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1 Summary 
Selection of viral vectors by screening viral display peptide libraries is an auspicious 

approach to improve safety and efficiency of gene vectors. The screening of random 

AAV peptide libraries occurs via the amplification of viruses from a multitude of 

potential targeting peptides each presented within an AAV capsid that are 

internalized into target cells, mediated by the peptide displayed on their surface. 

The aim of this thesis was the selection of cell type- or tissue-directed gene vectors 

from random peptide libraries displayed on adeno-associated virus (AAV) and their 

characterization. 

Immature malignant blood progenitor cells causing acute myeloid leukemia (AML) 

are generally considered to be transduction-resistant to most conventional gene 

vectors. We screened random AAV serotype 2 peptide libraries on AML cells to 

select vector capsids with optimized leukemia transduction capacity. The screening 

revealed a distinct peptide sequence motif displayed on the selected viral capsids. 

The capsid mutant displaying the peptide NQVGSWS transduced the leukemia cell 

line Kasumi-1 with up to 90% efficiency, in contrast to vectors displaying a random 

unselected peptide (0.2% efficiency). Transduction assays on a panel of cell lines 

showed that the NQVGSWS capsid was able to overcome resistance to AAV-

transduction especially in hematopoietic cancer cells. We further showed that 

NQVGSWS transduction of leukemia cells is independent of the primary attachment 

receptor heparin sulfate proteoglycan that is used for infection by wild-type AAV-2. 

Finally, leukemia targeted NQVGSWS-AAV vectors harboring a suicide gene 

conferred selective killing to Kasumi-1 AML cells. Therefore, we concluded that the 

selected vector capsids are a suitable and valuable tool to target therapeutic genes 

to AML cells. 

Screening AAV peptide libraries in vivo provides much more appropriate conditions 

to select for tissue-targeted gene vectors than mere cell-based in vitro approaches. 

In the second part of this thesis we developed a PCR-based amplification method 

allowing for adenovirus independent screening of AAV libraries. We performed in 

vivo selections applying several kinetic approaches in animals over multiple rounds 

after intravenous administration. The polyoma middle T-transgenic murine breast 

cancer and murine lung tissue were used as prototype targets. The peptide 

sequences of AAV clones yielded distinct sequence motifs unique for the target 
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tissue. Selected capsid mutants conferred gene expression in the target tissue which 

was not detectable in animals injected with control vectors. However, most of the 

clones also transduced heart tissue in addition to the target tissue. We therefore 

conclude that this approach may be particularly useful if the tropism of the intended 

gene transfer in vivo has to be extended to rather than confined to the tissue of 

interest, indicating that targeting AAV to certain tissues in vivo seem to require more 

than one capsid modification. This impact the further development and improvement 

of AAV peptide libraries. 

Taken together, the work presented here demonstrates that random AAV displayed 

peptide libraries can be used to select for improved gene delivery vectors in vitro 

and, which is entirely novel, in vivo. Our results broaden the knowledge of 

transduction behavior of vectors isolated from AAV-2 libraries on different targets in 

vitro and in vivo and showed that such vectors have the potential to be used for 

therapeutic gene transfer.  
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2 Zusammenfassung 
 
Die Selektion viraler Vektoren aus randomisierten, auf Viruskapsiden exprimierten 

Peptidbanken, ist ein vielversprechender Ansatz zur Steigerung der Sicherheit und 

Effizienz von Genvektoren. Bei AAV Peptidbanken handelt es sich um eine virale 

Peptidbank mit einer Diversität von 2x108, bei der jeweils ein randomisiertes Peptid in 

der Rezeptorbindung vermittelten Region des AAV Kapsids präsentiert wird. Ein 

Screening dieser Peptidbanken auf Zielzellen ermöglicht eine Anreicherung 

zielzelltransduzierenden Kapsidvarianten. Ziel dieser Arbeit war die Isolierung und 

Charakterisierung von zelltyp- bzw. gewebespezifisch transduzierender adeno-

assoziiert-viraler (AAV) Vektoren mittels Screening randomisierter AAV 

Peptidbanken. 

Die zur Entstehung der akuten myeloischen Leukämie (AML) führenden malignen 

Vorläuferzellen der Hämatopoese, sind durch herkömmliche Vektorsysteme nur in 

geringem Maße transduzierbar. In der vorliegenden Arbeit wurden mittels Screening 

randomisierter AAV Peptidbanken auf AML-Zellen virale Kapside mit einem 

eindeutigen Peptidmotif auf der Kapsidoberfläche angereichert. Rekombinante AAV 

Vektoren der Kapsidvariante NQVGSWS transduzierten die AML-Zelllinien auf denen 

sie selektiert worden waren mit einer Effizienz von bis zu 90% (Kontrolle mit 

unselektiertem Peptid ca. 0,2%). Bei Transduktionsexperimenten auf einer Vielzahl 

verschiedener Zelllinien zeigte sich, dass die Kasidvariante NQVGSWS die 

Transduktionsresistenz vor allem in hämatopoetischen Tumorzellen überwindet. In 

weiteren Versuchen wurde gezeigt, dass der Transduktionsmechanismus von 

NQVGSWS in Leukämiezellen unabhängig vom natürlichen zellulären Rezeptor 

Heparansulfat-Proteoglykan ist, welche für die Infektion von Wildtyp-AAV des 

verwendeten Serotyps 2 benötigt wird. Mittels der Kapsidvariante NQVGSWS wurde 

ein zielgerichteter zytotoxischer Gentherapieansatz auf Leukämiezellen etabliert und 

durchgeführt. Hieraus folgerten wir, dass die selektierte NQVGSWS-Mutante ein 

vielversprechender Vektor zum zielgerichteten Einbringen von therapeutischen 

Genen in Zellen der akuten myeloischen Leukämie darstellt.  

Die Selektion von AAV-Peptidbanken in vivo ist im Vergleich zu einem rein zell-

basierten in vitro-Ansatz weitaus geeigneterer zur Selektion Gewebe-gerichteter 

Vektoren. Im zweiten Teil dieser Arbeit wurde daher ein Verfahren entwickelt 

welches auf PCR-Amplifikation der Peptidinsertinformation basiert. Dieser Ansatz 
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ermöglichte eine in vivo Selektion nach systemischer Gabe der AAV-Banken über 

mehrere Runden auf Polyoma Mittel-T-induziertem Brustkrebsgewebe und 

Lungengewebe als Zielorgane im Mausmodell. Abhängig vom jeweiligen Zielorgan 

wurden verschiedene Vektorkapside angereichert, welche das entsprechende 

Zielgewebe nach systemischer Gabe transduzierten. Bei Tieren, die mit 

Kontrollvektoren injiziert wurden, konnte keine Genexpression in den jeweiligen 

Zielgeweben nachgewiesen werden. Doch war bei den selektierten Vektoren auch 

neben dem Zielgewebe eine zusätzliche Transduktion des Herzgewebes 

detektierbar. Diese Befunde werden einen großen Einfluss auf die Weiterentwicklung 

von AAV-Peptidbanken haben, da die Notwenigkeit deutlich wird, das AAV-Kapsid 

zusätzlich zu modifizieren, um eine gewebsspezifische Transduktion in vivo zu 

erreichen. 

Zusammenfassend zeigen die in dieser Arbeit geschilderten Ergebnisse, dass AAV- 

Peptidbanken sowohl in vitro als auch in vivo dazu geeignet sind, Genvektoren mit 

verbesserten Transduktionseigenschaften zu selektieren. Diese hier gewonnenen 

Erkenntnisse erweitern das grundlegende Verständnis für aus AAV-Peptidbanken 

isolierte Vektoren und zeigen zugleich, dass diese auch potenziell zum 

therapeutischen Einsatz geeignet sind.  
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3 Introduction 

3.1 Promises and problems in human gene therapy 

Gene therapy holds great promise for the treatment of a broad spectrum of inherited 

and acquired human diseases. The basic concept of gene therapy is the insertion 

and expression of a functional gene into cells or tissues with the aim either to cure a 

disease or to stop its progression. Over the last years, about 1350 phase 1-3 clinical 

trials based on gene delivery have been conducted. Promising results in the 

treatment of severe combined immune deficiency (SCID) 48, cardiovascular diseases 
108, 110 and cancer 84, 127 have generated great hopes in the emerging field of gene 

therapy, but the agents evaluated in these studies are not yet eligible for broad 

clinical application. 

While the spectrum of potential therapeutic genes rapidly expands with our 

understanding of molecular mechanisms in cell biology and in the development of 

diseases, the generation of safe and efficient gene delivery systems remains the 

biggest challenge in gene therapy 196, 262. 

The majority of gene-based clinical trials are cancer related, reflecting the urgent 

need for novel therapeutic approaches for this disease. Particularly in the treatment 

of disseminated cancer, targeted gene delivery approaches are mandatory because 

of their potential to reach malignant cells after systemic application by targeting 

specific biological features of cancer cells not amenable to conventional therapies. 

For this purpose, several viral and non-viral gene delivery systems are the subject of 

intensive basic and translational research 172. 

 

3.1.1 Vectors for gene delivery 

The most simple gene delivery systems are based on local administration of either 

naked DNA or DNA mixed with poly-lysine or cationic lipids. Such non-viral gene 

delivery approaches offer several advantageous safety aspects including their non-

inflammatory, non-toxic and non-infectious properties. Furthermore, they have the 

capacity to transfer large genes without the risk for unwanted integration into the host 

genome and are easily amenable to large-scale production. Efforts have been made 

in the development of ligand-modified carrier systems that allow for tissue-directed 

gene transfer after intravenous injections in animal models 103, 120, 149. However, the 
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use of non-viral vectors for clinical applications is limited by their low transduction 

efficiency and the tendency to mediate only short term gene expression 263.  

Viral gene vectors appear to be more promising for therapeutic gene transfer. 

Viruses can deliver genes with high efficiency and have the potential to mediate long 

term gene expression since they have evolved over millions of years to optimally 

enter a broad range of cells and to transfer their genetic material into their nucleus. 

The most commonly applied gene vectors are based on retroviruses, adenoviruses, 

herpes simplex virus and on adeno-associated viruses (AAV) 263, either one of which 

being used in 70% of all gene-based clinical trials so far 295.  

Since each viral vector system offers a specific set of properties, the choice of the 

vector system depends largely on the therapeutic requirements. Retroviral vectors 

that stably integrate into the host genome and therefore mediate sustained 

expression of the affected protein are advantageous for the treatment of genetic 

disorders (e.g. SCID). Adenoviral vectors that confer high but transient expression 

would be preferred in cancer related therapies 122. Recently, gendicine, the first 

commercially available gene therapy drug based on the human p53 as a transgene 

delivered by an adenoviral vector, has been licensed for the local treatment of 

several cancers in China 193. However, the potential risks of unwanted insertional 

mutagenesis 48 or strong immune reactions against the viral vector 159 reported from 

clinical trials raised several safety concerns precluding the the broad application of 

viral gene therapy vectors. 

In view of these concerns, vectors derived from adeno-associated virus (AAV) have 

emerged as a promising tool for a wide field of clinical applications due to their 

desirable safety and efficiency profile. AAV as a virus is non-pathogenic, only mildly 

immunogenic, and has the potential to integrate site-specifically into the host 

genome, while its broad host tropism allows for efficient transduction and long term 

gene expression in various target tissues 47, 275.  Its properties are introduced in more 

detail below. 

 

3.2 Adeno-associated virus (AAV) 

Adeno-associated virus (AAV) has first been described in 1965 12 as a contaminant 

of adenoviral stocks. AAV is a small non-enveloped DNA virus of the genus 

dependovirus that belongs to the parvoviridae family. To date, 14 different serotypes 
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(AAV-1 to AAV-14) isolated from human or primate tissues have been distinguished 

by their phenotypes and tissue tropisms 40, 79, 80, 169, 224, 287. From all serotypes 

described so far, AAV-2 is the best characterized one. A seroprevalence of up to 80 

percent 65 reflects a widespread distribution among the human population where AAV 

infections seem to occur mainly via the respiratory or gastrointestinal tract 101. So far, 

AAV infection has not been associated with any human disease 23, 298. Based on this, 

AAV-2 has been the first serotype used as a vector for experimental and therapeutic 

gene delivery. 

 

3.2.1 Genomic organization and capsid structure of AAV 

The single stranded (ss) AAV-2 genome with a length of 4.7 kb comprises two open 

reading frames (rep and cap) flanked by inverted terminal repeats (ITRs) (Figure 1A). 

ITRs are the only required cis-acting regulatory elements for viral genome replication 

and packaging. Their palindromic GC-rich nucleotide sequence with a length of 145 

bases forms a characteristic T-shaped hairpin structure comprising a Rep-binding 

element (RBE) and a terminal resolution site (trs) flanked by a single stranded 

segment termed as a D-sequence. In addition to their regulatory functions, ITRs 

serve as an origin of replication and are essential for genome packaging and site-

specific integration 83, 217. 

The rep gene products Rep78, Rep52 and their respective splice variants Rep68 and 

Rep40 are under transcriptional control of two promoters (p5 and p19). Rep78 and 

Rep68 are site-specific DNA binding proteins that exhibit site- and strand- specific 

endonuclease activity. Rep52 and Rep40 exhibit helicase and ATPase activities 22, 

107. The Rep proteins encode for the regulatory proteins involved in DNA replication, 

regulation of gene expression, packaging and site-specific integration processes 83 .  

The cap gene encodes for three structural capsid proteins VP1, VP2 and VP3 (90, 

72, 62 kDa) that share the same C-terminal amino acid (aa) sequences, while VP1 

und VP2 contain additional N-terminal sequences of 65 and 202 amino acids. 

Structural proteins are transcribed under the control of the p40 promotor. Alternative 

splicing at two acceptor site originates two transcripts. The larger transcript encodes 

for the biggest capsid subunit VP1, the shorter mRNA possesses two initiation start 

codons (ACG, AUG) that are utilized to translate the capsid subunits VP2 and VP3 

(Figure 1A) 83. Under permissive conditions allowing viral replication, VP1, VP2 and 

VP3 are expressed at a molar ratio of approximately 1:1:20 204. This ratio is also 
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maintained within the assembled capsid were 60 copies of VP proteins form a T=1 

icosahedral capsid structure with 18-30 nm in diameter. VP1 contains a 

phospholipase 2 (PLA2) domain at its N-terminus necessary for endosomal escape 

and nuclear entry 32, 82, 237. The N-terminus of VP1-VP3 contains 4 basic regions (BR) 

that constitute putative nuclear localization sequences (NLS) involved in the nuclear 

transfer of the virus (Figure 1B) 86, 87, 265. 

 

.  
Figure 1: Organization of the genome and the resulting structural proteins VP1-VP3 of AAV-2.   
A: The 4.7 kb AAV genome encodes for the 2 open reading frames rep and cap, flanked by inverted 
terminal repeats (ITR`s) under control of the three promoters p5, p19, and p40. The generated RNA 
transcripts are shown as arrows and the ORFs as boxes. The presence of an intron is indicated by the 
open triangle (modified from Büning et al. 2004 39). B: Schematic depiction of the functional domains 
of the three structural proteins VP1-VP3. VP1 contains a phospholipase A2-domain (PLA2), the four 
basic regions (BR1-4) are located at the N–terminus of VP1-VP3. The heparin sulfate proteoglycan 
binding domain is generated by the basic residues at positions R484, R487, K532, R585, and R588 
located at the C-terminus of the VP proteins (modified from Grieger et al. 2006 87). 
 

The atomic structure of AAV-2 has recently been resolved by X-ray crystallography 
292. The core structure of each VP protein comprises a conserved eight-stranded 

antiparallel β-barrel motif. Large loop insertions between the β-strands of adjacent 

VP subunits contribute to the formation of the surface structure. This leads to the 

formation of characteristic protrusions arranged in groups of three (“threefold spikes”, 
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formed by GH loops contributed from three capsid subunits) clustering around the 

threefold axis of symmetry and a cylindrical pore structure clustered around the 

fivefold axis of symmetry. They are surrounded by characteristic depressions termed 

as canyon, plateau, and dimple (Figure 2A, B) 124, 154, 186. Mutagenesis-based 

approaches and structural data recently led to the identification of several functional 

sites of the capsid that determine the tropism and antigenicity of the virus. The single 

or at least one of the primary cellular attachment receptors for AAV-2 is heparin 

sulfate proteoglycan (HSPG) 245. The HSPG binding domain on the AAV capsid 

surface is generated by the basic residues at positions R484, R487, K532, R585, and 

R588 (VP numbering) presented within two adjacent VP protein subunits forming 

protrusions on the threefold spike region (Figure 1B, 2C, D) 124, 186, 292. Binding of 

negatively charged sulfate and carboxyl groups of HSPG and positively charged 

amino acid residues occurs mainly via electrostatic interactions.  

The epitopes of two AAV-2 neutralizing antibodies C37-B and A20 are both mapped 

to regions adjacent to the threefold proximal-peak. While the monoclonal antibody 

C37-B inhibits binding of AAV to the host cell, A20 does not block receptor binding 

but neutralizes AAV infection at a post-binding step, possibly by interfering with 

internalization, endosomal release or viral uncoating 283. These findings suggest that 

the capsid region adjacent to threefold axis of symmetry act as receptor binding site 

and additionally has other important viral functions. 
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Figure 2: Structure of the AAV-2 capsid.  
A) Ribbon drawing of the VP3 protein of AAV-2. The position of the 2-fold, 3-fold, and 5-fold axis of 
symmetry is indicated as 2, 3, or 5, respectively. Between the strands of the β-barrels core, there are 
large loop insertions which form the capsid surface (adopted from Xie et al., 2002 292) B) Surface 
topology of the AAV capsid. One of the 60 triangular asymmetric subunits shows the surface structure 
of the capsid forming characteristic threefold spikes clustering around the 3-fold axis and a cylindrical 
pore structure clustered around the 5-fold axis of symmetry, surrounded by characteristic depressions 
termed as canyon, plateau, and dimple (image adopted from www.virology.wisc.edu and modified 
from Lochrie et al., 2006 154) C) and D) Localization of amino acids involved in binding to HSPG on the 
AAV-2 capsid. The basic residues R484, R487, K532, R585, and R588 cluster at the 3-fold axis of 
symmetry and are presented at the surface of the capsid (C and D adopted from Kern et al., 2003 124).  
 

3.2.2 Replicative cycle 

The infection cycle of AAV-2 is initiated by attachment to its primary receptor HSPG 

which is widely expressed on many cell types and tissues. This might explain the 

broad host tropism of AAV-2 although it has been shown that HSPG on the host cell 

membrane is not a prerequisite for AAV-2 infection 36. For efficient cellular uptake 

and transduction, HSPG-bound AAV-2 requires further receptors assisting the 

binding and initiating the internalization process. Integrin αvβ5 244, integrin α5β1 11, 
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fibroplast-growth factor receptor-1 (FGFR1) 202, the hepatocyte growth factor receptor 

(HGFR1) 118, and the 37/67-kDa laminin receptor (LamR) 1 have been identified as 

co-receptors for AAV-2 infection. AAV-2 binding to Integrin αvβ5 triggers endocytosis 

of the virions via clathrin-coated pits in a dynamin-dependent process into the early 

endosome 18, 57. Integrin binding by AAV activates Rac1, a GTP-binding protein 

which triggers the phosphatidylinositol-3-kinase pathway that initiates intracellular 

movement of the endosome to the nucleus along microtubules and microfilaments 
219. Due to a conformation change the VP1/VP2 N-termini of the AAV capsid get 

exposed at the fivefold cylinder region leading to the activation of the PLA2 domain 

that triggers endosomal escape of the AAV-2 virion into the cytoplasm. Since 

endosomal acidification is not sufficient to trigger the conformation change of 

VP1/VP2, further unknown mediators seem to be involved in this process 139, 237. The 

rate of infection is influenced by proteosomal degradation of virions located in the 

cytoplasm. The ubiquitin-proteasome pathway plays an essential role in this process 
57, 60. Consequently, proteasome inhibitors have been demonstrated to increase the 

rate of AAV-2 transduction in some cell types and tissues 60. Recently, several capsid 

residues have been identified that seem to mediate the proteasomal mediated 

degradation. Point mutations let to a protection from intracellular ubiquitinylation 

resulting in increased transduction rates of rAAV-2 vectors 302. After entry into the 

cytoplasm, AAV accumulates perinuclearly and translocates into the nucleus via the 

nuclear pore complex (NPC) where finally viral uncoating occurs 237.  

When latent, AAV-2 persists either by site-specific integration into the q-arm of 

chromosome 19 (AAVS1) in a Rep protein-dependent process 137, 218 or as circular 

extrachromosal episomes 225. For productive replication, AAV requires helper viral 

proteins delivered by adenovirus (Ad) or herpes simplex virus (HSV) 176 that enable 

the rescue of the AAV genome, DNA replication and gene expression of the viral 

proteins. Capsid assembly takes place in the nucleoli of infected cells that are finally 

redistributed to the nucleoplasm 105, 282. There, virions are co-localized with Rep 

78/68-tagged viral ss DNA. Rep 52/40 proteins are involved in unwinding and 

transfer of the viral DNA into the empty capsid through pores located at the fivefold 

axes of symmetry 31, 128. Finally, replicated viruses are released within the lysis of the 

host cell. 
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3.3 AAV as vector for gene therapy 

3.3.1 AAV in clinical trials 

AAV vectors have emerged as a safe and efficient and therapeutic gene delivery 

system for a variety of genetic and acquired diseases. A large number of preclinical 

studies in animal models revealed promising results ranging from substantial 

correction to complete cure in hemophilia, α1-anti-trypsin deficiency, cystic fibrosis, 

Duchenne muscular dystrophy, rheumatoid arthritis and others. Furthermore, AAV 

has been employed for a variety of anti-cancer gene therapy approaches. Common 

strategies are based on the delivery of cytotoxic genes, reconstitution of tumor 

suppressor genes, inhibition of drug resistance, immunotherapy and anti-

angiogenesis 198. So far, at least 40 clinical trails have been approved or completed 

with AAV-2 based vectors 2, 47, 173, 275. 

 

3.3.2 Production of recombinant AAV vectors 

Recombinant AAV (rAAV) vectors are constructed by replacement of the viral DNA 

containing the two open reading frames rep and cap flanked by an expression 

cassette encoding the gene of interest under transcriptional control of a suitable 

promoter. From the native wild-type virus, only the ITR sequences required for 

replication and packaging remain. For vector production, the structural and non-

structural Rep and Cap proteines can be provided in trans. Vectors are usually 

obtained by transfection of a suitable cell line with three vector plasmids 307 (Figure 

3). 1.) The expression cassette flanked by the ITRs 2.) the rep cap helper sequences 

and 3.) the adenoviral helper plasmid that encodes for the adenoviral E2a, E4, VA 

helper genes  89, 291. This allows the production of replication deficient, wild-type-free 

and adenovirus-free rAAV vectors stocks at adequate titers. To enable easy scaling 

up of vector production and to generate Good Manufacturing Practice (GMP) 

compliant rAAV vector stocks for clinical or commercial use, novel techniques are 

under investigation 61, 306. Such approaches are based on the generation of stably 

transfected producer cell lines 33, 52, suspension cell transfection and transduction 

techniques 61, 162, 190 and even cell-free production 304 of rAAV. Innovative purification 

protocols using iodixanol gradients and heparin affinity chromatography have 

contributed to making production and purity of stable rAAV vector stocks feasible 

even on a large scale.  
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Figure 3: Genomic structure and production of rAAV vectors.  
A) AAV vector expression cassette pAAV, containing the ITRs of the wild-type virus, the transgene of 
interest and its promoter. B) the pAAV helper cassette contains the viral rep genes required for virus 
replication and packaging and the cap gene encoding for the structural proteins of the virus capsid. C) 
the adenoviral helper plasmid pAD, contains adenoviral helper genes required for virus replication. D) 
For production of rAAV vectors HEK 293T cells are transfected with pAAV vector plasmids, AAV 
helper plasmids and adenoviral helper plasmids. Vectors are obtained after producer cell lysis and 
purification using density gradient ultracentrifugation and/or affinity chromatography (A, B, C and D 
modified from Merten et al., 2005 164). 
 

