Contents

Preface XIII

List of Contributors XV

1 Emulsion Science and Technology: A General Introduction 1

Tharwat F. Tadros

1.1 Introduction 1

1.2 Industrial Applications of Emulsions 3

1.3 The Physical Chemistry of Emulsion Systems 4

1.3.1 The Interface (Gibbs Dividing Line) 4

1.4 The Thermodynamics of Emulsion Formation and Breakdown 5

1.5 Interaction Energies (Forces) Between Emulsion Droplets and Their Combinations 7

1.5.1 Van der Waals Attraction 7

1.5.2 Electrostatic Repulsion 9

1.5.3 Steric Repulsion 11

1.6 Adsorption of Surfactants at the Liquid/Liquid Interface 12

1.6.1 The Gibbs Adsorption Isotherm 13

1.6.2 Mechanism of Emulsification 16

1.6.3 Methods of Emulsification 18

1.6.4 Role of Surfactants in Emulsion Formation 19

1.6.5 Role of Surfactants in Droplet Deformation 21

1.7 Selection of Emulsifiers 25

1.7.1 The Hydrophilic-Lipophilic Balance (HLB) Concept 25

1.7.2 The Phase Inversion Temperature (PIT) Concept 27

1.7.3 The Cohesive Energy Ratio (CER) Concept 29

1.7.4 The Critical Packing Parameter for Emulsion Selection 31

1.8 Creaming or Sedimentation of Emulsions 32

1.8.1 Creaming or Sedimentation Rates 33

1.8.2 Prevention of Creaming or Sedimentation 35

1.9 Flocculation of Emulsions 37

1.9.1 Mechanism of Emulsion Flocculation 38
3.2 Materials and Methods 68
3.3 Results and Discussion 69
3.4 Conclusions 73
References 73

4 Enhancement of Stabilization and Performance of Personal Care Formulations Using Polymeric Surfactants 75
Thanwat F. Tadros, Martine Lemmens, Bart Levecke, and Karl Booten
4.1 Introduction 75
4.2 Experimental 76
4.3 Results and Discussion 76
4.3.1 Massage Lotion 76
4.3.2 Hydrating Shower Gel 79
4.3.3 Soft Conditioner 80
4.3.4 Sun Spray SPF19 81
4.4 Conclusions 81
References 81

5 Effect of an External Force Field on Self-Ordering of Three-Phase Cellular Fluids in Two Dimensions 83
Waldemar Nowicki and Grażyna Nowicka
5.1 Introduction 83
5.2 The Model 84
5.3 Results and Discussion 85
5.3.1 Energies of Cluster Insertion and Transformation 85
5.3.2 Evolution of the System in a Gravitational Field 90
5.4 Conclusions 93
References 94

6 The Physical Chemistry and Sensory Properties of Cosmetic Emulsions: Application to Face Make-Up Foundations 97
Frédéric Auguste and Florence Levy
6.1 Introduction 97
6.2 Materials and Methods 98
6.2.1 Selection of the Foundations to be Studied 98
6.2.2 Characterization Methods 98
6.3 Experimental Results and Discussion 99
6.3.1 Drying of the Foundation Bulk and Drift in Composition During Drying 99
6.3.2 Evolution of Viscosity During Drying 100
6.3.3 Play-Time and Disposition of Foundation on the Skin 102
6.4 Conclusions 104
References 104
7 Nanoparticle Preparation by Miniemulsion Polymerization 107

