
On the Monodromy of

4-dimensional Lagrangian Fibrations

Dissertation zur Erlangung des Doktorgrades

der Fakultät für Mathematik und Physik

der Albert-Ludwigs-Universität

Freiburg im Breisgau

vorgelegt von

Christian Thier

Oktober 2008



Dekan: Prof. Dr. Kay Königsmann

1. Gutachter: Prof. Dr. Bernd Siebert

2. Gutachter: Prof. Dr. Manfred Lehn

Datum der Promotion: 05.12.2008



Für Doris, Karl, Lisa und Heike





Acknowledgements

First of all I would like to thank my supervisor Prof. Dr. Bernd Siebert for

introducing me to this subject and for his support. Especially for the opportunity

to visit him when he was on a sabbatical leave at the University of California San

Diego. I also thank him and Prof. Dr. Miles Reid for inviting me to give a talk

on this work in a Seminar at the University of Warwick.

I am grateful to PD. Dr. Vsevolod V. Shevchishin for many useful discussions

on my thesis and thank him for giving me the opportunity to give a talk on this

thesis in a workshop at the MPI for Mathematics in Bonn.

I would also like to thank Prof. Dr. Manfred Lehn for his interest in my work

and for inviting me to give a talk at the Johannes Gutenberg-University Mainz.

As to the non-mathematical acknowledgements, I express at this point my grat-

itude towards my parents on whose support and understanding I could always

count. Last but not least I thank very warmly Heike Kaprolat for her support and

encouragement and for enduring me.





ON THE MONODROMY OF 4-DIMENSIONAL LAGRANGIAN

FIBRATIONS

CHRISTIAN THIER

Contents

1. Introduction 9

1.1. Introduction and Results 9

1.2. Compact hyperkähler manifolds 13

1.3. Lagrangian fibrations and affine structures 15

1.4. Elliptic K3-surfaces 20

1.5. Monodromy 24

2. Group theory 30

2.1. Mapg and Sp(2g,Z) 30

2.2. Central extensions of Sp(4,Z) 38

2.3. The universal cover of the symplectic group Sp(4,Z) 42

2.4. The class γ∗ ∈ H2(Sp(4,Z),Z) 52

2.5. Generators and relations in H2(Sp(4,Z),Z) 53

2.6. The central extension Ŝp(4,Z) 56
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1. Introduction

1.1. Introduction and Results. Compact hyperkähler manifolds are a very spe-

cial class of complex manifolds. This is manifest in the fact that up to deformation

there are only very few examples known. As compact hyperkähler manifolds ad-

mit a holomorphic-symplectic form, they are even dimensional. In dimension two

compact hyperkähler manifolds are K3-surfaces and in dimension four the known

examples are up to deformation either Hilbert schemes of points on K3-surfaces

or generalised Kummer varieties. Therefore one would either like to construct new

examples of compact hyperkähler manifolds or else understand why there exist so

few of them.

The restrictive nature of compact hyperkähler manifolds also governs the type

of fibration that such manifolds admit. By a theorem, due to Matsushita [45],

we know that a fibration on a compact hyperkähler manifold is a fibration in

complex-Lagrangian tori. Furthermore we know that the base of such a fibration

is a Fano variety with the same Hodge numbers as the complex projective space

[46]. Sawon explained in [65] that and how Lagrangian fibrations could be used

to classify compact hyperkähler manifolds up to deformation. In fact all of the

known examples of compact hyperkähler manifolds can be deformed into compact

hyperkähler manifolds that admit a Lagrangian fibration.

In this thesis we study Lagrangian fibrations on four-dimensional hyperkähler

manifolds. The discriminant locus ∆ of such a fibration is a curve in P2. Around

components of ∆ the fibration exhibits monodromy. Outside the discriminant

locus the Lagrangian fibration endows the base P2 with the structure of an inte-

gral affine manifold. We are mainly interested in the discriminant locus and in

the monodromy. Control over the degree of ∆ might lead to a classification of

Lagrangian fibrations, see [64] and [72]. For fibrations whose fibres are polarised

abelian varieties, the monodromy of the Lagrangian fibration (or equivalently that

of the affine structure) lies in an appropriate integral symplectic group. We study

the case of principal polarisations. In this case the monodromy transformations lie

in Sp(4,Z). Studying group theoretical properties of Sp(4,Z) we are able to prove

a monodromy theoretical formula for the degree of the discriminant locus and an

upper bound for deg(∆), (Theorem 3.15 and Corollary 3.25). Further we prove

under additional assumptions a dichotomy for such fibrations. (Theorem 3.47).

In chapter one we first review the definition of a compact hyperkähler manifold,
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the known examples and some results on Lagrangian fibrations. Then we look at

elliptic fibrations on K3-surfaces from the point of view of monodromy and finally

we discuss types of unipotent monodromy transformations, in particular we focus

on transformations that are “unipotent of rank one”. This means that the trans-

formation is unipotent and that its logarithm has rank one.

In chapter two we describe the relation between the integral symplectic group

Sp(4,Z) and the mapping class group Map2 of a surface of genus two. In order

to study the monodromy of principally polarised Lagrangian fibrations we study

central extensions

0 −→ Z −→ E −→ Sp(4,Z) −→ 1

of Sp(4,Z) by Z. The latter are classified by the group cohomology group

H2(Sp(4,Z),Z). We use a presentation of Map2 due to Wajnryb [75] and Mat-

sumoto [49] to describe natural Z-extensions of Sp(4,Z). This leads to two natural

extensions that we denote by κ∗ + γ∗ and γ∗ that generate H2(Sp(4,Z),Z) (Sec-

tions 2.3 and 2.4). Further we describe a central extension Ŝp(4,Z) of Sp(4,Z) by

Z2 and show that unipotent transformations of rank one have a distinguished lift

in this central extension. By a distinguished lift of a symplectic transformation in

a central extension E we mean a distinguished inverse image under the homomor-

phism E −→ Sp(4,Z). The distinguished lift in Ŝp(4,Z) leads to distinguished

lifts in all central Z-extensions of Sp(4,Z).

In chapter three we study what we call monodromy factorisations of Lagrangian

fibrations. Restricting a Lagrangian fibration f : X −→ P2 to a general line l ⊂ P2,

one obtains an abelian fibration f|Xl
: Xl −→ l with base P1. This fibration has

singular fibres over the points where l intersects ∆. Choosing an appropriate pre-

sentation of the fundamental group π1(l \ ∆) yields a factorisation of the identity

into monodromy transformations. We call such a factorisation µl a monodromy

factorisation of f . We make the assumption that the monodromy transformation

T around a point of l ∩∆ is unipotent of rank one. This assumption puts restric-

tions on the singularities of the general singular fibre of f : X −→ P2. We show

that monodromy factorisations that satisfy this assumption admit a distinguished

lift in central Z-extensions of Sp(4,Z). The distinguished lift of a monodromy

factorisation is an integer and this allows us to evaluate classes in H2(Sp(4,Z),Z)

on monodromy factorisations.

Next we give geometrical interpretations of the two natural generators κ∗ + γ∗
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and γ∗ of H2(Sp(4,Z),Z). We prove that the evaluation of the class κ∗ + γ∗ on a

monodromy factorisation µl gives the first Chern class of the canonical extension

of the Hodge bundle of f|Xl
, (Theorem 3.7). This interpretation together with

Matsushitas result that R1f∗OX is isomorphic to the cotangentbundle of the base

allows us to prove that for a Lagrangian fibration with principally polarised fibres

and unipotent monodromy of rank one

deg(∆) = 30 + 2γ∗(µl)

where µl is a monodromy factorisation of f|Xl
(Theorem 3.15). The interpretation

of the class γ∗ is as follows. The fibration f|Xl
: Xl −→ l gives rise to a moduli

map

ϕ : l −→ A2

into the compactification of the moduli space of principally polarised abelian sur-

faces A2. Assume that the general fibre of the Lagrangian fibration is not reducible

as a principally polarised abelian variety. Denote by D1 the divisor on A2 that

parametrises reducible principally polarised abelian varieties. Then deg(ϕ∗D1) is

given by −γ∗(µl), where γ∗(µl) denotes the evaluation of γ∗ on a monodromy fac-

torisation µl (Theorem 3.20). In this sense γ∗(µl) counts the fibres of f|Xl
: Xl −→ l

that are reducible as p.p.a.s..

Next we check the formula of Theorem 3.15 in an example of a Lagrangian fi-

bration with degree of the discriminant locus equal to 30. Then we prove that if

the general fibre is not reducible as a principally polarised abelian variety, then

deg(∆) ≤ 30

(Corollary 3.25).

Principally polarised abelian surfaces are intimately related to genus two curves.

The relation is that of a principally polarised abelian surface with its theta-divisor.

Using this correspondence we show that one can associate to the restriction fXl
:

Xl −→ l of a principally polarised Lagrangian fibration to a general line l in P2 a

genus two fibration over l (Lemma 3.18 and the discussion thereafter). Studying

the genus two fibrations we prove further restrictions of the values of deg(∆) and

γ∗. Theorem 3.27 establishes that γ∗(µl) is even and that deg(∆) ≥ 10.

The associated genus two fibration is a complex surface. We determine the

numerical invariants of these surfaces and their place in the Enriques-Kodaira

classification depending on the values of deg(∆) and γ∗ (Theorem 3.33). This
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theorem implies that the surface is (birational to) a K3-surface S if and only if

deg(∆) = 30. For the case deg(∆) = 30 Theorem 3.23 implies that the general

singular fibres of the genus two fibration is irreducible with a single node. As

there are no known examples of Lagrangian fibrations with principally polarised

fibres and unipotent monodromy that have deg < 30, it is natural to ask whether

there exist such fibrations. In order to have deg < 30 the associated genus two

fibration must have fibres that consist in two elliptic curves that intersect in one

point. Markushevich [42], [44] and Sawon [66] study fibrations in Jacobians but the

genus two fibrations they consider do not contain such curves. A second question

would then be if such a hyperkähler manifold is deformation equivalent to S [2] or

K2. A step towards the first question is the question whether the corresponding

complex surface fibred by genus two curves exists. We could answer this question

affirmatively by explicitly constructing an appropriate surface (Proposition 3.37

and Corollary 3.41).

In section 3.8 we try to globalise the construction of the genus two pencil. The

goal is to construct a Lagrangian fibration with discriminant locus of degree 26

which might then be a new example of a compact hyperkähler fourfold. The idea

is to construct a genus two fibration over P2 such that the relative compactified

Jacobian has deg(∆) = 26. Our construction involves the construction of a divisor

B on the projectified tangent bundle P(TP2) with certain singularities. The genus

two fibration is then constructed as the double cover of P(TP2) branched along B.

We are partially successful in constructing the divisor B as required (Proposition

3.42). The divisor we construct is such that the discriminant locus of the genus two

fibration has a component over which each curve has two nodes (Proposition 3.44).

The problem is that contrary to the case of a family where the general singular

fibre has a single node, we do not know whether the compactified Jacobian of such

a family is smooth. Therefore this construction might not lead to a smooth four-

fold. But we conjecture that our divisor B can be deformed to a divisor Bnew such

that the general singular fibre of the genus two fibration constructed from Bnew has

a single node. The relative compactified Jacobian would then be smooth and the

discriminant locus of the abelian fibration be of degree 26. But we were unable

to prove that the relative compactified Jacobian obtained in this way admits a

holomorphic-symplectic form.

Next we relate our results to results of Sawon. He studies in [64] Lagrangian
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fibrations with polarised fibres. Under the assumption that the polarisation of

the fibres comes from a global divisor on X and an assumption on the general

singular fibre related to our assumption on the monodromy he proves a formula

for deg(∆) in terms of a characteristic class of X. For X deformation equivalent to

the Hilbert scheme of points on a K3-surface his formula yields deg(∆) = 30. We

use a recent result of Sawon [66] together with Theorem 3.23 to prove - also under

the assumption that the fibrewise polarisation is induced by a global divisor -

the following dichotomy for Lagrangian fibrations in principally polarised abelian

surfaces (Theorem 3.47). Either the general fibre is reducible as a principally

polarised abelian variety or deg(∆) = 30 and no fibre is reducible as a principally

polarised abelian variety. We conjecture that in the second case of the dichotomy

provided that f : X −→ P2 admits a section, X is deformation equivalent to the

Hilbert scheme S [2] of a K3-surface S.

1.2. Compact hyperkähler manifolds.

Definition 1.1. A holomorphic 2-form σ on a complex manifold X is called holo-

morphic symplectic, if it is closed and everywhere non-degenerate. A complex

manifold X is called holomorphic symplectic if it has a holomorphic symplectic

form.

The existence of an everywhere non-degenerate holomorphic 2-form implies that

X has even dimension dimC(X) = 2n. The non-degeneracy of σ is equivalent to

the fact that σn is nowhere vanishing. Therefore X has trivial canonical bundle

and vanishing first Chern class c1(X).

Definition 1.2. A compact Kähler manifold X is called irreducible holomorphic

symplectic, if it is simply connected and has H0(X,Ω2
X) generated by a everywhere

non-degenerate two-form.

On a compact Kähler manifold holomorphic p-forms are closed. Thus a two-

form as in the definition is a holomorphic symplectic form. For compact Kähler

manifolds with vanishing first Chern class one has the Bogomolov decomposition

theorem.
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Theorem 1.3. Let X be a compact Kähler manifold with c1(X) = 0. Then X has

a finite unramified cover Y with

Y ≃ Z ×
∏

i

Ci ×
∏

j

Sj,

where

(1) Z is a complex torus.

(2) Each Ci is a Calabi-Yau manifold (i.e. simply connected, compact Kähler

with KCi
= OCi

and H2(Ci,OCi
) = 0).

(3) Each Sj is an irreducible holomorphic symplectic manifold.

Proof: See [8], Exposé XVI.

�

Definition 1.4. A compact 4n-dimensional Riemannian manifold (M, g) is called

compact hyperkähler if the holonomy group of g is Sp(n). The metric g is then

called a hyperkähler metric.

A compact hyperkähler manifold (M, g) admits three complex structures I, J and

K such that K = I ◦ J = −J ◦ I and g is Kähler with respect to all three of

them. The corresponding Kähler forms are denoted by ωI , ωJ and ωK . The 2-

form σ := ωJ + iωK is a (unique up to scale) holomorphic symplectic form on

the complex manifold (M, I), which is thereby irreducible holomorphic symplec-

tic. Conversely Yau’s theorem implies that each Kähler class on an irreducible

holomorphic symplectic manifold contains a unique hyperkähler metric.

In this thesis we will use the terms irreducible holomorphic symplectic manifold

and compact hyperkähler manifold interchangeably.

In dimension two K3-surfaces are the only compact hyperkähler manifolds. In

higher dimensions only very few examples of compact hyperkähler manifolds are

known. In each dimension 2n for n ≥ 2 one has two constructions leading to com-

pact hyperkähler manifolds, namely the Hilbert scheme of points on a K3-surface

and the generalised Kummer varieties.

Example 1.5. (Hilbert schemes of points on K3-surfaces) Let S be a K3-surface.

The Hilbert scheme of n points on S, Hilbn(S), is a resolution of singularities of

the symmetric product S(n) = Sn/Sn. In dimension two this resolution is the blow

up of the diagonal in S(2). For a surface S the Hilbert scheme S [n] := Hilbn(S) is a
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compact complex manifold. By a result of Varouchas [74] it is Kähler provided that

the surface S is. In case S is a K3-surface its holomorphic symplectic form induces

a holomorphic symplectic form on S [n]. One can then show that the holomorphic-

symplectic form is unique up to scale and that S [n] is simply connected, see [5]

section 6.

Example 1.6. (Generalised Kummer varieties) The construction of the gen-

eralised Kummer variety is similar to the foregoing example. But instead of a

K3-surface one starts with a 2-dimensional complex torus A. As in the case of

a K3-surface Hilbn+1(A) is Kähler and the holomorphic symplectic form of A in-

duces a holomorphic symplectic form on Hilbn+1(A). But neither is Hilbn+1(A)

simply connected nor is the holomorphic symplectic form unique. The natural

morphism

A(n+1) −→ A

{p0, ..., pn} 7→
n∑

i=0

pi

however induces a morphism A[n+1] −→ A. Beauville shows in [5] that a fibre

Kn(A) of this morphism is smooth and simply connected and that the induced

holomorphic symplectic form is unique (up to a scale). For n = 1 this construction

gives the Kummer K3-surface constructed from A. For this reason the varieties

Kn are called generalised Kummer varieties.

The Betti and Hodge numbers of these two standard series of examples can be

calculated from the generating functions discovered by Göttsche and Soergel in

[21] and [22]. The second Betti number of the Hilbert scheme is b2(S
[n]) = 23

and that of the generalised Kummer variety is b2(Kn) = 7. This implies that the

two examples are not deformation equivalent. O’Grady found two examples in

dimension 6 and 10 with second Betti numbers 8 and 24 respectively. Up to defor-

mation these four examples are the only known examples of compact hyperkähler

manifolds.

Therefore one would either like to construct new examples of compact hyperkähler

manifolds or else understand why there are so few.

1.3. Lagrangian fibrations and affine structures. The fact that a manifold

X is compact hyperkähler severely restricts the fibrations that X admits. Such

fibrations are described by following theorem due to Matsushita.
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Theorem 1.7. Let (X, σ) be a 2n-dimensional compact hyperkähler manifold, σ a

holomorphic-symplectic form and f : X −→ B a holomorphic map with connected

fibres onto a Kähler manifold B of dimension 0 < dimB < 2n. Then the following

holds:

(1) B is n-dimensional, projective, Fano and has the same Hodge numbers as

Pn.

(2) Each irreducible component of a fibre is σ-Lagrangian.

(3) Smooth fibres are n-dimensional complex tori.

This theorem is proved in [45] and [46] for projective fibrations. Huybrechts gen-

eralised the result to the non-projective case, Proposition 24.8 in [32]. The point

(3) follows from the first two as in the case of real completely integrable systems,

see [26]. As it is particularly relevant to what follows, we shall nevertheless explain

the proof of (3) briefly, see Proposition 1.10. It is easy to see that in dimension

4 the base of such a fibration actually equals P2. A connected Fano surface B

has Kodaira dimension kod(B) = −∞. As b2(B) = 1 the surface is minimal and

has irregularity q(B) = 0, the Enriques-Kodaira classification implies that B = P2.

Definition 1.8. By a Lagrangian fibration we mean a holomorphic map f : X −→
B as in the above theorem. The discriminant locus of a Lagrangian fibration f is

the critical locus ∆. As a set this is

∆ = {b ∈ B|∃x ∈ f−1(b) : rk dfx < n}.

We use the following notation X0 = X \ {x ∈ X| rk dfx < n}, B0 = f(X0),

f0 := f|X0 : X0 −→ B0, B1 = B \ ∆, X1 = f−1(B1) and f1 := f|X1 : X1 −→ B1.

Remark 1.9. The discriminant locus ∆ is a hyper-surface in B. See [33] propo-

sition 3.1.

With the next two propositions we follow the treatment of Markushevich in [44].

Proposition 1.10. Let f : X −→ B be a Lagrangian fibration. Then the following

holds.

(1) There is a canonical isomorphism ισ : f ∗
0T ∗

B0

∼−→ TX0/B0.

(2) For each point b ∈ B0 there is an action of T ∗
b,B on the fibre f−1

0 (b). For

b ∈ B0 each connected component of f−1
0 (b) is isomorphic to a quotient of
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T ∗
B,b by a lattice of rank ≤ 2n. In particular, for b ∈ B1 the fibre f−1(b) is

isomorphic to a complex torus T ∗
B,b/Λ

∗
b, where Λ∗

b is a lattice of rank 2n.

(3) Canonically associated to f is the Albanese fibration Alb(f) : Alb(X) :=

T ∗
B0
/Λ −→ B0, where Λ is a well defined family of lattices in T ∗

B0
.

Proof: (1) Contraction with the holomorphic symplectic form σ defines a natural

isomorphism

ι : T ∗
X −→ TX .

The fibration being Lagrangian and f0 being smooth, this induces an isomorphism

f ∗
0T ∗

B0

∼−→ TX0/B0
.

(2) Let α1, ..., αn be a local holomorphic frame in T ∗
B0

in a neighbourhood U of

b ∈ B0 and v1, .., vn the corresponding vector fields on X0|U . We can assume the

αi closed. Then the vi commute and exponentiation gives the action of T ∗
b,B on

f−1(b). As all fibres are Lagrangian, they are all of dimension n. Let b ∈ B0 and

Z be the connected component of z ∈ f−1
0 (b). As Z is n-dimensional, the orbit of

z is open and closed in Z and thus equal to Z. The action is therefore transitive

on Z and the isotropy group Λ∗
Z a lattice in T ∗

b,B. If b ∈ B1, then f−1(b) is smooth

and compact. Consequently the lattice Λ∗
b has rank 2n.

(3) It suffices to show that the lattice Λ∗
Z does not depend on the connected

component Z. Let Z1 and Z2 be two connected components of f−1
0 (b), b ∈ B0 and

Λ∗
1,Λ

∗
2 the corresponding lattices. Let s : U −→ X0 be a local section of f such

that sb ∈ Z1. For l ∈ Λ∗
1 we have l(sb) = sb. By the inverse function theorem l

extends to a local section λ of T ∗
B , such that λ(s) = s on a neighbourhood of b.

But over a dense open subset of this neighbourhood the fibres are complex tori

and so λ acts as the identity over this subset. But then it acts as the identity over

the hole neighbourhood and thus l ∈ Λ∗
2. This implies Λ∗

1 = Λ∗
2.

�

Remark 1.11. In general the Albanese fibration is only locally (over B1) isomor-

phic to f . But in case f has a global section the Albanese fibration is isomorphic

to f over B1, see also section 6 in [64]

Proposition 1.12. The canonical holomorphic symplectic form on T ∗
B descends

to a holomorphic symplectic form on Alb(X) such that the Albanese fibration is

Lagrangian.

Proof: See [44], proposition 2.3.
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�

Proposition 1.13. The lattice Λ∗ ⊂ T ∗
B\∆ induces a torsion free flat connection

∇ on B \ ∆ together with a ∇-parallel lattice Λ ⊂ TB\∆.

Proof: The local system Λ∗ ⊂ T ∗
B\∆ induces a flat connection ∇ in T ∗

B\∆. The dual

connection in TB\∆ will also be denoted also by ∇. Let e∗1, ..., e
∗
n be a local basis of

Λ∗. The lattice Λ∗ is a Lagrangian submanifold of T ∗
B\∆ with respect to the natural

holomorphic-symplectic structure, see for example [26]. Therefore the 1-forms on

B \ ∆ corresponding to the above sections are closed and thus locally they are

exact, e∗i = dxi. The functions xi form a coordinate chart and the corresponding

basis of TB\∆ consists in pairwise commuting, parallel vector fields ei = ∂
∂xi

. This

implies that ∇ is torsion-free and the dual lattice Λ ⊂ TB\∆ is ∇-parallel.

�

Definition 1.14. An affine structure on a real d-dimensional manifold consists of

an atlas whose coordinate changes are affine transformations, i.e. lie in the affine

group GL(d,R) ⋉ Rd. We call it an integral affine structure in case the coordinate

changes are in GL(d,Z) ⋉ Rd.

Remark 1.15. The data of a torsion free flat connection ∇ is equivalent to an

affine structure. A parallel lattice in the tangent bundle corresponds to an integral

affine structure.

Thus

Proposition 1.16. A Lagrangian fibration induces an integral affine structure on

B \ ∆.

�

As we consider only integral affine structures we drop the “integral” and speak of

affine structures throughout .

Let b ∈ B1 be a non critical value of a Lagrangian fibration f : X −→ B. The

lattice Λ∗
b is then canonically isomorphic to H1(f

−1(b),Z). After choosing a base

point b0 ∈ B1 the smooth torus fibration f1 : X1 −→ B1 gives rise to a monodromy

representation

µ : π1(B1, b0) −→ SL(H1(f
−1(b0),Z)).
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We adopt the convention of writing paths like maps from right to left. The choice

of a basis in H1(f
−1(b0),Z) yields a representation

µ : π1(B1, b0) −→ SL(2n,Z).

The affine structure on B1 also exhibits monodromy around the discriminant locus

∆. This is defined to be the composition of the coordinate changes along a path

α and is thus an affine transformation. We are only interested in the linear part

of this affine transformation. Therefore by affine monodromy we mean the linear

part only. This is given by a representation

µaff : π1(B1, b0) −→ SL(2n,Z).

These two representations are related by

µaff = µ −T,

where T denotes the transpose. We will be dealing with Lagrangian fibrations

whose general fibres are polarised abelian varieties. This is to say that we assume

the datum of a family of fibrewise polarisations ωb ∈ H1,1(f−1(b)) for b ∈ B1. Such

a polarisation is given by an integral symplectic form ωb on the latticeH1(f
−1(b),Z)

that is positive and of type (1, 1) with respect to the complex structure of f−1(b).

This datum reduces the monodromy representation to

µ : π1(B1, b0) −→ Sp(H1(f
−1(b0),Z), ωbo),

where Sp(H1(f
−1(b0),Z), ωbo) is the automorphism group of the symplectic lattice

(H1(f
−1(b0),Z), ωbo).

Dually this means that B1 has the structure of an affine symplectic manifold,

i.e. the coordinate changes lie in an integral symplectic group. A polarisation is

principal if there is an integral basis of the lattice such that the symplectic form

ωb has the form, (
0 En

−En 0

)
.

In that case the monodromy group is Sp(2n,Z).

Definition 1.17. A Lagrangian fibration with principally polarised fibres is a La-

grangian fibration f : X −→ Pn together with a family of fibrewise principal polar-

isations ωb for b ∈ B \ ∆.
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1.4. Elliptic K3-surfaces. If X is a K3-surface and f : X −→ B a morphism

onto a curve B, then it is easy to show that the base is P1 and the general fibre an

elliptic curve. Namely one considers the Albanese morphism Alb(f) : Alb(X) −→
Jac(B). Then q(X) = 0 implies that the natural map B −→ Jac(B) is constant,

which implies B = P1. The genus formula in turn implies that the general fibre has

genus one. For trivial reasons the fibres are Lagrangian in this case. Lagrangian

fibrations are thus higher dimensional analogues of elliptic K3-surfaces.

In this section we discuss elliptic K3-surfaces as this is the simplest case of a

Lagrangian fibration. Let

f : X −→ P1

be an elliptically fibred K3-surface. The discriminant locus ∆ consists of finitely

many points p1, ..., pd. Fix a base point b0 ∈ P1 \ ∆ and let (α1, ..., αd) be loops

that go counterclockwise around the pi’s such that

π1(P
1 \ ∆) = 〈α1, ..., αd|

d∏

i=1

αi = 1〉

is a presentation of the fundamental group. The monodromy of the elliptic fibration

lies in Map1 = SL(2,Z) and the monodromy representation

µ : π1(P
1 \ ∆) −→ SL(2,Z)

is encoded in a relation
d∏

i=1

µ(αi) = 1

in SL(2,Z). We call such a relation a monodromy factorisation. Suppose now that

the monodromy transformation around each critical value pi is in an appropriate

basis given by a matrix (
1 k

0 1

)

where k ∈ N. This requirement is equivalent to the assumption that the fibration

be semi-stable, see [3] p. 210. The singular fibres of f are then reduced nodal

curves. More specifically the singular fibre corresponding to the above monodromy

is of type Ik.

We denote the braid group on n strings by Brn and the mapping class group of

a genus one surface with b boundary components by Map1,[b]. The braid group Brn

can also be interpreted as the mapping class group of a disc with boundary and n
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distinguished points. The standard generators of Brn will be denoted a1, ..., an−1,

i.e. ai is the positive half-twist that braids the i− and the (i+ 1)− string. There

exists a homomorphism deg : Brn −→ Z that sends each standard generator to 1.

This will be called the degree homomorphism.

A surface of genus one with two boundary components as in Figure 1 is a double

cover of a disc branched in four points.

τ 2
τ

1

S

S3

S

1

2

Figure 1. Genus one surface with two boundary components

Moving the branch points in a half-twist results in a Dehn twist upstairs, i.e. ai

corresponds to the Dehn twist along the curve Si. This defines a surjective map

Br4 −→ Map1,[2]. The braid (a1a2a3)
4 gives a full-twist of the disc. Upstairs this

results in Dehn twists along the boundary components. Thus in Map1,[2] we have

the relation

(a1a2a3)
4 = τ1τ2, (1)

where τi denotes the Dehn twist along the boundary component of the same name.

Analogously, a genus one surface with one boundary component is a double cover

of a disc branched in three points and there is a surjective map Br3 −→ Map1,[1].

On the other hand, capping a boundary component of a genus two surface with

two boundary components by a disc induces a map Map1,[2] −→ Map1,[1]. Observe

that relation (1) now becomes

(a1a2)
6 = τ1. (2)

This is the only relation between the generators a1, a2, τ1 of Map1,[1]. Thus

Map1,[1] = Br3. Glueing a disc in the remaining boundary component induces

a map Map1,[1] −→ Map1 with kernel generated by the Dehn twist along the
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boundary component. This map now exhibits Map1 = SL(2,Z) as the quotient

SL(2,Z) = Br3 /〈γ〉,

where γ is the element

(a1a2)
6.

Thereby the generators a1, a2 map to the matrices
(

1 0

−1 1

)
,

(
1 1

0 1

)

with respect to the standard basis of H1(Σ,Z). We denote these matrices also by

a1, a2. Now the element γ is central in Br3 and thus

0 −→ Z −→ Br3 −→ SL(2,Z) −→ 1

is a central extension. On the other hand we have a natural central extension

0 −→ Z −→ S̃L(2,Z) −→ SL(2,Z) −→ 1

of SL(2,Z) given by the pullback of the universal covering

0 −→ π1(SL(2,R)) −→ S̃L(2,R) −→ SL(2,R) −→ 1

under the inclusion SL(2,Z) →֒ SL(2,R). One can show that this extension is iso-

morphic to the one above. We want to use this extension to study the monodromy

of a semi-stable elliptic K3-surface. The monodromy factorisation is then

d∏

i=1

µ(αi) = 1

where µ(αi) = tni

i with ti conjugate to

a2 =

(
1 1

0 1

)

in SL(2,Z). For a transformation of this latter type exists a distinguished lift in

S̃L(2,Z), where by a lift we simply mean an inverse image under the natural map.

