x PSSM M k : [0; k] � A ! N de�ned by
M k (j; a ) = M (j; a ) for j 2 [0; k] and a 2 A .

80



3.8 Finding an appropriate threshold for PSSM searching

Corresponding distributions Qk (t) for k 2 [0; m � 1] and t 2 [scmin (M k ); scmax (M k )], and Q� 1(t),
are de�ned by

Q� 1(t) :=

8
<

:
1 if t = 0

0 otherwise

Qk (t) :=
X

a2A

Qk � 1(t � M (k; a)) f (a) (3.11)

We have P [sc(w; M ) = t] = Qm � 1(t). The algorithm computing Qk determines a set of probability
distributions for M 0; : : : ; M k . Qk is evaluated in O (scmax (M )jAj ) time from Qk � 1, summing up to

O (scmax (M )jAj m) total time. See Figure 3.16 for an example.

If we allow for 
oating point scores that are rounded to � decimal places, the time and space
requirement increases by a factor of 10� . Conversely, if all integer scores share a greatest common

divisor z, the matrix should be canceled down byz.

3.8.4 Restricted probability computation

In order to �nd Tmin P (�; M ) it is not necessary to compute the whole codomain of the distribution

function Q = Qm � 1. We propose a new method only computing a partial distribution by summing

over the probabilities for decreasing threshold valuesscmax (M ), scmax (M ) � 1; : : :, until the given
p-value � is exceeded (see Figures 3.16, 3.17).

In step d we computeQ(scmax (M ) � d) where all intermediate scores contributing to scmax (M ) � d

have to be considered. In analogy to lookahead scoring, in each row j of M we avoid all intermediate
scores below the intermediate thresholdth j because they do not contribute to Q(scmax (M ) � d).

The algorithm stops if the cumulated probability for thresh old scmax (M ) � d exceeds the given
p-value � and we obtain Tmin P (�; M ) = scmax (M ) � d + 1.

3.8.5 Lazy evaluation of the permuted matrix

The restricted computation strategy performs best if thereare only few iterations (i.e.,Tmin P (�; M )

is close toscmax (M )) and in each iteration step the computation of Qk (t) can be skipped in an early
stage, i.e., for small values ofk. The latter occurs to be more likely if the �rst rows of M contain

strongly discriminative values leading to the exclusion ofthe small values by comparison with the
intermediate thresholds. An example of this situation is given in Figure 3.1. SinceQk (t) is invariant

to the permutation of the rows of M , we can sort the rows ofM such that the most discriminative
rows come �rst. We found that the di�erence between the largest two values of a row is a suitable

measure for the level of discrimination since a larger di�erence increases the probability to remain
below the intermediate threshold. Since the rows ofM are scanned several times, we save time by

initially sorting each row in order of descending score.

We divide the computation steps where the stepd computesQ(scmax (M ) � d): In step d = 0 only

the maximal scores maxi , i 2 [0; m � 1] in each row have to be evaluated.

In step d > 0 all scoresM (i; a) � maxi � d may contribute to Q(scmax (M ) � d). Since in general
a score valueM (i; a) � maxi � d also gives contribution to Q(scmax (M ) � l ) for l > d , we can
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Figure 3.16: The simple DP scheme computes all probability vectors Q0 , Q1 , Q2 completely within the

green marked area, corresponding to score ranges of pre�x PSSMs M k . In contrast to the

simple scheme, the restricted probability computation met hod computes only the upper end

of the probability distribution until the given p-value thr eshold is exceeded, omitting parts of

the green area. In this example we show how to compute the score threshold Tmin P (�; M )

for PSSM M of length m = 3 and a score range of [4; 11] corresponding to a given p-value

threshold of � = 1
8 . For simplicity we assume a uniform character distribution of f (A) =

f (C) = f (G) = f (T ) = 1
4 . Cells of the matrix that are computed in the step actually

under consideration are marked red. In step d = 0, see (A), the algorithm computes Q2(11)

recursively for all paths through M that achieve a score of 11, i.e.Q2(11) = Q1(8) � f (G),

Q1(8) = Q0(4) � f (G), Q0(4) = Q� 1(0) � f (A) = 1 � 1
4 , since AGGis the only path achieving score

11. It follows Q2(11) = 1
64 . In step d = 1 all paths achieving a score of 11� d = 10 to determine

Q2(10) are computed, see (B). We concludeQ2(10) = 1
16 . In this step, DP allows to reuse value

Q1(8) without recomputation. In step d = 2, see (C) values Q1(7) and Q0(3) can be reused to

compute Q2(9) = 5
64 . In step d = 2 the cumulated probability Q2(11) + Q2(10) + Q2(9) = 5

32

exceeds the given p-value threshold of � = 1
8 , and the restricted probability computation

method skips the rest of the computation. We obtain a score th reshold of th = 10 correponding

to the given p-value threshold � = 1
8 .
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Figure 3.17: Computation of the partial cumulative distrib ution function. Observe that in order
to determine Tmin P (�; M ) for � = 0 :3 we do not have to calculate the complete

distribution in the score range [scmin (M ); scmax (M )]. It is su�cient to calculate only
the upper end (green area) starting with scmax (M ) until P [X � S] � � .
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save time by storing Qi (maxi � l ) for l > d , in step d in a bu�er and reusing the bu�er in steps
d + 1 ; d + 2 ; : : :. This allows for the computation of Qk (scmax (M ) � d) only based on the bu�er

and scoresM (i; a) = max i � d while scoresM (i; a) > maxi � d, i 2 [0; m � 1], can be omitted. We
therefore have developed an algorithmLazyDistrib employing lazy evaluation of the distribution.

That is, given a threshold th, the algorithm only evaluates parts of the DP vectors necessary to
determine Qk (th) and simultaneously saves sub-results concerned with score th in an additional

bu�er matrix Pbuf (instead of recomputing them later, see Figure 3.18). This is described by the

following recurrence:

Qk (th � d) = Pbuf k (th � d) +
X

a2A :M (k;a ) � max k � d

Qk � 1(th � d � M (k; a)) f (a)

Pbuf k (th � d) :=
X

a2A :M (k;a )< max k � d

Qk � 1(th � d � M (k; a)) f (a) (3.12)

In the present implementation, the algorithm assumes independently distributed symbols. The algo-
rithm can be extended to an orderd-Markov model (w.r.t. the background alphabet distributio n).

This increases the computation time by a factor ofjAj d.

The modus operandiof algorithm LazyDistrib

We illustrate the underlying ideas of algorithm LazyDistrib with Figure 3.18. In the example given

in this Figure, we use the same PSSMM , character distribution, and p-value threshold � = 1
8

as in Figure 3.16. However, in each row of the PSSM the scores are sorted in descending order,

and the rows are sorted with the most discriminant row coming�rst (see coloured PSSMs for this
relationship). Observe that the LazyDistrib algorithm evaluates the DP vectors non-recursively top-

down. Cells computed in the actual step are marked red. In step d = 0 the algorithm computes
Q2(11) by evaluating paths through the PSSM contributing to Q2(11), which is in this example

only the high scoring path GGA. Intermediate results of Q0(4), Q1(7), and Q2(11) are collected

in bu�ers Pbuf 0(4), Pbuf 1(7), and Pbuf 2(11) �rst, and �nally copied to the correponding cells
in Q. See (A) for the situation after step d = 0 has been completed. In stepd = 1, see (B),

the algorithm computes Q2(10), starting in row k = 1 with the determination of Pbuf 1(6) and
Q1(6). That is, Q1(6) = Pbuf 1(6) = Q0(4) � f (A) + Q0(4) � f (C) + Q0(4) � f (T ) = 3

16 . Analogously

Q2(10) and Pbuf 2(10) are computed based onQ1(7) and Q1(6). Additionally Pbuf 2(9) is �lled for
further reuse in subsequent stepsd + 1,d + 2 ; : : :. We compute Pbuf 2(9) = Q1(6) � f (C) = 3

64 . The

algorithm can directly start in row k = 1 with the computation of Q1(6) instead of Q0(3) since
a score of 3 cannot be achieved by the �rst pre�x PSSMM 0. Only score 4 ofM 0 contributes to

Q2(10), scores 2 and 1 do not. In stepd = 2, see (C), the algorithm computes Q2(9), starting
in row k = 0. Pbuf 2(9) is computed reusing the partial sum calculated in previous steps, such

that Pbuf 2(9) = 3
64 + Q1(7) � f (T ) + Pbuf 1(5) � f (A) = 5

64 , and then copied to Q2(9). Pbuf 1(4),

Pbuf 2(8), and Pbuf 2(7) are �lled based on Pbuf 0(2), Q1(6), Pbuf 1(5), and Q1(5) for further reuse.
After step d = 2 the rest of the computation can be skipped since the cumulated probability

Q2(11) + Q2(10) + Q2(9) = 5
32 exceeds the given p-value� = 1

8 and we obtain a score threshold of
th = 10 corresponding to � .
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Figure 3.18: Probability computation using lazy evaluation of the DP matrix. For a detailed expla-

nation, see example given in section 3.8.5 on the facing page.
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3 Fast algorithms for matching position speci�c scoring matrices

3.9 Threshold independent PSSM matching: The k-best

algorithm

In some application scenarios it is even di�cult to specify a meaningful signi�cance threshold for
the search with PSSMs that di�ers appropriately between true positive and true negative matches.

This is in particular true for relatively short PSSMs of low signi�cance, like PSSMs representing
transcription factor binding site motifs where the signal-to-noise ratio is very low. In such cases it

is desirable to e�ciently determine the, say, k best hits of a PSSM in a sequence without specifying
a cuto� for their match score, E-value or p-value. Here k best means thek highest scoring PSSM

matches. We now render this more precisely.

De�nition 13 Let M be a PSSM of lengthm, T a text of length n, k � 0 the number of best
matches to be computed. Further,V = ( S0; p0); (S1; p1); : : : ; (Si ; pi ); : : : ; (Sn � m +1 ; pn � m +1 ) denotes

a sequence of score, position pairs for each of the potentialmatching positions of M in T, with
Si = sc(T [pi ::pi + m � 1]; M ) and pi 2 [0; m � n + 1]. We de�ne a permutation � : f 0; 1; : : : ; n �

m + 1 g ! f 0; 1; : : : ; n � m + 1 g with � (i ) < � (j ) , Si � Sj and denote the inverse of� by

� � 1. Then the k-best matching problemis to determine a sequenceMS of length k with MS =
(S� � 1 (0) ; p� � 1 (0) ); (S� � 1 (1) ; p� � 1 (1) ); : : : ; (S� � 1 (k � 1) ; p� � 1 (k � 1) ).

As a straightforward solution we could use the minimal possible score of the PSSMM under

consideration as the thresholdth. That is, th = scmin (M ). This guarantees to �nd all possible

matches ofM in S and no match which probably belongs to thek-best matches is missed. After the
searching phase, the resulting matches then have to be sorted in descending order of their match

score and �nally the �rst k hits are reported.

Although with this approach, we �nd the k best PSSM matches, ifS contains at least k subwords
of length m, it is inapplicable in practice, especially for longer sequences. Usingth = scmin (M ) has

the corollary that sc(w; M ) � th holds for all w 2 wordsm (S). Thus, n � m + 1 matches have to
be stored and sorted after the searching phase. A more severedrawback is, that for th = scmin (M )

we cannot make use of lookahead scoring, because according to Lemma 1 on page 55 the following
implication holds:

sc(w; M ) � th for all w 2 wordsm (S)

) pfxscd(w; M ) � thd for all d 2 [0; m � 1] ^ w 2 wordsm (S):

Hence we have to score each of theO (n) subwords w 2 wordsm (S) completely which takes O (m)

time, leading to a time complexity of O(mn) independent of k and we obtain no bene�t from
lookahead scoring.

To compute the k best matches of a PSSM more e�ciently, we propose two new algorithms named

ESAsearchKb and LAsearchKb, that dynamically adjust the used cuto� th while searching. Both

are variants of the former describedESAsearchand LAsearch algorithms respectively.ESAsearchKb
traverses an enhanced su�x array of the set of target sequences top down likeESAsearch whereas

LAsearchKb operates on the concatenated target sequences and processes them from left to right.
Both algorithms update th based on the match scores of PSSM matches found so far while processing.
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Figure 3.19: Number of intermediate threshold updates for di�erent PSSMs from the BLOCKS
database when usingESAsearchKb for values of k = 10 and k = 1 ; 000. The mean

(62:93 for k = 10 and 416:11 for k = 1 ; 000) and the standard deviation (13:87 for
k = 10 and 124:2 for k = 1 ; 000) are shown in green and purple.

The algorithms start, with th = scmin (M ) until k matches toM are found. For simplicity we explain

the algorithms in terms of sets, instead of using sequences as in De�nition 13. We denote the set of
match scores of matches found byMS, analogously. Along with MS we store the matching positions

corresponding to the members ofMS and update this list accordingly to updates of MS. Once
k matches are found andjMSj = k holds, ESAsearchKb and LAsearchKb determine the minimal

matchscoresccurmin (MS ) = min f MSg in MS to update the threshold th. Both algorithms continue
searching with th = sccurmin . To use lookahead scoring, we additionally have to update the vector

of intermediate thresholds, based on the new value ofth. This can be done in O(m) time if we
determine and store the maximum values maxd = max f M (d; a) j a 2 Ag of each row inM a priori .

For each subsequent matching substringw we checksc(w; M ) > th 1 and update MS if necessary,
by

1. removal of the lowest match scoresccurmin (MS ) from MS and

2. insertion of the new match scoresc(w; M ).

From the updated set of match scores, we again determinesccurmin (MS ) to update th. We apply

this procedure whenever we �nd a new PSSM match withsc(w; M ) > th , until we have processed
our enhanced su�x array, or in case of LAsearchKb, the text, completely. Finally we sort the match

scores included inMS and report them and their corresponding matching positions.

Whenever we updateth we have to recomputesccurmin (MS ). Consequently the determination of

sccurmin (MS ) is a critical point for the performance of both algorithms. To determine sccurmin (MS )
e�ciently, we could use a binary search tree as the data structure for the organisation of MS . This

would allow us to retrieve sccurmin (MS ) in O (log(k)) time, where k = jMS j and log(k) is the

1Observe that we have to perform this check, because sc (w; M ) can also be equal to th .
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Figure 3.20: Increase ofth , when processing the su�xes of S in the lexicographical order of the
su�x array suf (left) and in the order of there occurence inS for di�erent values of k

and an arbitrarily chosen PSSM from the BLOCKS database (Accession: IPB001140A).
The enhanced su�x array was built from protein sequences from the PDB database.

height of the tree. Thus this operation would be fast if the height of the tree is small. The drawback

of using normal unbalanced binary search trees is, that theycan degenerate. In such a case their

performance may be not better than with a plain linked list.

A more appropriate data structure for our problem is a red-black tree. A red-black tree is a balanced
binary search tree with one extra bit of storage per node, itscolor, which can be eitherred or black.

By constraining the way that nodes may be colored on any path from the root to a leaf, red-
black trees ensure that no path is more than twice as long as any other, so the tree is approximately

balanced. It can be shown that a red-black tree withn internal nodes has height at most 2 log(n +1)
(c.f. [TLRS01]), hence red-black trees make good search trees and are well suited for our problem

to determine sccurmin (MS ) e�ciently. By using red-black trees we can guarantee to perform this
operation in O (log(n)) time. The same is true for node-insertion and -deletion operations. Tree-

rebalancing operations, which are necessary after insert or delete operations to guarantee that the

red-black tree properties are not violated, can also be accomplished in O (log(n)) time. Hence red-
black trees �t our requirements and we use them for the organization of the set of matchesMS.

Both proposed algorithms -ESAsearchKband LAsearchKb - perform best, if the determined thresh-

old th = sccurmin (MS ) quickly increases, while processing the enhanced su�x array top down and
the concatenated sequences from left to right respectively. A higher threshold increases the like-

lihood of falling short of an intermediate threshold early, resulting in less scored characters and
increased overall performance. ForESAsearchKb, in turn, this increases the likelihood to make use

of common pre�xes of su�xes and skip larger parts of the su�x a rray suf.

The increase ofth while searching is in
uenced by k and the distribution of high PSSM scores in

the text and in the enhanced su�x array respectively. The dis tribution in turn obviously depends
strongly on the PSSM under consideration. As shown in Figure3.19, the number of necessary

threshold updates can strongly vary between di�erent PSSMs. This is especially true for larger
values ofk.
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For an example of the concrete changes ofth for an arbitrarily chosen PSSM when searching with
ESAsearchKb and LAsearchKb see Figure 3.20. Observe, that the di�erent order in which su�xes

are scored in ESAsearchKb and LAsearchKb has only marginal in
uence on the changes ofth
while processing, apparent by the similar shape of the graphs in Figure 3.20. We performed further

analyses on the in
uences of di�erent values ofk on the number of threshold updates, number of
touched su�xes when using ESAsearchKb and total running time (see Experiment 9 in the next

section).

3.10 Implementation and computational results

We implemented SPsearch, LAsearch, LAsearchKb, ESAsearch, ESAsearchKb, and LazyDistrib in

C. SPsearch, LAsearch and ESAsearch are capable to handle reduced alphabets. The program was
compiled with the GNU C compiler (version 3.1, optimization option -O3). All measurements were

performed on a 8 CPU Sun UltraSparc III computer running at 900MHz, with 64GB main memory
(using only one CPU and a small fraction of the memory). Enhanced su�x arrays were constructed

with the program mkvtree , see [Kur05b].

We performed nine experiments comparing di�erent programsfor searching PSSMs. Table 3.1 gives
more details on the experimental input for Experiments 1-6.Results are given in Table 3.2 (Exp.

1-5) and Figures 3.21 and 3.22 (Exp. 6). For Experiment 7, seeFigures 3.23 and 3.24. Figure 3.25

gives the results of Experiment 8. Results of Experiment 9 are given in Table 3.3.

In these experimentsESAsearch performed very well, especially on nucleotide PSSMs, see Exper-
iments 2, 4, and 8. It is faster than MatInspector by a factor between 63 and 1,037, depending

on the stringency of the given thresholds. The commercial advancement of MatInspector , called
MATCH , was not available for our comparisons, but based on [MFG+ 03] we presume a running

time comparable to MatInspector . Compared to LAsearch, ESAsearch is faster by a factor between
17 (MSS=0.80) and 196 (MSS=0.95) (see Experiment 2). On larger nucleotide sequences (see Ex-

periment 4) the speedup factors increase, ranging from 58 (MSS=0.85) to 275 (MSS=0.95). See

Table 3.1 for the de�nition of MSS. In the experiments using protein PSSMs, ESAsearch is faster
than the method of [DNM00] by a factor between 1.5 and 1.8 (seeExperiment 1). This is due

to the better locality behavior of the enhanced su�x array co mpared to a su�x tree. For larger
p-values LAsearch performs slightly better than ESAsearch. Increasing the stringency, the perfor-

mance ofESAsearchincreases, resulting in a speedup of factor 1.5 for a p-valueof 10� 40. We explain
this behavior by the larger alphabet size, resulting in shorter common pre�xes and therefore smaller

skipped areas of the enhanced su�x array. With increasing stringency of the threshold, the expected
reading depth decreases, resulting in larger skipped areasof the enhanced su�x array. Compared

to the FingerPrintScan program, ESAsearch achieves a speedup factor between 3.8 and 470, see
Experiment 3. In comparison to Blimps, the PSSM-searching program of the BLOCKS database,

ESAsearch is faster by a factor of 23 (see Experiment 5) for the chosen threshold. In Experiment 6

(see Figures 3.21 and 3.22), we measured the in
uence of alphabet reductions on the running time of
ESAsearch and LAsearch when using protein PSSMs. Compared to the performance ofESAsearch

operating on the normal 20 letter amino acid alphabet a speedup up to factor 2 can be achieved
when using a 4 letter alphabet and a p-value cuto� of 10� 20. Observe that, when usingLAsearch
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3 Fast algorithms for matching position speci�c scoring matrices

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

# searched sequences 59,021 30,964 19,111 1 ( H.s. Chr. 6) 19,111 19,111

total length 20.2 MB 37.2 MB 4.3 MB 162.9 MB 4.3 MB 4.3 MB
sequence source see [DNM00] DBTSS 5.1 RCSB PDB Sanger V1.4 RCSB PDB RCSB PDB

sequence type/PSSM type protein DNA protein DNA protein protein

# PSSMs 4,034 220 11,411 577 28,337 11,411

PSSM source see [DNM00] MatInspector PRINTS 38 TRANSFAC Prof. 6.2 BLOCK S 14.1 PRINTS 38

avg. length of PSSMs 29.74 14.21 17.32 13.33 26.3 17.37
index construction (sec) 41 146 10.2 586 10.2 10.2

mdc (sec) 1960 � 1486 � 11871 1486

MatInspector �

FingerPrintScan �

Blimps �

DN00 �
LAsearch � � � � � �

ESAsearch � � � � � �

ESAsearch (reduced A ) �

LAsearch (reduced A ) �

Table 3.1: Performed experiments and experimental input. Overview of the sequences and PSSMs
used in the performed experiments. For the experiments thatuse p-value or E-value cut-

o�s, we precomputed the cumulative score distributions and stored them on �le. mdc
is the time needed for this task. In Experiment 1 we measured the running time of the

Java-program from [DNM00], referred to by DN00. We ran DN00 with a maximum of
2 GB memory assigned to the Java virtual machine.DN00 constructs the su�x tree

in main memory and then performs the searches. For a fair comparison, we therefore
measured the total running time, and the time for matching the PSSMs (without suf-

�x tree construction). For Experiment 2, we implemented the matrix similarity scoring

scheme (MSS) ofMatInspector and matched the PSSMs against both strands of the DNA
sequences with di�erent MSS cuto� values. The MSS of PSSMM of length m and a se-

quencew 2 A m is de�ned as MSS = sc(w;M ) � scmin (M )
scmax (M ) � scmin (M ) and hence given an MSS cuto�

value, the thresholdth is determined asth = MSS�(scmax (M ) � scmin (M ))+ scmin (M ). In

literature the MSS is sometimes also calledfunctional depth of a PSSM [BT04]. Instead
of using the reverse strand we use the reverse complementM of the PSSM M , de�ned

by M (i; a) = M (m � 1 � i; a) for all i 2 [0; m � 1] and a 2 A , where a is the Watson
Crick complement of nucleotidea. This allows to use the same enhanced su�x array for

both strands. In Experiment 5 we used a PERL-based wrapper for the Blimps program
shipped with the BLIMPS distribution to do bulk sequence searches. The overhead for

the PERL interpreter call was found to be negligible. For Experiment 6 we used the

reduced alphabets given in Figure 3.10. The last seven rows show which programs were
used in which experiment.
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Experiment 1: 4,034 PSSMs in 20.2 MB protein sequences
p-value DN00 DN00 LAsearch ESAsearch

(total time) (search) +41 sec.
10� 10 65,808 64,939 39,839 41,813
10� 20 38,773 37,706 23,786 24,378
10� 30 21,449 20,362 14,111 13,084
10� 40 9,606 8,533 8,067 5,374

Experiment 2: 220 PSSMs in 37.2 MB DNA
MSS MatInspector LAsearch ESAsearch

+32 sec.
0.80 12,773 3,605 202
0.85 12,567 3,189 108
0.90 12,487 2,818 53
0.95 12,445 2,356 12
1.00 12,429 885 1

Experiment 3: 11,411 PSSMs in 4.3 MB protein sequences
E-value FingerPrintScan LAsearch ESAsearch

+10 :2 sec.
10� 10 4,733 3,423 1,244
10� 20 4,710 486 52
10� 30 4,706 27 10

Experiment 4: 577 PSSMs in 162.9 MB DNA
MSS LAsearch ESAsearch

+586 sec.
0.85 18,446 318
0.90 16,376 150
0.95 13,764 50
1.00 5,294 1

Experiment 5: 28,337 PSSMs in 4.3 MB protein sequences
raw- th Blimps LAsearch ESAsearch

+10 :2 sec.
945 271:30:16 16:03:12 11:35:58

Table 3.2: Results of Experiments 1-5. Experiment 1: Running times in seconds of the di�erent

PSSM searching methods at di�erent levels of stringency, when searching for 4,034 amino
acid PSSMs in 59,021 sequences (21.2 MB) from SwissProt. These are the same PSSMs

and sequences used in the experiments of [DNM00]. Experiment 2: Running times in

seconds ofMatInspector , LAsearch, and ESAsearch, when searching 220 PSSMs on both
strands of 37.2 MB DNA sequence data at di�erent matrix similarity score (MSS) cuto�s.

Experiment 3: Running times in seconds ofFingerPrintScan , LAsearch, and ESAsearch
when searching all 11,411 PSSMs from the PRINTS database in the RCSB protein data

bank (PDB) for di�erent E-values. Experiment 4: Running tim es in seconds ofLAsearch
and ESAsearchwhen searching 577 PSSMs in H. sapiens chr. 6 at di�erent matrix similar-

ity score (MSS) cuto�s. Experiment 5: Running times in hh:mm:ssof Blimps, LAsearch,
and ESAsearch when searching all 28,337 PSSMs from the BLOCKS database in PDB.

We used a raw score threshold of 945 as suggested in theBlimps documentation for
searching large databases. For each experiment, the additional time needed for the con-

struction of the enhanced su�x array is shown in the head of the ESAsearch column.
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The influence of alphabet reduction on the running time of ESAsearch
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Figure 3.21: Experiment 6: Relative deviations of running time of ESAsearch when using reduced

alphabets at di�erent levels of stringency. We measured therelative percentage devi-

ation with respect to the running time when using the standard 20 letter amino acid
alphabet (= 0%). We searched with 11,411 PSSMs from the PRINTS database (Rel. 38)

in the RCSB Protein Data Bank (PDB) with a total sequence length of 4.3 MB. In
this example, the maximum performance improvement is achieved for an alphabet of

size 4 and a p-value cuto� of � = 10 � 20.
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The influence of alphabet reduction on the running time of LAsearch
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Figure 3.22: Experiment 6: Relative deviations of running time of LAsearch when using reduced
alphabets at di�erent levels of stringency. The experimental input and setup was the

same as in Figure 3.21. ForLAsearch alphabet reduction has a negative e�ect on the

running time, indicated by brighter colors.
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Figure 3.23: Experiment 7: Scaling behavior ofESAsearch when searching with 577 TRANSFAC

PSSMs on subsets of human chromosome 6 of di�erent sizes and with di�erent matrix
similarity cuto� values (MSS). The subsets are pre�xes of human chromosome 6 of

length 2k for k = 0 ; 1; 2; : : : ; 7.
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Figure 3.25: Experiment 8: Running times ofESAsearch, LAsearch and SPsearch when searching

with 577 TRANSFAC PSSMs in the database of transcriptional start sites (DBTSS Rel.

4.0) containing 23,410 human and mouse promotor sequences with a total sequence
length of 27MB. Measurements were performed for di�erent matrix similarity score

values (MSS), representing di�erent levels of stringency.
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(A) 577 TRANSFAC PSSMs in 27MB nucleotide sequences (DBTSS R el 4.0):

ESAsearchKb
k #th updates #touched su�xes (%) running time [sec] speedup o ver LAsearchKb
1 24,115 (41.8;33.1) 43,883 (0.15) 20.7 65

10 54,391 (94.3;92.5) 111,252 (0.39) 46.5 36
100 244,261 (423.3;497.7) 227,208 (0.80) 93.7 23

1000 1,415,292 (2452.8;3,132.0) 474,184 (1.68) 210.8 13

LAsearchKb
k #th updates running time [sec]
1 10,249 (17.8;5.0) 1351.6

10 66,257 (114.8;36.2) 1710.5
100 506,606 (878.0;363.7) 2160.0

1000 3,451,915 (5,982.5;3,518.0) 2754.4

(B) 28,337 BLOCKS PSSMs in 4.3 MB protein sequences (PDB):

ESAsearchKb
k #th updates #touched su�xes (%) running time [min] speedup o ver LAsearchKb
1 522,918 (18.4;4.6) 1,609,021 (37.3) 452.6 1.36

10 1,783,023 (62.9;13.9) 1,956,327 (45.88) 588.9 1.26
100 6,628,970 (233.9;54.6) 2,079,215 (48.76) 649.0 1.33

1,000 11,789,765 (416.1;124.2) 2,149,793 (50.41) 723.9 1.31

LAsearchKb
k #th updates running time [min]
1 479,614 (16.9;3.8) 616.5

10 1,563,197 (55.1;9.6) 747.5
100 8,306,508 (293.1;66.8) 869

1,000 11,526,692 (406.8;118.6) 947

Table 3.3: Experiment 9: Measurements of the in
uence of di�erent values of k on the
number of threshold updates, number of touched su�xes, and the total running

time for ESAsearchKb and LAsearchKb. We performed experiments on nucleotide
PSSMs/sequences (see (A)) as well as on amino acid PSSMs/sequences (see (B)). We

counted the total number of threshold updates for all PSSMs and calculated the mean

and the standard deviation (values are given in brackets). Column #touched su�xes gives
the number of su�xes on average (total number divided by number of used PSSMs) for

which ESAsearchKb has to score at least one new character. The percentage valueof all
su�xes is given in brackets. For ESAsearchKb, the last column shows the speedup of

ESAsearchKb over LAsearchKb for the same value ofk. For algorithm LAsearchKb the
number of touched su�xes is not shown, sinceLAsearchKb processes always the complete

sequence, independent of the value ofk.

97



3 Fast algorithms for matching position speci�c scoring matrices

(see Figure 3.22), alphabet reduction has a negative e�ect upto 4 times on the running time and
hence using alphabet reduction in combination with algorithm LAsearch makes no sense in practice.

This is due to the increased expected reading depthm� (th) for degraded alphabets, which is for
LAsearch not counterbalanced by increased lcp-interval sizes, since no enhanced su�x array is used

in this algorithm. Experiment 7 (see Figures 3.23 and 3.24) shows that the expected running time
of ESAsearch is sublinear, whereasLAsearch runs in linear time. In Experiment 8, we compared

the running times of ESAsearch and LAsearch with our own implementation of SPsearch. This

experiment shows that theSPsearchalgorithm, running in O (nm) time, although still widely used,
is de�nitly inappropriate for larger PSSM matching tasks. I n Experiment 9 we investigated the

in
uences of di�erent values of k on the number of threshold updates, number of touched su�xes
when using ESAsearchKb and total running time (see Table 3.3). Here ESAsearchKb achieves a

speedup of factor 13 (fork = 1000) upto 65 (for k = 1) over LAsearchKb on nucleotide PSSMs and
a speedup of factor 1.3 on amino acid PSSMs. It has been shapedout in practice, that ESAsearchKb

and LAsearchKb are especially useful when searching for transcription factor binding site motifs
in large data sets, since it is di�cult to specify a reasonable p-value or E-value cuto� for these

short motifs of low signi�cance. In a �nal experiment, we compared algorithm LazyDistrib with the
DP-algorithm computing the complete distribution. LazyDistrib shows a speedup factor between 3

and 330 on our test set, depending on the stringency of the threshold (see Table 3.4).

We also note, that motivated by the �rst description of the LazyDistrib algorithm in [BSH + 04], in

[MG06] the authors reimplemented LazyDistrib in the functional programming language Haskell,
taking advantage of the built-in non strictness of the language. Whereas in our implementation in

C some e�ort has to be spend on the simulation of laziness in aneager language, in Haskell this has
not be adressed explicitly, since lazy evaluation is a built-in concept of the programming language.

Accordingly, algorithm LazyDistrib can be formulated in Haskell on less than a page, while the C
implementation consists of some hundred lines of code. Alsoremarkable, for an implementation in

a functional programming language, is the reported speedupin [MG06]. The authors report for a

test set containing a small fraction of PSSMs from the PRINTSdatabase a speedup factor between
4.3 for a p-value of 10� 10 and 172 for a p-value of 10� 30 over the DP-algorithm computing the

complete distribution. Though, this is in the same range as the speedup of our implementation of
LazyDistrib with hand-coded laziness (see Table 3.4), the absolute running times di�er signi�cantly.

E.g to compute a score threshold corresponding to a P-value cuto� of � = 10 � 10 for 1; 000 PRINTS
PSSMs, Malde and coworkers report a running time of 306 seconds using a 1.13 GHz system. The

C implementation of LazyDistrib needs 485.3 seconds for all 11; 411 PRINTS PSSMs for the same
p-value cuto� on a 900 MHz system.

3.11 PoSSuM software distribution

Our software tool PoSSuMsearchimplements all algorithms and ideas presented in this work,namely
SPsearch, LAsearch, ESAsearch and LazyDistrib . A user can search for PSSMs in enhanced su�x

arrays built by mkvtree from the Vmatch package, as well as on plain sequence data inFasta ,
GenBank, EMBL, or Swiss-Protformat. The search algorithm can be chosen from the command line.
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3.11 PoSSuM software distribution

p-value simple DP LazyDistrib speedup factor
10� 10 1,486 485.8 3
10� 20 1,486 92.5 95
10� 30 1,486 8.9 166
10� 40 1,486 4.5 330

Table 3.4: Running times in seconds when computing score thresholds for all 11,411 PSSMs from the
PRINTS database (Rel. 38), given di�erent p-values. Running times given in this table

are measurements performed with improved versions of the simple DP and LazyDistrib
algorithms and thus are much lower than the times given in [BSH+ 04].

PSSMs are speci�ed in a simple plain text format, where one �le may contain multiple PSSMs. See

Example in section A.4.1 on page 201. The alphabet a PSSM refers to, and alphabet character to
PSSM column assignments can be speci�ed on a per-PSSM basis for most 
exible alphabet support.

All implemented algorithms, except the k-best variants, support alphabet transformations. PSSMs
can contain integer as well as 
oating point scores. To prevent rounding errors for integer based

PSSMs, PoSSuMsearchuses integer arithmetics for these, resulting in an additional speedup on
most CPU architectures. Searching on the reverse strand of nucleotide sequences is implemented by

PSSM transformation according to Watson-Crick base pairing (see De�nition 8 on page 23). Hence

it is su�cient to build the enhanced su�x array for one strand only. This can then be used to search
both strands.

The cuto� can be speci�ed as p-value, E-value, MSS (matrix similarity score), or raw score threshold.

