
Optimal Regression for Reasoning about
Knowledge and Actions

Hans van Ditmarsch1, Andreas Herzig2 and Tiago de Lima3

1 Department of Computer Science, University of Otago, New Zealand
hans@cs.otago.ac.nz

2 Institut de Recherche en Informatique de Toulouse, France
herzig@irit.fr

3 Institut de Recherche en Informatique de Toulouse, France
santos@irit.fr

Abstract. We show how in the propositional case Scherl & Levesque’s
solution to the frame problem with knowledge can be modelled in dy-
namic epistemic logic with announcements and assignments (DEL), and
provide an optimal reasoning method for the latter. Our method is as
follows: we encode Scherl & Levesque’s framework into DEL; then, by ex-
tending Lutz’ recent reduction method for public announcement logic to
DEL, we establish optimal decision procedures: the satisfiability problem
in DEL is NP-complete for one agent, PSPACE-complete for multiple
agents and EXPTIME-complete when common knowledge is involved.

Keywords. reasoning about actions and change, reasoning about knowl-
edge, dynamic epistemic logic, situation calculus, frame problem.

1 Introduction

Thielscher [1] distinguishes two versions of the frame problem. The representa-
tional version is the problem of designing a logical language and a semantics
such that domains can be described without making explicit the interaction be-
tween every action and fluent: basically, when there are n actions and m fluents,
the domain description should be much smaller than 2× n×m. The inferential
version of the frame problem is more demanding: given a solution of the repre-
sentational version, the problem is to design an “efficient” decision procedure,
where “efficient” roughly means that its computational complexity should not
be too high.

Reiter [2] solved the representational frame problem by means of successor
state axioms (SSAs). In the propositional case fluents only have situations as
arguments, and SSAs take the form

∀x.∀s.(p(do(x, s)) ↔ (Poss(x, s) →
(x = a1 ∧ γ+(a1, p, s)) ∨ · · · ∨ (x = an ∧ γ+(an, p, s)) ∨

(p(s) ∧ ¬(x = a′1 ∧ γ−(a′1, p, s)) ∧ · · · ∧ ¬(x = a′m ∧ γ−(a′m, p, s)))))

Dagstuhl Seminar Proceedings 07351
Formal Models of Belief Change in Rational Agents
http://drops.dagstuhl.de/opus/volltexte/2007/1207



2 H. van Ditmarsch, A. Herzig, T. de Lima

where a1, . . . , an are the actions potentially making p true, and a′1, . . . , a
′
m are

the actions potentially making p false. For a given action ai, let us note Eff +(ai)
the set of those fluents which ai may make true, and Eff −(ai) the set of those
fluents which ai may make false (in [2] these sets are left implicit). Then for
every fluent p ∈ Eff +(ai), the formula γ+(ai, p, s) characterizes the conditions
under which ai makes p true, and γ−(ai, p, s) characterizes the conditions under
which ai makes p false. γ+(ai, p, s) and γ−(ai, p, s) must be uniform in s, which
in particular means that they do not contain the function do.

Reiter’s central idea is that due to inertia the sets Eff +(ai) and Eff −(ai) are
‘small’ subsets of the set of all fluents. For that reason the size of the set of all
SSAs can be expected to be of the order of the number of actions, and thus much
smaller than the product of the number of actions with the number of fluents.
Hence SSAs count as a solution to the representational frame problem. Reiter’s
solution was extended in [3] to a framework containing knowledge-producing
actions.

When SSAs are available for every fluent p, one can reduce (regress) any
formula ϕ to an equivalent formula reg(ϕ) not mentioning actions. This leads
to a straightforward decision procedure in the propositional case, that has been
implemented in the GOLOG language [4]. However, the reduced formula can be
exponentially larger than the original formula, and therefore the inferential frame
problem has to be considered unsolved in Reiter’s and in Scherl & Levesque’s
approaches.

In this paper we solve the inferential frame problem for the propositional
case. For the extension to knowledge, among the epistemic actions we only con-
sider observations: all agents observe that some proposition holds in the world,
and update their epistemic state accordingly.1 We give a satisfiability-preserving
polynomial transformation eliminating action operators from formulas. This pro-
vides an optimal regression procedure for reasoning about actions: both in Re-
iter’s case (without knowledge operators) and in the single-agent case the de-
cision procedure works in nondeterministic polynomial time; in the multi-agent
case it works in PSPACE, and in the case of common knowledge in EXPTIME.
All these results are optimal because they match the complexity of the underly-
ing epistemic logic.

Technically, our approach builds on recent progress in the field of dynamic
epistemic logics. In this family of logics situation terms are left implicit, and
there is no quantification over actions. Thus the central device in Reiter’s so-
lution is not available. We show that nevertheless one can do without it, and
recast Reiter’s and Scherl & Levesque’s solution in the dynamic epistemic logic
DEL proposed by [5] (see also [6]).2 DEL being an extension of Plaza’s public
announcement logic, we extend Lutz’ optimal decision procedure for the latter
[8] to DEL, and show that we keep optimality: checking satisfiability of DEL-

1 Note that observations are different from the sensing actions as studied in [3]. By
performing the latter, the agents observe whether some proposition holds in the
world or not.

2 A similar idea is outlined independently in [7].



Optimal Regression for Reasoning about Knowledge and Actions 3

formulas is proved to have the same complexity as checking satisfiability in the
underlying epistemic logic.

The remainder of the paper is organized as follows: Section 2 presents a
useful fragment of the situation calculus introduced by [9] and its formulation
of the solution to the representational frame problem. and Reiter’s and Scherl
& Levesque’s solution to the frame problem with knowledge. The subsequent
section introduces dynamic epistemic logics. Section 4 contains the translation of
the latter approach into dynamic epistemic logic, and Section 5 contains decision
procedures for satisfiability checking in DEL for the single-agent and the multi-
agent case, as well as for the case of common knowledge.

2 A variant of situation calculus

The dialect of second-order logic called situation calculus was one of the first
formalisms used in reasoning about actions [10]. After two decades, [2] proposed a
partial solution to the frame problem in situation calculus, as well as a procedure
for reasoning called regression, which leads to decidability of the satisfiability
problem for a sub-class of formulas. Since then, situation calculus has been used
to specify dynamic systems. Some programming languages, such as GOLOG [4],
were built, and the formalism also received a number of extentions such as for
concurrent actions [11], knowledge [12], and probabilistic (noisy) actions [13].

However, because situation calculus is defined axiomatically, properties about
action theories that are not direct entailments are very hard to prove. An example
of this difficulty is the very long proof given by [14] for the fact that if Kϕ entails
Kψ∨Kχ in a theory Θ, then Kϕ entails Kψ in Θ, or Kϕ entails Kχ in Θ. Aiming
at a “more workable” semantics for situation calculus, [15] (see also [9]) proposed
a variant called ES. This logic is not as expressive as the entire situation calculus,
but it handles the action theories defined by Reiter and, thereby, also his solution
to the frame problem.

In the sequel we present syntax and semantics of ES and its solution to the
frame problem.