Namely let ti = b∗a2, where the star stands for conjugation. Then its distinguished

lift t̃i is given by β ∗a2, where β is an arbitrary lift of b in S̃L(2,Z). As γ is central

this is well defined. These lifts have

deg(t̃i) = 1.
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Note that the degree homomorphism restricted to the kernel Z〈γ〉 is given by Z
12−→

Z. We define the distinguished lift of a monodromy factorisation µ :
∏d

i=1 t
ni

i = 1

to be the product of the distinguished lifts of its factors

d∏

i=1

t̃ni

i .

This is an element of the kernel and thus an integer. The corresponding number

will be denoted by

γ∗(µ) = γ∗(
d∏

i=1

tni

i ).

Proposition 1.18. Let f : X −→ P1 be a semi-stable elliptic K3-surface. Then

γ∗(

d∏

i=1

tni

i ) = χtop(S
2),

where µ :
∏d

i=1 t
ni

i = 1 is a monodromy factorisation and χtop(S
2) denotes the

Euler number of S2.

Originally this is a result of Moishezon and Livné [52]. Alternatively see [39]

p.27f or [40] for a proof in terms of affine structures on closed surfaces.

�

This implies

χtop(S
2) = γ∗(

d∏

i=1

tni

i )

=
1

12
deg

(
d∏

i=1

t̃ni

i

)

=
1

12

d∑

i=1

ni.

From which we conclude the following

Corollary 1.19.

deg ∆ =
d∑

i=1

ni = 24

�
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Of course we knew this in advance since by the Noether formula χtop(X) = 24 and

χtop(X) = χtop(S
2 \ ∆)χtop(Fsm) +

d∑

i=1

χtop(Fsing)

=
d∑

i=1

χtop(Fsing)

=
d∑

i=1

ni.

Nevertheless the above reasoning will serve as a toy model for the study of

Lagrangian fibrations in dimension 4. We remark that Kontsevich and Soibelmann

use this kind of reasoning to prove that there are no affine structures with this

type of monodromy on closed surfaces other than the sphere or the torus, see [39].

1.5. Monodromy. Let f : X −→ B be a Lagrangian fibration. Lagrangian

fibrations are equidimensional and therefore flat. For a curve C ⊂ B the restriction

f|XC
: XC −→ C is thus a degeneration of complex tori. Let C1 ⊂ C be the part

over which the fibration is smooth. The variation of Hodge structure associated

to the smooth family f1 := f|XC1
: XC1 −→ C1 has monodromy around the points

of C \ C1. By the monodromy theorem the monodromy transformations T are

quasi-unipotent, see [27], p. 41 and [67]. This means that there exist l,m ∈ N

such that

(T l − I)m = 0.

The transformation T is called unipotent in case l can be chosen to be one. In

that case the smallest number m ∈ N such that (T − I)m+1 = 0 is the index of

unipotency of T . For a unipotent T , one can define its logarithm by

N := log T = (T − I) − (T − I)2/2 + ... + (−1)m+1(T − I)m/m.

In general the monodromy T has a Jordan decomposition

T = Tss · Tu,

where Tu is unipotent and Tss is semi-simple. The semi-simple part Tss is of finite

order. Furthermore the monodromy theorem implies that the index of unipotency

does not exceed the weight of the Hodge structure under consideration. In case of

an abelian fibration, the relevant Hodge structure has weight one. So if the mon-

odromy is non-trivial, the index of unipotency has got to be one. For a Lagrangian
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fibration f : X −→ P2 with principally polarised fibres, we get a polarised varia-

tion of Hodge structure, see Section 3.2, and the monodromy transformations lie

in the symplectic group, Sp(4,Z). Let T ∈ Sp(4,Z) be a unipotent and non-trivial

monodromy transformation. Its logarithm is then N = T − I. As N2 = 0, the

rank rkN is either one or two.

Definition 1.20. T ∈ Sp(4,Z) is unipotent of rank one if T is unipotent with

index of unipotency one and rk(T − I) = 1.

We use the following convention of the symplectic form. A basis (e1, f1, e2, f2)

of Z4 is called symplectic with respect to ω if the symplectic form in this basis is

given by 


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0



.

Proposition 1.21. Let T ∈ Sp(4,Z) be unipotent of rank one. Then T is conju-

gate in Sp(4,Z) to a matrix



1 k 0 0

0 1 0 0

0 0 1 0

0 0 0 1




where k ∈ Z.

Proof: Let N = T − I. If we choose a generator v of imN , N becomes a map

from Z4 to Z

N : Z4 −→ Z〈v〉
We can write this as

Nx = ω(u, x)v,

where ω is the symplectic form and u a primitive element of Z4. Now T has the

form

x 7→ x+ ω(u, x)v

and as T is symplectic, we get for all x, y ∈ Z4

ω(x, y) = ω(Tx, Ty)

= ω(x, y) + ω(x, v)ω(u, y) + ω(u, x)ω(v, y)
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which implies that the bilinear form ω(x, v)ω(u, y) is symmetric. This is equivalent

to the matrix u · vT being symmetric, which in turn yields av = bu for non-zero

integers a and b. As u is primitive, we know that

Zu = Qu ∩ Z4

From this we conclude that b
a

is an integer k. So far we proved that T has the

form

x 7→ x+ kω(u, x)u

with u unique up to sign. As v = ku lies in imN , there must be a w ∈ Z4 such

that ω(u, w) = 1. On the subspace U := spanZ(u, w) T is given by

u
T7→ u

w
T7→ w + ku

Because this subspace is unimodular (i.e.

ω|U =

(
0 1

−1 0

)

with respect to the given basis), U⊥ will likewise be unimodular and Z4 = U⊕U⊥.

Let (v1, v2) be a basis of U⊥ such that ω(v1, v2) = 1. On this subspace T is given

by

v1
T7→ v1

v2
T7→ v2

as u ⊥ U⊥. Thus (u, w, v1, v2) is a symplectic basis in Z4 with respect to which T

has the required form.

�

Definition 1.22. A transformation in Sp(4,Z) of the form

x 7→ x+ kω(v, x)v

for a vector v ∈ Z4 and k ∈ Z is called a symplectic transvection. In case k = 1

we denote the symplectic transvection by tv. A symplectic transvection is called

simple if v is primitive and k = 1.
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As we only deal with symplectic transvections we drop the word “symplectic” and

speak of transvections throughout.

Let T ∈ Sp(4,Z) be a unipotent monodromy transformation and N = T − I

its logarithm. By the monodromy theorem N2 = 0. So imN ⊂ kerN and thus

rkN ≤ 2. As N is the logarithm of T ∈ Sp(4,Z) it lies in the Lie algebra

sp(4,R) and thus satisfies ω(Nx, y) = −ω(x,Ny). It follows that imN is isotropic.

Therefore there exists a basis (e1, e2, f1, f2) of (Z4, ω) such that in this basis

ω =

(
0 E2

−E2 0

)

and

N =

(
0 S

0 0

)
,

for a symmetric matrix S =

(
k m

m l

)
. As we assume T to be a monodromy

transformation of a degeneration, Hodge theory implies that S is positive semi-

definite, see [28], Proposition 13.3. Changing the basis to (e1, f1, e2, f2):

ω =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0




and

N =




0 k 0 m

0 0 0 0

0 m 0 l

0 0 0 0



.

If rkN = 1, T is a transvection and the positive semi-definiteness of S implies

(without loss of generality) that k is positive.

Lemma 1.23. If a transvection t ∈ Sp(4,Z) is a monodromy transformation of a

degeneration, then k is non-negative.

�

Let rkN = 2. Then the positive semi-definiteness of S implies positive definiteness.

Thus k, l > 0 and kl > m2. Suppose m = 0. Then k and l are positive and T can
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be written as a product of two commuting transvections. Namely

T = tkf1 · tlf2 .

That tf1 and tf2 commute, follows from ω(f1, f2) = 0.

Lemma 1.24. Suppose T ∈ Sp(4,Z) can be written as a product of two commuting

transvections T = tkv · tlv′ with k, l > 0. Then v, v′ are uniquely determined (up to

sign) and k and l are uniquely determined.

Proof: It is easy to see that two simple transvections tv, tv′ commute if and only

if ω(v, v′) = 0. Let t = tv, t
′ = tv′ and t1 = tv1 , t

′
1 = tv′1 be two pairs of commuting

simple transvections such that

tkt′j = tk11 t
′j1
1 =: T,

with k, j, k1, j1 > 0.

tkt′j(x) = x+ kω(v, x)v + jω(v′, x)v′

and thus

kω(v, x)v + jω(v′, x)v′ = k1ω(v1, x)v1 + j1ω(v′1, x)v
′
1 (3)

for all x ∈ Z4. As v, v′ are both primitive, span(v, v′) is primitive and isotropic.

Thus we can extend (v, v′) to a symplectic basis (v, w, v′, w′) of Z4. And analo-

gously there exists a symplectic basis (v1, w1, v
′
1, w

′
1) of Z4. Let N := T − I. Then

imN = span(kv, jv′) = span(k1v1, j1v
′
1). As imN is isotropic, we see that

ω(v, v1) = ω(v, v′1) = ω(v′, v1) = ω(v′, v′1) = 0,

from which we deduce that

span(v, v′) = span(v1, v
′
1).

Therefore

v1 = av + cv′ (4)

v′1 = bv + dv′ (5)

for A :=

(
a b

c d

)
∈ SL(2,Z). Inserting w1 and w′

1 in equation (3) yields

k1v1 = kω(v, w1)v + jω(v′, w1)v
′

j1v
′
1 = kω(v, w′

1)v + jω(v′, w′
1)v

′.
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From equation (4) and (5) we get

ω(v, w1) = d

ω(v, w′
1) = −c

ω(v′, w1) = −b
ω(v′, w′

1) = a.

So

k1a = kd

k1c = −jb
j1b = −kc
j1d = ja.

Let k be minimal among the k, j, k1, j1. As ad − bc = 1

k = k(ad− bc) = k1a
2 + j1b

2.

As j1b
2 ≥ 0, k ≥ k1a

2. There are two cases: a = 0 and a = ±1. Suppose

a = 0. Then d = 0 and A =

(
0 ±1

∓1 0

)
. In the second case k1 = k. Which

in turn implies d = a = ±1 and A =

(
±1 0

0 ±1

)
. So, in the second case:

v1 = ±v, v′1 = ±v′ and k1 = k, j1 = j. And in the first case: v1 = ±v′, v′1 = ∓v
and k1 = j, j1 = k.

�
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2. Group theory

We studied the monodromy of elliptic K3 surfaces using a central extension of

the monodromy group SL(2,Z). Ultimately we want to do the same in the case of

4-dimensional Lagrangian fibrations. For this we need a combinatorial description

of the group Sp(4,Z).

2.1. Mapg and Sp(2g,Z). The group Sp(2g,Z) is closely connected with the map-

ping class group of a smooth surface of genus g (in this part what we understand

by surface will be a real surface). Let Σg,[b],n denote a compact, oriented surface

of genus g with b boundary components and n distinguished points. The mapping

class group Mapg,[b],n of Σg,[b],n is then the group of isotopy classes of orientation

preserving diffeomorphisms that fix the n-points and restrict to the identity on the

boundary components,

Mapg,[b],n = π0(Diff+(Σg,[b],n))

In case b = 0 or n = 0 we delete the corresponding indices. The mapping class

group of a surface Σ acts on the homology Σ. This induces a homomorphism

ξ : Map(Σ) −→ Sp(H1(Σ,Z), ω)

where ω denotes the intersection pairing. It is well known that this is an epimor-

phism, see [41]. Let C be a simple closed curve on Σ and N a neighbourhood of C

that is homeomorphic to a cylinder. Assume N to be parametrised by cylindrical

coordinates (y, θ) ∈ [−1, 1] × [0, 2π), where the y-axis is the axis of the cylinder,

and such that C is (y = 0). The map of the cylinder onto itself given by

(y, θ) −→ (y, θ + π(y + 1))

extended by the identity outside of N defines a diffeomorphism of Σ. The resulting

map τC is called the Dehn twist along C. Isotopy classes of Dehn twists generate

the mapping class group.

Theorem 2.1 (Dehn [18]). The mapping class group Mapg,[b],n is generated by

isotopy classes of Dehn twists along simple closed curves.

Remark 2.2. Let τ ∈ Mapg,[b],n be the class of a Dehn twist along a simple closed

curve C, then τ acts on the homology as the symplectic transvection tv : x 7→
x+ ω(v, x)v, where v ∈ H1(Σ,Z) is the homology class represented by C.
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Let Σg,[1] be a surface with one boundary component ∂Σg,[1]. Let Σg,1 be the

surface obtained by gluing a disc with a distinguished point into ∂Σg,[1]. The Dehn

twist τ∂Σg,[1]
around the boundary is a central element in Mapg,[1].

Theorem 2.3. The map f1 : Mapg,[1] −→ Mapg,1 defined by capping ∂Σg,[1] with a

disc and extending each map over the disc by the identity is an epimorphism with

kernel kerf1 ≃ Z generated by τ∂Σg,[1]
.

For a proof see [75], p. 172. Let Σ := Σg be a closed oriented surface with base

point z0. There is a natural homomorphism

Ψ : Aut(π1(Σ)) −→ Aut(H2(π1(Σ),Z))

As the surface Σ is an Eilenberg-MacLane space for its fundamental group, we

know that there is a natural isomorphism

H2(π1(Σ),Z) = H2(Σ,Z).

Thus H2(Σ,Z) = Z. Therefore the kernel of Ψ is a subgroup of index 2 in

Aut(H2(π1(Σ),Z)). We will denote it by Aut+(π1(Σ)). Let Inn(π1(Σ)) be the

group of inner automorphisms of π1(Σ) and Out+(π1(Σ)) the quotient of

Aut+(π1(Σ)) by Inn(π1(Σ)).

Theorem 2.4. For g ≥ 2 there is an exact sequence

1 −→ π1(Σ) −→ Mapg,1 −→ Mapg −→ 1. (6)

The group Mapg,1 can be identified with Aut+(π1(Σ)). The map π1(Σ) −→ Mapg,1

maps α ∈ π1(Σ) to the inner automorphism iα : π1(Σ) ∋ γ 7→ αγα−1 ∈ π1(Σ).

Under this identification the above sequence becomes the natural exact sequence

1 −→ Inn(π1(Σ)) −→ Aut+(π1(Σ)) −→ Out+(π1(Σ)) −→ 1.

This theorem is found in [68], p.11. The exact sequence (6) is known as the

Birman Exact Sequence, see [11], Theorem 4.3. The evaluation map

evz0 : Diff+(Σ) −→ Σ

ϕ 7→ ϕ(z0)

endows Diff+(Σ) with the structure of a principal fibre bundle with structure group

Diff+(Σ, z0). This gives the long exact sequence of homotopy groups:

. . . −→ π1(Σ) −→ π0(Diff+(Σ), z0) −→ π0(Diff+(Σ)) −→ 1.
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The connected component of the identity Diff+
0 (Σ) is contractible for g ≥ 2. The

above sequence therefore yields the exact sequence (6). The second assertion is the

Dehn-Nielsen-Baer theorem, see for example [16] p. 84, which states that the nat-

ural homomorphism that associates to a diffeomorphism φ ∈ Diff+(Σ, z0) the au-

tomorphism φ∗ ∈ Aut+(π1(Σ)) induces an isomorphism Mapg,1 −→ Aut+(π1(Σ)).

Remark 2.5. The map i : π1(Σ) −→ Mapg,1 is the following. Let α be a loop

representing an element of π1(Σ). Then there exists an isotopy φt in Diff+(Σ)

such that φt(z0) = α(t) for t ∈ [0, 1]. The class of φ1 in Mapg,1 is i(α). Consider

the special case that α is represented by a smooth embedded curve. Let N be a

cylindrical neighbourhood of α and denote the two boundary components of N by

α+ and α−. Then the Dehn twists τα± are well defined in Mapg,1 and

i(α) = τα+ ◦ τ−1
α− .

According to Humphreys [30] the mapping class groups Mapg,[1] and Mapg are

generated by the 2g+1 Dehn twists around the simple closed curves Si from Figure

2.

S2g−1

S2g

S3S2
S1 S4 S6

S5

S2g+1

S8
S7

Figure 2. Humphries generators

Wajnryb gives in [75] a presentation of the mapping class groups Mapg,[1] and

Mapg using Humpries generators. Wajnrybs presentation of Mapg,[1] contains three

kinds of relations. Because of their pictorial description these relations are called:

(B) braid relations

(K) chain relation, and

(L) lantern relation.

Wajnryb shows that from this presentation one gets a presentation of Mapg, by

adding the so called
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(H) hyperelliptic relation.

Wajnrybs presentation was simplified by Matsumoto using Artin braid groups. We

briefly describe this, as we are going to use Matsumotos presentation. Let Γ be a

graph with a finite set of vertices I. Assume that Γ has no loops and that any two

vertices are connected by at most finitely many edges.

Definition 2.6. The Artin braid group associated with Γ is the group Br(Γ) gen-

erated by elements {ai|i ∈ I}, so that if i, j ∈ J are two distinct vertices connected

by kij edges, then ai and aj satisfy the relation

aiajaiaj · · · = ajaiajai . . .

where both sides are words of length kij + 2. The Coxeter-Weyl group W (Γ) of

Γ is obtained by adding the relation a2
i = 1 for each i. The length of an element

w ∈ W (Γ) is the minimal length of a word for w. The Coxeter number of W (Γ)

is the smallest h ∈ N such that (
∏

i∈I ai)
h = 1 in W (Γ).

In case Γ is connected and W (Γ) finite, there exists a unique longest element

w0 in W (Γ). The Dynkin diagram An−1 gives the braid group Brn on n strings,

with the ai interpreted as the standard generators.

Remark 2.7.

i) Note that by specifying a graph Γ one specifies also a presentation of Br(Γ).

The pair (Br(Γ), {ai}i∈I) of an Artin braid group together with a set of

generators is called an Artin system.

ii) Given an Artin system one obtains a natural homomorphism

deg : Br(Γ) −→ Z

which send each generator to 1 and which is called the degree homomor-

phism.

iii) If Λ ⊂ Γ is a full subgraph, then there is a natural inclusion Br(Λ) ⊂ Br(Γ)

[49].

Theorem 2.8 (Brieskorn-Saito, Deligne). Let Γ be a Dynkin diagram. Consider

the following properties of an element w ∈ Br(Γ):

- There is a positive word in the ai’s for w.

- There is a positive word in the ai’s for a−1
i w, for any ai.
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Then there exists a unique element ∆(Γ) satisfying these properties, which is min-

imal in the sense that if w satisfies the above properties, then ∆(Γ)−1w has a

positive word presentation in the ai’s. It has the following properties:

i) ∆(Γ) is mapped to the longest element w0 in W (Γ) and its degree equals

the length of w0.

ii) The center of Br(Γ) is isomorphic to Z and generated either by c(Γ) =

∆(Γ)2 =
∏h or by c(Γ) = ∆(Γ) =

∏h
2 , where h is the Coxeter number and

∏
is a product of all ai’s with an arbitrary order.

For a proof see [12] section 7 or [19]. By the corollary in [12] section 7.2, for the

braid group Brn = Br(An−1)

c(An−1) = ∆(An−1)
2 = (a1 · ... · an−1)

n

This element corresponds to a full-twist of the disc around all the n points. Denote

the following graph by Tg.

S1
S2 S S S43 5 S 2g

S2g+1

Figure 3. Tg

The Wajnryb-Matsumoto presentation of the mapping class group stems from

this graph and its subgraphs.

Theorem 2.9 (Wajnryb-Matsumoto). A presentation of the mapping class group

Mapg,[1] is given by

Mapg,[1] = Br(Tg)/〈κ, λ〉
where relation κ and λ only apply in case g ≥ 2 and g ≥ 3 respectively. The

relations are

(κ) c(A5) = c(A4)
2

(λ) c(E7) = c(E6)

The generators ai can be interpreted as Dehn twists along the curves Si in Figure

2. In case g = 1 the kernel of Mapg,[1] −→ Mapg is the central free abelian

group generated by (a1a2)
6. In case g = 2 this kernel is normally generated by the

commutator [a5,∆(A4)
2].
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For a proof see [49].

Remark 2.10.

i) Note that Map1,[1] = Br3 and that the kernel of Map1,[1] −→ Map1 is

generated by (a1a2)
6. The latter element corresponds to the Dehn twist

along the boundary.

ii) In case g ≥ 2 the element ∆(A2g+1)
2 corresponds to the hyperelliptic invo-

lution. Thus for g = 2 it commutes in Map2 with a5.

iii) In case g = 2 the Artin braid group Br(T2) coincides with Br6. The relation

(κ) is explicitly

(a1a2a3a4)
10(a1a2a3a4a5)

−6 = 1

whereas hyperelliptic relation (π) is

[(a1a2a3a4)
5, a5] = 1.

2.1.1. The Torelli group. For g ≥ 2 the Torelli group Jg is known as the group

that consists of those mapping classes that act trivially on the homology, i.e.

1 −→ Jg −→ Mapg −→ Sp(2g,Z) −→ 1

An embedded curve σ in Σ such that the complement of σ is not connected is

called a separating curve. See Figure 4 for a separating curve in case g = 2.

S3S2
S1 S4

S5

σ

Figure 4. Separating curve

Such curves are boundaries and therefore a Dehn twist along them acts trivially

on the homology.

Theorem 2.11. The Torelli group for g = 2 is a free group and it is generated by

the isotopy classes of Dehn twists along separating curves.
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A proof can be found in [51]. In case g = 2 Dehn twists along separating curves

are pairwise conjugated. J2 is thus normally generated by the class of a Dehn twist

along a single separating curve σ. Therefore one gets a presentation of Sp(4,Z)

by adding one relation to the Wajnryb-Matsumoto presentation of Map2. We call

this relation the Torelli relation.

Lemma 2.12. J2 is normally generated in Map2 by the element

γ = (a1a2)
6.

Proof: A smooth genus 2 surface Σ is a double cover of the sphere S2 branched

in 6 points. Let σ be a curve in Σ that separates Σ in two surfaces Σ1,Σ2 each of

genus one with one boundary component. Each surface Σi is the double cover of

a disc Di ⊂ S2 branched in 3 points. Interpret Br6 as the mapping class group of

a disc with 6 distinguished points and the first three points as the branch points

that lie in D1. Now a1, a2 generate Br3 ⊂ Br6 and the word ∆4(Br3) = (a1a2)
6

corresponds to the Dehn twist along the boundary of Σ1.

�

There is a unique homomorphism from J2 to Z that sends γ to 1 and is invariant

under conjugation with elements of Map2.

Definition 2.13. We denote this homomorphism by

degγ : J2 −→ Z

and call it γ-degree.

The form in which we will use the Wajnryb-Matsumoto-presentation is the fol-

lowing. We have seen the sequence of epimorphisms

Br6 −→ Map2,[1]

f−→ Map2

ξ−→ Sp(4,Z) (7)

The images of the standard generators a1, ..., a5 of Br6 in these quotients will also

be denoted by ai. In case there is risk of confusion we write for example a
Map2
i

to indicate the group we are in. The kernels of the above homomorphisms are

normally generated by the following elements:

(1) κ = (a1a2a3a4)
10(a1a2a3a4a5)

−6

(2) π = [(a1a2a3a4)
5, a5]

(3) γ = (a1a2)
6
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We denote by N the kernel of the natural map Br6 −→ Sp(4,Z). N is normally

generated by the elements κ, π and γ

N = 〈κ, π, γ〉. (8)
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2.2. Central extensions of Sp(4,Z).

2.2.1. Group extensions and Cohomology. An (abelian) extension of a group G by

a group A is a short exact sequence of groups

0 −→ A −→ E −→ G −→ 1,

such that A is abelian. Given such an extension G acts on A by conjugation, i.e.

ng = α(g)−1nα(g) for an arbitrary section α : G −→ E. The extension is called

central if A is contained in the center of E. This is the case if and only if A is

the trivial G-module. Conversely one may fix a G-module structure on A and

study the extensions that induce this structure. Associated to a G-module A are

cohomology groups H i(G,A). H0(G,A) = AG is the group of invariants. The

semi-direct product G⋉ A, given by G× A with the multiplication

(g, n) · (h,m) = (gh, nh +m)

is the unique (up to isomorphism) extension that splits. H1(G,A) classifies the

splittings of G ⋉ A. In case the extension is central, this is just Hom(G,A).

Extensions themselves are classified up to isomorphism by the second cohomol-

ogy group H2(G,A). Using the explicit description of the cohomology groups

Hn(G,A) = Zn(G,A)/Bn(G,A), see [13] p. 91, an element of H2(G,A) is rep-

resented by a normalised 2-cocycle, i.e. a cocycle [ , ] : G × G −→ A such that

[g, 1] = [1, g] = 0. The extension defined by this cocycle is E = G × A with the

following multiplication

(g, n) · (h,m) = (gh, [g, h] + nh +m).

For group cohomology exists the Hochschild-Serre-spectral sequence, see [76], p.

195.

Theorem 2.14. Let F be a group, N ⊳ F a normal subgroup and A a F -module.

There exists the so called Hochschild-Serre-spectral sequence

Ep,q
2 = Hp(F/N,Hq(N,A)) =⇒ Hp+q(F,A)

�

The low degree terms of this spectral sequence give the exact sequence

0 −→ H1(F/N,AN) −→ H1(F,A) −→ H1(N,A)F/N (9)

−→ H2(F/N,AN) −→ H2(F,A),
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and the maps in (9) are induced from the inflation and restriction maps

H1(F/N,AN)
infl−→ H1(F,A)

H2(F/N,AN)
infl−→ H2(F,A)

H1(F,A)
restr−→ H1(N,A)F/N

H2(F/N,AN)
restr−→ H2(F,A).

In order to study central extensions of Sp(4,Z) with coefficients in Z, we will

calculate H2(Sp(4,Z),Z), where Z is the trivial Sp(4,Z)-module. Let N as in the

previous section be the normal subgroup of Br6 such that

Sp(4,Z) =
Br6

N
.

The associated Hochschild-Serre spectral sequence gives

0 −→ H1(Sp(4,Z),Z) −→ H1(Br6,Z)
restr−→ H1(N,Z)Sp(4,Z) (10)

−→ H2(Sp(4,Z),Z) −→ H2(Br6,Z).

As Z is the trivial Sp(4,Z)-modul, H1(Sp(4,Z),Z) = Hom(Sp(4,Z),Z) and

H1(Br6,Z) = Hom(Br6,Z). Furthermore a simple calculation shows that

H1(N,Z)Sp(4,Z) = Hom(N,Z)Br6 , where Br6 acts by

(ϕ · g)(x) = ϕ(g−1xg),

on ϕ ∈ Hom(N,Z).

Proposition 2.15. Let Z be the trivial Sp(4,Z)-modul. Then

H2(Sp(4,Z),Z) ≃ Hom(N,Z)Br6

Hom(Br6,Z)
(11)

Proof: In order to prove Proposition 2.15, we need the following lemma.

Lemma 2.16. The abelianisation Sp(4,Z)ab of Sp(4,Z) is Z2.

Proof: It is clear from the braid relations that the abelianisation of Br6 is Z. Now

the fact that κ and γ have degree 10 and 12 respectively, whereas π has degree

zero, implies Sp(4,Z)ab ≃ Z2.

�
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Thus H1(Sp(4,Z),Z) = Sp(4,Z)ab = Z2. Therefore it follows from the universal

coefficient theorem, that H1(Sp(4,Z),Z) is trivial. For n < 12 Arnol’d shows in

[2], that

H1(Brn,Z) = Z

H2(Brn,Z) = 0.

Now the Hochschild-Serre spectral sequence (10) implies the proposition.

�

Remark 2.17. Recall the degree homomorphism deg : Br6 −→ Z from Remark

2.7. Note that Hom(Br6,Z) = Z is generated by the degree homomorphism and

that the inclusion Hom(Br6,Z) ⊂ Hom(N,Z)Br6 is given by restriction.

We realize the extension defined by a Br6-invariant homomorphism ϕ : N −→ Z

explicitly as follows. Denote the inclusion

ϕ : N →֒ Br6 ×Z; g 7→ (g,−ϕ(g)).

by the same letter ϕ. Then

Proposition 2.18. Let ϕ be an element of Hom(N,Z)Br6. Then the group

Gϕ :=
Br6 ×Z

ϕ(N)
.

fits into an exact sequence

0 −→ Z −→ Gϕ −→ Sp(4,Z) −→ 1

and this extension is isomorphic to the one that corresponds to ϕ under the iso-

morphism (11).

Proof: We first describe the isomorphism (11). Let ϕ denote an element of

Hom(N,Z)Br6 . Choose a representative tg ∈ Br6 for each g ∈ Sp(4,Z) such that

te = e and define r(g, h) ∈ Br6 by tg · th = tgh r(g, h). Then ϕ(g, h) := ϕ(r(g, h))

defines a normalised 2-cocycle and thus an extension class. ϕ is a coboundary iff

ϕ is induced by an element of Hom(Br6,Z). This is the isomorphism (11).