3.3.3 Site-specific integration 

One challenge for human gene therapy is to generate vectors that integrate at a 

certain site of the genome because random integration can contribute to the 

development of secondary cancers by insertional mutagenesis. In this regard, it is of 

considerable interest that rAAV vectors have the potential for site-specific integration 

into the host genome 163, 296. Since rAAV vectors lack its parental AAV rep gene they 

have lost their ability of targeted integration and vector genomes mainly persist as 

episomal entities within the transduced cells. However, since the ITRs are still 

present in rAAV vectors, integration yet occurs, but at a low rate and at apparently 
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random sites. Levels of random integration are comparable to spontaneous 

mutations in the human genome, thus the risk of unwanted insertional mutagenesis is 

rare 47. One novel approach aims at restoring the site-specific integration capability of 

rAAV vectors by providing rep in trans 145. A large study in adult mice revealed no 

evidence for tumorgenesis after vector administration 21. This issue has been 

discussed controversially since AAV vectors led to an elevated frequency of 

hepatocellular carcinomas in neonatal mice due to random vector integration 59, 121.  

 

3.3.4 AAV and immune responses 

Humoral and cellular immune responses against a viral gene vector can limit 

sustained gene expression or vector re-administration. In particular, strong 

inflammatory responses can evoke life-threatening complications in patients.  

AAV vectors do not contain viral genes that elicit substantial cellular immune 

responses and generally appear to induce only mild inflammatory processes in the 

host organism 298. Inefficient transduction of professional antigen presenting cells 

(APC) in vivo seems to prevent the induction of cellular T- cell responses 99, although 

the generation of cytotoxic T-cells via MHC-I class molecules and cross presentation 

pathways has been observed 50, 270. The bigger challenge remains to minimize 

humoral immunity that occurs against AAV capsids. About 18-67.5 % of human sera 

contain pre-existing neutralizing antibodies that could markedly reduce or impair 

AAV-2 mediated gene transduction 65, 220. The use of vectors originating from 

different serotypes or with modified AAV capsid epitopes may have the potential to 

escape pre-existing humoral responses 81, 170, 247, 283, 298, 106. 

 

3.3.5 Limited packing capacity and rate-limited transduction 

For some genetic disorders where the delivery of large transgene expression 

cassettes is essential, the packing capacity of AAV vectors remains a major obstacle. 

The coding capacity for AAV vectors is restricted to approximately 4.5 kb pairs 58. 

The size of the transgene has been increased by the development of so-called trans-

splicing gene vectors. This approach takes advantage of the property of AAV 

genomes to form concatemers by head-to-tail recombination, thus allowing the 

reconstitution of a functional gene delivered by two vectors into the same target cell, 

as demonstrated by successful gene transfer to the retina 207 and into human cystic 
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fibrosis lung epithelia 153. Another strategy to minimize the size of the transgene is 

the use of minigenes that code only for essential regions of a protein of interest. 

Gene delivery of a truncated version of the dystrophin gene by AAV vectors led to 

restoration of the muscle contractile property in mdx mice 294. 

AAV vector transduction is characterized by a delayed onset of gene expression that 

limits its use for acute clinical applications. Addicted to the host cell DNA synthesis 

machinery, second strand synthesis in the host nucleus has been shown to be the 

major rate-limiting step in AAV vector transduction 71, 303. Self-complementary AAV 

(scAAV) vectors have the potential to counteract this rate-limiting step. ScAAV are 

generated by deletion of the D-sequence or mutation of the trs sequence of one ITR 

leading to a high percentage of self-complementary vectors. Independent of the need 

for de novo DNA synthesis or annealing of sense and antisense strands, dimeric 

AAV transgenes allow for rapid and increased expression of the transgene in several 

tissues in vivo, although the packing capacity of scAAV vectors is reduced to half of 

the size of conventional vectors 161, 208, 272. 

 

3.3.6 Host tropism 

AAV vectors have the capacity to deliver genes to a broad spectrum of dividing and 

non- dividing cell types and tissues in vitro and in vivo. Efficient and long term gene 

transfer has been demonstrated in skeletal muscle fibers 10, 74, 100, 290, cardiac tissue 
189, 261, airway epithelial cells 75, hepatocytes 236, 288 brain 17, 115, 289 and several cancer 

cell lines 92. On the other hand, some preferable gene delivery target cells are only 

moderately or not permissive for AAV-2 transduction, including embryonic stem cells 
234, hematopoietic cells 16, 194, 199, 200, 210, and endothelial cells 227. However, to obtain 

adequate gene transduction in the tissue of interest, the broad host tropism of AAV 

would require high vector doses if used for systemic gene therapy. This would result 

in undesirable transduction of nontarget tissues increased toxicity and immune-

mediated side effects.  

If applied systemically, AAV-2 mainly transduce the liver, but also additional tissues 
305. Thus vector application is limited to administration of the vector to a defined cell 

type ex vivo or for local administration. Vector targeting can be performed at two 

levels. Transcriptional targeting has been attained by the use of tissue-specific 

promoters 175, 271. However, specific promoters that generate adequate expression 

levels are not available for particular cell types and do not allow for gene transduction 
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in cells that are non-permissive for AAV infection. Alternative approaches aim to 

modify the vector’s capsid structure to generate receptor targeted vectors. 

 

3.4 Targeting AAV vectors to certain cell types 

The receptor diversity among different cell types, tissues and malignant cancer cells 

offers the potential to specifically target a cell type or tissue of interest. Such targeted 

delivery could highly improve the clinical benefit of therapeutic compounds by 

preventing their action in non-target tissues, thereby increasing therapeutic efficiency 

while diminishing adverse effects. The principle of receptor-targeted therapy has 

been exploited in several clinical applications and some have recently begun to prove 

their value. Moreover, therapeutic antibodies or small molecule ligands have the 

potential to block carcinogenesis and cell proliferation or even to specifically kill 

target cells if conjugated to cytotoxic agents.  

While viral vectors are most promising candidates for targeted gene therapy, 

targeting viral vectors in vivo faces several challenges that have not been overcome 

yet. These include the capacity of a vector to ensure sufficiently strong receptor-

ligand interaction under circulation conditions in vivo, the ability to escape clearance 

by the host immune system and the reticuloendothelial system, and to overcome 

physical barriers as the endothelial cell layer and the extracellular matrix 279.  

To generate targeted AAV vectors, several attempts aim to modify the capsid surface 

to improve interaction with cell type-specific surface molecules that would allow for 

efficient and specific gene delivery. 

 

3.4.1 Exploration of AAV serotypes, pseudotyping and mosaic capsids 

One opportunity to expand the tropism of AAV-2 is the exploitation of the variety of 

serotypes that differ in their transduction efficiencies for several tissues and cell types 
40, 287, 305. Several studies have verified that AAV-1 is the most appropriate serotype 

for muscle cell transduction, AAV-8 for liver and AAV-9 for cardiac transduction 40. 

Furthermore, pseudotyping AAV vectors by cross-packaging of an AAV genome into 

the capsid of another serotype could improve the in vivo transduction of certain 

tissues while circumventing problems of pre-existing immunity 140. Although the 

isolation of novel serotypes enables vector delivery to otherwise refractory cell types, 

the number of vector serotypes is far lower than their potential target tissues. An 



 INTRODUCTION 
 

19 

alternative approach is the generation of mosaic vectors from a mixture of different 

capsid subunits. This yielded vectors that combined the beneficial features of the 

originating vector capsids. Such vectors allow easy vector purification and have been 

shown to efficiently transduce muscle and liver 96 or vascular tissue 238. In addition, 

unexpected synergistic transduction effects on various cell lines were observed when 

AAV-1 subunits were mixed with AAV-2 or AAV-3, these transduction effects 

suggested a potential approach to generate vectors with novel tropisms 203. However, 

major drawbacks are the pre-existing antibodies against one of the parental 

serotypes and the difficulty to reproduce the exact stoichiometry of the generated 

capsid proteins in large scale vector production 140. In addition, like all serotype-

based targeted vectors, mosaic vectors do not seem to be capable of cell-type 

specific transduction. 

 

3.4.2 Ligand directed receptor targeting 

Several approaches aim to generate AAV vectors that display selective binding 

domains that enable a stringent interaction with specific target cell receptors. For this 

purpose, vectors have been modified basically in two ways, i.e. for indirect and direct 

targeting. 

Indirect targeting of AAV vectors is achieved by conjugating receptor-binding ligands 

to the capsids. Using bi-specific F(ab´γ)2 antibodies that are subsequently linked to 

the capsid, AAV vectors have been successfully retargeted to αııbβ3-expressing 

megakaryocytic cell lines 16. Another approach used avidin-linked epidermal growth 

factor (EGF) or fibroblast growth factor (FGF) fusion proteins conjugated to 

biotinylated AAV capsids to transduce human ovarian cancer and megakaryocytic 

cell lines 199. Although the use of conjugated ligands offers a high degree of 

versatility, such conjugates may increase immunogenicity, reduce infectivity, and lack 

of stability in vivo.  

In the direct targeting approach, cell-specific targeting of the vector is mediated by a 

ligand coding sequence that is inserted into the VP capsid gene and presented within 

the viral capsid surface. By insertion of a 14 amino acid peptide containing an RGD- 

containing, integrin-binding domain at position 587, the first successful transductional 

retargeting of AAV vectors to αvβ5 integrin expressing cells was demonstrated 81. 

Since then, several sites in the AAV capsid have been identified that can tolerate the 

incorporation of even large peptides that may be designed to expand the tropism of 
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AAV-2 vectors 155, 157, 210, 228, 230, 274, 286. However, among the tolerated insertion sites 

for ligands that have been investigated, the most promising is the region at amino 

acid positions 587/588 for several reasons. First, structural modelling revealed that a 

sequence inserted at this position into the cap gene is presented 60 times on the viral 

surface on the side of the peak at the threefold axis of symmetry. Peptides inserted 

at this position seem to be accessible for efficient receptor ligand interaction. Second, 

to generate selective and efficient retargeting of a vector, the binding to its natural 

receptor has to be eliminated. It has been shown that inserting peptides at positions 

adjacent to 585/588 interferes with the heparin binding motif composed of the five 

basic residues (at position 484, 487, 532, 585, 588) and therefore potentially 

abrogates the natural HSPG binding of AAV-2 capsids. This leads to a detargeting 

from the liver if vectors are applied systemically in vivo 124. Third, AAV vectors 

modified at position 587 have the potential to escape the neutralizing effects of 

human antibodies with regard to their transduction efficiency without losing their 

ability to infect cells via the targeted receptors 106.  

The design of the targeting peptide to generate targeted vectors is not an easy task. 

The use of phage display libraries allowing for the identification of targeted peptide 

ligands even without prior knowledge of their receptors has been a significant step 

forward in this field. For tissue targeting in particular, major advances have been 

made by the exploration of organ-specific “address molecules” expressed on 

endothelial surfaces by in vivo phage display 5, 93, 216, 253, 254. Several peptide ligands 

have been identified for a variety of tissues and have subsequently been used for 

delivery of cytotoxic drugs or other therapeutic agents in relevant preclinical models 

in vivo 4, 6, 7, 134. By incorporation of peptide ligands selected by phage display into the 

AAV capsid, AAV has been successfully retargeted to various tumor cell lines 228, 

CD13 expressing cells 88, endothelial cells 182 in vitro and to the vasculature in 

general 278 as well as vascular beds of lung and brain 284 and atherosclerotic lesions 
277 in vivo. However, despite some success in this regard, the targeting capacity of 

ligands isolated in the structural context of phage display may suffer from a reduction 

of receptor-ligand affinity when incorporated into the AAV capsid. Furthermore, 

peptides isolated by phage display screenings are commonly selected only for cell 

binding and not for cellular internalization and subsequent gene transfer.  
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3.4.3 Random AAV display peptide libraries 

Taking these limitations of conventional vector targeting into account, a ligand 

screening system based on the gene vector itself has recently been developed and 

validated 42, 174, 194. Such libraries designated as random AAV display peptide libraries 

allow the isolation of targeted AAV vector capsids from a multitude of potential 

targeting motifs each presented within an AAV capsid (Figure 4). 

AAV libraries are produced by cloning of a random oligonucleotide sequence 

encoding for a few random (e.g. seven) amino acids into the AAV cap gene at 

position N587 194 or R588 174 to generate a plasmid library. The virus library is 

obtained either by direct transfection of AAV producer cells with the library plasmids 
194, or by using a three step strategy. For the latter, the random plasmid library and 

an ITR-less plasmid encoding for the wild-type cap gene are co-transfected to 

produce AAV library transfer shuttles carrying chimeric capsids containing wild-type 

and library subunits. These transfer shuttles are subsequently used to infect wild-type 

permissive AAV producer cells at the lowest possible MOI to generate the final viral 

library with a diversity of up to 108 different viral library particles 174. This intermediate 

methodological step enables the production of AAV libraries that ensures the 

encoding of displayed peptides by the packaged AAV genome. Since each producer 

cell infected by a library shuttle can generate thousands of library particles, this 

technique furthermore allows the production of viral libraries titers comparable to 

rAAV vector stocks that would be mandoratory for in vivo selections. Due to 

homologous recombination processes, the final virus display library also contains 

contaminations with wild-type AAV that may reduce the diversity of the library and 

might interfere with the selection process on cell types or tissues partially susceptible 

to wild-type AAV2 infection. Waterkamp et al. further improved the quality of AAV 

libraries by using a novel constructed synthetic helper cap gene that allows for the 

production of entirely wild-type-free AAV random peptide display libraries 276. 
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Figure 4: Principle of random AAV displayed peptide libraries.  
An oligonucleotide encoding a peptide with random amino acids is cloned into the AAV cap gene and 
is presented 60 times within the surface-exposed GH-loop of VP proteins at position R588 (blue) at 
the top of each of the threefold spikes on the capsid surface. The natural tropism of the virus is 
abrogated and retargeted to alternative cellular receptors mediated by the peptide expressed on the 
capsid surface (adopted from Mueller et al. 2003 174). 
 

The screening of AAV peptide libraries occurs via the amplification of viruses that are 

taken up by target cells, mediated by the peptide displayed on their surface. 

Amplification of library viruses in the target cells is initiated by adenoviral co-infection 

(Figure 5). So far, capsid mutants displaying striking peptide motifs have been 

isolated from human coronary artery endothelial cells 174, human megakaryocytic and 

chronic lymphocytic leukemia (B-CLL) cell lines 194, lung carcinoma, prostate cancer 

and rat cardiomyoblasts 276 by in vitro biopanning of AAV display libraries. Vectors 

displaying the selected peptide insert have been show to efficiently and selectively 

transduce the cell type they were selected on. 
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Figure 5: Principle of the adenovirus-type 5 (Ad5)-based selection using random AAV peptide 
libraries.  
A random AAV peptide library is incubated on the target cells. Bound and internalized library viruses 
are subsequently amplified by superinfection with Ad5 and used for further rounds of selections to 
enrich cell type-directed virus capsids. Enriched peptide insertions are analyzed by DNA sequencing 
of recovered clones and rAAV vectors displaying selected peptide sequences can be produced. 
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3.5 Aim of the studies 

Targeted gene therapy is of particular interest as a treatment for a variety of entities, 

especially for disseminated cancer or other diseases that are not accessible by 

surgery or refractory to conventional therapies. An unsolved and yet crucial issue in 

this field is the lack of safe and efficient gene delivery systems that specifically 

transduce their target cells after systemic application.  

Vectors based on AAV-2 are a promising tool for therapeutic gene delivery since they 

meet several criteria in terms of safety and efficiency, but their tropism is unspecific. 

Screening AAV peptide libraries is a potential approach to select for targeted AAV 

vectors. 

Acute myeloid leukemia (AML) cells are particularly resistant to wild-type AAV 

transduction. The aim of the first part of this thesis was the selection of AAV capsids 

from random AAV display peptide libraries that enable for efficient targeted 

transduction of AML cells. Further steps were to characterize the isolated clones with 

a focus on transduction efficiency, specificity, and binding properties. A targeted 

cytotoxic gene transfer on AML cells using a previously selected capsid mutant was 

to be established. 

Screening AAV libraries in vivo may select for improved gene delivery vector capsids 

that target the tissue of interest under physiological conditions. The second part of 

this thesis was therefore to establish an adenovirus-free selection protocol and to 

perform in vivo selections of random AAV display peptide libraries to select for tissue-

targeted vector capsids. As potential target tissues for in vivo screening, breast 

cancer tissue in a polyoma middle T (PymT) transgenic mouse model and lung tissue 

derived from wild-type mice were to be used. The final aim was the characterization 

of isolated AAV clones. 
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4.1 Abstract 

For acute myeloid leukemia (AML), gene therapy may be used to treat patients 

refractory to conventional chemotherapy. However, availability of vectors sufficiently 

and specifically transducing this cell type is very limited. Here we report the selection 

of capsid modified adeno-associated viral (AAV) vectors targeting Kasumi-1 acute 

myeloid leukemia cells by screening random AAV displayed peptide libraries. The 

peptide inserts of the enriched capsid mutants share a common sequence motif. The 

same motif was selected in an independent library screening on HL 60 AML cells.  

Recombinant targeted vectors displaying the selected peptides transduced the target 

leukemia cells they have been selected on up to 500-fold more efficient compared to 

AAV vectors with control peptide inserts. One of the selected clones (NQVGSWS) 

also efficiently transduced all members of a panel of four other AML cell lines. 

Binding and blocking experiments showed that NQVGSWS binding to leukemia cells 

is independent of the wild-type AAV-2 receptor heparin sulfate proteoglycan.  

Transduction assays on a panel of hematopoietic and non-hematopoietic cell lines 

showed that the NQVGSWS capsid was able to overcome resistance to AAV-

transduction especially in hematopoietic cancer cells, whereas normal peripheral 

blood mononuclear cells and CD34+ hematopoietic progenitor cells were not 

transduced. Consequently, recombinant targeted NQVGSWS AAV vectors harboring 

a suicide gene conferred selective killing to Kasumi cells but not to control cells. This 

suggests that the AAV mutant selected here may be used as a tool to target 

therapeutic genes to acute myeloid leukemia cells. 

 

4.2 Introduction 

The majority of patients with acute myeloid leukemia (AML) will die of their disease.  

Less than 40% of the patients diagnosed with AML younger than 60 years of age can 

be cured 242. In the elderly, disease-free survival is rare and the available treatment 

options are limited 242. The advances in our understanding of the pathophysiology of 

acute myeloid leukemia have not yet translated into substantial improvements of 

survival of patients with this dismal disease. 

Gene therapy may be a valuable tool to treat AML refractory to chemotherapy as it 

has the potential to target specific biological features of cancer cells not being 

amenable to conventional chemotherapy. However, vectors that sufficiently and 
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specifically transduce this cell type are scarce. In fact, hematopoietic cells are 

considered particularly resistant to transduction compared to other cell types 16, 194, 

199, 200, 210. In turn, conventional viral and non-viral gene therapy vectors being able to 

transduce such cells usually do so unspecifically.  Therefore, safety and efficacy of 

human gene therapy continue to be a subject of debate 14, 20, 41, 177, 183, 253. Problems 

of current vectors include unintended transduction of certain tissues, adverse 

immune reactions, and lack of efficient transduction of the tissue of interest 41, 177, 256. 

Ablating the endogenous unspecific tropism of the vector and retargeting it to a 

specific tissue may overcome many of these safety and efficacy concerns. 

Recombinant adeno-associated virus vectors are promising because of their ability to 

mediate stable and efficient gene expression with a favourable biological safety 

profile 168, 249. Targeting AAV-2 vectors to alternative receptors can be achieved by 

insertion of specific peptide ligands into certain sites of the AAV capsid 41, 81, 88, 155, 174, 

177, 228, 229, 231, 253, 278, 285. Several sites in the AAV capsid were identified to be 

amenable to manipulation and incorporation of peptides but only a few of them have 

been systematically evaluated for insertion of targeting ligands to alter the cellular 

tropsim of AAV-2 155, 205, 228, 230, 286. While the unique VP1 and VP2 regions of the AAV 

capsid proteins seem to be suitable to express and display even large incorporated 

targeting peptides on the vector surface 228, 274, the majority of publications address 

sites in the VP3 protein of AAV-2 for targeting purposes. Girod et al. described three 

sites in the AAV-2 capsid at which an inserted integrin targeting peptide was exposed 

on the capsid surface 81. One of these, adjacent to an arginin at amino acid position 

588 (R588), showed preferential transduction of integrin-expressing 81 or CD13-

expressing cells 88. This capsid site has since been the most often used site to insert 

targeting ligands, leading to targeted transduction of various cell types such as 

endothelial cells or certain other cell lines 88, 182, 228, 278, 284, 285, particularly since 

peptide insertions at this site diminish heparin binding of the mutant particles and 

therefore abrogate their natural tropism. In fact, R588 has recently been shown to be 

one of four arginines that mediate attachment of AAV-2 to its natural receptor 124, 186. 

Inserting peptides adjacent to R588 most likely interferes with this heparin binding 

motif and therefore abrogates but not fully eliminates the natural tropism of AAV-2 

capsids. This allows for detargeting of the AAV-2 from the liver and retargeting to 

alternative tissues in vivo 278, 284 
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Based on this work, we 174 and others 194 have developed a novel vector capsid 

screening system based on random peptide libraries displayed on adeno-associated 

virus (AAV) type 2. Such libraries consist of viruses that display a potential targeting 

peptide with random sequence in a capsid region mediating virus binding to cellular 

receptors. Targeted AAV specifically transducing the cell type of interest can be 

selected from such libraries 174, 194, 195, 276. 

Here we used an AAV library to select vectors targeted to AML cells. The library was 

screened on Kasumi-1 AML cells and enrichment of a distinct peptide motif was 

observed.  Vectors displaying one of the enriched peptides transduced also AML cell 

lines other than the one used for selection. This leukemia targeting effect is 

independent of heparin-sulfate proteoglycan. Suicide gene therapy vectors encoding 

for the herpes simplex virus thymidine kinase gene packaged in the selected 

leukemia targeting capsids specifically kill the target leukemia cells upon treatment 

with the prodrug gancyclovir. 

This is the first report of selection and validation of AML-targeted AAV from a random 

vector display system and the use of such targeted vectors for cell type-directed 

cytotoxic gene therapy. This may have broad implications for the development of 

targeted vectors as a novel treatment option in this devastating disease. 

 

4.3 Materials and Methods 

4.3.1 Cell culture, transfection, virus production and titering 

Kasumi-1, U937, HL60, SKNO, K562, KG1a, NB4 myeloid leukemia cells were a gift 

from Michael Lübbert, University of Freiburg Medical Center. SiHa and U-2 OS cells 

were obtained from Jens Hasskarl, University of Freiburg Medical Center. L1236, 

LCL-GK, KMH-2, cells were a gift from Ursula Kapp, University of Freiburg Medical 

Center. LNCAP-C42 were obtained from Ursula Elsässer-Beile, University of 

Freiburg Medical Center. RPMI 8226 und Jurkat cells were obtained from ATCC 

(Manassas, IN).  293T cells were used with kind permission of Dr. David Baltimore, 

California Institute of Technology, Pasadena, California. Cells growing in suspension 

or semi-adherent cells (Kasumi-1, SKNO-1, U937, HL60, K562, L1236, RPMI 8226, 

LCL-GK, Jurkat, KMH-2, NB4, KG1a, LNCAP-C42) and adherent cells (293T, U-2 

OS, SiHa) were maintained in the appropriate media (DMEM for adherent or RPMI 

for suspension cells) containing 1% penicillin/streptomycin and 10% fetal calf serum 
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(20% for Kasumi-1 cells). Primary human peripheral blood mononuclear cells 

(PBMC) were obtained from voluntary healthy donors and isolated by ficoll density 

gradient centrifugation (LSM1077 Lymphocyte separation medium, PAA, Pasching, 

Austria). Primary CD34+ hematopoietic cells were isolated from leukapheresis 

material of a patient with Ewing’s sarcoma in remission by using the CD34+ 

Progenitor Cell Isolation Kit (Miltenyi Biotec, Germany) following to manufacturer’s 

instructions (the patient gave informed consent to use this material).  Primary cells 

were cultivated in RPMI containing 1% penicillin/streptomycin and 10% fetal calf 

serum. Transfections were performed by calcium phosphate precipitation 97 or 

PolyFect Transfection Reagent (Qiagen, Hilden, Germany). For production of AAV, 

293T cells were transfected with the pSub201 plasmid 217, or its mutant derivatives, 

respectively, along with pXX6 291 containing the adenovirus helper functions.  After 

72 h cells were harvested and viruses were purified by using iodixanol gradient 

ultracentrifugation 97. Wild-type adenovirus type 5 (Ad5, generously supplied by the 

Laboratoire de Thérapie Génique, Nantes, France) was used for library particle 

amplification and inactivated at 55 °C for 30 min after harvest of the cell lysate. The 

AAV capsid, and replicative titers were determined as described 89. The genomic titer 

was determined by quantitative PCR (SYBR Green, MyiQ apparatus, Biorad, Munich, 

Germany), using the primers 5’-GGCGGAGTTGTTACGACAT-3’ and 5’-

GGGACTTTCCTACTTGGCA-3’ 212 using vector plasmid DNA as a standard. 