2.1 Syntax and semantics of ES

The full language of ES is a many sorted second-order predicate language. In
this work however, we focus our attention to the (quasi) propositional fragment.
We drop functional symbols, restrict the number and type of predicates, and
only consider fluents of arity zero.

Definition 1 (The language LES). Let U be a set of countably many first-
order variables, let P be a set of countably many fluents of arity 0, let A be a
set of countably many actions, and let Poss and SF be the only two predicate
symbols of the language. Both predicates have arity 1 and are of sort A. The
language LES is the set of formulas ϕ and terms t defined by the following BNF:

ϕ ::= t = t | p | Poss(t) | SF (t) | ¬ϕ | ϕ ∧ ϕ | Kϕ | [t]ϕ | �ϕ | ∀x.ϕ
t ::= x | a



4 H. van Ditmarsch, A. Herzig, T. de Lima

where x ranges over U , a ranges over A, and p ranges over P .
Formulas that do not mention Poss, SF , �, [t] or K are called fluent formu-

las. Formulas without free variables are called sentences. And primitive sentences
are the formulas in the set P ∪ {Poss(a) | a ∈ A} ∪ {SF (a) | a ∈ A}.

The predicate Poss is used to model executability preconditions of actions. If
Poss(t) holds, then the action t is executable. The predicate SF is used to model
the result of sensing actions. The formula SF (t) is the formula whose truth value
is known by the agent after the execution of the action t. The operator K is used
to model knowledge (or belief) of the agent. The formula Kϕ is read ‘the agent
knows (or believes) that ϕ’. In other words, ϕ holds in all worlds that the agent
considers possible.3 The operator [·] is used to model the transitions associated
to actions. A formula of the form [a]ϕ is read ‘ϕ holds after the execution of
the action a’. And the formula �ϕ is read ‘ϕ holds after the execution of any
sequence of actions’.

In addition, we use the common abbreviations for the formulas >, ⊥ and the
operators 6=, ∨, →, ↔ and 〈·〉.

Formulas in LES are evaluated in tuples of the form 〈e, w, α〉 such that:

– w ∈W is a function from primitive sentences and A∗ to {0, 1}
– e ⊆W is the epistemic state of the agent; and
– α ∈ A∗ is a (possibly empty) sequence of actions.

Let ε denote the empty sequence in A∗. To interpret what is known by the
agent after a sequence of actions, we define that two worlds agree with respect
to the sequence of actions α inductively by the following:

– w ∼ε w′ iff w and w′ agree on the value of every primitive term and sentence;
and

– w ∼α·t w′ iff w ∼α w′ and w(SF (t), α) = w(SF (t), α).

The satisfaction relation ‘
’ is inductively defined by:

〈e, w〉 
 ϕ iff 〈e, w, ε〉 
 ϕ

〈e, w, α〉 
 t1 = t2 iff w(t1, α) is identical to w(t2, α)
〈e, w, α〉 
 p iff w(p, α) = 1
〈e, w, α〉 
 Poss(t) iff w(Poss(w(t, α)), α) = 1
〈e, w, α〉 
 SF (t) iff w(SF (w(t, α)), α) = 1
〈e, w, α〉 
 ¬ϕ iff not 〈e, w, α〉 
 ϕ

〈e, w, α〉 
 ϕ ∧ ψ iff 〈e, w, α〉 
 ϕ and 〈e, w, α〉 
 ψ

〈e, w, α〉 
 ∀x.ϕ iff for all a ∈ A, 〈e, w, α〉 
 ϕax

〈e, w, α〉 
 Kϕ iff for all w′ ∈ e, w ∼α w′ implies 〈e, w′, α〉 
 ϕ

〈e, w, α〉 
 [t]ϕ iff 〈e, w, α · w(t, α)〉 
 ϕ

〈e, w, α〉 
 �ϕ iff for all α′ ∈ A∗, 〈e, w, α · α′〉 
 ϕ

3 The original language of ES also contains the ‘only knows’ operator OK. It allows,
for instance, to infer more about the ignorance of the agent. We do not consider it
here.



Optimal Regression for Reasoning about Knowledge and Actions 5

Let Ψ ⊆ LES. A formula ϕ ∈ LES is:

– a valid ES-consequence of Ψ (notation: Ψ |=ES ϕ) if and only if for all e, for
all w, if for all ψ ∈ Ψ , 〈e, w, ε〉 
 ψ, then 〈e, w, ε〉 
 ϕ;

– ES-valid (notation: |=ES ϕ) if and only if ∅ |=ES ϕ; and
– ES-satisfiable if and only if 6|=ES ¬ϕ.

Lakemeyer & Levesque show that the same properties of knowledge as for
situation calculus (and Hintika’s epistemic logic EL) arise from this definition.
For example, we have positive introspection, i.e., |=ES �(Kϕ→ KKϕ), negative
introspection, i.e., |=ES �(¬Kϕ→ K¬Kϕ), and also the following successor state
axiom for knowledge:

SSAK. |=ES �([a]Kϕ↔ ((SF (a) ∧K(SF (a) → [a]ϕ)) ∨
(¬SF (a) ∧K(¬SF (a) → [a]ϕ))))

2.2 Basic action theories

It was by means of situation calculus that [16] highlighted the representational
frame problem in reasoning about actions. After that, several partial solutions
were proposed, for example by [17], and by [18]. None of them however, is fully
satisfactory. We present here yet another partial solution, proposed by [2]. We
also incorporate the extension to incomplete knowledge proposed by [12] that
was redesigned later by [3]. We call this solution the RSL’s partial solution to
the frame problem, or RSL for short.

RSL relies on a number of simplifying hypothesis. The most important are:

H1 All actions are deterministic.
H2 All the laws that define the behavior of the actions are known by the agent.
H3 All action occurrences are perceived by the agent.
H4 for each action constant a, it is possible to give a single formula ψ(a) that

characterizes the condition under which a is executable (action precondition
completeness).

H5 for each fluent constant p, it is possible to give a finite set of action constants
that may flip the truth value of p (causal completeness).

H6 for each fluent p, it is possible to give a single formula χ+(a, p) (respectively
χ−(a, p) that characterizes all the conditions under which a flips the truth
value of p to true (respectively to false) in the successor situation (effect
precondition completeness).

H7 The length of the formulas χ+(a, p) and χ−(a, p) in H6 is roughly propor-
tional to the number of actions that affect the value of the fluent.

H8 Relatively few actions affect a given fluent.
H9 The set of fluents affected by an action is much smaller than the entire set

of fluents of the language (inertia).

Hypothesis H1 is about the nature of the world. This hypothesis is imple-
mented by the fact that each w ∈ W is a function. Hypotheses H2 and H3 say



6 H. van Ditmarsch, A. Herzig, T. de Lima

that the agent’s knowledge about actions types and about actions instances are
accurate. They are implemented by the indistinguishability relations ‘∼α’ be-
tween worlds. The other six hypotheses are implemented by requiring that the
action preconditions and effects be described using a collection of formulas in
some specific form. This collection of formulas is called a basic action theory.