Consider now the group

Gϕ :=
Br6 ×Z

ϕ(N)
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Let (x, n), (y,m) be elements of Gϕ and denote the elements in Sp(4,Z) corre-

sponding to x and y by g and h respectively. Then there are k, l ∈ N such that

x = tgk, y = thl ∈ Br6. Multiplication in Gϕ gives

(x, n) · (y,m) = (xy, n+m)

= (tghr(g, h), n+m+ ϕ(kl))

= (tgh, ϕ(g, h) + n+m+ ϕ(kl))

Thus Gϕ is isomorphic to the extension defined by the cocycle ϕ.

�

Remark 2.19. Conversely given an extension

0 −→ Z −→ E −→ Sp(4,Z) −→ 1

that represents a cohomology class c ∈ H2(Sp(4,Z),Z), one gets the corresponding

element of Hom(N,Z)Br6 in the following way. Because of H2(Br6,Z) = 0, the

pullback of this extension under q : Br6 −→ Sp(4,Z) must be trivial, i.e.

0 // Z // Br6 ×Z //

q′

��

Br6
//

q

��

1

0 // Z // E // Sp(4,Z) // 1

A choice of a splitting σ = id×α : Br6 −→ Br6 ×Z determines a homomorphism

q̃ : Br6 −→ E defined by q̃(b) = q′(σ(b)). Its restriction to N yields a Br6-invariant

homomorphism ϕ := q̃|N : N −→ Z, that is well defined up to an element of

Hom(Br6,Z). Note that the choice α ≡ 0 gives ker q′ = {(b, n)|b ∈ N, n = −ϕ(b)}.
Thus this gives the correct element of Hom(N,Z)Br6/Hom(Br6,Z).

Remark 2.20. ker(Gϕ −→ Sp(4,Z)) = N×Z

ϕ(N)
and the isomorphism N×Z

ϕ(N)
≃ Z is

induced by (r, n) 7→ ϕ(r) + n. Note that in case ϕ : N −→ Z is surjective,

kerϕ⊳ Br6 and

Gϕ :=
Br6

kerϕ
.

In this case the isomorphism N
kerϕ

≃ Z is induced by ϕ.
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2.2.2. The standard generators of Sp(4,Z). We interpret (Z4, ω) as H1(Σ,Z) of

a surface Σ of genus two with the intersection pairing. The standard symplectic

basis of H1(Σ,Z) is (α1, β1, α2, β2), where these classes correspond to the curves

S2, S1, S4, S5 in Figure 4 in that order. According to Theorem 2.9 the standard

generators of Sp(4,Z) are then

a1 = tβ1

a2 = tα1

a3 = tβ1+β2

a4 = tα2

a5 = tβ2.

In the following sections we will discuss two natural central extensions of Sp(4,Z).

2.3. The universal cover of the symplectic group Sp(4,Z). Consider the

standard symplectic lattice (Z4, ω) and the corresponding symplectic vector space

(R4, ω). The maximal compact subgroup of Sp(4,Z) is isomorphic to U(2) and the

inclusion U(2) ⊂ Sp(4,R) is a homotopy equivalence. Furthermore the complex

determinant detC : U(2) −→ S1 induces an isomorphism π1(U(2)) ≃ Z. Thus

the universal cover S̃p(4,R) of the real symplectic group is naturally a central

extension

0 −→ Z −→ S̃p(4,R) −→ Sp(4,R) −→ 1. (12)

The pullback of this extension under the inclusion Sp(4,Z) →֒ Sp(4,R):

0 // Z // S̃p(4,Z) //
� _

��

Sp(4,Z) //
� _

��

1

0 // Z // S̃p(4,R) // Sp(4,R) // 1

(13)

yields a central extension of the group Sp(4,Z). The group S̃p(4,Z) is called the

universal cover of Sp(4,Z). Universal covers of symplectic groups are also discussed

in [9]. The group S̃p(4,Z) is canonically isomorphic to the relative homotopy group

π1(Sp(4,R), Sp(4,Z), id).

As a set the latter consists in homotopy classes of paths in Sp(4,R) that join id

to an element of Sp(4,Z). This set carries a group structure in the following way.
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Let [γ] and [γ′] be two homotopy classes with representatives

γ, γ′ : [0, 1] −→ Sp(4,R)

s 7→ γ(s), γ′(s)

then [γ′] · [γ] is the class represented by

γ′ · γ(s) :=

{
γ(2s) ; s ∈ [0, 1

2
]

γ′(2s− 1) ◦ γ(1) ; s ∈ [1
2
, 1]

}
.

The neutral element is the class of the constant path and the inverse of an element

[γ] is represented by

γ−1(s) := γ(1 − s) ◦ γ(1)−1.

The fundamental group π1(Sp(4,R)) is naturally a subgroup of

π1(Sp(4,R), Sp(4,Z), id).

Lemma 2.21. The group S̃p(4,Z) is canonically isomorphic to

π1(Sp(4,R), Sp(4,Z), id). Under this isomorphism the extension (13) coincides

with the natural exact sequence

0 −→ π1(Sp(4,R)) −→ π1(Sp(4,R), Sp(4,Z), id) −→ Sp(4,Z) −→ 1

where the third arrow is evaluation map [γ] 7→ γ(1).

Proof: An element [γ] of π1(Sp(4,R), Sp(4,Z), id) is represented by a path γ

in Sp(4,R). γ has a unique lift γ̃ in S̃p(4,R) −→ Sp(4,R) with starting point

the neutral element 1 ∈ S̃p(4,R). Associating to [γ] the endpoint of γ̃ gives

a well defined group homomorphism Ψ : π1(Sp(4,R), Sp(4,Z), id) −→ S̃p(4,Z).

Conversely let x be an element of S̃p(4,Z). Then chose a path in S̃p(4,R) that

joins 1 with x. Projecting to Sp(4,R) yields a well defined homotopy class in

π1(Sp(4,R), Sp(4,Z), id). The two constructions are obviously inverse to each

other, so Ψ is indeed an isomorphism. The second statement of the lemma follows

from the description of Ψ.

�

From now on we identify S̃p(4,Z) with π1(Sp(4,R), Sp(4,Z), id).

To a transvection tv in Sp(4,Z) is naturally associated the one parameter sub-

group

s 7→ [x 7→ x+ s · ω(v, x)v]
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of Sp(4,R). We call the restriction [0, 1] ∋ s 7→ t√sv the natural path the joins id

to the transvection tv. This path defines an element of π1(Sp(4,R), Sp(4,Z), id)

that is a lift of tv.

Definition 2.22. By a lift of T ∈ Sp(4,Z) in a central extension

Z −→ E −→ Sp(4,Z) we mean inverse image of T under E −→ Sp(4,Z).

Definition 2.23. Let t ∈ Sp(4,Z) be a transvection. The element t̃ of S̃p(4,Z)

that corresponds to the natural path from id to t will be called the distinguished

lift of t. By the distinguished lift of a product
∏

i ti of transvections is meant the

product
∏

i t̃i of the distinguished lifts.

Now that we have described the universal cover of Sp(4,Z), we ask, which ele-

ment of
Hom(N,Z)Br6

Hom(Br6,Z)

corresponds to the extension (13)? Consider the pullback of this extension under

the homomorphism q : Br6 −→ Sp(4,Z).

0 // Z // Br6 ×Sp(4,Z)S̃p(4,Z) //

pr2
��

Br6
//

q

��

1

0 // Z // S̃p(4,Z)
π // Sp(4,Z) // 1

(14)

The sequence (14) splits as H2(Br6,Z) is trivial. For the rest of the section we de-

note the standard generators of Br6 by aBr6
i , i = 1, ..., 5 and by ai the corresponding

elements of Sp(4,Z).

Lemma 2.24. There exists a splitting

σ : Br6 −→ Br6 ×Sp(4,Z)S̃p(4,Z)

of the sequence (14), such that aBr6
i

σ7→ (aBr6
i , ãi).

Proof: It suffices to show that the distinguished lifts ãi satisfy the braid relations.

In this proof we use the following notation. For any path γ : [0, 1] −→ Sp(4,R)

with γ(0) = id we denote by γ̃ the unique lift with γ̃(0) = 1 ∈ Sp(4,R).

Consider first that case i, j ∈ {1, ..., 5} such that |i − j| ≥ 2. Denote by γk the

natural path in Sp(4,R) that joins id to ak and by γ̃k the unique lift of γk with

starting point 1 ∈ S̃p(4,R). As aiaj = ajai, the two paths γi · γj and γj · γi have
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the same endpoint. A homotopy relative to {id, aiaj} ⊂ Sp(4,R) between them is

(up to reparametrisation) given by

ht(s) :=





γj(3s(1 − t)) ; s ∈ [0, 1
3
]

γi(3s− 1) ◦ γj(1 − t) ; s ∈ [1
3
, 2

3
]

γi(1) ◦ γj(3t(s− 1) + 1) ; s ∈ [2
3
, 1]





Thus it follows that the paths γ̃i · γj and γ̃j · γi have the same endpoint. This in

turn implies

ãiãj = γ̃i(1)γ̃j(1)

= γ̃i · γj(1)

= γ̃j · γi(1)

= γ̃j(1)γ̃i(1)

= ãjãi.

Consider now the case i ∈ {1, ..., 4} and j = i+ 1. As aiai+1ai = ai+1aiai+1 the

two paths γi · γi+1 · γi and γi+1 · γi · γi+1 have the same endpoint. We claim that

a homotopy relative to {id, aiai+1ai} ⊂ Sp(4,R) between the two paths is (up to

reparametrisation) given by

ht(s) :=





γi(4s(1 − t)) ; s ∈ [0, 1
4
]

γi+1(4s− 1)γi(1 − t) ; s ∈ [1
4
, 1

2
]

γi(4s− 2)γi+1(1)γi(1 − t) ; s ∈ [1
2
, 3

4
]

γi+1((4s− 3)t)γi(1)γi+1(1)γi(1 − t) ; s ∈ [3
4
, 1]




.

It suffices to check that ht(1) = ai+1aiai+1 for all t ∈ [0, 1]. For i = 1, ..., 4 there

are u, v ∈ Z4 with ω(u, v) = 1 such that ai = tu and ai+1 = tv. Let t ∈ [0, 1] and

x ∈ Z4, then

ht(1)x = γi+1(t)γi(1)γi+1(1)γi(1 − t)x

= t√tvtutvt
√

1−tux

= x+ (1 − t)ω(v, x)v + ω(u, x)u+ (1 − t)ω(v, x)u+ ω(v, x)v − ω(u, x)v

−(1 − t)ω(v, x)v + tω(u, x)u+ tω(u, v)ω(v, x)u− tω(u, x)u

= x+ ω(u, x)u+ ω(v, x)u+ ω(v, x)v − ω(u, x)v.

The last expression is independent of t and therefore ht(1) = ai+1aiai+1 for all

t ∈ [0, 1]. Thus it follows that the paths ˜(γi · γi+1 · γi) and ˜(γi+1 · γi · γi+1) have



46 CHRISTIAN THIER

the same endpoint, which in turn implies

ãiãi+1ãi = γ̃i(1)γ̃i+1(1)γ̃i(1)

= ˜(γi · γi+1 · γi)(1)

= ˜(γi+1 · γi · γi+1)(1)

= γ̃i+1(1)γ̃i(1)γ̃i+1(1)

= ãi+1ãiãi+1.

�

Proposition 2.25. There is a unique homomorphism q̃ : Br6 −→ S̃p(4,Z) such

that π ◦ q̃ = q and such that q̃(aBr6
i ) = ãi, i.e. q̃ maps aBr6

i to the canonical lift of

ai. In particular q̃ restricts to an invariant homomorphism q̃|N : N −→ Z and

S̃p(4,Z) =
Br6 ×Sp(4,Z)S̃p(4,Z)

q̃(N)
.

Proof: According to Lemma 2.24 q̃ := pr2 ◦σ is a homomorphism that satisfies

the requirements π ◦ q̃ = q and q̃(aBr6
i ) = ãi. As N = ker q the restriction of q̃ to

N maps into Z ⊂ S̃p(4,Z).

�

We will use this to arrive at an explicit description of q̃|N : N −→ Z.

Definition 2.26. Let (HR, ω) be a symplectic vector space. By the Lagrangian

Grassmannian Λω, we mean the Grassmannian of oriented Lagrangian subspaces

of HR.

The Lagrangian Grassmannian can be identified with the homogeneous space

U(g)/ SO(g) as follows, see [9]. Choose a compatible complex structure I on HR,

i.e. g(x, y) := ω(I(x), y) is a positive definite, symmetric form. h := g + iω is

then a positive definite, hermitian form on (HR, I). Now U(g) ≃ U(HR, I, h) is

naturally a subgroup of Sp(HR, ω). It acts transitively on Λω with isotropy group

SO(HR, g). Thus Λω ≃ U(g)/ SO(g). The complex determinant induces a map

detC : Λω −→ S1, which in turn induces an isomorphism π1(Λω) = Z.

Consider (R4, ω). The symplectic group Sp(4,R) acts transitively on Λω. And

this action lifts to a transitive action of S̃p(4,R) on the universal cover Λ̃ω of Λω.

Fix an element Λ0 of Λω and let tv be a transvection in Sp(4,Z). Then the natural

path s 7→ t√sv leads to a path Λs = t√sv · Λ0 in Λω.
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Proposition 2.27. Let
∏

i tvi
= 1, for vi ∈ Z4 be a relation in Sp(4,Z). Then the

distinguished lift
∏

i t̃vi
lies in π1(Sp(4,R)) = Z and the integer

∏

i

t̃vi
∈ Z

corresponds to the class of
∏

i t̃vi
· Λ0 in π1(Λω) = Z.

Proof: The choice of an element Λ0 ∈ Λω defines maps Sp(4,R) −→ Λω and

U(2) −→ Λω. Together with the inclusion U(2) →֒ Sp(4,R) these maps induce a

commutative diagram

π1(Sp(4,R)) // π1(Λω)

π1(U(2))

∼
ggOOOOOOOOOOOO

∼
88qqqqqqqqqq

This proves the claim.

�

Recall that

N = 〈κ, π, γ〉.

Lemma 2.28. The values of q̃|N : N −→ Z on the (normal) generators of N are

q̃(κ) = q̃(γ) = −1, q̃(π) = 0

Proof: Let α1, β1, α2, β2 be the standard symplectic basis in Z4, identify R4 with

C2 via αi = ei, βi = iei and fix the Lagrangian subspace Λ0 = spanR(α1, α2).

As in Section 2.2.2 the generators a1, ..., a5 of Sp(4,Z) are a1 = tβ1 , a2 = tα1 ,

a3 = tβ1+β2, a4 = tα2 , a5 = tβ2.

Consider a path ϕ : [0, 1] −→ Sp(4,R) and denote by detϕ the path

[0, 1] ∋ s 7→ detC(ϕs · Λ0) ∈ S1. We want to calculate homotopy classes of such

paths. For A ∈ Sp(4,R) the two vectors Aα1, Aα2 ∈ C2 determine the element

L := A · Λ0 in Λω. If v1, v2 ∈ C2 is another frame for L, then detC(v1, v2) =

detC(Aα1, Aα2) detC(S), where S ∈ GL+(2,R) is the base change. As detC(L)

has been defined above as the determinant of a unitary Lagrangian frame (v1, v2),

detC(L) = detC(Aα1, Aα2)/| detC(Aα1, Aα2)|. Thus

detϕs =
detC(ϕsα1, ϕsα2)

| detC(ϕsα1, ϕsα2)|
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and the path detϕ : [0, 1] −→ S1 is homotopic to the path detC(ϕsα1, ϕsα2) in C∗.

Consider first γ ∈ N . In Sp(4,Z) this is the relation (a1a2)
6 = 1. The distin-

guished lift in S̃p(4,Z) is the loop (ã1ã2)
6. Its action is

(w1, w2) detC(w1, w2)

(α1, α2) (e1, e2) 1
a2→ (α1, α2) (e1, e2) 1
a1→ (α1 − β1, α2) ((1 − i)e1, e2) 1 − i
a2→ (−β1, α2) (−ie1, e2) −i
a1→ (−β1, α2) (−ie1, e2) −i
a2→ (−α1 − β1, α2) ((−1 − i)e1, e2) −1 − i
a1→ (−α1, α2) (−e1, e2) −1
a2→ (−α1, α2) (−e1, e2) −1
a1→ (−α1 + β1, α2) ((−1 + i)e1, e2) −1 + i
a2→ (β1, α2) (ie1, e2) i
a1→ (β1, α2) (ie1, e2) i
a2→ (α1 + β1, α2) ((1 + i)e1e2) 1 + i
a1→ (α1, α2) (e1, e2) 1

It follows that the path detC((ã1ã2)
6 · Λ0) is homotopic to the path

[0, 1] ∋ s 7→ e−2πis and therefore that q̃(γ) = −1.

As π is a commutator, the corresponding path in Λω is homotopic to the constant

path. Thus q̃(π) = 0.
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Consider now κ ∈ N . In Sp(4,Z) this is the relation

(a1a2a3a4)
10(a5a1a2a3a4)

−6. We treat (a5a1a2a3a4)
6 first.

(w1, w2) detC

(α1, α2) (e1, e2) 1
a4→ (α1, α2) (e1, e2) 1
a3→ (α1 − β1 − β2,−β1 + α2 − β2) ((1 − i)e1 − ie2,−ie1 + (1 − i)e2) 1 − 2i
a2→ (−β1 − β2,−α1 − β1 + α2 − β2) (−ie1 − ie2, (−1 − i)e1 + (1 − i)e2) −2i
a1→ (−β1 − β2,−α1 + α2 − β2) (−ie1 − ie2,−e1 + (1 − i)e2) −1 − 2i
a5→ (−β1 − β2,−α1 + α2 − 2β2) (−ie1 − ie2,−e1 + (1 − 2i)e2) −2 − 2i

a4→ (−β1 − α2 − β2,−α1 − α2 − 2β2) (−ie1 + (−1 − i)e2,−e1 + (−1 − 2i)e2) −3
a3→ (−α2,−α1 + 2β1 − α2) (−e2, (−1 + 2i)e1 − e2) −1 + 2i
a2→ (−α2, α1 + 2β1 − α2) (−e2, (1 + 2i)e1 − e2) 1 + 2i
a1→ (−α2, α1 + β1 − α2) (−e2, (1 + i)e1 − e2) 1 + i
a5→ (−α2 + β2, α1 + β1 − α2 + β2) ((−1 + i)e2, (1 + i)e1 + (−1 + i)e2) 2

a4→ (β2, α1 + β1 + β2) (ie1, (1 + i)e1 + ie2) 1 − i
a3→ (β2, α1) (ie2, e1) −i
a2→ (β2, α1) (ie2, e1) −i
a1→ (β2, α1 − β1) (ie2, (1 − i)e1) −1 − i
a5→ (β2, α1 − β1) (ie2, (1 − i)e1) −1 − i

a4→ (−α2 + β2, α1 − β1) ((1 + i)e2, (1 − i)e1) −2i
a3→ (α2 − β1, α1 − 2β1 − β2) (−ie1 + e2, (1 − 2i)e1 − ie2) −2 + 2i
a2→ (−α1 − β1 + α2,−α1 − 2β1 − β2) ((−1 − i)e1 + e2, (−1 − 2i)e1 − ie2) 3i
a1→ (−α1 + α2,−α1 − β1 − β2) (−e1 + e2, (−1 − i)e1 − ie2) 1 + 2i
a5→ (−α1 + α2 − β2,−α1 − β1 − β2) (−e1 + (1 − i)e2, (−1 − i)e1 − ie2) 2 + i

a4→ (−α1 − β2,−α1 − β1 − α2 − β2) (−e1 − ie2, (−1 − i)e1 + (−1 − i)e2) 2
a3→ (−α1 + β1,−α1 + β1 − α2 + β2) ((−1 + i)e1, (−1 + i)e1 + (−1 + i)e2) −2i
a2→ (β1, β1 − α2 + β2) (ie1, ie1 + (−1 + i)e2) −1 − i
a1→ (β1, β1 − α2 + β2) (ie1, ie1 + (−1 + i)e2) −1 − i
a5→ (β1, β1 − α2 + 2β2) (ie1, ie1 + (−1 + 2i)e2) −2 − i

a4→ (β1, β1 + α2 + 2β2) (ie1, ie1 + (1 + 2i)e2) −2 + i
a3→ (β1, α2 + β2) (ie1, (1 + i)e2) −1 + i
a2→ (α1 + β1, α2 + β2) ((1 + i)e1, (1 + i)e2) 2i
a1→ (α1, α2 + β2) (e1, (1 + i)e2) 1 + i
a5→ (α1, α2) (e1, e2) 1

It follows that detC((ã5ã1ã2ã3ã4)
−6 ·Λ0) is homotopic to the path [0, 1] ∋ s 7→ e6πis.



50 CHRISTIAN THIER

For (a1a2a3a4)
5 on the other hand we get.

(w1, w2) detC

(α1, α2) (e1, e2) 1
a4→ (α1, α2) (e1, e2) 1
a3→ (α1 − β1 − β2,−β1 + α2 − β2) ((1 − i)e1 − ie2,−ie1 + (1 − i)e2) 1 − 2i
a2→ (−β1 − β2,−α1 − β1 + α2 − β2) (−ie1 − ie2, (−1 − i)e1 + (1 − i)e2) −2i
a1→ (−β1 − β2,−α1 + α2 − β2) (−ie1 − ie2,−e1 + (1 − i)e2) −1 − 2i

a4→ (−β1 − α2 − β2,−α1 − β2) (−ie1 + (−1 − i)e2,−e1 − ie2) −2 − i
a3→ (−α2,−α1 + β1) (−e2, (−1 + i)e1) −1 + i
a2→ (−α2, β1) (−e2, ie1) i
a1→ (−α2, β1) (−e2, ie1) i

a4→ (−α2, β1) (−e2, ie1) i
a3→ (−α2 + β1 + β2, β1) (ie1 + (−1 + i)e2, ie1) 1 + i
a2→ (α1 + β1 − α2 + β2, α1 + β1) ((1 + i)e1 + (−1 + i)e2, (1 + i)e1) 2
a1→ (α1 − α2 + β2, α1) (e1 + (−1 + i)e2, e1) 1 − i

a4→ (α1 + β2, α1) (e1 + ie2, e1) −i
a3→ (α1 − β1, α1 − β1 − β2) (1 − i)e1, (1 − i)e1 − ie2) −1 − i
a2→ (−β1,−β1 − β2) (−ie1,−ie1 − ie2) −1
a1→ (−β1,−β1 − β2) (−ie1,−ie1 − ie2) −1

a4→ (−β1,−β1 − α2 − β2) (−ie1,−ie1 + (−1 − i)e2) i− 1
a3→ (−β1,−α2) (−ie1,−e2) i
a2→ (−α1 − β1,−α2) ((−1 − i)e1,−e2) 1 + i
a1→ (−α1,−α2) (−e1,−e2) 1

It follows that detC((ã1ã2ã3ã4)
5 · Λ0) is homotopic to [0, 1] ∋ s 7→ e−4πis. Thus

detC((ã1ã2ã3ã4)
10(ã5ã1ã2ã3ã4)

−6 · Λ0) is homotopic to [0, 1] ∋ s 7→ e−2πis which in

turn implies q̃(κ) = −1.

�

Remark 2.29. The distinguished lift of a relation µ :
∏

i ti = 1 in Sp(4,Z) is a

loop ψ : S1 −→ Sp(4,R) and its Maslow-index indmas(ψ) is just q̃(µ). (For the

definition of the Maslow-index, see [50] p. 45f.).

The lemma implies that q̃|N : N −→ Z is an epimorphism. Therefore we get the

following theorem

Theorem 2.30. The central extension

0 −→ Z −→ S̃p(4,Z) −→ Sp(4,Z) −→ 1
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is given by the element q̃ ∈ Hom(N,Z)Br6 that is determined by q̃(κ) = q̃(γ) =

−1, q̃(π) = 0. And thus

S̃p(4,Z) =
Br6 ×Z

kerq̃
.

�

Next we give another description of the distinguished lift. The set of transvections

Tr in Sp(4,Z) forms a conjugacy class. For a transvection tv ∈ Sp(4,Z) and F an

arbitrary element of Sp(4,Z) holds

F ◦ tv ◦ F−1 = tF (v). (15)

Thus for a fixed transvection a

Tr = {tv|v ∈ Z4} = {t ∈ Sp(4,Z)|∃x ∈ Sp(4,Z) : t = xax−1}.

Now let t = x ∗ a = xax−1 be a transvection. Then x is determined up to

transformations that commute with a.

Lemma 2.31. Fix a transvection a ∈ Sp(4,Z) and ã the distinguished lift of a.

The distinguished lift t̃ of a transvection t = x ∗ a is then

t̃ = y ∗ ã,

where y is an arbitrary lift of x.

Proof: Let a = tv and t = x ∗ a. Let y be a lift of x. Chose a path α̃ in S̃p(4,R)

that goes from 1 to y and put α := π ◦ α̃. We have to show that α · t̃v · α− is

homotopic to t̃x(v) in Sp(4,R).

For all l ∈ [0, 1] holds t̃x(v)(l) ◦ x = x ◦ t̃v(l), because

t̃x(v)(l)(x(u)) = x(u) + lω(x(v), x(u))x(v)

= x(u+ lω(v, u)v)

= x(t̃v(l)(u))
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for all u ∈ R4.

(α · t̃v)(s) =

{
t̃v(2s) ; s ∈ [0, 1

2
]

α(2s− 1) ◦ tv ; s ∈ [1
2
, 1]

}

(t̃x(v) · α)(s) =

{
α(2s) ; s ∈ [0, 1

2
]

t̃x(v)(2s− 1) ◦ α(1) ; s ∈ [1
2
, 1]

}

=

{
α(2s) ; s ∈ [0, 1

2
]

α(1) ◦ t̃v(2s− 1) ; s ∈ [1
2
, 1]

}
.

Let

hl(s) =





t̃v(3sl) ; s ∈ [0, 1
3
]

α(3s− 1) ◦ t̃v(l) ; s ∈ [1
3
, 2

3
]

t̃x(v)(l + (1 − l)(3s− 2)) ◦ α(1) ; s ∈ [2
3
, 1]




.

This defines a homotopy as hl(0) = id and hl(1) = α(1) ◦ tv. Up to reparametri-

sation

h0(s) = α · t̃v
h1(s) = t̃x(v) · α

and the claim follows.

�

2.4. The class γ∗ ∈ H2(Sp(4,Z),Z). The natural homomorphism Br6 −→ Map2

restricts to a homomorphism N −→ J2. Recall the γ-degree

degγ : J2 −→ Z

from Definition 2.13. The pullback of degγ under the above homomorphism is

a Br6-invariant homomorphism γ∗ : N −→ Z. Therefore it represents a class

γ∗ ∈ H2(Sp(4,Z),Z). Clearly

γ∗(γ) = 1 , γ∗(κ) = γ∗(π) = 0.

Proposition 2.32. There is an element γ∗ ∈ Hom(N,Z)Br6 such that γ∗(γ) = 1

and γ∗(κ) = γ∗(π) = 0.

�
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Let

0 −→ Z −→ Gγ∗ −→ Sp(4,Z) −→ 1

be the extension defined by γ∗. By definition

Gγ∗ =
Br6

〈κ, π, [γ, ∗]〉

where [γ, ∗] stands for a set of relators that generate commutators of γ with all

other elements. Note that this implies that there exists a commutative diagram

J2
//

degγ

��

Map2

ξ
//

ρ

��

Sp(4,Z)

Z // Gγ∗
p

// Sp(4,Z)

(16)

2.5. Generators and relations in H2(Sp(4,Z),Z). We set κ∗ := −q̃− γ∗. This

gives a well defined element of Hom(N,Z)Br6 that satisfies

κ∗(κ) = 1, κ∗(π) = κ∗(γ) = 0.

We prove that the two classes κ∗ + γ∗, γ∗ generate H2(Sp(4,Z),Z).

Theorem 2.33. H2(Sp(4,Z),Z) is generated by the two classes κ∗ + γ∗, γ∗ and

isomorphic to Z ⊕ Z2.

In order to prove the theorem, we need the following lemma.

Lemma 2.34. Let ϕ : N −→ Z be a Br6-invariant Homomorphism. Then ϕ(π) =

0.

Proof: It suffices to consider ϕ such that ϕ(κ) = ϕ(γ) = 0. Let Σ[1] be a surface

of genus two with one boundary component ∂Σ, Σ1 the closed surface obtained by

capping ∂Σ with a disc containing a distinguished point and Σ the same surface

without marked point. Consider 〈κ, π〉Br6 ⊂ N and set

π̂1(Σ) :=
〈κ, π〉Br6

〈κ〉Br6

.
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Let ϕ : π̂1(Σ) −→ Z be a Br6-invariant Homomorphism. We have to show that

ϕ ≡ 0. Recall the commutative diagram

Map2,[1]

f1 //

f

&&LLLLLLLLLL

Map2,1

f2
��

Map2

(17)

The kernel of the maps f is π̂1(Σ) and from the diagram we see that it fits into an

exact sequence

0 −→ Z −→ π̂1(Σ) −→ π1(Σ) −→ 1. (18)

The extension (18) is the pull back of the extension Z −→ Map2,[1] −→ Map2,1

under the inclusion i : π1(Σ) →֒ Map2,1.

1

��

1

��

0 // Z // π̂1(Σ)

��

// π1(Σ) //
� _

��

1

0 // Z // Map2,[1]

��

// Map2,1
//

��

// 1

Map2

��

Map2
//

��

// 1

1 1

Johnson proves in [35], Section 3, Lemma 3 that π̂1(Σ) is isomorphic to the fun-

damental group of the unit tangent bundle S1Σ of Σ and that the long exact

homotopy sequence associated to the bundle S1 →֒ S1Σ −→ Σ gives the extension

(18). The fundamental group of Σ has the well known presentation

π1(Σ) = 〈α1, β1, α2, β2|
2∏

i=1

[αi, βi]〉.

