Zusammenhänge fachspezifischer Vorstellungen von Grundschullehrkräften zum Lehren und Lernen mit Fortschritten von Schülerinnen undSchülern im konzeptuellen naturwissenschaftlichen Verständnis

Inaugural-Dissertation
zur Erlangung des akademischen Grades des Doktors in den Erziehungswissenschaften an der Westfälischen Wilhelms-Universität Münster

vorgelegt von:
Thilo Kleickmann
geboren am 25.03.1974 in Gießen

2008

1. Gutachterin: Prof. Dr. Kornelia Möller
2. Gutachter: Prof. Dr. Manfred Holodynski
Tag der mündlichen Prüfung: 08. Februar 2008
Dank

Den an der BiQua-Studie (s. Kapitel 4.1) teilnehmenden Lehrkräften danke ich für die gute Zusammenarbeit und für die Bereitschaft zur Durchführung der recht umfangreichen Erhebungen.

Nicht zuletzt gilt mein Dank Kornelia Möller für die umfassende Förderung und Unterstützung während der ganzen Zeit meiner Arbeit im Seminar für Didaktik des Sachunterrichts.

Meinen Eltern und Brüdern danke ich für die persönliche Unterstützung und den Rückhalt während der Promotionsphase.
Inhaltsverzeichnis

1 Einleitung .. 7

2 Stand der Forschung und offene Forschungsfragen ... 10

 2.1 Paradigmen der Lehr-Lern-Forschung .. 10
 2.1.1 Das Paradigma der Lehrerpersönlichkeit ... 11
 2.1.2 Das Prozess-Produkt-Paradigma .. 12
 2.1.3 Forschung zu Lehrerkognitionen: Das Experten-Paradigma 13
 2.1.4 Das konstruktivistische Paradigma .. 15
 2.1.5 Zur Einordnung der Arbeit: Ein Modell zum Bedingungsgefüge von Lehren und Lernen aus der aktuellen Lehr-Lern-Forschung ... 15

 2.2 Ansätze und Befunde zum naturwissenschaftlichen Lehren und Lernen 18
 2.2.1 Konzeptuelles Verständnis als Zielkriterium naturwissenschaftlichen Unterrichts 18
 2.2.2 Zentrale Grundsätze verständnisvollen Lernens .. 23
 2.2.3 Naturwissenschaftliches Lernen als Aufbau und Veränderung von Wissenssystemen: Forschung zu Schüllervorstellungen und zu Conceptual Change 24
 2.2.3.1 Forschung zu Schüllervorstellungen ... 25
 2.2.3.2 Naturwissenschaftliches Lernen als Conceptual Change 28

 2.2.4 Ansätze und Befunde zum naturwissenschaftlichen Lehren 30
 2.2.4.1 Ansätze zum Genetischen Lehren .. 30
 2.2.4.2 Ansätze zur Gestaltung konstruktivistisch orientierter, Conceptual-Change- fördernder Lerngelegenheiten .. 31
 2.2.4.3 Empirische Befunde zum Einfluss konstruktivistisch und Conceptual-Change- orientierter Lernumgebungen auf das konzeptuelle Verständnis bei Schülern 34

 2.2.5 Zusammenfassung des Forschungsstandes zum naturwissenschaftlichen Lehren und Lernen .. 36

 2.3 Ansätze und Befunde zu Lehrervorstellungen zum Lehren und Lernen 37
 2.3.1 Theoretische Rahmung: Lehrervorstellungen zum Lehren und Lernen als Bestandteil professionellen Wissens von Lehrkräften ... 38
 2.3.1.1 Professionelles Wissen von Lehrkräften ... 38
 2.3.1.2 Der fachliche Kontext in der Erforschung professionellen Wissens von Lehrkräften: Fachspezifisch-pädagogisches Wissen ... 40
 2.3.1.3 Professionelles Wissen, subjektive Überzeugungen (beliefs) und Vorstellungen von Lehrkräften – zum Wissensbegriff in der Forschung zu Lehrerkognitionen 45

 2.3.2 Ansätze und Befunde zu Vorstellungen von Lehrkräften zum Lehren und Lernen ... 48
 2.3.2.1 Fachspezifische Vorstellungen von Lehrkräften zum Lehren und Lernen: Konkretisierung des Konstrukts .. 49
 2.3.2.2 Annahmen und Befunde zur Entstehung und Organisation von Vorstellungen zum Lehren und Lernen .. 56
 2.3.2.3 Befunde zur inhaltlichen Ausprägung von Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften ... 61
 2.3.2.4 Untersuchungen zur Dimensionalität von Vorstellungen über das Lehren und Lernen ... 76

 2.3.3 Ansätze und Befunde zu Zusammenhängen von Lehrervorstellungen zum Lehren und Lernen mit der Unterrichtsgestaltung und dem Lernerfolg von Schülern 77
 2.3.3.1 Anforderungen des unterrichtlichen Handelns .. 78
2.3.3.2 Kategoriale Wahrnehmung von Unterrichtssituationen und andere mittelbare Effekte von Lehrervorstellungen zum Lehren und Lernen auf das unterrichtliche Handeln...84
2.3.3.3 Annahmen und Befunde zur handlungsregulative Funktion von Vorstellungen (Beliefs) aus der sozialpsychologischen Forschungstradition...85
2.3.3.4 Annahmen und Befunde zu Inkonsistenzen zwischen Vorstellungen von Lehrkräften über das Lehren und Lernen und der unterrichtlichen Praxis.........................87
2.3.3.5 Befunde zu Zusammenhängen von fachspezifischen Lehrervorstellungen zum Lehren und Lernen mit dem unterrichtlichen Handeln von Lehrkräften...90
2.3.3.6 Befunde zu Zusammenhängen von Lehrervorstellungen zum Lehren und Lernen mit Lernerlebnissen seitens der Schüler...94
2.3.4 Zusammenfassung der Ansätze und Befunde zu Lehrervorstellungen zum Lehren und Lernen sowie offene Forschungsfragen...98

3 Zielsetzung, Fragestellungen und Hypothesen...101

4 Methoden..106

4.1 Anbindung an ein DFG-Projekt aus 'BiQua' und Anlage der vorliegenden Studie................................107
4.2 Anlage der vorliegenden Untersuchung...109
4.3 Stichproben..110
4.4 Erfassung der Vorstellungen von Lehrkräften zum Lehren und Lernen..113
 4.4.1 Verfahren zur Erfassung von Lehrervorstellungen zum Lehren und Lernen...............................113
 4.4.2 Zu erfassende Konstrukte...116
 4.4.3 Itemgewinnung und Vortestung..119
 4.4.4 Analyse der Items und Skalen zur Erfassung von Lehrervorstellungen zum Lehren und Lernen von Naturwissenschaften...121
 4.4.4.1 Stichproben...121
 4.4.4.2 Faktorenanalysen zur Untersuchung der Dimensionalität der Lehrervorstellungen zum Lehren und Lernen..122
 4.4.4.3 Interne Validität: Legitimation der Interpretation quantitativer Messwerte.........................123
 4.4.4.4 Zentrale Kennwerte der Items und Skalen..124
 4.4.4.5 Konstruktvalidität...124
 4.4.5 Erfassung des konzeptuellen Verständnisses von 'Schwimmen und Sinken' bei den Schülern........127
 4.5.1 Niveaus des Verständnisses von 'Schwimmen und Sinken'...127
 4.5.2 Test zur Erfassung des Verständnisses von 'Schwimmen und Sinken'...128
 4.5.2.1 Multiple-Choice- und True-False-Items...128
 4.5.2.2 Items mit offenem Antwortformat...130
 4.5.3 Bildung von Summenwerten..130
 4.5.4 Testadministration..132

4.6 Umgang mit fehlenden Werten...132
 4.6.1 Verschiedene Ursachen und Formen fehlender Werte..132
 4.6.2 Traditionelle Verfahren im Umgang mit fehlenden Werten und ihre Problematiken....................133
 4.6.3 Neure Verfahren im Umgang mit fehlenden Werten..135

4.7 Auswertungsverfahren und Variablenkontrolle..137
 4.7.1 Mehrebenenanalytisches Auswertungsverfahren..137
 4.7.2 Kontrollvariablen..141
5 Ergebnisse...142
5.1 Ergebnisse der Testanalysen..142
 5.1.1 Analysen der Items und Skalen zur Erfassung von Vorstellungen von Lehrkräften
 zum Lehren und Lernen von Naturwissenschaften...143
 5.1.1.1 Dimensionalität der erfassten Lehrervorstellungen..143
 5.1.1.2 Interne Validität: Legitimation der Interpretation quantitativer Messwerte......................146
 5.1.1.3 Zentrale Kennwerte der Items und Skalen...147
 5.1.1.4 Konstruktvalidität..148
 5.1.2 Ergebnisse der Analysen des Schülerleistungstests...152
 5.1.3 Zusammenfassung der Ergebnisse der Testanalysen..155
5.2 Ergebnisse der Analysen zum Zusammenhang von Vorstellungen von Lehrkräften
 zum Lehren und Lernen mit Lernfortschritten der Schüler...156
 5.2.1 Varianz in den Lernzuwächsen zwischen Klassen..157
 5.2.2 Zusammenhänge von Vorstellungen von Grundschullehrkräften zum Lehren
 und Lernen von Naturwissenschaften mit Lernfortschritten der Schüler...................................158
 5.2.2.1 Zusammenhänge von Lehrervorstellungen mit Fortschritten im integrierten
 konzeptuellen Verständnis von 'Schwimmen und Sinken' bei Schülern...............................159
 5.2.2.2 Zusammenhänge von Lehrervorstellungen mit dem Abbau von
 Fehlvorstellungen und dem Erwerb (vor-)physikalischer Konzepte
 von 'Schwimmen und Sinken' bei Schülern..162
 5.2.2.3 Differenzielle Effekte von Lehrervorstellungen zum Lehren und Lernen auf
 Fortschritte der Schüler im integrierten konzeptuellen Verständnis
 von 'Schwimmen und Sinken' in Abhängigkeit von individuellen
 (Lern-)Voraussetzungen der Schüler..165
 5.2.3 Zusammenfassung der Ergebnisse zu Zusammenhängen der erfassten Vorstellungen
 von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften mit
 Fortschritten der Schüler im integrierten konzeptuellen Verständnis
 von 'Schwimmen und Sinken'..168
6 Diskussion und Ausblick..171
 6.1 Zusammenfassende Betrachtung und Diskussion der Ergebnisse...172
 6.2 Beschränkungen der Studie...175
 6.3 Fachspezifität von Lehrervorstellungen zum Lehren und Lernen...180
 6.4 Vermittlende Unterrichtsprozesse..181
 6.5 Konsequenzen für die Lehrerbildung...182
 6.6 Ausblick..185
7 Literaturverzeichnis..186
8 Abbildungsverzeichnis..205
9 Tabellenverzeichnis..206
10 Anhang...208
 10.1 Interviewleitfaden...208
 10.2 Kodierschema für die Interviewanalyse..209
 10.3 Skalen zur Erfassung von Vorstellungen von Grundschullehrkräften zum Lehren
 und Lernen von Naturwissenschaften..211
 10.4 Skalen zur Erfassung des physikbezogenen Selbstkonzepts und Sachinteresses
 von Lehrkräften...213
1 Einleitung

Eine zweite Entwicklung steht im Zusammenhang mit einer Kritik, die Shulman Mitte der 1980er Jahre an der Lehr-Lern-Forschung übte. Er kritisierte die mangelnde Berücksichtigung fachspezifischer

1 Aus Gründen der Lesbarkeit wurde in der vorliegenden Arbeit auf eine zusätzliche Verwendung weiblicher Personenbezeichnungen verzichtet. Die männliche Form ist durchweg 'geschlechtsneutral' zu verstehen.

Dass die Berücksichtigung der beiden skizzierten Entwicklungen eine fruchtbare Perspektive für die Lehr-Lern-Forschung eröffnet, scheinen die Befunde aktueller Studien zu bestätigen (Kunter et al., 2006; Hill, Rowan & Ball, 2005). Beide Studien untersuchten fachspezifische Komponenten des professionellen Wissens von Lehrkräften und fanden eine hohe Relevanz dieser Wissensbereiche für das, was Schüler im Unterricht dieser Lehrkräfte lernen.

„The study of student misconceptions and their influence on subsequent learning has been among the most fertile topics for cognitive research. We are gathering an evergrowing body of knowledge about the misconceptions of students and about the instructional conditions necessary to overcome and transform those initial conceptions. Such research-based knowledge, an important component of the pedagogical understanding of subject matter, should be included at the heart of our definition of needed pedagogical knowledge.” (Shulman, 1987, S. 10)

EINLEITUNG

chen Verständnisses, der Umgang mit fehlenden Werten in den Daten, das mehrerebenenanalytische Auswertungsverfahren und die Berücksichtigung von Kontrollvariablen sind weitere methodische Grundlagen, die hier dargestellt werden.

2 Stand der Forschung und offene Forschungsfragen

2.1 Paradigmen der Lehr-Lern-Forschung

2.1.1 Das Paradigma der Lehrerpersönlichkeit

Schwächen dieses Paradigmas bestanden vor allem in den globalen, kaum operationalisierten bzw. operationalisierbaren und oft ideologisch geprägten Persönlichkeitseigenschaften, die bei den Lehrkraften untersucht wurden, und auch in der Vernachlässigung einer methodisch angemessenen und geziel-

2.1.2 Das Prozess-Produkt-Paradigma

2.1.3 Forschung zu Lehrerkognitionen: Das Experten-Paradigma

Calderhead beschreibt drei Phasen, die die Entwicklung der Forschung zum professionellen Wissen und Denken von Lehrkräften zusammenfassen (vgl. 1996). In einer ersten Phase, die Calderhead auf die 1970er Jahre datiert, standen Studien zum Entscheidungsverhalten (decision-making) von Lehrkräften im Vordergrund. Das Entscheidungsverhalten wurde als Bindeglied zwischen dem Denken und Handeln von Lehrkräften angesehen. Studien konzentrierten sich vor allem auf das reflexive Entschei-

2.1.4 Das konstruktivistische Paradigma

2.1.5 Zur Einordnung der Arbeit: Ein Modell zum Bedingungsgefüge von Lehren und Lernen aus der aktuellen Lehr-Lern-Forschung

Dass Kinder und Jugendliche natürlich auch außerhalb der institutionalisierten Lerngelegenheiten, die ihnen die Schule bietet, Wissen erwerben, Interessen entwickeln usw., wird in der folgenden Abbildung durch das Feld 'außerschulische Lerngelegenheiten' angedeutet.

Variablen- vs. personzentrierter Ansatz in der Lehr-Lern-Forschung

Weinert, 1997; Helmke, 2003).

2.2 Ansätze und Befunde zum naturwissenschaftlichen Lehren und Lernen

2.2.1 Konzeptuelles Verständnis als Zielkriterium naturwissenschaftlichen Unterrichts

Wie bereits angedeutet, wird in der vorliegenden Untersuchung naturwissenschaftliches konzeptuelles Verständnis der Schüler als Zielkriterium naturwissenschaftlichen Lehrens und Lernens in der Grundschule zugrunde gelegt. Die Studie beschränkt sich also auf ein leistungsbezogenes Erfolgskriterium, während nicht-leistungsbezogene Produkt-Variablen wie Interessen, Einstellungen, Selbstwirksamkeits-erwartungen oder (Fähigkeits-)Selbstkonzepte nicht berücksichtigt werden. In diesem Kapitel wird konzeptuelles Verständnis im Spektrum verschiedener leistungsbezogener Kriterien naturwissenschaftli-

1. Verständnis zentraler naturwissenschaftliche Konzepte, die zur Erklärung und Vorhersage 'natürlicher' Phänomene dienen. Bei der Auswahl der Konzepte liegt oft der Gedanke der Exemplarität zugrunde (naturwissenschaftliche 'Big Ideas').
2. Naturwissenschaftliche Untersuchungsmethoden und Verfahren (Durchführung naturwissenschaftlicher Untersuchungen (prozedurales Wissen) wie auch Wissen über diese Verfahren)
3. Die Geschichte und das 'Wesen' der Naturwissenschaft als Wissenschaftsdisziplin
4. Beziehungen zwischen Naturwissenschaft, Technik und Gesellschaft

(vgl. Bybee, 1997; Bybee & Ben-Zvi, 1998; Prenzel, Rost, Senkbeil, Häußler & Klopp, 2001; Rost, Walter, Carstensen, Senkbeil & Prenzel, 2004)

Diese Zielbereiche finden sich nicht nur in Konzeptionen zu Scientific Literacy, sondern stellen weitgehend konsensfähig Ziele für naturwissenschaftliches Lernen auch in der Grundschule dar (Bybee & DeBoer, 1994; Bybee & Ben-Zvi, 1998; AAAS, 1994). Die Forderung, dass bereits in der Grundschule solche anspruchsvollen Zielkategorien in elementarer Weise angestrebt werden sollten, wird durch neuere entwicklungspsychologische Erkenntnisse, die die von Piaget beschriebene konkret-operationale Gebundenheit des Denkens von Kindern im Grundschulalter in Frage stellen, gestützt (vgl. Stern &

Eine zentrale Rolle für das Verständnis eines Sachverhaltes spielt, darauf weist die Definition Seilers hin, das relevante und verfügbare Vorwissen. Wird jemand aufgefordert, einen naturwissenschaftlichen Sachverhalt zu erklären, so wird er bewusst oder unbewusst in seinem Vorwissen nach relevanter

Wie umfangreiche Forschung belegt, stehen dem Erwerb eines solchen Verständnisses naturwissenschaftlicher Konzepte häufig z.T. tiefverwurzelte Vorstellungen der Schüler über natürliche Phänomene entgegen. Auf diese Forschungen wird in Kapitel 2.2.3.1 noch näher eingegangen. Ansätze zum Erwerb eines konzeptuellen Verständnisses werden in den folgenden Teilkapiteln dargestellt. Die genauere Operationalisierung und damit auch die Art und Weise der Bewertung des konzeptuellen Verständnisses im Rahmen der vorliegenden Studie wird später im methodischen Teil in Kapitel 4.5 beschrieben.

Zusammengefasst lässt sich festhalten, dass aktuelle naturwissenschaftliche Bildungskonzepte im Grundschulbereich weniger Gewicht auf umfassende Kenntnisse naturwissenschaftlicher 'Fakten' und 'Informationen' legen und statt dessen eine stärkere Gewichtung des Verständnisses zentraler naturwissenschaftlicher Konzepte und Verfahren vorsehen (vgl. Linn, Songer & Eylon, 1996; Harlen, 1998; van

2.2.2 Zentrale Grundsätze verständnisvollen Lernens

etwas näher ausgeführt wird. Als robuster Befund zeigt sich in der Lehr-Lern-Forschung, dass das be-
reichsspezifische Vorwissen (sofern es erfasst wird) vor allgemeinen kognitiven Fähigkeiten und ande-
ren Individual- wie auch vor Klassen-, Unterrichts- oder Lehrermerkmalen stets der stärkste Prädiktor
des zu einem späteren Zeitpunkt erfassten konzeptuellen Verständnisses ist (vgl. Lipowsky, 2006).

Verständnisvolles Lernen erfolgt stets zu einem gewissen Teil selbstgesteuert. Verständnisvolles Lernen wird
durch Motivation und metakognitive Prozesse (z.B. Planung, Kontrolle, Bewertung) reguliert und un-
terliegt damit stets einer gewissen Steuerung und Kontrolle durch den Lernenden (vgl. Baumert et al.,
2004; Reinmann-Rothmeier & Mandl, 1998). Ein gewisses Ausmaß an Selbststeuerung stellt also ein
Merkmal jeden Wissenserwerbs dar. Lernen kann daher nicht einfach ‘von außen verordnet’ werden
(Reinmann-Rothmeier & Mandl, 1998).

Verständnisvolles Lernen erfolgt stets situiert. Forschungen zur Situierten Kognition zeigen, dass Wissen
stets mit den Merkmalen des Kontextes, in dem es erworben wurde, verbunden ist. Diese Situiertheit
beschränkt oft die Anwendbarkeit des Wissens und gilt als ein Erklärungsansatz für Befunde zum sog.
erworben und kann dort (z.B. in Prüfungssituationen) oft auch angewendet werden, nicht jedoch in an-
deren außerschulischen Kontexten. Werden die Erwerbs- und Anwendungskontexte variiert, kann der
Anwendungsbereich vergrößert werden. Dieser Prozess wird auch als Dekontextualisierung bezeichnet
(vgl. Greeno, Smith & Moore, 1993; Reinmann-Rothmeier & Mandl, 1998; Baumert et al.,
2004).

Verständnisvolles Lernen als Folge sozialen Handelns. Insbesondere sozial-konstruktivistische Ansätze
betonen, dass Wissen nicht nur das Resultat eines individuellen Konstruktionsprozesses ist. Durch die
Eingebundenheit des Einzelnen in eine Gemeinschaft ergibt sich, dass Wissen zugleich auch aus sozia-
len Aushandlungsprozessen erwächst. Kooperativem Lernen und soziokulturellen Einflüssen wird eine
besondere Bedeutung für den Lernprozess zugesprochen (vgl. Pontecorvo, 1993; Lazarowitz & Hertz-

2.2.3 Naturwissenschaftliches Lernen als Aufbau und Veränderung von
Wissenssystemen: Forschung zu Schülervorstellungen und zu Conceptual Change

Nachdem im vorigen Teilkapitel eher allgemeine und fachunspezifische Merkmale verständnisvollen
Lernens benannt wurden, werden in diesem Abschnitt Forschungen zu Schülervorstellungen und zu
Conceptual Change zusammengefasst, die speziell die Sicht von naturwissenschaftlichem Lernen ent-
sccheidend geprägt haben (vgl. die Überblicksdarstellungen von Duit & Treagust, 2003; Confrey, 1990;
Wandersee, Mintzes & Novak, 1994). Da wie einleitend beschrieben in dieser Studie das Verständnis
naturwissenschaftlicher Konzepte als Zielkriterium untersucht wird, wird im Folgenden auch nur auf
Befunde und Ansätze zu Schülervorstellungen von naturwissenschaftlichen Konzepten Bezug genom-
men. Vorstellungen über naturwissenschaftliche Verfahren oder das Wesen der Naturwissenschaften
werden nicht berücksichtigt.

2.2.3.1 Forschung zu Schülervorstellungen

2 Wenn im Folgenden von 'Fehlvorstellungen' gesprochen wird, so soll damit nicht ausgedrückt werden, dass diese Vorstellungen nicht ggf. kontextuell valide und rational begründet seien.

Von Ad-hoc-Konstruktionen sind Vorstellungen zu unterscheiden, die tief in Erfahrungen der Lernenden verankert und daher sehr resistent gegen Veränderung sind. Sie werden auch als deep structures bezeichnet (vgl. Wodzinski, 1996). In anderen Begriffen wie personal models of reality oder alternative frameworks kommt zum Ausdruck, dass bestimmte Vorstellungen der Schüler wie in dem o.g. Beispiel zur Lagebeziehung von Sonne und Erde in mentalen Modellen repräsentiert sind.

Die angedeutete Begriffsvielfalt kann als Hinweis auf die große Variation an unterschiedlichen Schülervorstellungen verstanden werden. Der Begriff der Schülervorstellungen wird als weiter Begriff gesehen, der die zuvor genannten Konstrukte umfasst. Marton beschreibt Vorstellungen (conceptions) folgendermaßen: „they belong to the inner, subjective world; their function is to make sense of those real world entities they are conceptions of.“ (1990, S. 613)

Aus Platzgründen kann hier keine Übersicht über Vorstellungen der Schüler in verschiedenen Inhaltsgebieten gegeben werden. Statt dessen werden einige Befunde zu Schülevorstellungen aus dem Themenbereich 'Schwimmen und Sinken' berichtet, da dies auch das Thema ist, bei dem das naturwissenschaftliche Verständnis der Schüler im Rahmen der vorliegenden Studie erfasst wird (s. Kapitel 4.2).

Viele der genannten Schülervorstellungen ('Wasser saugt nach unten'; 'Alles Leichte schwimmt' usw.) sind mit wissenschaftlichen Erklärungen des 'Schwimmens und Sinkens', d.h. mit den Konzepten der Dichte und der Auftriebskraft nicht vereinbar. Die meisten Schülervorstellungen sind nur begrenzt tragfähig, d.h. sie halten einer empirischen Prüfung in unterschiedlichen Kontexten nicht stand. Außerdem sind die Vorstellungen der Schüler i.d.R. durch eine geringe Verallgemeinerung gekennzeichnet. Statt dessen liegen offensichtlich fragmentierte, lose verbundene Vorstellungen vor, auf die je nach Situation zurückgegriffen wird. Ein allgemein-gültigeres, integrierteres Verständnis des 'Schwimmens und Sinkens' würde das In-Beziehung-Setzen (zumindest) zweier Größen erfordern: Des Volumens und der Masse (beim Wasser und beim Gegenstand), sofern mit dem Dichtekonzept argumentiert wird, oder der Auftriebskraft des Wassers und der Gewichtskraft des Gegenstandes, sofern auf das Auftriebskonzept als Erklärungsansatz zurückgegriffen wird. Piaget und Inhelder (vgl. 1977) gingen hier noch davon aus, dass Grundschulkinder aufgrund der konkret-operationalen Verhaftetheit ihres Denkens zwei ab-

2.2.3.2 Naturwissenschaftliches Lernen als Conceptual Change

Paradigmatisch für Conceptual-Change-Ansätze ist der von Posner, Strike, Hewson und Gertzog (vgl. 1982). Diesem Ansatz zufolge erfordert Conceptual Change zum einen die Unzufriedenheit (dissatisfaction) des Lernenden mit seinen vorhandenen Vorstellungen und zum anderen klare Alternativen in Form von neuen bzw. einer neuen Vorstellung(en). Damit sie als Alternative gesehen werden, müssen die neuen Konzepte dem Lernenden minimal verständlich sein (intelligible), sie müssen ihm glaubwürdig (plausible) erscheinen und sich als fruchtbar (fruitful) erweisen, d.h. die neuen Konzepte müs-
sen sich in der Anwendung auf verschiedene Phänomene bewähren. Dieser als 'klassisch' bezeichnete Ansatz ist jedoch in verschiedener Hinsicht kritisiert und weiter entwickelt worden (Duit & Treagust, 2003).

2.2.4 Ansätze und Befunde zum naturwissenschaftlichen Lehren

2.2.4.1 Ansätze zum Genetischen Lehren

Rückgriff auf Bildungskategorien zu begründen seien. Erst durch eine Reduktion der Stofffülle seien die anderen beiden Prinzipien zu realisieren (vgl. 1976; Möller, 2007).

Im Kern sehen also sowohl Wagenschein als auch Köhnlein naturwissenschaftliches Lehren als Unterstützung der Schüler bei einem Wissensaufbau, der an ihrem Vorwissen ansetzt und durch dialogische Lehrformen angeregt wird.

2.2.4.2 Ansätze zur Gestaltung konstruktivistisch orientierter, Conceptual-Change-fördernder Lerngelegenheiten

2.2.4.3 Empirische Befunde zum Einfluss konstruktivistisch und Conceptual-Change-orientierter Lernumgebungen auf das konzeptuelle Verständnis bei Schülern

In diesem Kapitel werden Studien zusammenfassend berichtet, die Effekte von Lernumgebungen, die auf der Grundlage der zuvor beschriebenen Ansätze gestaltet sind, auf das konzeptuelle Verständnis bei Schülern untersucht haben. Ein Schwerpunkt liegt auf Studien aus dem Bereich Naturwissenschaften, es werden aber auch solche aus dem Bereich Mathematik mit aufgenommen. Befunde zu Effekten der einzelnen o.g. Ansatzpunkte zur Gestaltung von Lernumgebungen zu berichten, ist nur eingeschränkt möglich, da vorliegende Studien selten einzelne Aspekte der genannten Ansatzpunkte fokussieren und da die Konstruktibildung zum sog. 'konstruktivistischen Unterricht' uneinheitlich und oft wenig präzise ist.

tungsstärkeren Schüler; s.u.: differenzielle Effekte) im konzeptuellen Verständnis (vgl. Wu & Tsai, 2005).

Auch wenn in den genannten Studien teilweise die Wirksamkeit ganzer 'Merkmalsbündel' der Prozess-Qualität von Unterricht untersucht wird und z.T. die Gestaltung fairerer Kontrollbedingungen wünschenswert wäre, deuten die Befunde doch darauf hin, dass ein konstruktivistisch orientierter, an Conceptual-Change-orientierter Unterricht positive Effekte auf den Erwerb eines konzeptuellen Verständnisses hat.

2.2.5 Zusammenfassung des Forschungsstandes zum naturwissenschaftlichen Lehren und Lernen

Umfangreiche Forschung zu Schülervorstellungen hat gezeigt, dass Schüler bereits vor der Teilnahme an institutionalisierten Lernangeboten über z.T. tief verwurzelte Vorstellungen über Naturphänomene und naturwissenschaftliche Begriffe verfügen, die mit wissenschaftlichen Sichtweisen häufig nicht übereinstimmen und teilweise auch in starkem Kontrast zu diesen stehen. Conceptual-Change-Ansätze stellen fruchtbare Modelle zur Erklärung naturwissenschaftlicher Lernprozesse dar. Sie beschreiben Prozesse der Veränderung vorhandener (Schüler-)Vorstellungen. Diese Prozesse konzeptueller Verän-
derungen umfassen eher akkomodative Prozesse, die starke Umstrukturierungen erfordern, wie auch eher assimilative Prozesse der Wissensausdifferenzierung und -erweiterung.