Definition 2. A basic action theory is a set Θ = Θuna∪Θpre∪Θsense∪Θpost, such
that:

– Θuna contains one formula of the form a1 6= a2 for each pair of different
action names (a1, a2);

– Θpre contains one formula of the form ∀x.�(Poss(x) ↔ ϕ(x)), where ϕ(x)
is a fluent formula that contains only x as free variable;

– Θsense contains one formula of the form ∀x.�(SF (x) ↔ ψ(x)), where ψ(x) is
a fluent formula that contains only x as free variable; and

– Θpost contains one formula of the form ∀x.�([x]p↔ χ(x, p)) for each relevant
p (i.e., each p ∈ Eff+(a) ∪ Eff−(a)), where each χ(x, p) is a fluent formula
that contains only x as free variable.

Because ϕ(x), ψ(x) and χ(x, p) are fluent formulas, action preconditions and
actions effects are completely determined by the current possible world. More-
over, under hypotheses H9 actions only change a small part of the world, leaving
the rest unchanged. It follows that |Θ| = O(|P | + |A|) [19]. In addition, note
that H8 implies that there is no action changing the truth value of an infinity of
fluents. Therefore, RSL is a solution to the representational frame problem.

Example 1 (The lady or the tiger). We illustrate RSL’s solution by showing a
formalization of a running example inspired by a puzzle of [20]. The environment
consists of an agent that inhabits a room with two doors. These doors may be
opened by the agent and, if so, behind each one the agent will either find the
lady, or the tiger. If the agent opens a door and finds the lady, then she will
marry him, and if he finds the tiger, then it will kill him. The available actions
are:

– listen1 and listen2: by executing one of these actions, the agent listens to
what happens behind the respective door, which results in hearing the tiger
roaring if there is one behind the door; and

– open1 and open2: by executing one of these actions, the agent opens the
respective door, which results in either marrying the lady or being killed by
the tiger, depending on what is behind the door.

We the fluent lady1 to mean that the lady is behind door 1. Thus the formula
¬lady1 means that the lady is behind door 2 and the tiger is behind door 1. A
basic action theory for this example can be formed by the following unique-name
axioms for actions:

Θuna = {listen1 6= listen2, listen1 6= open1, listen1 6= open2,

listen2 6= open1, listen2 6= open2, open1 6= open2 }



Optimal Regression for Reasoning about Knowledge and Actions 7

the following action precondition axiom:

Θpre = {∀x.�(Poss(x) ↔ alive)}

the following sensed fluent axiom:

Θsense = { ∀x.�(SF (x) ↔ (((x = open1) ∧ >) ∨
((x = open2) ∧ >) ∨
((x = listen1) ∧ lady1) ∨
((x = listen2) ∧ ¬lady1))) }

and the following successor-state axioms:

Θpost = { ∀x.�([x]alive ↔ (((x = open1) ∧ lady1 ∧ alive) ∨
((x = open2) ∧ ¬lady1 ∧ alive))),

∀x.�([x]married ↔ (((x = open1) ∧ (lady1 ∨married)) ∨
((x = open2) ∧ (¬lady1 ∨married)))),

∀x.�([x]lady1 ↔ lady1), }

Then, for instance we have that:

Θ |=ES 〈listen1〉(Klady1 ∨K¬lady1)
Θ |=ES (lady1 ∧ alive) → 〈listen1〉〈open1〉Kmarried

2.3 Regression

In this section we present an effective procedure for reasoning using RSL’s solu-
tion. It is based in goal regression, originally proposed by [21]. In the ES setting
it corresponds to starting with a complex formula that represents the goal and
applying successive “simplifications” in order to obtain an equivalent formula
which does not mention actions. Once this formula is obtained, the problem has
been reduced to theorem proving in S5 logic plus equality.

Using axiom SSAK above, the definition of the regression procedure for ES
is very similar to that for situation calculus. Note that ES regressable formulas
are sentences that do not mention the operator �.

Definition 3 (ES regression). Let ε be an empty sequence of actions and let
a basic action theory Θ be given. The regression operator regΘ is inductively
defined on the sentence ϕ by:

1. regΘ(ϕ) = regΘ(ε, ϕ)
2. regΘ(α, t1 = t2) = (t1 = t2)
3. regΘ(ε, p) = p
4. regΘ(α · t, p) = regΘ(α, χ(x, p)tx)
5. regΘ(α, Poss(t)) = regΘ(α, ϕ(x)tx)
6. regΘ(α, SF (t)) = regΘ(α, ψ(x)tx)



8 H. van Ditmarsch, A. Herzig, T. de Lima

7. regΘ(α,¬ϕ) = ¬ regΘ(α, ϕ)
8. regΘ(α, ϕ1 ∧ ϕ2) = regΘ(α, ϕ1) ∧ regΘ(α, ϕ2)
9. regΘ(ε,Kϕ) = K regΘ(ε, ϕ)

10. regΘ(α · t,Kϕ) =
regΘ(α, (SF (t) ∧K(SF (t) → [t]ϕ)) ∨ (¬SF (t) ∧K(¬SF (t) → [t]ϕ)))

11. regΘ(α, [t]ϕ) = regΘ(α · t, ϕ)
12. regΘ(α, ∀x.ϕ) = ∀x. regΘ(α, ϕ)

Theorem 1 ([9]). Θ |=ES ϕ if and only if Θuna |=ES regΘ(ϕ).

Example 2. We use the theory Θ defined in Example 1 to regress the formula
[listen1][open1]Kmarried . We have that:

regΘ([listen1][open1]Kmarried) =
= regΘ(listen1 · open1,Kmarried)
= regΘ(listen1,K[open1]married)
= regΘ(listen1,K(lady1 ∨married))
= regΘ(ε,(lady1 ∧K(lady1 → [listen1](lady1 ∨married))) ∨

(¬lady1 ∧K(¬lady1 → [listen1](lady1 ∨married)))

= (lady1 ∧K(lady1 → (lady1 ∨married))) ∨
(¬lady1 ∧K(¬lady1 → (lady1 ∨married)))

which is equivalent to lady1 ∨ (¬lady1 ∧Kmarried).

3 Dynamic epistemic logic

A different tradition in modelling knowledge and change has been followed in, for
example, [22], [23], [5], [24] and [6]. Logics in this tradition are in fact dynamic
extentions of epistemic logics. The latter is a family of modal logics that use
possible worlds semantics to represent agents’ knowledge or beliefs. This idea,
originally proposed by [25], has known great development in more recent works
such as [26], [27] and [28].

In this section, we present epistemic logics and then present an extention
wherein one can recast the RSL solution for the frame problem.

3.1 Epistemic logic

Definition 4 (The Languages LELC, LEL and LPL). Let P be a countable
set of propositional letters, and let N be a finite set of agents. The language of
epistemic logic with common knowledge LELC is defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CGϕ

where p ranges over P , i ranges over N , and G ranges over ℘(N). We also
define the language of epistemic logic without common knowledge LEL as the



Optimal Regression for Reasoning about Knowledge and Actions 9

language obtained from LELC by dropping the operator ‘C’; and the language
of propositional logic LPL as the language obtained from LEL by dropping the
operator ‘K’.