Recall from Remark 2.5 that the image of αi (resp. βi) under the map i : π1(Σ) −→
Map2,1 is represented by

ταi+ · τ−1
αi− resp. τβi+ · τ−1

βi−
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in the notation of Remark 2.5. These Dehn twists have natural lifts to Map2,[1]. In

this way we get natural lifts α̂i, β̂i ∈ π̂1(Σ) of αi, βi. The Dehn twist τ∂Σ ∈ Map2,[1]

around the boundary component on the other hand generates Z ⊂ π̂1(Σ). The lift

of the single relation in π1(Σ) is therefore

2∏

i=1

[α̂i, β̂i] = τk∂Σ,

for a k ∈ Z. The class of the extension (18) corresponds under the natural iso-

morphism H2(π1(Σ),Z) = H2(Σ,Z) to the Euler class and thus k = χtop(Σ) = 2.

As a consequence ϕ(τ∂Σ) = 0 and ϕ : π̂1(Σ) −→ Z descends to a Map2,1-invariant

homomorphism ϕ : π1(Σ) −→ Z. But Map2,1 = Aut+(π1(Σ)) acts transitively on

π1(Σ) and therefore ϕ has to be identically zero.

�

Proof of the Theorem: Lemma 2.34 implies that κ∗ and γ∗ generate Hom(N,Z)Br6 .

Therefore it establishes the first claim of Theorem 2.33. Recall the degree homo-

morphism deg : Br6 −→ Z from Remark 2.7 and Remark 2.17. The elements κ and

γ of Br6 have degree 10 and 12 respectively. This implies that in Hom(N,Z)Br6

holds

deg = 10κ∗ + 12γ∗. (19)

Thus
Hom(N,Z)Br6

Z〈deg〉 ≃ Z ⊕ Z2

and the second claim follows.

�

Remark 2.35. For i = 0, 1 let Map2,[i] = Br6
N2,[i]

, i.e. N2,[1] = 〈κ〉Br6 and N2,[0] =

〈κ, π〉Br6 . It is easy to see that in both cases H1(Map2,[i],Z) = Z10 and thus

H1(Map2,[i],Z) = 0. Now the Hochschild-Serre spectral sequence yields

H2(Map2,[i],Z) =
Hom(N2,[i],Z)Br6

Hom(Br6,Z)
.

Restricted to N2,[1] the homomorphism κ∗ is equal to deg
10

. Thus we conclude that

H2(Map2,[1],Z) = Z10, with generator κ∗. Note that Lemma 2.34 implies that

H2(Map2,Z) = H2(Map2,[1],Z).

The pullback of the central extension

0 −→ Z −→ S̃p(4,Z) −→ Sp(4,Z) −→ 1
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under the homomorphism

ξ : Map2 −→ Sp(4,Z)

is represented by the pullback of (κ∗ + γ∗) under the inclusion N2,[0] →֒ N and

thus corresponds to the generator κ∗ ∈ H2(Map2,Z). We denote this extension by

M̃ap2 and get the following commutative diagram

0 // Z //

��

M̃ap2
//

��

Map2
//

ξ

��

1

0 // Z // S̃p(4,Z) // Sp(4,Z) // 1.

Note that

M̃ap2 =
Br6

〈[κ, ∗], π〉

and that deg : Br6 −→ Z descends to a homomorphism deg : M̃ap2 −→ Z.

2.6. The central extension Ŝp(4,Z). In this section we describe an extension

of Sp(4,Z) by Z2. Consider the following element of Hom(N,Z2)Br6

ψ :=

(
κ∗

γ∗

)
: N −→ Z2.

It defines a central extension

0 −→ Z2 −→ Ŝp(4,Z)
π−→ Sp(4,Z) −→ 1, (20)

with Ŝp(4,Z) = Br6 ×Z2

ψ(N)
. Note that

Ŝp(4,Z) =
Br6
kerψ

=
Br6

〈π, [κ, ∗], [γ, ∗]〉 ,

where as before [x, ∗] denotes a set of relators that generate commutators of x with

all other elements. Note also that there is a well defined degree homomorphism

deg : Ŝp(4,Z) −→ Z induced by deg : Br6 −→ Z. The extension (20) has two useful

properties. The first property is similar to that of a universal central extension.

Proposition 2.36. Let E be a central extension of Sp(4,Z) by Z. Then there

exists a unique homomorphism θ : Ŝp(4,Z) −→ E such that the following diagram
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commutes

0 // Z2 //

��

Ŝp(4,Z) //

θ

��

Sp(4,Z) // 1

0 // Z // E // Sp(4,Z) // 1.

Proof: Let E be defined by ϕ ∈ Hom(N,Z)Br6 . Then ϕ = kκ∗ + lγ∗, for k, l ∈ Z.

There is a unique θ′ : Z2 −→ Z such that θ′ ◦ ψ = ϕ. The homomorphism

id× θ′ : Br6 ×Z2 −→ Br6 ×Z descends to homomorphism θ : Br6 ×Z2

ψ(N)
−→ Br6 ×Z

ϕ(N)
.

�

The second property is the existence of a distinguished lift for transvections.

Proposition 2.37. Let t ∈ Sp(4,Z) be a transvection. Then there exists a distin-

guished lift t̂ of t in Ŝp(4,Z).

Proof: Let t ∈ Sp(4,Z) be a transvection, we define the distinguished lift t̂ in the

following way. Denote by ai ∈ Sp(4,Z) and âi ∈ Ŝp(4,Z) the images of ai ∈ Br6

under the natural quotient maps. Then there exists a b ∈ Sp(4,Z) such that t is

conjugate to a2 by b, i.e. t = b ∗ a2. Set t̂ := β ∗ â2 for an arbitrary lift β of b. We

will show that this is well defined.

Denote by T̂ r the conjugacy class of â2 in Ŝp(4,Z). Then Ŝp(4,Z) and Sp(4,Z)

act by conjugation on T̂ r and Tr respectively. The map p := π|T̂ r is equivariant

with respect to these actions.

Ŝp(4,Z)

π

��

++
T̂ r

p

��
Sp(4,Z)

++
Tr

The transformation b is obviously unique up to an element of the stabiliser Ia2 of

a2. We must therefore show that if b lies in the stabiliser of a2 then every lift β

of b lies in the stabiliser Iba2 of â2. The extension being central it suffices to show

that for each b ∈ Ia2 there exists a lift β ∈ Iba2 . Thus the proof is complete once

we have established the following lemma.

Lemma 2.38. The map π|Iba2 −→ Ia2 between the stabilisers is surjective.
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Proof of the Lemma: With respect to the symplectic basis (α1, β1, α2, β2) in Z4

a2 = tα1 =




1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1




Let F be in the stabiliser Ia2 , i.e.

F ∗ tα1 = tF (α1) = tα1

The stabiliser is therefore

Ia2 = {F ∈ Sp(4,Z)|F (α1) = ±α1}.

We show that such an F has an inverse image in Iba2 .

I. Without loss of generality we can assume that F (α1) = α1. For if F (α1) = −α1,

we write F = F ′ · (−id). An inverse image of −id ∈ Ia2 in Ŝp(4,Z) that commutes

with â2 is given by (â1â2)
3(â4â5)

3. Thus it suffices to show the claim for F ′.

Let therefore F be a symplectic transformation given by a matrix of the form:



1 n ∗ ∗
0 1 ∗ ∗
0 k ∗ ∗
0 l ∗ ∗



. (21)

II. Without loss of generality we can assume that n = 0. Otherwise we write

F = F ′ · an2 . As an2 obviously has an inverse image in Iba2 , it suffices to prove the

claim for F ′.

Let F be as above with n = 0. Now the fact that F is symplectic implies that

F is given by a matrix of the following form



1 0 m p

0 1 0 0

0 k r1 r2

0 l r3 r4



. (22)

III. Without loss of generality we can assume the submatrix R :=

(
r1 r2

r3 r4

)
in

(22) to be the unit matrix E2. We achieve this by multiplying F on the right with
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the symplectic matrix 


1 0 0 0

0 1 0 0

0 0 s1 s2

0 0 s3 s4



,

where the submatrix S :=

(
s1 s2

s3 s4

)
is R−1. This matrix clearly has an inverse

image in Iba2 .

Let therefore F be a matrix of the form


1 0 −l k

0 1 0 0

0 k 1 0

0 l 0 1



. (23)

IV. Without loss of generality we can assume that F has block diagonal form



1 1 0 0

0 1 0 0

0 0 ∗ ∗
0 0 ∗ ∗



. (24)

We achieve this by multiplying F on the right by the transvection tα1−kα2−lβ2. As

α1 · (α1 − kα2 − lβ2) = 0 (25)

this transvection lies in Ia2 . We claim that it has an inverse image in Iba2 .

Denote by τC the class in Map2 of a Dehn twist along a simple closed curve C

that represents α1 − kα2 − lβ2 ∈ H1(Σ,Z). Denote by a
Map2
2 ∈ Map2 the image

of a2 ∈ Br6. This is the class of a Dehn twist along a simple closed curve that

represents α1. It follows from (25) that τC and a
Map2
2 commute. Remark 2.35

implies that there is a commutative diagram:

0 // Z //

��

M̃ap2
//

Ξ
��

Map2
//

ξ

��

1

0 // Z2 // Ŝp(4,Z) // Sp(4,Z) // 1.

(26)

Denote the image of a2 ∈ Br6 in M̃ap2 by ã2 and let τ̃ be an arbitrary lift of τC

to M̃ap2. As τC and a
Map2
2 commute, the commutator [τ̃ , ã2] lies in Z〈κ〉. The

degree homomorphism deg : Br6 −→ Z descends to a well defined homomorphism
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deg : M̃ap2 −→ Z. Now deg|Z〈κ〉 = Z
12−→ Z, but deg([τ̃ , ã2]) = 0. So we conclude

that

[τ̃ , ã2] = 1 ∈ M̃ap2.

It follows that Ξ(τ̃) is a lift of tα1−kα2−lβ2 that lies in Iba2 .

V. A symplectic matrix F as in (24) has a lift in Iba2 . Applying II. once again we

can assume that F has the form


1 0 0 0

0 1 0 0

0 0 ∗ ∗
0 0 ∗ ∗



. (27)

Such a matrix clearly has a lift in Ŝp(4,Z) that commutes with â2. This completes

the proof of the lemma.

�
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3. Geometry

3.1. Evaluation of cohomology classes. Let f : X −→ P1 be a flat morphism

with general fibre a principally polarised abelian surface. Let ∆ = {p1, ..., pd} be

the discriminant locus of f and fix a base point b0 ∈ P1 \∆. Let α1, ...αd be loops

with base point b0 such that αi goes counterclockwise around pi and such that

π1(P
1 \ ∆) = 〈α1, ...αd|

d∏

i=1

αi = 1〉

is a presentation of the fundamental group. Now assume that for each pi the

monodromy transformation Ti associated to αi is unipotent of rank one, i.e.

Ti = tki

i , (28)

where ti is a simple transvection and ki ∈ N.

Definition 3.1. Let f : X −→ P1 be a flat morphism with general fibre a prin-

cipally polarised abelian surface and discriminant locus ∆ = {p1, ..., pd}. We say

that f has unipotent monodromy of rank one if the monodromy transformation

around each pi has the form (28). We say that f has simple monodromy if the

monodromy transformation around each pi is a simple transvection.

Definition 3.2. The monodromy factorisation of f : X −→ P1 with respect to the

basis α1, ..., αd of π1(P1 \ ∆) is

µ :
d∏

i=1

tki

i = 1.

The degree of a monodromy factorisation µ is

deg(µ) =
d∑

i=1

ki.

According to Proposition 2.37 a simple transvection has a distinguished lift in

Ŝp(4,Z). Using Proposition 2.36 this gives a distinguished lift in every central

extension of Sp(4,Z).

Definition 3.3. The distinguished lift of a transvection t in a central extension

0 −→ Z −→ E −→ Sp(4,Z) −→ 1 (29)



62 CHRISTIAN THIER

is the image of the distinguished lift in Ŝp(4,Z) under the homomorphism of Propo-

sition 2.36. The distinguished lift of a monodromy factorisation µ is the product

of the distinguished lifts of its factors.

Remark 3.4. It follows from Lemma 2.31 that for the universal covering S̃p(4,Z)

this definition coincides with the earlier one in Definition 2.23.

We want to evaluate cohomology classes in H2(Sp(4,Z),Z) on monodromy fac-

torisations. The distinguished lift of a monodromy factorisation µ in a central

extension (29) lies in the kernel of E −→ Sp(4,Z) and is thus a number.

Definition 3.5. Let [E] be in H2(Sp(4,Z),Z) and µ be a monodromy factorisa-

tion. The evaluation of [E] on µ is the number [E](µ) ∈ Z that is given by the

distinguished lift of µ in the central extension E.

Remark 3.6. A monodromy factorisation such that the monodromy transforma-

tion around each pi is a product of two commuting transvections (i.e. as in Lemma

1.24) also has a distinguished lift in central extensions of Sp(4,Z). Therefore we

can evaluate cohomology classes on such monodromy factorisations also.

3.2. The geometrical interpretation of the generator κ∗ + γ∗. In order to

give a geometrical interpretation of the class κ∗ + γ∗ ∈ H1(Sp(4,Z),Z), we briefly

recall some Hodge theory. Here we mostly follow the treatment given in [27].

Let H1
C

be a complex vector space of dimension 2g. A Hodge structure of weight

one on H1
C

consists in

1) a sub-module H1
Z

of rank 2g such that H1
C

= H1
Z
⊗ C.

2) a directsum decomposition H1
C

= H1,0 ⊕ H0,1 with H1,0 = H0,1, where

the bar denotes complex conjugation with respect to the real structure

H1
R

= H1
Z
⊗ R.

There is a canonical R-linear isomorphism

H1,0 →֒ H1
C −→ H1

R

that will be denoted by

Υ : H1,0 −→ H1
R
. (30)

The Hodge decomposition on a compact Kähler manifold X together with the

lattice H1(X,Z) define a weight one Hodge structure on the first cohomology

H1(X,C).



ON THE MONODROMY OF 4-DIMENSIONAL LAGRANGIAN FIBRATIONS 63

A polarisation of a weight one Hodge structure is an integral alternating bilinear

form Q on the lattice H1
Z

such that the following bilinear relations hold.

i) Q(u, u′) = 0 if u, u′ ∈ H1,0 and

ii) iQ(u, ū) > 0 if 0 6= u ∈ H1,0.

Let (X,ω) be a polarised manifold. Then the polarisation ω ∈ H1,1(X)∩H2(X,Z)

induces a polarisation Q of the weight one Hodge structure on H1(X,C),

Q(σ, τ) :=

∫

X

σ ∧ τ ∧ ωdim(X)−1.

For (X,ω) a principally polarised abelian variety (H1
Z
, Q) is unimodular.

Let (H1
Z
, Q) be a unimodular, symplectic lattice and (e1, ..., eg, f1, ..., fg) a basis

of H1
Z

such that the symplectic form Q is given by
(

0 Eg

−Eg 0

)
.

A weight one Hodge structure on H1
C

:= H1
Z
⊗ C, polarised by Q is then given by

a g-dimensional subspace F 1 of C2g, that satisfies the two bilinear relations i) and

ii). Let (ω1, ..., ωg) be a basis of F 1. Then

(ω1, ..., ωg) = (e1, ..., eg, f1, ..., fg) · Ω

with a complex 2g × g-matrix

Ω =

(
Ω1

Ω2

)

called the period matrix with respect to the two bases. The period matrix can be

normalised to

Ω =

(
Eg

Z

)

By the first bilinear relation Z is symmetric and by the second its imaginary part

ImZ is positive definite. In this way the classifying space of weight one Hodge

structures

E = {F 1 ∈ G(g,H1
C)|Q(u, u′) = 0 ∀u, u′ ∈ F 1 and iQ(u, ū) > 0 ∀0 6= u ∈ F 1},

where G(g,H1
C
) denotes the Grassmannian of g-dimensional subspaces of H1

C
, can

be identified with the Siegel upper half-space

hg = {Z ∈M(g × g,C)|ZT = Z and ImZ > 0}.
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A variation of Hodge structure is the parametrised version of a Hodge structure.

A variation of Hodge structure of weight one consists in a complex manifold C, a

local system H1
Z

with coefficients in Z2g on C, a flat holomorphic connection ∇ in

the holomorphic vector bundle H1
C

= H1
Z
⊗ OC such that the sections of H1

Z
are

∇-flat and a holomorphic subbundle

F1 ⊂ H1
C

such that there is a C∞-decomposition

H1
C = F1 ⊕ F1.

A polarisation of a variation of Hodge structure is a symplectic structure on H1
Z
,

that polarises the Hodge structure at each point.

Let (D∗,H1
Z
,H1

C
,∇,F1) be a variation of Hodge structure over the punctured

discD∗. The bundle H1
C

has a canonical extension H̃1
C

toD as a holomorphic vector

bundle. We will explain this extension below. Furthermore by the nilpotent orbit

theorem the subbundle F1 extends canonically to a holomorphic subbundle F̃1 of

H̃1
C
.

Let f : X −→ P1 be a flat morphism that is smooth over C := P1 \ ∆, where

∆ = {p1, ..., pd}. The Hodge decomposition H1(Xb,C) = H1,0(Xb) ⊕H0,1(Xb) of

a smooth fibre Xb defines a variation of Hodge structure (C,H1
Z
,H1

C
,∇,F1). Let

X1 := f−1(C) and f1 := f|X1
: X1 −→ C be the smooth part of f . Then

H1
Z

= R1f1∗Z

H1
C

= R1f1∗Z ⊗OC

F1 = f1∗Ω
1
X1/C .

Let f : X −→ P1 be a flat morphism with general fibre a principally polarised

abelian surface. What we constantly have in mind in what follows is the restriction

of a Lagrangian fibration to a general line in P2. A smooth fibre Xb is then a

complex torus Vb

Λb
and Vb and Λb are naturally identified with H0(Xb,Ω

1
Xb

)∗ and

H1(Xb,Z) respectively. The polarisation ωb of Xb induces via

Qb(σ, τ) =

∫

Xb

σ ∧ τ ∧ ωb
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a polarisation of the Hodge structure. Let (α1, α2, β1, β2) be a basis of H1(Xb,Z)

such that ωb is given by (
0 E2

−E2 0

)
. (31)

Then Qb with respect to the dual basis (e1, e2, f1, f2) in H1(Xb,Z) is also given

by the matrix (31). Over C the Hodge structures of the fibres form a polarised

variation of Hodge structure. Let

ρ : π1(S, b0) −→ Sp(4,Z)

be the monodromy representation of the local system H1
Z

and Si a monodromy

transformation. Then

Si = Ti
−T,

where Ti is the monodromy of H1,Z with respect to the dual basis. Using the

canonical extension of H1
C

at each critical value pi we get a canonical extension

H̃1
C

of H1
C

to P1 and an extension F̃1 of F1 as a subbundle of H̃1
C
. The bun-

dle F1 as well as its extension F̃1 will be called the Hodge bundle of f . Let

µ : π1(S, b0) −→ Sp(4,Z) be the monodromy representation of the fibration f and

assume that the monodromy around each critical value pi is unipotent of rank one.

We claim that the evaluation of the class κ∗ + γ∗ on a monodromy factorisation µ

of f gives the first Chern class of the Hodge bundle F̃1.

Theorem 3.7. Let f : X −→ P1 be a flat morphism with general fibre a principally

polarised abelian surface and unipotent monodromy of rank one. Then

(κ∗ + γ∗)(µ) = c1(F̃1),

where F̃1 is the Hodge bundle of f and µ is a monodromy factorisation of f .

Before proving this theorem we will first recall some more facts concerning vari-

ations of Hodge structure.

3.2.1. The canonical extension. For a polarised variation of Hodge structure

(D∗,H1
Z
,H1

C
,∇,F1, Q) over the punctured disc D∗ = {z ∈ C| 0 < |z| < 1} the

canonical extension of the bundle H1
C

is defined in the following way. A holomor-

phic vector bundle V over the punctured disc is trivial. So each trivialisation of V
defines an extension to the disc D. One singles out a privileged extension using

the flat structure. Let z0 ∈ D∗ a base point and e1(z0), ..., e2g(z0) a basis of H1
Z,z0

.

By parallel transport we get a multi-valued, flat frame (e1(z), ..., e2g(z)) over D∗.
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Denote by S the monodromy transformation corresponding to the counterclock-

wise generator of π1(D
∗, z0), assume S to be unipotent and let M := log S. The

above frame then satisfies

(e1(exp(2πi)z), ..., e2g(exp(2πi)z)) = (e1(z), ..., e2g(z)) · S.

Setting

e′j(z) := exp(− log(z)

2πi
M)ej(z)

for j = 1, ..., 2g therefore defines a single-valued, holomorphic frame over D∗. This

frame defines the canonical extension H̃1
C
.

3.2.2. The period map and the nilpotent orbit theorem. The pullback of the local

system H1
Z
−→ D∗ under the universal covering map

exp : h1 −→ D∗

w 7→ exp(2πiw)

is a constant sheaf and an isomorphism of constant sheaves

exp∗H1
Z

= h1 ×H1
Z

is fixed by stipulating H1
Z,z0

= H1
Z
. This induces a trivialisation of the bundle

exp∗H1
C
,

exp∗H1
C = h1 ×H1

C,

where H1
C

= H1
Z
⊗C. Pulling back the subspaces F1

z ⊂ H1
C,z yields holomorphically

varying subspaces F 1
w of the fixed vector space H1

C
. They satisfy

F 1
w+1 = S−1 · F 1

w.

To each F 1
w corresponds a normalised period matrix

Ωw =

(
Eg

Zw

)

such that F 1
w = spanC(Ωw). It follows that

Ωw+1 = S−1 · Ωw. (32)

The map

φ̃ : h1 −→ hg

w 7→ Zw
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induces the period map

φ : D∗ −→ hg/ Sp(2g,Z).

but because of (32) it does not descend to a map D∗ −→ hg. Setting

ψ̃(w) := exp(wM)φ̃(w)

however, we get a map from the upper half-plane into the compact dual of E, i.e.

into the space of g-planes that satisfy the first bilinear relation

Ě = {F 1 ∈ G(g,H1
C)|Q(u, u′) = 0 ∀u, u′ ∈ F 1}.

The map ψ̃ : h1 −→ Ě satisfies ψ̃(w + 1) = ψ̃(w) and thus descends to a map

ψ : D∗ −→ Ě,

where ψ(z) := ψ̃( log z
2πi

). By the nilpotent orbit theorem the map ψ has a removable

singularity at the origin, see [27], p. 79. It defines a single-valued family of

holomorphically varying subspaces of H1
C
,

F̃ 1
z := spanC(exp(

log z

2πi
M)Ω log z

2πi
)

The limiting Hodge filtration is defined as F̃ 1
0 := ψ(0) ∈ Ě. Let (e1, ..., eg, f1, ..., fg)

be a multi-valued flat Q-symplectic frame in H1
Z
. As above we define the single-

valued, holomorphic, Q-symplectic frame (e′1, ..., e
′
g, f

′
1, ..., f

′
g). The corresponding

trivialisation

H̃1
C

θ≃ D ×H1
C

is the one that defines the canonical extension. Under the isomorphism θ the space

F1
z ⊂ H1

C,z corresponds to F̃ 1
z ⊂ H1

C
. And the canonical extension of F1 is defined

by

F̃1
0 = θ−1(F̃ 1

0 ). (33)

Define sections of H̃1
C

by

(ω1, ..., ωg)z := (e′1, ..., e
′
g, f

′
1, ..., f

′
g)z · exp(

log z

2πi
N)Ω log z

2πi
.

These sections extend over D, as both (e′1, ..., e
′
g, f

′
1, ..., f

′
g)z and exp( log z

2πi
N)Ω log z

2πi

extend over D. Over D∗ they obviously form a holomorphic frame in F1 and

because of (33) the extended sections form a holomorphic frame in F̃1.

Let f : X −→ P1 be a fibration as in Theorem 3.7 with ∆ = {p1, ..., pd}. Pick one
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pi and let U ′
i ≃ D be a small disc centered at pi. Let S be the monodromy trans-

formation of H1
Z

corresponding to the counterclockwise generator of π1(D
∗, z0). By

assumption S = sk for a simple transvection s and k ∈ N. Let

(e1, e2, f1, f2) log z
2πi
, z ∈ D∗

be a multi-valued frame in H1
Z

such that Q with respect to this frame is given by

the matrix (
0 Eg

−Eg 0

)

and such that

S =




1 0 0 0

0 1 0 0

−k 0 1 0

0 0 0 1



.

The logarithm is then

M = logS =




0 0 0 0

0 0 0 0

−k 0 0 0

0 0 0 0



.

The normalised period matrix with respect to (e1, e2, f1, f2) log z
2πi

will be denoted by

Ω log z
2πi

=

(
E2

Z log z
2πi

)

where

Z =

(
z11 z12

z12 z22

)
.

As Ωw+1 = S−1 · Ωw, the entry z11 is a multi-valued, holomorphic function in

z ∈ D∗, whereas the other entries of Z are single-valued. The matrix

exp(
log z

2πi
M) · Ω log z

2πi
=

(
E2

W log z
2πi

)

on the other hand is single-valued and by the nilpotent orbit theorem extends over

0. The entries of

W =

(
w11 z12

z12 z22

)
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are thus single-valued holomorphic functions on D and

z11 = w11 + k
log z

2πi
.

The frame

(e′1, e
′
2, f

′
1, f

′
2) := (e1, e2, f1, f2) · exp(− log z

2πi
M)

in H1
C

is single-valued and holomorphic.

The canonical R-linear isomorphism

F1 Υ−→ H1
R

endows the bundle F̃1 −→ D over the punctured disc D∗ with a flat connection

∇, an integral structure and an integral symplectic structure Υ∗Q. We will use

this to establish the relationship between the monodromy and the first Chern class.

Lemma 3.8. The symplectic structure Υ∗Q in F1 −→ D∗ can be deformed to a

symplectic structure Q′ that extends to a symplectic structure Q′ in F̃1 −→ D.

Proof: We construct Q′ by modifying Υ∗Q. Let (ω1, ω2) be the holomorphic

frame in F̃1 defined by

(ω1, ω2)z := (e′1, e
′
2, f

′
1, f

′
2)z ·

(
E2

W log z
2πi

)
, i.e.

ω1 = e′1 + w11f
′
1 + z12f

′
2

ω2 = e′2 + z12f
′
1 + z22f

′
2.

The sections (e′1, e
′
2, f

′
1, f

′
2) are not real valued. We consider therefore their real

parts

Re(e′1) = e1 + k
arg z

2π
f1 =: g1

Re(e′2) = e2

Re(f ′
1) = f1

Re(f ′
2) = f2,
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which form a frame in H1
R

over D∗, that is symplectic with respect to Q. In the

two (real) bases (ω1, ω2, iω1, iω2) and (g1, e2, f1, f2) of F1 and H1
R

respectively, the

isomorphism F1 Υ−→ H1
R

is given by

Az =

(
E2 0

ReW − ImZ

)
, z ∈ D∗.

Then

A−1
z =

(
E2 0

(ImZ)−1 ReW −(ImZ)−1

)

and the columns of A−1
z define a frame (σ1, ..., σ4) in F1 that is by construction

symplectic for Υ∗Q.

A−1
z =




1 0 0 0

0 1 0 0
Im z22 Rew11-Im z12 Re z12

d(z)
Im z22 Re z12−Im z12 Rew22

d(z)
− Im z22
d(z)

Im z12
d(z)

Im z11 Re z12−Im z12 Rew11

d(z)
Im z11 Rew22−Im z12 Re z12

d(z)
Im z12
d(z)

− Im z11
d(z)




where

d(z) := det(ImZ).

Note that the latter is a positive single-valued function on D∗. We write z = rearg z

for z ∈ D. As

Im z11 = −k log r

2π
+ Imw11

d(z) = Im z11 Im z22 − (Im z12)
2

= −ki Im z22
2π

log r + Imw11 Im z22 − (Im z12)
2.

The functions w11, z12, z22 are single-valued, holomorphic functions on D∗ that

extend to holomorphic functions on the hole disc D. Furthermore the nilpotent

orbit theorem implies that Im z22(0) > 0, see [28], Proposition 13.3. Thus

d(z) −→ ∞, as z −→ 0.
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This in turn implies that

limz−→0(σ1, ..., σ4)z =




1 0 0 0

0 1 0 0

0 0 0 0
Re z12(0)
Im z22(0)

Re z22(0)
Im z22(0)

0 − 1
Im z22(0)



.

The sections σ1, ..., σ4 therefore extend over D, but (σ1(0), ..., σ4(0)) is no longer a

basis. Setting

(ς1, ..., ς4) := (σ1, σ2, d(z)σ3, σ4)

however defines sections that extend to give a frame in F̃1 over the hole disc D.

We define a new symplectic structure Q′ in F̃1 −→ D by the matrix




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




with respect to the frame (ς1, ..., ς4). The symplectic structure Υ∗Q in F̃1
|D∗ with

respect to this frame is given by




0 0 d(z) 0

0 0 0 1

−d(z) 0 0 0

0 −1 0 0



.

As d is a positive C∞-functions on D∗ Q′
|D∗ is a deformation of Υ∗Q.

�

Lemma 3.9. The symplectic structure Q′ constructed in Lemma 3.8 is such that

the complex structure I of F̃1 −→ D tames −Q′.

Proof: We have to show that

−Q′(·, I·) > 0.
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We use the same notation as in the proof of Lemma 3.8. In the basis (ω1, ω2, iω1, iω2)

−Q′ is given by

AT

z




0 0 −1
d

0

0 0 0 −1
1
d

0 0 0

0 1 0 0



Az

=




0 Re z12 − Re z12
d

Im z11
d

Im z12
d

Re z12
d

− Re z12 0 Im z12 Im z22

− Im z11
d

− Im z12 0 0

− Im z12
d

− Im z22 0 0



.

