Contents

1 Introduction 1

2 Methodological Overview 5

2.1 Gas-Phase Reactions 6

2.1.1 Theory of Dissociation Processes 6

2.1.2 Theory of Bimolecular Ion/Molecule Reactions 9

2.1.3 Isotopic Labeling Studies 12

2.2 Ion Generation in the Gas Phase 14

2.2.1 Laser-Vaporization Source 14

2.2.2 Electrospray-Ionization Source 16

2.3 Fourier-Transform Ion Cyclotron Resonance MS 20

2.4 Quadrupole-Based Mass Spectrometry 23

2.5 Gas-Phase IR Photodissociation Spectroscopy 26

2.6 Density-Functional Theory 29

3 Bare Vanadium Clusters 33

3.1 The V_{x}^{+}/Methanol System ($x = 1 - 7$) 33

3.2 Summary 45

4 Binary and Ternary Vanadium-Oxide Clusters 47

4.1 Generation of the Binary and Ternary Vanadium-Oxide Cluster Ions 48

4.2 Binary and Ternary Vanadium-Oxide Cluster Anions 56

4.3 Binary Vanadium-Oxide Cluster Cations 57

4.3.1 Structure Elucidation of $V_{m}O_{n}^{+}$ via IMR with $H_{2}O$ 58

4.3.2 IMR of $V_{m}O_{n}^{+}$ with Molecular Oxygen 60

4.3.3 Survey of Dehydrogenation Reactions 64

4.3.4 Reactivity Study Toward Methanol 65

4.3.5 Reactivity Study Toward Isomeric Butenes 79
5 Thermal Methane Activation

5.1 From the 'Holy Grail' to an Achievable Goal? 141
5.2 Methane Activation by Tetravalent V₄O₁₀⁻⁺ 143
5.3 Excursus: Oligomeric (Al₂O₃)x⁻⁺ (x = 3, 4, 5) 149
5.4 Excursus: Tungsten-Oxide Radical Anions 155
5.5 The Role of Oxygen-Centered Radicals 157
5.6 Summary 159

6 Conclusions

6.1 Summary of Contributions 161
6.2 Future Research 163

Bibliography 165

A Supplementary Information 179

B Abbreviations 185

C Curriculum Vitae 187

D Publications 189