The formula Kiϕ is read ‘agent i knows (or believe) that ϕ’, and the formula
CGϕ is read ‘all agents in group G commonly know (or believe) that ϕ’. We use
the common abbreviations for the formulas >, ⊥, and for the operators ∨, →,
↔, and ‘E’. The latter is defined by:

EGϕ
def=

∧
i∈G

Kiϕ

where G ranges over ℘(N). In addition, let M be one of the operators ‘Ki’, ‘EG’
or ‘CG’. We sometimes write M`ϕ to abbreviate the `-fold nesting M . . .Mϕ, if
` ≥ 0, where M0ϕ is simply ϕ.

The formula EGϕ is read ‘every agent in group G knows (or believes) that
ϕ’. We indeed need the operator ‘C’ of common knowledge (or common belief)
to represent, for example, that something is a convention in a group of agents. In
this sense, saying that something is known by everybody in the group of agents
G is different from saying that something is commonly known in the group of
agents G. Discussions about the differences between these two concepts can be
found, for example, in [29] and in [30].

Definition 5 (Epistemic model). An epistemic model is a tuple 〈W,R, V 〉,
such that:

– W is a nonempty set of possible worlds;
– R : N → ℘(W ×W ) associates an accessibility relation Ri to each i ∈ N ;

and
– V : P → ℘(W ) associates an interpretation Vp ⊆W to each p ∈ P .

Let M = 〈W,R, V 〉 be an epistemic model and let w ∈ W , we call the pair
(M,w) a pointed epistemic model. For convenience, we also define Ri(w) as the
set {w′ | (w,w′) ∈ Ri}.

Definition 6 (The satisfaction relation). Let (M,w) be a pointed epistemic
model. The satisfaction relation ‘
’ is inductively defined as follows:

M,w 
 p iff w ∈ Vp
M,w 
 ¬ϕ iff not M,w 
 ϕ

M,w 
 ϕ ∧ ψ iff M,w 
 ϕ and M,w 
 ψ

M,w 
 Kiϕ iff Ri(w) ⊆ JϕKM

M,w 
 CGϕ iff (
⋃
i∈G

Ri)+(w) ⊆ JϕKM

where JϕKM = {w ∈ W | M,w 
 ELCϕ} is the extension of ϕ in the model M ,
and the operator ‘+’ is transitive closure.



10 H. van Ditmarsch, A. Herzig, T. de Lima

In the pointed epistemic model (M,w), the distinguished world w is inter-
preted as the actual world. And the set Ri(w) is the set of worlds that agent i
considers possible at w. Then, a formula ϕ is known by agent i if and only if ϕ
holds in all possible worlds that are accessible for agent i, i.e., iff ϕ holds in all
worlds of Ri(w). For the operator ‘C’ we use the transitive closure of relations
Ri. Then a formula ϕ is commonly known by all agents, if and only if ϕ holds
in all possible worlds that are “reachable” from w.

A class of epistemic models, is the set of all epistemic models that respect a
subset of the properties above. Below, we list the classes that we address in this
paper and their respective names.

– K: no restrictions;
– KT: each Ri is reflexive;
– S4 (or KT4): each Ri is reflexive and transitive;
– KD45: each Ri is serial, transitive and euclidian; and
– S5 (or KT5): each Ri is reflexive and euclidian.

We note two things. First, K is also the class of all epistemic models. Second,
we have the following relations between the above classes: S5 ⊂ S4 ⊂ KT ⊂ K,
and also S5 ⊂ S4 ⊂ KD45 ⊂ K. From now on whenever an epistemic model is in
K, we call it a K-model. Similarly, we also use the terms KT-, KD45-, S4-, and
S5-model.

Definition 7 (Validity, satisfiability and valid consequence).
Let C ∈ {K,KT,S4,KD45,S5}, and let Ψ ⊆ LELC. A formula ϕ ∈ LELC is:

– C-valid (notation: |=C ϕ) if and only if for all pointed C-models (M,w),
(M,w) 
 Cϕ;

– C-satisfiable if and only if 6|=C ¬ϕ; and
– a valid C-consequence of Ψ (notation: Ψ |=C ϕ) if and only if for all pointed

C-models (M,w), if for all ψ ∈ Ψ , (M,w) 
 Cψ, then (M,w) 
 Cϕ.

Because of the relations between classes of models mentioned above, we ob-
viously have that ELC-validities are also K-, KT-, S4-, KD45- and S5-validities.
We therefore abuse notation and write |=ELC ϕ (instead of |=K ϕ) to mean that
ϕ is valid in all classes of epistemic models.

Before closing this section, we list several known complexity results for epis-
temic logics. All of them were shown by [31]. Without the operator ‘C’ (i.e., for
LEL), satisfiability checking is:

– NP-complete for |N | = 1 in KD45 and S5;
– PSPACE-complete for |N | ≥ 2 in KD45 and S5; and
– PSPACE-complete for any number of agents in K, KT and S4.

With the operator ‘C’ (i.e., for LELC), satisfiability checking is:

– PSPACE-complete for |N | = 1 in S4, KD45 and S5;
– EXPTIME-complete for |N | ≥ 2 in S4, KD45 and S5; and
– EXPTIME-complete for any number of agents in K and KT.



Optimal Regression for Reasoning about Knowledge and Actions 11

3.2 Adding dynamic operators

Definition 8 (The languages LDELC and LDEL). The language of dynamic
epistemic logic with common knowledge LDELC is defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CGϕ | [!ϕ]ϕ | [!!ϕ]ϕ | [σ]ϕ
σ ::= ε | p :=ϕ, σ

where p ranges over P , i ranges over N , G ranges over ℘(N), and ε is an
empty assignment. Similarly to ELC, we define the language of dynamic epistemic
logic without common knowledge LDEL as the language obtained from LDELC by
dropping the operator ‘C’.

Again, the formula [α]ϕ is read ‘ϕ holds after all possible executions of α’.
The action !ϕ is the public announcement of ϕ. The action !!ϕ is the public
test of ϕ.4 The action p :=ϕ is the public assignment of the truth value of ϕ to
the atom p. For example, p :=⊥ is a public assignment, and Ki[p :=⊥]¬p is a
formula. When assignments are made in parallel, the same propositional letter
can appear only once on the left hand side of the operator ‘ := ’. For convenience,
we identify a complex announcement of the form (p1 :=ϕ1, . . . , pn :=ϕn) with
the set {p1 :=ϕ1, . . . , pn :=ϕn}. Thus ε is identified with ∅.

The fragment of DELC without assignments and without tests is Plaza’s
public announcement logic with common knowledge (PALC) [22], whose fragment
without common knowledge we note PAL.