2.3 Ansätze und Befunde zu Lehrervorstellungen zum Lehren und Lernen

2.3.1 Theoretische Rahmung: Lehrervorstellungen zum Lehren und Lernen als
Bestandteil professionellen Wissens von Lehrkräften

In den folgenden drei Teilkapiteln werden Vorstellungen von Lehrkräften zum Lehren und Lernen in
teoretische Ansätze zum professionellen Wissen von Lehrkräften eingeordnet. Fachspezifische Vor-
stellungen zum Lehren und Lernen, wie sie in der vorliegenden Arbeit untersucht werden, können als
Teil dieses professionellen Wissens und speziell als Teil des sog. fachspezifisch-pädagogischen Wissens
angeschen werden (s. Kapitel 2.3.1.2). In Kapitel 2.3.1.3 wird der Begriff der 'Vorstellungen' zu den Be-
griffen 'Wissen' und 'Überzeugungen' in Beziehung gesetzt.

2.3.1.1 Professionelles Wissen von Lehrkräften

Lehrkräfte strukturieren ihre beruflichen Handlungssituationen, die oft relativ komplex, mehrdeutig
und rasch wandelbar sind, aktiv-konstruktiv, indem sie diese Situationen zu einem gewissen Grad pla-
nen, fortlaufend analysieren, interpretieren und in bestimmter Weise rekonstruieren. Diese gedankli-
chen Prozesse werden je nachdem, ob sie vor, während oder nach dem unterrichtlichen Handeln statt-
finden, als prä-, inter- und postaktive Denkprozesse bezeichnet (vgl. Dann, 2000; Bromme & Brophy,
1986; Clark & Peterson, 1986).

Bei diesen Denkprozessen greifen Lehrkräfte auf Wissensbestände zurück, die nur teilweise in der
formalen Ausbildung erworben wurden, zum Teil auch schon vorher in der Kindheit und Schulzeit,
zum großen Teil aber erst durch die eigene mehr oder weniger reflektierte Schulpraxis. Diese im Laufe
der Zeit aufgebauten, kognitiven Strukturen können als professionelles Wissen bezeichnet werden.
Lehrkräfte benutzen dieses Wissen in ihrer schulischen Arbeit zur Interpretation von Situationen, zur
Entwicklung von Handlungsplänen, zur Handlungsausführung und bei der nachgängigen Handlungsbe-

Professionelles Wissen von Lehrkräften ist oft durch die Integration von Wissen aus unterschiedli-
chen Domänen (z.B. Pädagogik, Psychologie, Fachwissenschaften) und auch persönlichen Erfahrungen
im schulischen Kontext gekennzeichnet. In Kapitel 2.3.1.2 wird näher auf das fachspezifisch-pädagogi-
sche Wissen von Lehrkräften eingegangen, bei dem diese von den Lehrkräften zu leistende Wissensin-
tegration besonders deutlich wird.

Für die Erforschung des professionellen Wissens von Lehrkräften erscheint es hilfreich, dieses
Wissen in verschiedene Komponenten zu gliedern und diese Komponenten gezielt zu untersuchen (vgl.
Bromme, 1997). In der Mehrheit der Veröffentlichungen zu professionellem Wissen von Lehrkräften
wird die Frage, welche Wissenskomponenten Lehrkräfte bei der Bewältigung ihrer beruflichen Anfor-
derungen nutzen, zumindest implizit eingeschränkt auf die Anforderungen, die sich Lehrkräften im Un-
terricht selbst oder in direktem Zusammenhang damit, wie z.B. der Unterrichtsplanung, stellen. Vor
dem Hintergrund, dass das Unterrichten als Kernbereich der professionellen Tätigkeit von Lehrkräften
angesehen werden kann (vgl. Terhart, 2003b), wird diese Einschränkung auch im Folgenden aufgegrif-
fen.

Ist es für die Untersuchung professionellen Lehrerwissens und auch für daraus zu ziehende Konse-

2.3.1.2 Der fachliche Kontext in der Erforschung professionellen Wissens von Lehrkräften: Fachspezifisch-pädagogisches Wissen

Zunächst beschrieb Shulman das fachspezifisch-pädagogische Wissen als eine Unterkategorie des fachbezogenen Wissens. Er differenzierte letzteres in fachspezifisches Wissen (subject matter knowledge), curriculares (curricular) und eben fachspezifisch-pädagogisches Wissen (pedagogical content knowledge), das auch als „subject matter for teaching“ bezeichnet wurde (Shulman, 1986a). In späteren Veröffentlichungen entwickelten Shulman und seine Kollegen die theoretische Konzeption der Domänen professionellen Wissens und auch die Beschreibung fachspezifisch-pädagogischen Wissens weiter. Fachspezifisch-pädagogisches Wissen wurde jetzt als eigenständige, 'gleichrangige' Komponente professionellen Lehrerwissens neben fachspezifischem Wissen, allgemein-pädagogischem Wissen und weiteren, insgesamt sieben Domänen verstanden (vgl. Shulman, 1987) und in dieser Weise definiert:

„that special amalgam of content and pedagogy that is uniquely the providence of teachers, their own special form of professional understanding [...] Pedagogical content knowledge [...] identifies the distinctive bodies of knowledge of teaching. It represents the blending of content and pedagogy into an understanding of how particular topics, problems, or issues are organized, represented, and adapted to diverse interests and abilities of learners, and presented for instruction. Pedagogical content knowledge is the category most likely to distinguish the understanding of the content specialist from that of the pedagogue.“ (Shulman, 1987, S. 8)

Außerdem existieren einige wenige Studien, die fachspezifische Vorstellungen zum Lehren und Lernen, die als Teil des fachspezifisch-pädagogischen Wissens angesehen werden können (s. folgendes Teilkapitel), erfasst und mit Lernerfolgsmaßen seitens der Schüler in Beziehung gesetzt haben. Auf diese Studien wird noch genauer in Kapitel 2.3.3.6 eingegangen.

Ein Modell zum naturwissenschaftsbezogenen fachspezifisch-pädagogischen Wissen

Ebenso wie für das professionelle Wissen von Lehrkräften sind auch unterschiedliche Gliederungsansätze für das fachspezifisch-pädagogische Wissen entwickelt worden (vgl. Segall, 2004). Für Shulman umfasst fachspezifisch-pädagogisches Wissen „the ways of representing and formulating the subject that make it comprehensible to others“ sowie „an understanding of what makes the learning of specific topics easy or difficult: the conceptions and preconceptions that students of different ages and backgrounds bring with them to the learning of the most frequently taught topics and lessons“ (1986a, S. 9).

Diese Idee der das fachspezifisch-pädagogische Wissen organisierenden Funktion von fachbezogenen Vorstellungen zum Lehren und Lernen haben Magnusson, Krajcik und Borko in folgender modifiziert wiedergegebener Grafik dargestellt.

2.3.1.3 Professionelles Wissen, subjektive Überzeugungen (beliefs) und Vorstellungen von Lehrkräften - zum Wissensbegriff in der Forschung zu Lehrerkognitionen

gen' übersetzt, der Begriff 'beliefs' mit '(subjektiven) Überzeugungen'. Das Verhältnis der Begriffe 'conceptions' und 'beliefs' zum Wissensbegriff ist häufig leider unklar und teilweise auch innerhalb einer Publikation widersprüchlich (vgl. z.B. Bassarear, 1989). Besondere Konfusion scheint darin zu bestehen, ob das, was hier als Vorstellungen zum Lehren und Lernen beschrieben ist, als Wissen oder eher als subjektive Überzeugung (belief) zu verstehen ist.

Zum Verhältnis von Wissen und Überzeugungen

Vorstellungen zum Lehren und Lernen als inklusiver Begriff

2.3.2 Ansätze und Befunde zu Vorstellungen von Lehrkräften zum Lehren und Lernen

2.3.2.1 Fachspezifische Vorstellungen von Lehrkräften zum Lehren und Lernen: Konkretisierung des Konstruks

Der Gegenstandsbereich von Lehrervorstellungen zum Lehren und Lernen

Abbildung 3: Zuordnung von Vorstellungen zum Lehren und Lernen zu Komponenten des professionellen Lehrerwissens (linke Spalte) und Andeutung eines Kontinuums fachspezifischer Ausprägung von Vorstellungen zum Lehren und Lernen

In dieser Arbeit werden, wie bereits im Kapitel zum fachspezifisch-pädagogischen Wissen angedeutet, Vorstellungen von Lehrkräften zum Lehren und Lernen untersucht, die auf ein Schulfach bzw. einen Lernbereich (hier den naturwissenschaftlichen Lernbereich) in der Grundschule bezogen sind.

Fischler (vgl. 2001; 2004) hat den Gegenstandsbereich von Vorstellungen von Lehrkräften zum Lehren und Lernen von Naturwissenschaften in vier Bereiche gegliedert, die er am Beispiel des Faches Physik beschreibt. Bei den vier Bereichen handelt es sich nicht, wie Fischler auch sagt, um ein im ei-

3. Wissenschaftstheoretische Vorstellungen, die sich u.a. auf die Bedeutung des Experiments für die naturwissenschaftliche Erkenntnisgewinnung beziehen.

Mit Hilfe des in Kapitel 2.1.5 dargestellten Angebots-Nutzungs-Modells zur Wirkungsweise von Unterricht kann zu heuristischen Zwecken aus einer theoretischen Perspektive noch näher konkretisiert werden, worauf sich die in dieser Arbeit thematisierten Vorstellungen über das Lehren und Lernen beziehen. Aus dem Modell lassen sich folgende Gegenstandsbereiche von Vorstellungen über das Lehren
Vorstellungen über das Lehren, die sich auf die Angebotsstruktur von Unterricht oder, anders ausgedrückt, auf die Gestaltung von Lerngelegenheiten und somit gewissermaßen auf 'guten' bzw. 'weniger guten' Unterricht 'an sich' beziehen. (Vorstellungen über guten bzw. weniger guten Unterricht 'an sich')

Vorstellungen über das Lehren, die sich auf die Wirksamkeit bestimmter Unterrichtsangebote mit Blick auf die Erreichung von Zielen, d.h. Lernergebnissen (multiple Zielkriterien) bei den Schülern beziehen. Vorstellungen über angestrebte Zielsetzungen des Lehrens im jeweiligen Fach fließen hier mit ein. (Vorstellungen über 'effektiven bzw. weniger effektiven Unterricht')

Vorstellungen über das Lernen, die sich auf individuelle Verarbeitungs- bzw. Lernprozesse und individuelle Lernvoraussetzungen der Schüler beziehen (Vorstellungen über das Lernen und individuelle Lernvoraussetzungen)

Vor dem Hintergrund dieser Befundlage und der Feststellung, dass in vielen vorliegenden Veröffentlichungen Vorstellungen von Lehrkräften zum Lehren und Lernen als ein Konstrukt verstanden und erfasst werden, wird dies in der vorliegenden Untersuchung auch so gehandhabt.

Fachspezifische Vorstellungen zum Lehren und Lernen als fachspezifisch-pädagogische Philosophie von Lehrkräften

Fachspezifische Vorstellungen zum Lehren und Lernen, wie sie in dieser Arbeit untersucht werden, können auch in Analogie zur Philosophie des Schulfaches, die Bromme in seiner o.g. Taxonomie professionellen Lehrerwissens beschrieben hat (vgl. 1992; 1997), als fachspezifisch-pädagogische Philosophie von Lehrkräften verstanden werden. Das, was die Philosophie des Schulfaches für das fachbezogene Wissen darstellt, sind fachspezifische Vorstellungen zum Lehren und Lernen für das fachspezifisch-pädagogische Wissen.

Fachspezifische Vorstellungen zum Lehren und Lernen als situationsübergreifende, mehr oder weniger stabile Kognitionen

Während Überzeugungen (Beliefs) i.d.R. als zeitlich relativ stabil beschrieben werden werden (vgl. Thompson, 1992; Richardson, 1996), wird diese Annahme bei Vorstellungen zum Lehren und Lernen nicht getroffen. Sie können vielmehr über die Zeit gesehen mehr oder weniger stabil sein. Sie umfassen sowohl zeitlich stabile 'tiefe' Überzeugungen als auch eher ad hoc konstruierte Ansichten, die über die Zeit gesehen nicht besonders stabil sind.
Fachspezifische Vorstellungen zum Lehren und Lernen als 'prototypische' und sozial geteilte Kognitionen

Fachspezifische Vorstellungen zum Lehren und Lernen als 'verbal ausgedrückte Vorstellungen'

Verwandte Konstrukte

Eine affektive, emotionale Komponente ist also zumindest in den Ansätzen, die dem Fishbein'schen nahe stehen, eine zentrale Komponente des Einstellungs begriffs. Eine solche affektiv-emotionale Komponente ist jedoch in dem Konstrukt der Vorstellungen von Lehrkräften zum Lehren und Lernen,

2.3.2.2 Annahmen und Befunde zur Entstehung und Organisation von Vorstellungen zum Lehren und Lernen

Fachspezifische Vorstellungen zum Lehren und Lernen basieren auf verschiedenen Erfahrungssquellen

den ersten Bereiche relevant.

Insgesamt ist festzuhalten, dass Vorstellungen zum Lehren und Lernen auf der Basis sehr unterschiedlicher Erfahrungsquellen ausgebildet werden und dass insbesondere Erfahrungen im Rahmen der eigenen Schulzeit eine große Rolle spielen. In den Vorstellungen praktizierender Lehrkräfte zum Lehren und Lernen sind solche persönlichen Erfahrungen als Schüler, aber auch mehr oder weniger reflektierte Erfahrungen eigenen Unterrichtens sowie auch Elemente formalen, disziplinären Wissens, wie es Pädagogik, allgemeine und Fachdidaktik bereitstellen, integriert.

Organisation in Vorstellungsclustern

und die Lehrkraft gut auf Schülerfragen vorbereitet sein sollte.

Die zweite Dimension basiert auf dem Befund, dass Vorstellungen mit unterschiedlichem Grad an Überzeugung vertreten werden. In Anlehnung an Green können zentrale und periphere Vorstellungen unterschieden werden. Haney und McArthur sprechen von Kernvorstellungen („core conceptions“) und peripheren Vorstellungen (vgl. 2002). Zentrale Vorstellungen sind dadurch gekennzeichnet, dass sie mit großer Überzeugung vertreten werden, wohingegen periphere Vorstellungen eher für Revision oder Modifikation durch Erfahrung zugänglich sind (vgl. Thompson, 1992). In der Metapher des Begriffs der Vorstellungscluster wird 'psychologische Stärke' einzelner Vorstellungen also durch die Lage im Cluster repräsentiert. Green hebt hervor, dass psychologische Zentralität und logische Ordnung im Sinne von 'vorrangig' und 'nachgeordnet' unabhängige Dimensionen darstellen: „A belief may be logically derivative and yet be psychologically central, or it may be logically primary and psychologically peripheral.“ (1971, S. 46).

Koexistenz vermeintlich widersprüchlicher Vorstellungen – Quasi-Logik von Vorstellungen

Beziehungen von Vorstellungen zum Lehren und Lernen mit anderen Komponenten professionellen Wissens

2.3.2.3 Befunde zur inhaltlichen Ausprägung von Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften

In diesem Kapitel wird eine Übersicht über vorliegende Studien gegeben, die die inhaltliche Ausprägung der Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften untersucht haben. Diese Forschungsübersicht stellt die Grundlage für die Identifikation von Lehrervorstellungen zum Lehren und Lernen dar, deren Zusammenhänge mit Lernfortschritten der Schüler untersucht werden sollen. Damit ist die Übersicht auch Basis für die Beschreibung von Konstrukten, die das im Rahmen dieser Arbeit zu entwickelnde Instrument erfassen soll. Die Auswahl der in die Übersicht aufgenommenen Studien basierte auf folgenden Kriterien:

- Untersuchte Lehrkräfte. Die Forschungsübersicht fokussiert auf Untersuchungen an Grundschullehrkräften, da davon auszugehen ist, dass u.a. wegen der auch international zumeist sehr unterschiedlichen Ausbildung von Primar- und Sekundarstufenlehrkräften und deren unterschiedlichem professionellen Selbstverständnis (fachliche 'Generalisten' vs. 'Spezialisten'; vgl. Gess-Newsome, 1999b) die beiden Lehrergruppen auch unterschiedliche Vorstellungen vom Lehren und Lernen ha-

- **Studien zur Philosophie des Schulfaches Naturwissenschaften** (nature of science) werden nicht mit aufgenommen, sofern nicht wie in einigen Untersuchungen auch Vorstellungen zum Lehren und Lernen von Naturwissenschaften erhoben und berichtet werden.

- **Bei Interventionsstudien** werden, sofern sie erfasst und berichtet werden, die Vorstellungen der Lehrkräfte vor und nach der Intervention angegeben. Auch die möglicherweise veränderten Lehrervorstellungen sind hier von Interesse, da in der vorliegenden Studie (in diesem Fall durch Fortbildungen) modifizierte Vorstellungen untersucht werden (s. Kapitel 4.2). Die Interventionsmaßnahmen werden nur kurz umrissen, da die Bedingungen der Veränderung von Lehrervorstellungen nicht im Fokus dieser Arbeit stehen.

- Da Studien aus Deutschland bisher kaum vorliegen, werden auch Untersuchungen aus anderen Ländern, insbesondere aus dem anglo-amerikanischen Raum, in die Übersicht aufgenommen. Auf die Frage der Generalisierbarkeit der Befunde dieser Studien auf die deutsche Situation wird im Anschluss an die Darstellung der Studien noch etwas näher eingegangen.

Im Folgenden wird zunächst tabellarisch dargestellt, welche Studien in die Forschungsübersicht aufgenommen werden, wie viele und welche Probanden (Studierende oder praktizierende Lehrkräfte) untersucht wurden, auf welches Fach bzw. welchem Lernbereich sich die Vorstellungen der Lehrkräfte beziehen und welche Instrumente bzw. Verfahren zur Erfassung der Lehrervorstellungen zum Einsatz kamen. Zuerst werden Untersuchungen mit Studierenden, dann mit praktizierenden Lehrkräften aufgeführt. Innerhalb der beiden Gruppen von Studien wird nach deren Aktualität sortiert. Im Anschluss an die Auflistung werden dann die Befunde der einzelnen Studien berichtet.

3 Zur genaueren Beschreibung des hier gewählten Gegenstandsbereichs von Vorstellungen zum Lehren und Lernen s. Kapitel 2.3.2.1
Tabelle 1

<table>
<thead>
<tr>
<th>Studie</th>
<th>Probanden</th>
<th>Fachbezugs</th>
<th>Instrumente/Verfahren zur Erfassung der Lehrervorstellungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gustafson & Rowell, 1995</td>
<td>27 Lehramtsstudierende (Primarstufe)</td>
<td>Naturwissenschaften</td>
<td>Fragebogen mit offenen Fragen, teilstrukturierte Interviews</td>
</tr>
<tr>
<td>Meyer, Tabachnik, Hewson, Lemberger & Park, 1999; Hewson et al., 1999; Hewson, Tabachnik, Zeichner & Lemberger, 1999</td>
<td>Hier untersucht: 3 Lehramtsstudierende, Primarstufe</td>
<td>Biologie</td>
<td>Conceptions of Teaching Science Interview (CTS)</td>
</tr>
<tr>
<td>Tillema, 2000</td>
<td>36 Lehramtsstudierende (Primarstufe)</td>
<td>Naturwissenschaften</td>
<td>Fragebogen, Kommentare zu sog. Vignerten (vorgegebene problemhaltige Unterrichtsszenarien; Probanden sollen Problemanalyse schreiben und präferiertes Lehrerverhalten notieren)</td>
</tr>
<tr>
<td>Skamp & Mueller, 2001</td>
<td>12 Lehramtsstudierende (Primarstufe), Kanada</td>
<td>Naturwissenschaften</td>
<td>teilstrukturierte Interviews</td>
</tr>
<tr>
<td>Haney & McArthur, 2002</td>
<td>4 Lehramtsstudierende (Auswahl auf der Basis von Werten der Constructivist Learning Environment Survey (CLEIS))</td>
<td>Naturwissenschaften</td>
<td>Interviews, Dokumentenanalyse (Unterrichtsplanungen und -reflexionen)</td>
</tr>
<tr>
<td>Bryan, 2003</td>
<td>1 Lehramtsstudierende (Primarstufe)</td>
<td>Naturwissenschaften</td>
<td>Interviews, schriftliche Unterrichtsreflexionen, Unterrichtsbeobachtung während Praxisphasen, Begleitung der Studentin über ein Jahr</td>
</tr>
<tr>
<td>Häfner & Zembal-Saul, 2004</td>
<td>11 Lehramtsstudierende (Primarstufe)</td>
<td>Naturwissenschaften</td>
<td>Halbstrukturierte Interviews, Unterrichtsplanungen u.a. Kursmaterialien der Studenten</td>
</tr>
<tr>
<td>Hubbard & Abell, 2005</td>
<td>6 Lehramtsstudierende (Primarstufe), Auswahl auf der Basis von Werten</td>
<td>Naturwissenschaften</td>
<td>Fragebogenitems mit offenen Antwortformat</td>
</tr>
<tr>
<td>So & Watkins, 2005</td>
<td>25 Lehramtsstudierende (Primarstufe), Hong Kong</td>
<td>Naturwissenschaften</td>
<td>Interviews, Unterrichtsreflexionen</td>
</tr>
<tr>
<td>Smith & Neale, 1989; Smith & Neale, 1991</td>
<td>8 Grundschullehrkräfte, grades k-3, erfahrene Lehrkräfte (5-25 Jahre Berufserfahrung)</td>
<td>Naturwissenschaften</td>
<td>Interviews (u.a. stimulated recall auf der Basis videogetrierter Unterrichtsstunden der teilnehmenden Lehrkräfte), Fragebögen mit offenen Fragen</td>
</tr>
<tr>
<td>Yerrick, Parke & Nugent, 1997</td>
<td>8 Lehrkräfte (middle grades), 2 bis 24 Jahre Berufserfahrung</td>
<td>Naturwissenschaften</td>
<td>Interviews (vor und nach einer Fortbildungsmaßnahme)</td>
</tr>
<tr>
<td>King, Shumow & Lietz, 2001</td>
<td>4 Grundschullehrkräfte</td>
<td>Naturwissenschaften</td>
<td>Teilstrukturierte Interviews</td>
</tr>
<tr>
<td>Levitt, 2002</td>
<td>16 Grundschullehrkräfte</td>
<td>Naturwissenschaften</td>
<td>Interviews (eine Art stimulated recall Interviews)</td>
</tr>
<tr>
<td>Jarvis & Pell, 2004</td>
<td>38 Grundschullehrkräfte</td>
<td>Naturwissenschaften</td>
<td>Likertskalierte Fragebogenskalen, Fragebogenitems mit offenen Antwortformat</td>
</tr>
<tr>
<td>Heran-Dörr, 2006</td>
<td>20 Grundschullehrkräfte, Deutschland</td>
<td>Naturwissenschaften</td>
<td>Interviews (u.a. stimulated recall)</td>
</tr>
</tbody>
</table>

Gustafson und Rowell (vgl. 1995) untersuchten die Vorstellungen von 27 Lehramtsstudierenden zum Lehren und Lernen von Naturwissenschaften vor und nach der Teilnahme an zwei universitären Kur-

Lernaktivitäten organisiert, sich mit direkt instruierenden Maßnahmen zurückhalten, offene Fragen stellen und die Interaktion der Schüler untereinander in Gruppenarbeiten ermöglichen.

Schülern wurden hierfür als geeignetes Mittel angesehen (vgl. S. 17-20).

Yerrick, Parke und Nugent (vgl. 1997) untersuchten die Veränderung von Lehrervorstellungen über das Lehren und Lernen durch eine Fortbildungsmaßnahme zu forschend-entdeckendem (inquiry-
S. 71

In Levitts Studie (vgl. 2002) zeigte sich eine übergreifende Vorstellung: Das naturwissenschaftliche Lehren und Lernen sollte schülerzentriert („student centered“) sein. Levitt fand fünf spezifischere Vorstellungen, die alle dieser übergreifenden Vorstellung subsumiert werden können: (1.) Schüler sollten praktisch tätig sein; (2.) Schüler als aktive Teilnehmer im naturwissenschaftlichen Unterricht; (3.) naturwissenschaftliches Lernen sollte subjektiv bedeutungsvoll für die Schüler sein; (4.) naturwissenschaftlicher Unterricht sollte positive Einstellungen gegenüber Naturwissenschaften unterstützen; (5.) die Rolle der Lehrkraft sollte durch den Fokus auf die Schüler bestimmt sein. Levitt bezeichnet die gefundenen Vorstellungen als „non-traditional“ (S. 19) und sieht diese Befunde im Kontrast zu anderen Studien, die eher lehrerzentrierte, ‚traditionelle‘ Vorstellungen fanden.

Jarvis & Pell (vgl. 2004) fanden in ihrer Interventionsstudie bereits vor den durchgeführten Lehrerfortbildungen bei den 38 teilnehmenden Grundschullehrkräften sehr hohe Werte in der Skala 'for-
schender, schülerorientierter naturwissenschaftlicher Unterricht', die sich auf die Bedeutung bezieht, die Lehrkräfte der Unterstützung von Schülerinitiative, dem Interesse und der Neugier der Schüler beimes-
hin hohen Prä-Werte der Lehrkräfte auf diesen Skalen nicht weiter zu steigern.

abläufe bzw. -methoden orientiert sei. Diese Vorstellung fand sich in erster Linie bei den Lehramtsstu-

Bei den Vorstellungen zum Lernen fand sich ein Faktor, der eine Sicht von Lernen als Aneignung von Wissen („appropriation of meanings“) umfasst, der zufolge Schüler als 'tabula rasa' gesehen werden, die Informationen mit festem Bedeutungsgehalt vom Lehrer aufnehmen. Der zweite Faktor wurde als „as-
simulation of meanings“ umschrieben. Der Lernende müsse demnach das zu Lernende auf sein vorhan-
denes Wissen beziehen und für diese geistige Aktivität auch motiviert sein. Der dritte Faktor „construc-
tion of meanings“ betont die individuelle Bedeutungskonstruktion und die Rolle von vorhandenen Vorstellungen für das Lernen. Diese Sicht sei in anderen Studien als konstruktivistisch bezeichnet worden (vgl. S. 55). Kritische Anmerkungen zum Vorgehen bei den Analysen finden sich in Kapitel 2.3.2.4.

Keys (vgl. 2005) klassifizierte in ihrer Studie die Vorstellungen der untersuchten Lehrkräfte in vier Kategorien: „platonic beliefs“, die idealistische Vorstellungen bezeichnen, „organizational beliefs“, die der Lehrkraft 'von außen' (der Organisation) auferlegt wurden, „associated beliefs“, die in vorhandene Vorstellungen assimilierte Beliefs bezeichnen, sowie „transitional beliefs“, die verbal zum Ausdruck ge-
bracht werden und sich auch zumindest teilweise im Verhalten niederschlagen (S. 505 f.). Die von den Lehrkräften zum Ausdruck gebrachten Vorstellungen, denen zufolge das Vorwissen der Schüler erkun-
det und Schüler individuell gefördert werden müssten, wurden den organisational beliefs zugeschrieben. Auch fand Keys eine verbreitete 'hands-on'-Vorstellung von naturwissenschaftlichem Lehren und Lernen und ordnete sie den assoziierten Vorstellungen zu, da diese Vorstellung mit der Sichtweise der Lehrkräfte von 'konstruktivistischem Unterricht' verbunden war (vgl. S. 508), aber eine Fehlinterpretati-

Zusammenfassung und Bewertung vor dem Hintergrund von Ansätzen der naturwissenschaftlichen Lehr-Lern-Forschung

Trotz der unterschiedlichen methodischen Zugänge wird aber auch deutlich, dass die verschiedenen Studien immer wieder ähnliche, 'prototypische' Vorstellungen der Grundschullehrkräfte zum Lehren und Lernen von Naturwissenschaften berichten. Diese Vorstellungen scheinen recht verbreitete im Sinne von sozial geteilten Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Na-
Im Folgenden werden zunächst die berichteten inhaltlichen Ausprägungen der Lehrervorstellungen tabellarisch zusammengefasst. Dabei ergibt sich die Schwierigkeit, dass die in den Studien gewählten Konstrukte zur Beschreibung der gefundenen Vorstellungen nicht immer einheitlich verwendet und die Vorstellungen z.T. auf unterschiedlichen Generalisierungsniveaus beschrieben werden. Unter dem Label einer 'konstruktivistischen Vorstellung' bspw. werden z.T. recht heterogene Konstrukte gefasst. Sie reichen von einer 'allgemeinen Schülerorientierung', die durch Orientierung an Interessen der Schüler, Mitbestimmungsmöglichkeiten und die Betonung individueller Lernwege gekennzeichnet ist, bis hin zu Konstrukten, die auf das Lernen als Veränderung vorhandener Vorstellungen im Sinne von Conceptual Change fokussieren. Für die folgende tabellarische Zusammenfassung der berichteten Vorstellungen werden daher die Beschreibungen der Konstrukte zugrunde gelegt und nicht die 'Labels'. Außerdem werden übergeordnete Konstrukte genannt (Spalte 1) und dann bei deren Beschreibung ggf. verschiedene Facetten der Vorstellungen unterschieden (Spalte 2). Die beschriebenen Konstrukte sind dabei nicht als völlig disjunkte Kategorien zu verstehen.