If only the best matches with the highest scores need to be known, then PoSSuMsearchcan be asked
to report only the k highest scoring matches without even specifying an explicit cuto�. To do so,

the search algorithms (ESAsearchKb and LAsearchKb variants) dynamically adapt the threshold
during the search. When using p- or E-values, the score threshold is determined by either the

new lazy dynamic programming algorithm (LazyDistrib ), or read from �le that stores the complete
precalculated probability distribution. Background dist ributions can be speci�ed arbitrarily by the

user, or determined from a given sequence database. We provide a tool, PoSSuMdist, to generate a

compressed �le containing the complete precalculated probability distribution for a set of PSSMs.

PSSM matches can be sorted by specifying a list of sort keys, like p-value, match score, sequence
number, and so on. The output formats ofPoSSuMsearchprint out all available information about

a match, either in a human readable format, tab delimited, or in machine readable, XML-based
CisML [HW04]. PoSSuMsearchas well asPoSSuMdist support multi-threading for a further reduc-

tion of running time on multi CPU machines. See Figures 3.26 and 3.27 for the additional speedup
that can be achieved when facilitating multiple CPUs.

The PoSSuM software distribution includes the searching toolPoSSuMsearchitself, and additional

tools to determine character frequencies from sequence data, for probability distribution calculation,

and PSSM format converters forTRANSFAC , BLOCKS , PRINTS , and EMATRIX style PSSMs.
See Table 3.5 for a list of included programs. Detailed descriptions of the programs included in

PoSSuM software distribution, their command line interfaces, and used �le- and output formats are
given in the Appendix A.4 on page 199.
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Figure 3.26: Scaling behaviour of the multithreaded version of PoSSuMsearch operating in

ESAsearch mode. We measured the running time in seconds needed for searching
with 24,291 protein PSSMs with an average length of 26.57 taken from the BLOCKS

database (Rel. 13.0) in the RCSB protein data bank (PDB) containing 19,111 sequences
with a total length of 4.3 MB. Measurements were performed for di�erent p-value cut-

o�s and used numbers of CPUs.

100



3.11 PoSSuM software distribution

1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

14000

16000

Number of used Threads

T
ot

al
 r

un
ni

ng
 ti

m
e 

[s
ec

]

Scaling behaviour of the multithreaded variant of possumdist

Figure 3.27: Scaling behaviour of the multithreaded variant of PoSSuMdist. We measured the time

needed for the calculation of complete score distributionsand their persistent, com-
pressed storage. We used 28,333 protein PSSMs from the BLOCKS datbase (Rel. 14.1)

with an average length of 26.3 using di�erent numbers of CPUs.
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3 Fast algorithms for matching position speci�c scoring matrices

Program Description

PoSSuMsearch Searching tool, that implements ESAsearch, LAsearch, SPsearch,

ESAsearchKb, LAsearchKb, and LazyDistrib algorithms.

PoSSuMdist Generates a compressed �le containing the complete precalculated
probability distribution for a set of PSSMs.

PoSSuMfreq Utility program to calculate character frequencies from given se-

quence data, usable forLazyDistrib and PoSSuMdist.

transfac2gen Converts PSSMs from TRANSFAC format into PoSSuMsearch

compatible format.

prints2gen Converts PSSMs from PRINTS format into PoSSuMsearchcom-
patible format.

ematrix2gen Converts PSSMs from EMATRIX format into PoSSuMsearch

compatible format.

cdd2gen Converts CDD and PsiBlast checkpoint �le PSSMs into PoSSuM-
search format.

mkvtree Program from the Vmatch package of S.Kurtz to build enhanced

su�x arrays.

Table 3.5: Programs included in thePoSSuM software distribution.

3.12 Discussion and concluding remarks

We presented in this chapter a new non-heuristic algorithm,called ESAsearch, to e�ciently �nd
matches of PSSMs in large databases. Our approach preprocesses the search space, e.g., a complete

genome or a set of protein sequences, and builds an enhanced su�x array that is stored on �le.
This allows the searching of a database with a PSSM in sublinear expected time. Our analysis of

ESAsearch revealed sublinear runtime in the expected case, and linearruntime in the worst case
for sequences not shorter thanjAj m + m � 1, where m is the length of the PSSM andA a �nite

alphabet. The enhanced su�x array, on which the method is based, requires only 9n bytes. This is

a space reduction of more than 45 percent compared to the 17n bytes implementation of [DNM00].
For a summarization of the time and space complexities ofESAsearch, LAsearch, and SPsearchsee

Table 3.6.

Since ESAsearch bene�ts from small alphabets, we presented a variant operating on sequences
recoded according to a reduced alphabet. We also addressed the problem of non-comparable PSSM-

scores by developing a method which allows the e�cient computation of a matrix similarity threshold
for a PSSM, given an E-value or a p-value. Our method is based on dynamic programming and,

in contrast to other methods, it employs lazy evaluation of the dynamic programming matrix. For

application scenarios, where it is di�cult to specify a meaningful PSSM score cuto�, we developed
variants of ESAsearchand LAsearch, that adjust dynamically the threshold th while searching and

report the k- best matches of a PSSM without the need for the user to specify a cuto� value.

We evaluated algorithm ESAsearch with nucleotide PSSMs and with amino acid PSSMs. We per-
formed various experiments in which, compared to the best previous methods,ESAsearch shows
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3.12 Discussion and concluding remarks

speedups of a factor between 17 and 275 for nucleotide PSSMs,and speedups up to factor 1.8 for
amino acid PSSMs. Comparisons with the most widely used programs even show speedups by a

factor of at least 3.8. Alphabet reduction yields an additional speedup factor of 2 on amino acid
sequences compared to results achieved with the 20 symbol standard alphabet. The lazy evaluation

method is also much faster than previous methods, with speedups of a factor between 3 and 330.
This new algorithm for accurate on-the-
y calculations of t hresholds has the potential to replace

formerly used approximation approaches.

Beyond the algorithmic contributions, we provide with the PoSSuM software distribution, a robust,

well documented, and easy to use software package, implementing the ideas and algorithms presented
in this chapter. The PoSSuM software distribution has already been successfully used in a large-scale

study for the structural analysis of the core promoter in mammalian and plant genomes [FSD+ 05]
and it constitutes the fundamental search engine for transcription factor binding site PSSMs in the

CoryneRegNet software system for the reconstruction and comparison of transcriptional regulatory
networks in prokaryotes [BBC+ 06, BRT06]. Further, PoSSuMsearchis integrated into the Genlight

system [BMM+ 04] as a screening method for amino acid PSSMs from the PRINTSand BLOCKS
databases.
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3 Fast algorithms for matching position speci�c scoring matrices

Implementations Time complexity Space complexity Comment

Algorithm: SPsearch

Matinspector ,

MATCH , Fin-

gerPrintScan ,

Blocksearch,

BLIMPS ,

PoSSuMsearch

O (nm) O (n + m) O (nm ) running time in the

best-, average-, and worst case.

Algorithm: LAsearch

EMATRIX ,

PoSSuMsearch

O (kn) O (n + m) The worst case running time

is O (nm ), since in the worst

case k 2 O (m). In practice, k

is expected to be much smaller

than m, leading to considerable

speedups. In the best case, ex-

act one character of each sub-

word of length m of S has to

be scored leading to O (n + m)

running time.

Algorithm: ESAsearch

PoSSuMsearch O (n + n � max f 0; pg + m) O (9n + m) The worst case running time is

O (n + m), since p � 0 holds

for any PSSM of length m and

threshold on any text of length

n � jAj m + m � 1. In practice,

large numbers of su�xes can be

skipped if the threshold is strin-

gent enough, leading to a total

running time sublinear in the

size of the text, regardless of the

relation between n and m.

Table 3.6: Summary of the time and space complexities ofSPsearch, LAsearch, and ESAsearch
when searching with a PSSM of lengthm in a text S of length n over alphabet A .
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classi�cation

4.1 Increasing the expressiveness of PSSM-based database

searches

We have seen, that searching with PSSMs in combination with enhanced su�x arrays is very

e�cient and lead to algorithms with superior performance compared to existing methods. However,
compared to other approximate motif description models, PSSMs have the severe drawback, that

they are �xed length motifs, build from gapless (parts of) multiple alignments, that do not allow

for possible gaps. Consequently, one single insertion or deletion in the sequence to be searched with
a PSSM, can yield to a misleading overlooking (false negatives) of the motif represented by the

PSSM. Hence, PSSMs are often only used to represent short highly conserved regions of nucleotide
or amino acid sequences or regions that have a constant length, like transcription factor binding

sites. Though, using only short PSSMs can increase the sensitivity in a database search, speci�city
decreases, since the signi�cance of a PSSM match is correlated with its length (see Equation (3.9)).

Accordingly, biological relevant matches of short PSSMs are di�cult and sometimes impossible to
distinguish from spurious ones and the explanatory power ofa single short PSSM match is limited,

in particular in larger data sets. This is a known problem e.g., in the �eld of transcription factor
binding site prediction on whole genomes or chromosomes (see [RMV03]).

Alternatively, we could use a di�erent motif model, e.g., one that allows for gaps, like Gribskov's
PSSMs with position speci�c gap costs (see section 2.6 on page 36) or pro�le hidden Markov

models (see section 2.7.2 on page 42). These types of models are less vulnerable to insertions
and deletions caused by evolutionary mutation events and thus can be used to describe longer

regions of sequences. On the downside, incorporation of gaps is computationally expensive and it is
unclear how to e�ciently use enhanced su�x arrays when allow ing gaps. Further on, it is unknown,

how to calculate exact statistics necessary to address the signi�cance of matches of such models
that incorporate gaps. They are based on approximations andempirically determined parameters

[ABOH01, YH01].

Instead of using a completely di�erent motif model, we propose to increase the power of PSSM based

motif searches by using chains of multiple ordered PSSMs as adescriptor for a family of related
sequences. The method, to be described, is a combination of the ESAsearchalgorithm for fast PSSM

matching with an e�cient chaining algorithm incorporating ordering information of PSSMs and is
in particular applicable for protein family classi�cation and detection of distant homologies.
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Figure 4.1: Conserved order of matches of a protein �ngerprint describing the CagA exotoxin of
the human pathogenHelicobacter pylori (PRINTS-ID: TYPE4SSCAGA), a well known

virulence factor linked to the more severe forms of gastric ulcers and duodendal cancers
caused by some strains ofH.pylori . The PRINTS �ngerprint representing the CagA

family contains eleven PSSMs in a de�ned order. The group positions, shown in red in
this �gure, specify the order of PSSM motif occurrences in the alignment of the CagA

family sequences from left to right. Figure taken from the Genlight system.

4.2 Using multiple ordered PSSMs for sequence classi�catio n

Sequence families can often be characterized by more than one motif derived from di�erent conserved
regions of the sequence. Reconsider that these motifs can bedetermined in a local multiple alignment

of the family sequences or from gapless blocks, excised froma gap containing multiple alignment.
We assume that the ordering of these motifs is evolutionary conserved and that family members

will contain some or all the motifs, usually with a highly conserved ordering. For an example of

order conservation see Figure 4.1. In this example the CagA exotoxin protein family is represented
by eleven PSSMs determined from the multiple alignment of the family members. Observe that

the order of PSSMs matches is conserved when they were screened versus a new member of the
modeled family like the CAG HELPJ protein sequence used in this example. This observation

motivates an extension of our PSSM searching algorithms by incorporating ordering information of
multiple PSSMs derived from a family of related sequences. Instead of single PSSM matches, our

algorithm reports chains of PSSM matches that occur in a conserved order. Compared to approaches
using a single motif only, with the incorporation of multipl e PSSMs representing multiple conserved

motifs of a sequence family in a speci�c order, the diagnostic power in a database search scenario like
protein family classi�cation, can be increased. See Figure4.2 for the e�ect of using chains of multiple

ordered PSSMs compared to single PSSMs. When reporting single high scoring PSSM matches only,

we obtain multiple false positive hits, caused by the limited signi�cance and explanatory power of
short PSSMs and it remains di�cult to con�dently classify th e sequence to a certain family based

on these single PSSM matches (Figure 4.2 (A)). Hence, an e�ective search algorithm therefore has
to take the cooccurrence and order of matching PSSMs of the same family into account and must
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de�ne a rankable score for the chain of matches. This increases the speci�city of the database search
and may reduce the number of false positive matches dramatically. In the example given in Figure

4.2 (B)) all false positive matches are eliminated. Here thetop scoring chains are all true positives
and exactly describe the �ve catalytic domains of the ARO multi domain protein of bakers yeast

(S.cerevisae).

As apparent from Figure 4.2, by facilitating a set of multipl e ordered PSSMs to describe a family of
related sequences and by reporting of results with preserved ordering only, we can counterbalance

the lack of speci�city of short PSSMs. That is, we bene�t of th e increased sensitivity of short

PSSMs, without losing speci�city as it is the case when usingsingle short PSSMs. Ordered sets of
motifs adaptable for deviations of PSSMs, sometimes also called �ngerprints, are available in form

of alignment blocks in several database. ThePRINTS[ACF + 00] andBLOCKS/BLOCKS+ databases
[HGPH00, HP99] are two examples of large collections of such�ngerprints representing speci�c

protein families. BLOCKS for instance contains in its current release (Rel 14.3 April2007) 29,068
PSSMs describing 5,900 protein families. In addition, ordered sets of alignment blocks which may

serve as input for the construction of multiple ordered PSSMs can be easily excised from multiple
alignments of related sequences. Hence, basically all protein family collections like Pfam[FMSB+ 06],

TIGRFAM [HSW03], Smart [LCP+ 06], etc., which o�er manually curated, high quality alignm ents

of protein family members are applicable for deviation of multiple, ordered PSSMs constituting a
descriptor for these families.

4.3 PSSM family models

From now on, we employ the term PSSM family model for an ordered set of PSSMs used as a

descriptor for a family of related sequences. More precisely, let A = A1; A2; : : : ; AL be a sequence of
L non-overlapping alignment blocks. These alignment blocksare excised from a multiple alignment

and the sequenceA1; A2; : : : ; AL re
ects their order of occurrence in the alignment. See Figure 4.3
(A) for an example. We denote the start and end position ofA i , i 2 [1; L] in the multiple alignment

by l i and r i , l i � r i , and de�ne a binary ordering relation C on A, such that A i C A j , i; j 2 [1; L] if

and only if r i < l j . Then we de�ne a PSSM family model as follows.

De�nition 14 Let A = A1; A2; : : : ; AL be an ordered sequence of non-overlapping alignment blocks

satisfying A i C A j for all i; j 2 [1; L ] ^ i < j . A PSSM family model M of length L is a sequence of
L PSSMsM = M 1; M 2; : : : ; M L where M i denotes the PSSM deviated fromA i , i 2 [1; L ].

Let ( l; i; j ) denote a match to PSSM M l , l 2 [1; L], i � j , of length m l = j � i + 1 in a sequence

S of length n. It holds sc(S[i::j ]; M l ) � th l , where th l is the threshold used for searching withM l .
Then the set containing all matches of allL PSSMs ofM in S is de�ned as

MSM ;S := f (l; i; j ) j l 2 [1; L] ^ i; j 2 [0; n � 1] ^ sc(S[i::j ]; M l ) � th l g: (4.1)

For any tuple h = ( l; i; j ) 2 MSM ;S we employ the notation h:l := l , h:i := i , and h:j := j to
identify the components of h.

De�nition 15 Let � be a binary ordering relation on MSM ;S such that (l r ; i r ; j r ) � (ls ; i s; j s) if
and only if l r < l s and j r < i s. A match to a PSSM family model M of length L is a sequence of
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(A) Reporting single PSSM matches

(B) Reporting of high-scoring chains only

Figure 4.2: Screening of the ARO protein from yeast vs. the BLOCKS database. ARO is a pentafunc-

tional protein that catalyzes �ve of seven steps in the chorismate biosynthesis pathway.
Observe that when using single PSSMs, a lot of unrelated, spurious matches are found

(A), whereas when using multiple ordered PSSMs and reporting high-scoring chains
with preserved order only (B), the number of false positive matches is strongly reduced

and each of the �ve domains of the ARO protein is correctly identi�ed. For a detailed

de�nition of high-scoring chains and chain scores, see corresponding text.
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matches (or chain for short) CM ;S = h1; h2; : : : ; hk such that hi 2 MSM ;S for 1 � i � k, and k � L ,
and hi � hi +1 , and hi :l < h i +1 :l for 1 � i < k . We call CM ;S a collinear, non-overlapping sequence,

or chain, of length k and hi ; i 2 [1; k], a member or fragment ofCM ;S .

To incorporate a measure of match quality into PSSM family models, we compute thechain score
of a chain. It is based onfragment scores assigned to each element ofMSM ;S , expressing their

quality. More precisely, let fsc be a function, that assigns a positive score to each fragmenthi 2
MSM ;S , 1 � i � k, in chain CM ;S . This can be for example the p-value ofhi or its match score

sc(S[hi :i::h i :j ]; M h i :l )1. We de�ne the chain score for chain CM ;S = h1; h2; : : : ; hk as

csc(CM ;S ) :=
kX

i =1

fsc(hi ): (4.2)

In the context of protein family classi�cation, a sequence is searched with several PSSM family
models, derived from multiple alignments representing di�erent protein families. The classi�cation

into a certain family should be based on the quality of thebest match of a sequence to the corre-
sponding family model. Hence the �rst objective is to determine the best chain of PSSM matches

in a sequenceS for a given family model M . This is stated in the following problem de�nition.

De�nition 16 Given a PSSM family model M = M 1; M 2; : : : M L of length L, a sequenceS of

length n, L thresholdsth1; th2; : : : ; thL used for searching with the PSSMs ofM in S, and the set of
PSSM matchesMSM ;S de�ned according to Equation (4.1) with their associated fragment scores,

the PSSM chaining problemis to determine a chainC�
M ;S such that csc

�
C�

M ;S

�
is maximal among

all possible chains. We call such a chain anoptimal chain and denote its score with

csc�
M ;S := csc

�
C�

M ;S

�
= max f csc(CM ;S ) j CM ;S is a chain for M on Sg: (4.3)

With the de�nition of optimal chains and their chain scores we introduce a quanti�able, rankable
criteria of match quality to our PSSM family model concept that allows to use PSSM family models

for sequence classi�cation. More precisely, letS be a sequence andF = fM 1; M 2; : : : ; M T g be a
collection of T PSSM family models, representingT distinct protein families. Further, let csc�

F ;S :=

maxf csc�
M i ;S j M i 2 Fg be the maximal score of all optimal chains inS over all family models

in F , then we classifyS into the family represented by M 2 F if and only if csc�
F ;S = csc�

M ;S .

That is, we classify the sequence under consideration into the family whose family model generates

the highest scoring optimal chain. In practice it is often useful to employ a threshold constraint,
like a minimal neccessary chain length, as a lower boundary for classi�cation. That is, sequences

not satisfying this constraint are rejected.

Since the PSSM chaining problem is a variation of the more general multi-dimensional fragment
chaining problem (c.f. [AO03b, AO03a, AO05]) we solve the PSSM chaining problem by utilizing

algorithms from this �eld. In the following we brie
y recons ider the main ideas of existing solutions.
We roughly follow with our description an introduction to tw o dimensional fragment chaining, given

in [Kur05a] adapted to our concrete problem of �nding an optimal match to a PSSM family model.

1Observe, that for a PSSM M that may generate non-positive match scores, i.e., scmin (M ) � 0, these scores can be
easily shifted to non-negative scores by adding scmin (M ).

109



4 PSSM family models for sequence family classi�cation
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Figure 4.3: (A) Non-overlapping alignment blocks (cyan), excised from ungapped regions of a

multiple alignment. Since l i � r i < l j � r j for all i; j 2 [1; 5] ^ i < j holds,
A = A1; A2; A3; A4; A5 is an ordered sequence of non overlapping alignment blocks

suitable to construct a PSSM family model M = M 1; M 2; M 3; M 4; M 5. (B) Matches of
M i ; i 2 [1; 5], on sequenceS, sorted in ascending order of their matching positions. (C)

Graph based representation of the matches ofM i ; i 2 [1; 5]. An optimal chain of collinear
non-overlapping matches is determined, by computing an optimal path in the directed,

acyclic graph. Observe that not all edges in the graph are shown in this example and
that the optimal chain (indicated here by their red marked members) is not necessarily

the longest possible chain.
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4.3.1 Computation of optimal PSSM chains

The problem of computing an optimal chain of PSSM matches canbe solved with a well known

graph-based algorithm described in [VA89], which is also used in the �rst version of the multiple
genome alignment tool MGA [HKO02]. Adopted to the PSSM chaining problem, the ideas of the

algorithm are as follows. Let G = ( V; E) be a directed, weighted, acyclic graph, where each vertex
v 2 V represents an element ofMSM ;S and E is a set of weighted, directed edges. There is an edge

pointing from vertex u to vertex v with score (weight) fsc(v) if and only if u � v. See part (C) of
Figure 4.3 for an example of such a graph. That is, there is an edge in G pointing from u to v if and

only if u and v are collinear w.r.t. their matching positions in sequenceS (see part (B) in Figure

4.3) and the positions of their corresponding PSSMs in the PSSM family model M (see part (A)
in Figure 4.3). Hence all paths through G represent valid chainsCM ;S according to De�nition 15

and therefore matches toM . An optimal chain corresponds to a path of maximal score. Since G
is acyclic we can compute them as follows. Letcsc� (v) be the maximum score of all chains ending

with fragment v. As all fragment scores are positive, the following recurrence for the computation
of csc� (v) holds:

csc� (v) = fsc(v) + max( f 0g [ f csc� (u) ju � vg): (4.4)

By utilizing dynamic programming, we can compute an optimal chain C�
M ;S and its chain score

csc�
M ;S in O (jV j + jE j) time. Let K = jMSM ;S j, then G contains K vertices connected by a

maximum of
P K

i =1 i = K 2 + K
2 edges. Hence the time complexity can be rewritten asO

�
K 2

�
and the

algorithm computing an optimal chain from K PSSM matches has a run time that is quadratic in

the number of PSSM matches and takesO (K ) space. In [AO05] the authors present an optimization
that improves the O

�
K 2

�
time bound to O (K � logK ) by considering the geometric nature of the

problem. In the following, we brie
y describe the main ideasof their algorithm. To compute csc� (v)
according to Equation (4.4) we have to maximize the score over all u 2 MSM ;S satisfying u � v.

Reconsider, that for any two PSSM matchesu; v 2 MSM ;S ,

u = ( l r ; i r ; j r ) � v = ( ls; i s; j s) , l r < l s ^ j r < i s: (4.5)

Furthermore in geometric terms, a PSSM matchv = ( ls ; i s; j s) 2 MSM ;S can be viewed as a line
in a two dimensional space starting at position (i s; ls) and ending at position (j s ; ls) (see Figure

4.3 part (C)). Hence to determine csc� (v) we have to maximize over all PSSM matches in the
rectangle de�ned by the lower left corner point (0; 0) and the upper right corner point ( j s ; ls), which

is basically a two dimensional search problem. In [AO05] theauthors show that this two dimensional
search problem can be reduced to a one dimensional search problem by processing the elements of

MSM ;S in ascending order with respect to their matching positions in the sequenceS or in the

order of PSSMs as de�ned byM . Hence, an e�cient organization of the elements of MSM ;S is
advantageous and allows to reach theO (K � logK ) time bound. This can be accomplished by using

balanced binary search trees, for instance AVL- or Red-Black-Trees for the organization ofMSM ;S .
For a more detailed description of the algorithm see [AO03b,AO05].
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Analysis of ESAsearch with fragment chaining

Given a PSSM family modelM = M 1; M 2; : : : ; M L consisting ofL PSSMs of lengthsm1; m2; : : : ; mL

and a sequence of lengthn. Let m� = max f m1; m2; : : : ; mL g denote the length of the longest PSSM
in M and K the total number of matches of all PSSMsM i , i 2 [1; L ]. Then the time complexity for

the combined algorithm composed ofESAsearch for PSSM match determination and the fragment
chaining approach of [AO05] isO (L � (n + m� + K � logK )). Although in practice K is much smaller

than n, in the worst caseK 2 O (n) holds, leading to a total worst case time complexity of

O (n + m� + n � logn) : (4.6)

This time complexity holds for any PSSM of length m� and threshold on any text of length n �
jAj m �

+ m� � 1.

4.4 Integration of PSSM family models into PoSSuMsearch

To incorporate our concept of PSSM family models, we extended our search toolPoSSuMsearchby

integrating the fragment chaining algorithm of [AO05] for chaining of matches to PSSMs.

In the �rst phase, PoSSuMsearchcomputes single PSSM matches for the PSSMs of a family model
using algorithms ESAsearch, LAsearch, or evenSPsearch, depending on the user's choice. In the sec-

ond phase PSSM matches obtained in phase one and their ordering information are used to compute
optimal chains of PSSM matches according to the order given in the family model. To formulate

these orders, we augmented the PSSM �le format to support grouping and ordering information
for PSSMs enabling the description of PSSM family models. With these modelsPoSSuMsearch

can compute and report for each sequenceS and family model M the optimal chain C�
M ;S and its

chain scorecsc�
M ;S . We added two modes of operation toPoSSuMsearch, namely pssmsearchand

seqclasswith the following semantics.

� Mode pssmsearchallows sequence classi�cation based on a, typically small,library of PSSM

family models. This mode requires a numeric argumentk. Per family model the (up to) k best
matching sequences are reported.

� Mode seqclassallows sequence classi�cation based on a, typically large,library of PSSM family

models. With user speci�ed numeric argumentk, per sequence the (up to)k best matching
PSSM family models are reported.

Hence modepssmsearchmimics the modus operandiof program hmmsearch, whereas modeseqclass

is comparable to program hmmpfam. To further integrate PSSM family models into PoSSuM-
search seamlessly, we added additional �ltering constraints like minimal (relative) chain length,

output formats and sort keys operating on chains and there attributes instead of single PSSM

matches. Graphical result visualization and a web user interface is available inside the Genlight sys-
tem [BMM + 04, BSS04] wherePoSSuMsearchwith PSSM match chaining is used as an integrated

search method for theBLOCKSand PRINTS databases. For examples of visualizedPoSSuMsearch
results see Figure 4.2 on page 108.
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4.5 Performance of PSSM family models for protein family

classi�cation

Detection of protein families in large databases is one of the principal research objectives in struc-

tural and functional genomics. Protein family classi�cati on can signi�cantly contribute to the de-
lineation of functional diversity of homologous proteins, the prediction of function based on domain

architecture or the presence of sequence motifs as well as comparative genomics, providing valuable
evolutionary insights.

To evaluate the suitability of PoSSuMsearchemploying PSSM family models for fast and accurate
protein family classi�cation, we rigorously tested and validated our method in several database

search scenarios. Therefore, we carried out extensive database searches with a large collection of
protein families focusing on the ability to discriminate between homologs and non-homologs. For the

experiments described in this chapter, we always usedPoSSuMsearchoperating in pssmsearchmode
with algorithm ESAsearch for PSSM matching. For simplicity we refer to it as just PoSSuMsearch

without mentioning each time that we use ESAsearch and chaining of PSSM matches.

To evaluate a database search method likePoSSuMsearch, we have to determine its sensitivity
and speci�city since the overall performance or quality of amethod is always a combination of its

sensitivity, also called coverage, and its speci�city. Onede�nes a method's sensitivity as its ability

to detect as many true positive relationships (true membersof the family described by the PSSM
family model) and thus generate as few false negative results (erroneously missed members) as

possible. Analogical, the speci�city of a method is de�ned as its ability to select only sequences
with a true relationship and thus to generate as few false positives (erroneously found members)

as possible. We measured the performance ofPoSSuMsearchin terms of sensitivity, speci�city and
running time and compared the results with a hidden Markov model basedstate-of-the-art ap-

proach. Database searches using pro�le hidden Markov modelbased approaches (c.f. [DEK98]) are
yield to be very sensitive and speci�c [RV01]. Hence a performance evaluation assessing sensitivity

and speci�city of our PSSM family model based approach compared with a hidden Markov model

based method is a meaningful and ambitious benchmark. We chose as a representative of methods
employing HMMs the widely used hmmsearchprogram [Edd98] from Sean Eddy'sHMMER pack-

age version 2.3.2. For the conducted experiments, we used the database search method evaluation
framework PHASE4 [Reh02]. The method-independentstate of truth essential for the expressive-

ness of the evaluation experiments is de�ned by sequences with known relationships taken from
the SCOP(Structural Classi�cation of Proteins) database [AHB + 04] release 1.53.SCOPis a multi

level hierarchy of protein sequences taken from the RCSB protein data bank (PDB). Thus, all se-
quences included inSCOPhave a known tertiary structure and they can be classi�ed into families

based on their structural similarities, instead of sequence similarities. The classi�cation hierarchy
was constructed manually by expert knowledge and comparisons of structures and re
ects both,

structural and evolutionary relatedness of proteins. Thisunique feature makes theSCOPdatabase

a frequently used benchmark data set for database search methods [BCH98, KBH98]. InsideSCOP,
families are organized into certain superfamilies, which again are members of certain folds. Families,

superfamilies, and folds also constitute the three major levels of the hierarchy. For theses levels the
following characteristics are assumed to be true:
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Evaluation Scenario Description

Experiment 1:

Very close relationship

(family half one model)

For each superfamily: For each family, half of its sequences are

chosen as test sequences, and the remaining ones are chosen as

training sequences. The sequences of the surrounding superfamily

are ignored in the evaluation.

Experiment 2:

Close relationship (family

halves one model)

For each superfamily, half of the sequences of each of its fami-

lies are chosen as training sequences and the remaining onesare

chosen as test sequences.

Experiment 3:

Distant relationship

(distant family one model)

From a superfamily, each family in turn is chosen to provide t he

test sequences. The remaining families within that superfamily

provide the training sequences.

Table 4.1: Evaluation scenarios used in the performed experiments to assess method sensitivity and

speci�city.

� Family

Members of a family have a clear evolutionary relationship and hence a common or similar

structure and function. Generally, this means that pairwise residue identities between proteins
inside a family are 30% and greater. However, in some cases similar functions and structures

provide de�nitive evidence of common descent in the absenceof high sequence identity, e.g.
many globins form a family although some members have sequence identities of less than 15%.

� Superfamily
Members of a superfamily have probably a common evolutionary origin. Superfamilies contain

proteins that have low pairwise sequence identities, but whose structural and functional fea-
tures suggest that a common evolutionary origin and common function is probable. Examples

for members that form a superfamily are actin, the ATPase domain of heat shock proteins,
and hexakinase.

� Fold
Proteins are de�ned as having a common fold if they have the same major secondary struc-

tures (alpha helices and beta sheets) in the same arrangement and with the same topological
connections. Proteins placed together in the same fold category may not have a common

evolutionary origin or function.

4.5.1 Employed data set and evaluation scenarios

To minimize the in
uence of redundancies, which are abundant in the SCOPdatabase, on the results

of our experiments we used the non-redundantPDB90 subset2 of SCOP(Rel. 1.53). This subset
consists of a total of 4,861 amino acid sequences classi�ed into 1,358 families and 853 superfamilies.

We performed three experiments with di�erent evaluation scenarios to test our method's ability to

detect (1) very close relationships, (2) close relationships, and (3) distant relationships. In these
experiments we separated theSCOPsequences into di�erent training- and test-sets. Table 4.1and

2Subset of SCOP/PDB sequences with pairwise homology of less or equal 90 percent.
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(A)
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Figure 4.4: Construction of trainings- and test-sets for (A) very close relationships (family half one

model scenario), (B) close relationships (family halves one model scenario), and (C)
distant relationships (distant family one model scenario).
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Figure 4.4 give more details on the construction process of training- and test-sets in the di�erent
evaluation scenarios. Since some superfamilies inSCOPcontain only one family and some families

consist only of very few member sequences, we employed the following constraints when selecting
superfamilies and families for evaluation. Only superfamilies are selected that are comprised of at

least two families. From these superfamilies, families were chosen to be test families, if both the
family itself and the remainder of the superfamily contained at least 5 sequences each. Concrete

numbers of resulting trainings/test sets in the di�erent ev aluation scenarios are given in the captions

of the result �gures shown in section 4.5.3 on the facing page. Note that training sequences are always
ignored in the evaluation.

4.5.2 Model construction and scoring

From each training set we constructed a PSSM family model foruse with PoSSuMsearchand

a pro�le hidden Markov model for hmmsearch respectively. With these models, we subsequently
search the sequences in the corresponding test set. Both model types are derived from a multiple

alignment, which we compute from each training set usingCLUSTALW [HTG + 94] with default
parameters. For deviation of calibrated pro�le hidden Markov models, we applied the programs

hmmbuild and hmmcalibrate from the HMMER package. To construct PSSM family models, we
�rst excised all ungapped blocks of length 6-12 from the multiple alignments retaining their order

and deviated from the blocks PSSMs based on simple log-odds ratios according to Equation (2.7) in
section 2.5.4 on page 28. For this, we estimated residue probabilities of observing a certain residue

in a column of the alignment block from relative frequencies.

To score potential matches to a PSSM family model derived from a training set, we usePoSSuM-

search operating in pssmsearchmode. More precisely, letM be a PSSM family model of some
training set and let DB denote the set of all sequences inPDB90, then we compute csc�

M ;S =

csc(C�
M ;S ) for each S 2 DB .

For the computation of high-scoring chains in our experiments, we de�ne the fragment score for a
match h = ( l; i; j ) of PSSM M l ; l 2 [1; L ], of length m l = j � i + 1 in a sequenceS of length n as

fsc(h) =
� ln(1 � (1 � � (h))n � m l +1 )

ln(n)
: (4.7)

Here � (h) denotes the probability for the event that PSSM M l matches a random sequence of length
ml with at least scoresc(S[i::j ]; M l ) by chance. Observe that� (h) can e�ciently be determined in

an exact manner with algorithm LazyDistrib described in section 3.8.5 on page 81. Thus, (1� � (h))
is the probability for the complementary event, that M l does not match such a random sequence,

and (1� � (h))n � m l +1 is the probability that there is no match in n � m l +1 sequences of lengthml ,
corresponding to the number of possible di�erent matching positions ofM l in a sequence of lengthn.