 

4.3.2 Heparin binding 

5x109 AAV capsid particles in PBS containing 1 mM MgCl2 and 2.5 mM KCl (PBS-

MK) were bound to 1 ml heparin agarose (Sigma; St. Louis, MO), washed twice with 

5 ml PBS-MK, and eluted with 4 mL PBS containing 1 M NaCl.  Fractions were 

collected and analyzed with the A20-enzyme-linked immuno assay (ELISA) 89. 

 

4.3.3 AAV library production 

The random X7 AAV display peptide library was produced as described previously 
174.  Briefly, the degenerate oligonucleotide encoding the random seven residue 

peptide insert at position 3967 in the AAV genome was synthesized as follows 

(University of Freiburg Oligonucleotide Synthesis Core Facility): 5’-

CAGTCGGCCAGAGAGGC(NNK)7GCCCAGGCGGCTGACGAG-3’. The second 
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strand was added by using sequenase (Amersham; Freiburg, Germany) and the 

second strand primer 5’-CTCGTCAGCCGCCTGG-3’. The double stranded insert 

was purified using the QIAquick Nucleotide Removal Kit (Qiagen; Hilden, Germany).  

The 15 bp stuffer within pMT187-0-3 was cleaved by SfiI digestion and plasmid and 

insert were ligated at a 1:15 molar ratio. Ligated plasmids were transformed into 

electrocompetent DH5α bacteria using the Gene Pulser (Biorad; Munich, Germany). 

Plasmid library diversity was determined by the number of clones growing from a 

representative aliquot of the transformed bacteria on agar plates containing 150 

µg/mL ampicillin (1x108 clones). Transformed bacteria were grown to saturation and 

the library plasmids were purified using Qiagen’s Plasmid Preparation Kit. The AAV 

display peptide library was made from plasmids in a two-step system as described 
174. First, the AAV library genomes were packaged into chimeric wild-type and mutant 

AAV capsids (“AAV library transfer shuttles”). Therefore, 2.2x108 293T cells were 

transfected using a 1:1:2 ratio of the pXX2 plasmid (containing the wild-type cap 

gene without ITRs) 291 and the library plasmids along with the pXX6 helper plasmid 
291. The resulting AAV library transfer shuttles were harvested, purified and titered. 

The random AAV display peptide library was obtained by infection of 293T cells with 

the AAV library transfer shuttles at an MOI of 0.5 replicative units per cell and 

superinfection with Ad5 at an MOI of 7 plaque-forming units (pfu)/cell. The AAV 

library was harvested from the supernatant after 48 h, corresponding to approx. 50% 

cytopathic effect. The supernatant was concentrated using VivaSpin columns (Viva 

Science, Hannover, Germany) and the library viruses were purified using iodixanol 

gradient ultracentrifugation as described 174. 

 

4.3.4 AAV peptide library biopanning 

1.5x107 Kasumi-1 cells or 1.5x106 HL60 cells, respectively, were infected with the 

AAV display peptide library at an MOI of 100 capsids/cell (Kasumi -1 cells) or 1000 

capsids/cell (HL60 cells), respectively. After 5 h, cells were washed with PBS 

followed by incubation with Ad5 at an MOI of 100 pfu/cell (Kasumi-1 cells) or 500 

pfu/cell (HL60 cells), respectively. Replicated AAV particles were harvested from 

supernatant and from cell lysates (obtained by 3 freeze-thaw cycles) after 48 h.  For 

each subsequent selection round, 90% of the preselected AAV library particles 

recovered from the preceding selection round were reapplied to the target cells. 
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4.3.5 PCR and sequencing of AAV library clones 

DNA extracted by the QIAamp Tissue Kit (Qiagen) from harvested cells containing 

internalized AAV served as template for a PCR using the primers 5´-

GGTTCTCATCTTTGGGAAGCAAG-3´ and 5´-TGATGAGAATCTGTGGAGGAG-3´.  

PCR products were analyzed by gel electrophoresis, digested with BglI and cloned 

into the SfiI-digested pMT187-0-3 plasmid 174.  Randomly assigned clones were 

sequenced using the reverse primer 5´-CAGATGGGCCCCTGAAGGTA-3´. 

 

4.3.6 Production of capsid-modified rAAV 

The pXX2-187 plasmid is an AAV rep-cap construct containing the library cloning site 

required for peptide insertions in the capsid amino acid position R588 and lacking the 

flanking inverted terminal repeats. The pXX2-187 construct was cloned as follows: 

pXX2 148 and pMT187-0-3 174 were each digested with XbaI, releasing the rep-cap 

cassette from both plasmids. The rep-cap cassette from pXX2 was discarded and 

replaced by the rep-cap cassette derived from pMT187-0-3 containing the SfiI 

restriction site required for oligonucleotide cloning. To obtain rAAV-vectors carrying 

reporter genes, the cap gene region encoding the peptide insert was amplified by 

PCR as described for sequencing. The PCR product was digested with BglI and 

cloned into pXX2-187. 293T cells were co-transfected with the modified pXX2-187 or 

pXX2 for wild-type, respectively, pXX6 and the pUF2-GFP307 derivative pTRUF-CMV-

eGFP or pUF2-CMV-luc 276 or the HSV-tymidine kinase mutant SR39 94, respectively, 

as described above.  

  

4.3.7 Flow cytometric analysis of gene transduction 

To analyze gene transduction by AAV vectors harboring the gene encoding 

enhanced green fluorescent protein (GFP), 104 cells per well of each indicated cell 

type were seeded in 24-well plates and incubated with AAV GFP vectors at an MOI 

of 7500 capsids/cell. After three days, cells were harvested and GFP reporter gene 

expression was determined by FACS analysis (FACS Calibur, BD Biosciences, 

Heidelberg, Germany). CD34+ hematopoietic progenitor cells were stained with 

CD34-PE (BD Biosciences) and CD4-APC (DacoCytomation, Denmark) labelled 

antibodies. In co-cultivation experiments, populations of Kasumi-1 cells and CD34+ 

hematopoietic progenitor cells were gated in the CD34 and CD4 plot and the amount 
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of GFP positive cells was analyzed.  Isotype controls were IGg1κ (BD Biosciences, 

Germany). 

 

4.3.8 Luciferase gene transduction 

To analyze luciferase gene transduction, 5x103 Kasumi-1 cells per well were seeded 

in 96-well plates and incubated with AAV-luciferase vectors at an MOI of 7500 

capsids/cell. After three days, cells were harvested and reporter gene activity was 

determined using the firefly luciferase assay (Promega, Mannheim, Germany) 

according to the manufacturer’s instructions.   

 

4.3.9 Heparin competition assay 

7.5x107 rAAV-vector capsids carrying the GFP reporter gene were incubated for 45 

min with 0, 5, 50, 150, 500 µg/mL heparin sodium salt (Sigma) in medium containing 

supplements.  104 cells per well were incubated with the AAV-heparin mix.  After 12 

h, heparin and AAV vectors were removed, cells were washed with PBS and fresh 

medium was added. Transgene expression was determined after 72 h by FACS 

analysis (FACS Calibur, BD Biosciences, Heidelberg, Germany). 

 

4.3.10 Suicide gene transfer and gancyclovir treatment 

5x103 cells per well were seeded in 96-well plates and transduced with rAAV-SR39 

vectors at an MOI of 1000 vector genomes per cell (vg/cell). After two cycles of 10 

µM gancyclovir treatment (24 h and 72 h post transduction), the number of viable 

cells was assessed by MTT assay (Sigma, St. Louis, MO).   

 

4.4 Results 

4.4.1 Screening of a random AAV display peptide library yields enrichment of 
a peptide motif 

To select for AAV capsids with high transduction efficiency in acute myeloid leukemia 

cells, Kasumi-1 acute myeloid leukemia cells were infected with the AAV library at an 

MOI (multiplicity of infection) of 100 capsids per cell. Cells were superinfected with 

wild-type adenovirus type 5 (Ad5), allowing for amplification of internalized AAV 
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library clones.  Amplified AAV were recovered and subjected to two more rounds of 

selection to enrich for AAV particles that bind to, are internalized by, and replicate 

within leukemia cells. The DNA region containing the oligonucleotide insert of AAV 

particles recovered from leukemia cells after each round of selection was amplified 

by PCR, verifying that exclusively AAV with cap genes containing the random insert 

were amplified (Figure 6). DNA sequencing of the subcloned PCR products revealed 

enrichment of peptides sharing common patterns after selection (Table 1). The 

sequenced clones were almost invariably characterized by an N in position 1, T or V 

in position 3 and L in position 3 or 4. Interestingly, a very similar pattern was 

observed upon selection on another acute myeloid leukemia cell line. In independent 

experiments, an X7 AAV display peptide library was selected on HL60 acute myeloid 

leukemia cells and the oligonucleotide inserts of enriched clones were amplified by 

PCR (Figure 6). In this selection, in addition to the expected 359 base pair band 

containing the oligonucleotide insert, we also observed a smaller band corresponding 

to the size of the wild-type PCR product. This band most likely derived from the wild-

type AAV particles which are an unavoidable part of the unselected library due to 

homologous recombination events taking place during library shuttle production 174. 

The additional wild-type band faded from selection round to selection round 

indicating enrichment of AAV clones containing peptide inserts. The enriched clones 

were sequenced after three rounds of selection. Only two different peptide clones 

were identified: NAVTATS and NRVTDFP, showing sequence similarity especially in 

position 1 and 3 with the clones selected on Kasumi-1 cells. All of the enriched 

clones from each round of selection on Kasumi-1 cells were used for further analysis. 
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Figure 6: PCR amplification of the genomic AAV DNA fragment containing the modified cap 
gene region at different stages of selection.   
DNA of AAV library pools obtained after 1, 2, or 3 rounds of selection on Kasumi-1 cells or HL60 cells 
served as templates; DNA of wild-type AAV as well as a clone randomly picked from the unselected 
library (VRRPRFW ) were used as controls. The upper band corresponds to a fragment of the cap 
gene containing the library oligonucleotides. The lower band corresponds to the PCR product of the 
wild-type cap gene. The unselected library contains a certain amount of wild-type genomes (see text).  
No wild-type band was amplified after selection on Kasumi-1 cells, while a wild-type band fading from 
round to round was amplified in HL60 cells, indicating that the applied AAV particles were bound and 
propagated more efficiently than wild-type AAV. 
 

Table 1: Amino acid sequences of enriched mutant AAV clones after selection of an 

X7 random AAV display peptide library on Kasumi-1 acute myeloid leukemia cells. 

clone (peptide 
sequence)* 

round 1 † round 2 † round 3 † 

 
NYVLGAD 

 
78.4% 

 
55.2% 

 
51.5% 

 
NDSRLSV 

 
8.1%

 
-

 
9.1% 

 
NSTLPLS 

 
5.4%

 
13.8%

 
12.1%

 
VNSTRQS 

 
2.7%

 
-

 
3.0% 

 
NQVGSWS 

 
2.7%

 
3.4%

 
12.1%

 
NVSFLRE 

 
2.7% 

 
- 

 
- 

 

*   shared sequence patterns are highlighted in bold letters 

†  the observed frequency of each sequence is given in relation to the overall number of readable          
sequences in this round of selection (37 in round 1, 29 in round 2, 33 in round 3). 
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4.4.2 Targeted AAV efficiently transduce acute myeloid leukemia cells 

To produce capsid modified rAAV, oligonucleotides encoding peptide inserts of the 

isolated clones from each round of selection were inserted into a helper plasmid 

without ITRs (pXX2-187) for vector production. Helper plasmids with the wild-type 

cap gene or a control insert randomly picked from the unselected library (VRRPRFW) 

were used as controls. Vector productions were performed as described in material 

and methods. The vector titers obtained ranged between 5x1010 and 1.0x1012 

capsids/ml and 1x1010 and 1.0x1012 vector genomes (vg)/ml, respectively, after 

iodixanol density gradient purification (Table 2). 

 

Table 2 : Titers of recombinant AAV-2 vectors. 

 

* capsid titers of viral stocks were determined by AAV-2 ELISA. 

** vector genomes of viral stocks were determined by quantitative real time PCR as described in 

material and methods. 

 

To determine the transduction efficiency of the selected library clones, rAAV vectors 

displaying the selected peptide inserts or a control insert, Kasumi-1 cells were 

capsid titer* 
(capsids/ml) 

genomic titer** 
(vector genomes (vg)/ml) clone (peptide 

sequence) 

rAAV-eGFP rAAV-eGFP rAAV-luc rAAV-SR39

wild-type 5.56x 1011 5.79 x 1010 1.2 x 1012 1.1 x 1012 

random insert 5.37 x 1010 2.13 x 1010 8.5 x 1010 1.1 x 1010 

N Y V L G A D 1.32 x 1011 2.42 x 1010 - - 

N D S R L S V 1.31 x 1011 1.7 x 1010 - - 

N S T L P L S 2.29 x 1011 n.d. ** - - 

V N S T R Q S 3.37 x 1011 2.2 x 1010 - - 

N Q V G S W S 1.02 x 1012 2.3 x 1011 4.7 x 1011 8.3 x1010 

N V S F L R E 2.29 x 1011 8.74 x 1010 - - 
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transduced with GFP-vectors.  FACS analysis revealed that the vectors displaying 

the selected peptide variants had a 5-fold to 60-fold better transduction efficiency 

compared to vectors carrying a wild-type AAV2 capsid, and up to 500-fold better 

transduction efficiency compared to vectors carrying a capsid with a random control 

insert (Figure 7A). The NQVGSWS clone invariably achieved the highest 

transduction efficiency in all experiments. In dose escalation experiments, the 

transduction efficiency of this clone could be increased to 90%, whereas control 

vectors displaying a random peptide did not show significant transduction in Kasumi-

1 cells, even at high MOI (Figure 7B). Targeted transduction of Kasumi-1 cells by the 

NQVGSWS clone was also evaluated in an independent reporter gene assay using 

vectors harbouring a luciferase reporter gene. While no or weak luciferase activity 

was detectable in cells transduced with vectors carrying a random capsid insert or 

wild-type AAV capsid, respectively, cells transduced with AAV-NQVGSWS showed 

strong luciferase activity (Figure 7C). 
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Figure 7: Transduction of Kasumi-1 cells with targeted AAV vectors.  
A: The selected AAV clones harboring GFP transduce Kasumi-1 cells. Kasumi-1 cells were 
transduced at an MOI of 7.5x103 capsids per cell with recombinant AAV vectors harboring a green 
fluorescent protein (GFP) reporter gene packaged into modified or wild-type AAV-2 capsids. The 
peptide insertion VRRPRFW served as a random control. Transduction efficiencies were evaluated 72 
h later by FACS analysis.  Values are shown in % fluorescent cells. Data represent mean values plus 
standard deviation from 3 independent experiments.  
B: NQVGSWS-AAV transduce Kasumi-1 cells at very high efficiency. Transduction efficiency was 
evaluated as in A, using the NQSGSWS clone and controls in various MOIs (vg/cell). Data represent 
mean values plus standard deviation from triplicates. 
C:  Kasumi-1 cell transduction by selected AAV using an independent reporter gene system. 
Kasumi-1 cells were transduced using AAV- vectors carrying a luciferase reporter gene. Transduction 
efficiencies were evaluated 72 h later by measuring relative light units (RLU) after substrate edition to 
the cell lysate. Data represent mean values plus standard deviation from 12 wells in two independent 
experiments.   
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Next, we asked whether the targeted AAV clone NQVGSWS also transduces acute 

myeloid leukemia cells other than the cell line it was selected on.  Four AML cell lines 

were transduced with AAV GFP-vectors at an MOI of 7.5x103 capsids per cell which 

is the MOI needed to achieve submaximum transduction efficiency in Kasumi-1 cells 

by the NQVGSWS clone (Figure 8).  In these cell lines, the transduction efficiency of 

wild-type rAAV vectors was only slightly above background level. Vectors displaying 

the NQVGSWS targeting peptide, however, transduced all of the AML cell lines at a 

level of approx. 3-fold to 40-fold more efficient than wild-type vectors. These data 

suggest that the NQVGSWS clone is suitable for targeting acute myeloid leukemia 

cells. 

 

 
Figure 8: Transduction of AML-cell lines other than Kasumi-1 by leukemia-targeted AAV 
vectors.  
Acute myeloid leukemia cells were transduced at an MOI of 7.5x103 capsids per cell with recombinant 
AAV vectors harboring a green fluorescent protein (GFP) packaged into modified or unmodified AAV-2 
capsids (NQVGSWS selected peptide insert, VRRPRFW random control insert, or wild-type AAV).  
Transduction efficiencies were evaluated 72 h later by FACS analysis. Values are shown in % 
fluorescent cells.  Data represent mean values plus standard deviation from triplicates. 
 

4.4.3 Transduction of target cells by the selected capsid mutants is 
independent of the natural AAV-2 receptor heparan sulfate proteoglycan 

In the capsid of wild-type AAV-2, the region surrounding amino acid position 588 is 

involved in the binding to the primary AAV-2 receptor heparan sulfate proteoglycan 

(HSPG) 182, 245, 286.  Introduction of peptide ligands into this region abrogates binding 

of AAV-2 to its natural attachment receptor to a variable degree, largely depending 

on the peptide ligand used for insertion 81, 88, 174, 194, 228, 230. Therefore, the role of 

heparan sulfate proteoglycan in the transduction of targeted AAV must be 

determined for each individual targeting peptide cloned into the 588 site of the AAV-2 
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capsid. Several experimental approaches were used to investigate this issue. First, 

we determined binding of wild-type and targeted AAV particles to heparin agarose. 

All capsid mutants selected on Kasumi-1 cells as well as a random control from the 

unselected library showed significantly reduced heparin binding compared to wild-

type capsids (Table 3).  Next, we evaluated transduction efficiency of the selected 

clones in pgsD677 cells, a heparan sulfate proteoglycan-deficient CHO cell mutant 
151, 245. As expected, neither wild-type nor rAAV-GFP vectors displaying a random 

control peptide transduced this cell line at a significant level (Figure 9A). In contrast, 

the NQVGSWS clone selected from Kasumi-1 cells, transduced pgsD677 cells at a 

level of up to 34% (Figure 9A). Finally, Kasumi-1 cells were transduced by the 

NQVGSWS clone in presence and absence of soluble heparin at various 

concentrations 245. No inhibition but rather a slight enhancement of transduction was 

observed (Figure 9B), while a concentration-dependent inhibition of wild-type AAV 

transduction was observed in 293T cells, proving that the soluble heparin is 

functional. Taken together, these data clearly demonstrate that the AAV NQVGSWS 

clone selected on Kasumi-1 cells transduces its target cells by means of an 

attachment receptor other than heparan sulfate proteoglycan. 
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Table 3: Binding of leukemia-targeted AAV to immobilized heparin compared to 

binding of wild-type AAV-2 *. 
 

 

Clone (peptide sequence) 

 

% of wild-type AAV-2 binding 

 
wild-type 

 
100 

 
random insert 

 
13 

 
NYVLDAG 

 
13 

 
NDSRLSV 

 
18 

 
NSTLPLS 

 
21 

 
VNSTRQS 

 
5 

 
NQVGSWS 

 
23 

 
NVSFLRE 

 
36 

 

* 5x109 AAV-2 capsids with or without enriched peptide insertion (random control insert = VRRPRFW) 

were applied to immobilized heparin as described. Eluted AAV were quantified by capsid ELISA. 

Binding of wild-type AAV-2 without peptide insertion was set to 100%. 
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Figure 9: NQVGSWS-mediated targeting of AAV is independent of the natural AAV-2 
attachment receptor heparan sulfate proteoglycan (HSPG).  
A: Transduction of HSPG-negative pgsD677 cells by targeted and untargeted AAV.  Cells were 
transduced at an MOI of 7.5x103 capsids per cell with recombinant AAV vectors harboring a green 
fluorescent protein (GFP) packaged into modified or wild-type AAV-2 capsids as indicated. The control 
insert was VRRPRFW.  Transduction efficiencies were evaluated 72 h later by FACS analysis.  Values 
are shown in % fluorescent cells. Data represent mean values plus standard deviation from triplicates.  
B: Kasumi-1 cell transduction by targeted AAV is independent of soluble heparin.  Kasumi-1 or 
293T control cells were transduced at an MOI of 7.5x103 capsids/cell using NQVGSWS-AAV or wild-
type AAV harboring a green fluorescent protein gene. Vectors were incubated with indicated amounts 
of heparin for 45 min prior to transduction. Transduction efficiencies were evaluated 72 h later by 
FACS analysis. Values are shown relative to % fluorescent cells in untreated controls which are set to 
1. Data represent mean values plus standard deviation from triplicates. 
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4.4.4 Transduction efficiency of the NQVGSWS clone is superior to wild-type 
AAV transduction efficiency preferentially in hematopoietic cancer cells 

The NQVGSWS AAV-peptide mutant was the one with the best transduction 

efficiency in all AML cell lines tested. Therefore this clone was chosen for further 

characterization. Our previous work suggested that the screening of random AAV 

display peptide libraries on distinct cell types reveals selection of distinct peptide 

motifs 174, 194, 276. This selection of cell type specific peptide motifs even without 

negative selection strategies prompted us to screen a panel of hematopoietic and 

non-hematopoietic cell types for their susceptibility to transduction by the NQVGSWS 

clone. The panel included lymphoma cells (L1236, LCL, Jurkat, KMH-2), myeloid 

leukemia cells (NB4, KG1a), multiple myeloma cells (RPMI 8226), osteosarcoma 

cells (U-2 OS), cervical cancer cells (SiHa) and prostate cancer cells (LNCAP-C42). 

AAV-GFP vectors displaying the NQVGSWS peptide transduced 7 out of 11 cell lines 

better than wild-type AAV vectors (Figure 10). All of these cell lines were 

hematopoietic while all of the cell lines in which the NQVGSWS clone showed no 

advantage over or was inferior to wild-type AAV vectors were non-hematopoietic.  