Tabelle 2
Zusammenfassung der Befunde zu inhaltlichen Ausprägungen der Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften

<table>
<thead>
<tr>
<th>Bezeichnung der Vorstellung und weitgehend gleichbedeutende Bezeichnungen</th>
<th>Beschreibung der Vorstellung ggf. mit verschiedenen Facetten</th>
<th>Studien, die diese Vorstellungen fanden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung der Vorstellung und weitgehend gleichbedeutende Bezeichnungen</td>
<td>Beschreibung der Vorstellung mit verschiedenen Facetten</td>
<td>Studien, die diese Vorstellungen fanden</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>'Anwendungsbezogenes Lernen'</td>
<td>Es wird betont, dass im naturwissenschaftlichen Unterricht Beziehungen zum 'Alltag' bzw. zur 'Lebenswelt' der Schüler hergestellt werden sollten. Die Schüler müssten Möglichkeiten bekommen, ihr Wissen anzuwenden.</td>
<td>Levitt, 2002; Heran-Dörr, 2006</td>
</tr>
<tr>
<td>'Angeleitetes Lernen'</td>
<td>Betonung der Notwendigkeit der Anleitung und Unterstützung von Lernprozessen der Schüler, z.B. durch Hilfen bei der Umsetzung von Vorschlägen der Schüler für Experimente</td>
<td>Mellado, 1998; So & Watkins, 2005</td>
</tr>
</tbody>
</table>

Weitere Bezeichnungen: 'Activitymania' (Blank, 2000), 'Activity-driven' conception (Smith & Neale, 1991)
Bezeichnung der Vorstellung
Beschreibung der Vorstellung

<table>
<thead>
<tr>
<th>Bezeichnung der Vorstellung</th>
<th>Beschreibung der Vorstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Naturwissenschaftliche Verfahren'</td>
<td>Schüler sollen naturwissenschaftliche Verfahren praktizieren und erlernen, die aus der Sicht der Lehrkräfte wichtige Verfahren darstellen: Vermutungen aufstellen, Beobachten, Daten sammeln, Schlussfolgerungen ziehen, Vermutungen prüfen, kontrolliertes Experimentieren. Es bestehen hier Überschneidungen mit Vorstellungen über das Wesen von Naturwissenschaften (nature of science).</td>
</tr>
</tbody>
</table>

Sonstige Vorstellungen zum Lehren und Lernen, die nur in einzelnen Studien genannt werden

<table>
<thead>
<tr>
<th>Bezeichnung der Vorstellung</th>
<th>Beschreibung der Vorstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betonung der Notwendigkeit des Einräumens von Zeit zum Nachdenken; Präferenzen für den Einsatz 'neuerer' Medien</td>
<td>McGinnis, Kramer, Shama, Graeber, Parker und Watanabe, 2002</td>
</tr>
</tbody>
</table>

Zu beachten ist bei dieser Übersicht, dass bei mehreren Studien Vorstellungen von Lehrkräften berücksichtigt wurden, die vorher an spezifischen fachdidaktischen Aus- und Fortbildungsmaßnahmen teilgenommen haben. Da die Probanden der vorliegenden Arbeit ebenfalls solche spezifisch fortgebildeten Lehrkräfte sind, war es das Ziel, das Spektrum an Vorstellungen zum Lehren und Lernen auch bei solchen Lehrkräften abbilden zu können.

Insbesondere zwei der berichteten Vorstellungen der Lehrkräfte zum Lehren und Lernen von Naturwissenschaften scheinen nicht konsistent mit den beschriebenen Ansätzen der naturwissenschaftsbezogenen Lehr-Lern-Forschung. Das betrifft die als 'Transmission' und die als 'Praktizismus' bezeichneten Vorstellungen. Beide Vorstellungen vernachlässigen die für den Erwerb sachlich angemessenerer Vorstellungen seitens der Schüler erforderlichen aktiven Umstrukturierungsprozesse. Gemäß der als 'Praktizismus' bezeichneten Vorstellung wird außerdem die für den Erwerb eines naturwissenschaftlichen konzeptuellen Verständnisses als bedeutsam erachtete Unterstützung der Lernprozesse durch die Lehrkraft (Stichwort 'Scaffolding') nicht in Betracht gezogen bzw. sogar als 'überflüssig' betrachtet. Die-

Verbreitet scheinen bei Grundschullehrkräften auch Vorstellungen zum Lehren und Lernen von Naturwissenschaften zu sein, die als 'schülerorientiert' umschrieben werden (vgl. z.B. Levitt, 2002). Auch eine Vorstellung, die die Bedeutung praktischen Handelns der Schüler im Unterricht betont (kein 'Praktizismus') und die z.T. ebenfalls einer allgemeinen Schülerorientierung zugeschrieben wird, wird vielfach berichtet. Diese Vorstellungen scheinen ebenfalls eher in einer indifferenten Beziehung zu den in Kapitel 2.2 geschilderten theoretischen Ansätzen und Befunden zu stehen. Die Rolle, die diese Vorstellungen für den Erwerb konzeptuellen naturwissenschaftlichen Verständnisses seitens der Schüler spielen könnten, scheint unklar zu sein.

2.3.2.4 Untersuchungen zur Dimensionalität von Vorstellungen über das Lehren und Lernen

unterschiedlicher Ergebnisse gemeinsame Faktoren zu interpretieren. So setzen sich die berichteten
Vorstellungen „technical model“ und „appropriation of meanings“ bei den Studenten aus je zwei (or-
thogonalen!) Faktoren zusammen. Deutlich ist jedoch, dass zumindest 'traditionelle' und 'alternative,
konstruktivistische' Vorstellungen separate Dimensionen bilden und dass eine 'eindimensionale' Be-
schreibung von Vorstellungen zum Lehren und Lernen von Naturwissenschaften zu kurz greift.

Zieht man zusätzlich Studien aus dem Bereich Mathematik und Studien mit Sekundarstufen-Lehr-
kräften hinzu, so finden sich weitere Hinweise auf eine zumindest zweidimensionale Struktur der in-
haltlichen Ausprägung fachspezifischer Vorstellungen zum Lehren und Lernen. So identifizieren
Dubberke, Kunter, McElvany, Brunner und Baumert (vgl. eingereicht) im Rahmen der COACTIV-Stu-
die (vgl. auch Brunner et al., 2006) zwei Faktoren, die als „transmission view“ und „constructivist view“
bezeichnet werden. Die Vorstellungen der Lehrkräfte wurden mit einem Fragebogen-Instrument er-
fasst, das von Peterson, Fennema, Carpenter und Loef (vgl. 1989) entwickelt und von Staub und Stern
diesen Fragebogen für den Bereich Physik der Sekundarstufe und beschreiben ebenfalls zwei Vorstel-
lungen: „Lernen als Wissensaufnahme“ und „Lernen als Wissenskonstruktion“. Prosser und Trigwell
(vgl. 2006) konnten mittels konfirmatorischen Faktorenanalysen diese zwei Dimensionen bestätigen.
Sie beschreiben sie als „information transmission/teacher-focused“ und „conceptual change/student-
focused conception“ (S. 407-409).

Natürlich ist die faktorenanalytische Bestimmung von Dimensionen der inhaltlichen Ausprägung
von Vorstellungen zum Lehren und Lernen, auch wenn diese fachspezifisch auf das naturwissenschaft-
liche Lehren und Lernen bezogen betrachtet werden, immer auch von der Anlage und der inhaltlichen
Ausrichtung der eingesetzten Instrumente bzw. Items abhängig. Außerdem liegen bisher kaum Studien
vor, die die Aufklärung von Dimensionen fachspezifischer Vorstellungen von Grundschullehrkräften
zum Lehren und Lernen von Naturwissenschaften gezielt untersuchen. Dennoch sprechen die be-
schriebenen Befunde für zumindest zwei zentrale Dimensionen, die eine 'traditionelle' bzw. 'transmissi-
ve' und eine 'konstruktivistisch geprägte' Vorstellung widerspiegeln. Eine eindimensionale Anordnung
von Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften auf
einem Kontinuum mit den Polen 'transmissiv/traditionell' und 'konstruktivistisch/reformorientiert',
wie es mal mehr, mal weniger explizit in einigen Veröffentlichungen zugrunde gelegt wird, scheint zu
kurz zu greifen.

2.3.3 Ansätze und Befunde zu Zusammenhängen von Lehrervorstellungen zum Lehren
und Lernen mit der Unterrichtsgestaltung und dem Lernerfolg von Schülern

Im Vordergrund der vorliegenden Arbeit steht die Untersuchung von Zusammenhängen von fachspe-
zifischen Lehrervorstellungen über das Lehren und Lernen mit Lernfortschritten der Schüler. Um be-
gründete Annahmen über diese Zusammenhänge zu erhalten, werden in diesem Kapitel zunächst An-
sätze und Befunde zu der Frage beschrieben, in welcher Beziehung Lehrervorstellungen und unterricht-
lisches Handeln von Lehrkräften stehen. Dies geschieht vor dem Hintergrund der Annahme, dass die
Wirkung professionellen Wissens von Lehrkräften auf Lernergebnisse der Schüler über Unterrichtspro-

Das intensive Interesse der Forschung der letzten ca. 20 Jahre an Vorstellungen von Lehrkräften zum Lehren und Lernen ist maßgeblich getragen durch die Annahme, dass derartige Lehrervorstellungen die unterrichtliche Praxis entscheidend beeinflussen (vgl. Nespor, 1987; Pajares, 1992; Richardson, 1996; Bryan & Atwater, 2002). Hinsichtlich der Frage nach Zusammenhängen zwischen Vorstellungen von Lehrkräften über das Lehren und Lernen und ihren Handlungsweisen im Unterricht finden sich in der Literatur jedoch neben Annahmen, die diesen Lehrervorstellungen handlungsregulative Funktion zusprechen, also eine Konsistenz von Vorstellungen und Handlungsweisen nahe legen, auch Annahmen, die eher von Inkonsistenzen zwischen Vorstellungen und Handlungen ausgehen.

In den folgenden drei Unterkapiteln (2.3.3.1 bis 2.3.3.3) wird zunächst auf Annahmen und Befunde eingegangen, die für Konsistenzen zwischen Lehrervorstellungen und Unterrichtsgestaltung sprechen. Anschließend werden Annahmen und Befunde zu Inkonsistenzen zwischen Vorstellungen und Handlungsweisen von Lehrkräften dargestellt. In Kapitel 2.3.3.5 werden Befunde speziell zu Zusammenhängen von Lehrervorstellungen zum Lehren und Lernen im mathematisch-naturwissenschaftlichen Bereich mit der Unterrichtsgestaltung referiert. Schließlich wird eine Forschungsübersicht über die wenigen vorliegenden Studien gegeben, die Zusammenhänge von Lehrervorstellungen zum Lehren und Lernen mit Lernerfolgsmaßen seitens der Schüler untersucht haben.

2.3.3.1 Anforderungen des unterrichtlichen Handelns

A. Handeln in komplexen und dynamischen Unterrichtssituationen

- die große Anzahl von Ereignissen und deren Vernetzung („Multidimensionality“),
- das gleichzeitige Ablaufen verschiedener Ereignisstränge („Simultaneity“),
- die schnelle Abfolge von Ereignissen („Immediacy“) sowie
- die Unvorhersehbarkeit von Ereignissen („Unpredictability“).

- Ein Zielzustand ist nur wenig klar definiert. Z.T. sind Ziele, die unvereinbar sind, gegeneinander abzuwägen.
- Es sind kaum Kriterien verfügbar, um zu entscheiden, ob ein Ziel erreicht wurde. Oft ist auch im Nachhinein nur schwer feststellbar, welche Handlungsweisen zu einem bestimmten Lernerfolg bei-
getragen haben.

- Es gibt keinen festgelegten Satz von Handlungsanweisungen oder Techniken, um ein bestimmtes Ziel zu erreichen. I.d.R sind Entscheidungen zu treffen, für die es keine konkreten forschungsbasier- sierten Empfehlungen gibt.

- Die Bandbreite möglicher Handlungsweisen ist beträchtlich.

Während sich die in diesem Abschnitt beschriebenen Annahmen auf die handlungsregulative Funktion von allgemeinen, nicht unbedingt fachspezifischen Lehrervorstellungen zum Lehren und Lernen beziehen, geht es im folgenden Abschnitt um Annahmen und Befunde zur Bedeutung fachspezifischer Lehrervorstellungen zum Lehren und Lernen für die Unterrichtsgestaltung.

B. Entwicklung fachlicher Inhalte im Unterricht

Bromme hat Anforderungen des Unterrichtens aus Ergebnissen und Ansätzen der Lehr-Lern-Forschung rekonstruiert und diese drei Bereichen zugeordnet (vgl. 1992, S. 73-91; 1997). Er unterscheidet:

1. **Die Organisation und Aufrechterhaltung einer Struktur von Lehrer- und Schüleraktivitäten:** Insbesondere Forschungen zum Classroom-Management haben gezeigt, dass Lehrkräfte im Unterricht einen organisatorischen Rahmen in Form eines effektiven Unterrichtsablaufs (störungspräventive Klassenführung, schwungvolle Übergänge zwischen Unterrichtsphasen, Monitoring u.ä.) schaffen müssen, der als notwendige Voraussetzung für fachliche Lernprozesse der Schüler angesehen werden kann.

2. **Die Entwicklung fachlicher Inhalte im Unterricht:** In diesem Bereich sind fachbezogene Anforderungen des Unterrichtens, die die inhaltliche Gestaltung des Unterrichtsprozesses betreffen, zusammengefasst. Unterrichten wird dabei wiederum als Gestaltung von (fachbezogenen) Lerngelegenheiten verstanden. Lehrkräfte müssen zur Schaffung solcher Lerngelegenheiten bspw. Aktivitäten auswählen und gestalten, die die Schüler kognitiv aktivieren, sie müssen die bereichsspezifischen Vorstellungen der Schüler berücksichtigen und Strukturierungsmaßnahmen vornehmen (vgl. die in Kapitel 2.2 beschriebenen Ansätze und Befunde zur Gestaltung von Lerngelegenheiten im naturwissen-
schaftlichen Unterricht). Lehrkräfte entwickeln auf diese Weise gemeinsam mit den Schülern die fachlichen Inhalte im Unterricht.

3. **Die Organisation von Unterrichtszeit**: Bereits die in Kapitel 2.1.2 angesprochenen Untersuchungen zur Nutzung von Unterrichtszeit als Mediator der Prozess-Produkt-Beziehung haben die große Bedeutung der Zeit im Unterricht gezeigt. Lehrkräfte müssen dem Unterricht eine zeitliche Struktur geben, sind aber bspw. durch curriculare Vorgaben und Stundentafeln auch an zeitliche Rahmenbedingungen gebunden.

Die Anforderungen des Unterrichtens werden zusammenfassend also als Gestaltung einer *organisatorischen*, *inhaltlichen* und *zeitlichen Struktur* beschrieben. Während sich der im vorigen Teilkapitel beschriebene Anforderungsbereich auf allgemeine und nicht fachbezogene Anforderungen des Unterrichtens bezieht, wird in Veröffentlichungen, die die handlungsregulative Funktion *fachspezifischer* Lehrervorstellungen zum Lehren und Lernen thematisieren, teils implizit, teils explizit Bezug genommen auf Anforderungen im Zusammenhang mit dem zweiten Bereich, den Bromme als Entwicklung fachlicher Inhalte im Unterricht beschrieben hat (vgl. Bromme, 1997; Combe & Kolbe, 2004).

Eine Lehrkraft mit einer Vorstellung von naturwissenschaftlichem Lehren und Lernen im Sinne von Conceptual Change würde vielleicht den Unterricht damit beginnen, die Schüler über ihre Ideen zu elektrischem Strom sprechen zu lassen, damit sie ihrer eigenen Vorstellungen bewusst würden und Un-

Eine Lehrkraft mit einer 'praktizistischen' Vorstellung von naturwissenschaftlichem Lehren und Lernen würde demgegenüber vielleicht zunächst den Schülern Batterien, Glühbirnen und Drähte zur Verfügung stellen, damit sie eigenen Fragen nachgehen und ausprobieren können, was mit den Materialien herzustellen ist. Die Lehrkraft würde erwarten, dass die Schüler entdecken, dass es verschiedene Arten von Stromkreisen gibt, und sie würde ggf. nur die entsprechenden Begriffe zu den Stromkreisen anbieten.

Eine besondere Rolle für die Entwicklung fachlicher Inhalte im Unterricht kommt im naturwissenschaftlichen Unterricht der Auswahl und Gestaltung von Experimenten und speziell im Grundschulbereich von 'hands-on'-Aktivitäten der Schüler zu. Sie sind vergleichbar mit den Aufgaben im Mathematikunterricht, die dort eine zentrale Funktion für die inhaltliche Strukturierung des Unterrichts haben (vgl. Bumann, 1992, S. 100 f.; 1997; Duit & Häußler, 1997). Sowohl Aufgaben als auch Experimente oder 'hands-on'-Aktivitäten können sich massiv darin unterscheiden, inwieweit sie z.B. kognitive Aktivität der Schüler unterstützen, vorhandene 'Fehlvorstellungen' der Schüler herausfordern, sachlich angemessene Konzepte plausibel machen oder durch geeignete Fokussierung eine für die Schüler bewältigbare

Natürlich erfordert das Erkennen und Nutzen bspw. des kognitiv herausfordernden Potenzials von Aufgaben oder Versuchen über Vorstellungen zum Lehren und Lernen hinaus noch weiteres, insbesondere auf das jeweilige Thema bezogenes fachspezifisch-pädagogisches Wissen. Dennoch sollte, wie beschrieben, bewertendem Wissen in Form von Vorstellungen zum Lehren und Lernen ebenfalls eine zentrale Funktion für die Auswahl und Gestaltung von Versuchen und 'hands-on'-Aktivitäten im naturwissenschaftlichen Unterricht zukommen.

2.3.3.2 Kategoriale Wahrnehmung von Unterrichtssituationen und andere mittelbare Effekte von Lehrervorstellungen zum Lehren und Lernen auf das unterrichtliche Handeln

2.3.3.3 Annahmen und Befunde zur handlungsregulativen Funktion von Vorstellungen (Beliefs) aus der sozialpsychologischen Forschungsstradition

die Theorie in der Anwendung auf die vor dem Unterricht stattfindenden Planungsprozesse von Lehrkräften sinnvoller sein.

2.3.3.4 Annahmen und Befunde zu Inkonsistenzen zwischen Vorstellungen von Lehrkräften über das Lehren und Lernen und der unterrichtlichen Praxis

Neben den im vorigen Kapitel beschriebenen Annahmen, die dafür sprechen, dass Vorstellungen über das Lehren und Lernen eine bedeutsame Funktion für das unterrichtliche Handeln von Lehrkräften und damit für die Gestaltung von Lerneinheiten für Schüler haben, finden sich jedoch auch Hinweise auf Inkonsistenzen zwischen Vorstellungen und Verhaltensweisen von Lehrkräften. Fünf wesentliche Annahmen zum Zustandekommen solcher Inkonsistenzen betreffen kontextbezogene Gründe, die Fähigkeit zur Handlungsausführung, Merkmale der Lehrervorstellungen selbst sowie methodische Gründe.

Kontextbezogene Gründe: Constraints and Opportunities

Wissen, Kompetenzen und selbstbezogene Merkmale der Lehrkräfte

Können verfügen, ist es ihnen demnach möglich, die eigenen Vorstellungen über das Lehren und Lernen auch in unterrichtliche Lerngelegenheiten für die Schüler umzusetzen. Dies soll an zwei Beispielen verdeutlicht werden.

Ist eine Lehrkraft der Ansicht, dass naturwissenschaftliches Lernen auf der Basis vorhandener Vorstellungen der Schüler stattfindet und dass z.T. regelrechte Konzeptwechsel für den Erwerb sachlich adäquater Vorstellungen bei den Schülern notwendig sind, wird eine solche Vorstellung nur dann handlungsregulativ wirksam werden, wenn die Lehrkraft auch z.B. über Wissen zu typischen Fehlvorstellungen der Schüler bei einem Unterrichtsthema oder geeignete Methoden zur Erfassung der Präkonzepte verfügt sowie außerdem Lehrstrategien kennt, anhand derer konzeptuelle Veränderungen bei den Schülern begünstigt werden können. Es ist in diesem Fall also weiteres fachspezifisch-pädagogisches Wissen notwendig, damit die genannte Vorstellung der Lehrkraft auch handlungswirksam werden kann.

Ähnliche Beziehungen sind mit fachspezifischem Wissen zu vermuten: Ist eine Lehrkraft der Überzeugung, dass naturwissenschaftlicher Unterricht anwendungsbezogenes Lernen ermöglichen sollte, so sollte für die 'Umsetzung' dieser Vorstellung in unterrichtliche Lerngelegenheiten ein bestimmtes fachspezifisches Wissen erforderlich sein, das das Erkennen von Anwendungsmöglichkeiten, die mit dem jeweiligen Unterrichtsthema verbunden sind, erst möglich macht.

Konfligierende Vorstellungen der Lehrkraft

Merkmale der Vorstellungen über das Lehren und Lernen

Auch bei Keys (vgl. 2005) wird der Zusammenhang von Vorstellungen und Handlungsweisen zu einem definitorischen Bestandteil einer Klassifikation von Vorstellungen in platonic beliefs, organisational beliefs, associated beliefs und transitional beliefs (s.o.: Kapitel 2.3.2.3). Eine handlungsregulative Wirkung wird hier in erster Linie den transitional beliefs zugesprochen, während platonic beliefs einen Spezialfall der o.g. peripheral beliefs darstellen und sich nicht im unterrichtlichen Handeln niederschlagen. Bei organisational beliefs und bei associated beliefs wird die ausgedrückte Vorstellung höchstens in einer modifizierten Weise in unterrichtliches Handeln umgesetzt. So fand Keys bspw., dass die untersuchten Lehrkräfte die Vorstellung eines konstruktivistischen naturwissenschaftlichen Unterrichts mit der handlungsregulativ wirkenden Vorstellung eines durch praktische Tätigkeiten der Schüler geprägten Unterrichts verbanden (associated belief) (vgl. 2005, S. 506 f.).

Methodische Gründe

Werden in Studien keine Zusammenhänge zwischen Lehrervorstellungen und -handlungsweisen gefunden, muss das nicht zwangsläufig bedeuten, dass keine 'wahren' Zusammenhänge bestehen, sondern es können auch methodische Probleme zu einem solchen Befund führen. Zusammenhänge zwischen Vor-

2.3.3.5 **Befunde zu Zusammenhängen von fachspezifischen Lehrervorstellungen zum Lehren und Lernen mit dem unterrichtlichen Handeln von Lehrkräften**

In den vorigen Teilkapiteln wurde beschrieben, inwiefern und auf welche Weise Vorstellungen zum Lehren und Lernen das unterrichtliche Handeln von Lehrkräften beeinflussen und damit auch eine Rolle für die Gestaltung von Gelegenheiten für verständnisvolles Lernen der Schüler spielen können. Es wurde dabei deutlich, dass Annahmen und Befunde, die für eine handlungsregulative Funktion der Lehrervorstellungen sprechen, solchen Annahmen und Befunden gegenüber stehen, die eher Inkonsistenzen zwischen Lehrervorstellungen und -handlungsweisen nahe legen.

<table>
<thead>
<tr>
<th>Studie</th>
<th>Art der Lehrervorstellung</th>
<th>untersuchte Lehrkräfte</th>
<th>Methoden der Erfassung der Lehrervorstellungen/ des Unterrichtshandelns</th>
<th>Zusammenhänge zwischen Vorstellungen und unterrichtlichem Handeln</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haney & McArthur, 2002</td>
<td>Vorstellungen zum Lehren und Lernen von Naturwissenschaften</td>
<td>4 LA-Studierende, ohne Angabe der Schulstufe</td>
<td>LV: Interviews UH: Dokumentenanalyse</td>
<td>Core Beliefs spiegelten sich im unterrichtlichen Handeln wider, Periperal Beliefs dagegen nicht (s. Kapitel 2.3.3.4).</td>
</tr>
<tr>
<td>Hashweh, 1996</td>
<td>U.a. wurden konstruktivistische vs. empiristische Vorstellungen zum naturwissenschaftl.</td>
<td>35 Lehrkräfte, unterschiedlicher Schulstufen</td>
<td>LV: Offene Fragen in einem Fragebogen (Vorgabe von critical incidents) UH: Selbstberichtete</td>
<td>Konstruktivistische Lehrkräfte betonen die aktive Rolle des Lernenden bei der Wissenskonstruktion, sie glauben, dass Schüler ihre eigenen Ideen entwickeln, die oft sachlich nicht adäquat sind, und sehen, dass</td>
</tr>
<tr>
<td>Studie</td>
<td>Art der Lehervorstellung</td>
<td>untersuchte Lehrkräfte</td>
<td>Methoden der Erfassung der Lehervorstellungen/ des Unterrichtshandelns</td>
<td>Zusammenhänge zwischen Vorstellungen und unterrichtlichem Handeln</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Beck, Czemianik & Lumpe, 2000</td>
<td>203 Lehrkräfte (davon 42% Grundschule, 34% middle grades und 24% high school)</td>
<td>LV: Fragebogen (Semantisches Differential)</td>
<td>Lehrervorstellungen (beliefs) zeigten sich als z.T. starke Prädiktoren der (allerdings per Selbstauskunft erfassten) Unterrichtspraxis.</td>
<td></td>
</tr>
<tr>
<td>Vehmeyer, Kleckmann & Möller, 2007</td>
<td>29 Grundschullehrkräfte</td>
<td>LV: Fragebogen (Likert-skalierte Items)</td>
<td>s. unten</td>
<td></td>
</tr>
<tr>
<td>Vehmeyer, Kleckmann & Möller, 2007</td>
<td></td>
<td>LV: Videoanalyse auf der Grundlage hoch-inferenter Beurteilungen</td>
<td>Eine konstruktivistisch orientierte Vorstellung vom Mathematiklehrer und -lernen korrelierte signifikant positiv (r = .44) mit dem Einsatz von anspruchsvollen Struktur-</td>
<td></td>
</tr>
<tr>
<td>Staub & Stern, 2002</td>
<td>27 Grundschullehrkräfte; bei 22 lagen sowohl Unterrichts-</td>
<td>LV: Eine Likertskalierte Fragebogenskala (deutsche Adaption von Peterson et al., 1989)</td>
<td>Eine konstruktivistisch orientierte Vorstellung vom Mathematiklehrer und -lernen korrelierte signifikant positiv (r = .44) mit dem Einsatz von anspruchsvollen Struktur-</td>
<td></td>
</tr>
</tbody>
</table>
Studie

<table>
<thead>
<tr>
<th>Studie</th>
<th>Art der Lehrervorstellung</th>
<th>untersuchte Lehrkräfte</th>
<th>Methoden der Erfassung der Lehrervorstellungen/ des Unterrichtshandelns</th>
<th>Zusammenhänge zwischen Vorstellungen und unterrichtlichem Handeln</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grundschule (kognitiv-konstruktivistischer vs. transmissiver Ansatz)</td>
<td>beobachtungen als auch Daten zu Vorstellungen zum Lehren und Lernen vor</td>
<td>UH: Unterrichtsbeobachtung und Verständnis-orientierten Aufgaben im Unterricht.</td>
<td></td>
</tr>
</tbody>
</table>

Dennoch sind einige Tendenzen zu erkennen, wenn man z.B. zwischen Studien mit Novizen und solchen mit erfahreneren Lehrkräften unterscheidet und wenn man noch Befunde zu nicht fachspezifisch erfassten Vorstellungen zum Lehren und Lernen hinzuzieht.