Conversely, 1� (1� � (h))n � m l +1 is the probability for the event, that there is at least one in n� m l +1

random sequences of lengthml that matches M l with a score of at leastsc(S[i::j ]; M l ). Since the
fragment chaining algorithm computes chain scores by adding fragment scores (see Equation (4.2)),

we take the logarithm to archive multiplication of probabil ities 1� (1� � (h))n � m l +1 . These strongly
depend on the sequence lengthn, therefore we divide them by ln(n) for compensation.
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With fragment scores based on exact p-values according to Equation (4.7), we de�ne the chain score
of some chainCM ;S = h1; h2; : : : ; hk of length k as

csc(C) =
kX

i =1

fsc(hi ): (4.8)

Models constructed from training sets as described in section 4.5.1 on page 114 and Figure 4.4
on page 115, served as input for database searches withhmmsearch running in domain mode and

PoSSuMsearch. For each model, we searched with both programs in thePDB90 for sequences of the

test-set corresponding to the used model. In these searchesthresholds were set in a very relaxed way
that resulted in reporting all sequences, irrespective of their score. More precisely, forhmmsearch

we chose an E-value cuto� of 10 and forPoSSuMsearchwe chose a single PSSM p-value cuto� of
0.1. Matches to a model were sorted in descending order of their achieved method speci�c score.

As method speci�c scores we use forPoSSuMsearchgiven a family model M the best chain score
csc�

M ;S for a certain sequenceS, computed according to Equation (4.8) and (4.7) respectively.

Matches reported by hmmsearch were ranked by sequence classi�cation score, the default result
ranking score ofhmmsearch. The sequence classi�cation score, also calledoverall model score, is a

log-odds score de�ned as

schmm = log 2

�
P [Sj� ]

P [Sjnull ]

�
: (4.9)

Here P [Sj� ] denotes the production probability that sequence S is generated by model� and

P [Sjnull ] is the probability that S is generated by the null or background model expressing the

probability of seeing S just by chance.

Finally, we obtain for each training set and model type (pHMM as well as PSSM family model) a list
of matching sequences sorted in descending order of the method speci�c score and thus descending

match quality. These lists of results are the foundation for the subsequent evaluation.

4.5.3 Performance evaluation and results

Assessment of sensitivity and speci�city

To assess the sensitivity and speci�city of our PSSM family model approach and to compare the
classi�cation accuracy with hmmsearch we process the lists of results computed by each method

for each model top down, counting true- and false positive matches. This is feasible, since (true)
family- and superfamily memberships are known from theSCOPclassi�cation. To provide an overall

assessment of the methods' performances, we determined thepercentage true positive value in
all test sets (also called thecoverage) for di�erent counts of false positives and plotted the false

positive counts versus the average percent coverage for thethree di�erent evaluation scenarios (see
Figures 4.5, 4.6, and 4.7). This is a widely used method to measure the sensitivity and speci�city of

database search methods [ADRF04]. The resulting graphs (see Figures 4.5, 4.6, 4.7) describe how

many percent true positives (y-axis) a method detects, if a certain number of false positives (x-axis)
is accepted. In particular the percentage true positive value for 50 accepted false positives (FP50

value for short) is a commonly used value to characterize a database search method's performance
in terms of sensitivity and speci�city.
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Figure 4.5: Experiment 1: Very close relationships (familyhalf one model evaluation scenario). Clas-

si�cation performance of PoSSuMsearchand hmmsearchwhen detecting very closely re-
lated sequences. We used 258 models built from training setsrepresenting 258 di�erent

protein families. The number of false positives is given on the x-axis, the y-axis gives
the average percentage true positives. For details on training- and test-set generation

see corresponding text.

In our experiments PoSSuMsearchreached an FP50 value of 88.6% when applied to very closely
related proteins (Experiment 1, see Figure 4.5), 79.8% for closely related sequences (Experiment

2, see Figure 4.6), and 45.3% for distantly related sequences (Experiment 3, see Figure 4.7). For
hmmsearchwe achieved FP50 values reaching from 91.8% (very close relationships, see Figure 4.5

over 84.2% (close relationships, see Figure 4.6) down to 46.9% (distant relationships, see Figure
4.7). For a summary of detection rates for di�erent numbers of allowed false positives see Table 4.2.

Running time and scalability

In a fourth experiment, we measured the running times and scaling behavior of PoSSuMsearchusing
PSSM family models and compared them to the hidden Markov model basedhmmsearchprogram.

To analyze the fraction of the total running time spent for chaining of PSSM matches, we also
measured the running time ofPoSSuMsearchwithout chaining for the same experimental setup.
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Figure 4.6: Experiment 2: Close relationships (family halves one model evaluation scenario). Clas-

si�cation performance of PoSSuMsearchand hmmsearchwhen detecting closely related

sequences. We used 179 models made from the trainings sets inthis experiment. For
details on training- and test-set generation see corresponding text.

Evaluation scenario PoSSuMsearch using PSSM family models hmmsearch

FP0 FP25 FP50 FP0 FP25 FP50

Very close relationships 81.8% 86.9% 88.6% 87.3% 91.0% 91.8%

Close relationships 71.1% 78.6% 79.8% 77.7% 82.9% 84.2%

Distant relationships 35.0% 41.7% 45.3% 36.1% 43.9% 46.9%

Table 4.2: Average true positive detection rates ofPoSSuMsearchusing PSSM family models and
hmmsearchfor di�erent numbers of allowed false positives (FP).
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Figure 4.7: Experiment 3: Distant relationships (distant family one evaluation scenario). Classi�-

cation performance ofPoSSuMsearchand hmmsearchwhen detecting distantly related
sequences. We used 320 models in this experiment. For details on training- and test-set

generation see corresponding text.
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Figure 4.8: Experiment 4: Running times in seconds and scaling behavior of PoSSuMsearchop-

erating in ESAsearch (top), LAsearch mode (center) and hmmsearch (bottom) when
searching with 100 PSSM family models and pro�le hidden Markov models respectively,

representing the �rst 100 protein families in PFAM on subsets ofSwiss-Protof di�erent
sizes.
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For our experiment, we constructed PSSM family models for the �rst 100 protein families listed
in Pfam (Rel. 21.0) [FMSB+ 06]. We excised alignment blocks of length 5-8 from thePfam-seed

alignments of these families and deviated PSSMs as described in section 4.5.2. This resulted in
100 PSSM family models consisting of 2,038 single PSSMs withan average length of 7:8. Along

with the construction of PSSM family models we generated from the same seed alignments 100
pHMMs using hmmbuild. That is, we obtained 100 PSSM family models and pHMMs describing

the �rst 100 Pfam protein families. We applied these models toPoSSuMsearchand hmmsearch

respectively and measured the running time needed for searching on subsets of di�erent sizes of
the Swiss-Protdatabase (UniProtKB/Swiss-ProtRel. 49.2) containing 212,425 amino acid sequences

with a total sequence length of 78MB. Forhmmsearchwe used a moderately chosen E-value cuto�
of 10� 5. Reconsider, that the running time of PoSSuMsearchdepends on the stringency of the used

cuto�, in particular when using algorithms ESAsearch or LAsearch. Hence for a fair comparison
of running times of both methods, the cuto� for PoSSuMsearchhas to be adjusted appropriately.

Regrettably, E-values or p-values of di�erent database search methods are in the majority of cases
not comparable. In case ofPoSSuMsearchwith fragment chaining, this remains even more di�cult

due to the lack of accurate statistics for high-scoring PSSMchains3. However, manual inspection of
results obtained for di�erent levels of stringency revealed that for the majority of tested families a

single PSSM p-value cuto� of � = 10 � 4 underestimates the level of stringency ofhmmsearchusing

an E-value cuto� of 10 � 5. That is, PoSSuMsearchoperates less stringent thanhmmsearch and is
not favored in terms of running time by operating on a higher level of stringency. Hence, we chose

for our benchmark experiments a p-value cuto� of � = 10 � 4 for searching with PSSM family models
using PoSSuMsearch.

Measurements were performed on a 8 CPU Sun UltraSparc III computer with a CPU clock speed

of 900MHz and 64GB main memory (using only one CPU and a small fraction of the memory). We
measured the running times forhmmsearch and PoSSuMsearchoperating in ESAsearch mode as

well as in LAsearch mode (see Figure 4.8). BothPoSSuMsearchvariants employ the fast chaining

algorithm of [AO05] on the obtained PSSM matches to compute for each PSSM family model high-
scoring chains. In this experimentPoSSuMsearchperformed very well. Running times were in the

range between 73 seconds for a 1MB subset ofSwiss-Protup to 2:2� 103 seconds for the whole 78MB
when employing PoSSuMsearchoperating in ESAsearch mode and between 73:1 seconds (1MB)

and 1:59� 104 seconds (78MB) when usingLAsearch. To accomplish the same task withhmmsearch
utilizing 100 pHMMs built from the same seed alignments it took between 4:89� 103 seconds (1MB)

and 3:82�105 seconds (78MB) (see Figure 4.8). That is,PoSSuMsearchapplying ESAsearchachieved
speedup factors between 67 and 171 overhmmsearchand between 2:9 and 7:2 over PoSSuMsearch

operating in LAsearch mode.

In our experiment hmmsearch shows a running time linear in the size of the searched sequence

space (see Figure 4.8). This is an expected behavior inducedby the applied Forward algorithm
(see Equation (2.40)). By contrast, PoSSuMsearchoperating in ESAsearch mode and employing

chaining on the obtained PSSM matches shows clearly sublinear running time. We further found,
that the overall running time is dominated by the time that al gorithm ESAsearch needs to �nd

matches for the PSSMs belonging to a family model. For example from the 2,178 seconds needed

3We will address the problem of score statistics of high-scor ing PSSM chains in section 4.5.4 on the next page.
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Figure 4.9: Histograms of csc�
F ;S on 106 random sequences of constant lengthsn 2

f 182; 365; 730; 1460; 2920; 5840g . The used collection of PSSM family modelsF con-

tains 5,732 family models taken fromBLOCKSRel. 14.1.

by PoSSuMsearchto apply the 100 PSSM family models to the wholeSwiss-Protonly 325 seconds
(14.9%) were spent on chaining of PSSM matches.

4.5.4 The signi�cance of PSSM chain scores

Although chain scores computed according to Equation (4.8)and (4.7) abstract from the underlying
PSSM raw scores by using p-values and give a good rankable score, it is preferable to have a p-value

or E-value as a measure of signi�cance for a chain of PSSM matches. Such a p-value corresponding

to a chain scorecsc(CM ;S ) should express the probability of obtaining a match to the PSSM family
model M of at least scorecsc(CM ;S ) in a random sequence. This would allow more meaningful user

speci�ed p-value or E-value cuto�s instead of raw chain score cuto�s.

To de�ne a meaningful p-value and hence to assess the signi�cance of PSSM chain scores, we have
to compute or at least approximate properly the chain score distribution. In literature very little is

known about approximations of combined score distributions like our chain scores. In [BG98b] and
[BG98a] the authors propose an intuitive method, implemented in the search toolMAST (Motif

Alignment and Search Tool), for combining sources of evidence (matches of multiple motifs char-
acterizing a sequence family) that yields a p-value for the complete evidence (membership of a

sequence to this family). They use the product of p-values ofsingle motif matches to derive a com-

bined p-value. This is basically similar to our de�nition of chain scores according to Equation (4.8)
and (4.7) except that we take the sequence lengthn into account and add logarithms of probabilities

instead of multiplying probabilities. However, in contrast to our PSSM family models, the method
of [BG98b] does not take the order of match occurrences into account and it reveals unclear how this
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additional constraint in
uences the distribution of chain scores and the accuracy of the combined
p-values4.

To get an idea of the shape of this distribution, we sampled scores of high scoring chains on a

large data set of random data. In this experiment, we used thechain score function as de�ned in
Equation (4.8) and (4.7). To analyze potential dependencies of the chain score on the length of the

matched sequence, we generated sets of 106 random sequences each, for di�erent sequence lengths.
As lengths we chose multiples of the average sequence lengthin Swiss-Protdetermined asnavg = 365,

namely 182, 365, 730, 1460, 2920, and 5840, resembling the length spectrum of proteins. In these

random data sets we retained the relative amino acid frequencies of Swiss-Prot. We searched with
5,732 PSSM family models (jFj = 5 ; 732) taken from the BLOCKSdatabase (Rel. 14.1) consisting

of 28,333 single PSSMs with an average length of 26:3 on our data sets of random sequences using
PoSSuMsearchoperating in seqclassmode for k = 1 and a relaxed p-value cuto� for a single PSSM

match of 10� 2. That is, we computed the chain score of a match to a PSSM family model and
tabulated for each of our random sequencesS scorecsc�

F ;S , the score of the highest scoring chain

of all family models. For these scores we calculated the distribution. See Figure 4.9 for the results
of our sampling experiments. Although we already tried to compensate for dependencies of chain

scores on the lengthn of the matched sequence by division by ln(n) (see Equation (4.7)), such an

dependency still exists. This is in particular apparent in the histogram shown in Figure 4.10. For
this Figure we sampled chain scorescsc�

M ;S for two PSSM family models describing twoTIGRFAM

protein families and containing a di�erent number of PSSMs of length 6 to 10 on two sets of 106

random sequences of length 184 and 1472 respectively . We notice that the distribution of high

chain scores depends on the sequence length and it is much more likely to achieve a high chain score
in a longer sequence than in a shorter one. Also the number of PSSMs in a family model seems to

in
uence the chain score, such that models consisting of a higher number of single PSSMs incline to
achieve higher chain scores. For an example see the blue and red histogram in Figure 4.10. A more

detailed analysis of the distribution of high PSSM chain scores (see Figure 4.11) revealed a further

interesting aspect. As indicated by the X-Y plots in Figure 4.11, distributions of high PSSM chain
scores derived from a single PSSM family model can be approximated quite well with an extreme

value distribution. This may lead in the future, if an acceptable length normalization of chain scores
can be found, to an approximation of the chain score distribution on a per model basis and in turn

to reliable statistics with p-values and E-values corresponding to chain scores.

4.6 Accelerating HMM based database searches with PSSM

family models

Pro�le hidden Markov models (pHMMs) are currently the most p opular modeling concept for pro-
tein families. They provide very sensitive family descriptors, and sequence database searching with

models from major pHMM collections has become a standard task in today's sequence analyses and
genome annotation pipelines. On the downside, database searching for pHMMs with programs like

hmmsearch or hmmpfam is computationally expensive. The application of the programs to com-

4 Interestingly, incorporation of match order is mentioned a s a promising constraint to increase speci�city in the
outlook of [BG98b].
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Figure 4.11: Cumulative chain score distributions, X-Y plots, and normal probability plots of PSSM
family models for two TIGRFAMfamilies (TIGR00001 and TIGR00004) for two di�erent

sequence lengths 184 and 1472. Color assignments are the same as in Figure 4.10.
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4.6 Accelerating HMM based database searches with PSSM family models

plete proteomes, or even whole protein databases likeSwiss-Protor UniProtKB/TrEMBL , demands
massive amounts of compute resources or highly specializedhardware [Tim06].

We propose a new method to speed uphmmsearch. Our approach employs the simpler PSSM family

models and fast PSSM matching using algorithmESAsearchto �lter the search space for subsequent
database searches with pHMMs corresponding to this families.

4.6.1 Model speci�c trusted- and noise cuto�s

Accompanied to the traditional user de�ned E-value cuto�s t o control the signi�cance level of a
database search, major protein family databases use additional cuto�s to judge between true positive

and false positive matches. For instance pHMMs of protein families from the Pfam or TIGRFAM
databases contain additional trusted- and noise-cuto�s . These cuto�s, set with expert knowledge

of the modeled family by the database curators, are used by programs from the HMMER package

as cuto� values for the sequence classi�cation score(see Equation (4.9)) for searches on a de�ned
signi�cance level. The trusted cuto� is the lowest score for sequences included in the protein family

described by the model. Hence, it is assumed as a lower score boundary for true members of the
family and is therefore often used in automatic annotation pipelines of genome annotation systems.

Contrary, the noise cuto� is the highest score known so far of a sequence not belonging to the
family. For this reason it can be seen as an upper score boundary for sequences assumed not to

belonging to the family. This cuto� is often used for manual searches with increased sensitivity.
The range between both cuto�s marks a gray zone in which the obtained matches require manual

inspection. Using prede�ned trusted- or noise cuto�s recorded in the model entries, searches with

di�erent levels of stringency and in contrast to E-value cuto�s independent from the size of the
searched sequence space can be performed.

In the following, we demonstrate that even in the absence of accurate statistics and signi�cance

values for PSSM chain scores, we can maptrusted and noise cuto�s to single PoSSuMsearchPSSM
p-value cuto�s, allowing PoSSuMsearchand hmmsearch to operate on a similar level of sensitiv-

ity. This permits to use PoSSuMsearchas a pre-�lter for search space reduction for the compute
intensive hidden Markov model basedhmmsearch. The intention behind this �ltering and search

space reduction approach with PSSM family models is an expected reduction of overall running
time of the combined approach consisting ofPoSSuMsearchand subsequenthmmsearchover direct

hmmsearch. To achieve this, we propose the subsequently described procedure.

4.6.2 PSfamSearch: Search space reduction with PSSM family models

We start by searching with a pHMM representing a protein family in a large protein database like

Swiss-Protusing hmmsearchwith the model's trusted cuto�s and tabulate all matching sequences.
From the seed alignment of the employed pHMM we construct a PSSM family model as described in

section 4.5.2 and use this family model to iteratively search Swiss-Protusing PoSSuMsearch. In each

iteration we relax the p-value cuto� until we �nd all sequenc es also detected byhmmsearchusing the
models trusted cuto� (TC) and noise cuto� (NC) respectively. With this procedure we determine

p-value cuto�s denoted by � T C and � NC corresponding to the pHMMs trusted cuto� and noise
cuto� in terms of sensitivity. That is, we operate with PoSSuMsearchand our calibrated PSSM
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Figure 4.12: Search space reduction through PSSM family model pre-�ltering. We measured the
number of sequences passing pre-�ltering of the search space with PoSSuMsearchusing

PSSM family models (x-axis, logscale). p-value cuto�s are adjusted to �nd at least the

same matches ashmmsearch using trusted- and noise cuto�s for the �rst 20 protein
families of the TIGRFAM database (Rel. 6.0). The red bar shows the total number of

sequences in the usedSwiss-Protrelease 51.7 (259,034 protein sequences with a total
length of � 122MB) needed to be searched by directhmmsearchwithout �ltering.

family model on the same level of sensitivity ashmmsearchemploying the pHMM, but with possibly

reduced speci�city. Observe that the set of matching sequences detected byPoSSuMsearchusing

cuto� � T C or � NC may be a super-set of the set of sequences detected byhmmsearchemploying the
pHMMs trusted- and noise cuto� . However, since we are interested in using PSSM family models

searched with PoSSuMsearchas a pre-�lter for search space reduction forhmmsearch, sensitivity
is more important than speci�city. Once � T C and � NC are computed on a large protein database

like Swiss-Prot, they can be stored together with the PSSM family model on �le for reuse. That
is, for further searches with hmmsearch using the model's trusted- or noise cuto� we can use

PoSSuMsearchusing cuto� � T C or � NC as a �lter and apply the compute intensive hmmsearch
only on sequences that contain matching chains to the PSSM family model. Sequences that contain

no matching chains are thus �ltered out. Since sequences containing matching chains constitute

only a small fraction of all sequences to be searched and since PoSSuMsearchis much faster than
hmmsearch, we expect a reduced overall running time.

From now on we use the termPSfamSearchto denote the combined approach consisting ofPoS-

SuMsearch using PSSM family models for pre-�ltering and subsequent application of hmmsearch
on the �ltered sequence set.
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Figure 4.13: Running time reduction by PSSM family model based pre-�ltering. We measured the

total running time in minutes needed to search with models representing the �rst 20
protein families in TIGRFAM, in the complete Swiss-Protdatabase (Rel. 51.7) for direct

hmmsearch (red bars) and the family model �ltering approach with PoSSuMsearch
(yellow and green bars) for the two di�erent signi�cance levels given by trusted- and

noise cuto�s.

4.6.3 Evaluation and computational results

We tested PSfamSearchwith the �rst 20 out of 2,946 pHMMs of the TIGRFAM database (Rel. 6.0)
on the completeSwiss-Protdatabase (Rel. 51.7,� 122MB protein sequence data). We determined

PoSSuMsearchp-value cuto�s corresponding to hmmsearch trusted cuto�s as well asnoise cuto�s
with the iterative procedure described above. We measured the search space reduction (see Figure

4.12) and the total running times needed byPSfamSearchand compared them with hmmsearch
operating on the un�ltered data set (see Figure 4.13). Running times for the �ltered approach are

total running times including times needed for search spacereduction with PoSSuMsearchand

subsequent application ofhmmsearchon the �ltered �ltered sequence space. In these experiments
PSSM family model based �ltering reduces the search space and hence the overall running time dra-

matically. For example, for TIGRFAM family YbaK EbsC (TIGRFAM Accession: TIGR00011) only
5 sequences remain after the �ltering step and are handed over to hmmsearchto score them instead

of all 259; 034 Swiss-Protsequences without �ltering. Filtering with p-value cuto�s corresponding
to the less stringent noise cuto�s revealed in the worst case (familyril35, TIGRFAM Accession:

TIGR00001) even still a search space reduction of� 50%.

The overall running time needed for searching is reduced from 1; 400:2 minutes required by standard

hmmsearchto only 10:1 minutes for PSfamSearchwhen using trusted cuto�s . This is a speedup of
factor 138. Usingnoise cuto�s the achieved speedup factor is still� 45.

We explicitly note, that we obtain with PSfamSearchand direct hmmsearch operating on the full

sequence set, exactly the same results. Hence,PoSSuMsearchworks in this scenario as a perfect,
lossless �lter. This is not too surprising, since thresholds were trained/adjusted on the same set of
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sequences that was searched afterwards employing these thresholds. This raises the question, how
well the calibrated p-value cuto�s generalize to sequencesnot included in the training set used for

threshold determination.

4.6.4 Cuto� calibration strategies

The determination of a proper family speci�c p-value cuto� i s crucial for the sensitivity as well as

speedup ofPSfamSearch. A too stringent cuto� results in too radical search space reduction which
in turn has the e�ect, that PSfamSearchmisses to many matches. Contrary, a too relaxed cuto�

a�ects the obtained speedup factor negatively due to insu�c ient reduction of the search space. In
the following we investigate and evaluate three di�erent strategies for cuto� calibration. Namely,

� cuto� calibration based on family seeds,

� cuto� calibration based on hmmsearchmatches obtained on a smaller sample set (Swiss-Prot),

� cuto� calibration based on UniProtKB/TrEMBL results with training- and test-set separation.

Cuto� calibration based on family seeds

To employ family seeds for the calibration of p-value cuto�s, we derived PSSM family models from
the families' seed alignments and adjusted the p-value cuto�s for PoSSuMsearchso that all members

of the seed alignment of a protein family were found by the model. Subsequently, we used these
calibrated cuto�s on the UniProtKB/TrEMBL database (Rel. 35.0) containing 3,874,166 protein

sequences comprising 1,260,291,226 amino acids withPSfamSearch and compared the achieved
results with direct hmmsearch using the models trusted cuto�s . Detailed results for the �rst 20

TIGRFAM protein families are given in Table 4.3. In this experiment, direct hmmsearch returned

for all 20 families a total of 7; 588 matches scoring above thetrusted cuto� . Using PSfamSearchwe
obtained 7; 005 matches also detected by directhmmsearch and missed 583. Although on average

overall testedTIGRFAMfamilies, PSfamSearchusing p-value cuto�s trained on family seeds returned
88:86% of all direct hmmsearch results, for some diverse families the determined cuto�s were too

stringent. An example for such a family is cop-IBP. For this family PSfamSearchmissed with the
determined cuto� of 0 :00021 more than 96% (207 of 214) of the sequences detected byhmmsearch.

The same problem arose for familytaut for which more than 47% (80 of 168) of thehmmsearch
matches were missed. We identi�ed for this behavior the following two main reasons:

� Some protein families are too diverse to be represented properly by a single seed alignment.
These families are de�ned by trusted cuto�s much lower than the scores obtained for the

seed sequences. Hence, the sequences included in the seed alignment are not a representative
sample for the family and thus inappropriate for cuto� calib ration.

� Some seed alignments sometimes simply does not contain enough sequences for a proper
representation of the family. Such an example is familycop-IBP for which the seed alignment

contains 4 sequences only.

We conclude that family seeds are not well suited for p-valuecuto� calibration.
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riL35 242 51,842 1.33815 241 99.59 1 0.41 2.65E-004 24

ribS16 328 310 0.00800 310 94.51 18 5.49 2.44E-006 20

cop-IBP 214 8 0.00021 7 3.27 207 96.73 1.25E-006 4

I-PSP 517 520 0.01342 470 90.91 47 9.09 1.25E-006 19

RluA subfam 1,038 1748 0.04512 1033 99.52 5 0.48 3.81E-006 16

mraW 349 343 0.00885 337 96.56 12 3.44 1.00E-007 8

Tigr0007 223 287 0.00741 223 100 0 0 1.25E-006 23

infA 327 380 0.00981 298 91.13 29 8.87 1.82E-005 13

ribL28 372 16,278 0.42017 355 95.43 17 4.57 1.69E-004 22

TatD 563 856 0.02210 558 99.11 5 0.89 1.95E-006 18

Ybak EbsC 255 297 0.00767 249 97.65 6 2.35 3.05E-006 17

ribL29 487 28,883 0.74553 451 92.61 36 7.39 1.69E-004 27

taut 168 88 0.00227 88 52.38 80 47.62 3.81E-006 6

arsC 302 233 0.00601 231 76.49 71 23.51 1.00E-007 6

ackA 438 438 0.01131 415 94.75 23 5.25 1.00E-008 8

cmk 344 362 0.00934 342 99.42 2 0.58 1.25E-006 8

panC 358 374 0.00965 344 96.09 14 3.91 1.00E-008 5

prfA 244 609 0.01572 244 100 0 0 1.00E-008 11

prfB 472 697 0.01799 469 99.36 3 0.64 1.00E-008 6

rpiA 347 348 0.00898 340 97.98 7 2.02 1.25E-006 23

Avg: 379.4 5,245.05 0.14 350.25 88.86 29.15 11.16 3.38E-005 14.2

Table 4.3: Results ofPoSSuMsearchcuto� calibration based on seed alignment members for �rst 20 TIGRFAM models. Detection rates measured
on UniProtKB/TrEMBL .
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Cuto� calibration based on Swiss-Prot matches

As a second strategy for cuto� calibration, we analyzed the usability of cuto�s determined from a
relatively large training set. Therefore, we determinedPoSSuMsearchp-value cuto�s corresponding

to hmmsearch trusted cuto�s on the Swiss-Protdatabase for the �rst 20 protein families listed

in TIGRFAM. With these cuto�s we searched in the completeUniProtKB/TrEMBL database (Rel.
35.0) and compared the results ofPSfamSearchwith direct hmmsearchusing trusted cuto�s . Direct

hmmsearch returned for all 20 families a total of 7; 588 matches scoring above thetrusted cuto� .
Using PSfamSearchwe obtained 7; 487 matches also detected by directhmmsearch. That is, our

�ltering approach returned 98 :67% of the results detected by directhmmsearch, but in a fraction
of running time. See Table 4.4 for the detailed results.

The fact that PSfamSearchmissed a few matches (2:13%) is caused by the incomplete representation

of some of the families inSwiss-Prot, making it impossible to derive a meaningful cuto� for the
whole family based onSwiss-Protsequences only. This is in particular true for family cop-IBP. For

this family PSfamSearch missed 51 out of 214 (23:83%) hmmsearch matches with the employed

p-value cuto�. We further note, that the majority of matches missed byPSfamSearchachieved an
hmmsearch sequence classi�cation scorenear the trusted cuto� boundaries. That is, caused by the

incomplete representation of some families inSwiss-Prot, p-value cuto�s for PoSSuMsearchwere
chosen too stringently. Another disadvantage of usinghmmsearch matches for a pHMM obtained

on Swiss-Protfor cuto� calibration is, that it reveals still unclear how w ell the determined cuto�
can be generalized for new family members not contained inSwiss-Prot. It may be the case, that

the complete family consists ofSwiss-Protsequences and the cuto� is then adjusted to �nd exactly
these sequences.

Overall it seems more appropriate to adjustPoSSuMsearchcuto� values on a more complete set,

probably UniProtKB/TrEMBL itself, or even more ideally on the set of all true family members

known so far and to demonstrate the generalization abilities of determined cuto�s with clearly
separated training- and test-sets.

Cuto� calibration based on UniProtKB/TrEMBL results with t raining- and test-set separation

As a third strategy for model parameter determination, we built PSSM family models from the

families' seed alignments for the �rst 20 families listed inTIGRFAMand calibrated the p-value cuto�s
and minimal chain lengths to match all sequences of a training set containing half of the sequences

returned by direct hmmsearch on UniProtKB/TrEMBL using the pro�le hidden Markov models'
trusted cuto�s. That is, we adjusted sensitivity according to the sensitivity level of hmmsearch

operating with trusted cuto�s. Employing these models and cuto�s in a database search on complete
UniProtKB/TrEMBL , PSfamSearchreturned more than 99.7% of the original results determinedby

hmmsearch, including their E-values and scores. Only 14 of 7,574 matches (0.23%) were missed.

With p-value cuto�s calibrated to match the sensitivity lev el of hmmsearch using noise cuto�s,
PSfamSearcheven detected 99.8% of thehmmsearchwhile missing only 18 out of 9,137 sequences.

See Figure 4.14 and Tables 4.5 and 4.6 for detailed results ofthis experiment.

It took PSfamSearch only � 146 minutes on one UltraSPARC III CPU running at 900Mhz, to
search with the �rst 20 TIGRFAM families, instead of more than 7 days for directhmmsearchusing
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No.
TIGRFAM
family

#matches
PSfamSearch

#matches
hmmsearch

using TC

#missed missed[%]

1 riL35 241 242 1 0.41

2 ribS16 324 328 4 1.22
3 cop-IBP 163 214 51 23.83

4 I-PSP 510 517 7 1.35
5 RluA subfam 1,035 1,038 3 0.29

6 mraW 349 349 0 0
7 TIGR00007 223 223 0 0

8 infA 321 327 6 1.83
9 ribL28 372 372 0 0

10 TatD 563 563 0 0

11 Ybak EbsC 249 255 6 2.35
12 ribL29 485 487 2 0.41

13 taut 152 168 16 9.52
14 arsC 302 302 0 0

15 ackA 438 438 0 0
16 cmk 343 344 1 0.29

17 panC 358 358 0 0
18 prfA 244 244 0 0

19 rpfB 471 472 1 0.21

20 rpiA 344 347 3 0.86

total: 7,487(98.67%) 7,588(100%) 101(1.33%) avg: 2.13

Table 4.4: Comparison of results obtained withPSfamSearchand direct hmmsearch when search-

ing with �rst 20 TIGRFAM models onUniProtKB/TrEMBL . Cuto�s for PSfamSearchwere
calibrated based onhmmsearchmatches onSwiss-Protusing the modelstrusted cuto�s .

Columns �ve and six give the total number and percentage of matches missed byPS-
famSearch. In this experiment PSfamSearchdetected 98:67% of the matches detected by

hmmsearch.
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Figure 4.14: Reduction ofUniProtKB/TrEMBL achieved by PSSM family model �ltering for the �rst

20 TIGRFAMs families. Green (yellow) bars indicate the e�ective number of sequences
to be searched withhmmsearch(x-axis, logscale) when using p-value cuto�s adjusted

to match trusted cuto�s (noise cuto�s ). The red bar shows the total number of se-
quences in theUniProtKB/TrEMBL (3,874,166 protein sequences with a total length of

� 1:26GB) needed to be searched by directhmmsearchwithout �ltering.

the models trusted cuto�s . That is, PSfamSearch achieves a speedup of factor� 72 over direct
hmmsearch while retaining more than 99:7% of the original results. Using the less stringentnoise

cuto�s PSfamSearch reduces the search space to only 5:24% of the original search space size with a
sensitivity of 99:7% (see Table 4.6) and a speedup of factor of 15:2 over direct hmmsearch. Extrap-

olated to all 2,946 TIGRFAM families we estimate a running time of� 14:9 days for PSfamSearch,
and 3:02 years for directhmmsearchusing the modelstrusted cuto�s .

Overall, we observe, that cuto� calibration on a test set determined from search results of the
pHMM on UniProtKB/TrEMBL outperforms the former mentioned calibration strategies and leads

to cuto�s with very well generalization characteristics. A ccordingly this strategy is well suited for
determination of cuto�s with good sensitivity and search space reduction characteristics.