 
Figure 10:  Transduction on different cell types by the AAV-NQVGSWS clone. 
Various hematopoietic and non-hematopoietic cell lines were transduced at an MOI of 7.5x103 capsids 
per cell with recombinant AAV-GFP vectors displaying the NQVGSWS insert, a random insert control 
(VRRPRFW) or wild-type capsid, respectively. Transduction efficiencies were evaluated 72 h later by 
FACS analysis. Values are shown in % fluorescent cells. Data represent mean values plus standard 
deviation from triplicates.  
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4.4.5 CD34+ primary hematopoietic progenitor cells and peripheral blood 
mononuclear cells are not susceptible to transduction with the 
NQVGSWS clone 

To further test the specificity of the selected NQVGSWS clone, we determined its 

transduction efficiency on isolated primary human CD34+ progenitor cells (> 90%) 

and peripheral blood mononuclear cells (PBMCs). In contrast to Kasumi 1 cells, both 

of these non-neoplastic hematopoietic cell types were not transduced by the 

NQVGSWS clone (Figure 11A). To test the vector specificity in a coculture system, 

Kasumi-1 cells were co-cultivated with primary CD34+ hematopoietic progenitor cells 

and infected with AAV-GFP vectors displaying the NQVGSWS peptide. Here again, 

NQVGSWS vectors efficiently transduced Kasumi cells while normal CD34+ 

hematopoietic progenitor cells where not transduced (Figure 11B). In conjunction 

with the data presented above, these findings confirm that the NQVGSWS-mediated 

AAV-transduction is preferentially targeted to hematopoietic cancer cells and not to 

solid tumor cells or normal hematopoietic cell types.   
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Figure 11:  Lack of transduction of primary human CD34+ hematopoietic progenitor cells and 
peripheral blood mononuclear cells by the AAV-NQVGSWS clone. 
A: AAV-NQVGSWS fails to transduce non-neoplastic hematopoietic cells. Kasumi-1, normal 
CD34+ hematopoietic progenitor cells and normal peripheral blood mononuclear cells from a healthy 
donor were transduced at an MOI of 1400 vg/cell with recombinant AAV-GFP vectors. Transduction 
efficiencies were evaluated after 72 h by FACS analysis. Values are shown in % fluorescent cells. 
Data represent mean values plus standard deviation from triplicates.  
B: AAV-NQVGSWS specifically transduces Kasumi-1 cells in co-culture with non-neoplastic 
hematopoietic cells. Kasumi-1 cells and CD34+ hematopoietic progenitor cells were co-cultured at a 
1:10 ratio in 24 well plates. The co-culture was infected at an MOI of 1400 vg/cell with capsid-modified 
AAV-GFP vectors. After 48h, cells were stained with CD34+ PE- and with CD4-APC conjugated 
antibodies (because approx. 20% of the normal progenitor cells turned CD34 negative after 48 h. The 
percentage of transduced Kasumi-1 or normal CD34+ cells was determined by analyzing the GFP 
positive cells gated for each corresponding cell type shown in C. Values are shown in % fluorescent 
cells.  Data represent mean values plus standard deviation from triplicates.  
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4.4.6 NQVGSWS-mediated targeted expression of the HSV-TK suicide gene 
confers selective killing of Kasumi-1 cells after gancyclovir treatment 

The ultimate goal of efficient and selective gene transfer into acute myeloid leukemia 

cells is selective killing of these cells by therapeutic gene delivery. Towards this end, 

we produced wild-type and tropism-modified AAV vectors harboring SR39 29, a 

derivative of the HSV-TK suicide gene. We transduced Kasumi-1 cells with these 

AAV-SR39-vectors at an MOI of 1000 vector genomes (vg)/cell. Cells transduced by 

vectors carrying the wild-type capsid or the control capsid were almost resistant to 

gancyclovir prodrug treatment. In contrast, Kasumi-1 cells transduced by vectors with 

the NQVGSWS capsid insert showed strong cytotoxic effects upon gancyclovir 

treatment (Figure 12A). To show that AAV-NQVGSWS-mediated cell killing is specific 

for the cell type this clone was selected on, we compared AAV-NQVGSWS-mediated 

killing in Kasumi-1 cells with killing in SiHa cervical cancer control cells. Unlike in 

Kasumi-1 cells, cytotoxic effects in SiHa cells were only observed after wild-type 

AAV-mediated, but not after AAV-NQVGSWS-mediated SR39 gene transfer (Figure 

12B). These findings confirm that the selected NQVGSWS AAV capsid allows for 

acute myeloid leukemia-directed cytotoxic gene transfer. 
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Figure 12: Leukemia-directed therapeutic suicide gene transfer using tropism-modified AAV 
capsid mutants. 
A: Cells were transduced at an MOI of 103 vg/cell using recombinant AAV-SR39 vectors carrying wild-
type capsids, or capsids with NQVGSWS insert or capsids with VRRPRFW control insert, respectively.  
Four days after initiation of gancyclovir (GCV) treatment, cytotoxic effects were evaluated by MTT 
assay. Values are shown in % cytotoxicity (determined as 100% minus % viable cells) compared to 
non-treated cells. Data represent mean values plus standard deviation from nine wells in three 
independent experiments.  
B: Kasumi-1 and SiHa cells were transduced using wild-type AAV or NQVGSWS AAV vectors, 
respectively, and cytotoxicity was evaluated following GCV treatment as described in A. Data 
represent mean values plus standard deviation from nine wells in independent experiments. 
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4.5 Discussion 

Targeting gene therapy vectors to specific cell types continues to be a major issue of 

interest 177, 183, 251. Some of the hurdles due to the lack of tropism can be overcome 

by the use of vectors with specific viral serotypes like it has been shown for adeno-

associated viral vector targeting to muscle tissue 30, 273 or airway epithelia 246. 

Hematopoietic cells and leukemia cells in particular, are refractory to transduction 

using currently available gene transfer strategies. Therefore novel, more efficient 

vector systems are needed to transduce this cell type satisfactorily. A random 

screening system based on adeno-associated virus type 2 (AAV-2) allows for the 

selection of receptor-targeted AAV from a library of up to 108 different capsid mutants 
174, 194. Such combinatorial approaches have significant advantages over the 

introduction of known receptor binding peptides (e.g. selected from phage display 

libraries) into the viral capsids because targeting ligands are selected 1) that allow for 

sufficient assembly and production of the virus, 2) that take the unique protein 

context of the capsid surrounding the targeting ligand into account during selection, 

3) that are selected by their ability to allow for virus internalization and expression of 

viral genes within the target cell. Comparable approaches have also been introduced 

for other vector systems 42. We have used this system to select AAV capsid mutants 

that efficiently transduce Kasumi-1 acute myeloid leukemia cells, a cell line that is 

poorly susceptible to transduction by wild-type AAV-2 vectors. The selection revealed 

a peptide motif designated as NSV/TLLXS. One of the selected clones containing a 

variant of this motif (NQVGSWS) increased in frequency from one selection round to 

the next. Vectors displaying this NQVGSWS peptide also transduced acute myeloid 

leukemia (AML) cells other than Kasumi-1 at a degree considerably superior to wild-

type AAV-based vectors, suggesting that the receptor targeted by NQVGSWS is 

expressed also in other AML cells and may characterize neoplastic hematopoietic 

cells in general. This assumption is supported by the fact that in a large screening 

experiment using a panel of hematopoietic and non-hematopoietic cancer cells the 

superiority of the NQVGSWS clone over wild-type AAV vectors was restricted to 

leukemia and lymphoma cells. Even though our selection method did not differentiate 

between malignant and non-malignant hematopoietic cells, the AAV-NQVGSWS 

specifically transduced AML cells but not normal hematopoietic cells. It remains to be 

determined in further studies whether the NQVGSWS clone also transduces 

leukemic stem cells. Further limitations of AAV as leukemia-targeted therapeutics 
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may be the need for repetitive application provoking immune responses. Here, 

however, targeted AAV may have considerable advantages over wild-type vectors, 

not only because the may evade the preexisting immunity against AAV 106 but also, 

because the targeted particles may be less exposed to the immune system as they 

specifically and efficiently transduce one cell type. 

Our results indicate that the targeted transduction of leukemia cells mediated by the 

NQVGSWS clone is independent of the natural AAV-2 attachment receptor heparan 

sulfate-proteoglycan 245, as the clone showed abrogation of heparin binding in affinity 

chromatography experiments. Further, the clone was able to transduce the heparan 

sulfate deficient cell line pgsD677 and finally, the Kasumi-1-cell transduction could 

not be competed even with excessively high concentrations of heparin. It is generally 

assumed that AAV transduction involves binding of the capsid to an attachment 

receptor 245 followed by interaction with an independent cell entry receptor such as 

αVβ5 integrin 244, fibroblast growth factor receptor-1 202, hepatocyte growth factor 

receptor (c-Met) 118, laminin receptor 1 or additional as yet unknown internalization-

triggering receptors. It is unkown which and how many AAV capsid domains interact 

with such secondary receptors. Future research may reveal to which extend peptide 

insertions at the R588 site may influence AAV capsid interaction with the various 

secondary receptors described so far. 

AAV has been targeted to a number of different cell types such as endothelial cells 
174, 177, 182, 278 and also to hematopoietic cells in previous reports 16, 194, 210, 228.  Most of 

these studies used known ligands or antibodies binding to known receptors on 

leukemia cells. Earlier reports have used chemical conjugates to target AAV to 

leukemia cells 16, 199, 210. These studies were a valuable proof of principle approach to 

show that AAV can be retargeted to alternative receptors 16, 199, 210. Inserting the 

targeting ligand directly into the adeno-associated viral capsid was first reported by 

Girod et al. 81. This strategy has significant advantages over using chemical 

conjugates in regard to handling, potential immunogenicity and particle size 174.  Most 

of the reports targeting hematopoietic cells used antibody ligands to known receptors 

on hematopoietic cells. Only one study used a combinatorial approach to select for 

viral capsids that are optimized for transduction while the potential targeting receptor 

is not predetermined 194. In this study, two peptides (GENQARS und QNEGSRA) 

were selected for optimized transduction of human B-cell chronic lymphatic leukemia. 

One of these two peptides may show similarity to one of the clones presented here in 
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that it has an NQXXS pattern (X = any amino acid), even though the similarity is 

otherwise vague and it is speculative to assume that both peptides may bind a similar 

class of receptor. Our report complements these previous studies in that we selected 

capsid mutants for optimized transduction of a panel of acute myeloid leukemia cells. 

Of note, the multiplicity of infection (MOI) rates of targeted vectors needed in our 

study to achieve high level transduction efficiency in the targeted cell lines were 

considerably lower than in the above mentioned reports 16, 194, 199, 210 suggesting 

higher targeting efficiency of our vectors. The difference of transduction efficiency of 

the clones described here compared to the mutants described in previous reports 194 

may be due to the different procedure in library making 174, 194 which may lead to 

different diversities of the libraries used for selection and therefore a different 

likelihood of selection of the optimal mutant for transduction. A direct side-by-side 

comparison of both libraries on the same cell type would be needed to confirm this 

assumption. 

In our experiments, the observed frequency of clones after three rounds of selection 

does not fully correlate with transduction efficiency of vectors displaying the targeting 

peptides that were selected. Such mismatch of clonal frequency and targeting 

efficiency has been described before in a comparable setting using replication-based 

amplification of targeting capsid mutants 174. Two reasons may contribute to this 

effect: 1) the process of replication is not equal to the process of transduction even 

though both processes may share common pathways. Therefore, a clone having an 

advantage in cell entry over another clone may not necessarily replicate faster if it, 

for instance, displays a targeting peptide that is disadvantagous for capsid assembly. 

2) The superinfection with Ad5 allowing for replication of the clones internalized into 

the target cell is by far not 100% efficient, especially in leukemia cells. Thus, some 

clones may replicate more efficient in round 2 and 3 just because more of the 

leukemia cells infected by this clone were superinfected by Ad5 by chance. 

This is the first report of selection and validation of transduction-optimized cytotoxic 

AAV vectors targeted to acute myeloid leukemia from a random vector display 

system. We conclude that the AAV mutant presented here may be used as a 

valuable tool to target therapeutic genes to acute myeloid leukemia cells as a novel 

treatment option in this and potentially other malignant hematopoietic diseases. 

 



PART 1: VECTORS FOR LEUKEMIA-CELL TARGETED GENE THERAPY 

50 

4.6 Acknowledgements 

We thank Drs. Florian Otto, Roland Mertelsmann, Christoph Peters, for helpful 

discussions and critical reading of the manuscript. This work was supported by the 

Deutsche Forschungsgemeinschaft (grants TR448/5-1 and TR448/5-3 to MT and KL 

516/6-1 and KL 516/8-2 to JAK and the Deutsche José Carreras Leukämie-Stiftung 

R03/10 to MT).  We thank the Laboratoire de Thérapie Génique, Nantes, France, for 

providing wild-type Ad5, and Dr. Jude Samulski, Chapell Hill, NC, for the pSub201, 

pXX2 and pXX6 plasmids. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PART 2: IN VIVO SCREENINGS OF RANDOM AAV LIBRARIES 
 

51 

5 Potential and limitations of random AAV display 
peptide libraries screenings in vivo for tissue targeted gene 

transfer 
 

Stefan Michelfelder1,2, Johannes Kohlschütter3, Alexandra Skorupa2, Sabrina 

Pfennings2, Oliver Müller4, Jürgen A. Kleinschmidt4, Martin Trepel1, 2, 3 

 

University of Freiburg Medical Center, 1 Dept. of Hematology and Oncology and 2 

Institute for Molecular Medicine and Cell Research, Hugstetter Str. 55, D-79106 

Freiburg, Germany 

3 University Medical Center Hamburg-Eppendorf, Department of Hematology and 

Oncology, Martinistr. 52, D-20246 Hamburg, Germany 

4 Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 

Heidelberg, Germany 

 

Submitted to Molecular Therapy 

 

 

 

 

 

 

 



PART 2: IN VIVO SCREENINGS OF RANDOM AAV LIBRARIES 
 

52 

5.1 Abstract 

Targeting viral vectors to certain tissues in vivo has been a major challenge in gene 

therapy. Cell type-directed vector capsids can be selected from random peptide 

libraries displayed on viral capsids in vitro but so far this system could not easily be 

translated to in vivo applications. Using a novel amplification protocol for peptide 

libraries displayed on adeno-associated virus (AAV), we established proof of concept 

that vectors selected for optimized transduction of primary cells in vitro are not 

necessarily suitable for transduction of the same target cells under in vivo conditions.  

We therefore performed selections of AAV peptide libraries in living animals after 

intravenous administration using tumor and lung tissue as prototype targets.  

Analysis of peptide sequences of AAV clones after several rounds of selection 

yielded distinct sequence motifs for both tissues. The selected clones indeed 

conferred gene expression in the target tissue while gene expression was 

undetectable in animals injected with control vectors. However, all of the vectors 

selected for tumor transduction also transduced heart tissue and the vectors selected 

for lung transduction also transduced a number of other tissues, particularly and 

invariably the heart. This suggests that more than one capsid region of AAV must be 

modified to achieve tissue-specific transgene expression. While the approach 

presented here does not yield vectors whose expression is confined to one target 

tissue, it is a useful tool for in vivo tissue transduction when expression in tissues 

other than the primary target is uncritical. 
 

5.2 Introduction 

Efficient and specific delivery of therapeutic genes to the tissue of interest is a 

paramount and so far unsolved issue in gene therapy.  Therefore, despite a wealth of 

potential transgenes evaluated in vitro, gene therapy has failed to evolve beyond the 

stage of an experimental therapeutic tool with considerable debate regarding its 

safety and efficacy. 

Among the available viral vectors for gene delivery, adeno-associated virus (AAV) 

has gained particular attention recently. The low frequency of random integration into 

the genome 47 and the moderate immune response make AAV an attractive basis for 

gene therapy vector design 24, 54. No substantial safety issues have been 

encountered in a number of clinical trials involving AAV vectors 47. Like in almost all 
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other gene therapy vectors, the lack of target tissue specificity of AAV remains of 

concern. This may partly be circumvented by using AAV serotypes with an in vivo 

gene transduction pattern most closely fitting the needs of the application 305. Also, 

the tropism of AAV capsids may be changed by combining parts of the natural 

serotype diversity (reviewed in 287). Alternatively or in addition, peptides mediating 

binding to the cell type of interest can be identified by random phage display library 

screening and subsequently be introduced into an AAV capsid region critical for 

receptor binding 81, 88, 181, 228, 277, 278, 284. Such peptide insertions into or other 

mutational manipulations of the heparin binding domain adjacent to VP capsid 

protein position R588 can abrogate the natural tropism of AAV-2 capsids and result 

in de-targeting from the liver in vivo 124, 174, 195.  The identification of numerous tissue-

directed peptide ligands during the last decade 4-6, 43, 66, 114, 131, 133-135, 141, 156, 191, 201, 206, 

255, 299 would seem to supply almost unlimited potential for the introduction of ligands 

into AAV capsids to establish targeted gene delivery in vivo. This approach has 

indeed been reported to be successful using certain peptides 277, 278, 284. Yet, our own 

experience has been, that for many peptides cell tropism changes or gets lost after 

inserting them into the AAV capsid (author’s unpublished observation). This may be 

due to a number of reasons. First and foremost, the peptide’s conformation may 

change unpredictably when incorporated into the structural AAV capsid context, 

leading to a reduced receptor-ligand affinity and specificity. Further, peptides isolated 

by phage display screenings are commonly selected based on receptor binding but 

not on subsequent internalization, nuclear transfer, and transgene expression. To 

overcome these obstacles, we and others have developed a screening system based 

on random peptide libraries displayed directly on AAV capsids 174, 194. In this system, 

the AAV library particles are amplified based on binding, uptake and viral gene 

expression in the target cell via adenoviral helper co-infection. Capsid mutants 

efficiently transducing various different cell types have been isolated from such 

libraries by in vitro biopanning on the cells of interest 165, 174, 194, 226, 276. 

Despite the obvious importance of the question, it remains open for most of these 

vectors whether or not they are suited for targeted gene transfer after systemic 

administration in vivo as vector targeting in vivo faces several hurdles which are not 

present in vitro. These include ligand-receptor interactions under circulation 

conditions, host-anti-vector immune reactions and rapid vector clearance from the 

circulation by the reticuloendothelial system, and endothelial cell layers as well as the 
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extracellular matrix acting as physical barriers 279. In vivo selection of random AAV 

peptide libraries for efficient and tissue-specific vector transduction after systemic 

administration in vivo has not been performed so far. In one recent report on 

screening of an AAV peptide library in vivo in mice, vectors were applied via the 

airways 90. While the recovered vectors mediated lung gene transfer after topic 

application to the airways, they exhibited almost unchanged tropism compared to 

unselected vectors after systemic application via the blood stream. Among the 

limitations faced by in vivo AAV display library selection is the difficulty to rescue and 

amplify tissue-targeted library viruses for multiple selection rounds as the 

amplification systems used in vitro are based on adenoviral superinfection and can 

therefore not easily be applied in living animals. 

Here we address the unsolved issues raised above. We set out to isolate tissue-

directed AAV capsids from AAV display peptide libraries. Therefore, we established a 

novel adenovirus-free PCR based amplification protocol to select AAV libraries over 

multiple screening rounds after systemic application in vivo. While the selected 

vectors indeed transduced their target tissue orders of magnitude better than 

unselected vectors, we almost invariably observed unintended transduction of heart 

tissue, suggesting that more than one capsid region of AAV must be modified to 

achieve tissue-specific transgene expression mediated by vectors selected from AAV 

display peptide libraries. 

 

5.3 Material and Methods 

5.3.1 Cells and cell culture 

HeLa, MCF-7, and 3T3 cells (all obtained from American Type Culture Collection 

ATCC, Manassas, VA) as well as 293T cells (kindly provided by David Baltimore, 

California Institute of Technology, Pasadena, CA), were maintained in Dulbecco’s 

Modified Eagle’s medium (DMEM; Invitrogen, Carlsbad, CA) containing 1% 

penicillin/streptomycin solution (Invitrogen) and 10% fetal calf serum (FCS; 

Biochrom, Berlin, Germany). Primary mouse hepatocytes were prepared as 

previously described 129 and cultivated in Williams’ Medium E (WME; Sigma-Aldrich, 

St. Louis, MO) supplemented with 10% FCS, 100 nM dexamethasone, 2 mM L-

glutamine and 1% penicillin/streptomycin. Primary murine breast cancer cells were 

obtained from tumors growing in female transgenic FVB mice expressing the 
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polyoma middle T antigen under the control of the mouse mammary tumor virus 

promoter 91, 152 as previously described 260.  Briefly, tumors were cut into small pieces 

and digested for 1 h at 37 °C in collagenase 2 solution (Biochrom), dissolved in PBS, 

10% 2 mM MgCl2/CaCl2 and 10% BSA. The cell suspension was passed through 100 

µm and 40 µm cell strainers, washed twice with PBS, and cultured in Iscove’s 

Modified Dulbecco’s Medium (IMDM; Invitrogen) containing 10% fetal bovine serum, 

10% horse serum, 1% penicillin/streptomycin, and 1.25 µg/ml amphotericin B 

(Invitrogen). All cells were cultured in a humidified atmosphere at 37 °C and 5% CO2. 

 

5.3.2 Animals and tumor staging 

The mouse strain FVB/N-TgN(MMTVPyVT)634-Mul (PymT) was purchased from 

Jackson Laboratory (Bar Harbor, ME).  All procedures involving animals were 

performed according to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No. 85-23, revised 

1996) and the German Animal Protection Code. Genotyping was performed by 

polymerase chain reaction (PCR) as described by Jackson Laboratory (www.jax.org).  

Starting at the age of 30 days, transgenic female mice were palpated weekly for early 

detection of mammary tumors. The animals were anesthetized by intraperitoneal 

injection of 100 mg/kg body weight 10% ketamine hydrochloride (115.34 mg/ml; 

Essex, Munich, Germany) and 5 mg/kg body weight 2% xylazine hydrochloride 

(23.32 mg/ml; Bayer, Leverkusen, Germany). 

 

5.3.3 AAV library biopanning in vitro and in vivo 

A random X7 AAV display peptide library (random insert introduced at position R588 

VP1 capsid protein numbering) with a diversity of 2x108 random clones at the cloned 

plasmid level was produced using a three-step protocol as described previously 165, 

174. For in vitro biopanning (Figure 13, pathway A), 2x106 primary PymT breast 

cancer cells were incubated with the AAV library at a multiplicity of infection (MOI) of 

1,000 vector genomes (vg)/cell in selection round 1, 500 vg/cell in round 2, and 100 

vg/cell in round 3. After 96 hours, unbound AAV library particles were removed by 3 

washing steps in PBS. Surface-bound library viruses were detached by trypsin 

digestion for 20 minutes and subsequent washing. Extensive screening experiments 

on Kasumi-1 AML cells demonstrated that this additional trypsin digest is essential to 
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enrich clones for improved gene transduction (Ag Trepel, unpublished observations). 

Whole cellular DNA was extracted using the QIAamp Tissue Kit (Qiagen, Hilden, 

Germany). The random oligonucleotides contained in AAV library particles 

internalized into tumor cells were amplified by PCR using the primers 5’-

GGTTCTCATCTTTGGGAAGCAAG-3’ and 5’-TGATGAGAATCTGTGGAGGAG-3’. 

For in vivo/ex vivo biopanning of AAV peptide libraries (Figure 13, pathway B), 1x1010 

vg of an AAV library for selection round 1, or 2x108 to 2x109 vg per animal for round 

2-4 were injected into the tail vein of female PymT transgenic mice bearing palpable 

breast tumors. After 24 hours, primary breast cancer cells were prepared as 

described above and grown in vitro for 96 hours.  Oligonucleotide inserts of targeted 

AAV library particles were amplified by nested PCR using whole cellular DNA as 

template. Primers were 5’-ATGGCAAGCCACAAGGACGATG-3’ and 5’- 

CGTGGAGTACGTTGTTAGGAAG-3’ for the first PCR and 5’-

GGTTCTCATCTTTGGGAAGCAAG-3’ as well as 5’-

TGATGAGAATCTGTGGAGGAG-3’ for the second PCR. Pure in vivo library 

biopanning (Figure 13, pathway C) was performed along the same lines, except that 

the circulation time was 48 hours and that DNA extraction from the tumor tissue was 

done without prior ex vivo growth of the cells. To select for lung homing AAV, 

libraries were injected into the tail vein of 6-week-old female PycB/FVB wild-type 

mice (n=2 animals per selection round) as described for tumor selections (Figure 13, 

pathway C). DNA of whole lung tissue extracts from two animals was extracted, 

pooled and used as template to amplify the random oligonucleotide of lung-homing 

AAV.  We varied the time of AAV blood circulation before lung harvest in 2 alternative 

selection approaches (5 minutes followed by a perfusion step, 48 hours in round 1, 

48 hours or 6 days for round 2, and 6 days for round 3 to 4).  For all selections, PCR 

products were analyzed by agarose gel electrophoresis to verify correct size, 

digested with BglI and cloned into the SfiI-digested pMT-202-6 library backbone 

plasmid 165, 174.  Cloned AAV library plasmids were transformed into electrocompetent 

E. coli DH5-α (Invitrogen) using the Gene Pulser (Bio-Rad, Hercules, CA).  Randomly 

assigned clones were sequenced using the reverse primer 5’-

CAGATGGGCCCCTGAAGGTA-3’. For production of pre-selected AAV peptide 

libraries, 2x108 293T cells were transfected with the library plasmids at a ratio of 25 

plasmids/cell using Qiagen’s PolyFect reagent. PUC18 (Invitrogen) served as carrier 

DNA. Two hours after transfection, 293T cells were superinfected with wild-type 
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adenovirus type 5 (Ad5, supplied by the Laboratoire de Thérapie Génique, Nantes, 

France) at an MOI of 5 infectious particles/cell for library particle amplification. After 

48 h, or when cell lysis became apparent, cells were detached from the culture dish 

in PBS-MK (140 mM NaCl, 5.5 mM KCl, 8 mM Na2HPO4, 1.5 mM KH2PO4, 1 mM 

MgCl2) and pooled with supernatants. AAV library particles were harvested by cell 

lysis via three freeze-thaw cycles. Cellular DNA was removed by incubation with 

benzonase (Sigma) at 50 U/ml lysate at 37 °C for 30 min, followed by Ad5 

inactivation at 55 °C for 30 min. Viral library preparations were purified using the 

iodixanol gradient centrifugation method as previously described 97, 98. The 40% 

iodixanol fraction containing the purified AAV viruses was stored at -80 °C until 

further use. 