1. **Konsistzenzen zwischen fachspezifischen Vorstellungen zum Lehren und Lernen und dem unterrichtlichen Handeln sind bei Novizen i.d.R. recht gering ausgeprägt oder gar nicht vorhanden. Bei erfahrenen, praktizierenden Lehrkräften deuten die Befunde jedoch darauf hin, dass hier von z.T. auch engen Zusammenhängen zwischen Vorstellungen und Unterrichtsgestaltung durch die Lehr-

2.3.3.6 Befunde zu Zusammenhängen von Lehrervorstellungen zum Lehren und Lernen mit Lernergebnissen seitens der Schüler

Den recht zahlreichen Studien zur Ausprägung von Lehrervorstellungen über das Lehren und Lernen sowie zu deren handlungsregulativer Funktion stehen nur wenige Studien gegenüber, die Zusammen-

Tabelle 4

Studien zu Zusammenhängen von Lehrervorstellungen zum Lehren und Lernen mit Lernerfolgsmaßen seitens der Schüler

<table>
<thead>
<tr>
<th>Studie</th>
<th>Art der Lehrervorstellung/ des Zielkriteriums</th>
<th>untersuchte Lehrkräfte/ Schüler</th>
<th>Erfassung der Lehrervorstellungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peterson, Fennema, Carpenter & Loef, 1989</td>
<td>Kognitiv konstruktivistische vs. direkt transmissive Vorstellungen über das Lehren und Lernen von Mathematik; mathematisches Problemlösen (Textaufgaben) und numerisches Faktenwissen (beides klassenweise aggregiert)</td>
<td>39 Grundschullehrkräfte und deren Schüler (N nicht angegeben, vermutl. wegen der klassenweise aggregierten Werte)</td>
<td>eine likertskalierte Fragebogenskala bestehend aus 4 Subskalen, zu denen jedoch keine Zusammenhänge mit Schulleistungen berichtet werden; teilstrukturierte Interviews</td>
</tr>
<tr>
<td>Kage, Uebuchi & Oie, 1997</td>
<td>Vorstellungen (beliefs) über autonomieunterstützende vs. kontrollierende Unterrichtsmethoden (kein Fachbezug); wahrgenommene Kompetenz der Schüler, intrinsische Motivation</td>
<td>20 Grundschullehrkräfte, 659 Schüler</td>
<td>Likertskalierte Fragebogenskalen</td>
</tr>
<tr>
<td>Staub & Stern, 2002</td>
<td>Kognitiv konstruktivistische vs. direkt transmissive Vorstellungen über das Lehren und Lernen von Mathematik; Lernzuwächse Mathematik über ein Schuljahr (anspruchsvolle Textaufgaben, reproduktive Aufgaben)</td>
<td>27 Grundschullehrkräfte, 496 Schüler</td>
<td>Eine likertskalierte Fragebogenskala</td>
</tr>
<tr>
<td>Müller, 2004</td>
<td>Subjektive Theorien zum Lehren und Lernen von Naturwissenschaften; Lernleistung Physik (Elektrizitätslehre und Mechanik), Interesse, Kompetenzempfinden und physikbezogenes Fähigkeitsselbstkonzept</td>
<td>14 Physiklehrkräfte (Sekundarstufe) und deren Schüler (N nicht angegeben, vermutl. wegen der klassenweise aggregierten Werte)</td>
<td>Strukturierte Interviews; ein Teil des Interviews besteht aus stimulated recall-Fragen</td>
</tr>
</tbody>
</table>

2.3.4 Zusammenfassung der Ansätze und Befunde zu Lehrervorstellungen zum Lehren und Lernen sowie offene Forschungsfragen

Es ist davon auszugehen, dass derartige Vorstellungen zum Lehren und Lernen auf der Basis unterschiedlicher Erfahrungsquellen entstehen. Erfahrungen im Rahmen der eigenen Schulzeit scheinen eine besondere Rolle zu spielen. In den Vorstellungen praktizierender Lehrkräfte zum Lehren und Lernen sind solche persönlichen Erfahrungen als Schüler, aber auch mehr oder weniger reflektierte Erfahrungen eigenen Unterrichtens sowie auch Elemente formalen, disziplinären Wissens, wie es Pädagogik, allgemeine und Fachdidaktik bereitstellen, integriert.

Fachspezifische Vorstellungen zum Lehren und Lernen können in Vorstellungs-Clustern organisiert sein. Die Vorstellungen eines Clusters können dabei mit unterschiedlichem Grad an Überzeugung vertreten werden und in Form von Begründungen, Schlussfolgerungen u.a. aufeinander bezogen sein. Gut belegt ist, dass oft vermeintlich widersprüchliche Vorstellungen vertreten werden, so dass auch

- Die Kongruenz von Vorstellungen zum Lehren und Lernen und unterrichtlichen Handlungsweisen von Lehrkräften scheint bei erfahrenen Lehrkräften stärker ausgeprägt als bei Novizen wie Lehramtsstudierenden, Lehramtsanwärtern oder Berufseinsteigern. Novizen scheinen erforderliches
weiteres professionelles Wissen noch nicht ausreichend entwickelt zu haben, so dass es ihnen oft nicht gelingt, entsprechend ihrer Vorstellungen zum Lehren und Lernen im Unterricht zu handeln.

- Eine weitere Tendenz besteht darin, dass sich fachbezogene Vorstellungen von Lehrkräften zum Lehren und Lernen eher in korrespondierenden Verhaltensweisen im Unterricht widerspiegeln als dies bei nicht fachspezifischen, 'allgemeinen' Vorstellungen über das Lehren und Lernen der Fall zu sein scheint.

Offene Forschungsfragen / Forschungsbedarf

Rolle für die Zielerreichung von Schülern spielen (s. auch das in der Einleitung wiedergegebene Zitat Shulmans).

In der Unterrichtsforschung hat die Untersuchung differenzierter Wirkungen von Merkmalen der Unterrichtsgestaltung in Abhängigkeit von individuellen (Lern-)Voraussetzungen wie dem Vorwissen der Schüler zunehmend an Bedeutung gewonnen. Auch für den Bereich des naturwissenschaftlichen Unterrichts in der Grundschule liegen bereits Befunde vor, die darauf hinweisen, dass Schülergruppen mit unterschiedlichen (Lern-)Voraussetzungen in unterschiedlichem Maße von bestimmten Charakteristika der geschaffenen Lerngelegenheiten im Unterricht profitieren (s. Kapitel 2.2.4.3). Die Frage, ob auch bestimmte Vorstellungen der Lehrkräfte zum Lehren und Lernen differenzielle Effekte auf Lernfortschritte bei Schülern in Abhängigkeit derer (Lern-)Voraussetzungen zeigen, ist bislang kaum untersucht. Die m.E. bisher einzige Studie, die dieser Frage nachging, ist die Untersuchung von Staub und Stern (vgl. 2002), die allerdings im Bereich Mathematik angesiedelt ist.

3 Zielsetzung, Fragestellungen und Hypothesen

Zielsetzungen und Fragestellungen

Vor dem Hintergrund der skizzierten offenen Forschungsfragen ist es das zentrale Anliegen der vorliegenden Arbeit (Zielsetzung 1), Zusammenhänge zwischen Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften und Lernfortschritten der Schüler zu untersuchen. Wendet man das in Kapitel 2.1.5 skizzierte Angebots-Nutzungs-Modell der Wirkungsweise von Unterricht auf diese Zielsetzung an, so liegt der Studie somit eine Art 'Black-box-Modell' zugrunde: Es wer-
den Zusammenhänge zwischen Merkmalen der Lehrkräfte und Lernerfolgsmaßen seitens der Schüler untersucht, wobei vermittelnde Unterrichtsprozesse sowie die bspw. im Rahmen von Erweiterungen der Prozess-Produkt-Studien untersuchten Mediationsprozesse ausgelandet werden.

Als Kriterium für den Lernerfolg von Schülern wird das Verständnis naturwissenschaftlicher Konzepte zugrunde gelegt (s. Kapitel 2.2.1). Prozessbezogene Kompetenzen bzgl. naturwissenschaftlicher Verfahren oder Wissen über Naturwissenschaften als Wissenschaftsdisziplin werden also nicht untersucht. Wegen der besonderen Bedeutung des Vorwissens der Schüler für spätere Lernergebnisse im entsprechenden Inhaltsbereich soll das konzeptuelle Verständnis der Schüler längsschnittlich als Lernfortschritt erfasst werden.

von Schülervorstellungen' und 'Angeleitetes Lernen' identifiziert (s. Kapitel 2.3.2.3).

Die o.g. allgemeine Fragestellung der Arbeit lässt sich also weiter konkretisieren: In welchem Zusammenhang mit Fortschritten der Schüler im konzeptuellen Verständnis von 'Schwimmen und Sinken' stehen solche Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften, die

A. in weitgehender Übereinstimmung mit konstruktivistisch geprägten, insbesondere mit Conceptual-Change-Ansätzen zum naturwissenschaftlichen Lehren und Lernen stehen,

B. in wichtigen Aspekten Widersprüche zu diesen Ansätzen aufweisen und

C. in einem eher indifferenten Verhältnis zu diesen Ansätzen stehen?

Die als 'schülerorientiert' überschriebenen Vorstellungen zum Lehren und Lernen werden in dieser Arbeit also nicht berücksichtigt. Auch die als 'Naturwissenschaftliche Verfahren' bezeichnete Vorstellung wird nicht untersucht. Sie scheint sehr enge Bezüge zu Vorstellungen über das Wesen der Naturwissenschaften zu haben.

In der Zusammenstellung offener Forschungsfragen im vorigen Abschnitt wurde bereits darauf hingewiesen, dass die Frage nach differenziellen Effekten von Vorstellungen der Lehrkräfte zum Lehren und Lernen auf Lernfortschritte bei Schülern in Abhängigkeit derer (Lern-)Voraussetzungen bislang kaum untersucht ist. Solche differenziellen Effekte scheinen zumindest plausibel, wenn man die theoretischen Ansätze und Befunde zum naturwissenschaftlichen Lehren und Lernen heranzieht. Die theoretische Überlegung, dass situierte Lernumgebungen, die durch eine relativ hohe Komplexität gekennzeichnet sind und hohe Anforderungen an die Selbststeuerungsfähigkeiten der Schüler stellen, zu einer Überforderung insbesondere von Schülern mit ungünstigen Lernvoraussetzungen führen, findet eine Entsprechung in Befunden, die differenzielle Effekte für den Grad der Strukturierung von Lernumgebungen und das Ausmaß von Scaffolding durch die Lehrkraft zeigen (s. Kapitel 2.2.4.3). Es wäre daher plausibel, dass bspw. das Ausmaß, in dem Lehrkräfte der Anleitung bzw. Unterstützung von Lernpro-
zessen Bedeutung beizumessen, einen differenziellen Effekt auf Lernergebnisse der Schüler hat, in Abhängigkeit derer Lernvoraussetzungen.

D. In der vorliegenden Studie soll vor dem Hintergrund dieser unbefriedigenden Befundlage der Frage nachgegangen werden, ob die o.g. Vorstellungen der Lehrkräfte zum Lehren und Lernen einen differenziellen Effekt auf Lernfortschritte der Schüler in Abhängigkeit von individuellen (Lern-)Voraussetzungen haben.

> [...] the kinds of evidence researchers provide concerning the relevance of a measurement technique to classroom life. Are teachers' performances on a particular tool or task related to their classroom behaviors or to valued student outcomes? (Kagan 1990, S. 422, zit. n. Baxter & Lederman, 1999)

Hypothesen

Hypothesen zu Zusammenhängen von Lehrervorstellungen zum Lehren und Lernen von Naturwissenschaften mit Lernfortschritten bei Schülern aufzustellen, ist mit dem Problem behaftet, dass es sich um recht distale Variablen handelt, deren Zusammenhänge nur über vermittelnde Prozesse zu verstehen sind. Relevante Ergebnisse der Forschung, die zum Aufstellen von Hypothesen zu den hier interessierenden Zusammenhängen herangezogen werden können, sind insbesondere theoretische Ansätze und Befunde zum naturwissenschaftlichen Lehren und Lernen (s. Kapitel 2.2) sowie Befunde, die direkt etwas über Zusammenhänge zwischen Lehrervorstellungen und Lernfortschritten der Schüler aussagen. Werden Hypothesen wie im ersteren Fall aus Ansätzen und Befunden der naturwissenschaftlichen Lehr-Lern-Forschung abgeleitet, so ist dies bedingt durch die o.g. 'Black-Box-Struktur' dieser Zusammenhänge mit dem Problem behaftet, dass nicht klar ist, ob die interessierende Vorstellung zum Leh-

Die in Kapitel 2.3.3 dargestellten theoretischen Überlegungen und Befunde zur Frage von Zusammenhängen von Vorstellungen der Lehrkräfte mit deren Gestaltung von Unterricht geben jedoch einige Hinweise darauf, dass in der vorliegenden Untersuchung die Annahme solcher Zusammenhänge nicht ganz unbegründet ist. Zunächst handelt es sich bei den teilnehmenden Lehrkräften um praktizierende, erfahrene Lehrkräfte und es werden auch fachspezifisch erfasste Vorstellungen zum Lehren und Lernen untersucht. Im Rahmen des BiQua-Projektes, in das diese Arbeit eingebunden ist, konnte mittlerweile gezeigt werden, dass die erfassten fachspezifischen Vorstellungen zum Lehren und Lernen von Naturwissenschaften in mehreren der erfassten Dimensionen mit entsprechendem unterrichtlichen Handeln der Lehrkräfte zusammenhängen (s. Kapitel 2.3.3.5). Es kann daher angenommen werden, dass diese Vorstellungen zum Lehren und Lernen auch mit dem unterrichtlichen Handeln der Lehrkräfte und speziell mit dem in Beziehung stehen, was Bromme als Entwicklung fachlicher Inhalte bezeichnet hat.

Befunde der in Kapitel 2.3.3.5 zusammengefassten Studien deuten darauf hin, dass Lehrkräfte mit stärker konstruktivistisch orientierten Vorstellungen zum Lehren und Lernen eher Lehrstrategien anwenden, die Conceptual Change initiieren können, weniger auf einfache Erklärungen zurückgreifen und Schülervorstellungen adäquater diagnostizieren. Auch setzen diese Lehrkräfte (zumindest im Bereich Mathematik) offenbar eher verstehensorientierte Aufgaben ein. Im Rahmen des BiQua-Projektes, in das die vorliegende Arbeit eingebettet ist, konnten bereits Hinweise gefunden werden, dass das Ausmaß, mit dem Lehrkräfte Conceptual-Change-orientierte Vorstellungen zum Lehren und Lernen vertreten, mit dem Grad der Realisierung von Maßnahmen, die dem 'Scaffolding' zuzuordnen sind, korrespondiert (s. ausführlicher Kapitel 2.3.3.5).

HYPOTHESE 1: Für Vorstellungen zum Lehren und Lernen von Naturwissenschaften, die der ersten Gruppe zugeordnet wurden, werden positive Zusammenhänge mit Lernfortschritten der Schüler erwartet.
Die zweite oben beschriebene Gruppe von Vorstellungen zum Lehren und Lernen ist dadurch gekennzeichnet, dass diese Vorstellungen zumindest in wichtigen Aspekten im Kontrast zu den dargestellten konstruktivistisch geprägten Ansätzen der naturwissenschaftlichen Lehr-Lern-Forschung stehen. Dieser Gruppe wurden die als 'Transmission' und die als 'Praktizismus' bezeichneten Vorstellungen zugeordnet.

Hinsichtlich der als 'Transmission' bezeichneten Vorstellung zeigten sich in der COACTIV-Studie bereits Hinweise, dass der Grad, mit dem eine solche Vorstellung vertreten wird, negativ mit Lernzuwächsen der Schüler korrespondiert. Es wird daher folgendes erwartet:

HYPOTHESE 2: Für die der zweiten Gruppe zugeordneten Vorstellungen zum Lehren und Lernen von Naturwissenschaften werden negative Zusammenhänge mit Lernfortschritten der Schüler angenommen.

Wegen der indifferenten Beziehung der als 'Entwicklung eigener Deutungen' bezeichneten Vorstellung zu den in Kapitel 2.2 beschriebenen theoretischen Ansätzen und Befunden wird zu dieser Vorstellung keine konkrete Hypothese aufgestellt.

Hinsichtlich der Frage nach differenziellen Effekten von Lehrervorstellungen zum Lehren und Lernen in Abhängigkeit von individuellen (Lern-)Voraussetzungen der Schüler ist die Befundlage recht unklar. Befunde der naturwissenschaftsbezogenen Lehr-Lern-Forschung würden die Annahme solcher differenzieller Effekte unterstützen (s. Kapitel 2.2.4.3), die einzige bisher vorliegende Studie, die dieser Frage tatsächlich bei Vorstellungen von Lehrkräften zum Lehren und Lernen nachgegangen ist, fand jedoch keine unterschiedlichen Effekte in Abhängigkeit von individuellen Schülervoraussetzungen. Auf eine konkrete Hypothese zur Fragestellung D wird daher verzichtet.

4 Methoden

Die zentrale Frage der vorliegenden Arbeit nach Zusammenhängen zwischen fachspezifischen Vorstellungen von Lehrkräften zum Lehren und Lernen und Lernzuwächsen der Schüler wird an einer Stichprobe von Grundschullehrkräften und deren Schülern untersucht, die einem Projekt aus dem DFG-Schwerpunktprogramm BiQua (‘Die Bildungsqualität von Schule’) entstammt (vgl. Doll & Prenzel,

4.1 Anbindung an ein DFG-Projekt aus ’BiQua’ und Anlage der vorliegenden Studie

Gestaltung der Fortbildungen. Zwei Gruppen (Experimentalgruppen, EGs) erhielten je 16 ganztägige Fortbildungen, in denen die Teilnehmer, tutoriell unterstützt durch eine Fortbildungsleiterin, naturwissenschaftliches fachspezifisch-pädagogisches Wissen erwerben konnten. Die vorhandenen fachlichen Vorstellungen der Lehrkräfte wurden aufgegriffen und herausgefördert. Die Lehrkräfte wurden dazu angeregt, ihre Vorstellungen zu den thematisierten Naturphänomenen untereinander zu diskutieren und Möglichkeiten der Überprüfung dieser Vorstellungen durch Experimente zu entwickeln. Die Fortbildungsleitung strukturierte diesen Prozess und regte die Teilnehmer zur Reflexion des eigenen naturwiss-

Die Teilnehmer aller drei Gruppen wurden dazu angeregt, Lernprozesse von Schülern zu analysieren. Alle drei Gruppen bearbeiteten die gleichen 11 naturwissenschaftsbezogenen Unterrichtsthemen (z. B. 'Luft und Luftdruck', 'Schall', 'elektrischer Strom', 'Schwimmen und Sinken') sowie die gleichen fachdidaktischen Inhalte (z.B. Experimente und Gesprächsführung im naturwissenschaftlichen Sachunterricht, wissenschaftliches Arbeiten) und hatten zudem die gleichen Unterrichtsmaterialien in Form von schriftlichen Handreichungen (s.o.) zu jedem Thema zur Verfügung. Außerdem erstreckten sich alle Fortbildungen über fünf Monate und alle teilnehmenden Lehrkräfte erproben in dieser Zeit drei der erarbeiteten elf Themen im eigenen Unterricht.

Abbildung 4: Anlage des DFG-Projekts. Abfolge der Erhebungen vor und nach der Intervention durch Lehrerfortbildungen. Türkis markiert sind die Bereiche, die der vorliegenden Untersuchung zugrunde liegen.
Die Teilnehmer wurden über eine Ausschreibung der Fortbildungen durch die Bezirksregierung Münster gewonnen, die die Fortbildungen über Stundenentlastungen förderte. Es interessierten sich 96 Lehrkräfte, so dass die 54 Teilnehmer der drei Fortbildungsgruppen auf der Basis eines Parallelisierungsverfahrens ausgewählt werden konnten. Die Basisgruppe setzte sich aus dem Kreis der ursprünglichen Interessenten zusammen, die nicht in eine der drei Fortbildungen aufgenommen werden konnten.

4.2 Anlage der vorliegenden Untersuchung

4.3 Stichproben

Die in dieser Arbeit dargestellten Untersuchungen basieren auf einer Stichprobe von 46 Lehrkräften, die an den o.g. Fortbildungen teilgenommen haben, und den Schülern dieser Lehrkräfte. Im Folgenden werden die Stichproben der Lehrkräfte und der Schüler näher beschrieben.

Stichprobe der Lehrkräfte

Von den insgesamt 54 fortgebildeten Lehrkräften führten 46 Lehrkräfte Unterricht zum 'Schwimmen und Sinken' durch. Acht Lehrkräfte konnten dies aus organisatorischen Gründen nicht einrichten, i.d.R. da sie in diesem Schuljahr keine dritte oder vierte Klasse unterrichteten. 29 der 46 Lehrkräfte hatten an den tutoriell angeleiteten Fortbildungen (EG 1 und 2) teilgenommen, 17 waren Mitglieder der Kontrollgruppe (KG).

'NRW-Stichprobe' wurden für die metrischen Variablen Effektgrößen als Abweichungsmaß berechnet. Dazu wurde die Differenz zwischen dem Mittelwert der 'NRW-Stichprobe' und dem Mittelwert der Untersuchungsstichprobe durch die Standardabweichung der 'NRW-Stichprobe' geteilt. In Anlehnung an Cohen (vgl. 1992) sind derart berechnete Effektgrößen mit einem Betrag bis .20 als 'klein', bis .50 als 'mittel' und ab .80 als 'groß' zu bezeichnen.

In allgemeineren soziodemografischen Werten wie der Berufserfahrung in Dienstjahren und dem Alter der Lehrkräfte zeigen sich nur als 'klein' zu bewertende Abweichungen der Untersuchungsstichprobe von der 'NRW-Stichprobe'. Auch der Anteil männlicher Lehrkräfte in der Untersuchungsstichprobe entspricht mit 10.9% nahezu dem in der 'NRW-Stichprobe' (10.1%).

Tabelle 5
Unterschiede zwischen der untersuchten Stichprobe von 46 Lehrkräften und einer für Grundschullehrkräfte in NRW weitgehend repräsentativen Stichprobe (N = 277) in Effektgrößeneinheiten sowie Mittelwerte und Standardabweichungen in der Untersuchungsstichprobe

<table>
<thead>
<tr>
<th>Vergleichsvariable</th>
<th>M (Untersuchungsstichprobe)</th>
<th>SD (Untersuchungsstichprobe)</th>
<th>Effektgröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>43.63</td>
<td>9.02</td>
<td>-0.15</td>
</tr>
<tr>
<td>Berufserfahrung (in Dienstjahren)</td>
<td>17.57</td>
<td>10.01</td>
<td>-0.14</td>
</tr>
<tr>
<td>Vorstellungen zum Lehren und Lernen von Naturwissenschaften</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motiviertes Lernen (mot)</td>
<td>3.14</td>
<td>0.59</td>
<td>-0.03</td>
</tr>
<tr>
<td>Anwendungsbezogenes Lernen (anw)</td>
<td>3.06</td>
<td>0.62</td>
<td>0.05</td>
</tr>
<tr>
<td>Entwicklung eigener Deutungen (eig)</td>
<td>3.12</td>
<td>0.37</td>
<td>-0.17</td>
</tr>
<tr>
<td>Diskussion von Schülervorstellungen (dis)</td>
<td>3.51</td>
<td>0.46</td>
<td>-0.37</td>
</tr>
<tr>
<td>Conceptual Change (con)</td>
<td>2.89</td>
<td>0.70</td>
<td>-0.86</td>
</tr>
<tr>
<td>Schüler mit Vorstellungen über Naturphänomene (sch)</td>
<td>2.53</td>
<td>0.93</td>
<td>-0.86</td>
</tr>
<tr>
<td>Laisser-faire (lai)</td>
<td>1.63</td>
<td>0.60</td>
<td>0.07</td>
</tr>
<tr>
<td>Praktizismus (pra)</td>
<td>1.99</td>
<td>0.72</td>
<td>0.28</td>
</tr>
<tr>
<td>Transmission (tra)</td>
<td>1.11</td>
<td>0.40</td>
<td>0.64</td>
</tr>
<tr>
<td>Interesse am Unterrichten physikbezogenen Sachunterrichts</td>
<td>3.38</td>
<td>0.55</td>
<td>-0.56</td>
</tr>
<tr>
<td>Sachinteresse Physik</td>
<td>2.81</td>
<td>0.55</td>
<td>-0.35</td>
</tr>
<tr>
<td>Selbstrisikamerwartungen bzgl. des Unterrichtens physikbezogen. Sachunterrichts</td>
<td>2.99</td>
<td>0.60</td>
<td>-0.46</td>
</tr>
<tr>
<td>Fähigkeitsselbstkonzept Physik</td>
<td>1.94</td>
<td>0.59</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Anm. 'Mittlere' Effekte hellgrau, 'große' Effekte dunkelgrau unterlegt. Zu den Konstrukten, die den Skalen zu Vorstellungen zum Lehren und Lernen zugrunde liegen, vgl. Kapitel 4.4.2

Auch hinsichtlich der Vorstellungen der Lehrkräfte zum Lehren und Lernen von Naturwissen-

Hinsichtlich der deskriptiven Werte in der Untersuchungsstichprobe besteht bei der als 'Diskussion von Schülervorstellungen' bezeichneten Lehrervorstellung ein Deckeneffekt, der sich in dem hohen Mittelwert und der geringen Standardabweichung zeigt.

Stichprobe der Schüler

Zusammenfassung

3. HINTERGRUND ZU DEN SCHÜLERN

Hintergrunddaten zu den Schülern liegen leider kaum vor. Die geografische Verteilung der untersuchten Schulen lässt jedoch den vorsichtigen Schluss zu, dass die Schülerstichprobe als weitgehend repräsentativ angesehen werden kann.

4.4 Erfassung der Vorstellungen von Lehrkräften zum Lehren und Lernen

4.4.1 Verfahren zur Erfassung von Lehrervorstellungen zum Lehren und Lernen

„Research on teacher cognitions [...] has been carried out with various purposes in mind, complying with different methodological conventions. This plurality must be borne in mind in any comparisons or synthesis of research findings." (Calderhead 1996, S. 713)

Richardson unterscheidet qualitative von eher quantitativ und 'large-scale' orientierten Verfahren (vgl. 1996).

Qualitativ orientierte Ansätze

Insbesondere seit der Etablierung des eingangs skizzierten konstruktivistischen Paradigmas sind zahlreiche Studien zu Lehrervorstellungen zum Lehren und Lernen eher interpretativer Natur und wenden

Quantitativ orientierte Ansätze

Wegen der Hauptfragestellung nach Zusammenhängen mit Lernfortschritten der Schüler und des damit verbundenen eher large-scale-orientierten Untersuchungsansatzes werden auch in der vorliegenden Arbeit Likert-basierte Fragebogen-Skalen als zentrales Verfahren zur Erfassung fachspezifischer Vorstellungen von Lehrkräften zum Lehren und Lernen gewählt.

Vorliegende, large-scale-geeignete Instrumente
Während verschiedene Instrumente für den large-scale-Einsatz vorliegen, die allgemeine, nicht fachspe-

Validitätsprobleme quantitativer Verfahren

Zum Umgang mit Validitätsproblemen in der vorliegenden Studie

Den beschriebenen Problemen wird im Rahmen der Entwicklung und Analyse eines Instruments zur Erfassung Lehrervorstellungen zum Lehren und Lernen in folgender Weise begegnet:

- Wie in Kapitel 2.3.2.3 dargestellt, liegen bereits zahlreiche qualitative Studien vor, die Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften intensiv untersucht haben. Die Befunde dieser Studien können bei der Entwicklung eines auf Likert-Skalen basierenden Instruments berücksichtigt werden. Auf diese Weise kann weitgehend vermieden werden, dass die in den Items vorgegebenen Kategorien nicht den Kategorien des Denkens der Lehrkräfte entsprechen.

- Statt von einer eindimensionalen Struktur der Vorstellungen zum Lehren und Lernen von Naturwissenschaften auszugehen, wird eine mehrdimensionale Erfassung der Vorstellungen der Lehrkräfte angestrebt.

4.4.2 Zu erfassende Konstrukte

Dabei werden Vorstellungen der Lehrkräfte als latente Eigenschaften verstanden, die aus Äußerungen der Lehrkräfte, in diesem Fall der Zustimmung zu vorgegebenen Aussagen zum Lehren und Lernen von Naturwissenschaften, geschlossen werden (espoused theories, s. Kapitel 2.3.2.1). Die Ableitung der latenten Konstrukte, die in dieser Arbeit erfasst werden sollen, geschah vor dem Hintergrund der Ergebnisse zweier Forschungsbereiche: Den in Kapitel 2.3.2.3 dargestellten Befunden zu inhaltlichen Ausprägungen der Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften sowie den in Kapitel 2.2 beschriebenen Forschungen zum naturwissenschaftlichen Lehren und Lernen. Setzt man die gefundenen Vorstellungen der Lehrkräfte mit den Ansätzen und Befunden der naturwissenschaftlichen Lehr-Lern-Forschung in Beziehung, so lassen sich die Vorstellungen der Lehrkräfte, wie bereits bei der Beschreibung der Fragestellungen in Kapitel 3 angedeutet, in drei Bereiche gliedern:

(2) Eine weitere Gruppe von gefundenen Vorstellungen der Lehrkräfte lässt vor dem Hintergrund der Ergebnisse naturwissenschaftlicher Lehr-Lern-Forschung negative Zusammenhänge mit Lernfortschritten der Schüler erwarten.

(3) Eine dritte Gruppe von Lehrervorstellungen ist im Hinblick auf zu erwartende Effekte auf Lernzuwächse der Schüler eher indifferent zu bewerten.

In der folgenden Tabelle sind die Konstrukte, die in der vorliegenden Untersuchung erfasst werden sollen, den drei genannten Gruppen zugeordnet.