Therefore −Q′(·, I·) is represented by




Im z11
d

Im z12
d

0 Re z12(
1
d
− 1)

Im z12 Im z22 Re z12(1 − 1
d
) 0

0 0 Im z11
d

Im z12

0 0 Im z12
d

Im z22




for z ∈ D∗. This matrix is positive definite as all its principal minors have positive

determinant. In the limit as z −→ 0 −Q′(·, I·) is represented by




1
Im z22(0)

0 0 −Re z12(0)

Im z12(0) Im z22(0) Re z12(0) 0

0 0 1
Im z22(0)

Im z12(0)

0 0 0 Im z22(0)




and this is likewise positive definite.

�

Let F̃1 −→ P1 be the canonical extension of F1 −→ P1 \ ∆. We use the

construction of Lemma 3.8 to construct a symplectic structure Q̃ in F̃1.

Using the canonical isomorphism Υ we identify F1 with H1
R

over P1 \∆. In this

way F1 becomes endowed with a flat connection, an integral structure H1
Z

and

an integral symplectic structure Q. Let ∆ = {p1, ..., pd}. We choose small discs

Ui ⊃ U ′
i ∋ pi centred in pi and a point p0 ∈ P1 \⋃i Ui. We connect p0 by a straight

line segment p0pi to each pi. The line segments form a star-shaped graph Γ. Now
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we choose a small neighbourhood τ(Γ) of Γ and put

D0 := τ(Γ) ∪
⋃

i

Ui,

as in Figure 5. On the other hand we denote by D1 be a small neighbourhood of

the complement P1 \D0.

1

2p

pp

p

p

0

3

4

3

2

1

2

3

4

1

1

D0 b0

D
U

U

U

U U’

U’

U’

U’

3

4

Figure 5

Let b0 be a base point close to p0 that lies in the overlap of D0 and D1 and fix an

integral Q-symplectic frame (e1b0 , e2b0 , f1b0 , f2b0) in F1
b0

. Parallel translation then

gives a multi-valued, flat, Q-symplectic frame (e1, e2, f1, f2) in F1. Now we change

the symplectic structure on Ui \ {pi}. Choose a coordinate z = x+ iy centered in

pi such that the situation is as in Figure 6.

x0D 0

U’i

Ui

y

Ri

Figure 6
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Let Si be the monodromy transformation around pi and denote its logarithm by

Mi. As Si is unipotent of rank one,

Si = Bi




1 0 0 0

0 1 0 0

−ki 0 1 0

0 0 0 1



B−1
i ,

for a Bi ∈ Sp(4,Z). Then

(e1, e2, f1, f2) · Bi

defines a multi-valued, flat, Q-symplectic frame over U i. To this frame we apply

the construction of the Lemma 3.8. Namely we first construct a single-valued

frame

(e′1, e
′
2, f

′
1, f

′
2) := (e1, e2, f1, f2) · Re(exp(− log z

2πi
Mi))

= (e1, e2, f1, f2) · Bi ·




1 0 0 0

0 1 0 0

ki
arg z
2π

0 1 0

0 0 0 1



B−1
i

and then modify this to a frame

(ς i1, ..., ς
i
4) := (e′1, e

′
2, f

′
1, f

′
2) · Li

that extends over pi. Here Li is the matrix

Li = Bi · diag(1, 1, ϕ, 1) · B−1
i

with ϕ a positive C∞-function on Ui such that

ϕ = d(z) on U ′
i \ {pi} and

ϕ = 1 on a neighbourhood of ∂Ui.

The proof of Lemma 3.8 shows that this frame indeed extends over pi. Requiring

that this frame be symplectic defines a symplectic structure Q̃ over Ui that coin-

cides with Q′ over U ′
i and with Q on ∂Ui. Setting Q̃ = Q over P1 \⋃i Ui we obtain

a symplectic structure over P1.
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Lemma 3.10. Let f : X −→ P1 be a flat morphism with general fibre a principally

polarised abelian surface and unipotent monodromy of rank one. Then

c1(F̃1, Q̃) = −(κ∗ + γ∗)(µ),

where F̃1 is the Hodge bundle, Q̃ the symplectic structure just defined and µ a

monodromy factorisation of f .

Proof: We calculate the first Chern class of the symplectic vectorbundle (F̃1, Q̃)

by calculating the Maslow-index of a transition function.

We can choose D1 in such a way that Q̃ coincides with Q over D1. As D1

is simply connected parallel translation of (e1b0 , e2b0 , f1b0 , f2b0) over D1 defines a

flat Q̃-symplectic frame (e1, e2, f1, f 2) over D1. This frame defines a symplectic

trivialisation

(F̃1|D1 , Q̃)

��

≃
φ1

// D1 × (R4, ω0)

vvnnnnnnnnnnnnnnn

D1

of (F̃1, Q̃) over D1 that is flat, i.e. constant sections are flat.

Over D0 we construct a symplectic trivialisation

(F̃1|D0 , Q̃)

��

≃
φ0

// D0 × (R4, ω0)

vvnnnnnnnnnnnnnn

D0,

in the following way. Parallel translation of (e1b0 , e2b0 , f1b0 , f2b0) over D0 \
⋃
i Ui

yields a flat Q̃-symplectic frame (ê1, ê2, f̂1, f̂2) over D0 \
⋃
i Ui that extends to the

multi-valued flat frame (e1, e2, f1, f2) on
⋃
i Ui. Let z be a coordinate on Ui as

above and Mi denote the logarithm of Si. Then we define on Ui the single valued

frame

(e′1, e
′
2, f

′
1, f

′
2) := (e1, e2, f1, f2) · Re(exp(− log z

2πi
Mi))

= (e1, e2, f1, f2) ·Bi




1 0 0 0

0 1 0 0

ki
arg z
2π

0 1 0

0 0 0 1



B−1
i .
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We can modify (ê1, ê2, f̂1, f̂2) on the darkend region Ri in Figure 6 such that it

stays Q̃-symplectic and agrees with (e′1, e
′
2, f

′
1, f

′
2) on Ri∩∂Ui. The resulting frame

on D0 \
⋃
i Ui will still be denoted (ê1, ê2, f̂1, f̂2). The frame

(ς i1, ..., ς
i
4) = (e′1, e

′
2, f

′
1, f

′
2) · Li

is by definition Q̃-symplectic on Ui. And over a neighbourhood of ∂Ui in Ui it coin-

cides with (e′1, e
′
2, f

′
1, f

′
2). Therefore it is a Q̃-symplectic extension of (ê1, ê2, f̂1, f̂2)

over Ui. Using the same construction for all i, defines a Q̃-symplectic extension of

(ê1, ê2, f̂1, f̂2) over D0. This defines the trivialisation φ0.

Let

ψ = φ0 ◦ φ−1
1 : ∂D0 −→ Sp(4,R)

be the transition function of the two trivialisations along the boundary ofD0. Then

the loop ψ in Sp(4,R) is the expression of the flat symplectic frame (e1, e2, f 1, f2)

along ∂D0 in the trivialisation φ0. Thus it represents the monodromy of ∇ along

∂D0. More specifically it is homotopic to

(
d∏

i=1

S̃i

)
,

where S̃i is the distinguished lift of Si in S̃p(4,Z). This is seen as follows. Along

∂Ui the frame that defines φ0 is

(e′1, e
′
2, f

′
1, f

′
2) = (e1, e2, f1, f2) ·Bi




1 0 0 0

0 1 0 0

ki
arg z
2π

0 1 0

0 0 0 1



B−1
i

Consequently the flat frame (e1, e2, f1, f2) that defines φ1 is in the above frame

given by

Bi




1 0 0 0

0 1 0 0

−ki arg z2π
0 1 0

0 0 0 1



B−1
i ,
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which is just the distinguished lift S̃i of Si in S̃p(4,Z). This implies that ψ is

homotopic to S̃d · ... · S̃1 and thus

c1(F̃1, Q̃) = indmas(ψ)

= indmas(
(
S̃d · ... · S̃1

)
)

The monodromy transformations of the local system H1,Z with respect to the dual

basis are Ti = Si
−T. The change Si 7→ Si

−T is realised by a symplectic base

change and thus

indmas(
(
S̃d · ... · S̃1

)
) = indmas(

(
T̃d · ... · T̃1

)
).

So

c1(F̃1, Q̃) = −(κ∗ + γ∗)(µ),

by Remark 2.29.

�

To prove Theorem 3.7 it remains to prove the following lemma.

Lemma 3.11. In the situation of Lemma 3.10

c1(F̃1, I) = −c1(F̃1, Q̃),

where I denotes the complex structure of F̃1.

Proof: By Lemma 3.9 the complex structure I tames the symplectic structure

−Q̃. Choose a symplectic structure Qc on F̃1 that is compatible with the complex

structure I and consider the family of alternating bilinear forms in F̃1

Qt := (1 − t)Qc − tQ̃, t ∈ [0, 1].

This is a family of symplectic structures with Q0 = Qc and Q1 = −Q̃. For as

I tames both −Q̃ and Qc, it also tames Qt. Therefore Qt is in particular non-

degenerate. Now the claim follows as

c1(F̃1, I) = c1(F̃1, Qc) = c1(F̃1,−Q̃) = −c1(F̃1, Q̃).

�

Proof of the Theorem: The Lemmata 3.10 and 3.11 now imply Theorem 3.7.

�
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Corollary 3.12. Let f : X −→ P1 be a flat morphism with general fibre a princi-

pally polarised abelian surface and unipotent monodromy of rank one. Then

deg(µ) = 10c1(F̃1) + 2γ∗(µ),

where µ is a monodromy factorisation of f .

Proof: Recall equation (19)

deg(µ) = (10κ∗ + 12γ∗)(µ).

Thus

deg(µ) = 10(κ∗ + γ∗)(µ) + 2γ∗(µ)

and the claim follows from theorem 3.7

�

Remark 3.13. Theorem 3.7 and Corollary 3.12 remain valid in case the mon-

odromy around each point pi is a product of two commuting transvections (i.e. as

in Lemma 1.24). The proofs are strictly analogue.

Consider now a Lagrangian fibration f : X −→ P2 with principally polarised fibres.

We say that f has unipotent monodromy of rank one (simple monodromy) if the

restriction fXl
: Xl −→ l of f to a general line l in P2 has unipotent monodromy of

rank one (simple monodromy). For the following theorem we assume the fibration

to be projective, as we invoke a theorem of Matsushita [45] that requires this. We

do not however assume that the family of fibrewise principal polarisations ω is

induced by a global polarisation.

Furthermore: From now on we assume that the general singular fibre of f : X −→
P2 has a reduced component.

Theorem 3.14. Let f : X −→ P2 be a projective Lagrangian fibration with prin-

cipally polarised fibres and unipotent monodromy of rank one. Let l ⊂ P2 be a

general line. Then

(κ∗ + γ∗)(µl) = 3,

where µl denotes a monodromy factorisation of fXl
.
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Proof: Let l be a general line in P2. Matsushita proves in [45] Theorem 1.2 for a

projective Lagrangian fibration f : X −→ S

R1f∗OX ≃ Ω1
S.

Our fibration f : X −→ P2 satisfies locally around a smooth point of ∆ the

assumptions of Proposition 2.1 in [45], as the monodromy is unipotent of rank

one and the general singular fibre has a reduced component. This implies that

locally around a smooth point of ∆ we are in case (1) of Theorem 4.1. in [45] with

G1 = G2 = {1}, i.e. locally around a smooth point of ∆ the fibration is a toroidal

model of type II in the sense of [45] Definition 2.9. In particular the singular fibres

are reduced with normal crossings. Consider the restriction fXl
: Xl −→ l and

let D := f−1
Xl

(l ∩ ∆). By a result of Steenbrink [27] p.130 the canonical extension

of the Hodge bundle of fXl\∆
: Xl\∆ −→ (l \ ∆) is F̃1 = f∗Ω

1
Xl/l

(log(D)) and the

quotient H̃1/F̃1, where H̃1 is the canonical extension of H1, is R1f∗OXl
. Therefore

F̃1 is dual to R1f∗OXl
. The duality is induced by a relatively ample line bundle

on fXl
: Xl −→ l. So

F̃1 ≃ TP2|l.

From the normal bundle sequence

0 −→ TP1 −→ TP2|l −→ Nl/P2 −→ 0

follows that

c1(TP2|l) = c1(TP1) + c1(Nl/P2) = 3.

Now theorem 3.7 implies the claim.

�

Theorem 3.15. Let f : X −→ P2 be a projective Lagrangian fibration with prin-

cipally polarised fibres and unipotent monodromy of rank one. Let l ⊂ P2 be a

general line. Then

deg(∆) = 30 + 2γ∗(µl),

where µl denotes a monodromy factorisation of fXl
.

Proof: The algebraic degree of ∆ is deg(∆) = l ·∆ = deg(µl). Corollary 3.12 and

Theorem 3.14 imply the claim.

�
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3.3. The geometrical interpretation of the generator γ∗. We now give a

geometrical interpretation of the class γ∗ ∈ H1(Sp(4,Z),Z). In order to do that

we have to describe a compactification of the moduli space of principally polarised

abelian surfaces.

The moduli space of principally polarised abelian surfaces A2 is the quotient

A2 = h2/ Sp(4,Z)

of the Siegel upper half-space by the action of the integral symplectic group. The

moduli space A2 is closely related to the moduli space of smooth genus two curves

M2. This space is the quotient

M2 = T2/Map2

of the Teichmüller space T2 by the mapping class group. The Deligne-Mumford

compactification M2 is the moduli space of stable genus two curves, [20]. The

boundary M2 \M2 consists of two divisors D0, D1.

Definition 3.16.

i) Let D0 ⊂ M2 be the divisor parametrising curves with (at least) one non-

separating node.

ii) Let D1 ⊂ M2 be the divisor parametrising curves with one separating node.

A general point in D0 is represented by an irreducible genus two curve with a

single non-separating node. A point in D1 \D0 on the other hand is represented

by a genus two curve with a single separating node. Such a curve consists in two

elliptic curves E1 and E2 that intersect in one point.

Associated to a smooth curve C is its Jacobian Jac(C). This is naturally a

principally polarised abelian variety. A principal polarisation ω of an abelian

variety A defines (up to translation) a divisor on A, the so called theta divisor Θ.

Fixing a point c0 on the curve C leads to an embedding φ : C −→ Jac(C) and

more generally to maps φ(n) : C(n) −→ Jac(C) and to subvarieties Wn := imφ(n).

Wg−1 is then the theta divisor. In case g = 2, C is thus isomorphic to the theta

divisor. The map

Jac : M2 −→ A2

C 7→ (Jac(C), [W1])
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is holomorphic and injective by the classical Torelli theorem. Moreover with re-

spect to the orbifold structures

M2 = T2/Map2 ; A2 = h2/ Sp(4,Z)

this map is a morphism of orbifolds, i.e. it lifts locally to a map from T2 to h2 that

is equivariant with respect to the homomorphism ξ : Map2 −→ Sp(4,Z), see [56].

As we said, a point in D1 \ D0 corresponds to a curve E1 ∪ E2 with E1, E2 two

elliptic curves and E1 ∩ E2 a point. Therefore

D1 \D0 = M(2)
1 .

Associating to such a curve the Jacobian of its normalisation, i.e. Jac(E1)×Jac(E2)

together with the natural polarisation extends Jac to a holomorphic map

Jac : M2 \D0 −→ A2.

This is an isomorphism of orbifolds, as can be seen from the following decomposi-

tion, see [56]

Jac(M2) =





(A,Θ)| A = Jac(C) with C smooth of genus 2

and Θ the corresponding theta divisor or

A = Jac(E1) × Jac(E2) with Ei smooth of genus 1

and Θ = Θ1 × Jac(E2) ∪ Jac(E1) × Θ2




.

As M2 and A2 have the same dimension and A2 is irreducible, Jac(M2) = A2.

Thus Jac(M2) consists of those abelian varieties that have irreducible theta divisor.

The Siegel upper half-space h2 contains the space

h1 × h1 =

{(
z1 0

0 z2

)
| Im zi > 0, i = 1, 2

}

of diagonal matrices. The element (a1a2)
3 of Map2 maps under

ξ : Map2 −→ Sp(4,Z) to the following matrix in Sp(4,Z),

√
γ :=




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1



.

The fix point set of
√
γ is exactly h1 × h1. The stabiliser of h1 × h1 is given by the

normaliser N(±√
γ), see [14]. Denote by U the orbit Sp(4,Z) · h1 × h1 and by V
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the complement of U in h2, i.e.

U =
⋃

g∈Sp(4,Z)

g(h1 × h1), V = h2 \
⋃

g∈Sp(4,Z)

g(h1 × h1).

This is an invariant decomposition and so it induces a decomposition of A2. From

the above

Jac(D1 \D0) = U/ Sp(4,Z) ; Jac(M2) = V/ Sp(4,Z).

The subgroup N(±√
γ) is isomorphic to (SL(2,Z) × SL(2,Z)) ⋉ Z2 and therefore

U/ Sp(4,Z) = (h1 × h1)/N(±√
γ)

= A(2)
1 .

This implies that Jac|D1\D0
: D1 \D0 −→ U/ Sp(4,Z) is an orbifold isomorphism

and thereby that Jac : M2 \D0 −→ A2 is an orbifold isomorphism. Furthermore

Jac : M2 \D0 −→ A2 extends to an isomorphism

Jac : M2 −→ A2,

where A2 is the Igusa compactification of A2, see [34] and [59]. We will use the

letters D0, D1 also to denote the corresponding divisors in A2.

Definition 3.17. A principally polarised abelian surface is reducible as a p.p.a.s.

if it is a product of two elliptic curves with the natural polarisation, i.e. if it

represents a point in D1.

The boundary A2 \ A2 has one component, namely D0. The points of A2 \ A2

correspond to compactified generalised Jacobians of stable curves. We briefly

describe the compactified generalised Jacobian of a general member of D0, see [62],

p. 83. The Jacobian of a smooth genus two curve C can be defined as Pic0(C). The

canonical class KC induces a natural isomorphism Pic0(C) −→ Pic2(C). Consider

the natural map

C(2) −→ Pic2(C)

that sends each degree two cycle to the corresponding line bundle. Let φKC
:

C −→ P1 be the natural degree two map. The pairs of the form φ−1
KC

(x) for x ∈ P1

are then all linearly equivalent. Conversely C(2) is the blow up of the point KC in

Pic2(C). Consider now C a general element of D0. The normalisation of C

norm : E −→ C
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is then an elliptic curve E. Let p1, p2 ∈ E be the two points lying over the node q

of C. The generalised Jacobian of C is a C∗-bundle

0 −→ C∗ −→ Jac(C) −→ Jac(E) −→ 0

over Jac(E). The reason for this is that a degree zero line bundle on the nodal

curve C is given by a degree zero line bundle on E together with an identification

of the fibres Lp1 and Lp2 . The natural compactification of this C∗-bundle is a P1-

bundle over Jac(E) obtained by adding a zero-section σ0 and an infinity-section

σ∞. The compactified Jacobian Jac(C) of C is then constructed by identifying

these two sections over a translation t in Jac(E), i.e. σ(x) is glued to σ(x + t),

where t is the line bundle OE(p1 − p2).

Let now f : X −→ P1 be a flat morphism with general fibre a principally

polarised abelian surface and discriminant locus ∆ = {p1, ..., pd}. What we have

in mind is again the restriction of a Lagrangian fibration to a general line in P2.

This defines a moduli map

ϕ : P1 \ ∆ −→ A2. (34)

To the family fX
P1\∆

: XP1\∆ −→ P1 \ ∆ of abelian surfaces corresponds a family

f : Y P1\∆ −→ P1 \ ∆ of stable genus two curves, such that the relative Jacobian of

f is locally over P1 \ ∆ isomorphic to fX
P1\∆

: XP1\∆ −→ P1 \ ∆.

Lemma 3.18. Let f : X −→ P1 be a flat morphism with general fibre a principally

polarised abelian surface. Then there exists a family of stable genus two curves

f : Y P1\∆ −→ P1 \ ∆ such that the relative Jacobian of f is locally over P1 \ ∆

isomorphic to fX
P1\∆

: XP1\∆ −→ P1 \ ∆.

Proof: The fibration fX
P1\∆

: XP1\∆ −→ P1 \ ∆ is smooth family of abelian

surfaces with a family of principal polarisations ω. The relative Picard variety

Picω(XP1\∆/P1\∆) is then a smooth family of abelian surfaces with fibre Picωb(Xb).

Picωb(Xb) parametrises line bundles on Xb with first Chern class ωb. Let e be a

point on Xb. Then there exists a universal line bundle L over Xb×Picωb(Xb) such

that L|Xb×{L} ≃ L for all L ∈ Picωb(Xb) and L|{e}×Picωb(Xb) is trivial, see [24]

p. 328. This universal line bundle extends locally away from the singular fibres of

f . Let therefore U be an open subset of P1 \ ∆ such that g : Picω(XU/U) −→ U

and f : XU −→ U have sections σ and ǫ respectively and let L be the universal
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line bundle on X ×U Picω(XU/U).

XU

f

��

X ×U Picω(XU/U)oo

��

U Picω(XU/U)
g

oo

The section σ induces a map τ := idXU
×(σ ◦ f) : XU −→ X ×U Picω(X/U). For

each b ∈ U the restriction of the line bundle τ ∗L to the fibre Xb has

h0(Xb, τ
∗L|Xb

) = 1 as it is a principal polarisation. The direct image f∗τ
∗L is there-

fore a line bundle on U by Theorem 8.5 in [3]. Let t be a non-vanishing section in

f∗τ
∗L. Then t ∈ H0(XU , τ

∗L) is such that the restrictions t|Xb
∈ H0(Xb, τ

∗L|Xb
)

for b ∈ U are non-trivial sections. Thus (t)0 defines a family of theta divisors

over U . As two theta divisors differ by a unique translation, two such local

families are canonically isomorphic on their overlap in P1 \ ∆. Thus one ob-

tains a family of stable genus two curves over P1 \ ∆. Choosing local sections of

fX
P1\∆

: XP1\∆ −→ P1 \∆ yields isomorphisms to the relative Jacobian of f locally

over the base.

�

Consider again the situation of a principally polarised abelian fibration

f : X −→ P1 with discriminant locus ∆ = {p1, ..., pd}. Let D be a disc in P1

centred in pi. Then there is a multi-valued holomorphic map

φ : D∗ −→ h2

such that

φ(α · t) = Tiφ(t) (35)

and ϕ(t) = φ(t) modSp(4,Z), where Ti is the monodromy of f around pi and

φ(α · t) denotes the analytic continuation of φ(t) around pi. Assume that the

general fibre of f : X −→ P1 is not reducible as a p.p.a.s.. Then as D1 is closed in

A2 we can assume ϕ(D∗) ⊂ A2 \D1. The map ϕ : D∗ −→ A2 can be extended to

a holomorphic map ϕ : D −→ A2, see [61], p. 150. Namikawa and Ueno show, [60]

Theorem 6 and 7, that there exists a unique relatively minimal genus two fibration

f : Y −→ D such that Y and Yt for t 6= 0 are smooth and such that the moduli map

defined by f|D∗ coincides with ϕ|D∗. The results of Namikawa and Ueno imply in

particular that for a family of genus two curves f : Y −→ D with smooth fibres over

D∗ the singular fibre is completely determined by ϕ : D∗ −→ A2. They classify all
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singular fibres, see [61]. In our case the monodromy is unipotent, which implies

that the singular fibre of f is a reduced nodal curve, see also [73] Proposition 3.

By contracting the (−2)-curves contained in the singular fibre we obtain a surface

Y with rational double points and a fibration f : Y −→ D in stable genus two

curves. Thus the family of stable curves f : Y P1\∆ −→ P1 \ ∆ extends uniquely to

a family of stable curves over P1. Therefore we obtain from f : X −→ P1 a family

of stable genus two curves f : Y −→ P1. We call f the family of stable genus two

curves corresponding to f and denote the minimal resolution by f : Y −→ P1.

We denote the extention of the map (34) to P1 by

ϕ : P1 −→ A2.

We briefly describe the singular fibres of f. Let qi ∈ P1 be a point such that

ϕ(qi) ∈ D1 and let h be a minimal defining equation for D1 locally around ϕ(qi).

As the general fibre of f is not reducible as a p.p.a.s. ordqi(ϕ
∗h) is finite. Let the

monodromy around b ∈ P1 be tk for a simple transvection t and k ∈ N and assume

ordb(ϕ
∗h) = 0. The fibre Y b has then a single non-separating node p and the fibre

Yb is Y b where p is replaced by a string of k−1 (−2)-curves. The monodromy of f

around b is then τk for τ (the class of) a Dehntwist along a non-separating curve.

On the other hand let ordb(ϕ
∗h) = m ≥ 1 and the monodromy around b be tk for

k ∈ N0. The fibre Y b consists then in two elliptic curves intersecting in one point,

if k = 0 and in an elliptic curve and a rational curve with one node intersecting in

one point, if k ≥ 1. The fibre Yb has the separating node replaced by a string of

m− 1 (−2)-curves and the non-separating node by a string of k− 1 (−2)-curves.

Remark 3.19. Let f : X −→ P1 be a flat morphism with general fibre a prin-

cipally polarised abelian surface, discriminant locus ∆ and unipotent monodromy

of rank one. Then

deg(∆) = deg(ϕ∗D0).

The geometrical interpretation of γ∗ is now as follows.

Theorem 3.20. Let f : X −→ P1 be a flat morphism with general fibre a prin-

cipally polarised abelian surface and unipotent monodromy of rank one. Assume

that the general fibre is not reducible as a p.p.a.s.. Then

γ∗(µ) = − deg(ϕ∗D1),

where µ is a monodromy factorisation of f .
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Proof: Let f : Y −→ P1 be the family of stable genus two curves corresponding

to f : X −→ P1. The moduli maps form the commutative diagram

A2

Jac
−1

��

P1

ϕ
<<zzzzzzzzz

ϕf

// M2

.

The set ϕ−1(D1) is finite as the general fibre is not reducible as a p.p.a.s.. The

discriminant locus of the abelian fibration is

∆ = ϕ∗D0.

Let {p1, ..., pd} be the underlying set. The discriminant locus of the genus two

fibration f : Y −→ P1 on the other hand is

∆f = ϕ∗
f (D0 +D1).

Let {p1, ..., pd, q1, ..., qm} be the underlying set. Choose a base point b0 ∈ P1 \ ∆f

and loops α1, ..., αd, β1, ..., βm such that αi goes counterclockwise around the pi

and βj around qj and such that

π1(P
1 \ ∆f) = 〈αi, βj|

d∏

i=1

αi ·
m∏

j=1

βi = 1〉.

Then

π1(P
1 \ ∆) = 〈αi|

d∏

i=1

αi = 1〉.

Let

µ : π1(P
1 \ ∆) −→ Sp(4,Z)

be the monodromy representation of the abelian fibration and

µf : π1(P
1 \ ∆f) −→ Map2

the one of the genus two fibration. They form the commutative diagram

π1(P1 \ ∆f)
µf

//

��

Map2

ξ

��

π1(P1 \ ∆)
µ

// Sp(4,Z)

.

Consider first the case that ϕf(P1) ∩D0 and ϕf(P1) ∩D1 are disjoint. Let

µ(αi) = tki

i .
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be the monodromy transformation of f along αi, where ti is a simple transvection.

The monodromy transformation of f along αi is then

µf(αi) = τki

i ,

where τi is a Dehn twist along a simple closed, non-separating curve such that

ξ(τi) = ti. The monodromy factorisation of f is

µf :

(
d∏

i=1

τki

i

)
·
(

m∏

j=1

µf(βj)

)
= 1. (36)

The transformations µf(βj) lie in the Torelli group J2 as the monodromy of the

abelian fibration along βj is trivial. Therefore both factors on the left hand side

of (36) lie in the Torelli group and we can apply the γ-degree from Definition 2.13

to them. Equation (36) then implies

degγ

(
d∏

i=1

τki

i

)
= − degγ

(
m∏

j=1

µf(βj)

)
.

The fibre of f : Y −→ P1 over the point qj is a singular curve with non-singular

Jacobian. Thus it represents a point in D1\D0, i.e. a curve with a single node that

is separating. The fibre in the resolution Y has a string of (−2)-curves in place of

this node. The γ-degree degγ(µf(βj)) is the number of separating vanishing cycles

of f : Y −→ P1 in qj . Therefore degγ(µf(βj)) = ordqj(ϕ
∗hj), where hj is a minimal

equation for D1 locally around ϕ(qj). Thus

deg(ϕ∗D1) =

m∑

j=1

ordqj(ϕ
∗hj)

=
m∑

j=1

degγ (µf(βj))

= − degγ

(
d∏

i=1

τki

i

)
.

Recall the diagram (16)

J2
//

degγ

��

Map2

ξ
//

ρ

��

Sp(4,Z)

Z // Gγ∗
p

// Sp(4,Z)

.
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Here the bottom sequence is the extension defined by the class γ∗ ∈ H2(Sp(4,Z),Z).

We claim that the Dehn twist τi maps under ρ to the distinguished lift of ti in Gγ∗ .

This can be seen as follows. As τi is a Dehn twist along a non-separating curve, it

is conjugate to the Dehn twist a
Map2
2 , i.e. τi = δ ∗ aMap2

2 for δ ∈ Map2, where a
Map2
2

denotes the image of a2 ∈ Br6 in Map2. Likewise Gγ∗ is a quotient of Br6 and

we denote the image of a2 ∈ Br6 in Gγ∗ by a
Gγ∗

2 . Then ρ(τi) = ρ(δ) ∗ ρ(aMap2
2 ) =

ρ(δ) ∗ aGγ∗

2 . On the other hand ti = ξ(δ) ∗ aSp(4,Z)
2 . The distinguished lift of ti in

Ŝp(4,Z) is t̂i = β ∗ acSp(4,Z)
2 where β is an arbitrary lift of ξ(δ) in Ŝp(4,Z). As there

is a commutative diagram

Ŝp(4,Z)

zzuuu
uu

uu
uu

u

��

Gγ∗
p

// Sp(4,Z)

,

we can choose β to be a lift of ρ(δ). This implies that the distinguished lift of ti

to Gγ∗ is given by ρ(δ) ∗ aGγ∗

2 .