Announcements and tests model epistemic actions, while assignments model
ontic actions. For example, if we do not consider execution preconditions of
actions, then the epistemic action listen1 of Example 1 can be modelled as
!!lady1. And the ontic action open1 can be modelled as the complex assignment

σopen1
= {alive := (lady1 ∧ alive),married := (lady1 ∨married)}

Definition 9 (The satisfaction relation). Formulas in LDELC are interpreted
in epistemic models. The satisfaction relation ‘
’ is extended with the following
three clauses:

M,w 
 [!ϕ]ψ iff M,w 
 ϕ implies M !ϕ, w 
 ψ

M,w 
 [!!ϕ]ψ iff M,w 
 [!ϕ]ψ and M,w 
 [!¬ϕ]ψ
M,w 
 [σ]ϕ iff Mσ, w 
 ϕ

where M !ϕ and Mσ are updates of the epistemic model M that are defined as:

M !ϕ = 〈W !ϕ, R!ϕ, V !ϕ〉
W !ϕ = W ∩ JϕKM

R!ϕ
i = Ri ∩ (JϕKM × JϕKM )

V !ϕ(p) = V (p) ∩ JϕKM
4 Note that both announcement and test operators in DELC are different from the

test operator in propositional dynamic logic (noted ‘?’): the latter does not have
epistemic effects, while the other ones do.



12 H. van Ditmarsch, A. Herzig, T. de Lima

and

Mσ = 〈W,R, V σ〉
V σ(p) = Jσ(p)KM

and where σ(p) is the formula assigned to p in σ. If there is no such a formula,
i.e., if there is no p :=ϕ in σ, then σ(p) = p. (In particular ε(p) = p for all p.)

Clearly, the public test operator can be defined in terms of the public an-
nouncement operator and does not increase the expressivity of DELC. Never-
theless, its definition as a primitive operator is important in order to provide
a polynomial translation of sensing actions into DELC. If tests were defined as
abbreviations, the resulting translated formula might increase exponentially in
size.

Definition 10 (Validity and satisfiability). A formula ϕ ∈ LDELC is:

– DELC-valid (notation: |=DELC ϕ) if and only if for all pointed epistemic mod-
els (M,w), (M,w) 
 ϕ; and

– DELC-satisfiable if and only if 6|=DELC ¬ϕ.

It has been proved that every formula in DEL can be reduced to an equivalent
formula in EL by the following method.

Theorem 2 (DEL reduction [6]). Let ϕ ∈ LDEL. Then |=DEL ϕ if and only if
|=EL red(ϕ), where red(ϕ) is inductively defined by:

1. red(p) = p;
2. red(¬ϕ) = ¬ red(ϕ);
3. red(ϕ1 ∧ ϕ2) = red(ϕ1) ∧ red(ϕ2);
4. red(Kiϕ) = Ki red(ϕ);
5. red([σ]p) = red(σ(p));
6. red([σ]¬ϕ) = red(¬[σ]ϕ);
7. red([σ](ϕ1 ∧ ϕ2)) = red([σ]ϕ1 ∧ [σ]ϕ2);
8. red([σ]Kiϕ) = red(Ki[σ]ϕ);
9. red([!ψ]p) = red(ψ → p);

10. red([!ψ]¬ϕ) = red(ψ → ¬[!ψ]ϕ);
11. red([!ψ](ϕ1 ∧ ϕ2) = red([!ψ]ϕ1 ∧ [!ψ]ϕ2);
12. red([!ψ]Kiϕ) = red(ψ → Ki[!ψ]ϕ);
13. red([!!ψ]p) = red(p);
14. red([!!ψ]¬ϕ) = red(¬[!!ψ]ϕ);
15. red([!!ψ](ϕ1 ∧ ϕ2) = red([!!ψ]ϕ1 ∧ [!!ψ]ϕ2);
16. red([!!ψ]Kiϕ = red((ψ ∧Ki(ψ → [!!ψ]ϕ)) ∨ (¬ψ ∧Ki(¬ψ → [!!ψ]ϕ))).

However, DEL reduction has the same problem as ES regression: the size of
the formula red(ϕ) can be exponentially larger than the size of ϕ. An example
is the family of formulas defined in [8, Theorem 2]:

ϕ0 = >
ϕn+1 = 〈〈ϕn〉¬Ki¬>〉¬Kj¬>

Moreover, no such equivalences exist for the operator ‘C’ [23]. In Section 5 we
provide a method that can do such a reduction polynomially.



Optimal Regression for Reasoning about Knowledge and Actions 13

4 From ES to DEL

The regression procedure in Definition 3 is very similar to the reduction in The-
orem 2. This suggests that formulas in ES could in some way be encoded in DEL.
In this section we show that:

– the executability preconditions (Poss) of actions can be modelled as public
announcements;

– the sensing results (SF ) of actions can be modelled as public tests; and
– the changes brought about by actions can be modelled as public assignments.

It must be noted however, that DEL is a propositional language. Then, it
clearly does not have the same expressivity as the whole language of ES defined
in [9]. What we provide in this section is a translation from the variable-free
fragment of LES to LDEL. This fragment is defined below.

Definition 11 (The language L0
ES). Let P be a set of countably many fluents

of arity 0, and let A be a set of countably many actions. The language L0
ES is

defined by the following BNF:

ϕ ::= a = a | p | Poss(a) | SF (a) | ¬ϕ | ϕ ∧ ϕ | Kϕ | [a]ϕ

where p ranges over P and a ranges over A.

That is, L0
ES is obtained from LES by dropping variables, quantifiers and

the operator �. The reader can also notice that the fragment L0
ES differs from

LDEL only on the [·] operator and equality. Given the observations made in the
beginning of the section, the translation from this fragment to LDEL is almost
straightforward.

Definition 12 (Translation from ES to DEL). Let a basic action theory Θ
as in Definition 2 be given. We define the translation traΘ as a function from
L0

ES to single-agent LDEL inductively as follows:

1. traΘ(a1 = a2) =

{
⊥ if a1 6= a2 ∈ Θuna

> else
2. traΘ(p) = p
3. traΘ(Poss(a)) = traΘ(ϕ(x)ax)
4. traΘ(SF (a)) = traΘ(ψ(x)ax)
5. traΘ(¬ϕ) = ¬ traΘ(ϕ)
6. traΘ(ϕ1 ∧ ϕ2) = traΘ(ϕ1) ∧ traΘ(ϕ2)
7. traΘ(Kϕ) = Ki traΘ(ϕ)
8. traΘ([a]ϕ) = [!! traΘ(ψ(x)ax)][σa] traΘ(ϕ)

where σa is the complex assignment defined by:

{p := traΘ(χ(x, p)ax) | p ∈ Eff(a)}

where Eff(a) = Eff+(a) ∪ Eff−(a) is the set of fluents such that the truth value
can be flipped by the action a, defined by:

{p | ∀x.�([x]p↔ χ(x, p)) ∈ Θpost and a is mentioned in χ(x, p)}



14 H. van Ditmarsch, A. Herzig, T. de Lima

For example, traΘ[listen1]Klady1 = [!!ϕ(x)listen1
x ][∅]Kilady1, which is equiv-

alent to [!!lady1]Kilady1. For an example with an ontic action, we can take

traΘ([open1]alive) =
[!!ϕ(x)open1

x ][alive := lady1 ∧ alive,married := lady1 ∨married ]alive

which is equivalent to [!!>](lady1∧alive), and therefore also equivalent to lady1∧
alive.