134



4.6
A

ccelerating
H

M
M

based
database

searches
w

ith
P

S
S

M
fam

i
ly

m
o

dels

TIGR family
#seqs in
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P-value

cuto�

min. chain

length
#found #missed found[%] missed[%]

riL35 21,878 0.56 4.44E-05 2 239 3 98.76 1.24

ribS16 164,203 4.24 1.46E-05 2 328 0 100.00 0.00
cop-IBP 108,907 2.81 1.08E-04 2 213 1 99.53 0.47

I-PSP 710 0.02 1.82E-05 4 514 3 99.42 0.58
RluA subfam 2,303 0.06 1.82E-05 4 1,038 0 100.00 0.00

mraW 358 0.01 2.44E-06 4 348 1 99.71 0.29

TIGR00007 299 0.01 5.96E-06 4 223 0 100.00 0.00
infA 24,280 0.63 1.69E-04 3 326 1 99.69 0.31

ribL28 227,473 5.87 1.01E-03 3 371 1 99.73 0.27
TatD 907 0.02 7.45E-06 4 561 2 99.64 0.36

Ybak EbsC 330 0.01 1.16E-05 3 255 0 100.00 0.00
ribL29 313,713 8.1 2.27E-05 1 487 0 100.00 0.00

taut 163,417 4.22 1.46E-05 1 167 1 99.40 0.60
arsC 382 0.01 1.00E-06 2 302 0 100.00 0.00

ackA 470 0.01 1.00E-06 4 438 0 100.00 0.00

cmk 373 0.01 7.45E-06 4 343 1 99.70 0.30
panC 396 0.01 2.44E-06 6 358 0 100.00 0.00

prfA 485 0.01 1.00E-07 6 244 0 100.00 0.00
rpfB 603 0.02 1.00E-06 7 472 0 100.00 0.00

rpiA 1,629 0.04 3.55E-05 4 347 0 100.00 0.00

Average: 51,655.8 1.33 7.48E-005 3.55 99.78 0.22

Table 4.5: Results of p-value cuto� calibration based onhmmsearchmatches obtained onUniProtKB/TrEMBL using trusted cuto�s . Cuto�s were
calibrated such that half of the sequences (training set) pass PoSSuMsearch�ltering. Column 2 and 3 give the absolute number and

percentage of sequences passing the �lter. Numbers of foundand missed family sequences on completeUniProtKB/TrEMBL are given
in column 6 and 7.135
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TIGR family
#seqs in

red. Space
% of total
seq. space

P-value

cuto�

min. chain

length
#found #missed found[%] missed[%]

riL35 488102 12.6 3.31E-004 2 265 2 99.25 0.75

ribS16 348187 8.99 6.46E-004 3 329 0 100 0
cop-IBP 239167 6.17 1.26E-003 4 223 0 100 0

I-PSP 4351 0.11 3.55E-005 3 675 5 99.26 0.74
RluA subfam 19315 0.5 2.84E-005 3 1496 0 100 0

mraW 369 0.01 4.77E-006 4 355 1 99.72 0.28

TIGR00007 299 0.01 5.96E-006 4 270 0 100 0
infA 24280 0.63 5.17E-004 3 329 2 99.4 0.6

ribL28 293362 7.57 1.58E-003 4 375 1 99.73 0.27
TatD 91600 2.36 1.36E-004 4 950 0 100 0

Ybak EbsC 149252 3.85 3.31E-004 4 329 2 99.4 0.6
ribL29 1621658 41.86 1.01E-003 2 507 0 100 0

taut 507491 13.1 5.55E-005 1 334 1 99.7 0.3
arsC 34857 0.9 2.84E-005 2 327 1 99.7 0.3

ackA 470 0.01 1.00E-006 4 465 0 100 0

cmk 107685 2.78 8.67E-005 3 366 1 99.73 0.27
panC 73506 1.9 1.82E-005 2 408 0 100 0

prfA 604 0.02 1.00E-007 5 275 0 100 0
rpfB 678 0.02 1.00E-007 4 482 0 100 0

rpiA 56059 1.45 6.94E-005 3 359 2 99.45 0.55

Average: 203,064.6 5.24 3.07E-004 3.2 Total: 9,119 Total: 18 99.77 0.23

Table 4.6: Results of p-value cuto� calibration based onhmmsearch matches obtained onUniProtKB/TrEMBL using noise cuto�s. Cuto�s were
calibrated such that half of the sequences (training set) pass PoSSuMsearch�ltering. Column 2 and 3 give the absolute number and

percentage of sequences passing the �lter. Numbers of foundand missed family sequences on completeUniProtKB/TrEMBL are given
in column 6 and 7.
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4.7 Discussion and concluding remarks on performed experiments

In this chapter we presented the combination of the formerlyintroduced ESAsearchalgorithm with
a fast fragment chaining approach to e�ciently search with P SSM family models in large data

sets. We extended our search toolPoSSuMsearchwith the algorithm of [AO05] and evaluated the
performance of the combined method in terms of sensitivity and speci�city as well as total running

time. In addition, we compared the obtained results to a state of the art pHMM based approach
represented in our experiments by the well knownhmmsearchprogram from the HMMER package.

The experiments assessing the sensitivity and speci�city in di�erent evaluation scenarios show that

for protein classi�cation on the family and superfamily level, PSSM family models achieved a clas-

si�cation performance only marginally inferior to the perf ormance of pHMMs, which yield to be the
most sensitive modeling approach for detecting distant homologies. Although PSSM family mod-

els are much simpler than the full probabilistic pHMMs, the measured FP50 value of PSSM family
models is only 3:2 percentage points below the FP50 value achieved byhmmsearchin the experiment

evaluating the method's ability to detect very close relationships (see Figure 4.5). In the experiments
assessing the detection performance of close and distant relationships the advance ofhmmsearchover

PoSSuMsearchwas even only 4:4 and 1:6 percentage points respectively, when accepting 50 false
positive matches. Hence, PSSM family models perform nearlyas accurate as pHMMs. Additionally,

there are indications that the classi�cation performance of PSSM family models for protein family

assignment can be further improved. Observe, that the PSSM family model construction process
is really straightforward yet and in the performed experiments, simple log-odds ratios are used for

PSSM deviation (see section 2.5.4 on page 28) from excised alignment blocks instead of the more
sophisticated methods incorporating pseudo-counts described in sections 2.5.7 on page 33 and 2.5.8

on page 34. Preliminary results, not shown in this thesis, indicate, that PSSM construction methods
using pseudo-counts increase the classi�cation performance signi�cantly. Another starting point for

further improvements is how ungapped alignment blocks are excised from the underlying multiple
alignment. One can think of using ungapped but overlapping tiles for PSSM deviation instead of non

overlapping blocks. This should give a better coverage of the multiple alignment and may lead to
a PSSM family model representing the sequence family more accurately. Additionally, the distance

between blocks or tiles in the alignment could be incorporated into the chain score function. This

should increase the speci�city of PSSM family models.

Still an open problem is the e�cient determination of accura te statistics for PSSM chain scores
without the need for time consuming sampling. Although chain scores as de�ned by Equation (4.8)

and (4.7) performed well for sequence classi�cation (see Experiments 1 to 3) the score sampling on
random sequences clearly showed a strong dependency on the length of the matched sequence. At

the time of this writing it is not clear, if this problem can be solved by additional normalizations
that �nally may lead to a continuous distribution function f or high chain scores.

The surprisingly well performance of PSSM family models forprotein family classi�cation in terms

of sensitivity and speci�city appears in an even brighter light, when the total running time needed

by PoSSuMsearchand hmmsearchto accomplish the same task is taken into account. For the setup
of experiment 4 (see section 4.5.3 on page 118), it tookPoSSuMsearchless than 40 minutes to

search with 100 PSSM family models built from the �rst 100 Pfam protein families on the complete
Swiss-Protdatabase using a p-value cuto� of � = 10 � 4, whereashmmsearchemploying an E-value
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4 PSSM family models for sequence family classi�cation

cuto� of 10 � 5 needed more than 4 days (� 105 hours) for this task. That is PoSSuMsearchachieved
a speedup of factor 171 overhmmsearch. Observe, that we measured the running time only for the

�rst 100 out of 8957 families listed in the current Pfam release 21.0. By linear extrapolation of the
measured running time to all 8957 families listed inPfam Release 21.0, we assume a running time

for searching with all family models on Swiss-Protfor hmmsearchof � 391 days compared to only
� 54:8 hours for PoSSuMsearch.

In the experiments using PSSM family models for search spacereduction for hmmsearch, the com-

bined approach (PSfamSearch) using PoSSuMsearchfor pre-�ltering and subsequently hmmsearch

also performed very well.

Since the achieved speedups as well as the sensitivity ofPSfamSearchstrongly depend on the cho-
sen p-value cuto�, we tested di�erent strategies for threshold determination. In our experiments,

the achieved speedups ofPSfamSearchwere in the range between 72 and 138 when using p-value
cuto�s corresponding to trusted cuto�s and between 15:2 and 45 for p-values adjusted to match

the signi�cance level of the models'noise cuto�s. The highest speedup factor forPSfamSearchover
hmmsearch of 138 was obtained when searching with models for the �rst 20TIGRFAM families

on Swiss-Protwith p-value cuto�s calibrated according to hmmsearchmatches onSwiss-Protusing

trusted cuto�s (see section 4.6.3 on page 129). With a clear separation of training- and test-sets for
cuto� determination, necessary to derive cuto�s with good generalization characteristics,PSfam-

Search also achieved speedups between 72 and 15:2 with more than 99:7 sensitivity when searching
with models for the �rst 20 TIGRFAM families on completeUniProtKB/TrEMBL (see section 4.6.4

on page 132). Extrapolated to all 2; 946 TIGRFAM models we expect a reduction of running time
from more than � 2:84 years for direct hmmsearch using trusted cuto�s to only � 15 days for

PSfamSearch.

In particular, the extremely long running times and the linear time scaling behavior5 of pHMM based
methods employing theForward, Backward, or Viterbi algorithm (see Figure 4.8) make them more

and more challenging and sometimes even infeasible to dispose in today's sequence database search

scenarios. In the future this problem will get even more tightening as sequence databases still grow
at an exponential rate. Additionally new, revolutionary hi gh-throughput sequencing techniques like

454 sequencing [MEA+ 05] will certainly amplify this growth in the near future. Ne vertheless, pHMM
based database searches are an indispensable, standard task in today's genome annotation pipelines.

For instance the majority of member databases of the InterPro classi�cation system [MAA+ 07], a
widely used system for protein annotation purposes, employfamily information in form of pHMMs.

The applied classi�cation procedure InterProScan [QSP+ 05] includes searches with all pHMMs
from the Pfam [FMSB+ 06], TIGRFAM [HSW03], Superfamily[GKHC01], PIRSF[WNH + 04], Gene3D

[YMM + 06], Smart [LCP+ 06], and Panther [MLUL + 05] databases. Especially these pHMM based
database searches renderInterProScan into a very compute intensive application whose employment

on a large scale is even challenging on huge cluster systems.

To solve this dilemma much e�ort has been spent on improving the running time of pHMM based

database search tools. Some approaches for improvement useparallelism techniques and/or fast,
extended, CPU speci�c instructions sets, like SSE/SSE2 (Streaming Single Instruction/Multiple

Data Extensions) [WQC06, Dep03]. Also discussed is the application of pruning techniques (c.f.

5Linear in the length of the searched sequence.
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[Pl•o05]), like the employment of the Beam-Search algorithm [Low76] instead of the full Viterbi
algorithm. The probably most successful accelerations available, are the commercialDeCypher c


and BioBoost c
 HMMer solutions sold by TimeLogic R
 and progeniq R
 respectively. They im-
plement among other things the programhmmsearchin hardware on special hardware acceleration

boards usingField Programmable Gate Arrays (FPGAs). In benchmark experiments published by
TimeLogic R
 a speedup up to factor 180 for a singleDeCypher c
 accelerator board over stan-

dard hmmsearch is reported [Tim06]. progeniq R
 reports for the BioBoost c
 HMMer board a

speedup of factor 40 over standardhmmsearchrunning on an AMD Athlon 64 3500+ [Pro07]. Con-
sidering, that our experiments revealed forPoSSuMsearchspeedups up to factor 171 over standard

hmmsearch, and for PSfamSearchup to factor 138, we observe that our purely software based accel-
eration of hmmsearchcompares well with what is achieved by costly, specialized hardware solutions

like DeCypher c
 or BioBoost c
 HMMer. We note, that this speedup comes from an algorithmic
as well as a conceptual advancement:

� the speed of index based PSSM searching, and

� the astonishing fact that pHMMs can be approximated well with the simpler PSSM family
models and achieve a similar performance for protein familyclassi�cation as the widely used

more complex pHMMs.

For these reasons, we make up our discussion and concluding remarks with a comparison of PSSM

family models and pHMMs focusing on similarities and di�erences.

4.7.1 Comparison of pHMMs and PSSM family models

Consider that a PSSM is essentially equivalent to a pHMM consisting of a linear sequence ofmatch
states only, with state transition probabilities of 1 between them, as described in section 2.7.2 and

shown in Figure 2.12. That is, eachmatch state corresponds to a column in the multiple alignment
and hence a row in the PSSM. It emits a symbol from the output alphabet with a certain probability

depending on the probability/score distribution in the cor responding PSSM row. This perception
also holds for PSSM family models like the modelM = M 1; M 2; M 3 given in Figure 4.15 consisting

of three PSSMs of lengthsjM 1j = 4, jM 2j = 2, and jM 3j = 3. In contrast to a pHMM where each
match state is connected with an insert state and eachmatch state can be skipped by adelete

state (see Figure 2.11 on page 43), in the PSSM family model arbitrary insertions are only allowed

between single PSSMs, anddeletestates allow only to skip complete PSSMs. That is, PSSM family
models combined with the employed chaining approach allow

� arbitrary insertions between single PSSMs of a family modeland

� arbitrary deletions of complete PSSMs6.

Consequently a PSSM family model is, compared to a pHMM, a similar but more restrictive model-

ing approach for a family of related sequences. In addition,PSSM family models are not necessarily
6This holds at least for our chaining approach and de�nition o f chain scores (see section 4.8 on page 117). However,

one can also think of a local chaining incorporating some kind of gap penalties instead o f the currently used more
global one.
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EndBegin

M1 M2
M3

Figure 4.15: A pHMM like view on PSSM family models. Shown is aPSSM family model M =

M 1; M 2; M 3 consisting of 3 PSSMs. Likewise to the common pHMM graph view, blue
squares denotematch states, insert states are drawn as yellow diamonds anddelete

states are given by red circles. Valid state transitions aredrawn as unlabeled black arcs.
Observe that each path throughM starting in the Begin state and ending in stateEnd

corresponds to a valid chain of PSSM matches and hence a matchto M according to
De�nition 15 on page 107.

fully probabilistic, since they can consist of PSSMs containing arbitrary score values. Also in a
PSSM family model, transitions from/to an insert or delete state are unweighted. Hence much less

parameters have to be trained from the underlying data. This, in turn allows the construction of
meaningful PSSM family models from multiple alignments containing much fewer aligned sequences

than are necessary for proper pHMM derivation.
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5 Genlight - a system for interactive,

high-throughput, di�erential genome

analysis

5.1 Motivation

Even today and more severe in the future, advancements in high-throughput sequencing techniques

that reduce the time needed for sequencing an organism's genome from several years to a few days,
will lead to a growing gap between data collection and data interpretation. With the increasing

amount of data that needs to be analyzed there is not only a strong demand for e�cient compu-
tational methods generating accurate and reliable results, but also for integrative approaches and

systems that allow to rapidly apply and combine several analysis methods in a user-friendly fashion,
even in data rich application scenarios. The support of di�erent analysis methods for the same task

does not only introduce more 
exibility, but also allows to i dentify method speci�c weaknesses in
certain application scenarios more quickly. Once such de�ciencies are identi�ed, the ability of com-

bining di�erent methods may allow to balance them and hence increase the overall quality of the

results. In addition, with increasing numbers of complete genome sequences, tasks are shifting from
single gene to complete genome or proteome analyses, and many new questions regarding similarities

and di�erences between the sequenced organisms arise in multiple genome comparison approaches.
An even strong commercial interest exists in genome comparisons of pathogenic organisms, since

they can lead to new insights in the principles of pathogenity and infection [GFB+ 01, HDB98].
Pathogen genome sequencing projects have provided a wealthof data in this �eld that need to be

set into context of pathogenicity and the outcome of infections to understand and interfere with
deseases caused by microbial pathogens.

One of the new challenging questions is the di�erentiation between species speci�c and common

genes [HdlTV03, Koo03]. This is also a fundamental questions in the target-based approach in the

development of either narrow-spectrum or broad-spectrum antibiotics. For instance, among the key
criterias that must be met by an anti-microbial drug target a re

� target pathogen spectrum,

� target selectivity,

� target essentiality, and
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� target function, i.e., the biochemical function of the target needs to be characterized. This
includes among other things the gathering of information about structure, potential active

and binding sites, etc.

Genes satisfying these criteria and hence making a promising anti-microbial drug target can be
identi�ed and evaluated by comparing all relevant pathogen genomes with the host genomes. Genes

that show to be conserved in these large-scale comparisons across di�erent pathogens often turn
out to be essential and hence may represent target candidates for new broad-spectrum antibiotics.

Di�erential or subtractive analyses can reveal those genesthat are conserved in all or most of the
pathogenic bacteria but not in eukaryotes. These are the most obvious candidates for drug targets.

Species-speci�c genes, also identi�able by di�erential genome comparisons, may o�er the possibility

to design drugs against a particular, narrow group of pathogens.

Di�erent studies [DDSS01, HDB98] already proved the potential of di�erential genome analyses,
often also called di�erential comparative genomics, especially in combination with the analysis of

functional relevant sequence motifs or domains describable with one of the motif models introduced
in chapter 2, to detect new drug target candidates. Such procedures often include the application

of a variety of bioinformatics methods and searches in di�erent databases to retrieve a maximum of
information about the sequence or gene under consideration. To be feasible in practice, especially

on a larger, genomic scale, integrated and scalable solutions are necessary that support the user in
this data rich problem environment. Unfortunately, the num ber and 
exibility of existing systems is

not su�cient or to the least very limited. Hence there is a str ong need for new integrated solutions.

In the following section, we will give a brief overview of existing and conceptional related systems

and explain why they are not well suited to solve our sketchedproblem scenario.

5.1.1 Genome annotation systems: Related concepts with di� erent focus

Although the integration of various bioinformatics methods and automated sequence homology

searches are widely used techniques in genome annotation systems, such asMagpie [GS96b, GS96a],
PEDANT [FAH + 01], genomeSCOUT[SCK00] and GenDB [MGM + 03], the objective of these sys-

tems mostly focuses on textual annotation of genes only. An important point, often neglected in

existing systems, is the querying and mining of stored data,especially query capabilities that allow
to combine di�erent, derived attributes or characteristic s. More precisely, high-level queries like the

following, combining several attributes of a gene or protein, are hardly possible.

Which outer membrane proteins involved in metabolism M, andlinked to apoptosis from the pathogen
organism A are highly conserved in pathogen organism B but lack a counterpart in apathogen or-

ganism C and host organism D?

The de�ciencies of existing systems to answer such queries is often founded in the way they inter-
nally organize and store data. For instance theGenDB system, a widely used genome annotation

system for prokaryotes, uses a proprietary object relational mapping layer that allows a persistent

storage of the used object oriented data model in an underlying relational database management
system. Although this mapping layer admits an easy and almost seamless storage of objects in

an relational database while abstracting from the underlying relational data model, the relational
data model generated from the applications object model is not well suited to be queried with rela-
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tional database query languages like SQL, any longer. As a consequence the retrieval of non-trivial
information becomes problematic. Especially more complexqueries joining multiple attributes of

di�erent database tables, are nearly impossible to formulate or su�er at least from bad response
times. To solve this issue, an annoying and often redundant programming overhead on the applica-

tion level is needed for implementing higher-level functionalities, which could be easily accomplished
with standard SQL-queries and a well designed, query optimized, relational data model1.

The commercial genome annotation systemgenomeSCOUT, which is no longer available due to

limited commercial success, stored its data in simple ASCIIformatted 
at �les and used the data

integration system SRS [EUA96] for information retrieval and basic data mining tasks. Although
SRS basically o�ers some 
exibility aimed to easily integrate p roprietary data from for example

in-house sequencing projects, this bene�t is only of practical use with extensive programming skills
and knowledge of the system.

The aforementioned de�ciencies of genome annotation systems like insu�cient data querying and

mining capabilities should not brush o� these systems. We just reveal that traditional genome
annotation systems are simply not designed for extensive querying and mining of data.

When we focus on automated di�erential genome comparisons,very little is found in literature on

that topic. To the best of our knowledge, only three noncommercial, initial attempts have been made

to develop computational systems, that support these kindsof analyses, namely Seebugs [BDD98],
FindTarget [CGK01], and Di�tool [CGK02]. All of these provide limited functionality and 
ex ibility,

i.e., they are very limited in their supported sequence comparison methods, and neither integrate
additional databases for sequence motif analyses, nor do they support subsequent analyses including

generated results inside the systems. That is, they do not allow reusability of derived results for
the step by step modeling of more compley analysis work
ows.Further, all systems operate on

precalculated data and do not allow for interactive on-the-
y analyses.

The de�ciencies of existing systems were the motivation forthe development of the Genlight sys-
tem [BSS04, BMM+ 04], a versatile and powerful system for interactive high-throughput sequence

analysis and di�erential comparative genomics with extensive data querying capabilities ful�lling

the subsequently described requirement de�nitions.

5.2 Requirement de�nitions and design goals

Genlight follows the overall paradigma of a highly integrated system, suited to perform a wide

range of large-scale sequence analysis tasks in an interactive way with features to combine, reuse,

and query derived results. In particular, Genlightwas developed to ful�ll the following requirement
de�nitions:

� support for the discovery or prioritization of potential ne w drug targets in silico by highly
automated di�erential comparative analyses and user speci�ed selection criteria;

� automatic genomic scale analyses in reasonable time, without the need for specialized hardware

or large and expensive cluster systems;
1We note at this point that this is a prevalent problem of objec t relational mapping solutions, that try to store

hierarchically organized objects in a 
atter relational da tabase schema.
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� interactive as well as asynchronously executed large-scale analyses;

� integration of a wide range of bioinformatics analysis methods, each applicable on genomic
scale data;

� scalability;

� integration of various publicly available sequence and motif databases;

� structured storage of computed results, that allow for extensive querying and mining;

� support for user de�ned queries and �lters operating on generated data whose results are

persistently stored inside the system;

� reusability of generated results to allow protocol based step by step modeling of more complex
analysis work
ows;

� concurrent multi user capabilities with project and accesscontrol management;

� dynamic presentation and visualization of computed results through an easy to use, but still


exible, platform independent interface;

� data import and export capabilities which support commonly used exchange formats.

Although each of the requirements listed above can be individually achieved with existing software
solutions, to the best of our knowledge, no publicly available system exists combining all require-

ments in a single integrated approach.

5.3 System architecture and implementation

The Genlightsystem consists of four major parts as shown in Figure 5.1:

� a web-based user interface for the communication with the system,

� the Genlightserver, providing queuing, scheduling, and dispatching capabilities,

� client components to carry out various bioinformatics analysis tasks in an asynchronous way,

� and a database component for storing, modifying, and accessing data.

To allow asynchronously executed, large scale sequence analysis tasks in an interactive system,

Genlight uses a distributed client server approach. The core of the system, i.e., the client and
server components, implementing the distributed execution engine with its queuing, scheduling and

dispatching components are written in the C programming language and access the database via

PostgreSQL's native C language interfacelibpq. To ensure a maximum of robustness and fault
tolerance, which is in particular important in a distribute d system, the server as well as the client

component are implemented using multi threading for connection supervision and make use of
backlog techniques. This allows to detect the failure of a compute node, deactivate this node in the
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Figure 5.1: A schematic overview of theGenlightsystem architecture

virtual compute cluster, and allow to resubmit the assignedtask to a di�erent node. Further, run

time errors of an integrated analysis method do not a�ect the client application.

The system is capable to serve multiple users. This is achieved with, among other things, the

transaction mechanisms of the underlying database system.For persistent data storage and access
using SQL queries,Genlightemploys the ORDBMS (Object Relational Database ManagementSys-

tem) PostgreSQL, though any other full SQL99 compliant DBMS (Database Management System)
should also work. The system makes use of PostgreSQL's object oriented features like inheritance

(see section 5.5 on page 158) and transaction capabilities to ensure data integrity and consistency.

The web interface is written in the server side scripting language PHP. PHP scripts retrieve data
from the underlying PostgreSQL database and generate dynamic HTML pages which are subse-

quently delivered by the Apache web server to the user's web browser. Dynamic visualizations of
results are performed using the GD graphics library.

In the following we describe the underlying concepts of the main parts of Genlight and the func-
tionalities they provide.

5.4 Concepts and functionality

5.4.1 The set oriented concept

The structured storage, ensuring reusability of generatedresults, is a critical point for the protocol

based step by step modeling of complex experiments and work
ows often neglected in bioinformatics
applications. In Genlight the reuse of derived results is a central concept, anchored in the basic
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Figure 5.2: A bipartite graph as a model for aHit-set .

system design. It is achieved by a set oriented data model with only two basic data object types:
Seq-setsand Hit-sets. A Seq-set Q = f S1; S2; : : : ; Sn g is basically an ordered set2 of n = jQj

sequences over a prede�ned alphabetA , which is usually the nucleotide or amino acid alphabet.
All sequencesSi 2 A + , i 2 [1; n] are of one kind, either nucleic acid or protein. That can be for

example all proteins of a certain organism in the order of their occurrence in the organisms genome.

A specialized form of aSeq-setis the Cluster-set which contains for each sequence entry additional
information that allows a partitioning of the Seq-setinto sub sets. This allows to model the clustering

of Seq-sets. Although Seq-setscontain additional sequence speci�c informations for eachsequence,
like ID, length, molecular weight and in case of amino acid sequences molar absorption coe�cient

and isoelectric point, etc., we neglect these additional informations in the following remarks for
reasons of simplicity.

A Hit-set is a set of sequence pairs, de�ned by a comparison operation between two Seq-setsand

its user de�ned parametrization, e.g., the set of all sequence pairs detected by a homology search
between two Seq-sets. Observe that a sequence comparison operation between a single query se-

quence and a set of sequences to be searched (compared) establishes a one to many relationship.

Consequently, in case of comparing twoSeq-setsQ and D, the resulting Hit-set de�nes a many to
many relationship H Q ;D � Q � D = f (q; d) j q 2 Q ^ d 2 Dg between sequences fromQ and D

and hence can be seen as a directed, weighted, bipartite graph as shown in Figure 5.2 with vertices
corresponding to sequences of the twoSeq-setsand edges corresponding to the pair relationship

weighted with a feature vector ~f q;d . The feature vectors ~f q;d contain additional information, fur-
ther characterizing the speci�c sequence pair (q; d) (e.g. statistical signi�cance of the relationship,

alignment scores, percentage of identity inside aligned region, etc.).

5.4.2 Operations on Seq-sets and Hit-sets

Genlightsupports various operations that can be applied toSeq-setsand Hit-sets. The result of each
operation is again a newSeq-setor Hit-set . A Hit-set �lter, for instance, which can be pre-de�ned

in the system or user de�ned, generates a newHit-set with sequence pairs satisfying the respective
�lter condition. Filter criteria for Hit-sets can be any of the attributes associated with a sequence

pair, like E-value, score(-ranges), rank, alignment coverage rate, percentage of identity/positives,

2For sake of simplicity we speak of ordered sets instead of tup les.
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etc. Two Hit-sets may be combined with a �lter to determine, for example, bi-di rectional best hits,
where "best" can be de�ned on method speci�c ranking or other attributes. Additionally, Genlight

comes with a collection of prede�ned �lters for more complex �ltering tasks. A detailed list of
prede�ned �lters and their semantics are given in the Appendix in Table A.5.

Sequence �lters generate newSeq-setsand extraction operations convert a Hit-set to a new Seq-

set depending on speci�ed criteria (see Table 5.1). This procedure follows the software engineering
concept of compositionality and allows an interactive step by step modeling of complex work
ows

as schematically drafted in Figure 5.3.

Using a combination of comparison, �lter, and extraction operations, several proteomes, say A, B,

and C, can easily be screened for proteins common to proteomesets A and B but nonexistent in
proteome set C. Moreover, all possible intersections of A, B, and C can be calculated. Evidence of

proteins with similar functions can be de�ned by combinations of several homology search results
(e.g., unidirectional or bidirectional best hits), even generated by di�erent homology search methods.

Further on, the results of di�erent sequence comparison methods can be combined with Boolean
operators. With this concept the results of di�erent alignm ent methods can be taken into account as

evidence factors for the detection of homologous genes and weaknesses in the heuristics of a single

method, which result in a false negative detection of homologous sequences, can be balanced.

The implemented project management, provides fundamentalaccess control features and allows to
store Seq-setsand Hit-sets on a per-user basis. Frequently usedSeq-setsand Hit-sets, like major

sequence databases asGenBankor UniProtKB/TrEMBL , model organism comparisons, etc., can be
made available system-wide. The administrative features are complemented by a quota system,

which allows to assign resources on a per-user and per-method basis. It is therefore possible to
restrict the number of Seq-setsand Hit-sets in a project or to limit the size of a Seq-set in a

comparison operation.

5.4.3 Integrated sequence analysis methods

Several di�erent algorithms have been developed over the last decades to compare biological se-

quences and determine a concrete measure of their distance or similarity in order to deduce a
common or similar biological function (c.f. [SW81, AGM+ 90, AMS+ 97, Pea99, ZSWM00]).

The dynamic programming methods for global (i.e., the Needleman-Wunsch algorithm) or local

alignments (i.e., the Smith-Waterman algorithm) allow to o btain the optimal alignment under a
given scoring schema, in time proportional to the product ofthe lengths of the two sequences being

compared. With exponentially increasing sequence database sizes, complete exhaustive similarity
searches based on full dynamic programming are no longer feasable in reasonable time. This problem

was the motivation that has led to the development of the FASTA [Pea99] andBLAST (Basic
Local Alignment Search Tool) [AGM+ 90, AMS+ 97] alignment programs, which became the most

widely used algorithms in database searches and comparative sequence analysis. One important

aspect, which is often overlooked, is that they are based onheuristics. They achieve improved
performance compared to a full dynamic programing approachlike the Smith-Waterman algorithm

[SW81] by sacri�cing some sensitivity. BLAST and FASTA reduce the problem by selecting the
sequences in a database search that are thought to share signi�cant similarity with the query
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Figure 5.3: Genlight's operational model. The reuse of results is anchored inGenlight's operational

design allowing a step by step modeling of complex analysis tasks. E.g.,Seq-set�ltering

and classi�cation operations result in new Seq-setsand a �ltering operation applied
to a Hit-set generates a newHit-set for further reuse, containing only sequence pairs

satisfying the �ltering constraints.
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Operation Result

Seq-setoperations

�lter by domain/motif composition all sequences with a spec i�ed sequence motif or a combination

of sequence motifs

SCOP �lter all sequences with user de�ned sequence similari ty to a SCOP

class, fold, superfamily, family or protein

taxonomy �lter all sequences that belong to a given taxon (if taxonomy infor-

mation is available)

�lter by length sequences satisfying length constraints

intersect all sequences that are present in at least two Seq-sets

union/merge merges two or more Seq-sets

Hit-set �lter

�lter by attribute values all pairs of a Hit-set satisfying the �lter condition. Filter condi-

tion is a boolean expression over attribute values

best hit �lter selecting the best hits depending on method sp eci�c rankings

two-way-best hit �lter selecting bidirectional best hit pa irs depending on method spe-

ci�c rankings

text pattern �lter all pairs that contain a given pattern in t he query or hit, or in

both descriptions of the two sequences of aHit-set entry

full query seq. length matches all pairs with an aligned regi on length equal to the length of the

query sequence

full hit seq. length matches all pairs with an aligned region length equal to the length of the

hit sequence

extraction operations

query sequences with homologs generates a newSeq-set of sequences that have a homolog in a

Hit-set

homologs generates a newSeq-set of sequences that are determined as

homologs in a Hit-set

query sequences with no homologs generates a newSeq-setof sequences that have no homolog in a

Hit-set

homologs generates a newSeq-set of sequences from DB-set that are not

present in a Hit-set

cluster set operations

di�erential cluster analysis selects all clusters that con tain sequences satisfying boolean ex-

pression overSeq-setsmembership

Table 5.1: An excerpt of available operations on hit-sets and seq-sets.
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sequence, and by locating the similar regions in the sequences. These selective steps allow to con�ne
the computationally expensive sequence alignment methodsbased on dynamic programming only

to a subset of the database sequences and to restrict the search for the best local alignment to only
subregions of the sequences. Because of concerns of speed they estimate the similarity between the

sequences in an approximate manner, and thus introduce a risk of missing similarities that are not
detectable with the underlying heuristics.

In Genlightwe integrated a wide range of sequence comparison algorithms, including methods based

on full dynamic programming as well as algorithms employingheuristics. Almost all algorithms

of the BLAST [AMS+ 97], and FASTA [Pea90, Pea94] family as well as the traditional Smith-
Waterman algorithm [SW81] are integrated into Genlight. This enables the user to freely choose a

sequence comparison method depending on available computeresources, problem and data sizes,
and experimental requirements. In particular, we will see in section 5.4.8 that Genlight allows for

the application of computationally expensive operations on a larger scale than other systems, due
to bundling of available resources.

The results of sequence comparison operations are stored inHit-sets and these homology information

can directly serve as input for the probabilistic clustering algorithm Tribe-MCL [EvDO02]. Tribe-

MCL relies on the Markov cluster algorithm of [vD00] for large-scale assignment of proteins into
families based on precomputed sequence similarity information. We modi�ed it, so that Tribe-MCL

directly utilizes sequence similarity information stored in Hit-sets. Results of the clustering are
stored in Cluster-sets. Thus, it integrates seamlessly intoGenlightand allows to cluster even whole

proteomes in seconds or minutes.

Adjacent to the integrated sequence comparison methods,Genlight can even compute features of
single sequences, like the ability of an amino acid sequenceto form a coiled-coil conformation. Coiled-

coil structures are 2 to 5 stranded bundles of� -helices which are stabilized by hydrophobic and other
interactions [NS76]. They are common in extracellular matrix molecules to connect di�erent subunits

in oligomeric proteins or in regulatory proteins like transcription factors. Coiled-coil domains are

characterized by a heptad repeat pattern in which residues in the �rst and fourth position are
hydrophobic, and residues in the �fth and seventh position are predominantly charged or polar.

This pattern can be used to predict coiled-coil domains in amino acid sequences with computational
methods.Genlightmakes use of theCOILS program [LVDS91, Lup96] to detect potential coiled-coil

regions of protein sequences.

In particular useful for wet-lab work is Genlight's capability to determine basic sequence features,
like a sequence's G/C content, molecular weight, molar absorption coe�cient, isoelectric point, or

charge.

5.4.4 Integrated protein domain and family databases

Protein evolution has employed a repertoire of a few thousand elementary modules or domains,

which form the building blocks of today's proteins. Since structure and molecular function is largely
conserved within domain families, computational methods for domain identi�cation have become

powerful tools in sequence function annotation, structure-function analysis. Searching for conserved
domains can be helpful in particular to
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Method Explanation

BLASTN Nucleotide Blast: Nucleotide query vs. nucleotide DB
BLASTP Protein Blast: Protein query vs. protein DB

BLASTX Translated nucleotide query vs. protein DB
TBLASTN Protein query vs. translated nucleotide DB

TBLASTX Translated query vs. translated nucleotide DB
psiBLAST Position speci�c iterated Blast: Protein query vs. protein DB

FASTA Nucleotide query vs. nucleotide DB or protein query vs. protein DB
FASTX/Y Nucleotide query vs. protein DB

TFASTA Translated nucleotide query vs. translated nucleotide DB
SSEARCH Smith-Waterman algorithm: Nucleotide query vs. nucleotide DB or protein

query vs. protein DB

rpsBLAST Reverse position speci�c Blast: Protein query vs.CDD models
hmmpfam Protein query vs. HMM database, like Pfam, TIGRFAM or Smart

PoSSuMsearch Protein query vs. PRINTS and BLOCKS databases employing PSSM family
models and fast fragment chaining as described in chapter 4 on page 105

COILS Detection of coiled-coiled regions in proteins
Tribe-MCL Markov based clustering of protein sequences

Table 5.2: An excerpt of supported sequence analysis methods.