Denote the distinguished lift of ti to Gγ∗ also by t̂i. Then

degγ

(
d∏

i=1

τki

i

)
= γ∗(

d∏

i=1

t̂ki

i )

and therefore

γ∗(µ) = − deg(ϕ∗D1).

Consider the case that there exists pi such that ϕf(pi) lies in D0∩D1 and denote

the set of these indices by I. In this case the fibre of f : Y −→ P1 over pi is

a curve E1 ∪ E2 with E1 ∩ E2 a point. As the monodromy is unipotent of rank

one, E1 is a rational curve with one node and E2 an elliptic curve. The fibre in

Y has the two nodes replaced by strings of (−2)-curves. As the vanishing cycles

to different nodes of this fibre are disjoint, the Dehn twists along them commute.

The monodromy transformation along αi is therefore

µf(αi) = τki

i · σi,

where σi is an element of the Torelli group and τi a Dehn twist along a simple closed,

non-separating curve such that ξ(τi) = ti. For i /∈ I, σi = 1. The monodromy
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factorisation of f is thus

µf :

(
d∏

i=1

τki

i σi

)
·
(

m∏

j=1

µf(βj)

)
= 1.

The product
∏d

i=1 τ
ki

i σi lies in the Torelli group. Therefore

0 = degγ(

(
d∏

i=1

τki

i σi

)
·
(

m∏

j=1

µf(βj)

)
)

= degγ(

(
d∏

i=1

τki

i σi

)
) +

m∑

j=1

degγ(µf(βj)).

For σ ∈ J2

τki

i στ
ki+1

i+1 = τki

i τ
ki+1

i+1 σ
′

where σ′ = τ
−ki+1

i+1 στ
ki+1

i+1 . And degγ(σ
′) = degγ(σ). This implies

0 = degγ(

(
d∏

i=1

τki

i

)
) +

d∑

i=1

degγ(σi) +
m∑

j=1

degγ(µf(βj)) (37)

Now ordpi
(ϕ∗hi) = degγ(σi) and thus the equality

deg(ϕ∗D1) = − degγ

(
d∏

i=1

τki

i

)

is valid in this case too.

�

From Corollary 3.12 we get.

Corollary 3.21. Let f : X −→ P1 be a flat morphism with general fibre a princi-

pally polarised abelian surface, discriminant locus ∆ and unipotent monodromy of

rank one. Assume that the general fibre is not reducible as a p.p.a.s.. Then

deg(∆) = 10c1(F̃1) − 2 deg(ϕ∗D1).

�

Remark 3.22. Theorem 3.20 and Corollary 3.21 remain valid in case the mon-

odromy around each point pi is a product of two commuting transvections. The

proofs are strictly analogue.
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3.4. A formula for deg(∆) and an upper bound for deg(∆). The geometrical

interpretations of κ∗ +γ∗ and γ∗ together with Theorem 3.15 give us the following

formula. For f : X −→ P2 a Lagrangian fibration with principally polarised fibres

and l a general line in P2 we denote the extension of moduli map of fXl\∆
: Xl\∆ −→

l \ ∆ to l by ϕ : l −→ A2.

Theorem 3.23. Let f : X −→ P2 be a projective Lagrangian fibration with princi-

pally polarised fibres, discriminant locus ∆ and unipotent monodromy of rank one.

Assume that the general fibre is not reducible as a p.p.a.s.. Then

deg(∆) = 30 − 2 deg(ϕ∗D1).

Proof: The claim follows from Theorem 3.20 and Theorem 3.15.

�

Example 3.24. (Compactified Jacobian of a linear system on a K3-surface) Let

R be a general sextic in P2. The double cover of P2 branched along R is then a

K3-surface S,

π : S
2:1−→ P2.

The inverse image of a general line L ⊂ P2 is a double cover of P1 branched in 6

points and consequently a smooth genus two curve. Lines in P2 are parametrised

by the dual P2∗. If L∗ is the point in P2∗ that corresponds to the line L in P2, we

say that L∗ is dual to L and vice-versa. The correspondence between P2 and P2∗ is

such that the line x∗ in P2∗ dual to x ∈ P2 parametrises the pencil of lines through

x. The curves π−1(L) form a family of genus two curves over the dual P2∗,

f : C −→ P2∗.

The singular curves in this family are parametrised by the plane curve R∗ dual

to R. Under the duality of plane curves simple double tangents of R correspond

to nodes of R∗ and simple inflection tangents of R to cusps of R∗. The fact that

R is a general sextic implies that it is a Plücker curve, i.e. it has only simple

double tangents and simple inflection tangents. Equivalently R∗ has only nodes

and cusps as singularities. According to Plücker’s formulas, the dual curve R∗ is an

irreducible curve of degree 30. Let l be a general line in P2∗. Then l parametrises

the pencil of lines in P2 through a point x and it intersects R∗ transversally in

30 distinct points. Let y ∈ l ∩ R∗ be one of these points. The monodromy of

the genus two fibration f|Cl
: Cl −→ l around y is easily calculated. Consider a
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small circle c around y in l. The point y corresponds to a simple tangent y∗ to

R and the lines parametrised by c are not tangent to R. Choose a line L′ in

P2 not containing x that intersects R in six distinct points. Then consider the

projection out of x onto L′ pr : P2 \ {x} −→ L′. We can identify c with a

small circle around o := pr(y∗ \ {x}) in L′. The vertical lines pr−1(t) for t ∈ c

intersect R in six distinct points so that moving once around o we get a braid.

The relevant braid monodromy is explained for example in [71], section VI. The

projection pr|R : R −→ L′ has a simple smooth critical point over o, therefore the

braid along c is a half twist. Consequently the monodromy of f|Cl
: Cl −→ l around

y is a Dehn twist along a non-separating curve and the singular fibre an irreducible

curve with a single node. Thus the monodromy over a general line factorises in 30

non-separating Dehn twists.

The singular fibre over a node y of R∗ is the double cover of a simple double

tangent y∗ to R. For a general line l through y we do the same braid monodromy

calculation as above. In this case the projection pr|R : R −→ L′ has two simple

smooth critical points over o. Consequently the singular fibre is irreducible with

two nodes.

Finally for a cusp y in R∗ the line y∗ is a simple inflection tangent to R that

intersects R in three more points. Number the six points in pr−1(t) ∩R such that

the first three points come together in the inflection point. Then the braid is the

product of the two half twists a1 and a2. This implies that the fibre over y is

irreducible with one cusp.

As all fibres of f : C −→ P2∗ are reduced and irreducible one can construct the

relative compactified Jacobian X := Jac(C). This space is smooth and admits a

holomorphic-symplectic structure, see [6]. Moreover X is birational to S [2]. By

a result of Huybrechts [32] it is then deformation equivalent to S [2]. The natural

map f : Jac(C) :−→ P2∗ is a Lagrangian fibration.

Let l be a general line in P2∗. As the monodromy of f|Cl
: Cl −→ l factorises in 30

non-separating Dehn twists, the monodromy of f|Jac(C)l
: Jac(C)l −→ l factorises

in 30 simple transvections. The discriminant locus ∆ of f is therefore R∗ and has

deg(∆) = 30.

We saw that Cl contains only irreducible curves. From this we deduce

deg(ϕ∗D1) = 0.
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So our formula is satisfied in this example.

Theorem 3.23 gives an upper bound on the degree of the discriminant locus, except

for a very special case of Lagrangian fibration.

Corollary 3.25. Let f : X −→ P2 be a projective Lagrangian fibration with

principally polarised fibres, discriminant locus ∆ and unipotent monodromy of rank

one. Assume that the general fibre is not reducible as a p.p.a.s.. Then

deg(∆) ≤ 30

Proof: If the general fibre is not a product, then the image of P2 \ ∆ under the

moduli map to A2 is not contained in D1. So for l a general line in P2, deg(ϕ∗D1)

is non-negative and the claim follows from Theorem 3.23.

�

Remark 3.26. Let f : X −→ P2 be a Lagrangian fibration such that the general

fibre is a product of two elliptic curves and the general singular fibre is semi-stable

and assume that f admits a section. For such a fibration Kamenova proved in [36],

Theorem 5.2, that X is deformation equivalent to the Hilbert square S [2] of a K3-

surface. For such a fibration the section induces a fibrewise principal polarisation

such that the general fibre is reducible as a p.p.a.s..

3.5. Further restrictions on the values of deg(∆) and γ∗. In this section we

prove further restrictions on the values of deg and γ∗.

Let f : X −→ P2 be a projective Lagrangian fibration with principally polarised

fibres, discriminant locus ∆, and unipotent monodromy of rank one. Assume that

the general fibre is not reducible as a principally polarised abelian variety. For

l ⊂ P2 a general line, we set

n := deg(∆) = deg(ϕ∗D0); s := −γ∗(µl) = deg(ϕ∗D1),

where ϕ denotes the moduli map ϕ : l −→ A2. By Theorem 3.23

n+ 2s = 30.

We claim

Theorem 3.27. Let f : X −→ P2 be a projective Lagrangian fibration with prin-

cipally polarised fibres and unipotent monodromy of rank one. Assume that the
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general fibre is not reducible as a p.p.a.s.. Then

n ≥ 10 (s ≤ 10)

and s is even, i.e. the possibilities for (n, s) are (30, 0), (26, 2), (22, 4), (18, 6), (14, 8)

and (10, 10).

In order to prove the theorem we need a couple of lemmata. Let f : Xl −→ P1 be

the restriction of f to l. According to Lemma 3.18 and the discussion thereafter

there exists a family of stable genus two curves f : Y −→ P1 corresponding to

f : Xl −→ P1. The fibration f : Y −→ P1 on the minimal resolution of Y then

contains s separating and n non-separating nodes.

Definition 3.28. If a genus two fibration f : Y −→ P1 arises in this way, we say

that it comes from a Lagrangian fibration.

In the sequel we are going to study these surfaces. The first thing we note is

that Y is projective, as it carries a genus two fibration. Let F be a fibre. Then

the adjunction formula gives

2 = F (F +KY ) = F ·KY .

Thus dF+K will have positive selfintersection for d sufficiently large. By Theorem

6.2 in [3] Y is then projective. For the background on genus two fibrations we refer

to [29] and [78]. For a surface Y one has the Noether formula:

12χ(OY ) = K2
Y + χtop(Y )

where χtop(Y ) is the topological Euler characteristic. Let f : Y −→ C be a

fibration with general fibre a smooth genus g curve over a base C of genus b. Then

the following formula holds, see [78], p.6

χ(OY ) = deg(f∗KY/C) + (b− 1)(g − 1), (38)

where KY/C = KY ⊗ f∗K−1
C the dualising sheaf of f. The relative dualising sheaf

f∗KY/C is then a vector bundle of rank g. Further the topological index theorem

states

τ(Y ) =
1

3
(K2

Y − 2χtop(S)),

where τ(Y ) = b+2 − b−2 is the signature of Y , see [3].

In case of a genus two fibration f : Y −→ C, the sheaf R1f∗OY is locally free
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of rank two. There is a rational map onto the projectification P(R1f∗OY ) of the

bundle R1f∗OY , which is the dual of f∗KY/C ,

Y
φ

//________

!!B
BB

BB
BB

BB
P(R1f∗OY )

yyrrrrrrrrrrr

C

see [78], p.7. The bundle P(R1f∗OY ) has a section Σ such that the self intersection

Σ2 is minimal. Then e := −Σ2 defines an invariant of the fibration.

Let now f : Y −→ P1 be a genus two fibration that comes from a Lagrangian

fibration f : X −→ P2. The smooth part fP1\∆f
: Y \∆f −→ P1\∆f of f gives rise to

a variation of Hodge structure of weight one. This variation of Hodge structure is

polarised by the cup product pairing. This polarised variation of Hodge structure

is isomorphic to the polarised variation of Hodge structure that comes from the

restriction fl\∆f
: Xl\∆f

−→ P1 \ ∆f of f to l \ ∆f, as the two fibrations have the

same period map. Denote the canonical extensions of the Hodge bundles of fP1\∆f

and fl\∆f
by F̃1

Y
P1

and F̃1
Xl

respectively. Then F̃1
Y

P1
and F̃1

Xl
are isomorphic. By

a result of Kawamata, Lemma 1 in [38] the relative dualizing sheaf f∗KY/P1 is the

canonical extension F̃1
Y

P1
of the Hodge bundle of f : Y −→ P1. Thus

f∗KY/P1 = F̃1
Y

P1

≃ F̃1
Xl
.

It follows from the proof of Theorem 3.14 that

F̃1
Xl

≃ TP2
|l

This implies

f∗KY/P1 ≃ OP1(1) ⊕OP1(2)

In particular

deg(f∗KY/P1) = 3

and Formula (38) gives

χ(OY ) = 2.

We borrow the following Lemma from [10].



ON THE MONODROMY OF 4-DIMENSIONAL LAGRANGIAN FIBRATIONS 95

Lemma 3.29. Let f : Y −→ P1 be a genus two fibration with s separating nodes.

Then

b−2 ≥ 1 + s.

Proof: Let Fj =
∑l

i=1Ci be a singular fibre of f : Y −→ P1 and D =
∑

imiCi

for mi ∈ Z. By Zariskis Lemma, [3] p. 111. CiFj = 0 and D2 ≤ 0 with D2 = 0

if and only if D = rFj for r ∈ Q. I.e. all components but one of Fj generate a

(l − 1)-dimensional negative definite subspace in H2(X,Z).

The above subspaces for different singular fibres are pairwise orthogonal. There-

fore the direct sum of these over all singular fibres is a negative definite subspace

in H2(X,Z) of dimension at least s. This space is still orthogonal to the class of

a general fibre F , which has F 2 = 0.

�

Lemma 3.30. Let f : Y −→ P1 a genus two fibration that comes from a Lagrangian

fibration. Then

K2
Y = s− 2.

Proof: The Euler characteristic of Y is

χtop(Y ) = χtop(P
1)χtop(Fgen) +

∑

j

(χtop(Fj) − χtop(Fgen)),

where Fgen denotes a general fibre and Fj are the singular fibres. Each node

augments the Euler characteristic by 1. Therefore

χtop(Y ) = −4 + n + s.

As χ(OY ) = 2, Noethers formula implies

K2
Y = 28 − n− s

= s− 2 ,

where in the last line we used n + 2s = 30.

�

Next we show that s must be even. For a genus two fibration f : Y −→ P1 the

rational map φ : Y −− > P(R1f∗OY ) is generically of degree two and the indeter-

minacy locus of φ is contained in fibres with separating nodes, see [15] p. 12. Let

Ỹ be the blow up of the indeterminacy locus of φ and let B be the branch locus

of the induced morphism φ̃ : Ỹ −→ P(R1f∗OY ).
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The bundle P(R1f∗OY ) is isomorphic to the Hirzebruch surface Fe = P(OP1 ⊕
OP1(e)). As the fibres of f have genus two, the branch locus B is a divisor on Fe

that is linearly equivalent to 6H +mF , where H is the class of a section such that

H2 = e and F is the class of a fibre of π : Fe −→ P1. We determine m.

Siebert and Tian study double covers of P(OP1 ⊕ OP1(e)) in [69]. For branch

loci B they define a virtual number of critical values µvirt of the projection π|B :

B −→ P1 and relate this to the homology class of B, see [69] p. 262. Different

critical points of the projection π|B : B −→ P1 contribute differently to µvirt. The

contribution of a simple smooth critical point of π|B : B −→ P1 to µvirt is +1 and

that of a double point of B of type Ak is k+1. A simple infinitely close triple point

is a triple point with three pairwise tangent branches that form an ordinary triple

point after one blow up. A simple infinitely close triple point of B contributes

+12 to µvirt, as can be seen by deforming it to twelve smooth critical points. The

simplest singular fibre of f has a single non-separating node. As the total space

Y is smooth, the monodromy around such a fibre is a non-separating Dehn twist.

A fibre with a single non-separating node arises from a fibre of π : Fe −→ P1

where B has a smooth critical point and four points in which B intersects the fibre

transversally. Thus the contribution of such a fibre to µvirt is +1. This generalises

in the following way. Each non-separating node contributes +1 to µvirt. A sepa-

rating node on the other hand corresponds to a simple infinitely close triple point

of B, see [78] p. 9 or [69] p. 261. Thus the contribution of a separating node to

µvirt is +12.

For B ∼ dH+mF , where H is the homology class of a section such that H2 = e

and F the class of a fibre, Siebert and Tian show (Proposition 1.1 in [69]) that

µvirt = 2(d− 1)m+ ed(d− 1).

Lemma 3.31. Let f : Y −→ P1 a genus two fibration that comes from a Lagrangian

fibration. Then q(Y ) = 0, pg(Y ) = 1 and

m = s.

In particular s is even.



ON THE MONODROMY OF 4-DIMENSIONAL LAGRANGIAN FIBRATIONS 97

Proof: P(R1f∗OY ) ≃ F1, so e = 1. As d = 6, µvirt = 10m + 30. On the other

hand µvirt = n+ 12s. Now n+ 2s = 30 implies

m = s.

In particular s has to be even, as B is the branch divisor of a double covering.

Furthermore by Theorem 2.2 in [78] e = 1 implies that q(Y ) = 0 and consequently

pg(Y ) = 1.

�

Lemma 3.32. Let f : Y −→ P1 a genus two fibration that comes from a Lagrangian

fibration. Then n ≥ 10 (and s ≤ 10).

Proof: K2
Y = s−2. On the other hand we have by the topological index theorem

K2
Y = 3τ(Y ) + 2χtop(Y )

= 5χtop(Y ) − 6 + 6b1 − 6b−2

= 5n + 5s− 26 − 6b−2

≤ 5n− s− 32,

where we used that b1 = 0, as q(Y ) = 0, and in the last line Lemma 3.29. Thus

2s ≤ 5n− 30 and together with 30 = n+ 2s this implies s ≤ n. Therefore n ≥ 10

and s ≤ 10.

�

Proof of the Theorem: Theorem 3.27 now follows from Lemma 3.32 and Lemma

3.31.

�

3.6. Classification of surfaces, fibred by genus two curves. In this section

we determine the place of the genus two fibred surface Y in the Enriques-Kodaira

classification. Let n and s be the numbers defined in the previous section.

Theorem 3.33. Let f : Y −→ P1 be a genus two fibration that comes from a

Lagrangian fibration. Then there are the following three possibilities

(1) s = 0. Then Y is a K3-surface S blown up in two points.

(2) s = 2. Then Y is a minimal surface with Kodaira dimension kod(Y ) = 1

and q(Y ) = 0 and pg(Y ) = 1.
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(3) s = 4, 6, 8, 10. Then Y is a minimal surface of general type with q(Y ) = 0

and pg(Y ) = 1.

Proof: Let S∞ be the negative section of π : F1 −→ P1. Let H be the class of a

section such that H2 = 1 and F be the class of a fibre of π. Then S∞ is linearly

equivalent to H−F . The intersection of the branch divisor B with S∞ is therefore

B · S∞ = (6H + sF ) · (H − F ) = s. (39)

Consider the case s = 0. As there are no separating nodes the map φ is a morphism

φ : Y −→ F1. Over S∞ it is two to one. The inverse image of S∞ consists therefore

in a pair of disjoint (−1)-curves E1, E2. Denote by ǫ1 : Y −→ T be the blow down

of E1 and E2 and by p : F1 −→ P2 be the blow down of S∞ to a point c ∈ P2. As

B does not intersect S∞ it projects isomorphically to a curve B in P2 that does

not contain the point c. For L a line in P2

B · L = B ·H = 6.

Thus B is a plane sextic. The fact that f : Y −→ P1 contains only non-separating

nodes implies that the only singularities of B are double points. Let φ : Y −→ F1

be the double cover of F1 branched along B. Y is then a resolution of Y . Let

θ : S −→ P2 be the double cover of P2 branched along B. Then there is the

commutative diagram

Y

ǫ

��

φ
// F1

p

��

S
θ // P2

where ǫ is the blow up of the two (smooth) points of S lying over c. S is a singular

K3-surface, where by a singular K3-surface we mean a surface X with rational

singularities, q(X) = 0 and KX ≃ OX . The minimal resolution of X is then a

K3-surface. The birational morphism Y −→ S factorises as Y
ǫ1−→ T

ǫ2−→ S.

Now K2
Y = −2 implies K2

T = 0. Thus T is a K3-surface and Y the blow up of a

K3-surface in two points.

In general we have χ(OY ) = 2 and therefore pg(Y ) ≥ 1. This in turn implies

Pn ≥ 1 for all n ≥ 1. Therefore h0((1 − n)KY ) ≤ 1 for n > 1 and Riemann-Roch

implies

h0(nKY ) ≥ χ(OY ) − 1 +

(
n(n− 1)

2

)
·K2

Y .
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In case s ≥ 4, K2
Y > 0. This implies kod(Y ) = 2. A non-minimal relatively

minimal genus two fibration of general type has a unique (−1)-curve and K2
Y = 0,

see [63] p. 20. So in our case Y must be minimal.

Finally in case s = 2 we have K2
Y = 0. As pg(Y ) = 1, kod(Y ) ≥ 0. Assume

kod(Y ) = 0. Then Y has to be minimal. But then Y would be a K3-surface,

which contradicts the fact that it admits a genus two fibration. So kod(Y ) ≥ 1.

Finally it follows from Proposition 4.1 in [78] p. 60 that if Y is of general type

and has K2
Y = 0, then pg(Y ) = 2. Thus kod(Y ) = 1 and then Y is minimal by the

Enriques-Kodaira classification.

�

Remark 3.34. In case s = 0 and the monodromy is simple, the singular fibres of

f : Y −→ P1 are all irreducible with a single node. Thus the only critical points of

π|B : B −→ P1 are smooth critical points. Therefore the branch divisor B of the

morphism φ : Y
2:1−→ F1 is smooth. So in this case B is a smooth sextic in P2, the

double cover of P2 branched along B is a K3-surface S, θ : S −→ P2, and Y is S

blown up in two points.

Remark 3.35. Markushevich goes in [42] the inverse way. He considers genus

two fibrations f : C −→ P2 and tries to construct a Lagrangian fibration as a

relative compactification of the relative Jacobian of C/P2. From C/P2 he constructs

a variety P together with a fibration f : P −→ P2. He proves that if f is a

Lagrangian fibration, then one can assume that f : C −→ P2 arises as a double

cover of the projectified tangent bundle P(TP2),

φ : C 2:1−→ P(TP2).

Further he proves that if f : P −→ P2 is Lagrangian, then P is birational to S [2],

where S is a K3-surface that is a double cover of P2∗,

θ : S −→ P2∗

and that C/P2 is the linear system {θ−1(L)}L∈P2 .

However there is one thing to note. Markushevichs definition of a family of

hyperelliptic curves (Definition 4 in [42]) does not allow fibres that represent points

in D1. A curve consisting in two elliptic curves intersecting in one point has

a hyperelliptic involution. But the quotient in that case consists in two copies

of P1 that intersect in one point, instead of a single P1. Both in [42] and [44]
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Markushevich assumes that the family of genus two curves be given locally by an

equation

y2 − P6(x, u, v) = 0

where P6 is a polynomial of degree six in x whose coefficients depend on local

parameters u, v on P2. Equivalently he assumes the family to be given by a finite

morphism C/P2 φ−→ P of degree 2, where P is a rank two vector bundle on P2. But

in order to have a genus two fibre with a separating node the map φ cannot be a

morphism but must be rational with indeterminacy locus contained in the fibres

with separating nodes, see for example [15] and the proof of Proposition 3.37. In

other words Markushevich implicitly assumes throughout that s = 0.·
The K3-surface S he obtains is the K3-surface of Remark 3.34. In case the

bundle P is indeed P(TP2) it is easy to see that S as we defined it does not depend

on the line l.

The projectified tangent bundle of P2 is the incidence variety Z ⊂ P2 ×P2∗. Let

π1 : Z −→ P2 and π2 : Z −→ P2∗ be the two projections. As before we denote the

point in P2∗ that corresponds to a line l in P2 by l∗ and say that l∗ is dual to l and

vice-versa. Let l be a line in P2 and l∗ ∈ P2∗ the point dual to l. Then

Zl = {(x, y) ∈ P2 × P2∗ |x ∈ l,

2∑

i=0

xiyi = 0}

= {(x, y) ∈ l × P2∗ |
2∑

i=0

xiyi = 0}.

So the map

pl := π2 |Zl
: Zl −→ P2∗

is the blow up of P2∗ in l∗. The branch locus of φ is a divisor B on Z. As

Z = P(TP2) its Picard group is Pic(Z) = Z2 and consists in elements OZ(a, b) :=

π∗
1OP2(a) ⊗ π∗

2OP2∗(b). As s = 0, the divisor B has bidegree (0, 6).

Now let l be a general line and Bl := B|l. Since s = 0 the projection π1|Bl
:

Bl −→ l has only smooth critical points. Therefore Bl is smooth. Furthermore by

equation (39) s = 0 implies that Bl does not intersect the exceptional divisor of

pl. Consequently its image Bl := pl(Bl) is a smooth sextic in P2∗. We show that

this sextic does not depend on the line l. Thus let l1 be another general line in P2

and b be a point on Bl. The two lines bl∗, bl∗1 in P2∗ are dual to points x ∈ l and
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x1 ∈ l1. Consequently b is dual to the line g := xx1 and b = x∗ ∩ x∗1. Now

x∗1 ∩ Bl1 = pl1(Zx1 ∩ B) = pr2(Zx1 ∩B) = pg(Zx1 ∩ B) = x∗1 ∩ Bg

and analogously

x∗ ∩Bl = x∗ ∩Bg.

As b = (x∗∩Bg)∩(x∗1∩Bg), it follows that b ∈ pl1(Bl1). As b and l1 were arbitrary,

we get Bl ⊂ Bl1 for all lines l1 in P2. From this we deduce Bl = Bl1. Thus there

is a smooth sextic B in P2∗. The fibre Cx over a point x ∈ P2 is the double cover

of the line x∗ branched in x∗ ∩B. Thus C is a linear system on the K3-surface S,

that is the double cover of P2∗ branched along B.

Remark 3.36. Using the fact that the family C is a linear system on a K3-surface

Markushevich constructs a birational map from S [2] to P . Contrary to the above

in case s 6= 0 the branch locus Bl on F1 = Bll∗(P2∗) is not the transform of a fixed

divisor on P2∗. Equation (39) implies that s is the intersection number of Bl with

the exceptional divisor. So s 6= 0 implies that Bl := pl(Bl) has an s-fold point

in l∗. Thus for l 6= l′, Bl := pl(Bl) 6= pl(Bl′) =: Bl′. The important point in the

proof that P is birational to S [2] is the existence of a fixed K3-surface S that is

guaranteed by the fact that s = 0. For s 6= 0 this fails in two respects. Firstly Y

is not birational to a K3-surface, and secondly it is not clear that the family of

curves is a linear system on a fixed surface.

There are no known examples of Lagrangian fibrations with s > 0. Example 3.24

has s = 0. It is therefore natural to ask whether there exist Lagrangian fibrations

with s > 0. A necessary condition for this is the existence of the corresponding

genus two fibration. Therefore we ask whether appropriate genus two fibrations

f : Y −→ P1 exist.

3.7. Example of a surface with (s = 2). A genus two fibration that comes from

a Lagrangian fibration has base P1, f∗KY/P1 ≃ OP1(1) ⊕OP1(2) and n + 2s = 30.

We ask whether there exist such genus two fibrations with s > 0. This turns out

to be the case. We construct an example with n = 26 and s = 2.

Proposition 3.37. There exists a genus two fibration f : Y −→ P1 with

f∗KY/P1 ≃ OP1(1)⊕OP1(2) and only nodal singular fibres that has 26 non-separating

nodes and 2 fibres with a single separating node each.
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We construct such a surface Y together with a rational map

φ : Y −− > F1

that is generically of degree two. Let u1, u2 be two different points in P2 and L1, L2

be two lines in P2 passing through u1 and u2 respectively, but not through both.

Consider the family Q of plane quadrics that are tangent to Li in ui for i = 1, 2.

As the family of plane quadrics is 5-dimensional, the family Q is a pencil. Let Qj

for j = 0, 1, 2 be three general elements of Q. The curve Q0 + Q1 + Q2 has then

simple infinitely close triple points in ui, i = 1, 2 and is otherwise smooth. Choose

a point p∞ that does not lie on any of the Qj ’s nor on any of the Li’s and choose a

line l ⊂ P2 in general position with respect to p∞, the Qj and the Li. Blowing up

p∞ yields F1 with a projection π : F1 −→ l. The strict transform under this blow

up of the curve Q0 + Q1 + Q2 (which we denote by the same letters) is a divisor

on F1 that is smooth apart from two simple infinitely close triple points (that we

likewise denote by u1 and u2). Consider the following divisor on F1:

B0 := Q0 +Q1 +Q2 +M1 +M2,

where Mi, i = 1, 2 are two different fibres of F1 −→ P1, that intersect Q0 +Q1 +Q2

transversally. This divisor has two simple infinitely close triple points in different

fibres of π : F1 −→ P1 and apart from that only simple nodes.

Lemma 3.38. The divisor B0 can be deformed into a divisor B of bidegree (2, 6)

on F1 that satisfies the following conditions. It has two simple infinitely close triple

points u1, u2 in different fibres and the critical points of the projection π|B : B −→
P1 other than u1, u2 are simple smooth critical points.