 

5.3.4 Production of capsid modified recombinant AAV vectors 

Recombinant AAV (rAAV) vectors displaying selected peptide sequences were 

generated by cloning the oligonucleotide inserts into the pXX2-187 plasmid (a 

derivative of the library backbone plasmid pMT-187-0-3 without ITRs) 165, 276. 293T 

packaging cells were transfected with the modified pXX2-187 (or pXX2 for wild-type 

AAV-2 capsid controls), pXX6 291, and a plasmid carrying a reporter gene or a toxic 

transgene of interest using PolyFect. Packaged reporter genes included the 

enhanced Green Fluorescent Protein (eGFP) gene contained in the plasmid pUF2-

GFP, a derivative of pTRUF-CMV-eGFP 307, or the luciferase (luc) gene in the 

plasmid pUF2-CMV-luc 276. The HSV thymidine kinase mutant SR39 94 was used as 

a cytotoxic suicide gene. Cells were harvested 96 hours after transfection, and 

vectors were purified by iodixanol gradient centrifugation as described above.  

 

5.3.5 AAV titration and evaluation of vector homing and serum distribution 

The AAV capsid titers were determined as described 89 by ELISA (Progen, 

Heidelberg, Germany). The genomic titers of recombinant AAV vectors and AAV 

libraries were determined by quantitative PCR using the Absolute SYBR Green 

fluorescein master mix (Abgene, Epsom, UK) and the MyiQ cycler (Bio-Rad) as 

previously described 212, 213.  Vectors were quantified using the forward primer 5’-

GGCGGAGTTGTTACGACAT-3’ and the reverse primer 5’-

GGGACTTTCCTACTTGGCA-3’ specific for the CMV promoter sequence. The 
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genomic titer of AAV libraries was determined using the forward primer 5’-

GCAGTATGGTGTATCTACCAA-3’ and the reverse primer 5’-

GCCTGGAAGAACGCCTTGTGT-3’ specific for the AAV cap gene.  Real-time PCR 

was done in 20 µl with 0.3 µM for each CMV primer, or 0.4 µM for each AAV primer, 

respectively, according to the manufacturer’s protocol (Abgene). For CMV primers, 

annealing temperature was 64 °C for 15 seconds. For AAV primers, annealing 

temperature was 61 °C for 30 seconds. Fluorescence was measured at the end of 

each annealing phase. A standard curve for quantification was generated by serial 

dilutions of the respective vector plasmid DNA. Calculations were done using MyIQ 

analysis software (Bio-Rad). For quantification of vectors homing to lung tissue, 

5x1010 capsid-modified rAAV-luciferase vectors were injected into the tail vein of 

female PycB/FVB wild-type mice (n=3 per group). After 8 days, lung tissue was 

removed. Whole DNA was extracted using the DNeasy tissue kit (Qiagen) and 

quantified using a 2100Pro spectrophotometer (Amersham Pharmacia Biotech, 

Uppsala, Sweden). For real-time PCR, 500 ng of extracted genomic DNA were used 

as template to amplify vector specific DNA using CMV primers as described above.  

To determine the amount of circulating AAV library or wild-type viruses in the blood, 

1x1010 vg were injected into the tail vein of PycB/FVB wild-type mice. Blood was 

obtained at indicated time points and centrifuged for 2 minutes at 10.000 rpm. Cell-

free serum was diluted 1:100 in ddH2O and used as template for real-time PCR using 

AAV specific primer pairs as described above.  

 

5.3.6 Luciferase gene transduction 

To analyze luciferase gene transduction in vitro, 2x104 cells per well were seeded in 

24-well plates or 5x103 cells per well in 96-well plates and incubated with AAV-

luciferase vectors at an MOI of 104 vg/cell for 72 h. For in vivo gene transfer, 5x1010 

vg of rAAV-luciferase vectors were injected into the tail vein of anesthetized animals. 

After 8 or 28 days, respectively, the target tissue and representative control tissues 

were removed, snap frozen in liquid nitrogen, and stored at -80 °C. Frozen tissue 

samples and cell lysates were homogenized in reporter lysis buffer (RLB, Promega, 

Madison, WI) and luciferase reporter gene activity was determined in a luminometer 

(Centro LB 960, Berthold Technologies, Bad Wildbad, Germany) using Promega’s 

luciferase assay according to the manufacturer’s instructions. If required, values were 

normalized to protein levels in each probe determined by Bradford assay (Bio-Rad). 
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5.3.7 Flow cytometric analysis 

To analyze transduction by AAV vectors harboring the gene coding for the enhanced 

green fluorescent protein (eGFP), 5x104 PymT cancer cells per well were seeded in 

24-well plates and incubated with AAV GFP vectors at an MOI of 10.000 vg/cell for 

72 h. GFP reporter gene expression was determined using a flow cytometer 

(FACSCalibur, BD Biosciences, Franklin Lakes, NJ) and CellQuest Pro analysis 

software. Cell viability was confirmed by counterstaining with propidium iodide (PI) 

solution (Sigma). 

 

5.3.8 Immunostaining of primary PymT mouse tumor cells 

Primary PymT cells were transduced with AAV GFP vectors at an MOI of 10.000 

vg/cell. After three days, cells were fixed in 3.7 % paraformaldehyde for 10 minutes 

at room temperature. Cells were permeabilized with 0.2% Triton X-100 in PBS for 10 

minutes and blocked with PBG (1x PBS, 0.5% BSA, and 0.2% fish gelatin) for 1 hour 

at room temperature. For cytokeratin staining, cells were incubated with a pan-

cytokeratin antibody (Sigma) 1:50 in PBS/ 3% BSA for 1 hour at 37 °C, followed by 

incubation with a goat anti-mouse antibody conjugated to Texas Red (Sigma) for 1 

hour at 37 °C. Cells were mounted in VectashieldTM mounting fluid containing DAPI.  

Images were acquired using an AxioVert200 microscope (Zeiss, Oberkochen, 

Germany) and AxioVision 4.5 analysis software. 

 

5.3.9 Suicide gene transfer and toxicity assay 

Cells were seeded at 5x103 per well in 96-well plates and transduced with rAAV-

SR39 vectors at an MOI of 10.000 vg/cell. After two cycles of 10 µM ganciclovir 

(GCV) treatment (24 h and 72 h after transduction), the number of viable cells was 

assessed as described 171, 233. Cells were incubated with medium containing 500 

µg/ml MTT (Invitrogen) for 4 h. Subsequently, absorbance of formazan crystals 

dissolved in SDS/HCl was measured at 570 nm in a SpectraMAX microplate reader 

(Molecular Devices, Sunnyvale, CA). 
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5.3.10 Statistics 

Statistical analysis was performed using the GraphPad Prism program 3.0 

(GraphPad Software, San Diego, CA). Parametric data were analyzed by one-way 

analysis of variance followed by a Bonferroni post test. Non-parametric data were 

analyzed by a Kruskal-Wallis test followed by a Dunns post test. p values < 0.05 

were considered significant. 

 

5.4 Results 

5.4.1 PCR based screening of a random AAV display peptide library on 
primary PymT breast cancer cells yields enrichment of specific peptide 
motifs 

To isolate AAV-2 capsids for targeted gene transfer in primary breast cancer cells of 

transgenic PymT mice, we prepared tumor cells and screened an X7 random AAV 

display peptide library in vitro along the lines of pathway A in Figure 13. Because 

AAV-2 does not (or not to a detectable extent) replicate in these cells after 

superinfection with adenovirus type 5 (Ad5) (Figure 14), we developed a selection 

protocol by which internalized AAV library particles are amplified based on PCR 

amplification of their random oligonucleotide insert (Figure 13). The cap gene region 

containing the oligonucleotide insert of AAV recovered from breast cancer cells after 

each round of selection was amplified by nested PCR and correct size of the 

amplification product was verified by agarose gel electrophoresis (data not shown). 

The insert was cloned back into the library backbone plasmid pMT202-6 and the 

diversity of transformed library plasmids was at least 1x105 clones for such 

secondary libraries in this and subsequent selections (Tables 4 and 5). New pre-

selected AAV particle libraries were obtained by transfection of 293T cells with the 

generated secondary plasmid library in limiting dilution technique (25 library plasmid 

molecules per producer cell) to minimize the production of chimeric AAV library 

particles or mismatch of packaged DNA and displayed peptide due to uptake of 

multiple library genomes in one producer cell. The titers obtained with this approach 

were sufficient for further selection rounds (Tables 4 and 5). To increase the 

stringency of selection, MOIs of AAV libraries were decreased from 500 vg/cell to 

100 vg/cell in rounds two and three, respectively. Sequence analysis showed 

enrichment of several clones after two rounds of selection compared to round 1, 



PART 2: IN VIVO SCREENINGS OF RANDOM AAV LIBRARIES 
 

61 

functionally validating our novel selection protocol. Peptide sequences found after 

round 1 were RGDLGLS, RGDMSRE, DGLGRLV, and DRSPLSL. After three rounds 

of selection, RGDLGLS and RGDMSRE were the dominant clones (Table 6). Both 

peptides share the sequence motif RGDXXXX. 

 
Figure 13: Pathways used for selection of targeted viral capsids by screening random AAV 
display peptide libraries. 
For all selection pathways, genomic DNA containing cap gene fragments from internalized library 
viruses was extracted from the target cells or tissue. Library inserts were amplified by nested PCR and 
cloned back into the AAV library backbone plasmid pMT-202-6. The resulting pre-selected plasmid 
library was used to produce a secondary AAV library by transfection into 293T cells and subsequent 
superinfection with Ad5. Pre-selected AAV libraries were re-subjected to selection on the target cells 
in vitro or the target tissue in vivo. Preceding the amplification step, the library selection was done 
according to one of the following three pathways: 
Pathway A, in vitro selection: A random AAV display peptide library was incubated on primary 
breast cancer dissociation cultures derived from female tumor-bearing PymT mice. Non-internalized 
but cell-bound AAV library particles were removed by extensive washing followed by trypsin digestion 
prior to DNA extraction and AAV insert amplification. 
Pathway B, in vivo/ex vivo selection: A random AAV display peptide library was injected 
intravenously into female tumor-bearing PymT mice. After 24 hours, primary tumor cells of the injected 
mouse were prepared as in pathway A and grown ex vivo for 96 hours prior to DNA extraction and 
AAV insert amplification. 
Pathway C, in vivo selection:  A random AAV display peptide library was injected as in pathway B in 
tumor-bearing mice (for selection of tumor-homing AAV) or wild-type mice (for selection of lung 
homing AAV), respectively. After 48 hours, the target tissue (tumor or lung, respectively) was removed 
and lysed, and DNA was extracted for AAV insert amplification 
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Table 4: Characterization of AAV libraries used for selections on tumor tissue. 

Selection round 
Selection pathway 

round 1 round 2 round 3 round 4 

 
Pathway A (in vitro) on tumor 
cells 
Step 1: plasmid library 
Independent clones / library a 

 

Step 2: virus library b 
Genomic titer (vg/ml) 

Capsid titer (capsids/ml) 

 
Pathway B (in vivo/ex vivo) on 
tumor tissue 
Step 1: plasmid library 
Independent clones / library a 

 

Step 2: virus library b 
Genomic titer (vg/ml) 

Capsid titer (capsids/ml) 

 
Modified pathway B (in vivo/ex 

vivo) on tumor tissue 
(subsequent to 2 rounds of in vitro 

selection pathway A) 

Step 1: plasmid library 
Independent clones / library a 

 

Step 2: virus library b 
Genomic titer (vg/ml) 

Capsid titer (capsids/ml) 

 
Pathway C (in vivo) on tumor 
tissue 
Step 1: plasmid library 
Independent clones / library a 
 
Step 2: virus library b 

 

 

 

 

1.1x106 

 

 

1.4x109 

n.d. 

 

 

 

 

2x106 

 

 

4.2x109 

n.d. 

 

 

 

 

 

 

n.a. 

 

 

n.a. 

n.a. 

 

 

 

 

1x106 

 

 

 

 

 

 

5.5x106 

 

 

2.7x109 

n.d. 

 

 

 

 

4x106 

 

 

6.2x108 

n.d. 

 

 

 

 

 

 

n.a. 

 

 

n.a. 

n.a. 

 

 

 

 

4.1x106 

 

 

 

 

 

 

5x107 

 

 

n.a. 

n.a. 

 

 

 

 

5.5x106 

 

 

1.1x109 

n.d. 

 

 

 

 

 

 

1x106 

 

 

8.8x108 

n.d. 

 

 

 

 

1x105 

 

 

 

 

 

 

n.a. 

 

 

n.a. 

n.a. 

 

 

 

 

3.5x106 

 

 

n.a. 

n.a. 

 

 

 

 

 

 

1x105 

 

 

n.a. 

n.a. 

 

 

 

 

2.5x105 
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a The diversity of plasmid libraries was determined by the amount of transformed bacterial clones. 
b The genomic and capsid titer of the virus libraries was determined as described in material and 

methods. 

n.d.  not determined 

n.a.  not applicable because no virus solution was prepared 

 
Table 5: Characterization of AAV libraries used for selections on lung tissue. 

 
a The diversity of plasmid libraries was determined by the amount of transformed bacterial clones. 
b The genomic and capsid titer of the virus libraries was determined as described in material and 

methods. 

n.d.  not determined 

n.a.  not applicable because no virus solution was prepared 

 

Genomic titer (vg/ml) 

Capsid titer (capsids/ml) 

4.1x109 

n.d. 

2.2x109 

n.d. 

3.6x109 

n.d. 

n.a. 

n.a. 

Selection round 
Selection approach 

round 1 round 2 round 3 round 4 

 
5 min circulation in 1st round on 
lung tissue 
Step 1: plasmid library 
Independent clones / library a 

 

Step 2: virus library b 
Genomic titer (vg/ml) 

Capsid titer (capsids/ml) 

 
2 days circulation in 1st round on 
lung tissue 
Step 1: plasmid library 
Independent clones / library a 

 

Step 2: virus library b 
Genomic titer (vg/ml) 

Capsid titer (capsids/ml) 

 

 

 

 

1x106 

 

 

9x108 

3.3x109 

 

 

 

 

2.5x106 

 

 

2.4x109 

9x109 

 

 

 

 

2.5x106 

 

 

6x108 

n.d. 

 

 

 

 

2.5x105 

 

 

5x108 

n.d. 

 

 

 

 

2.5x107 

 

 

1.2x109 

n.d. 

 

 

 

 

2.5x107 

 

 

2.5x108 

n.d. 

 

 

 

 

1x107 

 

 

n.a. 

n.a. 

 

 

 

 

1.2x105 

 

 

n.a. 

n.a. 
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Figure 14: AAV-2 does not replicate in primary PymT cancer cells upon superinfection with 
Ad5. 
Primary PymT breast cancer or 293T control cells were infected at an MOI of 1,000 vg/cell using wild-
type AAV-2. Two hours after infection, cells were superinfected with Ad5 helper virus (100 infectious 
units/cell). Cells were harvested at 0, 24, and 48 hours after Ad5 infection. DNA was extracted and the 
amount of AAV genomes was determined by quantitative PCR. Data represent mean values plus ± SD 
from triplicates. 
 

Table 6: Peptides enriched after PCR-based in vitro selection (pathway A) of AAV 

peptide libraries on primary breast cancer cells. 

 
Peptide sequence a Frequency in selection round b 

 
 

 

round 1 

 

round 2 

 

round 3 

RGDLGLS - 3/10 6/9 

RGDMSRE - 1/10 3/9 

DGLGRLV - 3/10 - 

DRSPLSL 1/6 2/10 - 
 

a single letter code; shared amino acid patterns are highlighted in colored letters 

b observed frequency relative to overall number of sequenced clones 
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5.4.2 Selected AAV capsids efficiently target primary breast cancer cells 

To test whether the selected AAV capsid mutants allow for targeted gene delivery in 

primary PymT breast cancer cells, we produced rAAV luciferase vectors displaying 

the selected peptides RGDLGLS, RGDMSRE, and DGLGRLV for further analysis.  

These vectors transduced primary PymT breast cancer cells up to 17.8-fold better 

than wild-type AAV-2 vectors, and up to 3,500-fold better than vectors displaying an 

unselected random peptide (VRRPRFW) (Figure 15A). 

Since primary tumor tissue consists of tumor parenchymal (epithelial), tumor stroma 

and vascular endothelial cells, we evaluated which cell type in the primary culture is 

transduced by the selected AAV. We produced RGDLGLS and DGLGRLV as well as 

control insert vectors harboring a GFP reporter gene and assessed transduction by FACS 

analysis, confirming gene expression data obtained from the luciferase transduction 

experiments. Fluorescence microscopy of transduced PymT cells with cytokeratin 

immunostaining revealed that the selected vectors only transduce cytokeratin-

positive cells, suggesting that targeted cells are epithelium-derived, i.e. parenchymal 

(Figure 15B). 

The targeted luciferase AAV clones RGDLGLS and DGLGRLV transduced MCF-7 

human breast cancer cells at a rate comparable to primary PymT breast cancer cells, 

whereas HeLa cervical cancer cells, 3T3 mouse fibroblasts and primary mouse 

hepatocytes were not permissive for transduction with the selected capsid variants 

while they could be efficiently transduced with wild-type AAV (Figure 16), suggesting 

target specificity of the selected clones. These findings were further corroborated by 

experiments using modified vectors harboring SR39, a derivative of the HSV-tk 

suicide gene 29, 94, 132.  Primary PymT breast cancer cells transduced by vectors with 

the RGDLGLS capsid insert showed strong cytotoxic effects upon ganciclovir 

treatment, whereas cells transduced with control vectors were almost resistant to 

ganciclovir (Figure 15C). Taken together, these findings suggest RGDLGLS-AAV as 

a promising candidate for targeted gene transfer to breast cancer cells and 

demonstrate that our novel Ad5-free, PCR-based biopanning protocol allows for 

selection of targeted AAV vectors from random AAV display peptide libraries. 
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Figure 15: Vectors selected from random AAV display peptide libraries for targeted gene 
transfer in primary breast cancer cells. 
A: Transduction of primary PymT breast cancer cells by selected AAV capsid variants. Primary 
PymT breast cancer cells were transduced by recombinant AAV-2 luciferase reporter gene vectors 
displaying the selected capsid peptide inserts RGDLGLS, RGDMSRE, or DGLGRLV, respectively.  
Capsids with no (wild-type) or random peptide insert (VRRPRFW) were used as controls.  
Transduction efficiency was determined after 72 hours by luciferase assay. Luciferase activities are 
shown in relative light units (RLU) per well. Data represent mean values ± standard deviation (SD) 
from one representative experiment (out of three) in triplicates (*** p<0.001 compared to wild-type and 
random insert controls). 
B: Selected AAV-2 capsid mutants transduce epithelial cytokeratin-positive breast cancer cells.  
Primary breast cancer cells were transduced using selected AAV-2 vectors (RGDLGLS, DGLGRLV) or 
unselected controls (random insert displaying VRRPRFW) harboring a green fluorescent (eGFP) 
reporter gene. Transduction efficiencies in primary PymT cells were evaluated by FACS analysis 72 
hours after transduction. The white numbers in the left panel show the percentage of GFP-positive-
gated viable cells (quantitative data represent mean values ± SD from triplicates). Cells were stained 
with a pan-cytokeratin antibody and a secondary antibody conjugated to Texas Red. Nuclear 
counterstaining was done with DAPI.  Scale bar: 100µm.  
C: Breast cancer cell-targeted therapeutic suicide gene transfer using selected capsid mutants. 
Primary PymT cells were transduced using rAAV-SR39 vectors displaying RGDLGLS or a randomly 
selected control peptide (VRRPRFW). Four days after initiation of ganciclovir (GCV) treatment, 
cytotoxic effects were evaluated by MTT assay. Values are shown in % cytotoxicity (i.e. % killed cells).  
Untreated and untransduced cells served as controls.  Data represent mean values ± standard error of 
the mean (SEM) from nine wells in three independent experiments (*** p<0.001 selected clone and 
treated cells vs. all controls). 
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Figure 16: Selected AAV vectors efficiently transduce breast cancer derived cells. 
MCF-7 breast cancer cells, HeLa cervical cancer cells, 3T3 mouse fibroblasts and primary mouse 
hepatocytes were transduced with rAAV vectors harboring a luciferase reporter gene packaged into 
selected AAV-2 capsids or controls (wild-type or VRRPRFW).  Luciferase activities in cellular lysates 
were measured after 72 hours and were normalized to protein levels in each sample.  Data represent 
mean values ± SD from at least 6 wells in two independent experiments. ** p<0.01; *** p<0.001 
targeted vectors vs. random insert control. 

 

5.4.3 Targeted AAV selected on PymT breast cancer cells in vitro fail to 
transduce PymT tumors in vivo 

We investigated whether the capsid mutants selected in vitro can target PymT breast 

tumors in vivo. AAV luciferase vectors displaying the selected peptides RGDLGLS, 

RGDMSRE, DGLGRLV, an unselected control peptide, or no peptide (wild-type 

AAV), respectively, were injected intravenously into female PymT mice bearing 

breast cancers. After 8 days, tumor tissue and several control organs were harvested 

and reporter gene expression was analyzed. None of the applied vectors mediated 

transgene expression in the tumor tissue (Figure 17). Yet, interestingly, each clone 

showed a unique in vivo transgene expression pattern. While AAV-RGDLGLS 

mediated strong cardiac luciferase expression, no expression was observed in the 

liver tissue. In contrast, RGDMSRE mediated gene expression in heart and liver, 

showing that even variations in very few amino acids may have a considerable 

influence on the vector’s in vivo transduction profile. A weak luciferase gene 

expression in mice injected with wild-type AAV vectors was exclusively found in liver 

tissue, while hardly any expression was observed after transduction with the random 
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insert control or the AAV mutant displaying the DGLGRLV peptide. These findings 

show that vectors selected for optimized transduction of a certain cell type in vitro do 

not necessarily transduce the same cells in vivo upon systemic administration. Thus 

we set out to take this into account during the selection process and established a 

protocol for screening AAV peptide libraries in vivo in living animals under 

physiological circulation conditions. 
 

 
Figure 17: Targeted AAV selected in vitro on primary PymT tumor cells fail to transduce tumor 
cells in vivo.   
AAV luciferase vectors displaying selected (RGDLGLS, RGDMSRE, DGLGRLV) or control capsids 
(wild-type or VRRPRFW) were injected intravenously into PymT transgenic female tumor bearing mice 
(5x1010 vg per mouse).  After 8 days, tumor and control tissues were harvested and luciferase 
activities were determined as relative light units (RLU) per mg protein. Data represent mean values 
from n=2 mice per clone. 
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5.4.4 Kinetics of circulating AAV display peptide library particles and wild-type 
AAV are similar 

Based on the negative finding above, we hypothesized that selection under in vivo 

conditions is needed to enrich library clones that are able to bind cellular receptors in 

tumors, penetrate the tumor tissue and are internalized into tumor cells under 

physiological circulation conditions after intravenous administration. But we 

suspected that our novel PCR-based selection of AAV libraries may not be able to 

distinguish between library particles successfully internalized into target cells, and 

non-homing particles present in the circulation if the tissue is harvested too early 

after injection. To minimize the amount of circulating AAV library particles in our 

tissue samples at the time point of harvest, we analyzed the kinetics of circulating 

AAV library particles.  AAV (1x1010 vg per mouse) were injected intravenously, blood 

samples were collected at various time points, and the amount of circulating particles 

in the serum was quantified by real-time PCR. Clearance rates were comparable in 

AAV library particles and wild-type viruses (Figure 3). The amount of circulating 

genomes decreased in a straight proportional manner. We therefore decided to 

harvest tissues in AAV library selections 48 hours after virus administration. 