Tabelle 6
Beschreibung der zu erfassenden Konstrukte: Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften

<table>
<thead>
<tr>
<th>Konstrukt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1</td>
<td></td>
</tr>
<tr>
<td>'Schülervorstellungen'</td>
<td>Lehrkräfte zeigen eine Vorstellung von vorunterrichtlichen Schülervorstellungen, die mit den in Kapitel 2.2.3.1 beschriebenen Sichtweisen dieser Schülerkognitionen weitgehend übereinstimmt. Schülervorstellungen werden als erfahrungsbasierte Vorstellungen verstanden, die sachlich angemessenen Vorstellungen z.T. entgegen stehen und Lernschwierigkeiten verursachen können. Eine solche Vorstellung von Schülervorstellungen unterscheidet sich von einer ebenfalls in Studien zu Vorstellungen von Grundschullehrkräften berichteten Vorstellung, der zufolge naturwissenschaftliches Vorwissen der Schüler eher in einem quantitativen Sinne (Schüler mit 'viel' oder 'wenig' Vorwissen) oder in</td>
</tr>
</tbody>
</table>
Konstrukt | Beschreibung
--- | ---
'anwendungsbezogenes Lernen' | Dieser Vorstellung zufolge können Schüler erworbenes Wissen besser, d.h. flexibler anwenden, wenn im Unterricht Bezüge zum 'Alltag' bzw. zur 'Lebenswelt' der Schüler hergestellt werden.

gruppe 2 |

praktizismus' | Gemäß dieser Vorstellung werden äußere Aktivität der Schüler mit Lernen gleichgesetzt (Prawat, 1992; Mayer, 2004). Handlungserfahrungen in Form von Experimenten und Versuchen zur Veranschaulichung von naturwissenschaftlichen Prozessen oder Konzepten werden als hinreichende Bedingung für den Erwerb naturwissenschaftlichen Wissens erachtet. Diese Vorstellung ist auch als 'naiver Konstruktivismus' oder 'activity-driven conception' bezeichnet worden (s. Kapitel 2.3.2.3).

gruppe 3 |

In den genannten Vorstellungen zum Lehren und Lernen von Naturwissenschaften vermischen sich z.T. die in Kapitel 2.3.2.1 zum Zweck der Auswahl relevanter Studien beschriebenen Gegenstandsbereiche von Vorstellungen zum Lehren und Lernen.

- Vorstellungen über das Lehren, die sich auf die Angebotsstruktur von Unterricht und somit gewissermaßen auf 'guten' bzw. 'weniger guten' Unterricht 'an sich' beziehen (principles of teaching).
- Vorstellungen über das Lehren, die sich auf die Wirksamkeit bestimmter Unterrichtsangebote mit Blick auf die Erreichung von Zielen bei den Schülern beziehen. Vorstellungen über angestrebte Zielsetzungen des Lehrens im jeweiligen Fach fließen hier mit ein.
- Vorstellungen über das Lernen, die sich auf individuelle Verarbeitungs- bzw. Lernprozesse und individuelle Lernvoraussetzungen (bspw. das Vorwissen) der Schüler beziehen.

Eine systematische Trennung dieser Aspekte bei der Beschreibung von zu erfassenden Vorstellungen von Lehrkräften scheint jedoch wenig sinnvoll, da diese Aspekte in Vorstellungen der Lehrkräfte meist integriert und eng aufeinander bezogen vorliegen, wie in Kapitel 2.3.2.2 aufgezeigt wurde. Die in einigen Studien zu Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften berichtete Vorstellung 'Orientierung an naturwissenschaftlichen Verfahren' ('processes'), der
zufolge Schüler naturwissenschaftliche Verfahren im Unterricht praktizieren und erlernen sollten, wird wegen der Nähe zu Vorstellungen über die Philosophie von Naturwissenschaften nicht mit erfasst.

4.4.3 Itemgewinnung und Vortestung

Itemgewinnung

In Kapitel 4.4.1 wurde dargelegt, dass ein geeignetes, auch bei größeren Stichproben einsetzbares Instrument zur Erfassung von Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften noch nicht vorliegt. Für die Entwicklung eines geeigneten Instruments wurden daher Items aus vorliegenden Instrumenten adaptiert und z.T. auch neu konstruiert.

Vortestung

Die Vortestung der Items und der daraus konstruierten Skalen geschah in drei Wellen. In den ersten beiden Vortests wurden die Items und Skalen auf der Basis von Ansätzen der klassischen Testanalyse untersucht und revidiert, in der dritten Welle zusätzlich auf der Grundlage von Ansätzen der probabilis-
METHODEN

120

demischen Testtheorie (s. Kapitel 4.4.4.3).

In einem ersten Vortest wurden die Items 30 Absolventen des Studiums für das Lehramt Primar-
stufe sowie 5 Grundschullehrkräften vorgelegt. Mit sechs der 35 Personen wurde ein Interview geführt,
in dem die (angehenden) Lehrkräfte gebeten wurden, bei der Bearbeitung der Items in eigenen Worten
auszudrücken, wie sie die vorgegebenen Aussagen zum Lehren und Lernen verstehen, und auch mögli-
che Verständnisprobleme zu äußern. Die übrigen 29 Personen wurden gebeten, Verständnisschwierig-
keiten oder andere Probleme bei der Bearbeitung der Items schriftlich auf dem Fragebogen zu notieren.
Sowohl in den Interviews wie auch in den Fragebögen zeigte sich ein insgesamt geringer Anteil an
Items, bei denen Verständnisprobleme geäußert oder andere Anmerkungen gemacht wurden. Auf der
Grundlage der Hinweise der 35 Personen wurden die Aufgaben überarbeitet. Als Indikatoren für die
Schwierigkeit und Streuung der Items wurden Mittelwerte und Standardabweichungen berechnet. Ex-
trem leichte bzw. schwierige Aufgaben (Mittelwerte größer 3.5 bzw. kleiner 0.5 bei einer Skalierung von
0-4) wurden ebenso wie Items mit sehr geringer Streuung modifiziert oder entfernt.

116 Items gingen in einen zweiten Vortest ein. Die Stichprobe bestand aus 96 Personen, davon 61
Absolventen des Studiums für das Lehramt Primarstufe (35 der Universität Erlangen-Nürnberg, 13 der
Universität Hildesheim und 13 der Universität Regensburg) sowie 35 Grundschullehrkräften. Zur ska-
lenkonstruktion wurden explorative Faktorenanalysen und Berechnungen zur internen Konsistenz
(Cronbachs Alpha; Werte sollten nicht unter .6 liegen) herangezogen. Trennschärften wurden mittels
corrigerter Item-Skalenwert-Korrelationen untersucht (Items mit Werten unter .2 wurden modifiziert
oder entfernt). Bei Items mit niedriger Trennschärfe wurde zusätzlich geprüft, ob die Häufigkeitsregres-
wurden wieder Mittelwerte und Standardabweichungen berechnet.

Wichtiges Ergebnis dieses zweiten Vortests war, dass sich eines der o.g. Konstrukte mit den ge-
wählten Items nicht so wie vorgesehen erfassen ließ. Bei den Items, die dem Konstrukt 'Angeleitetes
Lernen' zugeordnet waren, bestanden nur die Items die Vortestung, die dieses Konstrukt in negativer
Wendung beschreiben. Die so gebildete Skala erfasst jetzt eine als 'Laisser-faire' zu bezeichnende Vor-
stellung zum Lehren und Lernen von Naturwissenschaften, der zufolge prozessbezogene Hilfestellun-
gen der Lehrkraft, wie eine strukturierende Gesprächsführung oder Hilfen bei der Entwicklung von
Experimenten, nicht notwendig sind. Für diese Vorstellung werden analog zu der als 'Praktizismus' be-
zeichneten Vorstellung ebenfalls negative Zusammenhänge mit Lernfortschritten der Schüler erwartet.

Die Anzahl der Items wurde auf der Basis der Analysen auf 64 reduziert. Diese Items gingen in
einen dritten Vortest an einer größeren Stichprobe von 277 Grundschullehrkräften ein, die bereits im
Zusammenhang mit der Prüfung der Repräsentativität der eigentlichen Untersuchungsstichprobe der
vorliegenden Studie beschrieben wurde. Auf der Basis der bereits im zweiten Vortest zugrunde gelegten
Kriterien wurden weitere 17 Items entfernt, so dass das endgültige Instrument jetzt 47 Items umfasst.
Die Analyse zentraler Gütekriterien dieses Instruments wird im folgenden Kapitel beschrieben.
4.4.4 Analyse der Items und Skalen zur Erfassung von Lehrervorstellungen zum Lehren und Lernen von Naturwissenschaften

In Abschnitt 4.4.4.4 wird knapp skizziert, welche Kennwerte zur Beschreibung der Eigenschaften der konstruierten Items und Skalen berechnet werden. Wie bereits angedeutet, ist die quantifizierende Erfassung von Lehrervorstellungen zum Lehren und Lernen oft mit Problemen der Validität behaftet. In Abschnitt 4.4.4.5 wird daher ausführlicher beschrieben, auf welche Weise die Validität der Messwerte eingeschätzt wird. Im Folgenden wird zunächst kurz beschrieben, welche Stichproben den Testanalysen zugrunde liegen.

4.4.4.1 Stichproben

Für die Testanalysen wurden zwei Stichproben verwendet: Die eigentliche Untersuchungsstichprobe von 46 Lehrkräften und die Stichprobe des dritten Vortests mit 277 Lehrkräften. Diese größere Stichprobe wurde genutzt

- zur Untersuchung der Dimensionalität der erfassten Lehrervorstellungen auf der Basis von Faktorenanalysen,
- zur Prüfung der internen Validität der Skalen auf der Basis eines Ansatzes der probabilistischen Testtheorie und
- für einen Teil der Analysen zur Einschätzung der Konstruktvalidität der entwickelten Skalen.

Die Reliabilität der Skalenwerte und Trennschärfen der Items im Sinne der klassischen Testtheorie werden für die eigentliche Untersuchungsstichprobe von 46 Lehrkräften berichtet. Für Analysen zur Konstruktvalidität der Messwerte wurden neben der o.g. Stichprobe von 277 Lehrkräften auch Daten der Untersuchungsstichprobe von 46 Lehrkräften herangezogen, zuzüglich solcher Lehrkräfte, die ebenfalls fortgebildet wurden, für die aber keine Daten zu Lernfortschritten ihrer Schüler vorliegen (s. auch Abschnitt 4.4.4.5 zur Konstruktvalidität).
4.4.4.2 Faktorenanalysen zur Untersuchung der Dimensionalität der Lehrervorstellungen zum Lehren und Lernen

Ergebnisse aus Faktorenanalysen im Rahmen des zweiten Vortests deuten bereits darauf hin, dass sich die angenommenen Konstrukte mit Ausnahme der o.g. Abweichungen beim Konstrukt 'Angeleiteteres Lernen' auch empirisch in den Antworten der Lehrkräfte widerspiegeln. Allerdings bestand die dabei verwendete Stichprobe noch zu einem großen Anteil aus Studienabsolventen. Zudem war das Verhältnis von Personen (96) zu Items (116 bzw. nach Itementfernung noch 64) ungünstig, so dass die Ergebnisse nur sehr vorläufigen Charakter haben.

Im Kapitel zu Lehrervorstellungen zum Lehren und Lernen (Kapitel 2.3.2) wurde beschrieben, dass verschiedene Vorstellungen der Lehrkräfte, die in bisherigen Studien identifiziert wurden, nicht unabhängig voneinander sind, sondern z.T. kovariieren (vgl. z.B. die Ergebnisse bei Brunner et al., 2006). Eine Extraktion orthogonaler, unkorrelierter Faktoren würde diesem Befund widersprechen. Es soll daher bei den Faktorenanalysen nicht die Varimax-, sondern die Promaxrotation verwendet wer-
den, die als oblique Rotationstechnik korrelierte Faktoren zulässt (vgl. Tabachnick & Fidell, 2001).

4.4.4.3 Interne Validität: Legitimation der Interpretation quantitativer Messwerte

sprechende Partial-Credit-Variante zurückgegriffen werden.

In der anglo-amerikanischen Literatur wird heterogenes Antwortverhalten in Subpopulationen auch als 'Differential Item Functioning (DIF)' diskutiert, wobei hier 'nur' einzelne Items darauf hin untersucht werden, ob sie von bestimmten Personengruppen (z.B. Männern und Frauen) verschieden bearbeitet werden (vgl. Zumbo, 1999).

4.4.4.4 **Zentrale Kennwerte der Items und Skalen**

Stellen Mittelwerte oder Summenwerte, die über die Items einer Skala gebildet werden, eine suffiziente Statistik des zu erfassenden Merkmals dar (s. vorigen Abschnitt), kann die Qualität von Items und Skalen mit Verfahren der klassischen Testtheorie weitergehend analysiert werden (vgl. Rost, 2004). Als zentrale Kennwerte im Sinne der klassischen Testtheorie werden folgende Statistiken berechnet:

4.4.4.5 **Konstruktvalidität**

Eine Möglichkeit, Konstruktvalidität abzuschätzen, besteht darin zu prüfen, ob sich angenommene Konstrukt-Dimensionen empirisch mittels Faktorenanalysen rekonstruieren lassen. Die in Kapitel 5.1.1.1 berichteten Ergebnisse der Faktorenanalysen können also auch im Hinblick auf Konstruktvalidität der entwickelten Skalen interpretiert werden. Da jedoch mangels einer zweiten ausreichend großen Stichprobe zur Kreuzvalidierung nur explorative und keine konfirmatorischen Faktorenanalysen berechnet werden, ist die Tragfähigkeit dieser Schlüsse auf Konstruktvalidität eingeschränkt.

Um die konvergente Validität beurteilen zu können, wurden die Vorstellungen der Lehrkräfte zum Lehren und Lernen von Naturwissenschaften nicht nur per Fragebogen-Skalen erfasst, sondern auch in teil-strukturierten Interviews. Im Folgenden werden zunächst die Anlage und Auswertung der Interviews dargestellt. Anschließend werden das MTMM-angelehnte Verfahren und entsprechende Hypothesen beschrieben.

Teilstrukturierte Interviews

Mit 29 Lehrkräften wurden nach den o.g. Fortbildungen teilstrukturierte Interviews geführt, in denen u.a. Vorstellungen zum Lehren und Lernen von Naturwissenschaften erfasst wurden. Ein wichtiges Ziel dieser Interviews für die Validierung der Fragebogenskalen ist, von den Lehrkräften nicht nur eine Positionierung zu vorgegebenen Aussagen zu Vorstellungen zum Lehren und Lernen zu erhalten, sondern auch weitgehend frei gewählte Antworten.

- Gibt es Lehrstrategien, Lehrmethoden oder Unterrichtsprinzipien, die nach Ihrer Ansicht besonders effektiv sind, um Kinder beim Lernen von Naturwissenschaften zu unterstützen?
- Zu welchem Zweck setzen Sie Experimente im SU ein?
- Wie sehen Sie Ihre Funktion bzw. Ihre Rolle in Unterrichtsgesprächen?
- Welche Bedeutung hat Ihrer Ansicht nach das Vorwissen der Kinder für das Lernen der Kinder?

In Anlehnung an Hashweh (vgl. 1996) wurde folgende 'Vignette' vorgegeben: Stellen Sie sich vor: In einem Unterrichtsgespräch merken Sie, dass ein oder mehrere Kinder eine ganz falsche Vorstellung oder eine ganz falsche Erklärung haben. Wie würden Sie damit umgehen?

Von den 29 Interview-Transkripten wurden 10 von einer weiteren Person kodiert, um Übereinstimmungsprüfungen vornehmen zu können. Diese ergaben ein über die verschiedenen Kategorien gemitteltes Cohens Kappa von .89 bei einer Spannweite von .81 bis 1.00. Die Werte deuten eine sehr zu-

4 Der vollständige Interview-Leitfaden und auch das Kodierschema befinden sich im Anhang der Arbeit.

Hypothesen zur konvergenten und diskriminanten Validität im Anlehnung an das MTMM-Verfahren

➔ **Monotrait-Heteromethod-Block:** Hier werden Korrelationen der Werte der Fragebogenskalen mit den mittels Interviews erfassten Werten zu den entsprechenden Konstruktende aufgeführt. Liegen substantielle Korrelationen der (theoretisch) korrespondierenden Fragebogenskalen- und Interview-Werte vor, kann dies als Hinweis auf konvergente Validität der jeweiligen Fragebogenskalen interpretiert werden.

➔ **Heterotrait-Monomethod- und Monotrait-Monomethod-Block:** In diesem Teil der MTMM-Matrix werden die Inter-Korrelationen der konstruierten Fragebogenskalen aufgeführt. Da die Skalen unterschiedliche Konstrukte erfassen sollten, sollten die Korrelationen nicht allzu groß sein, da hohe Korrelationen auf Redundanzen in den Konstrukten oder auf unsensible Messungen hindeuten. In der Diagonale der Matrix (Monotrait-Monomethod) werden hier anstelle der Autokorrelationen die Reliabilitäten der Skalen angegeben. Diese Werte sollten durchweg die höchsten sein.

➔ **Heterotrait-Heteromethod-Block:** Diese Matrix enthält Korrelationen der entwickelten Fragebogenskalen mit den beiden von Drechsel konstruierten Skalen zum allgemeinen Lernbegriff. Außerdem werden Korrelationen der Skala 'Schülersvorstellungen' mit einer Interview-Kategorie angegeben, die ein unspezifisches, eher quantitatives Verständnis des Vorwissens der Schüler (s. die Zusammenfassung in Kapitel 2.3.2.3) erfasst. Zur Fragebogenskala, die eine 'praktizistische' Vorstellung zum Lehren und Lernen erfassen soll, wird die Korrelation mit einer Interview-Kategorie aufgeführt, die die Vorstellung erfasst, dass handelndes Lernen für Schüler im Grundschulalter bedeutsam ist (kein 'naiver Konstruktivismus'). Es wird erwartet, dass in diesem Block keine substantiellen Korrelationen vorliegen. Fehlende substantielle Korrelationen können als Hinweis auf diskriminante Validität der jeweiligen Fragebogenskala interpretiert werden.

4.5 Erfassung des konzeptionellen Verständnisses von 'Schwimmen und Sinken' bei den Schülern

4.5.1 Niveaus des Verständnisses von 'Schwimmen und Sinken'

(1.) 'Fehlvorstellungen'. Erklärungen des Schwimmens und Sinkens auf diesem Verständnis-Niveau fokussieren auf nur eine Dimension wie bspw. nur auf die Masse ('Leichte Sachen schwimmen'), nur auf die Größe ('Große Dinge gehen unter') oder ausschließlich auf die äußere Form ('Dinge mit Löchern sinken'). Auch Erklärungen, die der Luft in Gegenständen eine aktive ('nach oben ziehende') Rolle zusprechen, werden diesem Verständnis-Niveau zugeordnet. 'Fehlvorstellungen' halten einer empirischen Prüfung nicht stand.

Wie in Kapitel 2.2.3 dargestellt, greifen Schüler, auch wenn sie wissenschaftsnahe Vorstellungen
(hier Niveau 3) erworben haben, noch in Abhängigkeit von Merkmalen der Situation auf Fehlvorstellungen zurück. Von besonderem Interesse ist daher die Frage, inwieweit Schüler ihre Vorstellungen zum 'Schwimmen und Sinken' in einen kohärenten Erklärungsansatz integrieren. Die Erfassung eines solchen *integrierten Verständnisses* ist zentrales Anliegen des Tests zum 'Schwimmen und Sinken'. Es wird operationalisiert über die Annahme von physikalischen (Vor-)Konzepten bei 'gleichzeitiger' Ablehnung von Fehlvorstellungen (s. den Abschnitt zur Bildung von Summenwerten).

4.5.2 Test zur Erfassung des Verständnisses von 'Schwimmen und Sinken'

Im Folgenden werden zunächst die Multiple-Choice- und True-False-Items des Tests und anschließend die Aufgaben mit offenem Antwortformat beschrieben.

4.5.2.1 Multiple-Choice- und True-False-Items

Das Testheft umfasst in der modifizierten Form 16 Multiple-Choice- und 12 True-False-Items. Die Items wurden entwickelt, um konzeptuelles Verständnis in zwei Inhaltsbereichen zu testen: (1.) Verdrängung des Wassers und (2.) Erklärungen des Schwimmens und Sinkens von Gegenständen.

![Abbildung 5: Beispielitem zur Erfassung des konzeptuellen Verständnisses von Verdrängung](image)

(2.) Erklärungen des Schwimmens und Sinkens von Gegenständen. Die Items dieses Inhaltsbereichs erfassen Erklärungen der Schüler zum Schwimmverhalten von Gegenständen, die ins Wasser gegeben werden, so-
wie Vorhersagen zum Schwimmverhalten von Gegenständen (vgl. ausführlicher Hardy, Jonen, Möller & Stern, 2006). Die Items wurden auf der Grundlage von Interviews mit Grundschülern und in mehreren Pilotierungen entwickelt, um Formulierungen zu finden, die für die Schüler verständlich und gleichzeitig (im Fall der Attraktoren) wissenschaftlich angemessen sind. Formulierungen, die häufig im Unterricht verwendet werden und korrekte Erklärungen anzeigen könnten (’das weg gedrängte Wasser’, ’das Wasser drückt nach oben’), wurden stets in einer korrekten und einer inkorrekten Version vorgegeben. Die Antwortvorgaben umfassen Erklärungen auf allen drei beschriebenen Verständnisniveaus. Abbildung 6 zeigt ein Item, bei dem die Schüler zunächst entscheiden müssen, ob ein Holzwürfel, der unter Wasser getaucht wird, unter geht oder aufsteigt. Anschließend müssen die für korrekt erachteten Erklärungen angekreuzt werden. Die Vorgaben enthalten typische Fehlkonzepte (’weil er so leicht ist’), Vorstellungen auf Alltagsverständnis-Niveau (’weil er aus Holz ist’) und physikalische (Vor-)Konzepte (’weil das weg gedrängte Wasser mehr wiegt als der Holzwürfel’).

Abbildung 6: Beispielitem zu Erklärungen des Schwimmens und Sinkens von Gegenständen

Abbildung 7 zeigt ein Item, bei dem das Schwimmverhalten von vier Würfeln vorhergesagt werden soll. Dabei müssen die Masse und das Volumen der Würfel zu den Angaben zu einem ’Wasserwürfel' in Beziehung gesetzt werden.

Abbildung 7: Beispielitem zur Vorhersage des Schwimmverhaltens von Gegenständen

In weiteren Items (True-False-Items) muss bewertet werden, ob generalisierte Aussagen zu Mechanismen des Schwimmens und Sinkens korrekt sind oder nicht. Auch die hier vorgegebenen generalisierten
Aussagen beziehen sich auf alle drei o.g. Verständnisniveaus (z.B. 'Das Wasser saugt schwere Sachen nach unten. 'Alle hohlen Dinge schwimmen im Wasser. 'Das Wasser drückt mehr gegen große Dinge als gegen kleine.').

4.5.2.2 Items mit offenem Antwortformat

In zwei Items mit offenem Antwortformat sollten die Schüler selbst gewählte Erklärungen zum Schwimmverhalten eines Holzbretts mit Löchern und eines Schiffes (s. Abbildung 8) geben.

4.5.3 Bildung von Summenwerten

Das Ausmaß, in dem Schüler ein kohärentes Verständnis von 'Schwimmen und Sinken' erworben haben, stellt die zentrale abhängige Variable dieser Untersuchung dar. Um ein solches integriertes Verständ-
von 'Schwimmen und Sinken' zu erfassen, wurde ein Summenwert gebildet, der angibt, inwieweit die Schüler wissenschaftsnahe Vorstellungen (Verständnisniveau 3) erworben haben und gleichzeitig Fehlvorstellungen (Verständnisniveau 1) ablehnen. Vorstellungen auf dem Niveau eines Alltagsverständnisses (Niveau 2) wurden in dem Summenwert nicht berücksichtigt, da sie hinsichtlich eines kohärenten Verständnisses als indifferent zu beurteilen sind: Sie sind zwar bereits 'erklärungsmächtiger' als Vorstellungen auf dem ersten Niveau, besitzen aber noch nicht die Gültigkeit der (vor-)physikalischen Konzepte.

In zwei weiteren separaten Summenwerten wurden die Annahme bzw. Äußerung von Fehlvorstellungen (FV-Wert) und die Annahme bzw. Äußerung von physikalischen (Vor-)Konzepten (PHY-Wert) bepunktet. Der FV-Wert erfasst die 'Größen-', die 'Gewichts-', die 'Wasser-saugt-nach-unten-', die 'Form-Vorstellung' sowie die Vorstellung, die Verdrängung hänge vom Gewicht eines ins Wasser getauchten Gegenstandes ab. Außerdem geht in den Wert ein, ob in der Antwort auf die offene Frage nach Begründungen für das Schwimmen eines Schiffes (s. Beispielitem in Abb. 8) Fehlvorstellungen geäußert wurden. Aufgrund von Reliabilitätsanalysen wurde die zweite offene Frage nicht berücksichtigt. Der maximale Summenwert für den FV-Wert beträgt 24 Punkte.

Um eine möglichst klare Trennung vom FV-Wert zu erzielen, d.h. direkte Abhängigkeiten zu vermeiden, wurden im PHY-Wert nur physikalische Vorkonzepte berücksichtigt, die sich nicht direkt aus der Ablehnung einer Fehlvorstellung ergeben. So wurden bspw. die Items zur Gewichts- versus Volumen-Abhängigkeit der Verdrängung nicht aufgenommen, da diese Items nur die beiden Alternativen der physikalischen und der naiven Sichtweise bieten. In den PHY-Wert gehen daher bei den Multiple-Choice-Items nur die im Aufgabenblock 2 (s. Beispielitem in Abb. 6) vorgegebenen physikalischen Vorkonzepte ein. Außerdem wird bepunktet, ob bei den beiden offenen Fragen jeweils Vorstellungen auf dem Niveau der physikalischen (Vor-)Konzepte geäußert werden. Der maximale Punktwert für den PHY-Wert beträgt 10 Punkte. In Kapitel 5.1.2 werden Ergebnisse zu Analysen der Itemschwierigkeit,
zur Reliabilität der Summenwerte sowie zu Inter-Korrelationen der drei Summenwerte berichtet.

4.5.4 Testadministration

Vor- wie Nachtest zum konzeptuellen Verständnis von 'Schwimmen und Sinken' wurden von den 46 Lehrkräften selbst administriert. Die Teilnehmer der Experimentalgruppen wurden dazu im Rahmen der Fortbildung geschult, die Lehrkräfte der Kontrollgruppe bei einem Treffen in der Universität. Ge-

schult wurden neben der verbalen Instruktion der Aufgaben auch die Handlungen, die zur Demonstr-

ation der Aufgaben durchzuführen sind (z.B. Kugel in ein mit Wasser gefülltes Glas tauchen; Aufgabe 4). Alle Lehrkräfte erhielten eine ausführliche Anleitung zur Testdurchführung. Diese Anleitung enthält

neben dem genauen Wortlaut für die Instruktion der Aufgaben auch genaue Anweisungen, welche

Handlungen zur Demonstration durchzuführen sind. Sämtliche Aufgabentexte wurden durch die Lehr-

kräfte vorgelesen, um Einflüsse des Leseverständnisses der Schüler für deren Testleistung minimal zu

halten.

4.6 Umgang mit fehlenden Werten

Fehlende Werte (missing data) stellen ein verbreitetes und kaum zu vermeidendes Problem im Fors-

chungsprozess dar. Das Auftreten von missing data ist im Allgemeinen mit drei Problemen verbun-

den. Erstens führt die eingeschränkte Stichprobengröße zu einem Verlust an Effizienz bei der Schät-

zung der Parameter. Zweitens erfordern die meisten statistischen Verfahren vollständige Datenmatri-

zen. Drittens besteht die Gefahr verzerrter Parameterschätzungen aufgrund von systematischen Unter-

schieden zwischen den beobachteten und den fehlenden Daten (vgl. Graham, Cumsille & Elek-Fisk, 2003; Lüdtke, Robitzsch, Trautwein & Köller, 2007). Für die im Rahmen dieser Arbeit durchgeführten Analysen wurden fehlende Werte in den Daten mit Hilfe bestimmter Verfahren imputiert, d.h. es wur-

den Werte an den entsprechenden Stellen eingesetzt. Da diese Verfahren vielleicht zunächst 'unseriös'
anmuten mögen ('Sagen sie einem dann bspw., was die Person an der betreffenden Stelle geantwortet

hätte?'), werden sie im Folgenden etwas genauer beschrieben und die statistischen Gründe für ihre An-

wendung dargestellt. Dazu werden zuerst verschiedene Ursachen und Formen fehlender Werte be-

schrieben. Dann wird erläutert, warum 'traditionelle' Verfahren des Umgangs mit fehlenden Werten un-

befriedigend sind, und schließlich werden zwei neuere Verfahren skizziert, mit denen fehlende Werte

im Datensatz dieser Studie imputiert wurden.

4.6.1 Verschiedene Ursachen und Formen fehlender Werte

Zum einen geben Personen auf einzelne Fragen keine Antworten, da sie bspw. ermüdet sind, da ihnen
das nötige Wissen fehlt, sie eine Frage nicht beantworten wollen, oder aus anderen Gründen. Auch sind Antworten gerade bei Grundschulkindern z.T. nicht zu entziffern oder ungültig (item non-respon-

se). Zum anderen kommt es vor, dass von Personen gar keine Daten vorliegen (unit non-response) (vgl. Schafer & Graham, 2002; Lüdtke, Robitzsch, Trautwein & Köller, 2007). Mit beiden Fällen muss auch

Für die Frage, wie mit fehlenden Werten umzugehen ist, hat sich in der Literatur zu missing data eine Unterteilung von fehlenden Werten etabliert, die den zugrunde liegenden Ausfallprozess präzisiert. In Anlehnung an Rubin (1976) werden fehlende Werte in „missing completely at random“ (MCAR), „missing at random“ (MAR) und „missing not at random“ (MNAR) gegliedert.