� locate functional domains within a protein,

� predict the function of a protein whose function is unknown,

� establish evolutionary relationships across protein families,

� predict the structure of a protein of unknown structure.

High quality functional and structural annotation informa tion about protein domains and protein

families is available in several manually curated databases. Genlightintegrates these heterogeneous

data sources and their speci�c screening and search methodsin one common environment and al-
lows to rapidly combine derived results. More precisely, for the discovery of conserved domains, we

integrated (i) the hidden Markov model based databasesPfam [FMSB+ 06], TIGRFAM [HSW03],
Smart [LCP+ 06], CATH [PTS+ 05], and Superfamily[GKHC01], (ii) National Center for Biotech-

nology Information's (NCBI for short) PSSM based conserveddomain database (CDD for short)
[MBADS + 05], and (iii) the PSSM family model based databasesPRINTS [AMG + 06] and BLOCKS

[HGPH00]. The CDD is a collection of sequence alignments and PSSMs representing protein do-
mains conserved in molecular evolution and hence de�nes thefeatures that are conserved within

each domain family. Therefore, theCDD can serve as a classi�cation resource that groups proteins
based on the presence of these prede�ned domains. To identify conserved domains in a protein se-

quence by screening versus theCDD, Genlightemploys the reverse position speci�cBLAST variant

rpsBLAST . With rpsBLAST the query sequence is compared to apsiBLAST generated PSSM
prepared from the underlying conserved domain alignment. Ascreening versusCDD can also reveal

insights in the structure of a protein, since CDD entries are linked to three dimensional structure
data of the molecular modeling databaseMMDB [WAC + 07]. This allows the user to identify the
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Figure 5.4: Visualization of the three dimensional location of a protein sequence (marked gray in the

pairwise alignment and yellow in the multiple CDD alignment and the MMDB structure

model) using the external viewer applicationCn3D.

3D location of conserved regions of the protein query with external viewer applications like Cn3D

[MBPS+ 02] (see Figure 5.4 for an example) and to directly retrieve three dimensional model data

for further structure based studies.

To search in HMM based databases likePfam, TIGRFAM, etc., Genlight makes use of thehmm-
pfam [Edd98] program from the HMMer package. The databasePRINTSand BLOCKSare searched

with PoSSuMsearchemploying PSSM family models and fast chaining of PSSM matches.

A further advantage of the integration of a variety of di�ere nt databases and search methods is
the ability to balance method speci�c de�ciencies in the detection of certain homologies and the

incompleteness of protein family databases. As shown in Figure 5.5, di�erent methods and screenings
versus di�erent databases reveal di�erent results. Hence it is often not su�cient to screen the

sequences under consideration only against one database.Genlight can easily perform searches in

several di�erent databases and allows to access the persistently stored results in an integrated
manner.

5.4.5 Supported protein classi�cation schemes

When dealing with complete proteomes of multiple organisms, the focus may shift from detailed
single protein to complete proteome analyses, depending onthe level of detail necessary to an-
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Figure 5.5: Searches in di�erent databases reveal di�erentresults. In this example a multi domain

protein from S.cerevisaeconsisting of �ve functional domains, was screened versusPfam,

TIGRFAM, and Smart using method hmmpfam, and versusPRINTS and BLOCKSusing
PoSSuMsearch. Observe that the screening againstTIGRFAM detects only three and

searching inPRINTS using PoSSuMsearcheven only one domain. Responsible for these
varying results are missing signatures/models in some databases.
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swer a certain type of question. For this purpose, functional classi�cation systems allow a broader
view on and comparison of an organism's genome or proteome byclassifying genes in a relatively

small number of functional categories. Hereby, the number of available categories and hence the
employed abstraction level depends on the classi�cation schema utilized. For maximal 
exibil-

ity the integration of di�erent classi�cation systems with di�erent abstraction levels is essential.
For the functional classi�cation of sequences,Genlight integrates the COG(Cluster of Orthologous

Groups) [TKL97, TNG + 01] database containing annotated clusters of prokaryoticproteins and its

eukaryotic complement KOG (euKaryotic cluster of Orthologous Groups) [TFJ+ 03] including their
crude, but widely used functional classi�cation schema. The COG/ KOG databases are an attempt

to classify the complete complement of proteins (both predicted and characterized) encoded by
complete genomes. Each COG and KOG respectively is a group ofthree or more proteins that

are inferred to be orthologs, i.e., they are direct evolutionary counterparts and assumed to share a
common function. The COGrelease integrated intoGenlightconsists of 4; 873 COGs, which include

136,711 proteins (71% of all encoded proteins) from 50 bacterial genomes, 13 archaeal genomes,
and 3 genomes of unicellular eukaryotes. The eukaryotic counterpart KOG includes proteins from

7 eukaryotic genomes: three vertebrates (the nematodeC.elegans, the fruit 
y D.melanogasterand
H.sapiens), one plant (A.thaliana), two fungi ( S.cerevisaeand S.pombe), and the intracellular mi-

crosporidian parasite Encephalitozoon cuniculi. The KOG version integrated into Genlightconsists

of 4; 852 clusters of orthologs, which include 59; 838 proteins, or approximately 54% of the 110,655
analyzed eukaryotic gene products. Classi�cation of nucleotide as well as protein sequences into

one of the 25 functional COG/ KOG categories can be performed withGenlight due to homology
to COG/ KOG sequences. InsideCOG/ KOG these categories are further classi�ed into 4 top-level

categories:

1. Information Storage and Processing;

2. Cellular processes and signaling;

3. Metabolism;

4. Poorly characterized.

Although this functional classi�cation is very crude, it is still widely used, in particular when dealing

with prokaryotic sequences. See Figure 5.6 for an example ofthe classi�cation of the C.glutamicum
proteome into COGcategories with Genlight. A more detailed functional classi�cation of sequences

can be achieved with thePfam clan [FMSB+ 06] or TIGR role functional classi�cation systems also
integrated into Genlight.

Pfam clans allow a grouping of singlePfam families into a hierarchical classi�cation called clans

and hence provide a hierarchical view of a diverse range of proteins families. A clan contains two or
more Pfam families that have arisen from a single evolutionary origin. Evidence of their evolutionary

relationship is usually determined by similar tertiary str uctures, or when structures are not available,

by common sequence motifs.Pfam clans provide a level of detail which is a little bit broader than
the protein family level. In its latest release, Pfam contains 262 di�erent clans consisting of 1676

single Pfam families. Classi�cation into clans in Genlight is performed due to homology toPfam
models. In contrast to Pfam clans, TIGR roles are a more detailed two level classi�cation concept
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Figure 5.6: Functional classi�cation of the C.glutamicum proteome based on homology to theCOG

database with Genlight. In this example, the classi�cation criteria, which can be user
de�ned, was a BLASTP hit with an E-value of at most 10 � 5 and the additional require-

ment that the matching region covers at least 50 percent of the matchedCOGsequence.

Assignment of functional categories was performed based onthe highest scoring hit.

155



5 Genlight - a system for interactive, high-throughput, di� erential genome analysis

Classi�cation schema Abstraction level Classi�cation cri teria

COG/ KOG functional

categories

25 categories organized in 4 top-

level categories.

Best BLAST , FASTA , SSEARCH

hit vs. COG/ KOG sequence

database satisfying additional

constraints (e.g. E-value or cover-

age).

TIGR roles Two level classi�cation with 105

sub roles organized in 21 main roles.

Best hit to TIGRFAM model library

satisfying E-value constraint.

Pfam clans 262 clans representing 1676Pfam

families.

(Best) hit to Pfam model library

satisfying E-value constraint.

CATH protein

structure classi�cation

Hierarchical classi�cation of protein

domain structures at the four ma-

jor levels: (C)lass, (A)rchitecture,

(T)opology, and (H)omologous su-

perfamily.

(Best) hit to CATH pHMM model

library satisfying E-value con-

straint.

SCOP structural

classi�cation

Hierarchical classi�cation of pro-

teins at the class, fold, superfamily,

and family level.

(Best) psiBLAST hit vs. SCOP

sequence database satisfying addi-

tional E-value constraint.

Table 5.3: Supported classi�cations schemas, abstractionlevel, and employed classi�cation criteria.

consisting of main roles and sub roles and allow to classify proteins on the basis of matches to

TIGRFAM pHMM family models. Currently this classi�cation schema di stinguishes 105 sub roles
organized into 21 main role categories.

Beyond the above mentioned functional classi�cation systems, Genlightsupports two classi�cation
schemas focusing on structural similarities and di�erences, namely the multi level hierarchical clas-

si�cation systems SCOPand CATH.

For a recapitulating overview of supported classi�cation schemas and the classi�cation criteria
employed insideGenlight, see Table 5.3.

5.4.6 Gene ontologies: a unifying vocabulary for cross database queries

For historical reasons, di�erent database use di�erent terminologies and naming conventions, intro-

ducing an arti�cial heterogeneity which makes it complicated to query these resources in a combined
fashion. For example, if we were searching for new targets for antibiotics, we might want to �nd

all the gene products that are involved in bacterial protein synthesis, and that have signi�cantly
di�erent sequences or structures from those in humans. Currently, one database describes these

molecules as being involved in \translation", whereas another uses the phrase \protein synthesis"
and hence without knowledge about these di�erent naming conventions, it is di�cult to �nd func-

tionally equivalent terms and thus related or equivalent sequences. An attempt to overcome this

problem is the Gene Ontology (GO for short) project [Con00]. GOs provide a controlled vocabulary
to describe genes and gene products, addressing the problems resulting from di�erent terminologies

currently used in di�erent databases. Therefore,GOcontains three structured controlled vocabular-
ies (ontologies) that describe gene products in terms of their associated biological processes, cellular
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components, and molecular functions in a species-independent manner. The usage ofGO terms by
collaborating databases enables uniform queries across them.

In Genlight, such terms can be assigned by the system, inferred from the respective assignment of the

integrated databases.Genlightcontains mapping to GO terms for entries from the Pfam, TIGRFAM,
Smart, and PRINTS databases, and hence allows to query results from these resources usingGO

terms. SinceGO is a structured ontology, queries at di�erent levels of abstraction are possible. For
instance, one can useGO terms to �nd all gene products in an organisms genome that areinvolved

in signal transduction, or one can zoom in on all the receptortyrosine kinases.

5.4.7 User de�ned sequence databases

In addition to the databases integrated into Genlightdescribed above, the system allows to import

any sequence collection available inGenBank, Swiss-Prot, or Fasta format. Such an user de�ned

sequence collection can contain just a few sequences that should be analyzed with Genlight's inte-
grated analysis methods, a complete proteome, or even a whole sequence database likeSwiss-Prot

or UniProtKB/TrEMBL . Imported sequence collections are treated as normal private Seq-setsin the
user's project workspace or can be made available as a system-wide resource by theGenlight ad-

ministrator. This means that major public sequence databases, genomes and proteomes of model
organisms of interest, or proprietary in-house sequence data can be imported and made accessible

system-wide if required. This concept saves resources and avoids data redundancy.

5.4.8 Asynchronous distributed execution of sequence analysis tasks

The comparison of whole genomes or proteomes, or their use asquery sets for searches in large

databases likeGenBankor Swiss-Protis a challenging and time consuming task. To compare, for
instance, the mouse proteome to the human proteome by pairwise sequence comparison, 53,847

(International Protein Index (IPI) release 3.28, April 200 7 [KDW + 04]) single homology searches
with programs like BLAST , FASTA , or the time-consuming Smith-Waterman full alignment method

versus the human proteome set comprised of 68,020 protein sequence (IPI 3.28, April 2007) have

to be performed. To handle such comparison tasks in a multi-user capable, interactive system with
the need of guaranteed, adequate response times, the individual comparison calculations have to be

done asynchronously. To accomplish this,Genlightuses queuing mechanisms and a distributed client-
server approach with multiple compute clients carrying out parts of comparison- or other sequence

analysis tasks (see Figure 5.1 on page 145). After submission of such a task, it is asynchronously
executed by the distributed execution system. This processneither in
uences other users ofGenlight,

nor does it block the interactive work with the system while processing. Once computation has
�nished, the results are directly accessible inside the system. Sequence analysis tasks can be added

to, suspended from execution, or deleted from the systems job queue at any time. Even changes

to job priorities a�ecting execution order are possible. The complete queue management can be
performed with a comfortable web interface.

To process queued entries, the system has its own schedulingand dispatching component, which

allows a parallel, distributed execution of comparison jobs and can form a virtual cluster system
of regular workstations for high throughput analysis tasks. This allows to use existing compute re-
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Query Set DB Set Method Running time [hh:mm:ss]

H.pylori H.in
uenzae BLASTP 00:00:32
H.pylori V.cholerae psiBLAST (10 iterations) 00:03:22

L.innocua L.monocytogenes BLASTN 00:00:27
H.pylori CDD rpsBLAST 00:03:41

S.typhimurium A.thaliana BLASTP 00:03:48
H.pylori Pfam hmmpfam 04:41:33

H.sapiens M.musculus BLASTP 02:17:30

Table 5.4: Running times for di�erent comparison methods using the Genlightvirtual cluster system
with 25 SUN UltraSparc II CPUs on di�erent workstations.

sources and often eliminates the necessity for a dedicated compute cluster. The integrated dispatcher
splits sequence comparison tasks between twoSeq-setsinto smaller work units of user de�ned size

which are subsequently distributed to the available compute nodes, thus balancing the overall load
over the available compute resources. The two major strengths of this approach are the complete in-

tegration into one system without the need for di�cult to ins tall third party batch-queuing systems
and a high robustness of the system. The latter is achieved bymethods to insure data integrity,

like a backlog technique, transactions, and connection supervision, during distributed execution.

Compute nodes can be added to and deleted from the virtual cluster system by starting or stopping
the Genlight client component on a workstation, via the cluster node management interface (see

Figure 5.7). The cluster node management interface also provides information about each compute
node, the node's status, and the overall progress of the taskcurrently processed.

The possibility to temporarily include or exclude certain computers at any time, makes the virtual

cluster very 
exible. For instance, departmental workstat ions can be excluded during working hours
and included during the night to use idle compute-power.

Since theGenlightclient application is available for di�erent hardware arch itectures and operating

systems, and platform independent communication betweenGenlight-server and compute clients

is implemented, the compute resources of computers runningdi�erent operating systems can be
bundled in one heterogeneous virtual cluster system. Up to now, Genlightsupports (and is tested

on) Sparc/Solaris, x86/Solaris, x86/Linux, and Mips/IRIX platforms. The distributed computing
approach allows comparisons of complete genomes or proteomes in short time periods. The overall

running time is nearly inversely proportional to the number of CPUs used (see Figure 5.8). For
concrete examples of running times of di�erent sequence comparison and analysis methods using

Genlight's virtual cluster system see Table 5.4.

5.5 Database schema

Genlight uses the ORDBMS (Object Relational Database Management System) PostgreSQL for
data storage and access, thoughGenlighthas been designed with other SQL99 compliant DBMS in

mind. The system makes use of PostgreSQL's object oriented features and transaction capabilities
to ensure data integrity and consistency.
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Figure 5.7: The virtual cluster management interface givesa detailed overview of the progress of a
sequence analysis job, estimated duration, and real-time status of compute nodes. Users

with system administrator privileges can start, stop, add, or remove compute nodes at

any time.
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Figure 5.8: Scaling behavior of the distributed computing approach. Running times for a BLASTP

comparison ofHelicobacter pylori proteome consisting of 1487 proteins and the complete
Swiss-Protdatabase for di�erent numbers of CPUs used.

The interactive character of Genlight, its concurrent multi user capabilities, and its need to store
calculated data on demand requires more complexity in the implementation of the data model

than it would be the case in single user systems with pre-calculated, static data. In particular
the \dynamics" introduced by the requirement to store data f rom user speci�ed sequence analysis

operations on demand, have to be supported in the data model.

In the following we describe by example the set oriented concept of Genlight's data model and show
how this functional concept is represented in the physical data model. Recall, that the set oriented

concept consisting ofSeq-setsand Hit-sets, described in section 5.4.1 on page 145, is one ofGenlights

fundamental concepts. The information contained inSeq-setsand Hit-sets is persistently stored in
database tables. In case ofHit-sets, the database tables re
ect the method-speci�c attributes of

the sequence comparison methods that generated the data contained in a Hit-set . For this purpose,
Genlight employs method speci�c template tables for the various supported sequence comparison

methods. Each time aSeq-setor Hit-set needs to be generated, by import, comparison ofSeq-sets,
or through the application of one of the Seq-setand Hit-set operations described in section 5.4.2

on page 146 by the user, a new database table for thisSeq-setor Hit-set is automatically created
as a child table by table inheritance from the method speci�c template table. Hence, this process of

instantiation results in a newly generated table, which canbe seen as an instance of the template.
This template instance is then unambiguously referenced bya catalog table entry that stores addi-

tional parameters like generating method, e.g., for aHit-set table the sequence comparison method

used, parametrization of the method, etc. Accordingly, catalog tables contain information globally
characterizing a complete template instance instead of each of the instance's entries. They are fur-

ther necessary for the organization and administration of template instances. We now explain the
concept of template instantiation with a small excerpt of Genlight's data model. Figure 5.9 gives a
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BLAST Hit-sets

FASTA Hit-set

Seq-sets Method specif ic templates

seq_set_template

sha1_seq_id CHARACTER(40)
serial_id SERIAL
seqnum INTEGER
description TEXT
length INTEGER
sequence TEXT

human

PK sha1_seq_id CHARACTER(40)
PK serial_id SERIAL
PK seqnum INTEGER

description TEXT
length INTEGER
sequence TEXT

mouse

PK sha1_seq_id CHARACTER(40)
PK serial_id SERIAL
PK seqnum INTEGER

description TEXT
length INTEGER
sequence TEXT

blasthits_instance1

FK query_sha1_id CHARACTER(40)
FK hit_sha1_id CHARACTER(40)

query_org_set_id INTEGER
db_org_set_id INTEGER
query_desc TEXT
hit_desc TEXT
query_length INTEGER
hit_length INTEGER
hsp_bit_score DOUBLE PRECISION
hsp_evalue DOUBLE PRECISION
hsp_score INTEGER
hsp_identities INTEGER
hsp_positives INTEGER
hsp_gaps INTEGER
hsp_align_length INTEGER
hsp_rank INTEGER
hsp_query_from INTEGER
hsp_query_to INTEGER
hsp_hit_from INTEGER
hsp_hit_to INTEGER
hsp_ali_qseq TEXT
hsp_ali_midline TEXT
hsp_ali_hitseq TEXT
hsp_query_frame INTEGER
hsp_hit_frame INTEGER

FK serial_id INTEGER
FK seqnum INTEGER

blasthits_template

query_sha1_id CHARACTER(40)
hit_sha1_id CHARACTER(40)
query_org_set_id INTEGER
db_org_set_id INTEGER
query_desc TEXT
hit_desc TEXT
query_length INTEGER
hit_length INTEGER
hsp_bit_score DOUBLE PRECISION
hsp_evalue DOUBLE PRECISION
hsp_score INTEGER
hsp_identities INTEGER
hsp_positives INTEGER
hsp_gaps INTEGER
hsp_align_length INTEGER
hsp_rank INTEGER
hsp_query_from INTEGER
hsp_query_to INTEGER
hsp_hit_from INTEGER
hsp_hit_to INTEGER
hsp_ali_qseq TEXT
hsp_ali_midline TEXT
hsp_ali_hitseq TEXT
hsp_query_frame INTEGER
hsp_hit_frame INTEGER

blasthits_instance2

FK query_sha1_id CHARACTER(40)
FK hit_sha1_id CHARACTER(40)

query_org_set_id INTEGER
db_org_set_id INTEGER
query_desc TEXT
hit_desc TEXT
query_length INTEGER
hit_length INTEGER
hsp_bit_score DOUBLE PRECISION
hsp_evalue DOUBLE PRECISION
hsp_score INTEGER
hsp_identities INTEGER
hsp_positives INTEGER
hsp_gaps INTEGER
hsp_align_length INTEGER
hsp_rank INTEGER
hsp_query_from INTEGER
hsp_query_to INTEGER
hsp_hit_from INTEGER
hsp_hit_to INTEGER
hsp_ali_qseq TEXT
hsp_ali_midline TEXT
hsp_ali_hitseq TEXT
hsp_query_frame INTEGER
hsp_hit_frame INTEGER

FK serial_id INTEGER
FK seqnum INTEGER

rat

PK sha1_seq_id CHARACTER(40)
PK serial_id SERIAL
PK seqnum INTEGER

description TEXT
length INTEGER
sequence TEXT

fastahits_template

query_sha1_id CHARACTER(40)
hit_sha1_id CHARACTER(40)
query_org_set_id INTEGER
db_org_set_id INTEGER
query_desc TEXT
hit_desc TEXT
query_length INTEGER
hit_bit_score DOUBLE PRECISION
hit_evalue DOUBLE PRECISION
hit_zscore DOUBLE PRECISION
hit_sw score INTEGER
hit_positives INTEGER
hit_identities INTEGER
hit_gaps INTEGER
hit_overlap INTEGER
hit_len INTEGER
hit_rank INTEGER
hit_query_from INTEGER
hit_query_to INTEGER
hit_hit_from INTEGER
hit_hit_to INTEGER
query_dsp_start INTEGER
query_dsp_end INTEGER
hit_dsp_start INTEGER
hit_dsp_end INTEGER
hit_orientation CHARACTER(1)
query_align TEXT
hit_align TEXT
midline_align TEXT

fastahits_instance1

FK query_sha1_id CHARACTER(40)
FK hit_sha1_id CHARACTER(40)

query_org_set_id INTEGER
db_org_set_id INTEGER
query_desc TEXT
hit_desc TEXT
query_length INTEGER
hit_bit_score DOUBLE PRECISION
hit_evalue DOUBLE PRECISION
hit_zscore DOUBLE PRECISION
hit_sw score INTEGER
hit_positives INTEGER
hit_identities INTEGER
hit_gaps INTEGER
hit_overlap INTEGER
hit_len INTEGER
hit_rank INTEGER
hit_query_from INTEGER
hit_query_to INTEGER
hit_hit_from INTEGER
hit_hit_to INTEGER
query_dsp_start INTEGER
query_dsp_end INTEGER
hit_dsp_start INTEGER
hit_dsp_end INTEGER
hit_orientation CHARACTER(1)
query_align TEXT
hit_align TEXT
midline_align TEXT

FK serial_id INTEGER
FK seqnum INTEGER

Instantiation of template

One to Many Relationship

Legend:
PK:  Primary Key constraint; unique and not null
FK:  Foreign key constraint, not null

Instantiation of template

Figure 5.9: Instantiation of template tables and relationships between database tables representing

Seq-setsand Hit-sets. For details see corresponding text.
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snapshot of the database schema containingSeq-setsand Hit-sets. The three sequence setshuman,
mouseand rat are instantiated from the Seq-settemplate table seq set template . Template in-

stantiation is shown by arcs annotated with a circle/equal sign connecting template and instance. A
Seq-setcontains beside the attributesdescription , length , and sequence three unique primary

keys, namely the sequence identi�ersha1 seq id , the serial serial id for auto numbering of entries
necessary for sequential processing of aSeq-set, and seqnum denoting the position of an entry in

the set of sequences at import time of thisSeq-set3. At import time sha1 seq id acts even as a

primary key constraint for the template table seq template , but this constraint can be violated
through set operations over time. However,sha1 seq id uniquely identi�es a sequence entry in a

Seq-set. In section 5.5.1 we will give more details about thesha1 seq id identi�er concept.

Further shown in Figure 5.9 are three method speci�c Hit-sets, namely blasthits instance1 ,
blasthits instance2 , and fastahits instance1 instantiated from the two template tables blast-

hits template and fastahits template , respectively. Observe, that aHit-set H Q ;D is the result
of a sequence comparison operation between twoSeq-sets, say Q and D and de�nes a relation

between the sequences ofQ and the sequences ofD. This is re
ected in the data model by at-
tributes query sha1 id and hit sha1 id of a Hit-set table which are foreign key constraints for

the sha1 seq id sequence identi�er of two Seq-sets. For example, table blasthits instance1 de-

�nes a relation between sequences fromSeq-setshumanand mouse, and table fastahits instance1
de�nes a relation (homology as detected byFASTA ) between Seq-setsmouseand rat . Between a

Seq-setQ and a Hit-set H Q ;D de�ned over this Q, there is a one to many relationship, since one
sequence fromQ may match multiple sequences inD. Since aHit-set H Q ;D de�nes a one to many

relationship for both involved Seq-setsQ and D, it establishes amany to many relationship between
sequences fromQ and sequences fromD.

5.5.1 The internal sequence identi�er concept

A central point for a database driven sequence analysis system is the ability to uniquely identify a
single sequence. For this purpose, many di�erent identi�er concepts have been developed in recent

years. Such developments were in particular furthered by the maintainers of large public sequence
collections like GenBankor UniProtKB/TrEMBL . Since Genlight can use sequence data from any

resource, even proprietary in-house sequences, it cannot rely on the existence of a speci�c public
identi�er like a GenBankaccession numberor Swiss-Protprotein id. Therefore, Genlight needs its

own internal identi�er concept that allows to uniquely iden tify a sequence, taking the following
attributes into account:

� the sequence itself,

� its annotation/description and

� its Seq-setmembership at import time.

This allows to di�erentiate between distinct entries for th e same sequence even if they share the

same description in two di�erent Seq-sets, which is essential for some ofGenlight's Seq-set set
3Observe that, though being identical at import time, serial id and seqnum can di�er over time for instance due

to application of set operations.
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operations. To combine these three attributes into one unique identi�er, Genlightcomputes SHA-1
hash keys from these attributes. These 160 bit long keys act as primary keys in the database tables

representing aSeq-set(see attribute sha1 seq id in table humanin Figure 5.9) and hence as foreign
keys in database tables representing aHit-set (see attributes query sha1 id and hit sha1 id in

table blasthits instance1 in Figure 5.9).

5.5.2 The handiness of the set oriented concept

We will now give some examples for the handiness of the set oriented concept, and describe ex-

emplarily how its implementation in the physical data model allows to answer biological relevant

questions using standard SQL-queries easily. Such queriesare automatically generated by the scripts
implementing Genlight's web interface depending on user speci�ed criteria.

User de�ned Hit-sets �ltering

Filtering of Hit-sets based on user de�ned criteria is a straightforward task in Genlight. Assume
that we are only interested in homologous sequence pairs satisfying a certain E-value constraint,

say having an E-value lower than 10� 10. Let H A ;B be aHit-set containing pair relationships resulting
from a BLAST based comparison between the twoSeq-setsA and B, then the following SQL-query

selects all entries ofH A ;B satisfying this constraint.

SELECT * FROM H A , B WHERE hsp evalue � 10-10 ;

Identi�cation of conserved gene orders and genome rearrang ements

When analyzing complete genomes or proteomes of prokaryotes, a common task is not only the

identi�cation of homologous sequences, but also the identi�cation of conserved gene orders since
they reveal information about global genome rearrangements, such like, translocations, inversions,

duplications or deletions. These genome-wide mutations are believed to be more neutral than local

mutations such as substitutions, insertions, and deletions. Therefore, phylogenetic investigations
of genome rearrangement events are less biased by the hypothesis of neutral evolution [PH88].

Genlightcan support the detection of genome rearrangements as follows. Let A and B be two Seq-
sets containing genes from two prokaryotic genomes in the order of their occurrence in the genome

and a Hit-set H A ;B containing homology results from aBLAST based comparison4 of sequences
from A versus sequences fromB. Then, the SQL-Query

SELECT t1.seqnum,
t2.seqnum,
t3.hsp bit score

FROM A t1,
B t2,
H A , B t3

WHERE t1.sha1 seq_id = t3.query sha1 id AND
t2.sha1 seq id = t3.hit sha1 id AND

4FASTA or Smith-Waterman based homology information can also be used.
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t3.hsp rank = 1
ORDER BY t1.seqnum ASC ;

determines triples consisting of two sequence numbers identifying a gene's or protein's position in

each of the genomes and an alignment score as a measure of the sequences homology. Due to the
constraint hsp rank=1 , only the top ranked hit, if it exists, for each sequence fromA is considered.

Genlight allows to visualize these informations in form of a XY plot directly, with optional color
coding of hit quality. In such a XY plot, conservation of gene order and genomic rearrangements

become directly visible (see Figure 5.10).

Determination of bidirectional-best hits

Sequence comparison methods likeBLAST or FASTA introduce a kind of asymmetry into sequence

comparisons due to their implied scoring functions. That is, a query/hit pair of sequences (S1; S2)
resulting from a unidirectional comparison of S1 versusS2 may achieve a di�erent score than the

reverse pair (S2; S1). This causes problems in homology based function assignments based onbest

hits, since although S2 may be the highest scored (best) homolog found forS1 when using S1 as
the query, this neither necessarily implies thatS1 is found with the same score nor that this is the

highest score, when usingS2 as query. This issue is often addressed by using bidirectional-best hits
instead of unidirectional-best hits. A bidirectional-best hit is de�ned as follows.

De�nition 17 Let A = f g j g is gene of organism 1g, B = f h j h is gene of organism 2g be two
Seq-setsand SA ;B : A � B �! R , SB;A : B � A �! R be two scoring functions that assign to each

pair g 2 A , h 2 B a score expressing the homology betweeng and h, and h and g respectively.
Then, pair g; h is a bidirectional best pair or hit i�. SA ;B (g; h) � SA ;B (g; h0) for all h0 2 B and

SB;A (h; g) � SB;A (h; g0) for all g0 2 A .

With Genlight's set oriented data model, method speci�c bidirectional-best hits can be easily de-

termined from two reverse, unidirectional comparisons. More precisely, letA and B be two Seq-sets
and H A ;B , H B;A be two Hit-sets containing homology results from two unidirectional comparisons

between sequences fromA and sequences fromB. Then, the subsequently given SQL-query selects
pair relationships satisfying the bidirectional-best hit criteria.

SELECT t1.query desc,
t2.query desc,

FROM H A , B t1,
H B , A t2,

WHERE t1.query sha1 id = t2.hit sha1 id AND
t1.hit sha1 id = t2.query sha1 id AND
t1.hsp rank = t2.hsp rank AND
t2.hsp rank = 1;

Observe, that unidirectional-best hits are speci�ed with the attribute constraint hsp rank=1 .
Attribute hsp rank ranks the pair relationships found by the comparison methodaccording to

their method speci�c score. This is due to concerns of speed and allows to retrieve the best pair of
a Hit-set e�ciently and avoids to maximize the score over several entries.
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Figure 5.10: Visualization of genomic rearrangements between the actino bacteriasC.glutamicum

and C.jeikeium (top), and C.glutamicum and C.diptheriae (bottom) using Genlight.
The upper plot clearly shows genomic inversions. Responsible for the gap visible in

the lower plot is a bacteriophage inserted into the genome ofC.glutamicum [KBB + 03].

Relationships between genes were determined with aHit-set containing bidirectional-
best BLAST hit information. Data points are colored based on alignmentbit scores.
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Di�erential comparative analyses

Di�erential comparative genome analyses have been successfully used to identify species speci�c
genes or genes responsible for a certain phenotype [RZG+ 02]. They can help, for instance, to identify

genes responsible for the pathogenicity of an organism by comparison of the organism's genome with

closely related apathogenic organisms. Such analyses involve the inclusion of genes with a homolog
in organisms sharing a certain phenotype (the pathogenicity) and an exclusion of genes with a

homolog in an organism not showing this phenotype (being apathogenic). Assume that we have
the proteomes of two organisms A and B showing a certain phenotype and the proteome of a third

organism C not showing this phenotype. Then, it would be interesting to identify genes of A also
existing in B, but not in C under the assumption that these genes, or at least some of them, are

responsible for the observed common phenotype of A and B.

Such questions can be answered withGenlight's data model using standard SQL queries. More
precisely, let A , B, C be three Seq-setsand H A ;B and H A ;C be two Hit-sets de�ning a (homology

based) relationship between members fromA and B and A and C respectively. Then SQL-query

SELECT sha1 seq id FROM A
INTERSECT ( SELECT query sha1 id FROM H A , B )
EXCEPT ( SELECT query sha1 id FROM H A , C);

determines all sequence identi�ers of sequences inA that have a counterpart in B de�ned by H A ;B

and no counterpart in C according to H A ;C. To determine the desired result we employ the SQL
concept of select chaining. That is, we combine severalSELECT statements with INTERSECT

and EXCEPT clauses. The semantics of these clauses are analogical to the homonymous operations
in set theory.

Select chaining also enables us to ask queries of type \Whichgenes ofA have a homolog inB OR
C?". The logical OR can be modeled using theUNION clause as follows:

SELECT sha1 seq id FROM A
INTERSECT (( SELECT query sha1 id FROM H A , B )

UNION
( SELECT query sha1 id FROM H A , C)

);

5.5.3 More complex queries using computed sequence attribu tes

Beside the concept ofHit-sets for the pairwise comparison of sequences,Genlightintegrates various

protein family and motif databases with their speci�c search methods and sequence classi�cation
schemas (see section 5.4.4 on page 150 and section 5.4.5 on page 152). Once these database searches

are performed for the sequences of someSeq-set, their results are persistently stored in database

tables also instantiated from method speci�c templates. The computed information can then be
combined for more complex analysis tasks. Figure 5.11 showsan excerpt of Genlight's data model

after the sequences ofSeq-sethumanwere screened versus databasesTIGRFAM, Pfam, Smart, CDD,
COG, and PRINTS.