Man Wu, Elise Rotureau, Emmanuelle Marie, Edith Dellacherie, and Alain Durand

7.1 Introduction 107
7.2 Experimental 108
7.2.1 Materials 108
7.2.2 Emulsion Preparation 108
7.2.3 Polymerization 108
7.2.4 Size Measurement of the Emulsion Droplets 108
7.2.5 Particle Characterization 109
7.3 Results and Discussion 109
7.3.1 Synthesis of Hydrophobically Modified Dextrins 109
7.3.2 Preparation of O/W Miniemulsions 111
7.3.2.1 Control of Initial Droplet Size by Process Variables 111
7.3.2.2 Influence of Polymer Structure on Initial Droplet Size 112
7.3.3 Stability of Miniemulsions within Polymerization Duration 114
7.3.3.1 Mechanism and Kinetics of Miniemulsion Polymerization 114
7.3.3.2 Mechanism and Rate of Emulsion Aging 116
7.3.3.3 Variation of the Rate of Emulsion Aging with Polymerization Conditions 118
7.3.4 Preparation of Defined Nanoparticles with Various Monomers 123
7.3.4.1 Poly(styrene) Nanoparticles Covered by Dextran 123
7.3.4.2 Poly(butylcyanoacrylate) Nanoparticles 126
7.3.5 Colloidal Properties of the Obtained Suspensions 128
7.4 Conclusions 129
References 130

8 Recent Developments in Producing Monodisperse Emulsions Using Straight-Through Microchannel Array Devices 133

Isao Kobayashi, Kunihiko Uemura, and Mitsutoshi Nakajima

8.1 Introduction 133
8.2 Principles of Microchannel Emulsification 135
8.3 Straight-Through MC Array Device and Emulsification Set-Up 137
8.4 Effect of Channel Shapes on Emulsification Using Symmetric Straight-Through MC Arrays 139
8.4.1 Effect of Channel Cross-Sectional Shape 139
8.4.2 Effect of the Aspect Ratio of Oblong Channels 139
8.4.3 Computational Fluid Dynamics (CFD) Simulation and Analysis 141
8.5 Effect of Process Factors on Emulsification Using Symmetric Straight-Through MC Arrays 144
8.5.1 Effect of Surfactants and Emulsifiers 144
8.5.2 Effect of To-Be-Dispersed Phase Viscosity 146
8.5.3 Effect of To-Be-Dispersed Phase Flux 148
8.6 Scaling-Up of Straight-Through MC Array Devices 149
11 Routes Towards the Synthesis of Waterborne Acrylic/Clay Nanocomposites 209
Gabriela Diaconu, Maria Paulis, and Jose R. Leiza

11.1 Introduction 209
11.2 Experimental 211
11.2.1 Materials 211
11.2.2 Synthesis of Waterborne (MMA-BA)/MMT Nanocomposites by Emulsion Polymerization 213
11.2.3 Synthesis of Waterborne (MMA-BA)/MMT Nanocomposites by Miniemulsion Polymerization 214
11.2.4 Characterization and Measurements 215
11.3 Results and Discussion 217
11.3.1 Waterborne Nanocomposites by Emulsion Polymerization 217
11.3.2 Waterborne Nanocomposites by Miniemulsion Polymerization 219
11.4 Conclusions 226
References 226

12 Preparation Characteristics of Giant Vesicles with Controlled Size and High Entrapment Efficiency Using Monodisperse Water-in-Oil Emulsions 229
Takashi Kuroiwa, Mitsutoshi Nakajima, Kunihiko Uemura, Seigo Sato, Sukekuni Mukataka, and Sosaku Ichikawa

12.1 Introduction 229
12.2 Materials and Methods 230
12.2.1 Materials 230
12.2.2 Preparation of W/O Emulsions Using MC Emulsification 230
12.2.3 Formation of GVs 231
12.2.4 Measurement of Droplet and Vesicle Diameters 232
12.2.5 Determination of Entrapment Yield 232
12.3 Results and Discussion 233
12.3.1 Preparation of GVs Using Monodisperse W/O Emulsions 233
12.3.2 Size Control of GVs and Entrapment of a Hydrophilic Molecule into GVs 234
12.3.3 Formation Characteristics of GVs 237
12.4 Conclusions 240
References 241

13 On the Preparation of Polymer Latexes (Co)Stabilized by Clays 243
Ignác Capek

13.1 Introduction 243
13.2 Cloisite Clays and Organoclays 247
13.3 Radical Polymerization 260
13.3.1 Solution/Bulk Polymerization 260
13.3.2 Radical Polymerization in Micellar Systems 263
13.4 Collective Properties of Polymer/MMT Nanocomposites 281