In order to prove that this translation is polynomial, we define the function
len that returns the length of a given expression. In the case of sets and tuples,
we count the length of each element and also the commas and delimiters. That
is, the length of a given set X is:

len(X) = 1 +
∑
x∈X

(1 + len(x))

while for a given tuple Y = 〈y1, . . . , yn〉 it is

len(Y ) = 1 +
n∑
k=1

(1 + len(yk))

For formulas in LELC, we use the inductive definition that follows (note that G
is a set):

len(p) = 1
len(¬ϕ) = 1 + len(ϕ)

len(ϕ ∧ ψ) = 1 + len(ϕ) + len(ψ)
len(Kiϕ) = 2 + len(ϕ)
len(CGϕ) = 1 + len(G) + len(ϕ)

For formulas in L0
ES we also use:

len(t1 = t2) = 3 len([a]ϕ) = 2 + len(ϕ)

and for formulas in LDELC we also use (we consider σ as a set of assignments):

len([!ϕ]ψ) = 1 + len(ϕ) + len(ψ)
len([!!ϕ]ψ) = 1 + len(ϕ) + len(ψ)
len([σ]ϕ) = 1 + len(σ) + len(ϕ)

len(p :=ϕ) = 2 + len(ϕ)

For example, len([{p := q, q := p ∧ q}]Kip = 1 + len({p := q, q := p ∧ q}) +
len(Kip) = 12 + 2 + 1 = 15.

Theorem 3 (Polynomial translation). Let Θ be a basic action theory and
let ϕ ∈ L0

ES. Then len(traΘ(ϕ)) ≤ O(len(Θ)× len(ϕ)).



Optimal Regression for Reasoning about Knowledge and Actions 15

The proof is by induction on the structure of ϕ. We omit details here.

Theorem 4. Let Θ be a basic action theory and let ϕ ∈ L0
ES. Θ |=ES ϕ if and

only if |=DEL traΘ(ϕ).

Again, the proof is by induction on the structure of ϕ. It uses the regresssion
procedures for ES and DEL.

Hence, when the formulas in Θ respect some restrictions, namely when ϕ,
ψ(x), χ(x) and ψ(x, p) are in L0

ES, the problem of deciding whether Θ |=ES ϕ
can be polynomially reduced to a validity problem in DEL.

5 Optimal reduction

We now give a polynomial reduction from DELC to ELC. The idea is first elim-
inate assignments, and then apply Lutz’ reduction [8] to eliminate announce-
ments. In this section, we consider that LDELC does not have the public test
operator ‘!!’. As mentioned earlier, it does not restrict the expressivity of DELC,
since tests can be decomposed into two announcements. Remember that the for-
mula [!!ϕ]ψ is equivalent to [!ϕ]ψ∧ [!¬ϕ]ψ. The reason of doing this restriction is
that the reduction procedure to be presented, when extended for handling public
tests is not polynomial any more.

We also remark that the reduction does not impose any other restriction on
formulas. In particular, this means that the entire method works for basic action
theories where the formulas ϕ(x), ψ(x) and χ(x) mention knowledge and com-
mon knowledge operators. This is a generalization of Lakemeyer & Levesque’s
approach where these formulas are fluent formulas (in particular, without the
operator ‘K’).

5.1 Eliminating assignments

We apply a technique that is fairly standard in automated theorem proving [32].

Theorem 5 (Assignment elimination). Let [p1 :=ϕ1, . . . , pn :=ϕn]ψ be a
subformula of a formula χ in LDELC. Let ψ′ be obtained from ψ by substitut-
ing every occurrence of pk by xpk

, where xpk
is a new propositional letter not

occurring in χ. Let χ′ be obtained from χ by replacing [p1 :=ϕ1, . . . , pn :=ϕn]ψ
by ψ′. Let B abbreviate the conjunction

∧
1≤k≤n(xpk

↔ ϕk) (of bi-implications).

1. For χ ∈ LDEL and |N | = 1: χ is DEL-satisfiable if and only if

χ′ ∧
∧

`≤md(ϕ)

K`
iB

is DEL-satisfiable, where the modal depth md(ϕ) is the maximal number of
nested modal operators of ψ.



16 H. van Ditmarsch, A. Herzig, T. de Lima

2. For χ ∈ LDEL and |N | ≥ 2: χ is DEL-satisfiable if and only if

χ′ ∧
∧

`≤md(ϕ)

E`NB

is DEL-satisfiable.
3. For χ ∈ LDELC: χ is DELC-satisfiable if and only if

χ′ ∧ CNB

is DELC-satisfiable.

Proof. To simplify suppose a single assignment, i.e., that the subformula of χ is
[p :=ϕ]ψ. We do the last case here. The other ones are analogous, and left to
the reader.

From the left to the right. Suppose that M = 〈W,R, V 〉 is an epistemic model
such that M,w 
 χ. Then we construct an epistemic model Mxp = 〈W,R, Vxp〉,
where

Vxp(p) = V (p) for all p 6= xp and
Vxp(xp) = JϕKM

First, note that Mxp , w 
 χ (because xp does not appear in χ).
Second, note that Mxp


 xp ↔ ϕ (because JxpKMxp
= JϕKMxp

).
Therefore Mxp , w 
 CN (xp ↔ ϕ), i.e., Mxp , w 
 CNB.
Third, note that for every v ∈W we have that:
Mxp , v 
 [p :=ϕ]ψ
iff Mp :=ϕ

xp
, v 
 ψ

iff Mp :=ϕ
xp

, v 
 ψ′ (because V p :=ϕ
xp

(p) = V p :=ϕ
xp

(xp)).
Therefore Mxp


 [p :=ϕ]ψ ↔ ψ′

Therefore Mxp
, w 
 χ′ ∧ CNB.

From the right to the left.
Suppose w.l.o.g. that M is generated from w.
Suppose that M,w 
 χ′ ∧ CN (xp ↔ ϕ).
Then M 
 xp ↔ ϕ, i.e., V (xp) = JϕKM .
Then, for all v ∈W :
M,v 
 ψ′ iff Mp :=ϕ, v 
 ψ (because V (xp) = JϕKM = V p :=ϕ(p)).
In other words, M 
 ψ′ ↔ [p :=ϕ]ψ.
Therefore M,w 
 χ. ut

Intuitively, the conjuncts Ki(xpk
↔ ϕk) set the value of the new propositional

letter xpk
to that of ϕk. To guarantee that the equivalences hold everywhere in

the model we need to use a master modality. In the case of DEL we use the
‘everybody knows’ operator, that has to be iterated up to the modal depth of
the formula.



Optimal Regression for Reasoning about Knowledge and Actions 17

Renaming avoids exponential blow-up. This allows the definition of reduction
operators regDEL, regDELC that iteratively eliminate all assignments.

For example, consider the formula ¬[!¬lady ][lady :=¬lady ]Kilady . Its reduc-
tion is ¬[!¬lady ]Kixlady ∧Ki(xlady ↔ ¬lady).

Theorem 6. regDEL and regDELC are polynomial transformations, and preserve
satisfiability in the respective logics.

Proof. Satisfiability-equivalence follows from Theorem 5.