166



5.5 Database schema

human

PK sha1_seq_id
serial_id
seqnum
description
length
sequence

pfam_matches

FK sha1_seq_id
pfam_model_id
pfam_model_name
pfam_model_desc
hit_domain_number
hit_domain_total
hit_sequence_from
hit_sequence_to
hit_model_from
hit_model_to
hit_score
hit_evalue
overall_model_score
overall_model_evalue
ali_model_line
ali_mid_line
ali_query_line

tigrfam_matches

FK sha1_seq_id
tigrfam_model_id
tigrfam_model_name
tigrfam_model_desc
hit_domain_number
hit_domain_total
hit_sequence_from
hit_sequence_to
hit_model_from
hit_model_to
hit_score
hit_evalue
overall_model_score
overall_model_evalue
ali_model_line
ali_mid_line
ali_query_line

smart_matches

FK sha1_seq_id
smart_model_id
smart_model_name
smart_model_desc
hit_domain_number
hit_domain_total
hit_sequence_from
hit_sequence_to
hit_model_from
hit_model_to
hit_score
hit_evalue
overall_model_score
overall_model_evalue
ali_model_line
ali_mid_line
ali_query_line

CDD_matches

FK sha1_seq_id
cdd_model_acc
cdd_model_desc
model_length
hsp_bit_score
hsp_evalue
hsp_score
hsp_identities
hsp_positives
hsp_gaps
hsp_align_length
hsp_rank
hsp_query_from
hsp_query_to
hsp_model_from
hsp_model_to
hsp_ali_qseq
hsp_ali_midline
hsp_ali_model

prints_matches

FK sha1_seq_id
FK chain_id

prints_model_id
motif_acc
motif_desc
group_pos
rel_pos
match_length
match_sequence
threshold
score
minscore
maxscore
p_value
e_value
mss

prints_chains

PK chain_id
FK sha1_seq_id

chain_length
chain_score

cog_fun

PK fun_cat_ident
PK fun_category

fun_class

pfam2go

FK go_id
pfam_model_id

tigrfam2go

tigrfam_model_id
FK go_id

smart2go

smart_model_id
FK go_id

cog_hits

FK sha1_seq_id
FK cog_seq_id

query_desc
hit_length
hsp_bit_score
hsp_evalue
hsp_score
hsp_identities
hsp_positives
hsp_gaps
hsp_align_length
hsp_rank
hsp_query_from
hsp_query_to
hsp_hit_from
hsp_hit_to
hsp_ali_qseq
hsp_ali_midline
hsp_ali_hitseq

cog_info

PK cog_seq_id
cog_id

FK fun_category
cog_desc

FK source_organism_id
FK fun_cat_ident

prints2go

FK go_id
prints_model_id

tigr_role_names

PK role_id
role_type
role_name

tigr_role_link

tigrfam_model_id
FK role_id

pfam2clans

FK clan_id
pfam_model_id

pfam_clan_info

PK clan_id
clan_acc
clan_description
comment

cog_organisms

PK source_organism_id
taxonomy_id
lineage
organism_name

seq_features

PF sha1_seq_id
mol_w eight
iso_e_point
molar_absorption
charge

go_terms

PK go_id
go_term
term_type

Figure 5.11: An excerpt of Genlights data model showing relationships between aSeq-set (ta-

ble human), results of di�erent sequence analysis methods (tablestigrfam matches,
pfam matches, prints matches etc.), gene ontology mappings (tables pfam2go,

prints2go etc.), and functional classi�cation schemas (tables tigr role names,
tigr role link etc.). For details, see corresponding text.
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By incorporation of the results of these database searches and classi�cation information, it is now
possible to perform more complex queries on the data. Assumethat we are interested in all human

proteins containing a death domain, since we know in advancethat death domains are related to
apoptosis, the programmed cell death in multi cellular organisms. The death domain [CI95] is a

heterodimerization domain present in several proteins involved in apoptotic signal transduction.
Over-expression of these proteins usually leads to cell death. Since death domains constitute a

heterogeneous domain family, they are described by severalPfam models belonging toPfam clan

Death Domain Superfamily. Thus to identify proteins with a death domain, we should query the
human protein Seq-setfor sequences classi�ed with a certain con�dence to thisPfam clan instead of

looking for matches to a singleDeath Domain Pfam model. This is accomplished with the following
SQL query5:

SELECT description
FROM human
WHERE sha1 seq id IN

( SELECT query sha1 id
FROM pfam matches
WHERE hit evalue � 10-5 AND

pfam model id IN
( SELECT pfam model id

FROM pfam2clans
WHERE clan id IN

( SELECT clan id
FROM pfam clan info
WHERE clan description='Death Domain Superfamily'

)
)

);

To take only su�ciently con�dent classi�cations into accou nt, we restrict the Pfam matches to those

having an E-value lower or equal to 10� 5. In the above query we make use of sub queries instead of
joining the involved tables. Here all sub queries may returnmultiple rows which are processed by

the comparison operatorIN . Operator IN is similar to the 2 operator in mathematics.

We already addressed the problem of di�erent terminologiesused in di�erent databases and de-

scribed the Gene Ontologycontrolled vocabulary as an approach to solve this issue. Inthe follow-
ing, we will show how we can make use ofGO terms to collect results from di�erent data sources

employing di�erent naming conventions. Observe, that in the above query example we looked for
death domains as single indicator for a sequence to be involved in apoptosis and the only evidence

factor for the existence of such a domain, taken into account, was a hit to a Pfam model. Basically,
we face here two problems.

1. It is unlikely that the death domain is the only domain link ed to apoptosis, which is a process

that involves an orchestrated series of biochemical events. Hence, there may be proteins not
containing a death domain, but which nevertheless play a central role in the process of cell

death. With the above query we would fail to detect these proteins.

5For the following examples we use the data model as given in Fi gure 5.11.

168



5.5 Database schema

2. Domain/motif databases, even large ones likePfam, are often incomplete in certain areas or
contain suboptimal models which do not detect all related sequences (of a family). Hence,

a di�erent model taken from a di�erent database may further d etect proteins involved in
apoptosis.

To overcome these pitfalls we have to consider results from searches in multiple di�erent databases.

To address the problem of di�erent naming conventions we useGO terms for querying instead of

attributes of certain database entries. This procedure implies that entries of databases likePfam,
TIGRFAM, etc. can be mapped toGO categories. Such mappings, which are built with expert

knowledge and are freely available for certain domain and motif databases, are also integrated
into Genlight. Therefore, it is possible to (i) look up from the gene ontology (all) entries linked to

apoptosis, (ii) to look up with the mapping information the m odel identi�ers of databases likePfam,
TIGRFAM, or Smart, and (iii) to �nally return the sequences matching these models. This can be

performed with the following SQL-query.

SELECT description FROM human WHERE sha1seq id IN (
(SELECT querysha1 id FROM pfammatches WHERE hitevalue � 10-5 AND pfammodel id IN (

SELECT pfammodel id FROM pfam2go WHERE goid IN (
SELECT goid FROM goterms WHERE name='apoptosis'
)

)
)
UNION
(SELECT querysha1 id FROM tigrfam matches WHERE hitevalue � 10-5 AND tigrfam model id IN (

SELECT tigrfam model id FROM tigrfam2go WHERE goid IN (
SELECT goid FROM goterms WHERE name='apoptosis'
)

)
)
UNION
(SELECT querysha1 id FROM smartmatches WHERE hitevalue � 10-5 AND smartmodel id IN (

SELECT smartmodel id FROM smart2go WHERE goid IN (
SELECT goid FROM goterms WHERE name='apoptosis'
)

)
)
UNION
(SELECT DISTINCT t1.sha1seq id FROM prints matches t1, prints chains t2
WHERE t1.chainid=t2.chain id AND

t2.p value � 10-3 AND
t2.chain length > 2 AND
t1.prints model id IN (

SELECT prints model id FROM prints2go WHERE goid IN (
SELECT goid FROM goterms WHERE name='apoptosis'

)
)

)
);

This query selects all sequences (more precisely their descriptions) from our Seq-sethumanthat
contain a match of reasonable quality to one of the databasesPfam, TIGRFAM, Smart, and PRINTS
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(stored in tables pfam matches, tigrfam matches, smart matches, etc.) by chaining SELECT
statements, speci�c to retrieve certain database search results, with the UNION clause. Addition-

ally, to be picked up by the query, sequences have to match database entries that are linked with
the mapping tablespfam2go, tigrfam2go , smart2go, and prints2go via attribute go id to the GO

term apoptosis.

5.5.4 Genlight as a data warehouse

Figures 5.9 on page 161 and 5.11 on page 167 clearly show thatGenlights data model is not fully
normalized, according to normalization forms known in relational database theory [Ken83]. This

process ofdenormalization is common for systems intended forOLAP (On Line Analytical Pro-
cessing). In contrast to OLTP (On Line Transaction Processing) systems, which are designed for

handling a high volume of transactions, like inserting/deleting or modifying relatively small amounts
of data, and hence often employing highly normalized data models, OLAP systems are primarily

designed for read-only reporting and data analysis. E.g., for the purpose of data analyses a high level
of normalization often has an disadvantageous e�ect on query response times, since normalization

splits related data into several database tables, which, have to be combined again for querying,
using costly table joining operations.

For Genlightshort query response times are essential due to the interactive character of the system.
Consequently the employed data model, which is optimized for short query response times by

intended denormalization through the introduction of data redundancy6 has more characteristics
of a typical OLAP than an OLTP system. This is not in contradiction to the fact, that Genlight

also carries out several data generating analysis tasks, which lead to extensive data insertions and
modi�cations, since these tasks are executed asynchronously by the distributed execution approach,

and hence are independent from guaranteed response and completion times.

Typical representatives of OLAP like systems, are the so called data warehouses. They followan
information integration concept and integrate data from heterogeneous and distributed sources into

one system to allow a global view on the data by enabling source data comprehensive queries and

data analyses. Following this view,Genlightalso shares several characteristics with data warehouses.
In particular, by the persistent storage of computed results in a query-optimized data model that

allows to combine heterogeneous information in complex queries, Genlight builds, while analyzing
a certain organism's genome or proteome, an integrated information resource from the computed

sequence analysis results. This resource can be accessed byusing standard SQL queries even from
external applications as well as by a user-friendly web interface automatically generating the needed

SQL queries and thus hiding the internals of the underlying data model from the user.

5.6 The Genlight user interface

For interaction with the system, we developed a 
exible and powerful web-interface that, while
containing a high information density, is still user-friendly and easy to use. It allows the user to set

up sequence comparison jobs and to perform all operations onSeq-setsand Hit-sets described in this

6Genlight also employs B-Tree indexing of certain attribute �elds to e nsure short query response times.
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chapter, or to import/export Seq-setand Hit-set information in a completely interactive way. For
operations that cannot be handled interactively like the comparison of largeSeq-setsets which are

processed asynchronously by the distributed execution engine, the processing state and progress of
computation is directly visible in the interface. Once computation has �nished, these informations

are dynamically updated and the newly computed results are available for further analyses. This
is a major advantage in comparison to other systems, which use pre-computed data and present it

in a static way. The generated results can be viewed in tabular as well as in graphical form, using

intuitive visualizations. Throughout this thesis, we already presented visualizations generated by
Genlightin various �gures. For example the sequence to structure mapping �gures in chapter 2 (see

Figures 2.1 on page 9 and 2.2 on page 10), the visualizations of single PSSM matches and matches
to PSSM family models in Figure 4.2 on page 108, the demonstration of functional classi�cation of

sequences intoCOG/ KOG categories (see Figure 5.6 on page 155), or the visualization of genome
rearrangements shown in Figure 5.10 on page 165.

The central place of Genlight's user interface, which is also the entry point after successful authen-

tication and project selection, is the overview page of a project's workspace (see Figure 5.12). It
shows allSeq-sets, Hit-sets and user de�ned �lters available in the selected project andgives the user

a comprehensive overview of already performed or ongoing analyses. Indicated are the processing

states of certain analyses, i.e., which analyses for whichSeq-setsare already computed, which are
in processing state or waiting in the systems job-queue to beexecuted by the distributed execution

engine.

From the project overview page, the information contained in a certain Seq-setor Hit-set is quickly
accessible, following a hyper text reference. Informationcontained in a Hit-set is conveniently dis-

played in tabular (see Figure 5.13) as well as in graphical forms (see Figure 5.14). Descriptions of
sequences in aHit-set can be searched using exact patterns or regular expressions, allowing a quick

navigation even in largeHit-sets. If the user is interested in further details of a Hit-set entry, like
concrete alignment information, Genlightgenerates this information on the 
y by comparing the two

involved sequences of aHit-set entry with the sequence comparison method that has been usedto

generate this speci�cHit-set . Alignment informations are due to concerns of space not stored in the
underlying database. Alignments are presented in colored textual as well as in graphical form (see

Figure 5.15). In case of a comparison with a nucleotide sequence being involved, additional informa-
tion about start- and stop-codons and potential open reading frames are dynamically determined

and presented in graphical form (see Figure 5.16).

Results that arose from screenings of aSeq-setversus one of the integrated domain and family
databases are also presented in a comprehensive manner including additional derived information

like Gene Ontologyclassi�cations. This allows a unifying view on the determined database search re-
sults. For an example see Figure 5.17 which shows the resultsof a search with a protein sequence from

H.pylori versus thePRINTS database usingPoSSuMsearch. Observe that both database matches,

although being di�erent, are classi�ed to the same GO categories.

For searches in databases with structure information available, Genlightcan retrieve structure infor-
mation from the source database and allows to visualize these information using structure viewer

applications like Jmol or Rasmol. This allows for direct mapping of sequence features, like homology
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Figure 5.12: Genlight's project workspace overview, showing information aboutSeq-setsand Hit-
sets of the current project. In the upper right corner, informati on about the current

project is displayed, like its name, the project id, project owner, privacy status, and
the creation time. The top of the page shows theGenlightnavigation menu. This menu

is present on almost all pages of the system and allows an easyand quick navigation
to di�erent sections of the system. The upper table gives information about available

Seq-setsand the availability of screening results versus databaseslike Pfam, TIGRFAM,

Smart, etc., whereas the two centered tables show computedHit-sets. The table at the
bottom of the page shows user de�nedHit-set �lters available in this project.
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Figure 5.13: Tabular view of the content of a Hit-set . For each entry (matching sequence pair),

several attributes characterizing the entry are displayed. Entries can be displayed in
sorted order using di�erent sort keys, like E-value, score,rank, number of identities,

number of positives or query/hit description.
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Figure 5.14: Graphical view of a Hit-set . Shown are matches resulting from aBLASTX search

of a contig sequence of the alpha proteobacteriaSerratia proteamaculans versus the
Escherichia coli proteome. Matches are colored according to the obtained alignment

score.
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Figure 5.15: Visualization of on the 
y generated BLASTP alignment information for a Hit-set
entry. In the coloured textual alignment, identical amino acids are marked red, similar

amino acid (positives) are marked blue. Gaps are shown as black dashes.
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Figure 5.16: Visualization of aFASTY alignment with additional start/stop codon and open reading
frame information. Potential open reading frames are marked as blue arrows, start

(stop) codons are shown as small green (red) boxes in the upper part of this �gure. In
this example, the aligned regions correspond to a potentialopen reading frame in the

frame one translation of the shown nucleotide sequence.
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Figure 5.17: Visualization of database search results froma screening versus thePRINTS database

using PoSSuMsearch. Genlightallows to map obtained results directly to GOcategories.
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Figure 5.18: Mapping of homology information determined bya PsiBLAST search versus theSCOP
sequence database onPDB structures corresponding toSCOPentries.

information to the structure models, by automatically generating viewer speci�c script �les. For an

example see Figure 5.18.

Wherever possibleGenlight also references to external data sources allowing the user to retrieve
additional information not contained inside the system. E.g., references to web pages describing a

certain family complement the information of the publicly available HMM collections integrated
into Genlightwith a variety of additional information. These informatio n are quickly accessible from

Genlight's interface following a single hyper text reference.

5.7 Genlight case studies

5.7.1 Detection and analysis of the Smh gene family in maize

In [MBG + 03] we detected a new gene family in maize (Zea mays), called Single myb histone (Smh)

family, with the help of the Genlight prototype system. We screenedGenBank, ZmDB [DRF+ 03]

and Pioneer Hi-Bred (PHI)7 expressed sequence tag (EST) databases withGenlight's built-in se-
quence comparison and domain search methods for the occurrence of the myb-like domain of human

telomeric protein TRF1. TRF1 binds to repeats at chromosomeends and has homology to the DNA-

7http://www.pioneer.com/
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binding domain of the Myb family of transcription factors, b ut unlike most Myb related proteins,
TRF1 carries only one rather than multiple Myb-like binding motifs. We identi�ed several maize

ESTs that encoded proteins with a single N-terminal myb-like domain. Together, the EST and
additional cDNA library screens uncovered cDNAs from �ve related genes. The deduced protein se-

quences from �ve di�erent full-length cDNAs revealed a family of small basic proteins. The cDNAs
belonged to an uncharacterized gene family, theSmh gene family. Detailed sequence analysis with

Genlight revealed a number of surprising features ofSmh genes. The most remarkable aspect was

their triple-motif structure, which has not been previously described in any system, plant, animal,
fungal, or bacterial. Namely, Smh genes have

� (a) an N-terminal myb like or SANT domain of the homeodomain-like superfamily of 3-helical-
bundle-fold proteins,

� (b) a central region with homology to the globular domain of linker histones H1/H15, and

� (c) a strong prediction signature for a coiled-coil domain near the C-terminus.

See Figure 5.19 for the gene model ofSmh1 and an excerpt of the underlying Genlight analysis

results. Table 5.5 gives more details about all members of the Smh family.

Additional large scale database searches withGenlightversusGenBankand Swiss-Protrevealed that

Smh-type genes are plant speci�c and include a gene family inArabidopsis thaliana and one gene
(PcMYB1) of parsley (Petroselinum crispum). Various wet-lab experiments with a chosen member

of the Smh family ( Smh1) showed the ability to bind telomeric DNA repeats in vitro.

5.7.2 Analysis of Xenopus laevis expressed sequence tag clusters

Agglomerative clustering of Expressed Sequence Tags (EST)sequences is a widely used method for

analyzing the transcriptome of a genome. Especially in organisms where the genome sequence is
not (yet) sequenced, the EST data is a valuable source of information. In [SBB + ] Genlightwas used

for extensive analysis of 31,353 tentative contig (TC) and 40,877 singleton sequences resulting from

clustering and assembly of all 350,468 ESTs of the african claw frog Xenopus laevisas were avail-
able in November 2003.Xenopus laevisis a major model organism for early embryonic vertebrate

development. Since its genome is not fully sequenced yet, inparticular due to problems introduced
by its pseudo-tetraploidity, extensive analysis of available EST information seems to be promising

and may lead to new insights in embryonic vertebrate biology.

Our analysis of X.laevis ESTs described in [SBB+ ] focused on the identi�cation of full length
contigs, representing potential new, yet unknown genes from X.laevis. Therefore, sequences were

subject to BLASTX and FASTY homology searches withGenlightin NCBI's non-redundant protein
database (NR), the proteomes of �ve major model organisms (H.sapiens, M.musculus, R.norvegicus,

C.elegans, D.melanogaster), X.laevis and the closely relatedX.tropicalis . We choseFASTY , which is

a version of theFASTA program that compares a DNA sequence to a protein sequence database by
translating the DNA sequence in all six reading frames, since it allows in contrast to BLASTX for

frame shifts. As EST sequences contain many sequencing errors, and even the assembly of clusters
cannot correct all of these, frame shift tolerant database searching with FASTY should, though
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(A): ZmSMH1 gene model/domain structure
1

N C

299

56 1307 203 237 280

Myb/SANT linker histone H1/H5 coiled-coil domain

(B): Results of screening vs. CDD

(C): Results of screening vs. Smart

(D): Results of coiled-coil prediction with program COILS

Figure 5.19: An excerpt of Genlightanalysis results for ZmSMH1. For the derived domain structure
of ZmSMH1 see (A). Database searches vs.CDD and Smart (see (B) and (C)) show

near the N-terminus the myb-like or SANT domain and more centered the linker his-
tone 1 and 5 domain. The analysis of potential coiled-coil formations reveals a strong

prediction signature near the C-terminus (see (D)). Plot (D) shows the probability for

coiled-coil formation using windows of width 14, 21, and 28.
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Gene GenBankAccession No. Protein (length;mass;pI) Domain Location

ZmSMH1 AY271659 299;32.6;9.07 SANT R7-L56
H15 D130-K203

CC K237-D280

ZmSMH3 AY280629 285;31.3;9.45 SANT K7-L56
H15 G111-V173

CC E219-E264

ZmSMH4 AY280631 288;31.3;9.33 SANT K7-L56
H15 P115-I173

CC V229-S260

ZmSMH5 AY280630 286;31.4;8.71 SANT R7-M56
H15 K120-V182

CC M226-V286

ZmSMH6 AY280632 298;33;8.78 SANT R7-M56
H15 N127-K200

CC M236-A297

Table 5.5: Smh-type genes and predicted protein features. Domain names and database identi�ers
for SANT are cd00167, SW13, ADA2, N-CoR, and TFIIIB DNA-bind ing domains from

NCBI's conserved domain database (CDD); H15 is cd00073, linker histone1 and 5 do-
mains, from CDD or smart00526, domain in histones families 1and 5 from Smart; CC is

the coiled-coil domain, which is indicated for any region where a peak probability exceeds

0.8. Column 3 gives the length of the amino acid sequence, themolecular weight in kilo
Dalton [kD] and the isoelectric point.
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(A): Open Reading Frames of X.laevis contig sequence

(B): BLASTX alignment of X.laevis contig sequence

(C): FASTY alignment of X.laevis contig sequence

Figure 5.20: Comparison of aBLASTX alignment with corresponding full length FASTY align-

ment, generated with Genlight. Open reading frames are indicated by blue boxes in

(a), start and stop codons by green and red boxes, respectivly. The assembled contig
sequence has a frame shift at position 1150 from frame 1 to frame 3, generating two

distinct HSPs in the BLASTX alignment (b). FASTY clearly corrects this frame shift
and generates a full alignment (c).

more CPU-intensive, maximize the length of the resulting alignments and hence allow to identify

full length contigs even if they contain frame shifts. For an example of the di�erences between
BLASTX and FASTY screening results for a contig sequence containing a frame shift, see Figure

5.20.

In particular, for these large-scaleBLASTX and FASTY homology searches, the distributed exe-

cution approach used inGenlightproved to be very powerful, and reduced, in combination withthe
application of external compute resources, the overall time needed for these tasks dramatically. For

these analyses, we disposed external compute resources at the Center of Biotechnology of Bielefeld
university as well as a huge cluster system at the supercomputing facility of Florida state univer-

sity. Results determined with external resources were easily integrated using Genlight's XML/XSLT
import layer (see Figure 5.1).

For full length contig identi�cation di�erent Hit-set �lters were de�ned and applied to the Hit-sets

containing FASTY screening results versus the model organisms.FASTY hits were categorized into

four classes, representing the quality of the full length matches (see Figure 5.21).

� (1) Class 1 hits are de�ned as matches covering 100% of the sequence of a known protein.

Additionally, the matched protein sequence has to start with a conserved methionine has to
end at a conserved STOP codon.
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CAP3 consensus

FASTY hit

CAP3 consensus

FASTY hit

Protein P

Protein P

CAP3 consensus

FASTY hit

ATG

M Protein P

STOP

Class 1

CAP3 consensus

FASTY hit

ATG

M Protein P

Class 2

Class 3

Class 4

Figure 5.21: ESTs derived from di�erent clones were compared to protein databases usingBLASTX
and FASTY and hits were categorized in 4 categories. Class 1 hits had tomatch the

whole protein sequence and start with an ATG in the TC and an methionine (M) in
the protein and the hit had to end at a STOP codon. Class 2 hits had to match the

whole protein sequence, start with an ATG in the TC and M in the protein. Class 3 had
to match the full protein sequence (without further restric tions), class 4 had to cover

the protein over almost its full length, allowing the match t o start or end maximal 10
amino acids after/before the start or end of the protein.

183



5 Genlight - a system for interactive, high-throughput, di� erential genome analysis

Class NR Human Mouse Rat Fruit 
y C.elegans X.laevis X.tropicalis

Comparison method: BLASTX

1 3,942 1,760 1,765 1,455 219 140 2,918 495

2 5,050 2,067 2,076 1,736 311 233 3,104 541
3 7,792 2,647 2,919 2,592 392 283 3,898 590

4 12,389 5,587 5,841 3,078 2,071 1,856 5,024 1,033

Comparison method: FASTY

1 5,139 2,347 2,337 1,930 268 190 3,862 660
2 6,243 2,692 2,671 2,248 383 296 4,119 721

3 9,576 3528 3,774 3,374 473 357 4,967 796
4 14,094 6,467 6,701 6,341 2,249 1,918 5,701 1,241

Table 5.6: Number of X.laevis contigs with full length BLASTX and FASTY hits in the non-
redundant protein database (NR), �ve model organisms, and available X.laevis and

X.tropicalis proteins. Lower quality categories include sequences fromhigher, more strin-

gent categories.

� (2) Class 2 hits are de�ned as matches covering 100% of the sequence of a known protein.

Additionally, the matched sequence has to include the initial methionine.

� (3) Class 3 hits are matches capable of covering 100% of the matched protein sequence with
no additional constraints.

� (4) Class 4 hits are matches that cover the protein over almost its full length, allowing the

match to start or end up to 10 amino acids after or before the start or end of the protein

respectively.

Table 5.6 shows the numbers of full length sequences matching proteins for each model organism.

For a functional classi�cation of the clustered X.laevis data set, a non-redundant sequence set

was built by selecting in each cluster a single contig. This resulted in 26,187 sequences. This non-
redundant data set was then classi�ed based on homology to known proteins from the KOGdatabase

using SSEARCH (Smith-Waterman) with an E-value cuto� of 10 � 5. 17,624 sequences (67.3%) had
a hit against the KOGdatabase under these constraints and could be assigned a functional category,

see Figure 5.22.

5.7.3 Identi�cation of potential drug targets in Helicobac ter pylori

Subsequently, we describe the application of theGenlightsystem to detect potential drug targets in

the human pathogenHelicobacter pylori using Genlight's integrated sequence analysis methods and

capabilities for di�erential genome analyses. Parts of this study were carried out by the department
of BioChem Informatics of Intervet Innovation GmbH, our pro ject partner in the development of

the Genlightsystem, and were published in [BMM+ 04].

H.pylori is a spiral shaped bacterium living in the stomach and duodenum of humans and in other
mammalians [THHM92]. Uncontrolled H.pylori infections are a major factor for duodenal ulcers,
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[D] Cell cycle control, cell division, chromosome partitioning
[Y] Nuclear structure
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[T] Signal transduction mechanism
[M] Cell wall/membrane/envelope biogenesis
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[G] Carbohydrate transport and metabolism
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[F] Nucleotide transport and metabolism
[H] Coenzyme transport and metabolism
[I] Lipid transport and metabolism
[P] Inorganic ion transport and metabolism
[Q] Secondary metabolites biosynthesis, transport and catabolism
[R] General function prediction only
[S] Function unknown

Functional classification based on homology to the euKaryotic clusters of Orthologous Groups (KOG) database 

Figure 5.22: Functional classi�cation of 26,187 non redundant X.laevis sequences based on similarity

determined with SSEARCH to the euKaryotic clusters of Orthologous Groups (KOG)
database. Classi�cation criteria was best hit with an E-value of at least 10� 5.

gastric ulcers, stomach cancer, and non-ulcer dyspepsia [Mar02]. The sequencing of theH.pylori

genome (strainsH.pylori 26695 andH.pylori J99) o�ers the chance to develop highly speci�c treat-
ments againstH.pylori infections [TWK + 97, ALM + 99]. With the idea of minimizing toxicological

e�ects, a perfect drug target protein should have low similarity to eukaryotic proteins [GK99]. Such

genes are the most obvious candidates for drug targets. The strategy of this study was therefore to
�nd all H.pylori proteins with low similarity to known eukaryotes.

The H.pylori J99 proteome consisting of 1,487 protein sequences was compared to various eukaryotic

proteome sets (see Table 5.7) using theBLASTP sequence comparison method integrated into
Genlight. From the resulting Hit-sets all H.pylori proteins that have no homolog in one of the

eukaryotes with a BLASTP bit-score of at least 30 were extracted. After this initial � ltering step
only 226 H.pylori sequences remained.

In a subsequent analysis step the remaining 226 protein sequences were screened for putative

drug/vaccine targets using Genlight's integrated protein family and motif databases Pfam, TIGR-

FAM, Smart, PRINTS, BLOCKS, and CDD. UreI, a well known drug target [STLDR98, BMSLDR01],
which served as an internal control, was detected within this sequence set. UreI encodes an activated

urea channel enabling urea access to intrabacterial ureaseat acidic pH. UreI is necessary for the
survival of H.pylori at pH < 4:0 [MRHSM02].
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Organism Number of protein sequences

H.sapiens(IPI) 43,426
M.musculus (IPI) 40,742

R.norvegicus (IPI) 33,028
A.thaliana 26,192

C.elegans 22,439
D.melanogaster 16,106

S.cerevisae 6,195

P.falciparum 5,257
S.pombe 5,037

E.cuniculli 1,908
G.theta 451

Total 200,781

Table 5.7: Eukaryotic proteome sets used in the comparativeanalyses.

Pfam/ BLOCKS Acc. Description

PF06160 Septation ring formation regulator, EzrA

PF07432 Histone H1-like protein Hc1
PF01098 Cell cycle protein

PF00493 MCM2/3/5 family

PF01189 NOL1/NOLP2/sun family
PF03568 Peptidase family C50

IPB001182 Cell cycle protein

Table 5.8: Pfam and BLOCKS protein families known to be involved in the cell cycle process in
bacteria.

186



5.7 Genlight case studies

Figure 5.23: Results of database searches withH.pylori protein FTSW HELPJ in BLOCKS using

PoSSuMsearch(top) and Pfam using hmmpfam (bottom). The results of both methods
reveal strong evidence for FtsW family membership.

Identi�cation of cell cycle proteins

Vital processes, like the process of cell division, are of special interest for drug development. Proteins
involved in these processes are quite often fundamental andtherefore are putative drug targets. In

order to �nd such putative targets the remaining 226 protein sequences were screened for several
families known to be involved in the cell cycle process in bacteria. More precisely, we queried

the screening results for hits to the protein families givenin Table 5.8. This query resulted in a
potential target, the cell division protein FtsW. See Figure 5.23 for matches of this protein versus

BLOCKSand Pfam models. FtsW is a polytopic membrane protein that is required for cell division

in E.coli [KBD94, IJI + 89] and that is present in virtually all bacteria having a peptidoglycan cell
wall [LA02, ISW + 89, HGPM98]. It is also discussed in the context of chemotherapeutic intervention

of M.tuberculosis [DDBB02].

Identi�cation of surface proteins

Surface proteins playing a role in pathogen-host interactions represent potential targets for vac-
cination [SLZA+ 02]. To �nd such putative targets within the speci�c H.pylori proteins, the 226

protein sequences were analyzed for the appearance of surface exposed proteins using anhmmpfam
screening versusGenlight's integrated Pfam database. Thirteen potential outer membrane proteins

were found in this screening (data not shown here, see [BMM+ 04]). These proteins could serve as
potential candidates for vaccination.

The detection of UreI, FtsW, and outer membrane proteins clearly demonstrates the ability of

Genlightto detect potential drug targets with its built in sequence analysis methods. In particular
the di�erential or subtractive genome comparison approaches possible withGenlight allow to cut

down a genome scale data set to a manageable size focusing on genes or proteins with interesting,

user de�ned characteristics. UreA, UreB, VacA, and other well known pharmaceutical targets were
not included in our analyses, since they do not pass the initial �ltering step due to their signi�cant

similarity to eukaryotic proteins [SJ99]. Observe that thi s �nding is in accordance to our strategy
to detect only proteins with very low similarity to eukaryot ic proteins.
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5.8 Concluding remarks on Genlight

In this chapter, we describedGenlightan interactive system for high-throughput sequence analysis

with speci�c features for di�erential comparative genome analysis. Due to its distributed client
server concept that allows an asynchronous execution of sequence analysis and comparison tasks, it

is suitable for large scale analysis of nucleotide as well asprotein sequence data in reasonable time.
Genlightcan facilitate available compute resources and build a virtual cluster system from normal

department workstation computers. The overhead necessaryfor managing compute nodes inside the
virtual cluster is negligible leading to an excellent scaling behavior with an overall running time

nearly inversely proportional to the number of used CPUs. This approach allows sequence analyses
on a scale otherwise only achievable with large and expensive cluster systems.Genlight contains

integrated scheduling and queuing components. Consequently, there is no need for specialized third

party software, which is often di�cult to install and mainta in.

A unique property of Genlightis its powerful, set oriented data model, that anchors the reusability
of results in the system design and allows a protocol based step by step modeling of complex

work
ows. Genlightintegrates and automates a variety of sequence analysis methods, including our
PSSM matching softwarePoSSuMsearch, in a common environment, thus saving hours of tedious

work that would otherwise be needed for performing all analysis tasks sequentially and manually in a
non-integrated fashion. Due to the persistency of computedresults and extensive query capabilities,

Genlightcan also be used as a data warehouse for sequence data and allows to build organism speci�c
information resources. For easy access to and interactive work with the system we implemented a

powerful, platform-independent web interface that allows to present derived results in a clearly

arranged way and employs various result visualizations. Wealso remark, that Genlight is not just
a prototype developed in an academic environment. It is a system ready for production and has

already been installed and is successfully used for di�erent research projects in the pharmaceutical
industry. Furthermore its merits were already evaluated and have been proven valuable in several

scienti�c studies [MBG + 03, SBGA04, MMBB05, SBB+ ].

5.8.1 Potential future developments and system extensions

Although Genlightalready supports a variety of sequence analysis methods andintegrates various

databases into a common environment, there are still several methods and databases which have
not found their way into Genlightyet, but which would de�nitely �t in the context of the system and

could bene�t from the developed generic concepts and the high-throughput analysis infrastructure.