4.6.2 Traditionelle Verfahren im Umgang mit fehlenden Werten und ihre Problematiken

Fallweiser und paarweiser Ausschluss

Fallweiser Ausschluss (listwise deletion) ist die vermutlich verbreitetste Strategie im Umgang mit fehlenden Werten. Sie ist die Methode, die in den meisten Statistikprogrammen voreingestellt ist. Bei dieser Strategie werden nur die Personen in die Analysen aufgenommen, die für alle Variablen gültige Werte besitzen. Dieses Verfahren ist zwar einfach anzuwenden, hat jedoch bedeutsame Nachteile. Ist die 'strengere' Annahme von MCAR nicht erfüllt, führt der fallweise Ausschluss von Personen zu verzerrten

Mittelwert-Imputation und regressionsbasierte Imputation (single imputation)

Ein weiteres übliches Verfahren des Umgangs mit fehlenden Werten ist, diese mit Hilfe einer (multiplen) Regression zu ersetzen (regression-based single imputation). Auch bei dieser Strategie werden Informationen, die in anderen Variablen vorliegen, zur Berechnung eines plausiblen Wertes, der an der Stelle des fehlenden Wertes eingesetzt wird, herangezogen. Seien bspw. X_1-..X_n Variablen ohne fehlende Werte und Y eine Variable mit teilweise fehlenden Werten, so werden die X_1-..X_n dann als Prädiktoren für Y verwendet. Dazu werden mit Hilfe der beobachteten Y-Werte die Koeffizienten einer Regressionsgeraden (ihr Ordinatenabschnitt und ihre Steigung) geschätzt. Auf der Basis der resultierenden Regressionsgleichung ($Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \ldots + \beta_n \cdot X_n + r$) werden dann die fehlenden Werte von Y durch die vorhergesagten ersetzt (vgl. Graham & Schafer, 1999). Dieses Verfahren ist wie die Mittelwerts-Ersetzung mit dem Problem behaftet, dass die Varianz von Y unterschätzt wird. Außerdem sind die Korrelationen mit den als Prädiktoren herangezogenen Variablen unnatürlich stark.

Bei beiden skizzierten Verfahren der einfachen Imputation zeigt sich also das Problem verzerrter Parameterschätzungen. Zudem berücksichtigen diese Verfahren nicht die Unsicherheit, mit der die fehlenden Werte ersetzt werden. Die ersetzten Werte werden behandelt, als wären sie tatsächlich beobachtet worden.
Neuere Verfahren im Umgang mit fehlenden Werten

Multiple Imputation fehlender Werte

Das Verfahren multipler Imputation fehlender Werte setzt sich generell aus drei Schritten zusammen: Im ersten Schritt werden für jeden fehlenden Wert unter Einbezug der im Datensatz verfügbaren Information mehrere \((k)\) plausible Werte (plausible values) erzeugt und in den Datensatz imputiert, so dass \(k\) vollständige Datensätze entstehen. In einem zweiten Schritt werden die \(k\) Datensätze getrennt mit Standardverfahren (in diesem Fall HLM-Analysen, s. Kapitel 4.7.1) analysiert. Im dritten Schritt werden die Ergebnisse der getrennt durchgeführten Analysen so zu einem 'gepoolten' Ergebnis zusammengefasst, dass die Unsicherheit der Imputation widerspiegelt wird (vgl. Lüdtke, Robitzsch, Trautwein & Köller, 2007; Regeln zur Berechnung der zusammengefassten Ergebnisse bei Rubin, 1987).

Multiple Imputation fehlender Werte bei hierarchisch geschachtelten Daten. Liegen wie in dieser Untersuchung Daten mit einer Mehrebenenstruktur vor (vgl. Kapitel 4.7.1), d.h. sind Schüler bspw. in einer Klasse 'geschachtelt' und einer Lehrkraft zugeordnet, führen die beschriebenen Verfahren der multiplen Imputation (und natürlich die zuvor genannten Verfahren der single imputation) zu fehlerhaften Parameter-
schätzungen, sofern nicht bereits bei der Imputation der Mehrebenencharakter der Daten berücksich-
tigt wird. Wie Jacobusse (vgl. 2005a) in einer Simulationsstudie zeigen konnte, werden zwar die Inter-
cepts (s. Kapitel 4.7.1) verzerrungsfrei geschätzt, nicht jedoch die Varianzen auf den einzelnen Ebenen
(in der Studie wurde ein Zwei-Ebenen-Modell betrachtet). Wird die Mehrebenenstruktur vernachlässigt,
wird die Varianz der Individual-Ebene überschätzt, wohingegen die Variablen der Aggregat-Ebene mit
t zu wenig Varianz versehen werden. Graham, Cumsille und Elek-Fisk (vgl. 2003) empfehlen, im Falle
von Mehrebenendaten eine dummy-kodierte KlassenvARIABLE bei der Imputation einzufügen. Das Pro-
gramm WinMICE ist direkt für die multiple Imputation fehlender Werte im Fall von hierarchisch ge-
schachtelten Daten konzipiert. Es ermöglicht es, ein Mehrebenen-Imputations-Modell für jede Variable

EM-Algorithmus

Der EM-Algorithmus ist ein zweischrittiges, iteratives Verfahren, das auf einem ähnlichen Ansatz be-
ruht wie die regressionsbasierte Imputation. Im sog. E-Schritt (expectation) werden die fehlenden Wer-
te durch die vorhergesagten Werte einer Regression ersetzt. Im Gegensatz zur regressionsbasierten Im-
putation wird jedoch auch hier, wie im vorigen Abschnitt skizziert, Varianz hinzugefügt. Auf der Basis
des entstandenen vollständigen Datensatzes werden dann im sog. M-Schritt (maximization) die gesuch-
ten Parameter (z.B. Mittelwerte und Kovarianzen) berechnet, auf deren Grundlage wiederum im nächs-
ten Schritt (E-Schritt) Imputationen für die fehlenden Werte erzeugt werden. Der Algorithmus konver-
giert, wenn sich bei wiederholter Ausführung des E- und des M-Schrittes die Parameterwerte nicht
Reliabilitäts- und Faktorenanalysen empfohlen. Für inferenzstatistische Verfahren ist er hingegen nicht

Behandlung fehlender Werte in dieser Untersuchung

Wie bereits angedeutet haben einige Schüler nur den Vor- bzw. den Nachtest zum konzeptuellen Ver-
ständnis von 'Schwimmen und Sinken' bearbeitet (unit non-response). Von den insgesamt 1039 befrag-
ten Schülern sind dies 107 Schüler (10,3%). Diese Schüler wurden aus den Analysen ausgeschlossen, da
 eine Imputation auf der Basis der vorliegenden Informationen nur eines Messzeitpunktes nicht sinnvoll
ist. Außerdem erscheint ein Zusammenhang zwischen der Nicht-Anwesenheit beim Vor- oder Nach-
test und den Testwerten der Schüler wenig wahrscheinlich. Diese Annahme wird dadurch gestützt, dass
sich keine signifikanten Unterschiede in der Nachttest-Leistung zwischen Schülern mit und ohne Vor-
test sowie keine signifikanten Unterschiede in der Vortestleistung zwischen Schülern mit und ohne
Nachtest zeigen. Die Verringerung der Stichprobe ist natürlich mit Einbußen bei der Effizienz der Par-
ameterschätzungen verbunden.

5 In diesem Fall kann nicht wie bei längsschnittlichen Untersuchungen mit mehr als zwei Messzeitpunkten eine
Person-spezifische Wachstumskurve berechnet werden.
Item mit einem mittleren Anteil von 0.9%. In den Daten der Schüler nach Ausschluss der Schüler ohne Vor- bzw. Nachtest sind es zwischen 1.4 und 3.9% je Item mit einem mittleren Anteil von 2.5%. Die Ausfallrate ist daher recht gering und es wäre auch der fallweise Ausschluss von Personen mit fehlenden Werten in Betracht zu ziehen. Little’s MCAR-Test (vgl. Little & Rubin, 2002), der prüft, ob sich die Personengruppe mit fehlenden Werten in einer Variablen von der Gruppe der Personen, für die Beobachtungen vorliegen, unterscheidet, wird jedoch bei den Schülerdaten signifikant (Chi-Quadrat = 20851,538; df = 20262; p = .002). D.h. es kann nicht davon ausgegangen werden, dass die fehlenden Werte MCAR sind. Für sie wurden daher mit den skizzierten neueren Verfahren Werte imputiert.

4.7 Auswertungsverfahren und Variablenkontrolle

4.7.1 Mehrebenenanalytisches Auswertungsverfahren

In der vorliegenden Untersuchung liegen das konzeptuelle Verständnis von 'Schwimmen und Sinken' auf der Individualebene (Ebene 1) und die fachspezifischen Lehrervorstellungen als zentrale unabhängige Variable auf der Aggregatenebene (Ebene 2). Mit mehrrebenanalytischen Verfahren wie hierarchischen linearen Modellen (HLM) können die Effekte von Aggregat-Merkmalen wie den hier untersuchten Lehrervorstellungen auf individuelle Lernergebnisse der Schüler untersucht werden. Wie in der konventionellen (multiplen) Regressionsanalyse, in der eine Variable aus verschiedenen anderen Variablen vorhergesagt wird, werden auch in HLM-Verfahren Achsenabschnittsparameter (Intercepts), Steigungsparameter (Slopes) und Residual-Werte verwendet (vgl. Raudenbusch & Bryk, 2002). In die regressionsanalytische Sicht 'übersetzt' interessiert im Rahmen dieser Untersuchung, inwieweit die fachspezifischen Vorstellungen der Lehrkräfte zum Lehren und Lernen (VLL) das nach dem Unterricht erreichte konzeptuelle Verständnis von 'Schwimmen und Sinken' bei den Schülern (KV2) vorhersagen können, wobei dieses um das bereits vor dem Unterricht gezeigte Verständnis (KV1), das Alter (A) und das Geschlecht (G) der Schüler adjustiert werden soll (zur Kontrolle von Drittvariablen: Kapitel 4.7.2). Durch die Adjustierung um das vor dem Unterricht gezeigte konzeptuelle Verständnis kann dann von Fortschritten im konzeptuellen Verständnis gesprochen werden.

Im Gegensatz zu Standard-Regressionsverfahren berücksichtigt HLM die geschachtelte Struktur von Daten. Intercepts und Slopes können daher im Rahmen von HLM zwischen den Aggregat-Einheiten, im Falle der vorliegenden Untersuchung also den 46 (j) Klassen, variieren. Außerdem ermöglicht HLM eine statistisch angemessener Schätzung des Effekts der genannten Prädiktoren auf Individualebene. Ein Modell, das zunächst nur die genannten Individualdaten berücksichtigt, kann wie folgt dargestellt werden:

\[KV_{2i} = \beta_{0j} + \beta_{1j} * KV_{1i} + \beta_{2j} * A_{ij} + \beta_{3j} * G_{ij} + r_{ij} \] \[4.1\]

Dieses Modell drückt aus, dass das nach dem Unterricht erreichte konzeptuelle Verständnis des Schülers i in Klasse j in Beziehung gesetzt wird zu dem vorunterrichtlichen Verständnis, dem Alter und dem Geschlecht. Insgesamt ergeben sich in dem Modell j, d.h. in diesem Fall 46, Intercepts bzw. Achsenabschnittsparameter (\(\beta_{0j}\)), die die Klassenmittelwerte des nach dem Unterricht erfassten konzeptuellen Verständnisses darstellen. Diese Klassenmittelwerte sind um vorunterrichtliches Verständnis, Alter und
Geschlecht adjustiert. Außerdem enthält das Modell j Slopes bzw. Steigungsparameter für diese Individuawerte (β_1j, β_2j und β_3j). Mit HLM können die Intercepts und Slopes für den gesamten Datensatz, die sog. Grand Means, statistisch angemessen (basierend auf einem sog. Empirical-Bayes-Verfahren; vgl. ausführlicher Raudenbush & Bryk, 2002) geschätzt werden. Sie werden mit Gamma (γ) angegeben. γ_{00} bezeichnet in diesem Fall den Grand Mean der adjustierten Klassenmittelwerte für das nachunterrichtliche konzeptuelle Verständnis. γ_{10}, γ_{20} und γ_{30} repräsentieren die Grand Means der klassenspezifischen Steigungsparameter. In HLM sind die klassenspezifischen β-Koeffizienten der o.g. Regressionsgleichung [4.1] zusammengesetzt aus dem jeweiligen Grand Mean und einem Residual-Wert.

\[
\beta_{0j} = \gamma_{00} + u_{0j} \quad [4.2] \\
\beta_{1j} = \gamma_{10} + u_{1j} \quad (entsprechend für \beta_{2j} und \beta_{3j}) \quad [4.3-4.5]
\]

Das in Gleichung 4.2 beschriebene Ebene-2-Modell besagt im Fall dieser Untersuchung, dass der Klassenmittelwert der Klasse j im adjustierten konzeptuellen Verständnis durch den Gesamtmittelwert zuzüglich einer Varianzkomponente (das Residuum u_{0j}) dargestellt werden kann. Die in den Gleichungen 4.3 - 4.5 angegebenen Modelle drücken aus, dass sich die klassenspezifischen Steigungsparameter ebenfalls aus deren Grand Mean zuzüglich einer Varianzkomponente zusammensetzen. Da die Steigungsparameter den Zusammenhang zwischen der jeweiligen Individualvariable (z.B. der Vortestleistung) mit dem Kriterium (der Nachtestleistung) angeben, bedeutet dies, dass es in HLM möglich ist, dass diese Zusammenhänge klassenspezifisch variieren (vgl. Ditton, 1998; Raudenbush & Bryk, 2002).

Modellierung des Effekts der Lehrervorstellungen auf das adjustierte konzeptuelle Verständnis der Schüler

Liegt eine signifikante Variation der j Intercepts (d.h. hier der 46 Klassenmittelwerte im adjustierten konzeptuellen Verständnis) vor, d.h. ist der u_{0j}-Koeffizient in Gleichung 4.2 signifikant von Null verschieden, so ist es sinnvoll, weiter zu ergründen, ob Merkmale auf Klassenebene (bspw. Unterrichts- oder Lehrermerkmale) diese Varianz aufklären. Im Fall dieser Arbeit sind hier natürlich die fachspezifischen Vorstellungen der Lehrkräfte zum Lehren und Lernen von Interesse. Das entsprechende Modell auf Ebene 2 lautet:

\[
\beta_{0j} = \gamma_{00} + \gamma_{01} * VLL_{j} + u_{0j} \quad [4.6]
\]

Durch Einsetzen von Gleichung 4.6 in das Individualebenen-Modell (Gleichung 4.1) erhält man das Mehrebenenmodell (ein sog. random intercept model) zur Vorhersage des adjustierten konzeptuellen Verständnisses der Schüler durch die fachspezifischen Lehrervorstellungen:

\[
KV_{2j} = \gamma_{00} + \gamma_{01} * VLL_{4} + \beta_{1j} * KV_{1j} + \beta_{2j} * A_{ij} + \beta_{3j} * G_{ij} + u_{0j} + r_{ij} \quad [4.7]
\]

Von einer herkömmlichen Regressionsgleichung unterscheidet sich dieses Modell lediglich darin, dass zu der individuellen Varianzkomponente r_{ij} noch eine klassenspezifische Varianzkomponente u_{0j} hinzukommt. Ein signifikanter Effekt der fachspezifischen Lehrervorstellungen auf das adjustierte konzeptuelle Verständnis der Schüler würde sich in einem signifikanten γ_{01}-Koeffizienten zeigen.
Modellierung differenzieller Effekte der Lehrervorstellungen auf das adjustierte konzeptuelle Verständnis der Schüler

Liegen signifikante Variationen der klassenspezifischen Steigungsparameter (β_1, β_2 und β_3 in Gleichung 4.1) vor, was sich in signifikant von Null unterschiedlichen u_{ij}-Koeffizienten zeigen würde, würde dies bedeuten, dass die klassenspezifischen Zusammenhänge zwischen dem jeweiligen Prädiktor auf Individualebene und dem Kriterium zwischen den j Klassen substanziell variieren würden. In diesem Fall würde das nahe legen zu untersuchen, ob der Einfluss fachspezifischer Lehrervorstellungen auf das adjustierte Verständnis der Schüler in Abhängigkeit von individuellen Charakteristika der Schüler wie dem vorunterrichtlichem Verständnis variiert. Auf Klassenebene wird ein solcher differenzieller Effekt in Abhängigkeit des vorunterrichtlichen Verständnisses wie folgt modelliert (vgl. Staub & Stern, 2002; Raudenbush & Bryk, 2002; Stern & Hardy, 2004):

\[\beta_{ij} = \gamma_{10} + \gamma_{11} \times \text{VLL}_j + u_{ij} \] [4.8]

Der klassenspezifische Steigungsparameter β_{ij} (hier zu verstehen als Zusammenhang des vorunterrichtlichen mit dem nachunterrichtlichen Verständnis der Schüler) wird also selbst zur abhängigen Variable, die durch die Lehrervorstellungen (sowie einen Achsenabschnittsparameter und eine Varianzkomponente) vorhergesagt wird. Es handelt sich somit um eine sog. Cross-Level-Interaktion, da die Interaktion zwischen einem Merkmal auf Klassenebene (Lehrervorstellung) und einem auf Individualebene (Zusammenhang zwischen Vor- und Nachtest-Leistung) untersucht wird. Durch Einsetzen von Gleichung 4.8 in das Individualebenen-Modell (Gleichung 4.1) erhält man das entsprechende Mehrebenenmodell (einsog. random slope model):

\[\text{KV2}_{ij} = \beta_{0j} + (\gamma_{10} + \gamma_{11} \times \text{VLL}_j + u_{ij}) \times \text{KV1}_{ij} + \beta_{2j} \times A_{ij} + \beta_{3j} \times G_{ij} + r_{ij} \] [4.9]

Durch Auflösen erhält man:

\[\text{KV2}_{ij} = \beta_{0j} + \gamma_{10} \times \text{KV1}_{ij} + \gamma_{11} \times \text{VLL}_j \times \text{KV1}_{ij} + u_{ij} \times \text{KV1}_{ij} + \beta_{2j} \times A_{ij} + \beta_{3j} \times G_{ij} + r_{ij} \]

Ein signifikanter differenzieller Effekt der Lehrervorstellungen in Abhängigkeit vom vorunterrichtlichen Verständnis der Schüler würde sich in einem signifikant von Null verschiedenen γ_{11}-Koeffizienten ausdrücken.

METHODEN

4.7.2 Kontrollvariablen

In die beschriebenen HLM-Analysen wurden verschiedene Kontrollvariablen auf Individual- und Klasseenebene aufgenommen, um einen möglichst 'reinen' Effekt der fachspezifischen Lehrervorstellungen zum Lehren und Lernen auf die Fortschritte der Schüler im konzeptuellen Verständnis von 'Schwimmen und Sinken' ermitteln zu können.

Kontrollvariablen auf Individualebene

Wie bereits angedeutet wurde das vorunterrichtliche Verständnis der Schüler von 'Schwimmen und Sinken' in die Modelle aufgenommen. Das bereichsspezifische Vorwissen hat sich in zahlreichen Studien als bedeutsamster Prädiktor späterer Leistungen in der betreffenden Domäne gezeigt (s. Kapitel 2.1.5). Durch die Aufnahme in die Modelle kann von Fortschritten im Verständnis von 'Schwimmen und Sinken' gesprochen werden.

Kontrollvariablen auf Klasseenebene

6 Die Items sowie Kennwerte zu den Items und zur Skala sind im Anhang beigefügt.
Brophy & Good, 1986; Helmke & Weinert, 1997; Lipowsky, 2006) wurden auch das physikbezogene Sachinteresse der Lehrkräfte (Skala mit vier Likert-skalierten Items; Cronbachs Alpha bei .78)\(^7\) und die Berufserfahrung in Dienstjahren als Kontrollvariablen auf Aggregatebene berücksichtigt.

5 Ergebnisse

5.1 Ergebnisse der Testanalysen

\(^7\) Die Items sowie Kennwerte zu den Items und zur Skala sind im Anhang beigefügt.
5.1.1 Analysen der Items und Skalen zur Erfassung von Vorstellungen von Lehrkräften zum Lehren und Lernen von Naturwissenschaften

Die Ergebnisse aus den Analysen der Items und Skalen zur Erfassung der Lehrervorstellungen zum Lehren und Lernen werden in folgender Reihenfolge berichtet: Zuerst wird auf die Frage eingegangen, welche latenten Dimensionen, d.h. welche Vorstellungen zum Lehren und Lernen den Antworten der Lehrkräfte auf die Items zugrunde liegen, und inwieweit in diesen Dimensionen die Konstrukte repräsentiert sind, die der Fragebogenerstellung zugrunde lagen. Zu diesen Fragen werden Ergebnisse aus exploratorischen Faktorenanalysen berichtet (Kapitel 5.1.1.1). Zusammen mit theoretischen Überlegungen waren diese Analysen für die Zusammensetzung der Skalen maßgeblich. In den folgenden Teilkapiteln werden Ergebnisse zu Gütekriterien dieser Skalen berichtet. Zuerst wird dabei auf die Frage der internen Validität der Skalen eingegangen (Kapitel 5.1.1.2). Interne Validität wird hier in Anlehnung an Rost (vgl. 2004, s. auch Kapitel 4.4.4.3) als Passung eines angenommenen Testmodells auf die Daten verstanden. Berichtet werden Ergebnisse zu der Frage, ob den Skalen tatsächlich wie angenommen ein quantitatives Testmodell zugrunde liegt, das die Interpretation (quantitativer) Summen- oder Mittelwerte als Messwerte legitimieren würde (Analysen auf der Basis probabilistischer Testtheorie). Anschließend werden zentrale Skalenkennwerte berichtet, die auf der Basis der klassischen Testtheorie ermittelt wurden (Kapitel 5.1.1.3). Im letzten Teilkapitel 5.1.1.4 wird schließlich auf die Frage der Konstruktvalidität der Skalen näher eingegangen.

5.1.1.1 Dimensionalität der erfassten Lehrervorstellungen

Mit Hilfe explorativer Faktorenanalysen wurde untersucht, welche latenten Dimensionen, d.h. in diesem Fall, welche Vorstellungen zum Lehren und Lernen den Antworten der Lehrkräfte auf die Items zugrunde liegen, und inwieweit in diesen Dimensionen die Konstrukte repräsentiert sind, die der Fragebogenerstellung zugrunde lagen. Theoretisch wurden neun Dimensionen angenommen (s. Kapitel 4.4.2 zu den zugrunde gelegten Konstrukten).

Im Folgenden wurde daher eine Faktorenanalyse (promax-rotierte Hauptkomponenten-Analyse, s. Kapitel 4.4.4.2) durchgeführt, bei der fünf Komponenten extrahiert wurden. In Tabelle 7 sind die Ladungen aller 47 Items auf den fünf Faktoren wiedergegeben.

Tabelle 7

Faktorladungen auf der Basis einer promax-rotierten Hauptkomponenten-Analyse, fünffaktorielle Lösung

<table>
<thead>
<tr>
<th>Item</th>
<th>Komponente 1</th>
<th>Komponente 2</th>
<th>Komponente 3</th>
<th>Komponente 4</th>
<th>Komponente 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>sig14</td>
<td>Es kommt darauf an, dass die Schüler selbst Erklärungen für ein Naturphänomen suchen, auch wenn diese nicht sachlich korrekt sind.</td>
<td>.737</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig13</td>
<td>Der Lehrer sollte den Kindern viel Zeit einräumen, eigene Deutungen für ein Naturphänomen zu suchen, auch wenn diese fachlich nicht richtig sind.</td>
<td>.692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>die (c)</td>
<td>Die Themen im nat. SU sind für Diskussionen unter den Kindern eher ungeeignet.</td>
<td>.585</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig6</td>
<td>Wenn Kinder im nat. SU ihre eigenen Formulierungen verweigern, können sie Naturphänomene besser verstehen.</td>
<td>.582</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig10</td>
<td>Lehrer sollten Schüler, die Probleme mit der Deutung eines Phänomens haben, Zeit für ihre eigenen Deutungsvorschläge lassen.</td>
<td>.561</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>die10</td>
<td>Die Kinder sollten auch dann [...] ihre Vorstellungen untereinander diskutieren, wenn [...] einige Kinder falsche Deutungen [...] haben.</td>
<td>.559</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig11</td>
<td>Man sollte den Schülern ermöglichen, sich erst ihre eigenen Deutungen zu sichern, bevor der Lehrer Hilfen gibt.</td>
<td>.550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>die9</td>
<td>Im nat. SU sollten die Kinder aufgefordert werden, ihre Deutungen zu einem Phänomen gegenüber Mitschülern zu vertreten.</td>
<td>.529</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig12 (c)</td>
<td>Das Lernen wird ineffizient, wenn die Kinder im nat. SU eigene Deutungen für Naturphänomene suchen sollen und dabei falsche Vorstellungen entstehen.</td>
<td>.476</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig6</td>
<td>Schüler lernen Naturwissenschaften am besten, indem sie selbst Wege zur Lösung von Problemen suchen.</td>
<td>.461</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>die6</td>
<td>Der Lehrer sollte den Kindern viel Zeit einräumen, eigene Deutungen für ein Naturphänomen zu suchen, auch wenn diese fachlich nicht richtig sind.</td>
<td>.413</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig1</td>
<td>Damit Schüler Naturphänomene verstehen, ist es entscheidend, dass sie ihre eigenen Lösungsideen untereinander diskutieren.</td>
<td>.366</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sch3</td>
<td>Grundschüler können zu naturwissenschaftlichen Phänomenen bisher harmlose Vorstellungen haben, die den Lernprozess erschweren.</td>
<td>.801</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>con12</td>
<td>Wenn Kinder naturwissenschaftliche Inhalte lernen, stehen oft alte Vorstellungen in ständigem Konkurrenz mit neu erworbenen Vorstellungen.</td>
<td>.782</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sch10</td>
<td>Schüler lassen im nat. SU so schnell nicht ab von den Vorstellungen, die sie mit in den Unterricht bringen.</td>
<td>.745</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>con13</td>
<td>Naturwiss. Lernen bedeutet oft, dass sich neue Vorstellungen bei den Kindern erst auf lange Sicht gegen alte Erklärungsmuster durchsetzen.</td>
<td>.740</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>con4</td>
<td>Lernen im nat. SU bedeutet oft ein inneses Ringen (Hindurchziehen) zwischen alten und neuen Vorstellungen über ein Phänomen.</td>
<td>.715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sch4</td>
<td>Grundschüler sollten sich nachhaltig an ein erarbutenes Naturphänomen in der Unterrichtszeit anlehnen.</td>
<td>.533</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>con7</td>
<td>Um das Lernen der Kinder hervorzubringen, sollte der Lehrer sie mit [...] Phänomenen konfrontieren, die den Erwachsenen der Kinder widersprechen.</td>
<td>.405</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>con3</td>
<td>Wenn Kinder mit ihren [...] Erklärungsansätzen zu einem Naturphänomen zufrieden sind, wird das Lernen [...] angemessener Vorstellungen erschwert.</td>
<td>.383</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>con2</td>
<td>Kinder erlernen naturwissenschaftliches Wissen nur, wenn neue Vorstellungen für sie überzeugender sind als ihre alten Vorstellungen.</td>
<td>.718</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tra6</td>
<td>Schwächeren Schülern müssen Naturphänomene erklärt werden.</td>
<td>.718</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>con8</td>
<td>Bevor Kinder selbst Versuche durchführen, sollte der Lehrer ihnen [...] theor. Grundlagen zu dem Naturphänomen vermitteln, das untersucht werden soll.</td>
<td>.697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tra10</td>
<td>Bevor Kinder naturwissenschaftliche Zusammenhänge verstehen können, sollten ihnen grundlegende Begriffe vermittelt werden.</td>
<td>.651</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tra3</td>
<td>Am besten lernt Grundschüler Naturwissenschaften aus Darstellungen und Erklärungen ihrer Lehrperson.</td>
<td>.612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tra7</td>
<td>Damit wirklich alle Schüler ein Naturphänomen vernehmen können, sind Erklärungen durch den Lehrer unerlässlich.</td>
<td>.560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tra9</td>
<td>Das Lernen einer Merksache ist wichtig für das Verstehen eines Phänomens.</td>
<td>.526</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tra1</td>
<td>Schüler der Grundschule benötigen beim Lösen naturwissenschaftlicher Probleme ausführliche Erklärungen, die sie schrittweise begreifen können.</td>
<td>.467</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ans2</td>
<td>Wenn Kinder nicht direkt an Anwendungsbeispielen lernen, haben sie Probleme, das Erlernte auf den Alltag zu übertragen.</td>
<td>.675</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ans7</td>
<td>Themen im nat. SU sollten immer an eine Fragestellung angelehnt werden, die einen direkten Bezug zu Problemen oder Aspekten des alltägl. Lebens hat.</td>
<td>.663</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ans6</td>
<td>Nur wenn für die Kinder die Auseinandersetzung mit einem naturwissenschaftlichen Thema wirklich bedeutam ist, können sie erfolgreich lernen.</td>
<td>.661</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Zuordnung der Items zu den fünf Dimensionen ist recht eindeutig. Nur bei drei Items der fünften Komponente zeigen sich Doppelladungen mit dem Faktor, der die Vorstellung 'Transmission' repräsentiert. Wegen der bereits vorliegenden Befunde, die eine Kovariation von 'praktizistischen' und 'transmissiven' Vorstellungen zeigen (vgl. Kapitel 2.3.2.3), werden diese drei Items auch nicht aus den
Skalen ausgeschlossen.