 
Figure 18: Kinetics of circulating AAV peptide library particles is similar to wild-type AAV. 
A random X7 peptide library or wild-type AAV-2 viruses were injected intravenously at 1x1010 vg per 
mouse. Blood samples were collected after indicated time points and the amount of circulating viral 
particles in the serum was determined by real-time PCR. Data represent mean values from n=3 mice 
per group, analyzed in triplicates ± SD. 
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5.4.5 In vivo selection of AAV display peptide libraries on tumor tissue results 
in enrichment of distinct peptide inserts 

Two technical approaches were chosen (Figure 13, pathways B and C). Secondary 

libraries were produced and analyzed as for in vitro selections. Genomic titers of 

selected libraries allowed for injection of 2x108 vg per mouse in selection rounds 2-4 

(Table 4).  After 4 rounds of selection, sequencing revealed the enrichment of serine 

and glycine-rich peptide motifs and repetition of several single clones. In particular, 

the motifs GGLSGXS and ESGXXXX, and the single clones EYRDSSG, QMSGGVA, 

EEPALRA, and APTLGLS were enriched during “in vivo/ex vivo” selections (Table 7).  

In a separate approach, we performed 2 further rounds of ex vivo selection with 

libraries pre-selected for 2 rounds on PymT cells in vitro (like in Figure 13, pathway 

A). Here, the only remaining clone following the in vivo part of this selection displayed 

the peptide DLGSARA (Table 7). During in vivo selections (Figure 13, pathway C), 

the peptide motifs enriched during four rounds of selection were XXSGVGS, 

GEARXXA, and SGNSGAA, as well as SSGSGGA and ESGIWVA (Table 7). The 

clones SGNSGAA and SSGSGGA shared the similar sequence pattern SSG or 

SGG, respectively, which also occurred in the EYRDSSG and QMSGGVA clones 

enriched during ex vivo selection. The motif ESGXXXX was highly enriched in both in 

vivo/ex vivo and pure in vivo selections. These data suggest that AAV library 

selection under circulation conditions is feasible and causes enrichment of a distinct 

pattern of displayed peptides after multiple rounds of biopanning. Therefore, we 

decided to evaluate in vivo gene transduction for all enriched clones. 

 

 

 

 

 

 

 

 

 

 

 

 



PART 2: IN VIVO SCREENINGS OF RANDOM AAV LIBRARIES 
 

71 

 
Table 7: Peptides enriched in tumor tissue after selection for tumor-homing AAV. 
 

Selection pathway Peptide a Frequency in selection round b 

  round 1 round 2 round 3 round 4 

      

GGLSGVS -/6 -/7 1/22 7/41 

GGLSGDS -/6 -/7 -/22 1/41 

GSVSGSA -/6 -/7 -/22 1/41 

EYRDSSG -/6 -/7 -/22 7/41 

QMSGGVA -/6 -/7 -/22 1/41 

ESGLSQS -/6 1/7 1/22 2/41 

ESGIWVA -/6 -/7 1/22 2/41 

EEPALRA -/6 -/7 -/22 4/41 

Pathway B 

(in vivo/ex vivo) 
 

APTLGSP 
 

-/6 

 

1/7 

 

-/22 

 

13/41 

 

RGDLGLS   5/16 -/10 

DLGSARA   2/16 10/10 

DGLGRLV   6/16 -/10 

DLRGLAS   1/16 -/10 

Pathway B, modified 

(in vitro/in vivo/ex 

vivo) c 
 

 
DRSPLSL 

 
  1/16 

 

-/10 

 

AISGVGS -/6 1/15 2/24 2/32 

DRSGVGS -/6 1/15 4/24 2/32 

SISGVGS -/6 -/15 -/24 1/32 

SEGRSGV -/6 -/15 -/24 1/32 

GEARSRA -/6 -/15 -/24 1/32 

GEARISA -/6 -/15 2/24 7/32 

SGNSGAA -/6 1/15 4/24 8/32 

SSGSGGA -/6 -/15 2/24 2/32 

Pathway C 

(in vivo) 
 

ESGIWVA -/6 -/15 -/24 2/32 
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asingle letter code; only peptides occurring repetitively or sharing common sequence motifs are 

shown; shared amino acid patterns are highlighted in colored letters 
bobserved frequency relative to overall number of sequenced clones 
cpathway B subsequent to 2 rounds of in vitro selection as in pathway A 

 

5.4.6 Selected capsid-modified AAV clones transduce tumors in vivo 

To assess whether the in vivo-selected AAV-2 vectors mediate gene expression in 

the tumor in vivo, we produced luciferase reporter vectors displaying the selected 

peptide sequences. All vectors could be produced to regular titers (Table 8).  

Luciferase gene expression in the breast tumor tissue was evaluated 8 days after 

intravenous injection in tumor-bearing PymT mice in a screening experiment to 

assess which clones should be investigated in detail.  Five of the clones (GEARISA, 

SGNSGAA, ESGLSQS, EYRDSSG, and DLGSARA) showed an increased 

transduction of the breast tumor tissue compared to wild-type AAV vectors, whereas 

unselected control vectors did not mediate any gene expression (data not shown).  

We chose the most promising vectors for further experiments in a larger group of 

animals (n=5 mice per clone). Following intravenous injection, the selected clones 

transduced tumor tissue up to ~275-fold more efficient compared to wild-type AAV 

vectors (Figure 19A). To further investigate the specificity of selected AAV capsid 

mutants, luciferase expression in several control organs was evaluated (Figure 19B).  

Moderate de-targeting from the liver by clone ESGLSQS and the unselected control 

was observed, whereas clones GEARISA and EYRDSSG transduced the liver in a 

manner comparable to wild-type AAV. DLGSARA gene transduction in liver tissue 

was significantly increased compared to the unselected control vector. Further, we 

found a strongly enhanced cardiac luciferase expression for all clones, being 

significant for GEARISA, EYRDSSG and DLGSARA, and a weakly enhanced cardiac 

transduction of the unselected control vector compared to wild-type AAV. In regard to 

tissue specificity, the ESGLSQS clone had the most favorable profile as it transduced 

tumor tissue but not the liver.  However, cardiac gene transduction was seen for this 

as for almost all the other clones as well. Reproduction of in vivo gene transduction 

with independent vector preparations for DLGSARA and ESGLSQS precisely 

confirmed our results (data not shown). 
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Table 8: Titers of recombinant AAV-2 vectors. 
 
 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* genomic titers were quantified by real-time PCR as described in Material and Methods 

n.d. not determined 

n.a.not applicable because no virus solution was prepared 

 

genomic titer* 
(vector genomes (vg)/ml) 

clone (peptide sequence) 
 

rAAV-luc 
 

rAAV-eGFP 
 

rAAV-SR39 

wild-type 6.8x1011 2.1x1013 1.2x1012 

random insert (VRRPRFW) 2.4x1011 2.1x1011 7.1x1010 

RGDLGLS 3.7x1011 3.6x1013 7.4x1010 

 

RGDMSRE 2.7x1011 n.a. 

 

n.a. 

DGLGRLV 2.7x1011 2.9x1013 n.a. 

DRSGVGS 1.7x1011 n.a. n.a. 

GEARISA 7.0x1011 n.a. n.a. 

SSGSGGA 7.8x1010 n.a. n.a. 

SGNSGAA 3.3x1011 n.a. n.a. 

GGLSGVS 1.9x1011 n.a. n.a. 

EYRDSSG 1.8x1011 n.a. n.a. 

ESGLSQS 1.4x1011 n.a. n.a. 

EEPALRA 3.2x1011 n.a. n.a. 

APTLGSP 4.3x1011 n.a. n.a. 

DLGSARA 1.5x1011 n.a. n.a. 

PRSADLA 3.0x1011 n.a. n.a. 

 

PRSTSDP 

 

2.8x1011 

 

n.a. 

 

n.a. 
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Figure 19: Gene delivery by AAV mutants selected for breast cancer transduction in vivo. 
AAV luciferase vectors displaying selected peptides or controls (wild-type or VRRPRFW) were 
injected intravenously into female PymT tumor-bearing mice. After 8 days, representative tissues were 
harvested and luciferase activities were determined in individual tissues as relative light units (RLU) 
per mg protein. 
A: In vivo transduction of tumor tissue in PymT transgenic FVB mice by selected AAV mutants.  Bars 
indicate the median, n=5 mice per group. * p<0.05 targeted vectors vs. wild-type. # p<0.05 targeted 
vectors vs. random insert control.  
B: In vivo transduction of various tissues in PymT transgenic FVB mice by tumor-selected AAV 
mutants. The dotted line indicates the threshold beyond which luciferase expression data could be 
reliably delineated from background signal. Data represent mean values ± SEM, n=5 mice per group. * 
p<0.05; ** p<0.01 targeted vectors vs. wild-type AAV-2. # p<0.05; ## p<0.01 targeted vectors vs. 
random insert control. 



PART 2: IN VIVO SCREENINGS OF RANDOM AAV LIBRARIES 
 

75 

5.4.7 In vivo selection of AAV capsids transducing lung tissue 

To address the question whether the organ transduction pattern obtained by in vivo 

AAV library screenings depends on the target tissue the library was selected for, we 

also selected AAV libraries for preferential homing into lung tissue. The screening 

was done along the lines of the tumor targeting approach (Figure 13, pathway C).  

We varied the time of library circulation before tissue harvest in the first round (5 

minutes and 2 days, respectively, in two independent approaches). For both 

selections, circulation time was increased to 6 days in selection rounds 2-4. After 4 

rounds of in vivo selection for both approaches, sequencing of the peptide insert of 

the AAV clones recovered from the lung revealed a striking consensus sequence 

motif, PRSAD(D/L)(A/S), which was enriched independently in both selection procedures 

(Table 9). These data show that in vivo selection of AAV libraries in vivo in distinct 

tissues yields distinct peptide inserts, suggesting tissue specificity of the selection 

process. 
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Table 9: Peptides enriched in lung tissue during in vivo selection for lung-homing 

AAV after four rounds of selection 
 

 
Selection approach 

 
Peptide a 

  

PRSADLA 

PRSADLA 

VRSAADI 

PRSTSDP 

PRSTSDP 

PRSVDLS 

5 minutes circulation in 1st 
round 

 

RGDLGLS 
 
 

PRSADLA 

PRSADLA 

PRSADLA 

VRSAADI 

PRSTSDP 

PRSVDLS 

PRSVDLS 

2 days circulation in 1st 
round 

 

PASADLA 
 

Consensus motif P R S A D (D/L) ( 
A/S]) 

 
 

asingle letter code; shared amino acid patterns are highlighted in red letters 
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5.4.8 AAV clones displaying the PRSAD (D/L)(A/S) motif transduce lung tissue in 

vivo after systemic administration 

Reporter gene vectors were made carrying the PRSTSDP and PRSADLA peptides or 

controls and gene transduction in vivo was evaluated. In a first step, we investigated 

whether the selected AAV capsid variants home to lung tissue more efficiently than 

AAV control vectors (wild-type or random insert capsids). Vectors were administered 

intravenously, and DNA was recovered from lung tissue after 8 days. Quantitative 

PCR of the CMV promoter region of the vectors revealed an up to 63-fold higher yield 

for the selected capsid variants compared to AAV-2 wild-type vectors and up to 74-

fold higher yield compared to random control insert vectors (Figure 20A).  Evaluation 

of luciferase expression in the lung 28 days after intravenous administration revealed 

a 35-fold and 233-fold increased transduction efficiency of PRSADLA and 

PRSTSDP, respectively, compared to wild-type AAV (Figure 20B). To determine the 

specificity of lung-targeted capsids, luciferase expression in several control organs 

was evaluated.  Both selected clones showed higher gene transduction in liver, heart, 

kidney, brain, and muscle, compared to unselected controls (Figure 20C), suggesting 

that the cellular target bound by the selected vectors in vivo is ubiquitously rather 

than lung-specifically expressed. 
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Figure 20: Targeting of AAV capsid mutants selected on murine lung tissue in vivo. 
AAV luciferase vectors displaying selected or control capsids (wild-type or random insert VRRPRFW) 
were injected intravenously into female FVB mice. Tissue was harvested after 8 or 28 days, 
respectively, and processed as indicated. 
A:  Evaluation of lung homing. Lung tissue was harvested 8 days after vector injection and the 
amount of AAV genomes was determined by quantitative PCR. Data represent mean values from n=3 
mice per group, analyzed in triplicates ± SD. 
B: In vivo lung gene transfer by selected AAV after intravenous injection. Lung tissue was harvested 
28 days after vector injection, and luciferase activity was determined as relative light units (RLU) per 
mg protein. Bars indicate the median value, n=5 mice per group (** = p<0.001 targeted vectors vs. 
wild-type and random insert control). 
C:  In vivo transduction of various tissues in mice by AAV library mutants selected for lung 
transduction. Tissues were harvested and luciferase activity was determined as in 5B. The dotted 
line indicates the threshold beyond which luciferase expression data could be reliably delineated from 
background signal. Data represent mean values ± SEM, n=5 mice per group. * p<0.05; ** p<0.01 
targeted vectors vs. wild-type AAV-2. # p<0.05; ## p<0.01 targeted vectors vs. random insert control. 
 

 

 

 

B
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5.5 Discussion 

Vector targeting in vivo is of paramount importance in gene therapy. For adeno-

associated virus (AAV), this issue has been addressed by the insertion of peptide 

ligands into the vector capsid 81, 88, 181, 228, 277, 278, 284 or by exploiting the diversity of 

the various capsid serotypes 287, 305. Despite considerable progress in this field, the 

availability of tissue-directed vectors for in vivo use is very limited. The screening of 

random AAV display peptide libraries is an innovative tool to select for vectors 

efficiently transducing any cell type of interest. This approach has advantages over 

the introduction of known peptide ligands (e.g. selected from phage display) into the 

AAV capsid as it ensures selection of ligands that are compatible with capsid 

assembly, target cell binding, vector internalization, subsequent translocation to the 

nucleus and efficient transgene expression. This system has been described and 

validated for various cell types in vitro 165, 174, 194, 226, 276. Most of the vectors described 

in these studies, however, have not been validated for in vivo use. 

Here we show that library-derived vectors selected for optimized transduction in vitro 

do not necessarily transduce the same cell type in vivo. As a consequence, we 

established a system to screen AAV libraries in vivo over multiple selection rounds 

after systemic administration via the blood stream, using tumor and lung as target 

tissues. Several peptide clones were enriched in tumors and a clear-cut peptide 

sequence motif was recovered from the lung. While we achieved transduction of the 

target tissue by the selected vectors, we failed to achieve truly tissue-specific 

transgene expression. Therefore, except for liver transduction, most of our selected 

vectors have a tropism that is expanded to rather than specific for the tissue of 

interest compared to wild-type AAV-2. This may be due to several reasons: 1) the 

lack of tissue-specific receptors; 2) the expression of receptors conferring optimum 

transduction in several tissues, so capsids targeting receptors that are tissue-

specific, but less efficient for transduction are not enriched; 3) superordinate (not 

receptor-dependent) factors influencing the selection process such as endothelial 

barriers, blood-derived factors, or extracellular matrix interactions. The first argument 

can be virtually excluded based on the overwhelming success of in vivo tissue 

targeting using phage display libraries 4-6, 43, 66, 114, 131, 133-135, 141, 156, 191, 201, 206, 255, 299.  

Regarding the expression of non-tissue-specific receptors that are compatible with 

optimized AAV transduction, we think that two factors may play a role. Some of the 

selected peptides mediated transduction of several tissues with a clone-dependent 
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transduction pattern, suggesting that the tropism is mediated by the targeting 

peptide. Especially for the lung-transducing vectors, the broad-spectrum tropism may 

also be due to the mechanism of library selection. Upon intravenous injection, virus 

capsids with optimized in vivo transduction behavior may have been enriched in the 

lung irrespective of tissue specificity due to the first-pass effect after intravenous 

injection. These vectors may well be cell type-specific but not tissue-specific. They 

may be directed to endothelia in general, which is underlined by the fact that a similar 

capsid mutant (PRSVTVP) has been previously selected on primary human coronary 

artery endothelial cells in vitro 174. This emphasizes the importance of the 

simultaneous negative selection in vivo screenings that can be achieved in tissues 

other than the lung.  The second factor influencing the extended but unspecific 

tropism relates to the remarkable observation that as long as our selected vectors 

conferred any transgene expression, it invariably also occurred in the heart in 

addition to the target tissue. Heart expression of these vectors was even stronger 

than in wild-type AAV vectors. Such increased heart transduction of selected AAV 

indicates that a capsid region close to the library insert at position R588 may mediate 

this tropism and that it is therefore independent of the selected peptide sequence as 

such.  Thus, a capsid region close to the AAV capsid region harboring the library 

peptide insertion may mediate homing to und transduction of this organ. This is 

congruent with previous studies describing increased heart transduction upon 

modification of the VP3 region R484E/R588E 124 and peptide insertions at position 

R588 174. Yet, biodistribution studies have not found increased heart homing by 

peptide insertion in this region 278, 284, which might in part be attributable to, or at least 

influenced by, a slightly differing insertion site (position N587 instead of R588). In 

addition, it re-emphasizes that gene expression of a vector is not necessarily 

reflected by its biodistribution due to factors influenced by intracellular processing, 

promoter activity and vector clearance mechanisms. Our results in conjunction with 

the previously published data suggest that cardiac transduction may be mediated by 

a redistribution effect resulting from ablation of the endogenous tropism of the vector 
124, 174, but clearly is also mediated by the design of the peptide insert as it varied 

from clone to clone. 

Nevertheless, in vivo screening of AAV libraries allows selection for vectors with an 

extended tropism for the tissue of interest. Vectors targeting the endothelial cell layer 

in vivo might be used to deliver anti-angiogenic genes such as endostatin in order to 
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block neovascularization and tumor growth 142. Furthermore, vectors transducing 

various organs might be useful when expression in tissues other than the primary 

target is desirable or uncritical as it has been performed by expression of the SOD 

gene delivered by adenovirus to protect lung tissue against radiation-induced fibrosis 
64. 

Finally, the tumor specific vectors displaying the ESGLSQS peptide that mediates 

AAV transduction of breast cancer tissue in vivo and AAV de-targeting from the liver 

may further be optimized by using tumor specific expression systems such as the 

hTERT promoter 271, 293, with the aim to develop a breast cancer-targeted gene 

therapy approach in the PymT mouse model. 

In previous work on AAV libraries, internalized virus particles were amplified by 

adenoviral delivery of helper proteins 165, 174, 194, 276. However, the pathogenicity of 

adenovirus impedes the use of this strategy for in vivo selections and in addition it 

cannot be used for AAV library screenings on cells or tissues not susceptible to 

adenovirus. Here we introduce a novel, nested PCR-based selection approach 

allowing for adenovirus-free biopanning of AAV libraries over multiple selection 

rounds in vitro and in vivo. We distinguished between three alternative selection 

pathways, all of which are based on such library amplification by PCR.  Pathway A is 

a cell-based in vitro selection approach in which genomes of internalized library 

viruses are amplified while non-internalized viral particles are eliminated. In a proof of 

concept screening, we demonstrated the functionality of this technical approach in 

that clones sharing a common peptide motif (RGDXXXX) were recovered by 

screening on primary murine breast cancer cells and conferred efficient transduction 

of these cells. Similar peptide motifs have been selected on PC3 prostate carcinoma 

cells 276 and M07e human leukemic megakaryocytic cells 194 by adenovirus-based 

selection. Incorporation of the RGD sequence into the viral capsid retargets the 

vector to integrins, which are widely expressed on several cell types 81, 228, 231 

suggesting that these clones might target via the integrin class of receptors 215. 

Pathways B and C aimed at selection of viruses after systemic administration of AAV 

libraries in vivo. These pathways have the advantage that tissue homing particles 

with weak or unspecific binding capacities toward their targets are eliminated by 

blood clearance mechanisms or by homing to other tissues. Upon using selection 

pathways A, B, or C for tumor targeting, the enriched peptide sequences varied 
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depending on the respective selection pathway, indicating that the most suitable 

screening conditions may have to be evaluated for each individual target tissue. 

Compared to the previous in vitro work of our group and others, these results are a 

significant step forward and expand our knowledge on the mechanisms involved in 

vector targeting profoundly. In addition, they overcome some of the limitations 

observed in a recent report by Grimm et al. 90. In this pivotal work, AAV libraries were 

selected in vivo based on topical application to the airways. However, the diversity of 

recovered AAV after two rounds of selection was restricted to one clone, presumably 

due to inefficient amplification of clones. Such outcome might change upon applying 

our novel amplification protocol. Furthermore, novel AAV library principles like 

sequence evolution by error-prone PCR 158, DNA shuffling 150 might enhance 

specificity and efficiency if used for in vivo selection. 

This is the first report of a successful in vivo biopanning with a systemically 

administered random AAV peptide library over multiple selection rounds. We show 

that vectors displaying in vivo-selected peptides have a significantly improved 

transduction profile in breast cancer or lung tissue. These findings demonstrate the 

superiority of AAV clones selected in vivo over clones selected in vitro, as long as in 

vivo transduction is required. Unintended cardiac transduction by selected clones 

remains the major limitation to be addressed in subsequent studies, e.g. by mapping 

the capsid site mediating this tropism. Our findings broaden the understanding of the 

AAV transduction behavior in vivo, the functionality of random AAV display peptide 

libraries and, even beyond the specific targets tumor and lung, are an important step 

in the development of targeted AAV gene vectors in vivo in general. 
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6.1 Abstract 

Background: Acute myeloid leukemia was among the first malignancies to be cured 

by drug therapy alone, but overall survival rates remain unsatisfactory and have 

changed little over the past twenty years. Conventional chemotherapeutic regimens, 

which almost invariably include cytarabine and anthracyclines, are untargeted, and 

more specific therapies are needed.  

Objective: We have chosen acute myeloid leukemia as a prototype of disease to 

review established as well as novel, targeted approaches in leukemia treatment. 

Methods: Our selection of literature was focused on drug delivery aspects. 

Conclusion: While the toxicity profile of chemotherapeutics has been improved by 

liposomal formulations and antibody-conjugation for leukemia-directed uptake, their 

efficacy has probably not changed significantly. Drugs with an alternative mode of 

action, including kinase inhibitors, hold great promise. Further improvements may 

result from the characterization of novel AML cell receptors and of leukemic stem 

cells, and from the design of leukemia-targeted gene therapy vectors. 

 

6.2  Introduction 

The term leukemia comprises a heterogeneous group of diseases characterized by 

the malignant clonal proliferation of blood progenitor cells. These cells primarily grow 

and expand in the bone marrow, and from there spread to the entire body via the 

blood circulation. Thus, there is an accumulation of abnormal, often immature 

leukemic cells in the bone marrow, peripheral blood, and other tissues. The 

expansion of the malignant clone within the bone marrow results in a reduced 

number of normal red blood cells, platelets, and neutrophils. This causes a variety of 

systemic symptoms and signs, the most important of which are anemia, bleeding, 

and an increased risk of life-threatening infections. The latter is the most frequent 

cause of death in leukemia. 

Based on the kinetics of disease onset and course as well as the differentiation of the 

malignant clone, leukemias are divided in acute and chronic as well as in myeloid 

and lymphocytic, respectively. While acute leukemias usually have a rapid course 

and, if untreated, invariably have a fatal outcome within weeks or months after initial 

presentation, chronic leukemias tend to have a longer course of years or even 

decades. 
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In terms of drug delivery, leukemia has unique features. Most importantly, leukemia 

is by definition a systemic disease, and therefore drug delivery will always have to 

use a systemic route. Most of the currently available therapeutic agents, both 

established and experimental ones, are applied intravenously, but an increasing 

amount of newer drugs are applicable orally or subcutaneously. 

This review focuses on acute myeloid leukemia (AML). Drug therapy and delivery 

have been studied most extensively in this form of leukemia and we can only 

summarize some of the many new aspects in drug therapy that have evolved for this 

disease during the last decade. The term AML comprises several subgroups of 

leukemias which share the acute course and the myeloid marker profile, but vary in 

differentiation, genetic aberrations, response to treatment, and prognosis. Yet, except 

for acute promyelocytic leukemia, the therapeutic approach for most AMLs has been 

similar, which may change over the next decade based on the availability of targeted 

drugs and tailored treatment strategies. 

AML evolves based on a series of genetic changes in a hematopoietic precursor cell, 

altering normal hematopoietic growth and differentiation, and finally resulting in 

expansion of the malignant clone in the bone marrow and peripheral blood. These 

cells apparently have unlimited proliferation potential but usually do not maturate into 

regular blood cells such as erythrocytes, platelets, or neutrophils. Like in other 

malignancies, the genetic alterations in AML result in both the activation of 

oncogenes and the dysfunction of tumor suppressor genes. Unlike most solid tumors, 

however, many hematologic malignancies including AML are associated with a single 

characteristic cytogenetic abnormality such as the translocation t(15;17) in acute 

promyelocytic leukemia. 