Integration of PoSSuMsearch and PSfamSearch as additional screening methods for pHMM
based databases

In GenlightPoSSuMsearchis currently only used for searching with PSSM family modelsfrom the

PRINTS and BLOCKS databases. We have shown that using PSSM family models in combination
with fast index based PSSM searching as implemented inPoSSuMsearch, is an alternative to time

consuming pHMM based methods in the context of protein family assignment and classi�cation. In
section 4.6.2 on page 127 we further demonstrated with the combined approachPSfamSearch, that

188



5.8 Concluding remarks onGenlight

PSSM family models derived from pHMM seed alignments can be used for search space reduction
and hence to speed up the search with pHMMs dramatically. Therefore, it is reasonable to integrate

PoSSuMsearchas well asPSfamSearchas additional search methods for pHMM based databases
like Pfam, TIGRFAM, CATH, Superfamily, or Smart into Genlight. Due to the generic and modular

structure of Genlight, the integration of such new analysis methods is straightforward and can be
easily accomplished. One can also think about the integration of further major pHMM based protein

family collections, like for example the Pantherdatabase [MLUL+ 05].

Up to now, analysis methods and databases integrated intoGenlightshow a bias towards the analysis

of amino acid sequences. However, noncoding DNA and RNA sequences attracted an increased
attention in the last years since it became clear that they play a central role in many regulatory

processes. To illustrate the potential importance of this non-protein coding genes consider the
human genome. About 5% of the genome is evolutionarily conserved with respect to rodent genomic

sequences, and therefore is inferred to be functionally important [Rat04, Mou02], but only about
one-third of the sequence under such selection is predictedto encode proteins [Con01]. In [ENC04],

the authors state that the collective knowledge about putative functional, noncoding elements, which
represent the majority of the remaining functional sequences in the human genome is remarkable

underdeveloped.

To the types of analyses necessary for identi�cation and function predicition of these noncoding

elements belong, among other things, the search for

� cis-regulatory elements, like transcription factor binding sites,

� microRNAs and their target sites, and

� structurally conserved noncoding RNAs.

Detection of transcription factor binding sites

The search for transcription factor binding sites can be e�ciently accomplished with PoSSuMsearch

using PSSMs from collections likeTRANSFAC. Unfortunately, the licensing conditions of the com-
mercial TRANSFACdatabase, the major collection of binding site signatures used in this �eld, does

not allow an integration into a publicly available system li ke Genlight. Possibly, the actually rela-
tively small open access databaseJASPAR[SAE+ 04] will o�er a free alternative signature resource

in the future, when the number of contained binding site signatures increases.

Methods for miRNA prediction

MicroRNAs (miRNAs for short) [Ruv01] are short single-stranded RNA molecules of about 21-23
nucleotides that post-transcriptionally regulate the expression of target genes by binding to the

target mRNAs, and inhibit translation or facilitates cleav age of the mRNA. They are known to be

involved in several regulatory processes and hence are of increasing importance also for the phar-
maceutical industry. For their prediction, programs like mirscan [LGY + 03] or PoMiR II [NKKZ06]

were developed, which probably can be integrated intoGenlightas additional analysis methods for
DNA/RNA sequences.
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Methods for miRNA target prediction

Widely used tools for the prediction of potential microRNA t arget sites are programs likeRNAhybrid
program [Reh06, RSHG04],PicTar [KGP + 05], miranda [EJG+ 03], or targetscan [LSJR+ 03]. They

compute the ability of a given miRNA to bind to a given target m RNA. Such programs could
be integrated into Genlightas sequence analysis methods, establishing a pair relationship between

two sets of nucleotide sequences, comparable to the alreadysupported pairwise alignment methods

BLAST and FASTA . Their results could then be represented in form of a method speci�c Hit-set
table.

Integration of methods for the detection of structurally co nserved noncoding RNAs

With the detection of microRNAs and other structurally cons erved noncoding RNAs and their
involvement in several central regulatory processes, a lotof e�ort was spent on the development

of computational methods and tools for their reliable detection. In the following we brie
y in-
troduce existing methods and resources whose integration into Genlightcould be reasonable. One

important resource from this �eld is the Rfamcollection of known structurally conserved noncoding
RNAs [GJMM + 05]. Rfamdescribes families of noncoding RNAs with covariance models [ED94] and

can be searched with theINFERNAL program [Edd02]. In Genlight, INFERNAL could be integrated
as an additional database screening method, comparable to the already integrated PoSSuMsearch

and hmmpfam methods.

A di�erent approach, combining description of and searching for structurally conserved noncoding

RNAs is used in the thermodynamic matcher approach described in [HHG06]. This may also lead in
the future to collections of programs suitable for searching for speci�c structurally conserved RNAs

and may o�er an alternative to the covariance models used inRfam.

A program for the detection of new structurally conserved RNAs, which works in the absence of
an available structure model is theRNAz program [WHS05].RNAz predicts structurally conserved

and thermodynamically stable RNA secondary structures in multiple sequence alignments. It can
be used in genome wide screenings to detect new functional RNA structures, as found in noncoding

RNAs and cis-acting regulatory elements of mRNAs.

Integration of metabolic pathway information

In recent years the Kyoto Encyclopedia of Genes and Genomes (KEGG for short) [KGH + 06] has

developed to a major resource for metabolic pathways, bio molecular interactions and reaction

networks. A proper integration of the information contained in the KEGGdatabase into Genlight
would allow for a mapping of proteins to pathway data and hence a quick assessment of existing

metabolic pathways in an organism's genome. Moreover, sophisticated di�erential screenings on the
pathway level between certain organisms would become possible.
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Provision of Genlight as a web service

Under the assumption of su�ciently available compute resources one can think about the develop-

ment of a web service API forGenlight's analysis capabilities. This would allow an external user, or
even an external system to participate from the implementedinfrastructure and the distributed ex-

ecution approach by sending sequence data via the web service to Genlightand receive, for instance,

all results obtained from a database search in one or even allof the integrated motif and protein
family databases.
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6 Conclusions and prospects

6.1 Concluding remarks

The contributions made with this thesis can be subdivided into two parts, namely an algorithmic
and a software engineering part. We presented not only several algorithmic contributions to the

�eld of sequence analysis using PSSMs as approximate motif descriptors, but also implemented
these newly developed algorithms in our search toolPoSSuMsearch. With the Genlightsystem, we

further developed a production ready system, integratingPoSSuMsearchand a variety of existing
sequence analysis methods in a common and user-friendly environment suitable for interactive high-

throughput sequence analysis tasks.

Our �rst main contribution is the development of a new non-heuristic algorithm, called ESAsearch,

to e�ciently �nd matches of PSSMs in large databases. ESAsearch facilitates persistently stored
enhanced su�x arrays for search space indexing and allows tosearch a database with a PSSM

in sublinear expected time. We presented a detailed complexity analysis which revealed sublinear
running time in the expected case, and linear running time inthe worst case for sequences not shorter

than jA m + m � 1j, wherem is the length of the PSSM andA a �nite alphabet. We tested algorithm
ESAsearch in various experiments on nucleotide as well as amino acid data. In these experiments

ESAsearch shows speedups of factor between 17 and 275 compared to the best previous methods
for nucleotide PSSMs, and speedups up to factor 1.8 for aminoacid PSSMs. Comparisons with

the most widely used programs that all use variants of theSPsearchalgorithm for searching with
PSSMs even show speedups by a factor of at least 3.8.

SinceESAsearch bene�ts from small alphabets, we developed a variant employing alphabet reduc-
tion. In our performance experiments alphabet reduction yields an additional speedup factor of 2

on amino acid sequences compared to results achieved with the 20 symbol standard alphabet.

Our second main contribution addresses the problem of non-comparable PSSM-scores of di�erent
PSSMs. Therefore, we developed with algorithmLazyDistrib a new method for e�cient computation

of a matrix similarity threshold for a PSSM given an E-value or a p-value. LazyDistrib is based on
dynamic programming and in contrast to other methods, it employs lazy evaluation of the dynamic

programming matrix. It is much faster than existing methods and reaches speedups of a factor
between 3 and 330 depending on the stringency of the threshold. In contrast to other methods,

which often use approximations to determine a PSSM threshold from a user speci�ed E-value or p-

value, LazyDistrib is exact and allows accurate on-the-
y calculations of thresholds. For application
scenarios, where it is di�cult to specify meaningful PSSM score thresholds, we developed two

variants, ESAsearchKb and LAsearchKb, that adjust dynamically the threshold while searching
and report the k highest scoring matches for a PSSM.
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In our third main contribution, we addressed the problem of limited expressiveness of single PSSM
matches and introduced the concept of PSSM family models. Toe�ciently search with such models,

we combined algorithm ESAsearch with a fast fragment chaining approach. We performed several
experiments assessing the sensitivity and speci�city of our PSSM family model approach for protein

family classi�cation and assignment. In these experimentsPSSM family models achieved a clas-
si�cation performance only marginally inferior to the perf ormance of pHMMs on the family and

superfamily level, which yield to be the most sensitive modeling approach for detecting distant

homologies and de�ne the state of the art in this �eld. For distant relationships the percentage
of true positives when allowing 50 false positives was only 1.6 percentage points below the value

achieved byhmmsearch. These results are astonishing, since PSSM family models are much simpler
models than the fully probabilistic pHMMs. From our experim ental results, we conclude that PSSM

family models perform nearly as accurate as pHMMs for protein family classi�cation. In addition
there are indications that the classi�cation performance can be further improved by using more

sophisticated methods for PSSM construction. The major advantage of using PSSM family models
instead of pHMMs is the dramatically reduced running time needed for searching with these models

compared to searching with pHMMs. This is due to the use of algorithm ESAsearch for fast PSSM
matching. In a comparable experimental set up, our search tool PoSSuMsearch, also implementing

the combination of ESAsearch and the fragment chaining algorithm of [AO05], achieved a speedup

of factor 171 overhmmsearch.

With the PoSSuM software distribution we provide a well documented software package implement-
ing the ideas and algorithms for e�cient searching with PSSMs. Some of the included programs also

support multi-threading and hence bene�ts from multiple CP Us for further speedups. ThePoSSuM
software distribution has already been successfully used in [FSD+ 05], and is an integrated analysis

method in the Genlightand CoryneRegNet [BBC+ 06, BRT06] software systems.

Motivated by the surprisingly well classi�cation performa nce of PSSM family models compared to
pHMMs, and the fact that database searching with pHMMs in particular on a larger scale is a chal-

lenging and time consuming task, we developed the idea of using PoSSuMsearchwith PSSM family

models to speedup time consuming pHMM based database searches. Therefore, we designed and
implemented PSfamSearchwhich usesPoSSuMsearchwith PSSM family models to pre-�lter the

search space for subsequent application ofhmmsearchon the �ltered sequence set. Our benchmark
experiments revealed speedups up to factor 138 forPSfamSearch over standard hmmsearch and

hence may o�er a purely software based alternative to highlyspecialized, costly, hardware based
acceleration solutions likeDeCypher c
 or BioBoost c
 HMMer. In several experiments we tested

the impact of the chosen p-value cuto� on the achieved speedups as well as sensitivity ofPSfam-
Search. We tested di�erent strategies for threshold determination. The most promising strategy

uses a clear separation of matches obtained onUniProtKB/TrEMBL into training- and test-sets. It

computes cuto�s with good generalization characteristics, and using these cuto�s with PSfamSearch
revealed speedup factors of 72 for p-value cuto�s corresponding to the HMMs trusted cuto�s and

15.2 for p-value cuto�s corresponding to noise cuto�s, compared to direct un�ltered hmmsearch,
while retaining more than 99.7% of the original results. For the �rst 20 protein families listed in

the TIGRFAM database, PSSM family model based pre-�ltering using this strategy for cuto� deter-
mination allowed to reduce the search space to only 1:72% of the original search space on average.

Extrapolated to all 2,946 models listed in the current TIGRFAM release we expect a reduction of
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running time when searching with these models inUniProtKB/TrEMBL using the modelstrusted
cuto�s from more than � 2:84 years for direct hmmsearch to only � 15 days for PSfamSearch.

The measured speedup factors achieved by our purely software solutions PoSSuMsearchand PS-
famSearch compare well with what is achieved by the costly, specialized DeCypher c
 hardware

solution sold by TimeLogic R
 . Responsible for this speedup are an algorithmic as well as acon-
ceptual advancement. The speed of index based PSSM searching with ESAsearch and the fact that

pHMMs can be approximated well with the related, but much simpler, PSSM family models.

As a �nal contribution of this thesis, we describe Genlight, a production ready, interactive system

suitable for various high-throughput sequence analysis tasks with a special focus on di�erential
comparative genome analyses. Beyond a variety of other methods, Genlightintegrates our database

search toolPoSSuMsearchfor e�cient searching with PSSM family models from the PRINTS and
BLOCKSdatabases in large sequence sets using algorithmESAsearch. Unique features ofGenlightare

its set oriented generic data model anchoring the reusability of results in the basic system design and
the integrated distributed execution engine allowing asynchronously executed large-scale analyses

even in the absence of costly cluster systems. These features combined with a user-friendly interface
make Genlight an extremely 
exible system with proven value and usability in several scienti�c

studies.

The majority of contributions made in this thesis were already evaluated and have been proven

valuable for publication in the peer reviewing procedures of di�erent journals or conference pro-
ceedings. I.e., the algorithms dealing with e�cient searching with PSSMs and the PoSSuM software

distribution have been published in [BSH+ 04, BHGK06]. We remark that [BHGK06] was designated
as highly accessedby the journal publisher. Further, at time of this writing (J une 2007) [BHGK06]

is ranked at second position in the publishers ranking of themost accessed contributions of the last
12 months of all contributions from members from Bielefeld University in all Biomedcentral jour-

nals. The Genlightsystem is described in [BMM+ 04, BSS04] and is available for non-commercial use
on http://piranha.techfak.uni-bielefeld.de/ . The presentedGenlight case studies in which

the author of this thesis was involved appeared in [MBG+ 03, BMM+ 04, SBB+ ]. A manuscript

describing the application of PSfamSearchas a fast alternative to hmmsearch is in preparation.

6.2 Prospects

Beside several ideas for futureGenlightdevelopments already mentioned in section 5.8.1 on page 188,

a signi�cant and still open problem is accurate statistics for PSSM chain scores without the need
for time consuming sampling. Our experiments (see Figure 4.9 on page 123 and Figure 4.10 on

page 125) clearly show a dependency of chainscoresC�
M ;S and C�

F ;S on the length of the matched
sequence. If this dependency can be eliminated by additional normalizations, this may �nally lead

to a continous distribution function for chain scores and hopefully to e�ciently computable E-values

and p-values expressing the statistical signi�cance of a certain chainscore.

We have shown in this thesis that our concept of PSSM family models is well suited to describe
protein families and to detect distant relationships. However, PSSM family models are not widely

used in practice yet. This is predominantly founded in the unavailability of searchable collections
of these models. Although we already converted theBLOCKSand PRINTS databases into a format
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readable byPoSSuMsearchand use them inside theGenlightsystem, a future provision of widely used
pHMM based databases in form of PSSM family models is reasonable and necessary to increase the

level of popularity and the dispersal ofPoSSuMsearch. Once these conversions have been done, these
resources will become directly applicable for e�cient searching usingPoSSuMsearch. The conversion

procedure may also include the proper computation of PSSM chainscore cuto�s, corresponding to
pHMM trusted and noise cuto�s so that PoSSuMsearchcan be used as a pre-�lter for speeding up

database searches with pHMMs.
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A.1 The 20 letter amino acid alphabet

A ALA Alanine

V VAL Valine
L LEU Leucine

I ILE Isoleucine

F PHE Phenylalanine
P PRO Proline

M MET Methionine
D ASP Aspartic Acid

E GLU Glutamic Acid
K LYS Lysine

R ARG Arginine
S SER Serine

T THR Threonine

C CYS Cysteine
N ASN Asparagine

Q GLU Glutamine
H HIS Histidine

Y TYR Tyrosine
W TRP Tryptophan

G GLY Glycine

Table A.1: The twenty amino acids commonly found in proteinsand their one-letter and three-letter
coding.
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A.2 PROSITE pattern entry

ID CUTINASE1; PATTERN.
AC PS00155;
DT APR-1990 (CREATED); NOV-1997 (DATA UPDATE); MAR-2005 (INFO UPDATE).
DE Cutinase, serine active site.
PA P-x-[STA]-x-[LIV]-[IVT]-x-[GS]-G-Y-S-[QL]-G.
NR /RELEASE=46.4,178022;
NR /TOTAL=20(20); /POSITIVE=20(20); /UNKNOWN=0(0); /FALSEPOS=0(0);
NR /FALSENEG=0; /PARTIAL=0;
CC /TAXO-RANGE=??EP?; /MAX-REPEAT=1;
CC /SITE=11,active site;
DR P63880, CUT1MYCBO , T; P63879, CUT1MYCTU , T; P63882, CUT2MYCBO , T;
DR P63881, CUT2MYCTU , T; P0A537, CUT3MYCBO , T; P0A536, CUT3MYCTU , T;
DR P00590, CUTI1FUSSO, T; Q96UT0, CUTI2FUSSO, T; Q96US9, CUTI3FUSSO, T;
DR P41744, CUTIALTBR , T; P29292, CUTIASCRA , T; P52956, CUTIASPOR , T;
DR Q00298, CUTIBOTCI , T; P10951, CUTI COLCA , T; P11373, CUTICOLGL , T;
DR Q8X1P1, CUTIERYGR , T; Q99174, CUTIFUSSC , T; P30272, CUTIMAGGR , T;
DR Q8TGB8, CUTIMONFR , T; Q9Y7G8, CUTIPYRBR , T;
3D 1AGY; 1CEX; 1CUA; 1CUB; 1CUC; 1CUD; 1CUE; 1CUF; 1CUG; 1CUH; 1CUS; 1CUU;
3D 1CUV; 1CUW; 1CUY; 1CUZ; 1FFA; 1FFB; 1FFC; 1FFD; 1FFE; 1OXM; 1XZA; 1XZB;
3D 1XZC; 1XZD; 1XZE; 1XZF; 1XZG; 1XZH; 1XZJ; 1XZK; 1XZL; 1XZM; 2CUT;
DO PDOC00140;
//

Figure A.1: PROSITE entry of a pattern describing a serine active site (PROSITE Accession:

PS00155). The pattern description in form of a limited regular expression following
the conventions as described in Section 2.4.2 on page 17 is given in the PA line.

A.3 PoSSuMsearch command line interface: Quick reference

Subsequently we give short explanations of thePoSSuMsearchcommand line options. Help on

these options is also provided at the command line by callingPoSSuMsearchwith option -help .
For a detailed description of the available command line paramters see the complete manual of the

PoSSuM software distribution provided in section A.4.

* PoSSuMsearch 1.3.3-chaining 64bit, compiled on Feb 14 200 7 at 14:41:21
-help Show help screen.
-version Show program version.
-db Name of a database to search in, which can be either an enha nced

suffix array, a Fasta, GENBANK, or EMBL file.
-pr Name of a profile library file.
-protein Use protein alphabet for input sequence.
-dna Use DNA alphabet for input sequence.
-smap Name of a symbol map file for input sequence alphabet.
-freq Name of a frequency file.
-uniform Assume uniform character distribution in input se quence.
-pdis Name of a precalculated probability distribution fil e.
-lazy Lazy probability evaluation.
-esa Enhanced suffix array search algorithm (only applicab le if the

input is really an enhanced suffix array).
-lahead Lookahead search algorithm.
-simple Simple search algorithm.
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-eval An E-value to determine the threshold from.
-pval A p-value to determine the threshold from.
-mssth A matrix similarity score (MSS) to determine the thre shold from.
-rawth Raw threshold value.
-best Search for k best matches for each PSSM.
-all Search for all PSSMs, even if they fall below the given cu toff.
-dbsize Size of database for E-value tuning (optional if -ev al is used).
-realpha Use reduced alphabet for searching protein PSSMs.
-sort Sort output by key. Valid keys are i=identifier, a=acc ession,

p=p-value, e=E-value, m=mss, s=score, n=sequence number,
o=position, r=group ID, t=group position, g=group ID/posi tion
(=rt), l=chain length.

-pssmsearch Sequence classification based on a, typically small, library of
known family models. This option requires a numeric argumen t, k.
Per family model, the (up to) k best matching sequences are
reported.

-seqclass Sequence classification based on a, typically la rge, library of
known family models. This option requires a numeric argumen t, k.
Per sequence, the (up to) k best matching family models are
reported.

-mclen Minimum chain length (default is 1).
-mrclen Minimum relative chain length, reject chains short er than a given

fraction of its group size.
-format Output format, one of "human" (default), "cisml", " tabs", "stats",

or "null".
-fn Search in forward direction (default).
-rc Search for reverse complementary matches (only applica ble on DNA).
-rn Search for reverse non-complementary matches.
-fc Search for complementary matches (only applicable on DN A).
-2 Search forward and reverse complementary (short for ``-f n -rc'').
-4 Search in all possible ways (short for ``-fn -fc -rn -rc'') .
-ncompl When reporting complementary matches, print out th e matching

sequences as appearing in the database instead of complemen tary.
-seqrange Sequence range in which to search, given as min:ma x pair.
-mult Multiplier for PSSM values (default is 1.0).
-csfun Which chain score function to use. Valid functions ar e "pvalues"

(default) and "ones" (longest chains win).
-nomatch Don't actually search, just set thresholds for ben chmarking and

print the time needed for that.
-qm Suppress status messages.
-qw Suppress warnings.
-q Quiet execution, suppress warnings and status messages.

A.4 The PoSSuM software distribution

A.4.1 File formats

PoSSuMsearchand PoSSuMdist require PSSMs stored in an easy to read ASCII based �le format,
combining features supported by other PSSM formats. Converters are included in the PoSSuM

software distribution to transform TRANSFAC and PRINTS PSS M libraries into PoSSuM-PSSM
format, see Section A.4.5 on page 217. PSSMs of the BLOCKS database [HP99, HGPH00] or any
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PSSMs in BLOCKS format can be used detouring a conversion into PRINTS format. Converters
for this purpose are already available, e.g., in theFingerPrintScan [SFA99] package.

The PoSSuM-PSSM format

In PoSSuM-PSSM format, each line begins with atag, followed by one white space character,

followed by some data for that tag. All strings are case-sensitive. There must be no white space
before the beginning of any tag. Lines may be empty to separate things. Comments are allowed and

introduced by a # character at the beginning of a line, the whole line is considered as a comment

then.

These are the general rules. Now, a PSSM is de�ned in multiplelines, from which the �rst one reads

BEGINtype

followed by some other lines making up the PSSM, and the last line

END

indicating the end of a PSSM. The type can be one ofINT or FLOAT, depending on the values used
in the scoring matrix. If no 
oating point values occur in the matrix, then type should bet set to

INT to speed up the search as integers can be processed much faster on most machines than 
oats

can be.

Valid tags between a PSSM'sBEGINand ENDlines are (in any order):

ID The identi�er of the PSSM. This tag is required.

AC The accession of the PSSM.

DE A description; any number of DElines are allowed per PSSM. Multiple description lines are

concatenated in order of occurence and separated by full stops when displayed byPoSSuM-
search.

AL An alphabet string. Each character in the string stands for one column of the PSSM, in given

order and case-sensitive. The length of the alphabet stringdetermines the width of the scoring

matrix, that is, how many columns are expected to be de�ned.

AP A name of a prede�ned alphabet, eitherPROTEINor DNA. Specifying DNAis equivalent to using
an AL line with alphabet string ACGT; PROTEINis equivalent to AL ACDEFGHIKLMNPQRSTVWY

(note that the exact order of characters is important, thus the explicit speci�cation of the
alphabet strings).

Only one of AL or APcan be used for a PSSM, of course, but one of them is required.

LE The \length" of the PSSM, that is the number of rows. This tag i s required.

The values of a scoring matrix are de�ned usingMAtags, one line per matrix row. There must be

as many rows as speci�ed in theLE line, each containing as many values as there are charactersin
the alphabet, in the order imposed by the alphabet. All values are given either as integers or reals

as speci�ed by the BEGINline, separated by white space. After the �rst MAline, only MA, empty, or
comment lines, orENDare permitted.
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The format requires matrices beinggrouped for later, optional chaining. A group of PSSMs must be
surrounded by BEGIN GROUPand ENDlines. If your application context does not require grouping,

just start the library �le with a BEGIN GROUPline and end it with a �nal ENDafter the ENDof the
last PSSM. This declares all PSSMs in the �le to belong to the same group.

Internally, each PSSM is identi�ed by a tuple of group identi�er and group position. The group

identi�er is the position of a group within the pro�le librar y �le and the group position is the
position of a PSSM within its group. Both quantities are counted up from 0 while the pro�le library

�le is read, where the group position counter is reset to 0 forevery new group. Group identi�ers

and positions can be used for sorting the output (see description for -sort in Section A.4.2) or for
PSSM identi�cation when post-processing the output by external programs.

A valid, arti�cial example for a PSSM library �le is

BEGIN GROUP
BEGIN INT
ID Some matrix identifier
AC Some accession
DE A description describing the PSSM
DE Multiple description lines are possible
AP DNA
LE 3
# A C G T was specified by "AP DNA"
MA 5 -1 -6 2
MA -4 4 -1 -5
MA 0 -3 3 -4
END

BEGIN FLOAT
ID Some other matrix identifier
DE Another description
AL AUCG
LE 2
# A U C G
MA 0.0 -3.5 3.2 -4.8
MA -4.2 -1.0 4.0 -5.8
END
END

Frequency �le format

A frequency �le consists of simple character/value pairs, one pair per line. It serves for proper

probability distribution calculation for E- and p-values f or the PSSMs based on a speci�c input

sequence.

A line starts with a single character, followed by white space, followed by the relative frequency of
that character in the input sequence. The relative frequency is a real number in the interval [0; 1],

the sum of all frequencies speci�ed in one �le should be 1:0, such that they constitute a sequence
dependent character distribution.
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Comments are allowed and introduced by a# character at the beginning of a line, the whole line is
considered as a comment then. Empty lines are permitted.

A valid example for a uniform distribution on DNA data is

# Uniform nucleotide distribution.
A 0.25
C 0.25
G 0.25
T 0.25

Note that instead of \ T 0.25" it would be equivalent to specify \ U 0.25" or two separate lines
reading

T 0.15
U 0.1

if the input sequence alphabet were to de�ne \T" and \U" being the same. Frequencies of equivalent
characters are summed up. See below for more information about symbol mappings.

See Section A.4.4 on page 216 for the description of a tool fordetermining relative frequencies of
characters from an input sequence.

Custom symbol mappings

To work on some sequence,PoSSuMsearch, PoSSuMdist, and PoSSuMfreqsall need to know the

sequence's underlying alphabet. If the input sequence is anenhanced su�x array built by mkvtree 1

from the Vmatch package (seehttp://www.vmatch.de/ ), then this information is stored in the

su�x array project. If the input sequence is a plain text form at like Fasta , though, the user must
either provide a symbol mapping �le, or use the command line options -dna or -protein to specify a

prede�ned (built-in) alphabet.

The format of symbol mapping �les is the same as the format used in Vmatch, which is because

the PoSSuM software distribution is based on the same libraries asVmatch. Each line consists of
a string of characters that should be regarded as equal. E.g., the �le

aA
cC
gG
tT
*

de�nes a case-insensitive DNA alphabet. The last line speci�es a group of special wildcard characters
(only \ * " in the example). Actually the wildcard is just an ordinary c haracter treated in a special

way internally. Note that the symbol mapping parser is quite picky and requires the last line to be

terminated by a newline character.

1Executable binary also included in the PoSSuM software distribution.
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Internally, all characters read from the input sequence aremapped to integers, and all characters
that appear on the same line of the symbol mapping �le are mapped to the same integer such that

there is really no di�erence between them internally.

Use of symbol mappings is important for several reasons:

� Validation of the input sequence (invalid characters can bedetected and therefore never occur
during searching or in the output).

� Special treatment for case-(in)sensitivity, or more generally, character classes (like \t" = \T"

= \u" = \U"), is unnecessary because these cases are handled at the alphabet transformation

level.

� The alphabet imposes an order on its characters by mapping them to integers (e.g., \a" and
\A" may be mapped to 0, \c" and \C" to 1, etc.). Columns of PSSMs are ordered according to

some alphabet, too (�rst column may stand for \A", second for \C", etc.). If the order of the

input sequence alphabet is di�erent from the PSSM's alphabet, then the columns of the PSSM
can be reordered according to the order of the input sequencealphabet (otherwise, the user

would be urged to provide his PSSMs with their columns in input sequence alphabet order),
and this can be done with character classes being handled correctly (if the input sequence is

encoded using the alphabet from the example above and the PSSM has some column for \U",
then this column is read whenever a \t", \T", \u", or \U" appea rs in the input, additional

columns for any of \t", \T", or \u" will be 
agged as an error be cause of ambiguities).

A.4.2 PoSSuMsearch

Description

This is the main searching program. It implementsESAsearch for searching PSSMs in an enhanced

su�x array, the lazy dynamic programming evaluation algori thm for threshold derivation from E-
and p-values and the fast fragment chaining algorithm of [AO05] to compute high scoring chains

of PSSM matches. Additionally, other search algorithmsLAsearch and simple search for plain text
formats such like Fasta are implemented. As an alternative to the lazy dynamic programming

evaluation algorithm, a precalculated probability distri bution generated by PoSSuMdist (see Sec-
tion A.4.3 on page 214) can be used to derive PSSM thresholds.

Command line options

The searching programPoSSuMsearchis called as follows:

possumsearch[options]

Valid choices for options are

-help

Show options and terminate with error code 0.
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-db db�le

Name of a database to search in, which can be either an enhanced su�x array, or a Fasta ,

GenBank, or EMBL �le. The sequence must consist of characters over the alphabet as speci�ed
by the options -dna , -protein , or -smap, see below. This option is mandatory.

-pr matrix�le

Name of a pro�le library �le. A \library" here is a collection of one or more PSSMs stored in

the format as described in Section A.4.1 on page 200. This option is mandatory.

-protein

This option is equivalent to the option -smap map�le where map�le stores exactly the following
21 lines:

L
V
I
F
K
R
E
D
A
G
S
T
N
Q
Y
W
P
H
M
C
XBZ*

This speci�es an alphabet of size 20 with additional wildcard symbols on the last line. See

Section A.4.1 on page 202 or theVmatch manual for a more detailed explanation of the format
of symbol mapping �les.

-dna

This option is equivalent to the option -smap map�le where map�le stores exactly the following

5 lines:

aA
cC
gG
tTuU
nsywrkvbdhmNSYWRKVBDHM

This speci�es an alphabet of size 4 with additional wildcard symbols appearing in the �fth

line. See Section A.4.1 on page 202 or theVmatch manual for a more detailed explanation of
the format of symbol mapping �les.
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-smap map�le

Specify the �le storing the symbol mapping. If the given map�le cannot be found in the direc-

tory where PoSSuMsearchis run, then all directories speci�ed by the environment variable
MKVTREESMAPDIRare searched. If de�ned correctly, this contains a list of directory paths sep-

arated by colons (\: ").

If the �le can't be found, an error message is reported and theprogram exits with error code 1.
See Section A.4.1 on page 202 or theVmatch manual for a more detailed explanation of the

format of symbol mapping �les.

-freq freq�le

Specify the �le storing the relative frequencies of characters in the input sequence. See Sec-

tion A.4.1 on page 201 for �le format reference and Section A.4.4 on page 216 for a description
of PoSSuMfreqs, a simple program for generating frequency �les from a database.

-uniform

If no frequency �le is available, this option can be speci�ed to assume characters being dis-

tributed uniformly. Note that this option is not meant for re gular use|for accurate results,
determining the real character distribution and specifying it via -freq is mandatory.

-pdis dist�le

Specify the �le storing a precalculated probability distri bution as generated byPoSSuMdist

for fast computation of E- and p-values for the PSSMs. The �le must match the pro�le
library speci�ed by -pr and the alphabet of the input sequence. Because frequency information

was already used when the distribution was precalculated byPoSSuMdist, options -freq and

-uniform are prohibited when using this option. See Section A.4.3 on page 216 andPoSSuMdist
description for further information. Alternatively, -lazy can be used.

-lazy

Use lazy dynamic programming for fast computation of E- and p-values for the PSSMs as

described in [BHGK06].

-esa

Search the PSSMs viaESAsearch as described in [BHGK06]. This option is only valid if
the db�le given to -db is an enhanced su�x array which must have been built by mkvtree

beforehand.

-lahead

Search the PSSMs viaLAsearch as described in [WNB00, BHGK06]. This option can be used
with all kinds of input sequences.

-simple

Search the PSSMs via algorithmSPsearch as implemented in FingerPrintScan , Blocksearch
[HH91], Blimps, MatInspector , and probably others. This option can be used with all kinds of

input sequences, but should be used for debugging and benchmarking only due to its inferior
e�ciency.

-eval E-value

Specify E-value cuto�. This option must be combined with eit her -lazy or -pdis . E-value
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calculation is based on p-values, it is simply the p-value times database size. If combined with
-seqrange , the database size is still assumed to be the size of the wholeinput sequence, not

just the range's size. Use-dbsize to modify the database size for E-value calculation.

-pval p-value

Specify p-value cuto�. This option must be combined with eit her -lazy or -pdis .

-mssth similarity

Specify a matrix similarity score (MSS) cuto�. MS-scores are PSSM scores rescaled to the
interval [0; 1] with the minimum reachable PSSM score corresponding to 0 and the maximum

reachable PSSM score corresponding to 1. This scoring scheme is used inMatInspector and
Match [KGR + 03]. The MSS of PSSMM of length m and a sequencew 2 A m is de�ned as

MSS = sc(w;M )� scmin (M )
scmax (M ) � scmin (M ) and hence given an MSS cuto� value, the thresholdth is determined

asth = MSS � (scmax (M ) � scmin (M ))+ scmin (M ). Note that because PSSM thresholds can be

derived from similarity without use of probability distributions, they will not be c alculated by

default and E- and p-values will not be available in the results. If this information is required,
also specify-freq , -uniform , or -pdis to tell PoSSuMsearchhow the probability distributions for

displaying E- and p-values should be obtained. If-freq or -uniform is used, a full probability
distribution must be calculated for each matching PSSM which can be slow, using-pdis is the

better choice then.

-rawth threshold

Specify a raw, global threshold for all PSSMs. As PSSM thresholds are set directly and hence

no probability distributions are required to do so, the samediscussion about E- and p-values
as for -mssth applies.