Das Item con2, das nur eine geringe Ladung auf der zweiten Komponente aufweist (.296), wird ebenfalls nicht entfernt, da auf diese Weise eine bessere Vergleichbarkeit der in dieser Untersuchung gefundenen Ergebnisse mit Befunden aus dem BiQua-Projekt zur Wirksamkeit von Lehrerfortbildungen gewährleistet ist.

Wegen der guten Zuordenbarkeit der angenommenen neun Konstrukte zu den empirisch gefundenen fünf Komponenten und vor dem Hintergrund von Ergebnissen zur diskriminanten Validität der neun Subskalen (s. das noch folgende Kapitel 5.1.1.4) werden im Folgenden nur noch Ergebnisse zu diesen neun Skalen und nicht zu den Skalen, die auf den fünf Hauptkomponenten basieren würden, berichtet. Auch bei den zentralen Analysen der vorliegenden Arbeit zum Zusammenhang von Lehrervorstellungen mit Lernfortschritten der Schüler werden die o.g. neun Skalen zugrunde gelegt. Darauf wird ebenfalls in Kapitel 5.1.1.4 noch etwas näher eingegangen.

5.1.1.2 Interne Validität: Legitimation der Interpretation quantitativer Messwerte

<table>
<thead>
<tr>
<th>Subskalen (Kürzel)</th>
<th>mot</th>
<th>anw</th>
<th>eig</th>
<th>dis</th>
<th>con</th>
<th>sch</th>
<th>tra</th>
<th>lai</th>
<th>pra</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Klasse BIC</td>
<td>2716.15</td>
<td>3707.24</td>
<td>6283.88</td>
<td>2489.95</td>
<td>5140.55</td>
<td>2542.76</td>
<td>5693.22</td>
<td>4048.04</td>
<td>4318.83</td>
</tr>
<tr>
<td>CAIC</td>
<td>2733.15</td>
<td>3728.24</td>
<td>6320.88</td>
<td>2506.95</td>
<td>5165.55</td>
<td>2555.76</td>
<td>5722.22</td>
<td>4074.04</td>
<td>4339.83</td>
</tr>
<tr>
<td>2 Klassen BIC</td>
<td>2735.12</td>
<td>3757.64</td>
<td>6329.38</td>
<td>2531.47</td>
<td>5218.12</td>
<td>2563.01</td>
<td>5779.30</td>
<td>4205.43</td>
<td>4381.01</td>
</tr>
<tr>
<td>CAIC</td>
<td>2770.12</td>
<td>3800.64</td>
<td>6404.38</td>
<td>2566.47</td>
<td>5269.12</td>
<td>2590.01</td>
<td>5838.30</td>
<td>4258.43</td>
<td>4424.01</td>
</tr>
<tr>
<td>3 Klassen BIC</td>
<td>2802.94</td>
<td>3849.49</td>
<td>6476.91</td>
<td>2609.89</td>
<td>5368.37</td>
<td>2609.88</td>
<td>5870.80</td>
<td>4358.45</td>
<td>4495.25</td>
</tr>
<tr>
<td>CAIC</td>
<td>2855.94</td>
<td>3914.49</td>
<td>6589.91</td>
<td>2662.89</td>
<td>5445.37</td>
<td>2650.88</td>
<td>5959.20</td>
<td>4438.45</td>
<td>4560.25</td>
</tr>
<tr>
<td>4 Klassen BIC</td>
<td>2895.41</td>
<td>3966.14</td>
<td>6702.28</td>
<td>2756.87</td>
<td>5426.99</td>
<td>2690.68</td>
<td>6037.10</td>
<td>4534.68</td>
<td>4623.63</td>
</tr>
<tr>
<td>CAIC</td>
<td>2966.41</td>
<td>4056.16</td>
<td>6853.28</td>
<td>2827.87</td>
<td>5529.99</td>
<td>2745.68</td>
<td>6156.10</td>
<td>4641.68</td>
<td>4710.63</td>
</tr>
<tr>
<td>5 Klassen BIC</td>
<td>3039.03</td>
<td>4729.06</td>
<td>6844.83</td>
<td>2812.42</td>
<td>5500.24</td>
<td>2746.95</td>
<td>6196.40</td>
<td>4910.69</td>
<td>4672.15</td>
</tr>
<tr>
<td>CAIC</td>
<td>3128.03</td>
<td>4838.06</td>
<td>7033.83</td>
<td>2901.42</td>
<td>5629.24</td>
<td>2815.95</td>
<td>6345.40</td>
<td>5044.69</td>
<td>4781.15</td>
</tr>
</tbody>
</table>
Es zeigt sich, dass sich das Antwortverhalten der Lehrkräfte in allen neun Skalen besser durch das ein-
dimensionale Partial-Credit-Modell als durch die Partial-Credit-Variante des Mixed-Rasch-Modells mit
zwei bis fünf Klassen beschreiben lässt. Sowohl die Werte des BIC wie auch die des C-AIC führen zu
dem Ergebnis. Die Ergebnisse stützen also die Annahme der Gültigkeit eines quantitativen Testmo-
dells. Die entwickelten Skalen erfassen somit eher quantitative Unterschiede auf je einer latenten Merk-
malsdimension als qualitative Personenunterschiede: Die untersuchten Lehrkräfte bearbeiten die Items
einer Skala aufgrund derselben Eigenschaft (hier Vorstellung zum Lehren und Lernen von Naturwis-
senschaften) und es ist nicht davon auszugehen, dass verschiedene Personengruppen die Items auf-
grund unterschiedlicher Eigenschaften bzw. Fähigkeiten beantworten.

Da die Skalen entwickelt wurden, um bei Grundschullehrkräften quantitative Unterschiede in ver-
schiedenen Vorstellungen zum Lehren und Lernen von Naturwissenschaften zu messen, können diese
Ergebnisse als Hinweis auf interne Validität der Skalen gesehen werden. Wenn die konstruierten Skalen
quantitative Unterschiede auf je einer latenten Merkmalsdimension erfassen, bedeutet das, dass Mittel-
werte oder Summenwerte, die über die Items einer Skala gebildet werden, eine suffiziente Statistik des
zu erfassenden Merkmals darstellen (Rost, 2004). Suffizient meint, dass der Mittel- bzw. Summenwert
alle Informationen über die Merkmalsausprägung der jeweiligen Person liefert, ohne dass das Antwort-
profil der Person betrachtet werden müsste.

5.1.1.3 Zentrale Kennwerte der Items und Skalen

Im vorigen Abschnitt wurde mit Verfahren der probabilistischen Testtheorie gezeigt, dass die entwi-
ckelten Skalen quantitative Unterschiede auf je einer latenten Merkmalsdimension erfassen. In diesem
Fall stellen Mittelwerte oder Summenwerte, die über die Items einer Skala gebildet werden, eine suffizi-
ente Statistik des zu erfassenden Merkmals dar. Die Qualität von Items und Skalen kann dann mit Ver-
fahren der klassischen Testtheorie analysiert werden (vgl. Rost, 2004). In diesem Abschnitt werden zen-
trale Kennwerte der konstruierten Items und Skalen im Sinne der klassischen Testtheorie berichtet.

In Tabelle 9 sind Skalenmittelwerte und -standardabweichungen sowie Mittelwerte und Standard-
abweichungen der Items als Maß für deren Schwierigkeit und Streuung, korrigierte Item-Skalenwert-
Korrelationen als Maß für die Trennschärfe der Items und schließlich interne Konsistenzen (Cronbachs
Alpha) als Maß für die Reliabilität der Skalenwerte angegeben.
Tabelle 9
Zentrale Kennwerte der Items und Skalen: Anzahl der Items pro Skala, Mittelwerte und Standardabweichungen der Skalen und Items, Item-Skalenwert-Korrelationen und interne Konsistenzen der Skalen (Cronbachs Alpha)

<table>
<thead>
<tr>
<th>Skala</th>
<th>N_{Items}</th>
<th>M_{Skala}</th>
<th>SD_{Skala}</th>
<th>M_{Items} (min.-max.)</th>
<th>SD_{Items} (min.-max.)</th>
<th>r_{it} (min.-max.)</th>
<th>Cronbachs Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motiviertes Lernen (mot)</td>
<td>4</td>
<td>3.14</td>
<td>.58</td>
<td>2.93 - 3.51</td>
<td>.63 - 1.10</td>
<td>.38 - .55</td>
<td>.69</td>
</tr>
<tr>
<td>Anwendungsbezogenes Lernen (anw)</td>
<td>5</td>
<td>3.06</td>
<td>.61</td>
<td>2.91 - 3.23</td>
<td>.80 - .90</td>
<td>.39 - .71</td>
<td>.77</td>
</tr>
<tr>
<td>Entwicklung eigener Deutungen (eig)</td>
<td>8</td>
<td>3.12</td>
<td>.54</td>
<td>2.53 - 3.56</td>
<td>.59 - 1.16</td>
<td>.35 - .60</td>
<td>.79</td>
</tr>
<tr>
<td>Diskussion von Schülervorstellungen (dis)</td>
<td>4</td>
<td>3.51</td>
<td>.51</td>
<td>3.49 - 3.61</td>
<td>.62 - .86</td>
<td>.39 - .51</td>
<td>.67</td>
</tr>
<tr>
<td>Conceptual Change (con)</td>
<td>6</td>
<td>2.89</td>
<td>.69</td>
<td>2.62 - 3.33</td>
<td>.85 - 1.08</td>
<td>.45 - .74</td>
<td>.84</td>
</tr>
<tr>
<td>Schülervorstellungen (sch)</td>
<td>3</td>
<td>2.53</td>
<td>.75</td>
<td>2.16 - 2.91</td>
<td>1.01 - 1.11</td>
<td>.69 - .79</td>
<td>.87</td>
</tr>
<tr>
<td>Laisser-faire (läi)</td>
<td>5</td>
<td>1.63</td>
<td>.63</td>
<td>1.04 - 2.20</td>
<td>.75 - 1.06</td>
<td>.38 - .63</td>
<td>.74</td>
</tr>
<tr>
<td>Praktizismus (pra)</td>
<td>5</td>
<td>1.99</td>
<td>.68</td>
<td>1.31 - 2.86</td>
<td>.90 - 1.14</td>
<td>.44 - .65</td>
<td>.75</td>
</tr>
<tr>
<td>Transmission (tra)</td>
<td>7</td>
<td>1.11</td>
<td>.63</td>
<td>.59 - 1.96</td>
<td>.58 - .97</td>
<td>.41 - .57</td>
<td>.77</td>
</tr>
</tbody>
</table>

Anm. Kodierung der Antworten von 0 ('stimmt überhaupt nicht') bis 4 ('stimmt völlig')

Die Ergebnisse der Analyse der Itemschwierigkeiten zeigt, dass bei einigen Items Deckeneffekte vorliegen. Dies betrifft die Items der Skala 'Diskussion von Schülervorstellungen' sowie je ein Item der Skalen 'Motiviertes Lernen' (mot9) und 'Entwicklung eigener Deutungen' (eig8). Ein Deckeneffekt spiegelt sich daher auch im Mittelwert der Skala 'Diskussion von Schülervorstellungen' wider. Entsprechend ist die Streuung bei den Items dieser Skala relativ gering.

Die Trennschärften der Items liegen durchweg über .35 und können daher als zufriedenstellend angesehen werden. Die internen Konsistenzen der Skalen sind ebenfalls als zufriedenstellend zu bewerten. Es kann somit von einer hinreichenden Reliabilität der Messwerte ausgegangen werden.

5.1.1.4 Konstruktvalidität

In diesem Abschnitt werden Ergebnisse der Prüfung der Konstruktvalidität der konstruierten Skalen beschrieben, also Ergebnisse der Prüfung, ob die Skalen auch die Merkmale (hier verschiedene Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften) messen, die sie messen sollen.

Erste Evidenz für Konstruktvalidität der Skalen liefern die zuvor berichteten Ergebnisse der Faktorenanalyse. Es konnte gezeigt werden, dass sich die angenommenen neun Konstrukte empirisch mittels Faktorenanalysen rekonstruieren lassen. Die theoretisch erwarteten Konstrukte scheinen sich also auch im Antwortverhalten der Lehrkräfte widerspiegeln. Allerdings bilden sich nicht alle angenommenen Konstrukte auf separaten Faktoren ab. Dies stellt einen Hinweis auf mangelnde diskriminante Validität der Subskalen dar, die auf einem gemeinsamen Faktor laden. Auf die Frage der diskriminanten Validität wird im Folgenden noch etwas näher eingegangen. Da es sich bei den berichteten Faktorenanalysen um exploratorische und nicht um konfirmatorische Faktorenanalysen handelt, ist die Tragfähigkeit der Schlüsse auf Konstruktvalidität jedoch eingeschränkt.

Im Folgenden werden etwas ausführlicher Ergebnisse zur Prüfung der Konstruktvalidität dargestellt, die auf einem Multitrait-Multimethod-Ansatz (MTMM) basieren. Dabei werden die getroffenen
Annahmen (s. Kapitel 4.4.4.5) zu den vier Blöcken der MTMM-Matrix schrittweise überprüft, um so Aussagen über die konvergente und diskriminante Validität als Aspekte der Konstruktvalidität der entwickelten Skalen machen zu können.

➔ **Monotrait-Heteromethod-Block:** Hier werden zunächst Korrelationen der Werte der Fragebogenskalen mit den mittels Interviews erfassten Werten zu den entsprechenden Konstrukten herangezogen (Werte auf der Diagonale in Tabelle 10). Erwartet wurden substanzielle Korrelationen zwischen den (theoretisch) korrespondierenden Fragebogenskalen und Interview-Kategorien. Substanzielle Korrelationen können dann als Hinweis auf konvergente Validität der jeweiligen Fragebogenskalen interpretiert werden.

<table>
<thead>
<tr>
<th>Interview-Kategorien</th>
<th>Likert-Skalen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation als Voraussetzung für Lernen</td>
<td>mot</td>
</tr>
<tr>
<td>Anwendungsbezogenes Lernen</td>
<td>-.130</td>
</tr>
<tr>
<td>Schüler sollten eigene Deutungen von Naturphänomenen entwickeln</td>
<td>-.050</td>
</tr>
<tr>
<td>Schüler sollten ihre Vorstellungen diskutieren</td>
<td>-.192</td>
</tr>
<tr>
<td>Lehren und Lernen im Sinne von Conceptual Change</td>
<td>.235</td>
</tr>
<tr>
<td>Schüler mit Vorstellungen im Sinne von Prämkonzepten</td>
<td>-.089</td>
</tr>
<tr>
<td>Transmission</td>
<td>-.013</td>
</tr>
<tr>
<td>Notwendigkeit von prozessbezogenen Hilfestellungen</td>
<td>.140</td>
</tr>
<tr>
<td>Ablehnung Praktizismus</td>
<td>.048</td>
</tr>
<tr>
<td>Anm. Korrelationen des Monotrait-Heteromethod-Blocks (Diagonale) sind türkis markiert. Signifikante, nicht auf der Diagonalen liegende Korrelationen sind grau unterlegt.</td>
<td></td>
</tr>
<tr>
<td>† p<.10; * p<.05; ** p<.01</td>
<td></td>
</tr>
</tbody>
</table>

Bei den Skalen 'Motiviertes Lernen', 'Conceptual Change', 'Schülervorstellungen' und 'Praktizismus' sprechen die Ergebnisse für konvergente Validität der Skalen.

➔ Heterotrait-Heteromethod-Block: In Tabelle 10 sind Korrelationen der neun Subskalen mit Kategorien der Interview-Analyse angegeben. Für die Heterotrait-Heteromethod-Analysen werden nun die Korrelationen der theoretisch nicht direkt korrespondierenden Merkmale herangezogen (Werte unter- und oberhalb der Diagonale). In Tabelle 11 werden des Weiteren die Korrelation der Skala 'Schülervorstellungen' mit einer Interview-Kategorie angegeben, die ein unspezifisches, eher quantitatives Verständnis des Vorwissens der Schüler erfasst, sowie die Korrelation der Skala 'Praktizismus' mit einer Interview-Kategorie, die die Vorstellung erfasst, dass handelndes Lernen für Schüler im Grundschulalter bedeutsam ist, aber keine hinreichende Bedingung für verständnisvolles Lernen der Schüler darstellt. (Bei dieser Lehrervorstellung sollte es sich also um keinen 'naiven Konstruktivismus' handeln.) Es wurde erwartet, dass im Heterotrait-Heteromethod-Block keine substanziellen Korrelationen vorliegen. Nicht substanzielle Korrelationen können als Hinweis auf diskriminante Validität der jeweiligen Fragebogenskala interpretiert werden.

Vergleicht man die in Tabelle 10 angegebenen Monotrait-Heteromethod-Korrelationen (Werte auf der Diagonale) mit den Heterotrait-Heteromethod-Korrelationen, so zeigt sich, dass im Falle der Skalen 'Motiviertes Lernen', 'Conceptual Change', 'Schülervorstellungen', 'Laisser-faire' und 'Praktizismus' erwartungsgemäß die höchsten Korrelationen in der Diagonalen liegen. Etwas eingeschränkt gilt dies
Ergebnisse

Tabelle 11
Heterotrait-Heteromethod-Matrix 2: Korrelation der Skalen 'Schülervorstellungen' (sch) und 'Praktizismus' (pra) mit zwei zusätzlichen Interview-Kategorien

<table>
<thead>
<tr>
<th>Interview-Kategorien</th>
<th>sch</th>
<th>pra</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Quantitatives' oder unspezifisches Verständnis des Vorwissens der Schüler (Interview-Kategorie)</td>
<td>.025</td>
<td></td>
</tr>
<tr>
<td>Betonung der Bedeutung von 'hands-on'-Erfahrungen (Interview-Kategorie)</td>
<td></td>
<td>.041</td>
</tr>
</tbody>
</table>

† p < .10; * p < .05; ** p < .01

Die in Tabelle 11 berichteten (Null-)Korrelationen weisen darauf hin, dass die Skala 'Schülervorstellungen' nicht ein 'quantitatives' oder unspezifisches Verständnis des Vorwissens der Schüler erfasst und dass die Skala 'Praktizismus' nicht die 'reine' Betonung der Bedeutung von 'hands-on'-Erfahrungen misst, was keinen 'naiven Konstruktivismus' darstellen würde. Die gefundenen Korrelationen sprechen also für diskriminante Validität der genannten beiden Skalen im Hinblick auf die mit den Interview-Kategorien erfassten verwandten Konstrukte.

Tabelle 12
Heterotrait-Monomethod- und Monotrait-Monomethod-Block: Inter-Korrelationen und interne Konsistenzen der neun Subskalen

<table>
<thead>
<tr>
<th></th>
<th>mot</th>
<th>anw</th>
<th>eig</th>
<th>dis</th>
<th>con</th>
<th>sch</th>
<th>tra</th>
<th>lai</th>
<th>pra</th>
</tr>
</thead>
<tbody>
<tr>
<td>mot</td>
<td>.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anw</td>
<td>.410**</td>
<td>.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eig</td>
<td>.152</td>
<td>.300*</td>
<td>.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dis</td>
<td>.136</td>
<td>.161</td>
<td>.589**</td>
<td>.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>con</td>
<td>.333*</td>
<td>.188</td>
<td>.113</td>
<td>.251</td>
<td>.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sch</td>
<td>.271</td>
<td>-.081</td>
<td>.033</td>
<td>.031</td>
<td>.733**</td>
<td>.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tra</td>
<td>-.238</td>
<td>-.091</td>
<td>-.206</td>
<td>-.371*</td>
<td>-.487**</td>
<td>-.256</td>
<td>.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lai</td>
<td>-.235</td>
<td>.125</td>
<td>.422**</td>
<td>.225</td>
<td>-.133</td>
<td>-.314*</td>
<td>-.222</td>
<td>.74</td>
<td></td>
</tr>
<tr>
<td>pra</td>
<td>-.075</td>
<td>.181</td>
<td>.429*</td>
<td>.082</td>
<td>-.394**</td>
<td>-.414*</td>
<td>.183</td>
<td>.408**</td>
<td>.75</td>
</tr>
</tbody>
</table>

Anm. Monotrait-Monomethod-Diagonale: Statt der Autokorrelationen sind interne Konsistenzen der Skalen (Cronbachs Alpha, gerundet auf zwei Nach-Komma-Stellen) angegeben; farbige Hervorhebungen im Text erläutert

† p < .10; * p < .05; ** p < .01

Neben den Korrelationen der Skalen innerhalb einer der fünf Hauptkomponenten zeigen sich aber auch substantielle Kovarianzen zwischen Skalen, die auf verschiedenen Hauptkomponenten liegen (türkis markiert). So korreliert die Skala 'Entwicklung eigener Deutungen' positiv mit der Skala 'Anwendungsbezogenes Lernen' sowie die Skala 'Diskussion von Schülervorstellungen' negativ mit der Skala 'Transmission'. Außerdem finden sich negative Korrelationen der Skalen 'Conceptual Change' und 'Schülervorstellungen' mit den Skalen 'Transmission', 'Laisser-faire' und 'Praktizismus'. Gemein ist diesen Kovarianzen, dass sie zwar einen Hinweis auf eingeschränkte diskriminante Validität der Skalen geben, aber davon abgesehen konsistent sind mit den Erwartungen bzgl. der Relevanz der entsprechenden Lehrervorstellungen für ein verständnisvolles Lernen der Schüler.

Auf gewichtigere Probleme der diskriminanten Validität weisen die positiven Korrelationen der Skala 'Entwicklung eigener Deutungen' mit den Skalen 'Laisser-faire' und 'Praktizismus' hin (orange markiert). Diese Kovarianz ist in den theoretisch angenommenen Konstrukten nicht intendiert. Da vor dem Hintergrund der zuvor berichteten Ergebnisse die konvergente Validität der Skalen 'Praktizismus' und 'Laisser-faire' höher einzuschätzen ist als die der Skala 'Entwicklung eigener Deutungen', scheint hier eine Konstruk-Unschärfe der Skala 'Entwicklung eigener Deutungen' vorzuliegen, die zu Überschneidungen mit den Konstrukten 'Praktizismus' und 'Laisser-faire' führt.

5.1.2 Ergebnisse der Analysen des Schülerleistungstests

Zur Erfassung des konzeptuellen Verständnisses der Schüler von 'Schwimmen und Sinken' wurde, wie in Kapitel 4.5 beschrieben, ein Test eingesetzt, der im Rahmen der ersten Zwei-Jahres-Phase des o.g. BiQua-Projekts entwickelt worden war und für die Zwecke der in der zweiten und dritten BiQua-Phase

In diesem Abschnitt werden als zentrale Kennwerte im Sinne der klassischen Testtheorie Schwierigkeiten der Items im ICU-Summenwert sowie interne Konsistenzen der drei Summenwerte ICU, PHY und FV berichtet. Außerdem werden die Inter-Korrelationen der drei Summenwerte angegeben. Da in den ICU-Wert sowohl die Ablehnung von Fehlvorstellungen als auch die Annahme von physikalische Vorkonzepte eingehen, scheint es notwendig zu prüfen, ob die Erfassung der drei Summenwerte nicht redundant ist.

Die in Tabelle 13 angegebenen Schwierigkeitsindizes für die Items im Vor- und Nachtest sind als prozentualer Anteil der Schüler zu lesen, die das jeweilige Item gelöst haben. Somit handelt es sich eigentlich um einen 'Leichtigkeitsindex', da hohe Werte leichte Items anzeigen. Auf die Vornahme einer Korrektur um die Ratewahrscheinlichkeit des jeweiligen Items wurde verzichtet, um die Werte besser 'lesbar' zu erhalten. Statt dessen wird die Ratewahrscheinlichkeit separat angegeben. Sie ist mit 100 multipliziert, um die gleiche Metrik wie die des Schwierigkeitsindexes zu erhalten.

<table>
<thead>
<tr>
<th>Item</th>
<th>Ratewahrscheinlichkeit x 100</th>
<th>Schwierigkeits-index Vor-</th>
<th>Schwierigkeits-index Nach-</th>
<th>Item</th>
<th>Ratewahrscheinlichkeit x 100</th>
<th>Schwierigkeits-index Vor-</th>
<th>Schwierigkeits-index Nach-</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>1.6</td>
<td>8.3</td>
<td>28.3</td>
<td>5.3</td>
<td>25.0</td>
<td>49.9</td>
<td>68.7</td>
</tr>
<tr>
<td>2.2</td>
<td>1.6</td>
<td>2.3</td>
<td>15.4</td>
<td>6.1</td>
<td>50.0</td>
<td>44.3</td>
<td>72.7</td>
</tr>
<tr>
<td>2.3</td>
<td>1.6</td>
<td>5.0</td>
<td>26.9</td>
<td>6.2</td>
<td>50.0</td>
<td>38.5</td>
<td>68.5</td>
</tr>
<tr>
<td>2.4</td>
<td>1.6</td>
<td>2.8</td>
<td>25.9</td>
<td>6.4</td>
<td>50.0</td>
<td>55.9</td>
<td>81.3</td>
</tr>
<tr>
<td>3 (gesamt)</td>
<td>3.1</td>
<td>20.0</td>
<td>72.5</td>
<td>7.2</td>
<td>50.0</td>
<td>32.0</td>
<td>65.0</td>
</tr>
<tr>
<td>4.1</td>
<td>-</td>
<td>28.3</td>
<td>60.4</td>
<td>8.2</td>
<td>20.0</td>
<td>27.4</td>
<td>42.9</td>
</tr>
<tr>
<td>4.2</td>
<td>-</td>
<td>44.9</td>
<td>66.4</td>
<td>9.1</td>
<td>6.3</td>
<td>35.8</td>
<td>61.6</td>
</tr>
<tr>
<td>4.3</td>
<td>-</td>
<td>24.3</td>
<td>58.0</td>
<td>9.2</td>
<td>6.3</td>
<td>8.6</td>
<td>23.4</td>
</tr>
<tr>
<td>5.1</td>
<td>25.0</td>
<td>27.9</td>
<td>62.0</td>
<td>10 ('offen')</td>
<td>-</td>
<td>6.4</td>
<td>50.1</td>
</tr>
<tr>
<td>5.2</td>
<td>25.0</td>
<td>63.0</td>
<td>75.8</td>
<td>11 ('offen')</td>
<td>-</td>
<td>1.5</td>
<td>25.6</td>
</tr>
</tbody>
</table>

Die Analysen zeigen, dass viele Aufgaben im Vortest sehr schwierig sind (Items 2.1 - 2.4, 5.1, 6.1, 6.2, 6.4, 7.2, 8.2, 9.2). Der Anteil der korrekten Aufgabenlösungen liegt hier nahe bei dem Anteil, der durch Raten, also rein zufälliges Wählen der Alternativen (ohne die Anwendung spezieller Ratestrategien), erzielt worden wäre. Bei den Aufgaben 6 und 7 liegt der Anteil der korrekten Aufgabenlösungen sogar unter dem Anteil, der durch Raten erreicht worden wäre. Dies ist vermutlich maßgeblich auf die Vorgabe von typischen Fehlvorstellungen zurückzuführen, die den Schülern als korrekte Antworten offensichtlich plausibel erscheinen. Mit den hohen Itemschwierigkeiten im Vortest geht auch eine geringe
Differenzierung im unteren Fähigkeitsbereich einher. Im Nachtest streuen die Schwierigkeitsindizes deutlich besser, auch wenn hier ebenfalls leichte Items fehlen.

In den Indizes spiegeln sich außerdem die Lernfortschritte der Schüler vom Vor- zum Nachtest wider. Dabei zeigen sich bei einigen Items nur relativ geringe Veränderungen im Anteil der Schüler, die das Item lösen (z.B. Item 5.2), wohingegen bei anderen Items deutliche Veränderungen in den Indizes festzustellen sind (z.B. Aufgabe 10).

Aus den hohen Itemschwierigkeiten insbesondere im Vortest ergeben sich auch Konsequenzen für die internen Konsistenzen des ICU-Summenwertes, da extreme Itemschwierigkeiten (leicht oder schwer) i.d.R. zu verringrigerter Homogenität (geringe Inter-Korrelationen der Items) führen.

Tabelle 14
Interne Konsistenzen (Cronbachs Alpha) der drei Summenwerte ICU, PHY und FV

<table>
<thead>
<tr>
<th>Summenwert</th>
<th>Anzahl Items</th>
<th>Cronbachs Alpha Vortest</th>
<th>Cronbachs Alpha Nachtest</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU-Wert</td>
<td>20</td>
<td>.73</td>
<td>.81</td>
</tr>
<tr>
<td>PHY-Wert</td>
<td>12</td>
<td>.52</td>
<td>.68</td>
</tr>
<tr>
<td>FV-Wert</td>
<td>16</td>
<td>.67</td>
<td>.75</td>
</tr>
</tbody>
</table>

Anm. Die Werte basieren auf einem N = 932

Die interne Konsistenz des ICU-Summenwertes (s. Tabelle 14) ist dennoch zufriedenstellend, wenn auch im Vortest für die Anzahl der Items nicht besonders hoch. Beim Summenwert zu den physikalischen (Vor-)Konzepten zeigt sich im Vortest nur ein sehr niedriger Cronbachs Alpha-Wert, der aber für die vorgesehenen Analysen (Adjustierung der Nachtest-Leistung der Schüler) noch als ausreichend angesehen wird. Beim Summenwert zu Fehlvorstellungen sind die internen Konsistenzen im Vor- und Nachtest zufriedenstellend, wenn auch für die Testlänge ebenfalls nicht besonders hoch.