Current treatment strategies are mainly based on high dose chemotherapy regimens 

using anthracyclines and cytarabine as backbone drugs 67. After having achieved 

complete remission, allogeneic stem cell transplantation plays an increasing role 

especially in high risk patients with unfavourable cytogenetic profiles, other risk 

factors, or relapsed disease. The toxicity of these current treatment regimens is 

considerable, preventing their use especially in elderly patients 67. 

A number of factors predicting poor outcome have been described for AML, including 

poor performance status, advanced age, karyotype and other molecular changes 185. 

Overall, the prognosis of patients suffering from AML is still poor, despite significant 

therapeutic advances over the last two decades. Less than 40% of the AML patients 
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younger than 60 years of age can be cured 3, 67, 242, 248.  In older adults, accounting for 

the majority of AML patients, long term disease-free survival is rare and the available 

treatment options are limited 3, 19, 242. These discouraging facts have spurred major 

efforts in the development of novel targeted therapies in the treatment of AML.  Many 

of such new therapies targeted to specific molecular features of AML are currently 

under clinical evaluation and some of them are discussed below. 

This review focuses on which drugs are available to be delivered to AML cells, which 

are their delivery routes, and which are their potentials and their limitations.  Delivery 

has to take into account the general approach, which is always systemic in leukemia, 

the route of administration, the interaction of the drug with the cell membrane (active 

internalization, passive diffusion), and intracellular trafficking. 

 

6.3 Drugs and Drug Delivery for Acute Myeloid Leukemia 

6.3.1 Classical Cytostatic Drugs 

Standard chemotherapeutic regimens for AML treatment are based on a combination 

of an anthracycline and cytarabine. 

6.3.1.1 Anthracyclines 

Anthracycline development began in the 1960s 56.  Most of these agents have to be 

administered intravenously, except for idarubicin for which an oral formulation is 

available.  Anthracyclines are taken up by the target cell via passive diffusion and, 

once inside the nucleus, intercalate with DNA.  Furthermore, they inhibit strand re-

ligation by topoisomerase II, causing DNA double-strand breaks 46. After hepatic 

metabolization, anthracyclines are eliminated by biliary excretion. Daunorubicin is the 

anthracycline most often used for AML treatment. Its lipophilic analogue idarubicin 

and its active metabolite 13-hydroxyidarubicin have a longer half-life than 

daunorubicin. Despite preclinical evidence suggesting otherwise, clinical trials have 

failed to prove a substantial advantage of idarubicin over daunorubicin in terms of 

efficacy and toxicity 267. Mitoxantrone is a synthetic anthracycline analogue used in 

combination with cytarabine for AML with at least comparable, maybe superior 

efficacy in upfront and re-induction regimens 8, 37. 
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6.3.1.2 Cytarabine 

Cytarabine was approved by the FDA almost 40 years ago. The drug is administered 

parenterally, for induction regimens usually intravenously, and has a short half-life 

requiring high-dosed short time or medium-dosed continuous infusions 197, 222.  Inside 

the cell, the phosphorylated drug enters the nucleus and is incorporated into DNA in 

place of cytosine, blocking DNA replication. Cytarabine is metabolized by cytidine 

deaminases and is eliminated by renal clearance. Like other chemotherapeutics, its 

action is cell cycle-dependent, and therefore its therapeutic effects are focused on 

rapidly dividing cells like cancer cells despite its unspecific biodistribution. 

 

6.3.1.3 Standard treatment for patients in good physical condition 

The most common chemotherapy regimen to induce remission in AML is 

daunorubicin as a 15 minute intravenous injection daily for three days plus cytarabine 

given by continuous intravenous infusion for seven days (so-called "3 + 7" regimen).  

With this regimen, 60-80% of patients, depending on age and other risk factors, 

achieve a complete remission 27, 67.  This response rate has not been improved to a 

clinically relevant extent by changing the dose of any of the two agents or by adding 

an additional drug. The cytostatic agents used for remission induction confer 

substantial toxicity including myelosuppression, mucositis, diarrhea, and 

cardiotoxicity. 

 

6.3.2 Novel Therapeutic Agents 

In view of the high remission rates achieved in AML patients using the standard 

chemotherapeutic regimens, novel agents would have to meet high standards of 

efficacy to replace these regimens 44. However, relapse rates and toxicity as well as 

the limited treatment options in elderly patients highlight the urgent need for novel 

agents that improve disease-free survival and do not add substantial toxicity.  While 

conventional chemotherapy may remain the backbone of treatment, novel agents 

could be added to improve outcome.  Within the last years, many such novel agents 

have been introduced.  Some of them have started to gain the status of a standard 

treatment option in certain settings, such as liposomal or antibody-conjugated 

chemotherapy. Others are currently at a more experimental stage, including 

farnesyltransferase inhibitors 117, histone deacetylase inhibitors 136, proteasome 
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inhibitors 297, or antiangiogenic agents such as bevacizumab 116. Yet, many 

challenges remain, which are addressed at the end of this article. 

 

6.3.2.1 Liposomal Delivery of Chemotherapeutic Drugs 

Anthracyclines are one of the two standard chemotherapeutic drugs in AML.  

However, their toxicity is of concern. Above all, cardiotoxicity is dose-limiting and 

cumulative dose-dependent, which often prevents anthracycline re-treatment in 

relapsed AML or even upfront treatment in patients with cardiac disease. 

To increase the therapeutic index, liposomal formulations have been proposed as 

carriers for cancer therapeutics several decades ago 85.  Liposomes encapsulate an 

aquaeous solution containing the drug inside a hydrophobic membrane. Liposomal 

encapsulation results in reduced anthracycline uptake by normal, non-neoplastic 

tissues.  In contrast, delivery to tumor tissue and to the bone marrow is enhanced 

due to the passage of liposomes through fenestrations of the vascular endothelium 

which are characteristic for these but not other tissues 77, 192. Liposomes are believed 

to be taken up by membrane fusion rather than endocytosis unless they are modified 

specifically to trigger this event252. Liposomal formulations are characterized by 

slower pharmacokinetics compared to non-encapsulated administration of a given 

drug.  They may therefore be the agents of choice when the objective is to maintain a 

defined plasma concentration with little change over time, rather than high, but 

quickly decaying, peak levels. 

Liposomal formulations of doxorubicin and daunorubicin are currently available for 

clinical use.  The application of liposomal daunorubicin in AML has been extensively 

reviewed elsewhere 68. Briefly, compared to conventional daunorubicin application, 

liposomal daunorubicin results in reduced conversion into its toxic metabolite 

daunorubicinol and reduction in toxic side effects such as cardiotoxicity, alopecia, 

nausea, or myelosuppression. In addition, various in vitro studies suggest that 

liposomes may help to overcome P-glycoprotein-mediated efflux of anthracyclines, a 

mechanism believed to contribute substantially to anthracycline resistance in AML 

and other tumor cells 166, 250.  Liposomal daunorubicin combined with cytarabine or 

alone yielded a complete remission rate of approximately 30% - 45% in patients with 

refractory or recurrent AML 53, 69. 

Liposomes can be targeted by incorporation of homing molecules into their 

hydrophobic surface. For instance, attachment of folate molecules to liposomes 301 
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via a PEG anchor was used to target cells expressing the folate receptor, a common 

property of malignant cells in general 146, and of AML cells in particular 156, 214. The 

efficiency of such targeting approaches could possibly be increased if the expression 

of a receptor of interest can be stimulated such as it is possible with all-trans retinoic 

acid that induces an upregulation of the folate receptor in AML cells in vitro 269. 

Efficient liposomal delivery may require sophisticated strategies depending on the 

drug of interest. For arsenic trioxide, a procedure for the formation of nickel (II) 

arsenite complexes in liposomes that release the active drug under acidic pH 

conditions as present in lysosomes has recently been suggested 49. Increasing 

particle stability is an important issue in improving liposomal therapy, but it may be 

achieved at the cost of impaired drug release. A recently described approach using 

lipase may overcome this problem 51. 

 

6.3.2.2 Novel Drugs Interacting with Intracellular Targets 

The tremendous success of the BCR-ABL tyrosine kinase inhibitor imatinib mesylate 

in chronic myeloid leukemia has stimulated the exploration of novel agents targeting 

various pathways in cancer. For AML, our increasing knowledge about intracellular 

signaling cascades involved in this disease has revealed a number of promising 

targets for inhibitory therapy by small molecules. They are usually applied orally and 

do not depend on receptors for cellular uptake. 

One therapeutic approach is directed towards the RAS protein, which is frequently 

mutated and therefore dysregulated in AML and other malignancies 180.  Attachment 

of RAS and other regulatory molecules to the plasma membrane is crucial for their 

functionality. Small molecule farnesyl transferase inhibitors such as tipifarnib and 

lonafarnib 112, after passively diffusing into the cell, inhibit RAS membrane anchoring. 

Tipifarnib has achieved clinical responses in patients with refractory and relapsed 

poor-risk AML 117 and is currently being evaluated in phase III trials 9, 240. 

Another novel therapeutic approach targets the FMS-like tyrosine kinase 3 (FLT3).  

Mutations in the FLT3 gene producing internal transmembrane duplications 

(FLT3/ITD) are common in AML and result in constitutive FLT3 activation 138, 179. A 

number of small molecule inhibitors of FLT3 have been evaluated in clinical trials 

lately, including tandutinib (MLN518), lestaurtinib (CEP-701) 235, and PKC412, and 

evidence of antileukemic activity has been seen 130, 235, 241. Like other kinase 
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inhibitors, these agents are orally applicable and their delivery to AML cells is 

receptor-independent. 

While the oral application of small inhibitory molecules simplifies their use in an 

outpatient setting, this may not always be the preferred way of administration given 

the poor oral intake and nausea experienced by many cancer patients under 

treatment 300. In addition, target specificity remains an issue in kinase inhibitor 

therapy. Under some conditions, inhibitors with multiple targets may have beneficial 

effects, as shown recently for the multi-kinase inhibitor sorafenib in a xenograft model 

of FLT-driven leukemia 13. Yet, the lack of specificity of some kinase inhibitors may 

account for limited anti-leukemic activity and side effects. The latter are usually 

considered mild compared to those associated with conventional cytostatic drugs, but 

can occasionally be quite severe, e.g. in heart tissue, as described for imatinib and 

other agents 76. 

In terms of specificity, agents such as monoclonal antibodies or peptides targeting 

cell surface molecules may therefore be superior to small molecules. 

 

6.3.3 Receptor-targeted Drug Delivery in AML 

Targeting cell surface molecules in cancer is a paramount issue in drug delivery both 

affecting efficacy and specificity (and therefore toxicity) of an antineoplastic drug. By 

specific homing after systemic administration, compounds are directed to the cell 

type or tissue of interest. This prevents their action in non-target tissues, thereby 

increasing therapeutic efficiency while decreasing adverse effects. Thus, as for other 

malignancies, drug-conjugated ligands targeting unique surface receptors have been 

developed for AML treatment. 

 

6.3.3.1 Anti-CD33 monoclonal antibodies 

During the last decade, targeted monoclonal antibodies have revolutionized cancer 

therapy. In AML, the CD33 antigen is a promising target since it is ubiquitously 

expressed on myeloid blasts in most patients, but neither on healthy pluripotent 

hematopoietic stem cells nor most non-hematopoietic cell types.  CD33 is a member 

of the sialic-acid binding Ig-like lectin (Siglec) family and has two cytoplasmic 

immunoreceptor tyrosine-based inhibitory motifs (ITIMs). CD33 is involved in cell-cell 

interactions and signaling in the hematopoietic system and may have regulatory 
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functions in the immune system and in cell proliferation 143, 188. The first targeted 

compound successfully used in AML treatment was Gemtuzumab ozogamicin (GO), 

a monoclonal anti-CD33 antibody linked to the cytotoxic agent calicheamicin. The 

conjugate is usually given as a two-hour intravenous infusion. Following systemic 

administration, GO is efficiently and specifically directed to CD33-positive cells. Upon 

binding to CD33, the GO-CD33 complex is rapidly internalized. The uptake is 

boosted by new CD33 molecules replacing the internalized ones 258. Lysosomal 

release of calicheamicin and translocation to the nucleus cause DNA double-strand 

breaks and cell death. The efficacy of the drug is influenced both by CD33 

expression level and P-glycoprotein activity 268. Consequently, therapeutic efficacy of 

GO may be potentiated by in vivo stimulation of CD33 surface expression on AML 

blasts in patients with G-CSF 147, or by reducing the calicheamicin efflux of malignant 

cells by P-glycoprotein inhibitors 178.  

GO treatment in patients with relapsed AML can result in remission rates as high as 

almost 30% 45, 188, 232, 240, 248, 281.  As CD33 is also expressed by benign myeloid 

precursor cells, Kupffer and sinusoidal liver cells, myelosuppression and 

hepatotoxicity are common GO-side effects 188. In addition, anaphylactic reactions 

and veno-occlusive disease have been described as life-threatening side effects in a 

low but significant number of patients. Other toxicities of GO include fever, 

hypotension, and abnormal liver function tests, all of which are usually transient 239. 

Anti-CD33 antibodies have shown effects against leukemic cells in vitro even without 

the attachment of a cytotoxic drug 266. However, the unconjugated humanized anti-

CD33 monoclonal antibody lintuzumab failed to elicit anti-leukemic effects when 

added to conventional chemotherapy in a phase III trial 70. Nevertheless, the 

promising studies using GO reveal the potential of targeted drug delivery in AML 

treatment. 

Since FMS-like tyrosine kinase 3 (FLT3) is expressed on approximately 90% of AML 

cells and plays a major role in survival and proliferation signaling in leukemia blasts, 

several FLT3 small inhibitor molecules have been demonstrated to show anti-

leukemic activity, as outlined above. Nevertheless, the lack of specificity of these 

kinase inhibitors remains a significant problem as they also interact with several other 

cellular kinases 248. Furthermore, cellular targets of most chemotherapeutic agents 

are located in the nucleus, therefore rapid internalization of drug-ligand conjugates is 

critical to maximize therapeutic efficacy while minimizing side effects. Towards this 
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end, several FLT3-directed antibodies were isolated using a cell-based phage library 

screening protocol and two fully human antibodies with the capability to trigger 

efficient receptor internalization upon binding to FLT3 were generated 280. Such anti-

FLT3 antibodies may be promising therapeutic agents in FLT3-expressing AML for 

receptor blocking or for antibody-guided cytotoxic drug therapy. 

For further development of receptor-targeted cancer therapy, a comprehensive 

understanding of differential receptor expression is needed. So far, very little is 

known about receptors specifically expressed on AML cells and their interaction 

during disease development and progression. Some knowledge about unique 

receptor profiles of AML cells may be gained from microarray gene expression 

profiling 38, 257. Among the limitations of such approaches is the fact that the protein 

expression patterns do not necessarily correlate with the functional state and 

extracellular accessibility of the potential target molecule. Protein-based techniques 

may be of advantage here, as discussed in the following section. 

 

6.3.3.2 Novel Cell Surface Markers as Potential Therapeutic Targets in AML 

Phage display is a powerful tool to select for novel ligands targeting cell-type specific 

surface molecules even if only the cell type of interest rather than an exact target 

receptor is known a priori. The receptors bound by such ligands can be subsequently 

identified in the majority of cases. Screening phage displayed human antibody 

libraries on primary AML blasts, Bakker et al. enriched a single chain Fv fragment 

strongly binding to myeloid cells. The antigen was identified to be the transmembrane 

glycoprotein C-type lectin-like molecule 1 (CLL-1). CLL-1 acts as a signaling receptor 

and is expressed in >90% of AML samples. CLL-1 appears to be restricted to 

hematopoietic, particularly myeloid, cells. It is also weakly expressed in 

CD34+/CD38+ or CD34+/CD33+ progenitor cells. Of note, CCL-1 expression is 

absent in the CD34+/CD38- or CD34+/CD33- stem cell compartment 15 but may be 

found in CD34+/CD38- leukemic stem cells 259.  Almost 70% of CD33-negative AMLs 

expressed CLL-1, indicating that CLL-1 complements CD33 as a therapeutic cell 

surface target for AML.  Anti-CLL-1 antibodies may therefore have great potential for 

AML therapy and for the detection of AML stem cells. This may improve efficacy of 

current therapeutics, especially when combined with CD33-directed therapy 15. 

A non-biased approach to the identification of high-affinity binding ligands is the 

screening of phage libraries displaying small random peptides. This strategy has 
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been successful for a variety of cell types and tissues in vitro and in vivo 135, 254.  

Linked to cytotoxic agents, such peptide ligands can be exploited for targeting 

cytotoxic drugs or other therapeutic agents to the cell type of interest 4, 7, 63, 134, 255.  

Furthermore, screening phage peptide libraries allows for the exploration of epitopes 

recognized by known antibodies or even the identification of novel molecular markers 

by fingerprinting of circulating antibodies in cancer patients 25, 26, 167, 264. 

In a recent study, we selected phage libraries on AML cell lines. We identified a 

peptide with the amino acid sequence CPLDIDFYC which strongly and specifically 

binds to AML cells 109. Binding correlated with the expression of the AML1/ETO 

fusion gene which is a result of the the chromosomal translocation t(8;21), the most 

frequent karyotype aberration in AML. We identified VLA-4 (α4ß1) integrin as a 

potential receptor for the leukemia cell-binding CPLDIDFYC peptide 109. VLA-4 is 

involved in cell-cell and cell-extracellular matrix adhesion by interaction with the 

vascular cell adhesion molecule VCAM-1 and the extracellular matrix protein 

fibronectin. Attachment to fibronectin within the bone marrow stroma appears to 

mediate resistance to chemotherapeutic drugs in leukemia cells 160. CPLDIDFYC and 

other VLA-4 antagonists such as the monoclonal anti-VLA-4 antibody natalizumab 

may therefore serve as future therapeutic agents in AML for receptor blocking or for 

cytotoxic drug delivery. 

 

6.3.3.3 Leukemic Stem Cells as Potential Therapeutic Targets in AML 

Acute leukemia most likely develops from a single transformed hematopoietic 

progenitor cell. A substantial amount of evidence suggests that, once this cancer has 

evolved, a subpopulation of leukemia cells with the stem-cell-like characteristics of 

asymmetric division and self-renewal capacity drives the course of the disease.  The 

characterization of these leukemic stem cells (LSCs) has therefore gained 

tremendous interest during the last decade. LSCs may withstand cytotoxic 

chemotherapy as they are often in a quiescent state, unlike their rapidly proliferating 

progeny 104. LSCs are therefore considered to be responsible for recurrence of 

leukemia even after initial treatment success.  LSCs have been characterized by the 

presence or the absence of various sets of surface markers, but are widely 

recognized to be part of the CD34+/CD38- cell compartment 34, 144. 

LSCs may be distinguished from non-malignant hematopoietic cells by the presence 

of the interleukin-3 receptor α chain (CD123) 113. This finding has made CD123 a 
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potential therapeutic target.  A diphtheria toxin-interleukin-3 fusion protein has shown 

toxicity against LCSs while sparing normal progenitors in vitro 72, 102, and such 

treatment prolonged survival in a mouse model 28. The compound was recently 

evaluated in a phase I study 78. 

While markers exclusively expressed on LSCs appear particularly attractive for the 

purpose of targeting LSCs, there is evidence that certain receptors can be promising 

therapeutic targets even if they are expressed on other cell types as well. The 

adhesion molecule CD44 – although expressed ubiquitously – is thought to be crucial 

to the malignant properties of AML LSCs, and an activating anti-CD44 antibody 

reduced engraftment of AML cells in a mouse model 111. 

 

6.3.3.4 Gene Delivery 

Despite many hurdles, gene therapy might be a future option for AML treatment.  The 

spectrum of therapeutic transgenes mediating killing of malignant cells comprises 

genes encoding toxic, pro-apoptotic, antiproliferative proteins or classical suicide 

genes such as the herpes simplex virus thymidine kinase gene. Alternatively, 

immune system-mediated cancer cell elimination may be achieved by delivery of 

genes encoding costimulatory molecules, e.g. interleukin-2 (IL-2), IL-7, IL-12 62 73, 223, 

or immunomodulatory molecules such as CD40, CD80 119, 184, 243, or interferon β 35. 

One of the major unsolved issues in gene therapy is vector application and delivery 

to the cells or tissue of interest. Development of efficient and specific vectors for 

gene transfer is just as crucial to therapeutic success as is the choice of the 

transgene itself. Currently, viral vectors remain the most effective means for 

therapeutic gene delivery, although substantial progress in non-viral transduction of 

hematopoietic cells has been achieved, including electroporation, nucleofection, and 

particle bombardement techniques 221. Initial in vitro experiments have suggested 

lentiviral 243, retroviral, or adenoviral vectors as suitable delivery vehicles for leukemic 

cells 211. However, unintended integration of retroviral vectors into the genome or 

adverse immune reactions elicited by adenovirus administration are serious safety 

issues to be considered in choosing vectors for clinical application. Over the past 

years, vectors derived from adeno-associated virus (AAV) have emerged as efficient 

tools to achieve long-term gene expression in a wide range of cell types. The low 

frequency of random integration into the genome 47, as well as the absence of a 
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substantial cellular immune response make AAV vectors promising tools in terms of 

biological safety 54 24. 

Various approaches have been taken to make the binding of therapeutic vectors to 

target cells more efficient and specific. Bispecific conjugates such as antibodies that 

bind to both a vector and a target cell are one strategy 256. However, such complexes 

may be unstable or immunogenic, compromising efficiency and safety.  This issue 

may be overcome by covalent vector modifications. Towards this end, AAV offers 

various opportunities for targeting. The natural tropism of AAV capsids may be 

changed by exploiting the diversity of natural serotypes 287. Alternatively or in 

addition, peptides mediating binding to the cell type of interest can be identified by 

random phage display library screening and subsequently be introduced into an AAV 

capsid region critical for receptor binding 88, 155, 182, 209, 228, 278.  However, the success 

rate of this approach is variable. Our own experience has been that only a minority of 

selected peptide ligands function equally well in targeted phage particles as they do 

in modified vector capsids such as adenovirus or AAV. This may be attributable to 

the fact that the phage-derived peptides were selected only for cell or receptor 

binding but not for subsequent post-targeting cell entry which is required for gene 

transfer. Furthermore, the structural context is probably crucial. The binding property 

of a ligand peptide may change unpredictably when it is incorporated into a virus 

capsid protein subjecting it to structural constraints not present in the phage capsid 

that was used for selection of the ligand from the random library. Taking these 

limitations into account, we and others have developed random peptide-display 

libraries based on the gene therapy vector capsid itself for AAV 174, 194 and later for 

retroviruses 42, 95, 125, 126. Thus, peptide ligands binding to a cell type of interest within 

the specific viral capsid protein context can be selected. Using this approach, vectors 

were isolated that specifically and efficiently transduce the cell types they have been 

selected on 174, 194, 276. 

We have recently screened random AAV-displayed peptide libraries on several AML 

cell lines, enriching the leukemia targeting peptide motif NQVGSWS 165. Vectors 

displaying such peptides transduced several hematopoietic cancer cell lines, but not 

a panel of control cells. Consequently, such targeted AAV mutants can be used for 

therapeutic suicide gene transfer, achieving cell type specific killing in AML cells 165. 
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6.4 Conclusion 

Despite all efforts to optimize drug therapy during the last two decades, acute 

myeloid leukemia remains a devastating disease with a dismal prognosis especially 

in the elderly. Chemotherapy based on anthracyclines and cytarabine, in some cases 

combined with stem cell transplantation offers the only chance of cure. However, 

such therapy and curative outcome is usually limited to the minority of all patients, i.e. 

the young, fit patients with few or no risk factors. 

Drug delivery to leukemia has to take into account the need for systemic drug 

administration and the need for prevention of collateral damage caused by the 

toxicity of current therapy regimens. In terms of drugs and drug delivery, recent 

progress comprises the liposomal formulation and antibody-guided application of 

classical chemotherapeutic agents, and the identification of novel drug targets for 

intracellular kinase inhibitors. These concepts have begun to prove their value in 

clinical studies and some of them will likely gain status as established leukemia 

therapeutics within the near future.  More experimental approaches that are likely to 

translate into therapeutic concepts within the next 10 years are the targeting of 

leukemic stem cells and the design of gene therapy vectors specifically and efficiently 

targeting leukemia cells. 