For the common-knowledge case we prove that the size of the reduction of χ is
at most len(χ) × (len(χ) + 6), and for the case of DEL we prove that the size
of the reduction of χ is at most len(χ)2 × (len(χ) + 6). Indeed, in Theorem 5
the size of χ′ is at most len(χ), the size of each equivalence in B is at most
len(χ) + 4, and the number of these equivalences is bound by the number of
(atomic) assignments in χ, which is at most len(χ). In the case of operators ‘K’
and ‘E’ the number of equivalences has to be multiplied by the modal depth of
χ, which is at most len(χ).

1. For |N | = 1. If χ ∈ LDEL, then χ is DEL-satisfiable if and only if regDEL(χ)
is PAL-satisfiable;

2. For |N | ≥ 2. If χ ∈ LDEL, then χ is DEL-satisfiable if and only if regDEL(χ)
is PAL-satisfiable;

3. If χ ∈ LDELC, then χ is DELC-satisfiable if and only if regDELC(χ) is PALC-
satisfiable.

ut

5.2 Eliminating announcements

Once assignments are eliminated, we can eliminate announcements by Lutz’
procedure that we recall here. For simplicity we show only the case without
common knowledge.

First we compute the set of contextual subformulas which are inductively
defined as follows.

Sub(p) = {(ε, p)}
Sub(¬ϕ) = Sub(ϕ) ∪ {(ε,¬ϕ)}

Sub(ϕ ∧ ψ) = Sub(ϕ) ∪ Sub(ψ) ∪ {(ε, ϕ ∧ ψ)}
Sub(Kiϕ) = Sub(ϕ) ∪ {(ε,Kiϕ)}

Sub([!ϕ]ψ) = Sub(ϕ) ∪ {(ϕ · τ, χ) | (τ, χ) ∈ Sub(ψ)} ∪ {(ε, [!ϕ]ψ)}

where τ denotes lists, ε is the empty list, and ‘·’ is concatenation.
Intuitively, Sub(ϕ) is the set of ‘relevant’ subformulas of ϕ together with the

sequence of announcements in the scope of which they occur. (τ, ψ) ∈ Sub(ϕ)
means that subformula ψ of ϕ is in the scope of the sequence τ of announcements.
Now, let ϕ be a multi-agent formula whose DEL-satisfiability is to be decided.



18 H. van Ditmarsch, A. Herzig, T. de Lima

We introduce a set of fresh propositional letters Pϕ = {xτψ | (τ, ψ) ∈ Sub(ϕ)}.
Then the reduction of ϕ is:

regDEL(ϕ) = xεϕ ∧
∧

`≤md(ϕ)

∧
(τ,ψ)∈Sub(ϕ)

E`N (Bτψ)

where md(ϕ) is the modal depth of ϕ, E`Nϕ abbreviates EN . . .ENϕ (` times),
and the bi-implications Bτψ are inductively defined as follows:

Bτp = xτp ↔ p
Bτ¬ϕ = xτ¬ϕ ↔ ¬xτϕ
Bτϕ∧ψ = xτϕ∧ψ ↔ (xτϕ ∧ xτψ)
BτKiϕ

= xτKiϕ
↔ Ki(

∧
µ∈pre(τ) x

µ
µ/τ → xτϕ)

Bτ[!ϕ]ψ = xτ[!ϕ]ψ ↔ (xτϕ → xτ ·ϕψ )

where pre(τ) is the set of true prefixes of τ , and µ/τ is the leftmost symbol of τ
that is not in µ. When the sequence τ is empty, then the conjunction collapses
to true. Bτψ guarantees that xτψ is true exactly where ψ is true.

When applied to a formula in LDEL without assignments, regDEL returns an
EL-formula. For example, consider the formula ¬[!p]Kip. The set of relevant bi-
implications is B = {xε¬[!p]Kip

↔ ¬xε[!p]Kip
, xε[!p]Kip

↔ (xεp → xε·pKip
), xε·pKip

↔
Ki(xεp → xε·pp ), xε·p ↔ p, xε ↔ p}. Then regDEL(¬[!p]Kip) = xε¬[!p]Kip

∧ Ki

∧
B,

which successively implies xεp, ¬x
ε·p
Kip

, and ¬Ki(xεp → xε·pp ). The latter is incon-
sistent with Ki(xε·p ↔ p) and Ki(xε ↔ p) which are the last two bi-implications
prefixed by Ki.

Theorem 7. [8] PAL-satisfiability has the same computational complexity of EL-
satisfiability.

5.3 Eliminating both

Via Theorem 4 we obtain the result below.

Corollary 1. Satisfiability checking of formulas in L0
ES has the same computa-

tional complexity of satisfiability checking in EL.

That is the satisfiability problem for formulas in L0
ES is:

1. NP-complete if |N | = 1;
2. PSPACE-complete if |N | ≥ 2; and
3. EXPTIME-complete if common knowledge is involved.

These results apply to the plan verification problem:5 given the basic action
theoryΘ, an LELC-formula ϕ0 describing the initial situation, an LELC-formula ψω
5 Called “projection problem” in [3, p.22].



Optimal Regression for Reasoning about Knowledge and Actions 19

describing the goal, and a sequence of actions (or plan) made up of a1, . . . , an ∈
A, we have to decide whether:

Θ |=ES ϕ0 → 〈a1〉 . . . 〈an〉ϕω

Upper bounds follow from Corollary 1. Lower bounds obtain because satisfiabil-
ity of χ can be checked by putting Θuna = Θpre = Θsense = Θpost = ∅, ϕ = ¬χ,
n = 0 and ψ = ⊥.Therefore, the plan verification problem inherits the complex-
ity of the underlying logic.

6 Discussion and conclusion

We have modelled the frame problem in dynamic epistemic logic by providing
counterparts for situation calculus style ontic and sensing actions, and we have
given complexity results using that translation. As far as we know, this is the
first optimal decision procedure for a Reiter-style solution to the frame problem.

A similar approach for epistemic actions has been proposed in [33]. The logic
for epistemic tests therein has an operator called ‘test that’, which corresponds
to public announcement. However, that logic has no ontic actions, and the re-
gression procedure is suboptimal. In addition, the complexity result given there
is restricted to non-nested tests, while here we permit any formula under the
scope of the dynamic operators.

Scherl & Levesque’s epistemic extension of Reiter’s solution allows for sensing
actions !!ϕ, which test whether some formula ϕ is true. Such sensing actions can
be viewed as abbreviating the nondeterministic composition of two announce-
ments. We could have defined them as: !!ϕ = (!ϕ∪!¬ϕ), where ‘∪’ is nonde-
terministic composition. The expansion of such abbreviations however leads to
exponential blowing-up, which does not allow to extend our approach and inte-
grate primitive sensing actions: it is not clear how the associated successor state
axiom (cf. axiom SSAK in Section 2)

[!!ϕ]Kiψ ↔ ((ϕ→ Ki(ϕ→ [!!ϕ]ψ)) ∧ (¬ϕ→ Ki(¬ϕ→ [!!ϕ]ψ)))

could be transformed into a polynomial transformation. Further evidence that
the presence of sensing actions increases complexity is provided by the result
in [34] that plan verification in this case is Πp

2 -complete. We therefore leave
integration of sensing actions to future work.