Proof: Embedded into P1 × P2,

F1 = {([x0, x2], [y0, y1, y2]) ∈ P1 × P2| x0y0 + x2y2 = 0}.

Let π1 := pr1|F1
: F1 −→ P1 and π2 := pr2|F1

: F1 −→ P2. We denote points in P1

by X = [x0, x2] and points in P2 by Y = [y0, y1, y2]. For points in F1, i.e. elements

(X, Y ) of P1 × P2 that satisfy the equation x0y0 + x2y2 = 0, we use the notation

(x, y). Let F0(Y ), F1(Y ) ∈ C[y0, y1, y2] be equations for Q0, Q1. An equation for

Q2 can then be written as

λ0F0(Y ) + λ1F1(Y ).
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Let Q(X) ∈ C[x0, x2] be a homogeneous polynomial of degree two. Let

f0(X, Y ) := Q(X)F0(Y )F1(Y )(λ0F0(Y ) + λ1F1(Y )).

Then f0(x, y) = 0 is an equation for B0. Let now G(x,W0,W1) be a homogeneous

polynomial of degree 3 in (W0,W1) with coefficients homogeneous polynomials of

degree 2 in x. Let

f(X, Y ) = G(X,F0(Y ), F1(Y )),

i.e.

f(X, Y ) = a3(X)F0(Y )3+a2(X)F0(Y )2F1(Y )+a1(X)F0(Y )F1(Y )2+a0(X)F1(Y )3

where ai are homogeneous polynomials of degree two in X. Then the equations

(f(x, y) = 0) define a linear system E on F1 that is eleven dimensional and of

bidegree (2, 6). The base locus of E consists in the two points u1, u2. Clearly the

two points lie in the base locus. Conversely let (x′, y′) be in the base locus of E.

Then

a3(x
′)F0(y

′)3 + a2(x
′)F0(y

′)2F1(y
′) + a1(x

′)F0(y
′)F1(y

′)2 + a0(x
′)F1(y

′)3 = 0,

for all quadrics ai, i = 0, ..., 3. This implies F0(y
′) = F1(y

′) = 0. So (x′, y′) is either

u1 or u2. By Bertini’s theorem the general element of E is thus smooth away from

u1 and u2. A general element of E has three smooth branches in the points u1, u2.

Let (x′, y′) = ui. In the point x′ the homogeneous cubic G is

G(x′,W0,W1) =

3∏

k=1

(µ′
kW0 − ν ′kW1)

for ν ′k, µ
′
k ∈ C. For general a0, ..., a3 the ν ′k, µ

′
k define points [ν ′k, µ

′
k] ∈ P1 that are

pairwise distinct. Thus each of the

(µ′
kF0(y) − ν ′kF1(y))

for k = 1, 2, 3 has two simple roots, one of them being y′. Locally in P1 around x′

G(x,W0,W1) =
3∏

k=1

(µkW0 − νkW1)

with the µk, νk for k = 1, 2, 3 holomorphic functions in x, such that the [νk, µk] ∈ P1

are pairwise distinct. It follows that (f(x, y) = 0) has locally in P1 around x′ six

smooth branches, three of which meet in ui.

Furthermore the three branches meeting in ui are tangent to each other. Assume
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that u1 and u2 lie in {x0 6= 0, y2 6= 0} ⊂ P1×P2 and let (v, y) with v = y0
y2
, y = y1

y2
be

affine coordinates of P2 and x = x2

x0
an affine coordinate on P1. Then F1 is given by

(x+ v = 0) and (x, y) are affine coordinates on F1 with (x, y) ↔ ([1, x], [−x, y, 1]).

The projection is given by (x, y) 7→ x. Let

s 7→ (v(s), y(s))

be a parametrisation of Li in the affine coordinates (v, y) of P2. Then

s 7→ (−v(s), y(s))

is a parametrisation of π−1
2 (Li) in the coordinates (x, y) of F1. Let x(s) := −v(s))

and write Fj(x, y) and Fj(v, y) for Fj in the coordinates (v, y) of P2 and (x, y) of

F1 respectively. As Fj(v(s), y(s)) for j = 1, 2 vanishes to order 2 in s = 0, each of

the

(µk(x(s))F0(x(s), y(s)) − νk(x(s))F1(x(s), y(s)))

vanishes to order 2 in s = 0. Therefore the three branches meeting in ui are

tangent to Li in ui.

In order to prove the remaining condition on the projection π1|B : B −→ P1, we

first deform Q2 +M1 +M2 and leave Q0 +Q1 untouched. We do this by deforming

the equation Q(x)(λ0F0(y) + λ1F1(y)) = 0 to

g(x, y) = A0(x)F0(y) + A1(x)F1(y),

where Aj , j = 1, 2 are homogeneous polynomials of degree 2 in P1. Denote the

corresponding divisor by B1. The B1’s form a 5-dimensional linear system E1 of

bidegree (2, 2) on F1. By Bertini’s theorem the general element of E1 is smooth

away from the two base points u1, u2. A simple calculation in affine coordinates

shows that the general element of E1 is smooth also in u1 and u2.

Take again the affine coordinates (x, y) on F1. Write Fj(x, y) for Fj in these

coordinates and Ai(x) for Ai in the coordinate x on P1 and put

g(x, y) := A0(x)F0(x, y) + A1(x)F1(x, y).

Then B1 = (g = 0). The conditions for a smooth critical point of π1|B1 : B1 −→ P1

are

g = 0

∂g

∂y
= 0.
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The discriminant Discr(g, y) of g with respect to y is a polynomial of degree 6 in

x. As the bidegree of B1 is (2, 2) this implies that for a smooth element of E1 the

projection π1|B1
: B1 −→ P1 has 6 distinct smooth critical points. And for general

quadrics Aj, the four points A0(x) = 0, A1(x) = 0 are not among the six singular

values.

For B1 a general element of E1 consider now the divisor

Q0 +Q1 +B1.

It has two simple infinitely close triple points in different fibres. The remaining

critical points of π1|Q0+Q1+B1 : Q0 +Q1 +B1 −→ P1 are six smooth critical points

coming from B1, four smooth critical points coming from Q0 and Q1 and transver-

sal intersections of B1 with Q0 +Q1. The intersection number of B1 with Q0 +Q1

is

(2F + 2H) · 2(2H) = 16.

Suppose (x, y) ∈ B1 ∩ Q0. Then A1(x)F1(y) = 0. So either (x, y) ∈ {u1, u2} or

A1(x) = 0. We can assume that the two points A1(x) = 0 are not singular values

of π|Q0 : Q0 −→ P1 or π|Q1 : Q1 −→ P1. Thus B1 ∩ Q0 consists of u1, u2 together

with two pairs of simple nodes over the two roots of A1. And analogously for

B1 ∩Q1. The critical locus of

π1 |Q0+Q1+B1 : Q0 +Q1 +B1 −→ P1

consists therefore in the six smooth critical points of B1, the two smooth critical

points from each of Q0 and Q1, the two simple infinitely close triple points u1, u2

and four pairs of simple nodes over the roots of A0, A1. A deformation of Q0 +

Q1 + B1 that smoothes all points except for u1, u2 deforms each node in two

simple smooth critical points. Thus for a general element B of E the projection

π1 |B : B −→ P1 has

6 + 4 + 2 · 8 = 26

simple smooth critical points.

�

Proof of Proposition 3.37: For a general element B of E, the the infinitely close

triple points lie in fibres that contain no other critical point of π|B : B −→ P1. As

to the 26 smooth critical points there are no more than two of them in each fibre.

In fact at least 10 of the singular fibres contain only one smooth critical point.
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From such a divisor B we can construct a smooth surface Y with a rational map

φ : Y −− > F1 generically of degree 2 that is branched along B. The construction

is as follows. We first blow up the two infinitely close triple points s1, s2 of B

σ : F̃1 −→ F1.

Let E1, E2 be the two exceptional divisors of σ. The strict transform BfF1
of B has

two simple triple points s̃1, s̃2. Let

τ :
˜̃
F1 −→ F̃1

be the blow up of s̃1, s̃2 and denote by Γ1,Γ2 the strict transforms of E1, E2 under

τ . These are (−2)-curves. Let Γ′
1,Γ

′
2 be the two exceptional divisors of τ . The

strict transform BffF1

of BfF1
is now smooth. Denote by B̃ the union of BffF1

with Γ1

and Γ2. Consider the total transform

τ ∗σ∗B = τ ∗(BfF1
+ 3

2∑

i=1

Ei)

= BffF1
+ 3

2∑

i=1

Γ′
i + 3

2∑

i=1

(Γi + Γ′
i)

= BffF1

+
2∑

i=1

Γi + 2
2∑

i=1

(3Γ′
i + Γi).

The divisor B is linearly equivalent to 6H + 2F and 2-divisible in Pic(F1). Now

the last equality implies that BffF1

+
∑2

i=1 Γi is 2-divisible in Pic(
˜̃
F1). We can thus

construct the double cover of
˜̃
F1 branched along BffF1

+
∑

i Γi. This is a smooth

surface Ỹ

δ : Ỹ
2:1−→ ˜̃

F1.

As the Γi are (−2)-curves, their reduced pullbacks Ei under π are (−1)-curves in

Ỹ . Let

ǫ : Ỹ −→ Y

be the simultaneous contraction of these. This gives a commutative diagram

Y
φ

//____ F1

Ỹ

ǫ

OO

δ // ˜̃
F1,

τ◦σ

OO
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where φ is a rational map with indeterminacy locus the fundamental points of ǫ.

The induced fibration f : Y −→ P1 is a genus two fibration with non-separating

nodes in fibres where π|B : B −→ P1 has smooth critical points. There are 26 of

these. On the other hand the fibre of f over a point π(si) consists in two elliptic

curves that intersect transversally in one point. All other fibres are smooth.

It remains to show that f∗KY/P1 ≃ OP1(1) ⊕OP1(2). By a formula of Horikawa

[78] p. 13,

K2
Y = 2χ(OY ) − 6 + h,

where the number h depends on the singular fibres of f. In our case h = s. As the

Euler characteristic of Y is

χtop(Y ) = −4 + n+ s = 24,

Noether’s formula gives

24 = 12χ(OY ) −K2
Y

= 10χ(OY ) + 4.

Thus χ(OY ) = 2, deg(f∗KY/P1) = 3 and K2
Y = 0. Theorem 2.2 in [78] implies

K2
Y ≥ 3e − 5 and thereby e = 1. From this we conclude P((f∗KY/P1)∗) ≃ F1.

Therefore

(f∗KY/P1)∗ ≃ (OP1 ⊕OP1(1)) ⊗L
for a line bundle L on P1. deg(f∗KY/P1) = 3 implies deg(L) = −2. So L = OP1(−2)

and

f∗KY/P1 ≃ OP1(1) ⊕OP1(2).

�

We can say more on the distribution of the critical points.

Proposition 3.39. For the general element of the linear system E the projection

π1|B : B −→ P1 has exactly 20 distinct critical values. Two from the triple points,

10 from fibres with one simple smooth critical point each and 8 from fibres with

two simple smooth critical points each.

Proof: Let b1 := π1(u1), b2 := π1(u2) and B = (FB = 0) be an element of E,

FB(x, y) = G(x, F0, F1)

= A3F
3
0 + A0F

2
0F1 + A1F0F

2
1 + A2F

3
1 .
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For b ∈ P1 let y be homogeneous coordinates on the fibre F1b and write F0b(y), F1b(y)

for the quadrics F0|F1b
, F1|F1b

in these coordinates. For b ∈ P1, b 6= b1, b2 let

FB,b(y) := FB(b, y), i.e.

FB,b(y) = (µ1bF0b(y) − ν1bF1b(y))(µ2bF0b(y) − ν2bF1b(y))(µ3bF0b(y) − ν3bF1b(y)).

By the above proof it suffices to show that for a general element B of E there are

at least 8 points b such that FB,b(y) has two simple and two twofold zeros. Assume

that two of the [νkb, µkb] are the same, i.e.

FB,b(y) = (µ1bF0b(y) − ν1bF1b(y))
2(µ2bF0b(y) − ν2bF1b(y)). (40)

In that case the roots of FB,b = 0 on F1b are two simple and two twofold zeros. If

we set A3(b) = q, A0(b) = r, A1(b) = s, A2(b) = t, then (40) implies

r2s2 − 4r3t− 4qs3 + 18qrst− 27q2t2 = 0.

This is the discriminant of G with respect to (W0,W1) and defines an irreducible

quartic D in P3. The Ai on the other hand define a curve

P1 A−→ P3

b 7→ [A3(b), A0(b), A1(b), A2(b)]

of degree two in P3. For general Ai, this curve will intersect D in exactly 8 points.

So for a general choice of the Ai the projection will have eight singular values that

stem each from a pair of smooth critical points.

�

The general divisor of bidegree (2, 6) on F1 which has two infinitely close triple

points as singularities however does not lie in the linear system E.

Let B be a divisor of bidegree (2, 6) on F1 with two infinitely close triple points

as its only singularities. Let σ : F1 −→ P2 be the blow down of the exceptional

divisor S∞. As B · S∞ = 2, the curve O := σ∗B satisfies

O · P1 = σ∗O · σ∗P1

= (B + 2S∞) ·H
= 8.

Thus O is an octic in P2 with two infinitely close triple points and a node in the

fundamental point of σ. Conversely from an octic O in P2 with these singularities

one can produce a divisor on F1 with the above mentioned properties by blowing
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up P2 in the node of O. There is a 19-dimensional family of such octics on P2. In

homogeneous coordinates [X, Y, Z] on P2, let u1 = [0, 0, 1], u2 = [1, 0, 0] and

L1 : X + Y = 0

L2 : Z + Y = 0.

In affine coordinates x = X
Z
, y = Y

Z
on U2 = {Z 6= 0} the condition for an octic O

given by F (X, Y, Z) = 0 to have an infinitely close triple point in u1 with tangent

L1 is that F2 := F (x, y, 1) has the form

F2(x, y) = λ′(x+ y)3 + (x+ y)h3(x, y) + (x+ y)h4(x, y)

+(x+ y)h5(x, y) + λx6 + h7(x, y) + h8(x, y),

where hk is a homogeneous polynomial of degree k and λ, λ′ 6= 0. Analogously in

affine coordinates y = Y
X
, z = Z

X
on U0 = {X 6= 0} the condition that O has an

infinitely close triple point in u2 with tangent L2 is that F0 := F (1, y, z) has the

form

F0(z, y) = µ′(z + y)3 + (z + y)g3(z, y) + (z + y)g4(z, y)

+(z + y)g5(z, y) + µz6 + g7(z, y) + g8(z, y),

where gk is a homogeneous polynomial of degree k and µ, µ′ 6= 0. Thus

F (X, Y, Z) = λ′(X + Y )3Z5 + (X + Y )h3(X, Y )Z4 + (X + Y )h4(X, Y )Z3

+(X + Y )h5(X, Y )Z2 + λX6Z2 + h7(X, Y )Z + h8(X, Y ).



110 CHRISTIAN THIER

Let hk =
∑k

i=0 hkix
k−iyi and gk =

∑k
i=0 gkiz

k−iyi. Then

F0(z, y) = λ′(1 + y)3z5 + (1 + y)h3(1, y)z
4 + (1 + y)h4(1, y)z

3

+(1 + y)h5(1, y)z
2 + λz2 + h7(1, y)z + h8(1, y)

= λ′(z5 + 3yz5 + 3y2z5 + y3z5)

+yz4

3∑

i=0

h3iy
i + z4

3∑

i=0

h3iy
i

+yz3
4∑

i=0

h4iy
i + z3

4∑

i=0

h4iy
i

+yz2
5∑

i=0

h5iy
i + z2

5∑

i=0

h5iy
i

+λz2 + z

7∑

i=0

h7iy
i +

8∑

i=0

h8iy
i.

The condition that O has a double point in [0, 1, 0] implies that

h88 = h87 = h77 = 0.

The condition that O has an infinitely close triple point in [1, 0, 0] yields

F0(z, y) = µ′z3 + 3µ′z2y + 3µ′zy2 + µ′y3

+y

3∑

i=0

g3iz
3−iyi + z

3∑

i=0

g3iz
3−iyi

+y
4∑

i=0

g4iz
4−iyi + z

4∑

i=0

g4iz
4−iyi

+y
5∑

i=0

g5iz
5−iyi + z

5∑

i=0

g5iz
5−iyi

+µz6 +

6∑

i=0

g7iz
7−iyi +

6∑

i=0

g8iz
8−iyi.
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Compairing the coefficients yields 11 additional conditions on the hki, λ
′ and λ:

h80 = h81 = h82 = h70 = h71 = 0

h50 = −λ
h83 = h40

h72 = 3h40

h51 = 3h40 + λ

h30 − h40 − h41 + h51 + h52 − h73 + h84 = 0

h30 + h31 − h41 − h42 + h52 + h53 − h74 + h85 − λ′ = 0.

As these conditions are all linear, these octics form a linear system O. This linear

system has dimension

33 − 14 = 19

and by Bertini’s theorem the general element is smooth away from the points

[0, 0, 1], [1, 0, 0], [0, 1, 0]. Recall that the dimension of the linear system E was 11.

We used SINGULAR 3.0.2.[23] to generate random numbers as values for the hki, λ
′

and λ. For random values so obtained we studied the corresponding curve B in F1

and the projection π1|B : B −→ P1. Again using SINGULAR 3.0.2.we found that

the smooth critical points of the projection were all simple and that the projection

did not have more than one smooth critical point in a fibre. Thus

Proposition 3.40. There exist divisors B of bidegree (2, 6) on F1 with two

infinitely close triple points as the only singularities and such that the smooth crit-

ical points of the projection π1|B : B −→ P1 are 26 simple smooth critical points

that lie 26 fibres which are different from the ones containing the triple points.

�

As in the proof of Proposition 3.37 this implies:

Corollary 3.41. There exists a genus two fibration f : Y −→ P1 with

f∗KY/P1 ≃ OP1(1) ⊕ OP1(2) and only nodal singular fibres that has 26 irreducible

fibres with a single non-separating node each and 2 reducible fibres with a single

separating node each.

�
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3.8. Construction of an abelian fibration. Inspired by the construction of

example 3.7, we try to construct a Lagrangian fibration over P2 such that deg(∆) =

26.

Let Z be the incidence variety in P2×P2∗ and π1 : Z −→ P2, π2 : Z −→ P2∗ the

projection to the first and second component respectively. As in example 3.7 we

take two points u1, u2 ∈ P2∗ and L1, L2 two different lines in P2∗ passing through

u1 and u2 respectively but not through both. Let Q be the pencil of plane quadrics

in P2∗ that are tangent to Li in ui, for i = 1, 2 and let Q0, Q1, Q2 be three general

elements of Q. Furthermore let Q be a smooth quadric in P2 that is in general

position with respect to the quadrics Q∗
j dual to Qj , j = 0, 1, 2. Consider the

divisor

B0 := π∗
1Q+ π∗

2Q0 + π∗
2Q1 + π∗

2Q2

on Z. It has bidegree (2, 6). We want to deform this divisor into a divisor B on

Z in such a way that we can construct a smooth threefold Y with a rational map

φ : Y −− > Z that is generically of degree 2, branched along B and such that over

a general line l in P2 the genus two fibration Y|l has two fibres with a separating

node and contains 26 separating nodes. The idea is then to construct from this

a an abelian fibration over P2 as the relative compactified Jacobian of this genus

two fibration. The discriminant locus of the abelian fibration has then degree 26.

Let us fix some notation. By X = [x0, x1, x2] and Y = [y0, y1, y2] we denote

elements of P2 and P2∗ respectively. For points in Z we use the notation (x, y).

Let

Si := π−1
2 (ui)

for i = 1, 2. These are lines in Z

Si = {(X, ui) ∈ P2 × P2∗|X · ui = 0} = si × {ui},

where si denotes the line in P2 dual to ui ∈ P2∗. Furthermore denote by q the

point s1 ∩ s2, by ti the point in P2 dual to Li and let

Hi := π−1
2 (Li)

for i = 1, 2. Then

Hi = {(X, Y ) ∈ P2 × P2∗ |Y ∈ Li, X · Y = 0}.

Let F0(Y ), F1(Y ) ∈ C[y0, y1, y2] be two homogeneous polynomials such that Qj =

(Fj(Y ) = 0) for j = 0, 1. Then there are λ0, λ1 ∈ C such that Q2 = (λ0F0(Y ) +
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λ1F1(Y ) = 0). Let P (X) ∈ C[x0, x1, x2] be a homogeneous polynomial such that

P (X) = 0 is an equation for Q. Let

f0(X, Y ) = P (X)F0(Y )F1(Y )(λ0F0(Y ) + λ1F1(Y )).

Then (f0(x, y) = 0) is an equation for B0. B0 contains S1, S2.

Let p = (x′, y′) be a general point on Si. Then in a neighbourhood of x′ in P2

P (X) 6= 0. Above this neighbourhood B0 has six smooth branches. Three of these

branches intersect along Si. More precisely these three branches are tangent to Hi

along Si.

Now let G(X,W0,W1) be a homogeneous polynomial of degree three in (W0,W1)

with coefficients homogeneous polynomials of degree two in X, i.e.

G(X,W0,W1) = a3(X)W 3
0 + a2(X)W 2

0W1 + a1(X)W0W
2
1 + a0(X)W 3

1

with aj ∈ C[x0, x1] homogeneous of degree two. Let

f(X, Y ) = G(X,F0(Y ), F1(Y )).

Then the equations (f(x, y) = 0) define a 23-dimensional linear system E of bide-

gree (2, 6) on Z. This is our deformation of B0. The base locus of this linear system

consists precisely in the lines S1, S2. By Bertini’s theorem the general element of

E is thus smooth away from S1, S2. Over a neighbourhood in P2 of a general point

on s1 ∪ s2 the general element of E is isomorphic to the disjoint union of three

copies of

disc× disc

with

simple infinitely close triple point× disc,

where disc := {z ∈ C||z| < 1}. The infinitely close triple points occur along Si.

Let B be a general element of E and denote by D the set of singular values

of the projection π1|B : B −→ P2. The projection has a simple smooth critical

point along a curve R ⊂ B if locally around a point on R there exist coordinates

(z1, z2, z3) on Z such that B is given by (z3 = z2
1) and R by (z1 = z3 = 0). In case

the projection has no other critical points over the curve π1|B(R), we say that it

has a single simple smooth critical point over π1|B(R).
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Proposition 3.42. The general element B of the linear system E satisfies the

following conditions. It contains the lines S1, S2 and its only singularities occur

on S1 and S2. Locally around a general point of Si it is isomorphic to

simple infinitely close triple point × disc .

The critical points of π1|B : B −→ P2 away from S1 ∪ S2 are as follows. There is

a curve ∆1 of degree 10 in P2 such that over a general point of ∆1 lies a single

simple smooth critical point. Furthermore there is a curve ∆2,red of degree 8 such

that over a general point of ∆2,red lie two simple smooth critical points.

Proof: We first discuss the situation that arises when we deform π∗
1Q+π∗

2Q2 and

leave π∗
2Q0+π

∗
2Q1 untouched. We do this by deforming the equationQ(x)(λ0F0(y)+

λ1F1(y)) to

g(x, y) = A0(x)F0(y) + A1(x)F1(y),

where Aj, j = 1, 2 are homogeneous polynomial of degree two in X. We use the

same letter for the polynomial Aj and for the corresponding quadric curve in P2.

Denote by B1 the divisor (g = 0). These divisors form an 11-dimensional linear

system E1 on Z with base locus S1∪S2. The general element is thus smooth away

from S1 ∪ S2. B1 is also smooth in a general point p = (x′, y′) on Si. The set of

singular values of the projection π1|B1
: B1 −→ P2 is a reduced curve ∆B1 of degree

six in P2. For degree reasons the smooth critical points are simple.

I. Consider the divisor B1 + π∗
2Q0. The divisor π∗

2Q0 itself is smooth and has

simple smooth critical points over the curve Q∗
0 dual to Q0. Consider B1 ∩ π∗

2Q0.

On Z this is given by the equations

A1(x)F1(y) = 0

F0(y) = 0.

B1 + π∗
2Q0 contains the lines S1, S2.

I.i. B1 ∩ π∗
2Q0 away from S1 ∪ S2. Away from S1 ∪ S2 B1 ∩ π∗

2Q0 is given by

F0(y) = 0

A1(x) = 0.

Over a general point of A1, F0(y) = 0 has two roots. So away from S1 ∪ S2,

B1 ∩ π∗
2Q0 is generically two-to-one over A1. Over a neighbourhood in P2 of a
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general point of A1 the divisor B1 + π∗
2Q0 looks like two copies of node× disc.

For a divisor D on Z denote by Ramif(D) the ramification locus of π1|D.

I.ii. B1 ∩ Ramif(π∗
2Q0). The quadric A1 intersects Q∗

0 in four points. Over these

four points B1 intersects the ramification divisor of π∗
2Q0. But over these four

points B1 is F0(y) = 0, so B1 too has a smooth critical point there. So over these

four points B1 and π∗
2Q0 intersect in a single point that is a smooth critical point

for both B1 and π∗
2Q0. Apart from these four points of Ramif(B1)∩Ramif(π∗

2Q0)

over A1 ∩ Q∗
0 there are two points on S1 ∪ S2 where B1 intersects Ramif(π∗

2Q0).

On S1 ∪S2 the intersection of B1 with the ramification divisor of π∗
2Q0 is given by

F0(y) = 0

F1(y) = 0

F ∗
0 (x) = 0,

where F ∗
0 (x) = 0 is an equation for Q∗

0. Q
∗
0 is tangent to s1 and s2 in the points

t1 and t2 respectively. So the above set consists in the two points (ti, ui), i =

1, 2. t1 and t2 are the two points over which the line π−1
1 (ti) = Hi|ti tangent to

B1, π
∗
2Q0, π

∗
2Q1 is vertical.

I.iii. π∗
2Q0 ∩ Ramif(B1). Let pr1 : P2 × P2∗ −→ P2 and pr2 : P2 × P2∗ −→ P2 be

the two projections. In P2 × P2∗ this is given by

A1(X)F1(Y ) = 0

F0(Y ) = 0

A0(X) gradY F0(Y ) + A1(X) gradY F1(Y ) = λ ·X
X · Y = 0

for some function λ. On Z it is thus given by

A1(x)F1(y) = 0

F0(y) = 0

A0(x) gradY F0(y) + A1(x) gradY F1(y) = λ · x.
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Outside of S1 ∪ S2 this is

A1(x) = 0

F0(y) = 0

A0(x) gradY F0(y) = λ · x.

The quadrics A0 and A1 intersect in four points. Over each of these four points

B1 consists in the whole line Zb and intersects π∗
2Q0 in two points.

If A0(x) 6= 0, then

gradY F0(y) = λ · x,
which means that (x, y) is a critical point of π1|π∗

2Q0
: π∗

2Q0 −→ P2. So these are

the four points of Ramif(B1) ∩ Ramif(π∗
2Q0), we saw above.

For B1 + π∗
2Q1 one obtains the same description.

II. Consider now the divisor B1 + π∗
2Q0 + π∗

2Q1. The discriminant locus of the

projection

π1|B1+π∗
2Q0+π∗

2Q1
: B1 + π∗

2Q0 + π∗
2Q1 −→ P2

consists in the union of s1 + s2 with ∆B1 +Q∗
0 +Q∗

1, which is a reduced curve of

degree ten, and A0 +A1. Over a neighbourhood in P2 of a general point of s1 + s2

the divisor B1 + π∗
2Q0 + π∗

2Q1 is isomorphic to the disjoint union of three smooth

branches with

simple infinitely close triple point × disc .

Above a general point of ∆B1 +Q∗
0 +Q∗

1 the projection has a single simple smooth

crititical point. And over a neighbourhood of a general point of A0+A1 the divisor

B1 +π∗
2Q0 +π∗

2Q1 is isomorphic to the disjoint union of two smooth branches with

two copies of

node × disc .

After this description we are now ready to prove the proposition. As the general

element of E is smooth away from S1∪S2 a generic deformation of B1+π
∗
2Q0+π

∗
2Q1

in E will smooth all singularities of B1 + π∗
2Q0 + π∗

2Q1 outside S1 ∪ S2 and keep

the singularities over general points of s1 + s2. The simple smooth critical points

over a general point of ∆B1 + Q∗
0 + Q∗

1 deform into simple smooth critical points

over a curve ∆1 of degree 10 in P2 that is a deformation of ∆B1 + Q∗
0 + Q∗

1. The

singularities over a general point of Ai on the other hand will smooth into two
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pairs of simple smooth critical points. This yields a component ∆2,red of degree

8 of the discriminant locus such that over a general point of ∆2,red lies a pair of

simple smooth critical points.

The last two assertions can be seen as follows. Let

G(x, F0(y), F1(y)) = 0

be an equation for a general element B of E and let A0(x), ..., A3(x) be the co-

efficients of G(x,W0,W1). For x ∈ P2 G(x,W0,W1) is a homogeneous cubic in

[W0,W1] ∈ P1. Thus

G(x,W0,W1) = 0

defines a surface V (G) of bidegree (2, 3) in P2 ×P1. The discriminant Discr(G,W)

of G with respect to W = [W0,W1] is an irreducible homogeneous polynomial of

degree four in the coefficients A0, ..., A3. For a general choice of A0(x), ..., A3(x)

Discr(x) := Discr(G,W)(A0(x), ..., A3(x))

is an irreducible homogeneous polynomial of degree eight in x. For a general point

x ∈ (Discr = 0) the cubic G(x,W0,W1) has two zeros, i.e.

G(x,W0,W1) = (µ1W0 − ν1W1)
2(µ2W0 − ν2W1),

such that the [νi, µi] ∈ P1 are distinct. Consider the map

Z \ Zs1∪s2
χ−→ P2 × P1

(x, y) 7→ (x, [F0(y), F1(y)]).