 

6.5   Expert Opinion 

Acute myeloid leukemia is a systemic disease.  As such, it used to be the hallmark of 

success of modern cancer drug therapy. When the classical cytostatics were 

introduced in the treatment of cancer several decades ago, acute leukemias were 

among the few malignancies in which consequent improvement of cytostatic drug 

development and treatment protocols actually resulted in cure of some of these 

patients who, before that, invariably died of their disease. Ever since, however, 

progress has been slow and the gain in survival rates has been slim. Most of this 

progress has been unrelated to drug development or drug delivery but rather to 

advances in supportive care (including anti-infectants and optimized transfusion 

indications) and allogeneic stem cell transplantation which is now associated with 

significantly less toxicity and is amenable even to the elderly beyond 70 years of age. 

But what are the advances in terms of novel drugs or novel drug delivery 

mechanisms?  In fact, substantial progress has been made here, even though it may 
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not yet have translated into improved survival rates. The development and 

optimization of liposomal packaging of key drugs in AML treatment like daunorubicin 

reduce toxicity and therefore improve therapeutic indices.  Whether their theoretical 

advantage in efficacy translates into a clinically meaningful one has yet to be proven.  

We believe that if there is one, it is probably small, for the reasons discussed below.  

Along a similar line, the conjugation of cytostatic drugs to antibodies that target AML 

cell surface receptors such as CD33 must be considered as a significant 

advancement even though the most significant toxicity profile of classical 

unconjugated cytostatics, the suppression of hematopoiesis, occurs with anti-CD33 

conjugates as well. This is because CD33 is not a truly AML-specific antigen.  Other 

side effects, however, are less severe than in conventional chemotherapy and 

therefore both liposomal as well as antibody-conjugated targeted drugs may replace 

conventional drug formulations within the next ten years. 

While such advances in drug delivery reduce or change the profile of side effects, 

they seem not to have an impact, or at least not a major one, on relapse rates, 

compared to conventional drugs. Thus it seems that the issue of leukemia cell 

resistance to therapy is an issue of the molecular mechanism of drug action rather 

than an issue of drug delivery. It is therefore mandatory to identify novel therapeutic 

targets both inside and outside of the leukemia cells to develop drugs with no cross 

resistance to the ones that are already available. In this regard, like in cancer therapy 

in general, enormous efforts have been dedicated both by academic research as well 

as the industry, to translate our ever increasing knowledge in cancer biology into 

therapeutic strategies. 

For AML, the most relevant drug developments have been kinase inhibitors blocking 

RAS membrane anchoring or FLT3 activity, which both play a major role in AML 

pathobiology. Many more such small molecule drugs are currently being tested in 

clinical trials and we consider it very likely that some of them will have an enduring 

place in the arsenal of weaponry for the combat against AML. Interestingly, unlike for 

solid tumors, antibody therapies (other than for targeted drug delivery) have played a 

small, if any, role in the new generation AML drugs so far. This may change within 

the next years. In fact, early studies suggest that the anti-angiogenic antibody 

bevacizumab may have antileukemic activity 116. Beyond the understanding that 

unconjugated antibodies may be of therapeutic value in AML, such findings bring our 
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attention to the microenvironment of AML cells rather than the cancer cells as such 

as a promising therapeutic target in the future. 

Further progress in antibody therapy will likely depend on the discovery of novel AML 

cell surface markers such as it has been achieved with CCL-1, VLA-4 or FLT3.  

Selected ligands may be suitable to target cytotoxic drugs to AML cells as long as the 

ligands are internalized upon binding. Moreover, receptor-targeted peptides or 

antibodies might have the capability to induce further biological features in malignant 

cells as inhibition of cell proliferation or induction of cell death by blocking natural 

receptor ligand interactions or activation of complement-mediated cytotoxicity.  

Further, the combination of ligands covering multiple AML specific receptors could be 

useful to increase specificity and efficacy of targeted therapies and we consider it 

mandatory to explore such concepts in the clinic with the newly developed agents 

within the years to come. 

A pertinent question is whether the characterization of leukemic stem cells (LSC) 

may result in novel treatment options for AML. We consider this to be very likely even 

though this is still a very novel concept. One explanation for treatment failure in AML 

might be the resistance of leukemia stem cells to currently used chemotherapeutic 

agents. Therefore, ligand directed delivery of conventional drugs to leukemic stem 

cells may not solve all the therapeutic challenges associated with the functional LSC 

concept.  We will need both, further validation of LSC-specific markers allowing for 

LSC-directed drug delivery as well as drugs that interfere with LSC activity and 

viability. Such drugs could enforce quiescence in LSC as long as they are applied. 

This would make AML a chronic disease requiring long term drug treatment like with 

imatinib in chronic myeloid leukemia.  Preferably, however, drugs are needed that 

efficiently kill LSC much more efficiently than the ones we currently use. 

To date, there are established treatment protocols curing some and inducing 

remission in most AML patients. This may be perceived as an impediment to the 

clinical evaluation of novel candidate drugs which is therefore mostly done in patients 

that are not eligible for standard therapy because of their age or frailty or because 

they relapsed after a preceding treatment. These patients possibly constitute a 

subgroup of AML cases that is particularly resistant to treatment, which may bias 

clinical results obtained for novel drugs.  Viewed from a different angle, however, this 

may be a good thing because this patient population is the one most urgently 

requiring novel drugs with improved efficacy and less toxicity. 
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While evaluation of novel drugs as single agents in young AML patients without prior 

conventional therapy is currently not ethically feasible, it is promising to evaluate the 

effects of upfront combined application of standard antiproliferative therapy and 

target-specific novel agents. In this setting, beneficial effects could possibly be 

detected even for candidate substances that have not shown considerable efficacy in 

previous studies. One problem is that AML may be considered as an “orphan 

disease” since it is much less frequent than many solid tumors, more difficult to treat 

and therefore a “market” not perceived as attractive as other cancers by the 

pharmaceutical industry. 

How may the future of AML treatment look like ten years from now? AML therapy will, 

on the one hand, likely be determined by the introduction of additional targeted 

drugs. On the other hand, the next significant step following this one will be the 

characterization of each individual patient as to which cocktail of conventional or 

novel, targeted drugs he or she will benefit from. This is commonly referred to as 

“tailored” rather than (but not substitutive to) “targeted” therapy such as it has been 

done for karyotypic profiling in AML during the last decade. While targeted drugs are 

in the process of implementation as standard therapies for AML, the molecular 

profiles allowing for tailored therapy remain to be determined in future trials once the 

novel generation of drugs is evaluated in larger patient cohorts. 
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7 Summarizing Discussion 
The development of safe and efficient gene vectors has high priority in gene therapy. 

Vectors engineered to specifically target a specific cell type and/or tissue should 

improve therapeutic efficiency while negative side effects are diminshed. Moreover, 

vectors designed to target malignant cells could reach disseminated cancer disease 

and target specific biological features of cancer cells refractory to conventional 

therapies. 

Gene vectors derived from AAV-2 are promising means for gene therapy since they 

combine unique features in concerns of biologic safety and efficiency, but their 

tropism is unspecific 24, 47, 54. Random peptide libraries displayed on AAV are a 

promising tool to select viral capsids for improved gene transfer in the cell type they 

were selected on. The advantage of this over other combinatorial approaches is that 

it explicitely enriches for peptide ligands that 1) take the unique protein context of the 

capsid surrounding the targeting ligand into account during selection, 2) allow for 

sufficient assembly and production of the vector 3) are selected by their ability to 

allow for capsid mediated internalization and expression of viral genes within the 

target cells 174, 194, 276.  

 

7.1 Vectors for AML-targeted gene transfer 

In the first part of our studies we screened random AAV peptide libraries with the aim 

to isolate AAV capsid mutants targeting acute myeloid leukemia (AML) cells. AML is 

a clonal malignancy of hematopoietic precursor cells resulting in expansion of the 

malignant clone in the bone marrow and peripheral blood with an aggressive clinical 

course in most patients. Vectors that sufficiently and specifically transduce this cell 

type are not available 16, 194, 199, 200, 210. 

In previous studies, AAV vectors were successfully retargeted to leukemia cells by 

the use of monoclonal antibodies or ligands binding to receptors expressed on these 

cells 16, 199, 210. But their lack of stability, potential immunogenicity and increased 

particle size limits the use of these conjugated vector systems 174. These concerns 

can be addressed by insertion of targeting ligands directly into the viral capsid. 

Insertion of targeting ligands at positions adjacent to R588 of the capsid protein 

retarget the vector to alternative cellular receptors 81, 88, 182, 228, while binding to its 

natural receptor is abrogated. This allows for a detargeting of AAV-2 from to the liver 
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124, 174, 195 in vivo and furthermore may allow the vectors to evade pre-existing 

immunity against AAV 106. 

In our studies, screening random AAV peptide libraries on the AML cell lines Kasumi-

1 and HL60 resulted in enrichment of a distinct peptide motif (NSV/TLLXS) displayed 

on the selected capsid mutants. One clone, displaying the motif variant NQVGSWS 

transduced up to 90% of Kasumi-1 AML cells. A large screening approach 

demonstrated that NQVGSWS-AAV was able to overcome transduction resistance 

especially in various AML and lymphoma (i.e. hematopoietic cancer) cell lines while 

several solid tumor cell lines and normal hematopoietic cells were not permissive for 

NQVGSWS-mediated transduction. Transduction experiments on co-cultivated cells 

further verified targeting of Kasumi-1 leukemia cells by NQVGSWS-AAV while 

CD34+ precursor cells mainly remained untransduced. Therefore, we concluded that 

the receptor targeted by NQVGSWS is upregulated in a variety of hematopoietic 

cancer cells, although we cannot rule out that its expression may be a general 

feature of stable hematopoietic cell lines. Our findings match those of a recent report 

on a library screening performed by Sellner et al.. In this study, comparable peptide 

motifs were isolated after biopanning on CD34+ hematopoietic progenitor cells. In 

line with our findings, transduction experiments revealed a superior transduction rate 

of leukemic cells compared to CD 34+ cells 226.  

We showed that AAV-NQVGSWS transduces its target cells via an attachment 

receptor distinct from the primary AAV-2 receptor HSPG. Consequently, we could 

demonstrate that targeted NQVGSWS-AAV vectors harboring a suicide gene confer 

selective killing to Kasumi-1 AML-cells but not to SiHa cervical cancer control cells. It 

would be interesting to investigate whether such cytotoxic effects on AML cells can 

be potentiated by the use of pro-apoptotic peptides or cytotoxic genes delivered by 

these vectors. We recently introduced and validated a technical approach that allows 

the production of AAV vectors harbouring a panel of cytotoxic and pro-apoptotic gene 

variants (J. Kohlschütter – diploma thesis University of Freiburg 2007 - , S. 

Michelfelder, M. Trepel, unpublished data). These could be packaged and tested in 

the leukemia-targeted capsids selected in our experiments with the aim to further 

improve their antileukemic action. 

Taken together, these results distinguish our selected capsid mutant from previously 

described targeted vectors in regard to specificity and efficiency 81, 194, 228 and make it 

a potential tool to deliver therapeutic genes to AML cells. Further studies have to be 
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performed to investigate whether the NQVGSWS clone also transduces primary 

leukemia cells or even leukemic stem cells. Alternatively or in addition, AAV libraries 

could and should be directly screened on primary AML cells based on the 

methodological arsenal presented in this thesis. 

 

7.2 Tissue-directed vector capsids selected by in vivo screening of 
AAV display peptide libraries 

Attempts to target AAV vectors to certain tissues in vivo are often based on the 

exploration of different serotypes 30, 187, 246, 273, 305 or by the combination of their 

different capsid domains (reviewed in 287), but such approaches are limited by the 

number of vector serotypes that are available. 

Alternatively, peptide ligands identified by screening phage display libraries on a 

certain target tissue in vivo have been introduced into AAV capsid regions critical for 

receptor binding 277, 278, 284. However, the receptor affinity of such ligands may 

deteriorate and their receptor tropism may change when incorporated into the AAV 

capsid. Furthermore, such ligands are commonly selected only for cell binding and 

not for cellular internalization and subsequent gene transfer. 

We intended to overcome these limitations by in vivo biopannings of AAV libraries 

after systemic administration using tumor and lung as target tissues. We recovered 

distinct peptide motifs that varied depending on the respective selection pathway and 

target tissues. Selected capsid clones indeed conferred gene expression in the target 

tissue which was not detectable in animals injected with vectors displaying a random 

insert control capsid. However, selected clones failed to achieve tissue-specific 

transgene expression and even extended the spectrum of tissues they transduce, 

compared to wild-type AAV-2. The selected AAV capsid variant displaying the 

ESGLSQS peptide remains the most promising clone as it has the capacity to 

transduce PymT-induced tumor tissue in vivo while detargeting the vectors from the 

liver. 

For the clones selected in lung tissue, our finding of increased but after all unspecific 

transduction may be explained by the first-pass effect upon intravenous injection 

performed in our screenings, leading to enrichment of virus capsids with optimized in 

vivo transduction behavior irrespective of tissue specificity. Such vectors might 

generally target endothelial cells, which is underlined by the fact that a similar capsid 
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mutant (PRSVTVP) has been previously selected on primary human coronary artery 

endothelial cells in vitro 174. Further experiments should be performed to specify the 

transduced cell types. Another characteristic property of the vectors is their 

propensity to invariably confer gene transduction to the heart in addition to the target 

tissue. This observation deserves further consideration and follow up in future 

experiments. 

There may be various superordinate reasons for the enrichment of vectors with this 

kind of “extended” tropism: First, the lack of tissue-specific receptors that allow for 

vector internalization, functional intracellular processing and gene delivery provided 

by the respective target tissue. Second, some receptors conferring optimal viral 

transduction are ubiquitously expressed, so capsids targeting tissue-specific 

receptors that are less efficient for transduction are not enriched. Third, receptor 

independent factors such as endothelial barriers, blood-derived factors, or 

extracellular matrix interactions may influence the selection process. 

Taken together, in vivo screening of AAV libraries allows selection for vectors with an 

extended tropism for the tissue of interest. Vectors targeting the endothelial cell layer 

might be used to deliver anti-angiogenic genes such as endostatin in order to block 

neovascularization and tumor growth 142. Furthermore, vectors transducing various 

organs might be useful when expression in tissues other than the primary target is 

desirable or uncritical as it has been performed by expression of the SOD gene 

delivered by adenovirus to protect lung tissue against radiation-induced fibrosis 64.  

The tumor specificity of vectors displaying the ESGLSQS peptide may further be 

optimized by using tumor specific expression systems such as the hTERT promoter 
271, 293 with the aim to develop a breast cancer-targeted gene therapy approach in the 

PymT mouse model. 

An alternative approach to enhance specificity and efficiency of AAV vectors could be 

the use of novel AAV library principles like sequence evolution of capsid encoding 

regions in the genome by error-prone PCR 158, DNA shuffling 150 and multispecies 

libraries 90 if used for in vivo selection. 
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7.3 Adenovirus amplification vs. PCR-based amplification of library 
clones  

Screening AAV peptide libraries in vivo provides much more difficult but also much 

more realistic conditions than cell culture-based procedures since it allows the 

selection for viral capsids that are 1) able to overcome anatomical and physical 

barriers such as the hemodynamics within the blood stream, endothelial cell layers, 

extracellular matrix, and host immunogenicity and 2) are simultaneously negative 

selected by host clearance mechanisms and resident non-target tissues. 

So far, such in vivo selections have been hampered by insufficient technical 

knowledge regarding the screening conditions that have to be chosen for a particular 

organ or tissue and the lack of a suitable system to selectively amplify viral library 

particles that home to the tissue of interest after systemic injection. For cell-based 

selection approaches, internalized virus particles have been amplified by adenoviral 

delivery of helper genes 165, 174, 194, 276. Such helper-dependent approaches would 

require high doses of adenoviral helper virus in vivo that may not be tolerated by the 

animal and, in addition, confines the selection to tissues and cell types that are 

susceptible to adenoviral infection. Grimm et al. 90 used this approach to select for 

lung targeted vectors after topical application in the airways. However, the diversity of 

recovered AAV after two rounds of selection was restricted to one clone, presumably 

due to an inefficient amplification during selection. While the recovered vectors 

mediated lung gene transfer after topic application to the airways, they exhibited 

almost unchanged tropism compared to unselected vectors after systemic application 

via the blood stream 90. 

In our studies this problem has been circumvented by a novel PCR-based 

amplification approach. After systemic administration of the viral library, relevant 

parts of the genomes of viruses homing to the tissue of interest are amplified via 

nested PCR and subsequently cloned back into the AAV library backbone plasmid. In 

further steps, so-called secondary libraries are produced by transfection of the library 

plasmids like in the initial library production procedure and are used for subsequent 

rounds of selections. The viral titers and diversity obtained with this approach are 

sufficient to perform unlimited numbers of selection rounds. 

In the work presented here, we demonstrated the feasibility of the PCR amplification-

based screening by a cell-based in vitro selection on primary breast cancer cells. We 

obtained specific peptide sequence motifs even after two selection rounds. These 
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clones conferred selective transduction of cytokeratin-positive (i.e. not tumor stroma) 

breast cancer cells. We assume that adenovirus-based selection indeed forces 

exclusively the enrichment of capsid mutants that mediate internalization and viral 

gene expression within the target cells. But this may also carry the risk of loosing 

target specific clones. Our findings indicate the superiority of the PCR-based 

compared to the conventional adenovirus-based library selections, which mostly 

require three to five rounds of selection 165, 174, 194, 276.  

 

7.4 Ligands selected within AAV capsids and their potential target 
receptors 

In our studies we isolated the peptide motif (NSV/TLLXS) targeting a spectrum of 

hematopoietic cancer cells. Perabo et al. recently selected two peptides (GENQARS 

and QNEGSRA) for optimized transduction of human B-cell chronic lymphatic 

leukemia (CLL) 194. In another study, the peptide motif NS/QXR/LXXX has been 

selected on primary human venous and coronary artery endothelial cells (HSaVEC, 

HCaAEC) 174, 276. Sellner et al. isolated NXVXXX on CD34+ precursor cells 226. Even 

though the similarity of these peptide motifs isolated on different target cells is vague, 

such a common motif might target a similar receptor or receptor class on these cell 

types. This is particularly feasible since it is known that several receptors on 

endothelial cells are known to be also expressed on cells of the hematopoietic 

system (e.g. CD34).  

Screenings on primary murine breast cancer cells revealed the enrichment of the 

peptide motif RGDXXXX. Similar peptide motifs have been selected on PC3 prostate 

carcinoma cells 276 and M07e human leukemic megakaryocytic cells 194 by 

adenovirus-based selection. Incorporation of the RGD sequence into the viral capsid 

retargets the vector to integrins, which are widely expressed on several cell types 81, 

228, 231, suggesting that these clones might target via the integrin class of receptors 
215. 

Two clones we isolated by in vivo screenings, DLGSARA (selected on tumor tissue) 

and PRSTSDP (selected on lung tissue), presumably target receptors that are 

ubiquitously expressed in vivo since both clones showed gene transduction in 

various tissues. ESGLSQS may target receptors preferentially expressed on tumor 

endothelial cells. One strategy to identify potential receptors for peptides displayed 
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on AAV-2 would be the comparison of relative transduction efficiencies of selected 

vector capsids with familiar gene expression profiles from cDNA microarray analyses, 

available for a panel of human tumor cell lines (NCI60). Using such approach, the 

platelet-derived growth factor receptor (PDGFR) has been identified as a co-receptor 

for AAV-5 transduction 55.  

In our studies, we observed that if the selected vector capsids conferred gene 

expression in vivo, it also invariably occurs in cardiac tissue. This remarkable finding 

affects the interpretation of the specificity of the selected clones considerably. In view 

of previously published data, we suggest that cardiac transduction is mediated both 

by a redistribution effect resulting from ablation of the endogenous tropism of the 

vector 124, as well as by the design of the peptide insert. This indicates that a capsid 

region close to the library insert at position R588 has significant influence on cardiac 

tropism. In contrast, biodistribution studies have not found increased heart homing by 

peptide insertion in this region 278, 284 which might in part be attributable to, or at least 

influenced by, the different insertion site (position N587 instead of R588). Therefore 

there is urgent need to investigate the mechanisms of heart transduction in further 

detail and to identify capsid domains that interact with heart receptors. Such 

knowledge would help to design novel AAV library systems improving this innovative 

display technology in general. 

 

AAV-2 transduction is initiated by binding of the capsid to the primary attachment 

receptor HSPG 245, followed by interaction with further independent receptors that 

subsequently trigger cell entry  1, 11, 118, 202, 244. The heparin-binding site of AAV-2 is 

ablated by insertion of peptides at position 588 124, 174. This is in line with our results. 

Molecular modeling studies recently identified an NGR residue at position 513-515 in 

the viral capsid that forms a surface loop close to the three-fold axis of symmetry 

adjacent to the HSPG binding site, which may act as a binding site for the co-

receptor integrin α5β1 11. Further capsid protein domains that are involved in co-

receptor binding still remain unknown, but it seems possible that displayed peptide 

ligands of the library act in combination with such domains. Since peptides displayed 

within the stringent protein context of the capsid may have different conformations 

and binding characteristics than the same peptide sequence occurring in a natural 

context, a data base search for homologies based on the sequence is unlikely to be 
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very informative. Future research may illuminate to what extent peptide insertions at 

the R588 site influence AAV capsid interaction with the various secondary receptors. 

In summary, the results of this thesis emphasize the utility of AAV libraries to select 

for improved gene delivery vector capsids in vitro and in vivo, but also demonstrate 

that successful targeting of AAV in vivo would require more than the capsid 

modifications used in the current AAV library approach. The data serve as a basis for 

further improvement of random AAV display peptide libraries to generate targeted 

AAV gene vectors. Therefore, the next step should include the investigation of the 

the relation between capsid structures and putative target receptors to improve the 

vector’s target specificity to a well-defined cell population under in vivo conditions.  
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8 Abbreviations 
 

aa amino acid 

AAV adeno-associated virus 

Ad5 adenovirus type 5 

AML acute myeloid leukemia 

BR basic region 

BSA bovine serum albumin 

bp base pairs 

cap capsid gene of AAV 

CMV human cytomegalovirus promotor 

CLL Chronic lymphatic leukemia 

DMEM Dulbecco`s Modified Eagle Medium 

DNA desoxyribo nucleiod acid 

DNase desoxyribonuclease 

E.coli Escherichia coli 

eGFP enhanced green fluorescent protein 

ELISA Enzyme Linked Immunoabsorbent Assay 

FCS fetal calf serum 

GFP green fluorescent protein 

GCV gancyclovir 

HSPG heparan sulphate proteoglycan 

h hour 

kb kilo bases 

kDa kilo dalton 

Luc luciferase 

M mole 

min minute 

MOI multiplicity of infection 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) 

N- amino- 

NLS nuclear localization sequence 

OD optical density 

ORF open reading frame 
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p plasmid 

PBS phosphate buffered saline 

PBMC peripheral blood mononuclear cells 

PCR polymerase chain reaction 

PLA2 phospholipase A2 

PymT polyoma middle T 

rAAV recombinant adeno-associated virus 

rep nonstructural genes of AAV 

RLB reagent lysis buffer 

RLU relative light units 

rpm revolutions per minute 

RPMI Roswell Park Memorial Institute medium 

scAAV self-complementary AAV 

SD standart deviation 

SDS sodium dodecyl sulfate 

SEM standart error of the mean 

SOD superoxide dismutase 

ss single stranded 

vg vector genomes 

µ (g, l, m) micro-(gram, liter, meter) 

m (g, l, m) milli-(gram, liter, meter) 

n (g, l, m) nano-(gram, liter, meter) 
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amino acids: 
 

A  (Ala) alanine M (Met) methionine 

C (Cys) cysteine N (Asn) asparagine 

D (Asp) aspartate P (Pro) proline 

E (Glu) glutamate Q (Gln) glutamine 

F (Phe) phenylalanine R (Arg) arginine 

G (Gly) glycine S (Ser) serine 

H (His) histidine T (Thr) threonine 

I (Iso) isoleucine V (Val) valine 

K (Lys) lysine W (Trp) trypthophan 

L (Leu) leucine Y (Tyr) tyrosine 
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