-best k

Find the k > 0 best (meaning highest scoring) matches per PSSM. If there are less thenk
matches, only those are printed. This option can only be usedin conjunction with -esa and

-lahead . Searching with reduced alphabets on enhanced su�x arrays (options -realpha and
-esa ), however, does not work together with this option.

Note that since in general matches are found in di�erent order for -esa and -lahead , their results

may also slightly di�er (e.g., this is the case when asking for, say, the best three matches, but
there are actually a total of �ve best equally scoring matches in the database, then two of

them never get reported|this is not a bug).

Also note that the threshold used for searching reported foreach match (the value printed

after \threshold" in human readable output, �eld 9 in tab del imited output, see Section A.4.2

on page 213) is quite useless if-best is speci�ed.

-all

If a PSSM fails to code for the speci�ed cuto�, e.g., if a p-value of 10� 30 was speci�ed, but

the PSSM is only capable to code for a p-value of 10� 20, then that PSSM is not searched
for by default and a warning is issued instead. If this option is speci�ed, then in these cases

the threshold is set to the maximum possible score the PSSM can yield, so it could match
nonetheless (with a p-value higher than requested, though).
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-dbsize size

Assume the database size issize as basis for E-value calculation. This option a�ects E-value

calculation exclusively. By default, the original database size is used. Option-seqrange does
not a�ect the default value.

-realpha

This option is speci�c to protein data/PSSMs. A problem with protein data is the large

alphabet (when compared to DNA) involved which slows down the ESAsearch algorithm. A
solution is to build an enhanced su�x array using a smaller custom alphabet which de�nes

groups of amino acids as single representative characters,and to search the PSSMs on that
reduced alphabet size index.

Usually PSSMs are converted to match the input sequence alphabet, such that an error would
be issued when a protein PSSM was searched in an enhanced su�xarray built with such a

reduced alphabet. The problem then is that groups of distinct pro�le columns are mapped to
the same sequence character representing a group, and when scoring that character there is

no way to decide which of the PSSMs' columns should be used forscoring. So to handle this
application case properly, the-realpha option must be speci�ed. PSSMs are then read as if the

input sequence was encoded by the standard protein alphabet, i.e., for enhanced su�x arrays

as if they had been built using the -protein option, and for 
at �les (like Fasta ) as if -protein

had been passed toPoSSuMsearch(see description for-protein above). PSSMs are converted

internally according to the reduced sequence alphabet and searched in the reduced sequence,
the intermediate matches found are applied to the original PSSMs and original input sequence

to calculate the correct match scores. Since reduced alphabets are speci�c to protein data,
options -rc and -fc cannot be used together with-realpha , of course.

Note that for applying this option to an enhanced su�x array, it must have been built with
the -ois option passed tomkvtree . To specify a reduced alphabet, write a symbol map �le as

described in Section A.4.1 on page 202 or in theVmatch manual and pass that symbol map
to mkvtree via the -smap option. Using this option for 
at �les doesn't make much sense but is

still supported, use PoSSuMsearch's -smap option then. Also don't expect any speed-up when

using reduced alphabets with theLAsearch algorithm.

All PoSSuMsearchoptions retain their original semantics even if-realpha is speci�ed, e.g.,-pval

speci�es a p-value cuto� for the PSSMs as if they were searched directly in the protein data,

hence optionally passed frequencies or precalculated distributions must refer to the standard

protein alphabet. See Section A.4.6 for a complete example on how to use this option.

There is one drawback, though: if both -esa and -best are speci�ed, then this option cannot

be used. If -best is needed, use-lahead or a full alphabet size version of the index (i.e., no
-realpha ) instead.

-sort keys

Specify order in which matches should be reported. If this option is omitted, the output is not
sorted in any special way. Thekeys argument is a string of keys the output is to be sorted by,

priority in order of keys. Valid keys are

i PSSM identi�er, sorted in lexical order. This is the string t hat is speci�ed in the ID tag.
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a PSSM accession, sorted in lexical order. This is the string that is speci�ed in the ACtag.

p p-value of match, smallest �rst.

e E-value of match, smallest �rst.

m MSS of match, largest �rst.

s Score of match, largest �rst.

n Sequence number, smallest �rst.

o Position of match in sequence, smallest �rst.

r Group identi�er.

t Group position.

g Group identi�er and position, short for \ rt ".

E.g., to get results sorted by E-value in �rst place and sequence number in second place,
specify \-sort en". Matches with both the same E-values and sequence numbers again are not

sorted in any special way.

Note that a pair of group identi�er and group position (sort k ey \ g") always identi�es exactly

one PSSM, but a PSSM identi�er together with its accession (sort keys \ ia " or \ ai ") may not
because multiple PSSMs with equal identi�ers and accessions can be speci�ed. If unsure, use

\ iag " instead of \ ia " or \ aig " instead of \ ai " to make sure to have PSSMs with both the
same identi�er and accession separated in the output. Also note that speci�cation of \ gia "

or \ gai " is equivalent to only specifying \ g" because if PSSMs are already sorted by group
identi�er and position in �rst place, then further sorting b y PSSM identi�er or accession is not

possible (read: unnecessary). In other words, speci�cation of \ g" just separates matches by
PSSM in order of occurence in the pro�le library, \ iag " or \ aig " arrange them in alphabetical

order and then make sure to have distinct PSSMs with equal identi�er and accession strings

being separated.

-pssmsearch k

Sequence classi�cation based on a, typically small, library of known family models. This option

requires a numeric argument,k. Per family model, the (up to) k best matching sequences
are reported. For this option matches to PSSMs are chained according to the order given

in their corresponding \GROUP" de�nition. A group of PSSMs is also called a PSSM family

model. Employing this options, PoSSuMsearchcomputes and rports high-scoring chains of
PSSM matches instead of single PSSM matches. For fast computation of high-scoring chains

the fragment chaining algorithm of [AO05] is applied with chain scores de�ned according to
Equation (4.8) and Equation (4.7). Using this option, the mode of operation is comparable to

hmmsearchfrom the HMMER package.

-seqclass k

Sequence classi�cation based on a, typically large, library of known family models. This option
requires a numeric argument,k. Per sequence, the (up to)k best matching family models are

reported. Likewise to \ -pssmsearch " this option also employs fragment chaining. Its semantics
are comparable tohmmpfam from the HMMER package.
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-mclen k

Filtering of obtained high scoring chains based on chainlength. Only chains consisting of at

least k PSSM matches are reported.

-mrclen k

Filtering of obtained high scoring chains based on relativechainlength. Here k speci�es the
chain length necessary for a reported result relative to thenumber of PSSMs in the corre-

sponding family model. k = 0 :66 means, that the minimum length of a chain to be reported
has to be at least two third of the number of PSSMs speci�ed in the family model.

-format fmt

Specify output format, where fmt is one of

human a human readable multiline format,
cisml CisML [HW04], an XML-based format,

tabs tab delimited output (see Section A.4.2 on page 213), or

null no output.

-fn

Search on forward strand (default). This option works with any alphabet and replaces the
-fwd option of previous versions ofPoSSuMsearch. See also-rc , -rn , and -fc . See Section A.4.2

on page 211 and Figure A.2 for a more detailed explanation on the options concerning search
directions.

-rc

Search for reverse complementary matches. This option disables the default of searching on

the forward strand|specify an extra -fn to search on both strands, or use option-2 or even
-4 . This is a DNA speci�c option, i.e., the input alphabet must b e a DNA alphabet (or in

better words, a DNA compatible alphabet, not necessarily generated via the-dna option of

PoSSuMsearchor mkvtree), and, of course, the PSSMs should encode DNA motifs.

The reason for the DNA speci�city is that internally the PSSM s' columns are exchanged (\A"-
column with \T"- or \U"-column and \C"-column with \G"-colu mn), their rows are reversed

in order, and then a usual search in forward direction is done. BecausePoSSuMsearchsupports
arbitrary alphabets to be used for both, input sequences andPSSMs, the column exchange

must be done carefully, the compatibility of both alphabets must be checked, and character
classes must be recognized (\T" and \U" could be distinct characters in the input sequence).

Note that PoSSuMsearchdoes not attempt to recognize whether the alphabets are strictly
DNA or not, it just tries to �nd those columns unambiguously l abelled with characters from

the DNA alphabet and exchanges them. If columns cannot be exchanged for some reason, the

program will tell so and exit with error code 1. See Section A.4.2 on page 211 and Figure A.2
for a more detailed explanation on the options concerning search directions. See also option

-ncompl .

A more general, non-DNA speci�c approach could be implemented by requiring the user to
explicitly specify the columns to be exchanged instead of autodetecting them, but it would be

harder to use without any gain in practical use. Expect no problems when using option-dna

throughout.
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-rn

Search for reverse matches. The PSSMs' rows are reversed in order and a usual search in

forward direction is done. This option works with any alphabet. See Section A.4.2 on the
next page and Figure A.2 for a more detailed explanation on the options concerning search

directions.

-fc

Search for complementary matches. Alike-rc , this is a DNA speci�c option, i.e., the input

alphabet must be a DNA alphabet and the PSSMs should encode DNA motifs. Internally,
the PSSMs' columns are exchanged as with-rc and a usual search in forward direction is

done, but the PSSMs' rows arenot reversed in order. This option replaces the (misnamed)

option -rev of previous versions ofPoSSuMsearch. See Section A.4.2 on the facing page and
Figure A.2 for a more detailed explanation on the options concerning search directions. See

also option -ncompl .

-2

Short for -fn and -rc . If searching for forward and reverse complementary matches, this option

is usually what you want. See Section A.4.2 on the next page and Figure A.2 for a more detailed
explanation on the options concerning search directions.

-4

Short for all of -fn , -rc , -rn , and -fc . See Section A.4.2 on the facing page and Figure A.2 for
a more detailed explanation on the options concerning search directions.

-ncompl

By default, the matching sequences for matches on the complementary strand (options -rc

and -fc ) are printed out complemented, i.e. not as they appear in the input sequence. E.g.,

ACGis a matching sequence to the �rst PSSM in Section A.4.1 on page 201 with a threshold

of 12 on the forward strand. A reverse complementary matching sequence to the same PSSM
with threshold 12 is CGT, possibly occuring somewhere else on the reverse complementary

strand. In this case, the string that really occurs in the input sequence isGCAsince the input
sequence is always considered to be the forward strand. Without this option, the matching

sequence will be printed asCGT, and as GCAotherwise. See Section A.4.2 on the facing page
and Figure A.2 for a more detailed explanation on the optionsconcerning search directions.

-seqrange range

When using -lahead or -simple , search only in a range of sequences, not all. Therange is speci�ed
as min:max pair, including the borders. A range of 30:39 will search only in sequences 30 to

39, including sequence 30 and 39. Sequence numbers always start at 0.

-mult factor

For probability distribution calculation, the values of th e scoring matrices are scaled by the

value of factor . The default value of factor is 1:0. To speed up calculation of E- and p-values

at the price of loss of precision and to reduce disk space whenwriting the distribution to �le
using PoSSuMdist, choose a value from interval (0; 1). This e�ects in a compression of PSSM

score ranges and thereby a reduction of computation time forthe probability distribution
calculation. E.g., a value of 0:1 speeds up the probability distribution calculation for a PSSM
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by approximately a factor of 10 (because the PSSM's score range is only a tenth of the original
range then), but this also means that every 10 consecutive score values achievable by a PSSM

are condensed into one single p-value, which is likely to produce false positives and false
negatives.

To enhance precision in some cases, choose a value greater than 1, resulting into an expansion

of score ranges. Since 
oating point PSSMs must be rounded tointegers for our dynamic
programming method, a value greater than 1 can help getting better E- and p-values for

PSSMs containing very small values.

This option should be used with great care. PSSMs with smaller score ranges are more prone

to rounding errors than those with larger ranges. Larger score ranges result into considerably
more space consumption by the probability distribution calculation.

-qm

Do not print status messages tostderr .

-qw

Do not print warnings to stderr .

-q

Quiet, do not print anything to stderr . This is equivalent to specifying both -qm and -qw.

Matches are still written to stdout .

-version

Show program version. Option --version is a synonym for this option.

There is also a multithreaded version ofPoSSuMsearch, usually called possumsearch-mt. It knows

one additional option:

-j jobs

Number of simultaneous jobs. By default, without this option the number of jobs is 1. Set

the optional argument jobs to the number of physical CPUs inside your computer to get best
performance or to a lower number to keep some CPUs free for other processes. Ifjobs exceeds

the number of CPUs, performance may su�er badly.

If -j is speci�ed without jobs, PoSSuMsearchtries to ask the operation system for the num-
ber of CPUs installed. Note that this may lead to undesired results if Hyper-Threading is

activated|measurements on a 2-processor machine with Hyper-Threading enabled showed
drastically reduced performance when using four (virtual)CPUs, that was even slightly below

the performance of a single CPU doing the same task.

Both programs will terminate silently with error code 0 if no error occured. On error, they will
terminate with error code 1 and print the error to stderr .

Search directions

On any data, PoSSuMsearchsupports searching with PSSMs in forward and reverse directions in
order to �nd matches to the provided PSSMs and their reverse.Additionally, on DNA data, searching
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Figure A.2: The search directions supported byPoSSuMsearch. If the data is DNA, then there
are four cases to consider, namely searching with a PSSM (1) in forward direction on

forward strand (option -fn , default), (2) in reverse direction on reverse complementary
strand (option -rc ), (3) in reverse direction on forward strand (option -rn ), and (4) in

forward direction on reverse complementary strand (option-fc ). Note that the arrows
denote directions in a biologically correct sense since DNAis commonly read from 50-

to 30-end. The lower strand in the �gure is the complement to the upper strand, not
the reverse. In case of non-DNA data, the lower strand does not exist, and so then do

cases (2) and (4) not.

on the complementary strand is possible. This sums up to a total of four cases, see Figure A.2 for

reference.PoSSuMsearcho�ers command line switches to choose any combination of these, the
default is -fn (search for matches on the forward, non-complementary strand). Specifying one of

the other options disables-fn , so -fn must be speci�ed explicitly if this is also required. Cases (1)
and (3) can be used independently of the alphabet, cases (1) and (2) are most commonly used on

DNA data. Whether or not cases (3) and (4) are especially useful in practice is arguable, though,
still we provide options for these since the user usually knows better what he wants than we do.

For convenience, option-2 can be used to search for matches falling into the categoriesof cases (1)

and (2). Use option -4 to search for matches in all four possible ways.

Within PoSSuMsearch, only the forward, non-complementary strand is known, as provided by the
user, represented by the upper strand in Figure A.2. Searching in reverse direction is implemented by

reversing the PSSM's row order, covering cases (2) and (3). Searching on the complementary strand
is accomplished by alphabet transformation, i.e., by permuting the PSSM's columns according to

Watson-Crick base pairing, covering cases (2) and (4). The sequence itself remains unchanged.
Since a match does not imply the existence of corresponding matches on the complementary strand

nor does it imply the existence of reverse matches,PoSSuMsearchmust search explicitly for every

possible case, hence passing option-4 results in roughly a 4-fold time consumption for the search
phase compared to when searching for a single case.

There are various possible ways one could think of to report reverse and/or complementary matches.

In PoSSuMsearch, matches are always reported with respect to the forward strand since this is the
only sequence that is explicitly represented in the computer and stored in the database. The left-
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most position of a match relative to the beginning of the sequence the match occurs in is shown
as the start position, starting with position 0, regardless of search direction. E.g., the matching

positions for the instances of cases (1) to (4) in Figure A.2 would be reported as marked as 2,
n � 10, n � 5, and 4, respectively, wheren is the number of characters in the sequence. The matching

sequence is printed in forward direction as occuring in the database, so in particular, not in reverse
even if the match was found on a reverse strand. For matches onthe complementary strand, the

complementary sequenceis printed as matching sequence. To get the matching sequences as they

occure in the database (i.e., on the non-complementary forward strand), specify option -ncompl .

Tab delimited output format

This output format contains one single line per match, containing 18 entities, separated by tabula-

tors, with the following meanings:

1. matched PSSM's identi�er ( ID),

2. matched PSSM's accession (AC),

3. matched PSSM's description (DE, multiple lines separated by \. "),

4. group identi�er, which is the position of the group in the p ro�le library �le that the PSSM

belongs to, starting at 0,

5. position of PSSM within its group, starting at 0,

6. start position of the match with respect to the beginning sequence the match occurs in, starting

at 0 (see Section A.4.2 for more details on this),

7. length of the match,

8. search direction (\fn " for forward non-complementary, \ rc " for reverse complementary, \rn "
for reverse non-complementary, \fc " for forward complementary, see Section A.4.2),

9. threshold used for searching (value is useless if-best was speci�ed since there is no speci�c

prede�ned threshold in that case),

10. match score,

11. minimum score the PSSM can achieve,

12. maximum score the PSSM can achieve,

13. p-value,

14. E-value,

15. MSS,

16. matching sequence number, starting at 0,

17. matching sequence description (multiple lines separated by \ . "), and
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18. matching substring (see also Section A.4.2 andPoSSuMsearchoption -ncompl ).

Note that tabulators in string entities (descriptions, ide nti�er, etc.) are not �ltered and may there-
fore cause problems when parsing an output containing such astring.

If the probability distribution is not available during mat ch evaluation (maybe because-mssth or

-rawth was speci�ed but neither -pdis nor -freq ), the �elds for E- and p-value will still be there,
but left empty. The same is true for missing information due to lack of ACor DEtags in the PSSM

speci�cation or missing sequence description. A parser reading tab delimited PoSSuMsearchoutput
should take this into account.

A.4.3 PoSSuMdist

Description

This is a supplementary program forPoSSuMsearch. It is used to precalculate the complete probabil-

ity distribution which is used to derive PSSM thresholds from E- and p-values. This can be useful if
the same PSSM library is searched multiple times and lazy evaluation within PoSSuMsearchshould

be circumvented. Note that a complete probability distribu tion may require a signi�cant amount of

space on �le and can take a long time to calculate.

In PoSSuMsearch, it is not possible to use a generated probability distribution �le with PSSM
libraries di�erent from that given to PoSSuMdist to generate the distribution. It is not even possible

if PSSMs are only rearranged within, deleted from or inserted into that PSSM library. Hence the
use of precalculated probability distributions decreasesthe grade of 
exibility in favor of speed.

Command line options

The program for probability distribution calculation PoSSuMdist is called as follows:

possumdist [options]

Valid choices for options are

-help

Show options and terminate with error code 0.

-pr matrix�le

Name of a pro�le library �le. A \library" here is a collection of one or more PSSMs stored in
the format as described in Section A.4.1 on page 200. This option is mandatory.

-protein

Generate a probability distribution �le for an input sequen ce encoded by the standard protein
alphabet as described in the description ofPoSSuMsearchoption -protein .

-dna

Generate a probability distribution �le for an input sequen ce encoded by the standard DNA
alphabet as described in the description ofPoSSuMsearchoption -dna .
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-smap map�le

Generate a probability distribution �le for an input sequen ce encoded by the symbol mapping

de�ned in map�le . See the description ofPoSSuMsearchoption -smap for more details.

-db db�le

Generate a probability distribution �le for the enhanced su�x array db�le . This option is used
for convenience to just read the symbol mapping from an enhanced su�x array. The enhanced

su�x array itself is not read.

-freq freq�le

Specify the �le storing the relative frequencies of characters in the input sequence. See Sec-
tion A.4.1 on page 201 for �le format reference and Section A.4.4 on the next page for a

description of PoSSuMfreqs, a simple program for generating frequency �les from a database.

-uniform

If no frequency �le is available, this option can be speci�ed to assume characters being dis-

tributed uniformly. Note that this option is not meant for re gular use|for accurate results,
determining the real character distribution and specifying it via -freq is mandatory.

-pdis dist�le

Specify the name of the output �le storing the precalculated probability distribution. This �le

can be used later byPoSSuMsearchonly in conjunction with the pro�le library speci�ed by
-pr and input sequences encoded by the speci�ed alphabet. Note that the factor of -mult given

to PoSSuMdist will be encoded into dist�le , hence it can't be changed by a later invokation

of PoSSuMsearch. See Section A.4.3 on the following page for format description and more
information.

-mult factor

The values of the scoring matrices are always scaled by the value of factor , which defaults to

1:0. See the description of thePoSSuMsearchoption -mult on page 210 for more details.

-qm

Do not print status messages tostderr .

-qw

Do not print warnings to stderr .

-q

Quiet, do not print anything to stderr . This is equivalent to specifying both -qm and -qw.

-version

Show program version. Option --version is a synonym for this option.

Like for PoSSuMsearch, there is also a multithreaded version ofPoSSuMdist, calledpossumdist-mt .
For technical reasons, it needs more RAM than the single-threaded version (sometimes much more)

becauseall probability distributions are kept in RAM and �nally writte n to �le as a whole after all
calculations are �nished. This version knows one additional option:
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-j jobs

Number of simultaneous jobs. By default, without this options the number of jobs is 1. Set

the optional argument jobs to the number of physical CPUs inside your computer to get best
performance. See description for option-j of PoSSuMsearchin Section A.4.2 on page 211 for

additional notes, also applying to PoSSuMdist.

Both programs will terminate silently with error code 0 if no error occured. On error, they will

terminate with error code 1 and print the error to stderr .

Format of the probability distribution �le

A probability distribution �le contains the complete proba bility distributions of all PSSMs in

the pro�le library in order of occurence, written as binary stream and compressed viazlib (see
http://www.gzip.org/zlib/ ). This data is architecture dependent and can't be exchanged be-

tween di�erent architectures because of di�erent byte orders and eventually di�erent sizes of data
types. Exchanging probability distribution �les between i ncompatible architectures will yield un-

predictable results, from false matches to program crashes.

The distributions are written one after the other, containi ng

� minscore, the absolute of the minimum achievable score (unsigned integer),

� maxscore, the absolute of the maximum achievable score (unsigned integer),

� the absolute of the global matrix minimum multiplied by the m atrix height (unsigned integer),

� the factor speci�ed by -mult when the distribution was calculated (double), and

� an array of p-values of length maxscore� minscore+1, ranging from minscoreto maxscore

(doubles).

All scores are scaled by the factor speci�ed by-mult and rounded to integers. So, the general �le

layout is simply

1. minscore 1. maxscore 1. global minimum 1. factor 1. array of p-values

2. minscore 2. maxscore 2. global minimum 2. factor 2. array of p-values

� � � � � � � � � � � � � � �

in uncompressed form. To save space,zlib is used to compress the output transparently. Usegunzip
(seehttp://www.gzip.org/ ) for manual decompression if needed.

A.4.4 PoSSuMfreqs

Description

For accurate results in score threshold calculation from signi�cance thresholds, the relative frequen-

cies of characters in the database need to be known.PoSSuMfreqsis a simple program to determine
those frequencies and write them tostdout in the format described in Section A.4.1 on page 201.
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Command line options

The program for determining relative frequencies of characters PoSSuMfreqsis called as follows:

possumfreqs [options]

Valid choices for options are

-help

Show options and terminate with error code 0.

-db db�le

Name of a database to determine the relative frequencies of characters from, which can be
either an enhanced su�x array, or a Fasta , GenBank, or EMBL �le. The sequence must consist

of characters over the alphabet as speci�ed by the options-dna , -protein , or -smap, see below.

This option is mandatory.

-protein

Generate a frequency �le for an input sequence encoded by thestandard protein alphabet as
described in the description ofPoSSuMsearchoption -protein .

-dna

Generate a frequency �le for an input sequence encoded by thestandard DNA alphabet as

described in the description ofPoSSuMsearchoption -dna .

-smap map�le

Generate a frequency �le for an input sequence encoded by thesymbol mapping de�ned in
map�le . See the description ofPoSSuMsearchoption -smap for more details.

-qm

Do not print status messages tostderr .

-qw

Do not print warnings to stderr .

-q

Quiet, do not print anything to stderr . This is equivalent to specifying both -qm and -qw.

-version

Show program version. Option --version is a synonym for this option.

A.4.5 PSSM converters

The PoSSuM software distribution comes with two simple converters,transfac2gen and prints-

2gen, to transform TRANSFAC and PRINTS PSSM libraries into PoSSuM-PSSM format, respec-
tively. They both take a single command line argument, whichis the name of a PSSM library to be

converted. The result is printed to stdout , i.e., it must be redirected to some other �le to be usable
by PoSSuMsearchor PoSSuMdist.
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A.4.6 Using the PoSSuM software distribution

Example 1: Basic operations

Build an enhanced su�x array sprot from Fasta �le sprot.fas containing protein data, using the

prede�ned protein alphabet. To save disk space, not all possible tables are built, only those required
by PoSSuMsearch.

$ mkvtree -db sprot.fas -indexname sprot -protein -tis -suf -lcp -skp -v

Generate character distribution from the previously built enhanced su�x array sprot and write it to

frequencies.txt , then search all PSSMs inprofiles.txt in sprot , deriving PSSM thresholds via
the lazy dynamic programming algorithm LazyDistrib using an E-value of 10� 15 and the character

distribution from frequencies.txt . The size of the database and its alphabet are known from the
sprot project.

$ possumfreqs -db sprot > frequencies.txt
$ possumsearch -pr profiles.txt -db sprot -esa -eval 1e-15 - lazy\
-freq frequencies.txt

Precalculate probability distribution of PSSM library �le profiles.txt , write distribution to
dist.gz , and search all PSSMs with a p-value cuto� of 10� 20 or less in Fasta �le sprot.fas via

LAsearch, which contains protein data with a character distribution stored in frequencies.txt .
The alphabet of the database must be explicitly speci�ed and match the alphabet used when

dist.gz was created (-protein here). Perform the same search again on the previously builten-
hanced su�x array via ESAsearchand then via simple search and observe the di�erences in running

time.

$ possumdist -pr profiles.txt -protein -freq frequencies. txt -pdis dist.gz
$ possumsearch -pr profiles.txt -protein -db sprot.fas -pv al 1e-20 -lahead\
-pdis dist.gz

$ possumsearch -pr profiles.txt -db sprot -pval 1e-20 -esa - pdis dist.gz
$ possumsearch -pr profiles.txt -db sprot -pval 1e-20 -simp le -pdis dist.gz

For a working example, take a look into the share/PoSSuM/examples/ directory of the PoSSuM
software distribution. Included are a Bourne shell script (demo.sh), a Fasta sequence �le containing

two sequences (demo.fas), and 17 PSSMs inPoSSuM-PSSM format (demo.lib ). The shell script
builds an enhanced su�x array from the Fasta �le and performs some searches in the enhanced

su�x array and in the Fasta �le. The output of the shell script can be redirected to a �le a nd
compared to the included �le results.txt found in the examples directory.

Example 2: Using reduced alphabets

Here is a complete example on how to use the-realpha option of PoSSuMsearch to speed up
ESAsearch. We use a custom symbol map, calledprot8.map , containing eight character classes

to build an enhanced su�x array sprot8 from the protein data in Fasta �le sprot.fas . The
content of prot8.map reads
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G
ALM
VI
ND
P
YFWC
KRQE
STH
BXZ*

PoSSuMsearchis used to search the pro�les inprofiles.txt in sprot8 . Note that the distribu-

tion data previously generated can be used here again. Remember that internally the PSSMs are
treated as if the input sequence was encoded by the standard protein alphabet, so the probabil-

ity distribution must be, too. Hence when a precalculated probability distribution should be used
in conjunction with -realpha , it must always refer to the standard protein alphabet. All r elevant

commands are shown below.

$ mkvtree -db sprot.fas -indexname sprot8 -smap prot8.map - tis -ois -suf -lcp -skp -v
$ possumfreqs -db sprot.fas -protein > frequencies.txt
$ possumdist -pr profiles.txt -protein -freq frequencies. txt -pdis dist.gz
$ possumsearch -pr profiles.txt -db sprot8 -pval 1e-20 -esa -realpha -pdis dist.gz

The results should be the same as in the example before, except for the ordering.

Example 3: Computing scores for all substrings

If the scores of all substrings of a sequence need to be known,e.g. to determine a distribution
of scores, the best method is to use simple search orESAsearch in conjunction with setting the

threshold to the PSSMs' minscore. This can be easily performed by using the normalized matrix
similarity scoring shema, sinceMSS = 0 , th = minscore. To achieve this, use something like the

following.

$ possumsearch -pr profiles.txt -db sprot -esa -mssth 0

Do not useLAsearch in this case, since here every substring must be read to its full length anyways
and simple search avoids the extra overhead ofLAsearch. Still, ESAsearch is even more preferable.

A.4.7 Messages and warnings

Both programs, PoSSuMsearchand PoSSuMdist, print progress messages to inform the user about
what the program is doing, and warnings if problems are detected. Messages and warnings are

always printed to stderr and are therefore separated from the matches, which are always printed

to stdout .

Messages can safely be ignored, but if any warnings occur, you should read them as they could
point you to some undiscovered problem. Ignore them only if you know they are harmless.

Most warnings are self-explanatory, but there are some thatcan be confusing:
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� Warnings concerning PSSM library �les:

Character `x' is unde�ned/de�ned as a wildcard/de�ned as th e special separator

character in the input alphabet.

A PSSM de�nes a column for some character which is not de�ned as a valid character in
the database alphabet and will therefore never contribute to a match score. Those columns

are ignored for probability distribution calculation and d uring matching. This is a com-

mon warning for e.g., protein PSSMs de�ning a column for `B' which is a wildcard in the
prede�ned protein alphabet.

Character `x' may occur in the input sequence, but is not de�n ed for the PSSM.

A character may occur in the database that no column is de�nedfor in a PSSM. This is a bad
warning because this means that the missing column is inserted and �lled with a very low,

negative score. No problem for the searching algorithms, but a big problem for probability
distribution calculation|the score range is enlarged arti �cially and the calculation is likely

to abort due to insu�cient memory. Expect to see this warning when e.g., trying to search
DNA PSSMs on protein data.

Character class f . . . g may occur in the input sequence, but no column for any

of its representatives is de�ned in the PSSM.

This is just the same like above, but instead of a single character `x', the inserted column
stands for a set of characters. The PSSM is expected to de�ne acolumn for exactly one of

them, otherwise the same will happen as described above.

� Warnings concerning frequency �les:

Character `x' is unde�ned in the input alphabet.

The frequency �le de�nes a frequency for some character which is not de�ned in the database

alphabet and will therefore never occur in a sequence. This frequency is ignored then.

Character `x' is de�ned as a wildcard in the input alphabet.

The frequency �le de�nes a frequency for a character that is de�ned as wildcard in the

database alphabet and will therefore never match. This frequency is still accounted for.

Character `x' is de�ned as the special separator character i n the input alphabet.

The frequency �le de�nes a frequency for some character thatis mapped internally to a

special separator which will never occur in a sequence. Thisfrequency is ignored then.

Sum of relative frequencies is not 1.0.

The sum of all frequencies should be exactly 1:0 such that they constitute a probability
distribution. If the sum is not 1 :0, this warning is issued, but the frequencies are accepted

as provided. Note that this warning can be an artifact due to rounding errors.

If any of the �rst three warnings occurs, probably the wrong frequency �le for the database

alphabet was speci�ed.

� Searching on complementary strand withPoSSuMsearch:
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Characters `x' and `X' are both unde�ned in the input alphabe t.

Searching on the complementary strand, reverse or not, requires exchanging PSSM columns,

in particular the \A"-column with \T"- or \U"-column and \C" -column with \G"-column.
PoSSuMsearchtries to �nd these columns automatically, ignoring case (sothe `x' and `X'

above may stand for `a' and `A'). If there is no column for neither the lower nor the upper
case letter of the to-be-exchanged columns, this warning will be issued, meaning that the

search will still proceed but with the corresponding columns unexchanged.

A.5 Prede�ned Hit-set �lters in the Genlight system

In addition to the user de�ned Hit-set �lters, Genlightcomes with several prede�ned �lters. Table A.5

on the next page gives an overview of these �lters.
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Filter name Arguments Semantic/Explanation

Select only non-identical
homolog pairs

- With this �lter you can select all pairs from a Hit-set that
are not completely identical. Here completely identical me ans,
that they have exactly the same sequence and annotation

Select full (query) length
matches

This �lter returns only sequence pairs, where the aligned re -
gion detected by the comparison method covers the complete
query sequence

Select full (hit) length
matches

This �lter returns only sequence pairs, where the aligned re -
gion detected by the comparison method covers the complete
database sequence

Select full (hit) length
matches starting with
PATTERN1 in matching
query region and
PATTERN2 in matching
hit region

PATTERN1
(e.g. ATG),
PATTERN2
(e.g. M)

This �lter returns only sequence pairs, where the aligned re -
gion detected by the comparison method covers the complete
database sequence and the aligned region in the query be-
gins with PATTERN1 and the aligned region in the datbase
sequence starts with PATTERN2

Select full length protein
matches starting with
ATG/M and ending with
stop

Special �lter for BLASTX, FASTX, FASTY based Hit-sets .
Sequence pairs passing this �lter, has to match the complete
database sequence. Further the matching area has to start
with the start codon ATG in the query, a methionine (M) in
the datbase sequence and has to end with one of the three
stop codons TAA,TAG or TGA.

Select almost full (query)
length matches (except
start o�set, end o�set)

START
OFFSET,
END OFFSET

This �lter selects only pairs, where the aligned region cov-
ers the query sequence completely, except some allowed mis-
matches at the start and the end. The number of allowed non
matching characters is given by the two parameters \START
OFFSET" and \END OFFSET".

Select almost full (hit)
length matches (except
start o�set, end o�set)

START
OFFSET,
END OFFSET

This �lter selects only pairs, where the aligned region cove rs
the database sequence completely, except some allowed mis-
matches at the start and the end. The number of allowed non
matching characters is given by the two parameters \START
OFFSET" and \END OFFSET".

Filter by keyword contained
in query sequence header

KEYWORD
(e.g. trans-
membrane),
OCCURENCE

Sequence pairs passing this �lter have to contain the string
speci�ed by the KEYWORD parameter as a substring in the
annotation (header) of the query sequence. Setting the OC-
CURENCE parameter to \NO" negates this �lter

Filter by keyword contained
in hit sequence header

KEYWORD
(e.g. trans-
membrane),
OCCURENCE

Sequence pairs passing this �lter have to contain the string
speci�ed by the KEYWORD parameter as a substring in the
annotation (header) in the annotation of the hit sequence.
Setting the OCCURENCE parameter to \NO" negates this
�lter.

Table A.5: The prede�ned �lters in Genlight, their parameters and semantics.
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