This map is regular and generically two-to-one. For x /∈ s1 ∪ s2 the morphism

Zx
χx−→ P1

y 7→ [F0(y), F1(y)]

is a double cover branched in two points. Let b be a point in si \{q}, where q is the

intersection point of s1 with s2, v = [v0, v1] homogeneous coordinates on Zb and

F0b(v), F1b(v) the quadrics F0|Zb
, F1|Zb

in the coordinates v. As the line Zb passes

through ui the quadrics F0b(v), F1b(v) have a common root. So

F0b(v) = (βv0 − αv1)(δv0 − γv1)

F1b(v) = (βv0 − αv1)(ϑv0 − εv1)
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for pairwise distinct [α, β], [γ, δ], [ε, ϑ] ∈ P1. Consequently the map

Zb
χb−→ P1

y 7→ [F0(y), F1(y)]

defines an isomorphism. This extends the morphism χ : Z \ Zs1∪s2 −→ P2 × P1 to

a surjective morphism

χ : Z \ Zq −→ (P2 \ {q}) × P1.

This morphism is generically two-to-one. We denote its branch locus by V . The

closure V is a surface in P2 × P1.

Let J ⊂ P2 × P1 be defined by

G = 0

Discr = 0.

For general A0, ..., A3 the curve J intersects V in finitely many points. Therefore

if x is a general point on (Discr = 0), then

G(x, F0, F1) = (µ1F0(y) − ν1F1(y))
2(µ2F0(y) − ν2F1(y))

has exactly four zeros, two of them twofold and two of them simple. It follows

that π1|B : B −→ P2 has two simple smooth critical points over a general point

x ∈ (Discr = 0). The curve (Discr = 0) is the curve ∆2,red.

As for ∆1 consider again the morphism χ. The surfaces V and V (G) in P2 × P1

intersect in a curve V ∩ V (G). A general point on V ∩ V (G) is both a simple zero

of G and a branch point of χ. Thus B has a smooth critical point in the fibre Zx.

The surface V has bidegree (4, 2) in P2 ×P1. That it has bidegree (·, 2) is clear.

That it has bidegree (4, 2) can be seen as follows. A point (x, p) is a branch point

of χ : Z \ Zq −→ (P2 \ {q}) × P1 either if χx : Zx −→ P1 is an isomorphism, i.e

x ∈ s1 ∪ s2, or if χx : Zx −→ P1 is 2 : 1 and branched over p = [λ0, λ1]. In the

second case χx is on Zx given by

[v0, v1] 7→ [F0(v), F1(v)].

Assume λ1 6= 0. Then p is a branch point if and only if λ1F0x + λ0F1x = 0 has a

twofold root v ∈ Zx. If we denote the quadric λ1F0 + λ0F1 = 0 in P2∗ by Q[λ0,λ1],
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then such a v exists if and only if x lies on the dual quadric Q∗
[λ0,λ1]. From this we

see that

V ∩
(
(P2 \ {q}) × {p}

)
=
(
Q∗

[λ0,λ1]
∪ ((s1 ∪ s2) \ {q})

)
× {p}.

This implies that V has bidegree (4, 2). The surface V (G) on the other hand has

bidegree (2, 3). For a general line L in P2, the intersections of the curves V|L and

V (G)|L are transverse. As these curves have bidegree (4, 2) and (2, 3) respectively

on L× P1, they intersect in 16 points. Three of these points lie above L ∩ s1 and

three above L∩s2. The three points lying over L∩si do not correspond to critical

points of the projection π1|B : B −→ P2. The fibre of π1|B over L ∩ si contains

a threefold point and three simple points of B. The three points (V ∩ V (G))|L∩si

correspond to the simple points. The remaining ten points of (V ∩V (G))|L however

do correspond to smooth critical points and as the Ai are general these ten points

lie in different fibres. Consequently ∆1 := π1((V ∩ V (G))|P2\(s1∪s2)) is a curve of

degree 10 in P2 and over a general point of ∆1 lies a single simple smooth critical

point.

�

Remark 3.43. The set Dred of critical values of π1|B : B −→ P2 is

Dred = s1 + s2 + ∆1 + ∆2,red.

Let Dred,sing be the singular locus of the curve Dred. Over a point in ∆1 \Dred,sing

the projection π1|B : B −→ P2 has a single simple smooth critical point. And over

a point in ∆2,red \Dred,sing the projection π1|B : B −→ P2 has two simple smooth

critical points. Over a general line L in P2 we are therefore in the situation of

Proposition 3.39.

From a divisor B on Z as in Proposition 3.42 one can analogously to the proof of

proposition 3.37 construct a genus two fibration f : Y ′ −→ P2 \N outside a finite

set N of points on s1 ∪ s2.

Proposition 3.44. There exists a genus two fibration f : Y ′ −→ P2 \N , where Y ′

is a smooth threefold and N a finite set in P2, such that the (reduced) discriminant

locus of f consists in two lines s′1, s
′
2, a curve ∆′

1 of degree 10 and a curve ∆′
2,red of

degree 8. Over a general point of s′1 + s′2, ∆′
1 and ∆′

2,red the fibre is a curve with a

single separating node, an irreducible curve with a single non-separating node and

an irreducible curve with two non-separating nodes respectively.
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Proof: Let σa : Z̃ −→ Z be the blow up of S1 and S2. Denote by E1 and E2 the

two exceptional divisors of σa and by H̃1, H̃2 the strict transforms of H1, H2. If

we consider Ei as a P1-bundle over Si, then H̃i ∩Ei is a section, which we denote

by Σi. Let σb :
˜̃
Z −→ Z̃ be the blow up of Σ1 and Σ2 and denote the strict

transform of Ei by Γi. Choose affine coordinates (x1, x2) on P2 \ s2 ≃ C2 such

that s1 = {x2 = 0}. Then Z|C2 ≃ C2 × P1 and S1 is a section of Z|s1. Projection

to the x1-axis exhibts Z|C2 as a surface fibration over s1 and S1is a section. Then

Z̃|C2 −→ s1 is this fibration with S1 blown up and inturn
˜̃
Z |C2 −→ s1 the blow up

of Σ1 in Z̃|C2 −→ s1. It follows that the divisor Γ1 is a family of (−2)-curves in
˜̃
Z |C2 −→ s1 and analogously for Γ2. For i = 1, 2 let S ′

i be the set of points p on Si

such that locally around p B is isomorphic to

simple infinitely close triple point × disc .

By Proposition 3.42 Si \ S ′
i is finite. Let N := π1((S1 \ S ′

1) ∪ (S2 \ S ′
2)). Now

we restrict everything to P2′ := P2 \N and denote this restriction by a prime, for

example Z ′ := Z \ ZN .

As B′ has a simple infinitely close triple point along S ′
i, the strict transform of

B′ under σa has a simple triple point along Σ′
i. Denote by B̃′ the divisor on

˜̃
Z ′ that

is the union of the Γ′
i with the strict transform of B′ under σa ◦ σb. This divisor is

smooth and analogously to the proof of Proposition 3.37 one can show that it is

two-divisible. Therefore we can construct the double cover of
˜̃
Z ′ branched along

B̃′

π : Ỹ ′ 2:1−→ ˜̃
Z ′

and the resulting threefold, denoted by Ỹ ′, is smooth. As above Ỹ ′ can be written

as a surface fibration over s′i. Then the two reduced divisors Ei := (π∗(Γ′
i))red

consist then each in a family of (−1)-curves. Therefore they can be simultaneously

contracted

contr : Ỹ ′ −→ Y ′.
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The result is a smooth threefold Y ′ such that

Y ′
φ

//___ Z ′

Z̃ ′

σa

OO

Ỹ ′

contr

OO

π // ˜̃
Z ′

σb

OO

.

Let Ii := contr(Ei). Let

f : Y ′ −→ P2′

and

f̃ : Ỹ ′ −→ P2′

be the induced projections. By the construction of Y ′ φ is a rational map

Y ′

f ""EE
EE

EE
EE

φ
//_________ Z ′

||yy
yy

yy
yy

P2′

that is generically of degree two over P2′ with branch locus B. The indeterminacy

locus of φ is I := I1 ∪ I2. The induced fibration f : Y ′ −→ P2′ is a genus two

fibration. Let ∆′
1 := ∆1 \ N , ∆′

2,red := ∆2,red \ N and s′i := si \ N . Then the

(reduced) discriminant locus of f is

∆f = ∆′
1 + ∆′

2,red + s′1 + s′2.

From the properties of B (Proposition 3.42) we see that the fibre over a general

point of ∆′
1 is a curve with a single non-separating node, whereas the fibre over a

general point of ∆′
2,red is an irreducible curve with two non-separating nodes. The

fibre over a general point of s′1 + s′2 is a curve with a single separating node. The

union of the separating nodes is I.

�

From this fibration one can construct an abelian fibration as the relative com-

pactified Jacobian of f. We will only discuss this construction away from the finite

set M := N ∪ ∆fsing in P2, where ∆fsing denotes the singular locus of ∆f. Let

P2′′ := P2 \M , Y ′′ := f−1(P2′′), ∆′′
1 := ∆1 \M , ∆′′

2,red := ∆2,red \M , s′′i := si \M
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and ∆′′ := ∆′′
1 ∪∆′′

2,red ∪ s′′1 ∪ s′′2. Consider the fibration f′′ := f|Y ′′ : Y ′′ −→ P2′′ and

denote the relative compactified Jacobian thereof by

f : X ′′ −→ P2′′.

We will see below that the fourfold X ′′ is smooth away from f−1(∆′′
2,red). The

reason that it is smooth above s′′1 ∪ s′′2 is that there it is the quotient of a vector

bundle by a lattice of maximal rank. That it is smooth above ∆′′
1 follows from

a result of Markushevich Theorem 4 [42], which says that the total space of the

relative compactified Jacobian is smooth if each singular curve has no more that

one non-separating node. However we do not know whether the total space is

smooth above ∆′′
2,red as there each curve has two nodes.

Ignoring this difficulty for a minute it is clear that one wants to compactify X ′′

to a fourfold over P2 and then resolve the singularities to obtain a smooth fourfold

X over P2 which is then a candidate for a Lagrangian fibration. We note that

the abelian fibration obtained in this way is a principally polarised fibration with

unipotent monodromy and discriminant locus ∆ of degree

deg(∆1) + 2 deg(∆2,red) = 26.

The monodromy around ∆1 is then a simple transvection whereas the monodromy

around ∆2,red is a the product of two commuting simple transvections.

Consider the above mentioned difficulty that, because of the fact that in this

construction there is a component of the discriminant locus over which each curve

has two nodes, the relative compactified Jacobian might not be smooth above this

part of the discriminant locus. We think it is possible to improve the construction

to remedy this difficulty. Namely it should be possible to deform B (beyond the

linear system E) into a new divisor Bnew on Z in such a way that Bnew retains the

properties of B except that ∆2 := 2∆2,red is deformed to a reduced curve ∆2,new

of degree 16 such that Bnew has a single simple smooth critical point over a gen-

eral point of ∆2,new. The assumption that such a Bnew exists is reasonable, for in

the case of fibred surfaces we saw in Proposition 3.40 that there are appropriate

divisors on F1 such that all critical points lie in different fibres.

Conjecture 3.45. There exists a divisor Bnew of bidegree (2, 6) on Z that satisfies

the following conditions. Bnew contains the lines S1, S2 and its only singularities
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occur on S1 and S2. Locally around a general point of Si it is isomorphic to

simple infinitely close triple point × disc .

The critical points of π1|Bnew
: Bnew −→ P2 away from S1∪S2 are as follows. There

is a curve ∆new of degree 26 in P2 such that over a general point of ∆new lies a

single simple smooth critical point.

Assume that Bnew is such a divisor and let D be the discriminant locus of

π1|Bnew
: Bnew −→ P2. Then

D = ∆new + s1 + s2,

for a reduced curve ∆new of degree 26. As above one can construct from Bnew a

threefold Y ′ with a rational map

Y ′

f ""FFFFFFFF

φ
//_________ Z ′

π1||xxxxxxxx

P2′.

that is generically of degree two and branched along Bnew. Consider as before the

fibration f′′ : Y ′′ −→ P2′′. We claim that in this case the relative compactified

Jacobian would be smooth.

Lemma 3.46. The total space X ′′ of the relative compactified Jacobian constructed

from a divisor Bnew ⊂ Z (as in Conjecture 3.45) is smooth.

Proof: The discriminant locus of the genus two fibration f′′ : Y ′′ −→ P2′′ has

three components:

∆f′′ = ∆′′
new + s′′1 + s′′2.

The fibres over ∆′′
new are curves with a single non-separating node, whereas the

fibres over s′′1 ∪ s′′2 have a single separating node.

Over P2′′ \ ∆f′′ the relative Jacobian can be defined as the relative Pic0, i.e. as

the quotient of the rank two vector bundle R1f′′∗OY ′′ |P2′′\∆f′′
by the lattice bundle

corresponding to the subsheaf R1f′′∗Z|P2′′\∆f′′
. The genus two fibration f′′ : Y ′′ −→

P2′′ is flat and thus the sheaf R1f′′∗OY ′′ |P2′′ locally free.

The monodromy of f′′ around s′′i lies in the Torelli group as the vanishing cycle is

separating. Consequently around s′′i the action of the monodromy on the homology

and therefore the monodromy of the local system R1f′′∗Z|P2′′\∆f′′
is trivial. From
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this we infer that the sheaf R1f′′∗Z|P2′′\∆′′
new

is a local system of lattices of rank four.

So above P2′′ \ ∆′′
new the relative Jacobian can be constructed as

R1f′′∗OY ′′ |P2′′\∆′′
new

R1f′′∗Z|P2′′\∆′′
new

and is therefore a smooth family of abelian surfaces.

Over ∆′′
new the fibres of the relative Jacobian of f′′ : Y ′′ −→ P2′′ are not compact.

But the Altman-Kleiman compactification provides a relative compactification, see

[1]. The Altman-Kleiman compactification requires that the fibres be irreducible.

This assumption holds for the fibration

f′′|Y ′′

|P2′′\(s′′
1
∪s′′

2
)

: Y ′′
|P2′′\(s′′1∪s′′2 ) −→ P2′′ \ (s′′1 ∪ s′′2). (41)

By a result of Markushevich, Theorem 4 in [42] the total space of the Altman-

Kleiman compactification is smooth under a condition that Markushevich calls

“mild degenerations”, see Definition 4 in [42]. This condition is in particular sat-

isfied by a family f : C −→ S a genus two fibration over a surface S that has

a smooth total space C and is such that the fibres are irreducible with at most

one node. The total space of the genus two fibration (41) is by construction the

double cover of a P1-bundle branched along a smooth divisor and therefore itself

smooth. Furthermore all singular fibres are irreducible and have a single node.

Consequently the Altmann-Kleimann compactification gives a relative compacti-

fied Jacobian of f′′|Y ′′

|P2′′\(s′′
1
∪s′′

2
)

that has a smooth total space. Over the smooth locus

P2′′ \∆f′′ this construction is isomorphic to the relative Pic0. Therefore we obtain

a relative compactified Jacobian of f′′ : X ′′ −→ P2′′ that has a smooth total space.

�

We do not know whether X ′′ would admit a holomorphic-symplectic form. If it

did then it might be possible to obtain a compact hyperkähler manifold form X ′′.

Namely suppose that it is possible to compactify X ′′ to a smooth fourfoldX in such

a way that X \ X ′′ has codimension two in X, then the holomorphic-symplectic

form on X ′′ would by Hartogg’s theorem extend to a holomorphic-symplectic form

on X.

3.9. Sawons results and a dichotomy. Using different techniques Sawon stud-

ies in [64] Lagrangian fibrations whose fibres are polarised abelian varieties. He

makes an assumption on the general singular fibre. The assumption is that the
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general singular fibre is a generic semi-stable degeneration of an abelian variety,

see the definition in [64] p.4. A Lagrangian fibration is then “good singular fibres”,

in case it satisfies this assumption. For four-folds and principal polarisations the

assumption means that the general singular fibre is the compactified Jacobian of

an irreducible curve with a single non-separating node. This assumption on the

singularities of the general fibre implies that the monodromy is simple.

Sawon assumes further that the polarisation of the fibres is induced by a global

divisor on the irreducible holomorphic-symplectic manifold. This assumption im-

plies in particular that X is projective. In the case of principally polarised abelian

surfaces it means that there is a family of genus two curves embedded into the La-

grangian fibration as a family of theta divisors. Under these assumptions Sawon

proves the following formula for the degree of the discriminant locus (in the prin-

cipally polarised case)

deg(∆) = 24(n!
√
Â[X])

1
n ,

where
√
Â[X] is the characteristic number that comes from the square root of the

Â-polynomial, i.e. a topological quantity, Theorem 5 in [64]. Furthermore using

Guan’s bounds on the Betti numbers of four dimensional hyperkähler manifolds

[25], Sawon proves that the degree of the discriminant locus is smaller than 32 for

4-dimensional fibrations that satisfy his assumptions.

Let f : X −→ P2 be a Lagrangian fibration with principally polarised fibres,

general singular fibre the compactified Jacobian of an irreducible curve with a

single node and polarisation induced by a global divisor. If X is deformation

equivalent to S [2] of a K3-surface, then Sawons formula yields

deg(∆) = 30.

Let f : X −→ P2 be a Lagrangian fibration with principally polarised fibres,

general singular fibre the compactified Jacobian of an irreducible curve with a

single node and the polarisation induced by a global divisor. In a recent paper

Sawon [66] proves, again using his formula together with Guan’s bounds that in

this case

deg(∆) ≥ 30, (42)

see the proof of Corollary 3 in [66]. Note that in the corollary he assumes that all

the curves are irreducible, but the proof of the above inequality does not use this
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assumption.

For such fibrations we have the following dichotomy.

Theorem 3.47. Let f : X −→ P2 be a Lagrangian fibration with principally

polarised fibres, general singular fibre the compactified Jacobian of an irreducible

curve with a single node and the polarisation induced by a global divisor. Then one

of the following two cases occurs. Either the general fibre is reducible as a p.p.a.s.

or

deg(∆) = 30

and no fibre is reducible as a p.p.a.s..

Proof: According to Sawons results deg(∆) ≥ 30. If the general fibre is not

reducible as a p.p.a.s., then Corollary 3.25 implies deg(∆) ≤ 30. So deg(∆) = 30.

For a line l ⊂ P2 that intersects ∆ transversally Theorem 3.23 implies deg(ϕ∗D1) =

0. So over such a line there are no fibres that are reducible as a p.p.a.s. and

consequently there are no such fibres at all.

�

Conjecture 3.48. In the second case of the dichotomy of Theorem 3.47, if f :

X −→ P2 admits a section, then X is deformation equivalent to the Hilbert scheme

S [2] of a K3-surface S.

We indicate why we think this is true. The idea is to adapt the argument of

Markushevich in [42], Theorem 5. In the second case of the dichotomy deg(∆) =

30. Then Theorem 3.23 implies that the fibres over B0 := P2 \ ∆ are either

Jacobians of smooth genus two curves or compactified Jacobians of irreducible

curves with a single node. As in the proof of Lemma 3.18 one can show that over

B1 := P2 \ ∆ exists the corresponding family f : C1 −→ B1 of curves. The fact

that the singular fibres over ∆ \ ∆sing are compactified Jacobians suggests that

f : C1 −→ B1 extends to a family of stable curves f : C0 −→ B0, though we do not

have a rigorous proof for this. One could then use Markushevichs construction,

Theorem 4 in [42], of the relative compactified Jacobian P0 −→ B0 of f. As both

have a section P0 −→ B0 should be isomorphic to X0 −→ B0, the part of f over

B0. Thereby KP0 ∼ OP0 and P0 would obtain a holomorphic-symplectic structure

that makes the fibres Lagrangian. Note that there is a natural isomorphism over

B1.
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The hyperelliptic involution on f : C0 −→ B0 induces a morphism of degree two

onto the bundle P(f∗KC0/B0
). The proofs of Proposition 5 and Lemma 1 in [42] p.

179-181 carry over to this situation. They show that one can replace the bundle

f∗KC0/B0
by TB0 . As in Remark 3.35 this implies that the curves in C0 form a subset

of codimension 2 in a linear system on a K3-surface S. The proof of Lemma 4 in

[42] gives a bimeromorphic map S [2] < −− > P0 and thus a bimeromorphic map

S [2] < −− > X.

3.10. Construction again. Inequality (42) seems to rule out the construction

we were trying out in Section 3.8. But this inequality presupposes that the po-

larisation of the fibres is induced by a global divisor. This assumption would for

example be satisfied if the genus two fibration f : Y −→ P2 had a section. Using

this section one could embed Y into X. This would then be a divisor inducing a

relative theta divisor on the abelian fibration f : X −→ P2. But it is not clear

whether the assumption holds in our construction. So there is still room for our

construction to lead to a compact hyperkähler manifold.

On the other hand if it turns out that Sawon’s inequality is valid also for fi-

brations such that the polarisation is not induced by a global divisor, then our

construction is bound to break down at some point. The point where it might

break down is the existence of a holomorphic-symplectic form or the compactifi-

cation and subsequent resolution of X ′′. In particular it might not be possible to

produce a smooth compactification X of X ′′ under the condition that X \X ′′ has

codimension two in X. To examine this question a careful analysis of the singular-

ities of Bnew or B would be necessary. In this case however the the dichotomy

of Theorem 3.47 calls for an explanation.

3.11. Intersection theory on M2. In [58] Mumford defines intersection theory

on Mg. He then calculates the intersection product for natural classes in A(Mg).

In case g = 2 he obtains a complete description of the intersection product on

A(M2). Among other classes he defines the classes λ1, δ0, δ1, see [58],p. 299. The

class λ1 ∈ A1(M2) should be thought of as the first Chern class of the Hodge

bundle of the universal family over M2. It has the property that for a family of

stable curves f : C −→ P1 the degree deg(ϕ∗λ1), where ϕ : P1 −→ M2 is the

moduli map, gives the first Chern class of the Hodge bundle of f . The classes δi

are the classes of the divisors Di. Mumford proves the following relation between
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these classes

10λ1 = δ0 + 2δ1.

From this relation we can also deduce Corollary 3.21.

Alternative proof of Corollary 3.21: Let f : X −→ P1 be a family of abelian

surfaces as in the Corollary. According to Lemma 3.18 and the discussion there-

after, there exists a family of stable genus two curves f : Y −→ P1 corresponding

to f . Let ϕ : P1 −→ M2 be the moduli map associated to f. Then

10 deg(ϕ∗λ1) = deg(ϕ∗δ0) + 2 deg(ϕ∗δ1).

And this implies

10c1(F̃1) = deg(ϕ∗D0) + 2 deg(ϕ∗D1)

where F̃1 is the Hodge bundle of fXl
: Xl −→ l.

�

3.12. Two examples with non-unipotent monodromy. We know two exam-

ples of 4-dimensional Lagrangian fibrations other than Example 3.24, whose fibres

are principally polarised. Both of them do not have unipotent monodromy of rank

one. Consequently Theorem 3.23 fails to apply.

Example 3.49. Let f : S −→ P1 be an elliptic K3-surface. This induces a

Lagrangian fibration on the Hilbert square S [2] that is also discussed in [43]. The

fibration f × f : S × S −→ P1 × P1 is equivariant with respect to the Z2-action

permuting the factors. The quotient by this action is a fibration f (2) : S(2) −→
(P1)(2) = P2 whose general fibre is the product of two elliptic curves. This induces

a Lagrangian fibration

f [2] : S [2] −→ P2.

For simplicity we assume the elliptic fibration on the K3-surface S to be Lef-

schetz, i.e. the singular fibres of f are 24 nodal curves. Let ∆1 = {p1, ..., p24} the

discriminant locus of f . The discriminant locus of f × f is then

∆f×f = ∆1 × P1 ∪ P1 × ∆1.
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The map

P1 × P1 π−→ P2

([x1, y1], [x2, y2]) 7→ [x1x2, x1y2 + x2y1, y1y2]

is two-to-one and branched along the diagonalD in P1×P1. Under π the diagonalD

maps to the smooth quadric Q = (v2−4uw = 0) in P2 and a vertical line [p, q]×P1

maps to the line (q2u − pqv + p2w = 0). As the corresponding horizontal line

P1×[p, q] maps to the same line, ∆f×f maps to a configuration of 24 lines L1, ..., L24

in P2. These 24 lines are all tangent to the quadric Q and the discriminant locus of

f [2] is precisely the union of Q with these 24 tangents. Over a point on Li \Q the

fibre of f [2] is the product of an elliptic curve and a nodal genus one curve. The

fibre over a point of Q is the transform of the fibre of f (2) over the same point. For

points in Q \⋃i Li the fibre of f (2) is the symmetric product of the corresponding

fibre Et of f . For t ∈ P1 \ ∆1 the symmetric product E1 := E
(2)
t is via

E
(2)
t

+−→ Et

a ruled surface over Et. A fibre of f (2) is two-fold as the following local calculation

shows. Let (x, y) be affine coordinates on S such that f : S −→ P1 is given by

(x, y) 7→ x. Then f × f : S×S −→ P1 ×P1 is locally given by (x, y, z, w) 7→ (x, z)

and the Z2-action by (x, y, z, w) 7→ (z, w, x, y). The invariant functions are then

generated by

u = xz, s = yw, v = x+ z, t = y + w and r = xy + zw.

Consequently S(2) is locally given by the equation

sv2 + ut2 − vtr − 4us+ r2 = 0

and f (2) by (u, v, s, t, r) 7→ (u, v). As Q = (v2 − 4u = 0), f (2)∗Q is given by

(v0t− 2r)2 = 0. The fibre of f [2] is thus 2E1 + E2, where E2 is a P1-bundle over the

diagonal in E
(2)
t .

The monodromy transformation associated to a small circle around a general

point of Li is the product of the monodromies of f around the corresponding two

points and thus a simple transvection. The monodromy around a general point of
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Q on the other hand is given by



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



.

Therefore the monodromy of f [2] : S [2] −→ P2 is not unipotent.

Example 3.50. The second example is a fibration on the generalised Kummer

variety K2 and arises in a similar fashion as the fibration in Example 3.49. Let

E −→ T
f−→ A

be an elliptic torus. This gives a fibration f (3) : T (3) −→ A(3) that in turn induces

a fibration on K2.

K2

��

� � // T [3]

��
K ′

2

��

� � // T (3) //

f(3)

��

T

��
B � � // A(3) // A

The base of the induced fibration on K2 is B := {{u, v, w} ∈ A(3)|u+ v +w = 0}.
Embed A as a cubic in P2. Then as three points on a cubic that sum up to zero

lie on line in P2, the base B is indeed a P2,

f2 : K2 −→ P2.

The general fibre of f2 is isomorphic to E2. The discriminant locus ∆ of this

fibration is the diagonal in B. This corresponds to the set of lines in P2 that are

tangent to A. Thus ∆ is the curve that is the plane dual of A ⊂ P2. This is a sextic

with nine cusps. Reasoning analogously to Example 3.49 shows that the fibre of

f
(3)
|K ′

2
over a regular point of ∆ is isomorphic to the symmetric product E(2) and

has multiplicity two. Consequently the singular fibre of f2 over a regular point of

∆ is isomorphic to 2E(2) +F , where F is a ruled surface over the diagonal in E(2).

Furthermore the monodromy around a regular point of ∆ is the same as above.

So also in this example the monodromy is not unipotent of rank one. Note that

here the moduli map is constant. Note also that by the construction in Example
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3.49 one can also obtain a fibration with this property on S [2] provided that one

starts with a Kummer-K3-surface S that is constructed from an elliptic torus.

Remark 3.51 (Affine structures in the two examples). In both examples the

affine structure on P2 \ ∆ arises as a quotient of an affine manifold. In the first

case the original affine manifold is simply the product P1 \ ∆1 × P1 \ ∆1 of the

affine structure induced by the elliptic fibration on the K3-surface. With respect

to this the permutation of the factors is an affine transformation. The fix point

set of the corresponding Z2-action is the diagonal D. On

(P1 \ ∆1 × P1 \ ∆1) \D

Z2 acts properly discontiously by affine transformations. Thus the quotient is an

affine manifold.

In the second example ∆ is a sextic with nine cusps. The double cover of P2

branched along ∆ is thus a singular K3-surface with nine A2-singularities, where

by a singular K3-surface we mean a surface with only rational double points such

that the minimal resolution is a K3-surface. By a theorem of Barth [4] each

singular K3-surface admits a cyclic triple cover branched in the nine cusps. The

triple cover is then a complex torus. In our case the torus is E ×E and the affine

structure on P2 \ ∆ is the quotient of the standard affine structure on E × E by

an S3 of affine transformations.

3.13. Discussion. As we pointed out there is still room for principally polarised

Lagrangian fibrations f : X −→ P2 with unipotent monodromy of rank one and

deg(∆) < 30. And it remains an interesting question whether such fibrations

exist. Especially as it is not clear whether for such an example X would be de-

formation equivalent to one of the two standard examples. The only example of a

principally polarised Lagrangian fibration on K2 is Example 3.50, which is a very

special fibration. And there are reasons that for fibrations on Kn other types of

polarisations are natural, for this see section 5 in [65]. For projective Lagrangian

fibrations with X deformation equivalent to Kn a result of Mukai, [65] Proposition

5.3, says that the induced polarisation of the fibres cannot be principal. On the

other hand Debarre [17] exhibits a fibration on K2 with a fibrewise polarisation of

type (1, 3).

Theorem 3.23 and Theorem 3.47 are steps towards a classification of 4-dimensional

Lagrangian fibrations. We expect that formulas for the degree of the discriminant
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locus similar to that of Theorem 3.23 and bounds on the degree as in Corollary

3.25 can also be obtained for other types of polarisations.
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