The present paper also tries to build a bridge between situation calculus and
dynamic epistemic logics research communities. This bridge should aid to bring
about advancements on both sides. For instance, we believe that it is possible
to integrate non-public actions to Scherl & Levesque’s approach. For doing so,
one could do as in [35] (see also [36]) and use an equivalent approach that
replaces basic action theories by structures of the form 〈Poss(a), γ+(a), γ−(a)〉.
The components of this structure play the same role as their counterparts in
the present approach. Then, one can follow [23] (see also [37]) and add the
component Ri(a) to this structure. It is the set of actions that agent i cannot



20 H. van Ditmarsch, A. Herzig, T. de Lima

distinguish from the action a when this action is executed. This representation
is parsimonious and [23] also provide a reduction method that extends the one
in Theorem 2.

From the other side of the bridge we can cite the high expressivity of the
entire language of situation calculus (and also ES). With the argument of keeping
decidability and elegance, the dynamic epistemic logics community generally
avoids adding quantifiers, predicates, functions, etc, to their formalisms. Reiter’s,
Scherl & Levesque’s and Lakemeyer & Levesques’s approaches show that, under
reasonable restrictions, these components can be added and even be used in
practice, as done in the GOLOG programming language.

References

1. Thielscher, M.: From situation calculus to fluent calculus: State update axioms
as a solution to the inferential frame problem. Artificial Intelligence 111 (1999)
277–299

2. Reiter, R.: The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In Lifschitz, V., ed.: Papers
in Honor of John McCarthy. Academic Press Professional Inc. (1991) 359–380

3. Scherl, R., Levesque, H.: Knowledge, action and the frame problem. Artificial
Intelligence 144 (2003) 1–39

4. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming 31
(1997) 59–83

5. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic with
assignment. In Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.,
Wooldridge, M., eds.: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), ACM (2005) 141–148

6. Kooi, B.: Expressivity and completeness for public update logic via reduction
axioms. Journal of Applied Non-Classical Logics 17 (2007) 231–253

7. van Benthem, J.: Modal logic meets situation calculus. Manuscript (2007)
8. Lutz, C.: Complexity and succintness of public announcement logic. In Stone,

P., Weiss, G., eds.: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS). (2006) 137–144

9. Lakemeyer, G., Levesque, H.: Semantics for a useful fragment of the situation
calculus. In: Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, Professional Book Center (2005) 490,496

10. McCarthy, J.: Situations, actions and causual laws. In Minsky, M., ed.: Semantic
Information Processing. The MIT Press (1968) 410–417

11. Gelfond, M., Lifschitz, V., Rabinov, A.: What are the limitations of situation
calculus. In Boyer, R., ed.: Essays in Honor of Woody Bledsoe. Kluwer Academic
Publishers Group (1991) 167–180

12. Scherl, R., Levesque, H.: The frame problem and knowledge-producing actions. In:
Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI),
The AAAI Press (1993) 689–695

13. Bacchus, F., Halpern, J., Levesque, H.: Reasoning about noisy sensors and effectors
in the situation calculus. Artificial Intelligence 111 (1999) 171–208

14. Reiter, R.: On knowledge-based programming with sensing in the situation calcu-
lus. ACM Transactions on Computational Logic (2001) 433–437



Optimal Regression for Reasoning about Knowledge and Actions 21

15. Lakemeyer, G., Levesque, H.: Situations, si! Situation terms, no! In: Proceedings of
the International Conference on Knowledge Representation and Reasoning (KR),
AAAI Press (2004) 516–526

16. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of
artificial intelligence. In Meltzer, B., Michie, D., eds.: Machine Intelligence 4.
Edinburgh University Press (1969) 463–502

17. Haas, A.: The case for domain-specific frame axioms. In Brown, F.M., ed.: The
Frame Problem in Artificial Intelligence. Morgan Kaufmann (1987)

18. Schubert, L.: Monotonic solution of the frame problem in the situation calculus:
An efficient method for worlds with fully specified actions. In Kynburg, H., Loui,
R., Carlson, G., eds.: Knowledge Representation and Defeasible Reasoning. Kluwer
Academic Publishing (1990) 23–67

19. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press (2001)

20. Smullyan, R.: The Lady or the Tiger? and Other Logic Puzzles Including a Math-
ematical Novel That Features Godel’s Great Discovery. Random House Puzzles &
Games (1992)

21. Waldinger, R.: Achieving several goals simutaneously. In Elock, E., Michie, D.,
eds.: Machine Intelligence. Volume 8. Ellis Harwood (1977) 94–136

22. Plaza, J.: Logics of public communications. In Emrich, M.L., Hadzikadic, M.,
Pfeifer, M.S., Ras, Z.W., eds.: Proceedings of the Fourth International Symposium
on Methodologies for Intelligent Systems (ISMIS). (1989) 201–216

23. Baltag, A., Moss, L., Solecki, S.: The logic of common knowledge, public announce-
ments, and private suspicions. In: Proceedings of the seventh Theoretical Aspects
of Rationality and Knowledge conferene (TARK), Morgan Kaufmann Publishers
Inc. (1998) 43–46

24. van Benthem, J.: “One is a Lonely Number”: logic and communication. In Chatzi-
dakis, Z., Koepke, P., Pohlers, W., eds.: Logic Colloquium’02. Volume 27 of Lecture
Notes in Logic. ASL & A.K. Peters (2006) 96–129

25. Hintikka, J.: Knowledge and Belief. Cornell University Press (1962)
26. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. The

MIT Press (1995)
27. Meyer, J., van der Hoek, W.: Epistemic Logic for AI and Computer Science.

Number 41 in Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press (1995)

28. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Volume
337 of Synthese Library. Springer (2007)

29. von Wright, G.: An Essay in Modal Logic. North-Holland (1951)
30. Lewis, D.: Convention, A Philosophical Study. Harvard University Press (1969)
31. Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics

of knowledge and belief. Artificial Intelligence 54 (1992) 311–379
32. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Hand-

book of Automated Reasoning. North Holland (2001) 335–367
33. Herzig, A., Lang, J., Polacsek, T.: A modal logic for epistemic tests. In Horn, W.,

ed.: Proceedings of the Fourteenth European Conference on Artificial Intelligence
(ECAI), IOS Pres (2000) 553–557

34. Herzig, A., Lang, J., Longin, D., Polacsek, T.: A logic for planning under partial
observability. In: Proceedings of the Seventeenth Conference on Artificial Intelli-
gence (AAAI) and the Twelfth Conference on Innovative Applications of Artificial
Intelligence (IAAI), The AAAI Press (2000) 768–773



22 H. van Ditmarsch, A. Herzig, T. de Lima

35. van Ditmarsch, H., Herzig, A., de Lima, T.: Optimal regression for reasoning about
knowledge and actions. In: Proceedings of the Twenty-Second AAAI Conference
on Artificial Intelligence, AAAI Press (2007) 1070–1075

36. Demolombe, R., Herzig, A., Varzinczak, I.: Regression in modal logic. Journal of
Applied Non-Classical Logics 13 (2003) 165–185

37. Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 139 (2004) 165–224


	Optimal Regression for Reasoning about Knowledge and Actions
	Hans van Ditmarsch, Andreas Herzig and Tiago de Lima