Tabelle 15
Korrelationen der drei Summenwerte ICU, PHY und FV

<table>
<thead>
<tr>
<th></th>
<th>ICU Vortest</th>
<th>PHY Vortest</th>
<th>ICU Nachtest</th>
<th>PHY Nachtest</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY Vortest</td>
<td>.370**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FV Vortest</td>
<td>-.442**</td>
<td>-.195**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY Nachtest</td>
<td></td>
<td>.718**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FV Nachtest</td>
<td></td>
<td>-.652**</td>
<td>-.435**</td>
<td></td>
</tr>
</tbody>
</table>

Anm. Werte basieren auf einem N = 932
† p<.10; * p<.05; ** p<.01

Die Inter-Korrelationen der drei Summenwerte zeigen, dass die zusätzliche separate Erfassung von Fehlvorstellungen und physikalischen (Vor-)Konzepten nicht redundant ist. Die Korrelationen des FV- und des PHY-Wertes mit dem ICU-Wert sind zwar mit .718 und -.652 im Nachtest relativ hoch, doch
spricht der entsprechende Anteil gemeinsamer Varianz von 52% bzw. 43% dafür, dass eigenständige Fähigkeiten erfasst werden. Die Korrelationen zwischen FV- und PHY-Wert sind im Vor- wie im Nachtest die geringsten. Dies ist aus der Definition der Konstrukte heraus also zu erwarten, da bei diesen beiden Werten keine Überschneidungen der entsprechenden Konstrukte vorliegen, wie dies mit dem Konstrukt des integrierten konzeptuellen Verständnisses der Fall ist. Aber auch aus lerntheoretischer Sicht scheint plausibel, dass der FV- und der PHY-Wert nicht zu hoch korrelieren, da der Erwerb wissenschaftsnaher Vorstellungen und der Abbau bzw. das Beibehalten von Fehlvorstellungen als zumindest zu einem gewissen Grad unabhängige Prozesse gesehen werden können.

5.1.3 Zusammenfassung der Ergebnisse der Testanalysen

Die Ergebnisse der Faktorenanalysen zur Dimensionalität der erfassten Vorstellungen zum Lehren und Lernen zeigen, dass zwar nicht, wie theoretisch angenommen, neun latente Dimensionen von Vorstellungen zum Lehren und Lernen von Naturwissenschaften identifiziert werden können, dass sich jedoch in den gefundenen fünf Hauptkomponenten die erwarteten neun Konstrukte als Facetten der Hauptkomponenten recht gut widerspiegeln. Die die neun angenommenen Konstrukte erfassenden Skalen werden für die weiteren Analysen zugrunde gelegt.

Anhand von Analysen, die auf der probabilistischen Testtheorie basieren, wurde geprüft, ob, wie erwartet, allen neun Skalen ein quantitatives Testmodell zugrunde liegt, was als Hinweis auf interne Validität der Skalen gesehen werden kann. Die Ergebnisse der Vergleiche von eindimensionalen Rasch-Modellen (hier Partial-Credit-Modelle) mit klassifizierenden Mixed-Rasch-Modellen bestätigten die Annahme der Gültigkeit eines quantifizierenden Testmodells in allen neun Skalen. Die Gültigkeit eines Modells aus der Gruppe der (eindimensionalen) Rasch-Modelle legitimiert die Interpretation von Mittel- oder Summenwerten als suffiziente Statistik für die Merkmalsausprägung einer Person.

Weitergehende Analysen im Sinne der Klassischen Testtheorie ergaben, dass, abgesehen von einem Deckeneffekt in der Skala 'Diskussion von Schülervorstellungen', die Kennwerte (Mittelwerte, Standardabweichungen und Trennschärfen der Items sowie Mittelwerte, Standardabweichungen und interne Konsistenzen der Skalenwerte) auf eine zufriedenstellende Güte der entwickelten Items und Skalen hinsichtlich der berichteten Kriterien hinweisen.

Bei den Heteromethod-Heterotrait-Korrelationen zeigen sich erwartungskonform fast durchgängig keine substanziellen Zusammenhänge. Ein Vergleich der Monotrait-Heteromethod-Korrelationen mit

8 Die Korrelationen sind natürlich durch die Messfehler der Summenwerte verdünnt. Dennoch scheinen die Korrelationen hinreichend gering, um von eigenständigen Fähigkeiten zu sprechen. Die geringeren Reliabilitäten der Summenwerte im Vortest können dazu beitragen, dass die Korrelationen im Vortest geringer sind als im Nachtest.
den Heterotrait-Heteromethod-Korrelationen ergibt, dass im Falle der Skalen 'Motiviertes Lernen', 'Conceptual Change', 'Schülersvorstellungen', 'Laisser-faire' und 'Praktizismus' erwartungsgemäß die höchsten Korrelationen in der Diagonalen liegen. Etwas eingeschränkt gilt dies auch noch für die Skala 'Entwicklung eigener Deutungen'. Bei den Skalen 'Schülersvorstellungen' und 'Praktizismus' konnte außerdem gezeigt werden, dass sie, wie theoretisch gefordert, nicht die Konstrukte 'Quantitatives oder unspezifisches Verständnis des Vorwissens der Schüler' bzw. 'Betonung der Bedeutung von 'hands-on'-Erfahrungen' erfassen.

In den Heterotrait-Monomethod-Analysen zeigte sich, dass die diskriminante Validität der Skalen untereinander z.T. eher gering ausfällt. In die gefundenen Korrelationen geht jedoch neben der gemeinsamen Trait-Varianz, die auf geringe diskriminante Validität hinweist, vermutlich auch gemeinsame Methoden-Varianz ein. Die Inter-Korrelationen der Skalen sind jedoch nicht so hoch, dass von identischen erfassten Traits auszugehen wäre. Dies gilt auch für die Skalen, die auf einer gemeinsamen Hauptkomponente liegen. Es scheint daher sinnvoll, die auf den theoretischen Konstrukten basierenden neun Skalen in den weiteren Analysen auch getrennt zu berücksichtigen. Bei der Skala 'Entwicklung eigener Deutungen' scheinen Probleme der diskriminanten Validität vorzuliegen. Dies zeigt sich an substanziellen erwartungswidrigen Korrelationen mit den Skalen 'Praktizismus' und 'Laisser-faire'.

5.2 Ergebnisse der Analysen zum Zusammenhang von Vorstellungen von Lehrkräften zum Lehren und Lernen mit Lernfortschritten der Schüler

In diesem Kapitel werden die zentralen Befunde der vorliegenden Arbeit zu Zusammenhängen der Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften mit Lern-

5.2.1 Varianz in den Lernzuwächsen zwischen Klassen

Abbildung 10: Klassenmittelwerte (+/- eine Standardabweichung) der Lernzuwächse basierend auf dem ICU-Summenwert; unstandardisierte Werte; max. Punktwert = 30; die horizontale Linie deutet den durchschnittlichen Lernzuwachs aller Schüler an.
Schon 'augenscheinlich' zeigt sich eine große Variation der durchschnittlichen Lernfortschritte in den Klassen. Die mittleren Lernzuwächse reichen von ca. zwei bis ca. 16 Punkten im ICU-Summenwert, der maximal 30 Punkte erreichen kann. Auch unterscheiden sich die Klassen anscheinend in der Streuung der Lernzuwächse.

Es zeigt sich, dass die klassenspezifische Varianzkomponente u_{0j} signifikant von Null verschieden ist (Chi-Quadrat = 346.94861; df = 45). D.h. die Klassen unterscheiden sich signifikant in der um die Vortest-Leistung, das Alter und das Geschlecht der Schüler adjustierten Leistung im Nachtest zum Verständnis von 'Schwimmen und Sinken'. Es kann daher auch von Unterschieden der Klassen in den um Alter und Geschlecht adjustierten Lernfortschritten der Schüler gesprochen werden (vgl. Kapitel 4.7.1).

5.2.2 Zusammenhänge von Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften mit Lernfortschritten der Schüler

In diesem Kapitel werden die zentralen Befunde der vorliegenden Arbeit dargestellt. Zuerst wird auf Ergebnisse zum Zusammenhang der erfassten Lehrervorstellungen mit Fortschritten der Schüler im integrierten konzeptuellen Verständnis von 'Schwimmen und Sinken' (basierend auf dem ICU-Summenwert) eingegangen. Anschließend werden vertiefende Analysen zu Zusammenhängen der Lehrervorstell-
lungen mit dem Abbau von Fehlvorstellungen und mit dem Erwerb physikalischer (Vor-)Konzepte be-
richtet. Schließlich wird auf Befunde zu differenziellen Zusammenhängen der Lehrervorstellungen mit
Lernfortschritten der Schüler in Abhängigkeit von individuellen (Lern-)Voraussetzungen der Schüler
ingegangen.

5.2.2.1 Zusammenhänge von Lehrervorstellungen mit Fortschritten im integrierten
konzeptuellen Verständnis von 'Schwimmen und Sinken' bei Schülern

In der folgenden Tabelle 16 sind die Gamma-Koeffizienten (s. Kapitel 4.7.1) aus Mehrebenenanalysen
wiedergegeben. Da alle metrischen Variablen z-standardisiert wurden (s. Kapitel 4.7.1) können diese
Koeffizienten wie standardisierte Beta-Koeffizienten in der klassischen Regressionsanalyse interpretiert
werden. Abhängige Variable ist das integrierte konzeptuelle Verständnis von 'Schwimmen und Sinken'
(ICU-Wert), das die Schüler im Nachtest erreicht haben. Dieses wird auf Individualebene durch das Al-
ter, das Geschlecht und den ICU-Wert im Vortest vorhergesagt, auf Klassenebene durch die in Kapitel
4.7.2 beschriebenen Kontrollvariablen sowie die Vorstellungen der Lehrkräfte zum Lehren und Lernen
von Naturwissenschaften (eine der neun Skalen je Mehrebenenmodell: Modelle 1-9).9 Durch die Adju-
tierung der Nachtest-Leistung der Schüler um die Vortest-Leistung können die Prädiktoren auf Kla-
ssenebene als Regressoren der Lernfortschritte der Schüler (im konzeptuellen Verständnis von 'Schwimmen
und Sinken') interpretiert werden.

Zur Beschreibung der Größe von Effekten bei Befunden aus Mehrebenenanalysen hat sich eta-
bliert, den Anteil aufgeklärter Varianz, die Intraklassen-Korrelation sowie die (Gamma-)Koeffizienten
selbst heranzuziehen (Tymms, 2004). Die Intraklassen-Korrelation wurde bereits im vorigen Kapitel
berichtet. Das in den folgenden Ergebnistabellen angegebene R^2 gibt den Anteil der zwischen den Klas-
sen liegenden Varianz in den adjustierten Lernfortschritten der Schüler wieder, der durch die in das ja-
weilige Modell eingefügten Prädiktoren auf Klassenebene aufgeklärt wird. Da dieser Anteil aufgeklärter
Varianz noch nichts über die spezielle Größe des 'Effekts'10 der Vorstellungen der Lehrkräfte zum Lei-
ren und Lernen aussagt, wurde zunächst ein Modell (Modell 0; im Folgenden auch als 'Null-Modell' be-
zeichnet; s. Tabelle 16) spezifiziert, das sämtliche Kontrollvariablen enthält, aber keine der Vorstellun-
gen zum Lehren und Lernen. Anschließend wurde ermittelt, welcher Anteil der zwischen den Klassen
liegenden Varianz in den adjustierten Lernfortschritten zusätzlich erklärt wird, wenn eine der Vorstel-
lungen zum Lehren und Lernen in das Modell eingefügt wird. Dieser zusätzlich erklärte Varianzanteil

9 In diesen wie in allen Analysen der Kapitel 5.2.2.1 und 5.2.2.2 wurden die β_{1j} und die β_{2j}-Koeffizienten (hier
klassenspezifische Steigungsparameter für 'Alter' und 'Vortestleistung') als sog. feste Effekte (vgl. Ditton, 1998,
S. 64-66) modelliert. D.h. es wurde in den entsprechenden Modellen nicht zugelassen, dass die Zusammenhänge des
Alters der Schüler und der Vortestleistung mit dem erreichten Verständnis von 'Schwimmen und Sinken'
klassenspezifisch variieren. Dies geschah vor dem Hintergrund von Ergebnissen, die zeigen, dass keine signifikante
 Variation in diesen Parametern vorliegt. Diese Ergebnisse werden erst im noch folgenden Kapitel 5.2.2.3 berichtet.
Durch das Fixieren der Effekte wird erreicht, dass zwei Parameter weniger zu schätzen sind, was zu stabileren
Schätzungen der (anderen) Parameter beitragen kann.

10 Wenn hier und im Folgenden von 'Effekten' oder auch von 'Prädiktoren' und der Nachtest-Leistung als 'abhängige
Variable' bzw. 'Kriterium' gesprochen wird, so geschieht dies in Anlehnung an die Terminologie in der
Regressionsanalyse. Es ist dabei allerdings zu beachten, dass die beschriebenen Befunde lediglich auf korrelativen
Beziehungen der Merkmale basieren. Auf die Frage der Kausalität wird noch in der Diskussion in Kapitel 6
ingegangen.

Tabelle 16
Befunde (Gamma-Koeffizienten) aus Mehrebenenanalysen zur Vorhersage des von den Schülern im Nachtest erreichten Verständnisses von 'Schwimmen und Sinken' (ICU-Wert)

<table>
<thead>
<tr>
<th>Abhängige Variable</th>
<th>ICU-Wert Nachtest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Modell</td>
<td></td>
</tr>
<tr>
<td>Alter</td>
<td>-.05</td>
</tr>
<tr>
<td>ICU-Wert Vortest</td>
<td>.61***</td>
</tr>
</tbody>
</table>

Vorstellung zum Lehren und Lernen

- 'Motiviertes Lernen' .16*
- 'Anwendungsbezogenes Lernen' -.15
- 'Entwicklung eigener Deutungen' .03
- 'Diskussion von Schülervorstellungen' .11
- 'Conceptual change' .34**
- 'Schülervorstellungen' .39***
- 'Laisser-faire' -.17*
- 'Praktizistisch' -.26**
- 'Transmissiv' -.21*

Selbstkonzept Physik (Lehrkraft) .23 .23 .22 .23 .24 .34* .39* .30 .31 .22
Sachinteresse Physik (Lehrkraft) -.11 -.10 -.10 -.10 -.11 -.19 -.23 -.12 -.18 -.10
Berufserfahrung (Jahre) -.04 -.07 -.02 -.04 -.05 -.08 -.05 -.03 -.00 -.06
Unterrichtszeit .25** .24* .28** .26** .25** .28** .21** .27** .27** .24*
Klassengröße .30* .30** .29* .30* .29* .34** .31** .30 .38** .35*

R^2: Durch die Ebene-2-Prädiktoren aufgeklärte zwischen den Klassen liegende Varianz in den adjustierten Lernfortschritten der Schüler .12 .15 .15 .12 .13 .36 .41 .16 .23 .19

Anm. Grau hinterlegt: Prädiktoren auf Schülerebene; türkis hinterlegt: Prädiktoren auf Klassenebene

Die Gamma-Koeffizienten können analog zu standardisierten Regressionskoeffizienten interpretiert werden. Angegeben sind die aus den HLM-Analysen von zehn imputierten Datensätzen zusammengefassten Koeffizienten (s. Kapitel 4.6 zu fehlenden Werten)

† p<.10; * p<.05; ** p<.01; ***p<.001

Bei den Koeffizienten zu den Prädiktoren auf Individualebene zeigen sich durchgängig in allen neun Modellen keine signifikanten Zusammenhänge des Alters und des Geschlechts der Schüler mit der Nachtest-Leistung. Der Effekt des Alters ist praktisch gleich Null. Das Vorwissen der Schüler, also das im Vortest gezeigte integrierte konzeptuelle Verständnis von 'Schwimmen und Sinken', ist von allen Prädiktoren, auch denen auf Klassenebene, am stärksten (und signifikant) mit der Nachtest-Leistung assoziiert. Da alle metrischen Variablen z-standardisiert wurden, besagt der Koeffizient von etwa .60, dass

In einer zweiten Gruppe von Lehrervorstellungen wurden negative Zusammenhänge mit den Lernzuwächsen der Schüler erwartet. Zu dieser Gruppe gehören die mit den Etiketten 'Transmission', 'Laisser-faire' und 'Praktizismus' versehenen Vorstellungen zum Lehren und Lernen. Hier zeigt sich, dass alle drei Vorstellungen zum Lehren und Lernen wie erwartet signifikant und negativ mit Fortschritten der Schüler im konzeptuellen Verständnis von 'Schwimmen und Sinken' assoziiert sind. Die Vorstellungen 'Transmission' und 'Laisser-faire' klären 7% bzw. 4% der zwischen Klassen liegenden Varianz in den Lernfortschritten auf, die Vorstellung 'Praktizismus' sogar 11%.

Die dritte Gruppe von Vorstellungen zum Lehren und Lernen von Naturwissenschaften besteht nur aus der als 'Entwicklung eigener Deutungen' bezeichneten Vorstellung. Bei dieser Vorstellung wurde keine konkrete Hypothese bzgl. der Zusammenhänge mit Lernfortschritten der Schüler aufgestellt. Es zeigt sich hier, dass die Vorstellungen 'Entwicklung eigener Deutungen' nicht mit Lernfortschritten der Schüler kovariieren.

Bei den Kontrollvariablen auf Klassenebene zeigen sich beim physikbezogenen Interesse der Lehrkräfte und bei deren Berufserfahrung (Dauer der Diensttätigkeit in Jahren) keine signifikanten Zusammenhänge mit den adjustierten Lernfortschritten der Schüler. Der Effekt der Berufserfahrung ist praktisch gleich Null. Lediglich in den beiden Modellen, in die die Lehrervorstellungen 'Conceptual Change' bzw. 'Schülervorstellungen' aufgenommen sind, zeigen sich signifikante Zusammenhänge zwischen dem physikbezogenen Fähigkeitsselbstkonzept der Lehrkräfte und den adjustierten Lernfortschritten der Schüler. Sowohl bei der Unterrichtszeit als „nutzbare Instruktionszeit“ (Helmke, 2003, S. 105), d.h. die Zeit, die für das Thema 'Schwimmen und Sinken' verwandt wurde, als auch bei der Klassengröße...
zeigen sich signifikante positive Zusammenhänge mit den Lernfortschritten der Schüler. Insgesamt werden durch die Kontrollvariablen auf Klassenebene etwa 12% der zwischen den Klassen liegenden Varianz in den Lernfortschritten der Schüler aufgeklärt.

5.2.2.2 Zusammenhänge von Lehrervorstellungen mit dem Abbau von Fehlvorstellungen und dem Erwerb (vor-)physikalischer Konzepte von 'Schwimmen und Sinken' bei Schülern

Tabelle 17
Befunde (Gamma-Koeffizienten) aus Mehrebenenanalysen zur Vorhersage der Nutzung von Fehlvorstellungen zum 'Schwimmen und Sinken' durch die Schüler im Nachtest (FV-Wert)

<table>
<thead>
<tr>
<th>Abhängige Variable</th>
<th>FV-Wert Nachtest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modell 0</td>
<td>0</td>
</tr>
<tr>
<td>Modell 1</td>
<td>1</td>
</tr>
<tr>
<td>Modell 2</td>
<td>2</td>
</tr>
<tr>
<td>Modell 3</td>
<td>3</td>
</tr>
<tr>
<td>Modell 4</td>
<td>4</td>
</tr>
<tr>
<td>Modell 5</td>
<td>5</td>
</tr>
<tr>
<td>Modell 6</td>
<td>6</td>
</tr>
<tr>
<td>Modell 7</td>
<td>7</td>
</tr>
<tr>
<td>Modell 8</td>
<td>8</td>
</tr>
<tr>
<td>Modell 9</td>
<td>9</td>
</tr>
</tbody>
</table>

Prädiktoren

<table>
<thead>
<tr>
<th>Prädiktor</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>-.02</td>
<td>-.03</td>
<td>-.03</td>
<td>-.04</td>
<td>-.02</td>
<td>-.03</td>
<td>-.03</td>
<td>-.03</td>
<td>-.02</td>
<td>-.03</td>
</tr>
<tr>
<td>Geschlecht (männl.)</td>
<td>-.09</td>
<td>-.09</td>
<td>-.09</td>
<td>-.09</td>
<td>-.10</td>
<td>-.09</td>
<td>-.09</td>
<td>-.09</td>
<td>-.09</td>
<td>-.09</td>
</tr>
<tr>
<td>FV-Wert Vortest</td>
<td>.25***</td>
<td>.25***</td>
<td>.25***</td>
<td>.25***</td>
<td>.24***</td>
<td>.25***</td>
<td>.25***</td>
<td>.25***</td>
<td>.25***</td>
<td>.25***</td>
</tr>
</tbody>
</table>

Vorstellung zum Lehren und Lernen

- 'Motiviertes Lernen' -.10†
- 'Anwendungsbezogenes Lernen' .07
- 'Entwicklung eigener Deutungen' .01
- 'Diskussion von Schülerin in der ersten Klasse' -.11*
- 'Conceptual change' -.20**
- 'Schülerin in der ersten Klasse' -.18**
- 'Laisser-faire' .09
- 'Praktizistisch' .15**
- 'Transmissiv' .09

Selbstkonzept Physik (Lehrkraft) -.14 - .14 - .13 - .14 - .15 - .20† - .21† - .17 - .18† - .13
Sachinteresse Physik (Lehrkraft) .05 - .04 - .05 - .05 - .10 - .11 - .06 - .10 - .05
Berufserfahrung (Jahre) .00 - .02 - .01 - .02 - .01 - .03 - .01 - .01 - .02 - .01
Unterrichtszeit -.16* -.15* -.17* -.16* -.16* -.18** -.14* -.17* -.17* -.15*
Klassengröße -.14† -.15† -.14† -.14† -.13† -.17* -.15† -.15† -.14† -.19** -.16†

R²: Durch die Ebene-2-Prädiktoren aufklärte den zwischen den Klassen liegenden Anteil der Varianz der Nutzung von Fehlvorstellungen durch die Schüler .14 .17 .13 .12 .18 .34 .29 .16 .23 .16

Anm. Grau hinterlegt: Prädiktoren auf Schülerenebene; türkis hinterlegt: Prädiktoren auf Klassenebene; angegeben sind die aus den HLM-Analysen von 10 imputierten Datensätzen zusammengefassten Koeffizienten (s. Kapitel 4.6 zu fehlenden Werten)
† p<.10; * p<.05; ** p<.01; ***p<.001

Es zeigt sich hinsichtlich der Prädiktoren auf Individualebene ein ähnliches Bild wie bei den im vorigen Kapitel berichteten Befunden: Alter und Geschlecht der Schüler stehen in keinem Zusammenhang mit der Nennung von Fehlvorstellungen im Nachtest. Die Häufigkeit der Nennung von Fehlvorstellungen im Vortest ist hingegen signifikant mit dem FV-Wert im Nachtest assoziiert. Der Gamma-Koeffizient ist hier mit ca. .25 allerdings nicht so hoch wie bei den Befunden zum integrierten konzeptuellenVerständnis, was zumindest teilweise auf die geringe Reliabilität des FV-Wertes im Vortest zurückzuführen ist.

scheint der Zusammenhang substanziell zu sein. Die Vorstellungen 'Conceptual Change' und 'Schülervorstellungen' klären beträchtliche 20% bzw. 15% der Varianz auf. Anders als bei den im vorigen Kapitel berichteten Befunden zum integrierten Verständnis von 'Schwimmen und Sinken' zeigt sich beim Abbau von Fehlavorstellungen ein substanzieller Zusammenhang mit der Lehrervorstellung 'Diskussion von Schülervorstellungen', die 4% Varianzaufklärung leistet.

Tabelle 18
Befunde (Gamma-Koeffizienten) aus Mehrebenenanalysen zur Vorhersage der Nutzung (vor-)physikalischer Konzepte zum 'Schwimmen und Sinken' durch die Schüler im Nachtest (PHY-Wert)

<table>
<thead>
<tr>
<th>Abhängige Variable</th>
<th>PHY-Wert Nachtest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modell</td>
<td>0</td>
</tr>
<tr>
<td>Prädiktoren</td>
<td>0.26</td>
</tr>
<tr>
<td>Alter</td>
<td>-0.03</td>
</tr>
<tr>
<td>Geschlecht (männl.)</td>
<td>0.06</td>
</tr>
<tr>
<td>PHY-Wert Vortest</td>
<td>0.21</td>
</tr>
<tr>
<td>Vorstellung zum Lehren und Lernen</td>
<td></td>
</tr>
<tr>
<td>'Motiviertes Lernen'</td>
<td>0.16†</td>
</tr>
<tr>
<td>'Anwendungsbezogenes Lernen'</td>
<td>-0.10</td>
</tr>
<tr>
<td>'Entwicklung eigener Deutungen'</td>
<td>0.06</td>
</tr>
<tr>
<td>'Diskussion von Schülervorstellungen'</td>
<td>0.11</td>
</tr>
<tr>
<td>'Conceptual change'</td>
<td>0.32***</td>
</tr>
<tr>
<td>'Schülervorstellungen'</td>
<td>0.39***</td>
</tr>
<tr>
<td>'Laisser-faire'</td>
<td>-0.19*</td>
</tr>
<tr>
<td>'Praktizistisch'</td>
<td>0.30***</td>
</tr>
<tr>
<td>'Transmissiv'</td>
<td>0.21*</td>
</tr>
<tr>
<td>Selbstkonzept Physik (Lehrkraft)</td>
<td>0.09</td>
</tr>
<tr>
<td>Sachinteresse Physik (Lehrkraft)</td>
<td>0.08</td>
</tr>
<tr>
<td>Berufserfahrung (Jahre)</td>
<td>0.04</td>
</tr>
<tr>
<td>Unterrichtszeit</td>
<td>0.33***</td>
</tr>
<tr>
<td>Klassengröße</td>
<td>0.23†</td>
</tr>
</tbody>
</table>

\(R^2 \): Durch die Ebene-2-Prädiktoren aufgeklärte zwischen den Klassen liegende Varianz in der adjustierten Zunahme der Nutzung von Fehlavorstellungen durch die Schüler

Anm. Grau hinterlegt: Prädiktoren auf Schülerebene; türkis hinterlegt: Prädiktoren auf Klassenebene; angegeben sind die aus den HLM-Analysen von zehn imputierten Datensätzen zusammengefassten Koeffizienten (s. Kapitel 4.6 zu fehlenden Werten)

† p<.10; * p<.05; ** p<.01; ***p<.001
In Tabelle 18 sind Ergebnisse zu Zusammenhängen der erfassten Vorstellungen zum Lehren und Lernen mit der Zunahme des Gebrauchs (vor-physikalischer Konzepte zum 'Schwimmen und Sinken' durch die Schüler dargestellt. Die Interpretation der Vorzeichen der Koeffizienten kann hier wieder analog zu den Befunden erfolgen, bei denen das integrierte Verständnis von 'Schwimmen und Sinken' als abhängige Variable zugrunde lag.

Signifikante negative Zusammenhänge mit Zunahmen in der Nutzung vorwissenschaftlicher Vorstellungen zum 'Schwimmen und Sinken' seitens der Schüler zeigen sich ferner bei den Lehrervorstellungen 'Laisser-faire', 'Praktizismus' und 'Transmission'. Die Vorstellung 'Praktizismus' klärt beträchtliche 15% der Zwischen-Klassen-Varianz in Zunahmen beim Gebrauch wissenschaftsnaher Vorstellungen zum 'Schwimmen und Sinken' seitens der Schüler auf, die Vorstellungen 'Laisser-faire' und 'Transmission' immerhin noch 4% bzw. 7%. Die Vorstellungen 'Eigene Ideen entwickeln' und 'Ideen diskutieren' stehen in keinem Zusammenhang mit Zuwächsen in der Nutzung vorwissenschaftlicher Vorstellungen zum 'Schwimmen und Sinken'.

Bei den auf Klassenebene eingefügten Kontrollvariablen zeigt sich ein enger Zusammenhang der Unterrichtszeit mit der Zunahme des Gebrauchs (vor-)physikalischer Konzepte seitens der Schüler. Auch die Klassengröße zeigt sich hier fast durchgängig als relevanter Prädiktor.

5.2.2.3 Differenzielle Effekte von Lehrervorstellungen zum Lehren und Lernen auf Fortschritte der Schüler im integrierten konzeptuellen Verständnis von 'Schwimmen und Sinken' in Abhängigkeit von individuellen (Lern-)Voraussetzungen der Schüler

Differenzielle Effekte dieser Art müssten sich, wie in Kapitel 4.7.1 beschrieben, in sog. Cross-Level-Interaktionen, also Interaktionen zwischen Merkmalen der Klassenebene und der Individualebene, zeigen. Notwendige Voraussetzung für die hier interessierenden differenziellen Effekte von Lehrervor-
stellungen zum Lehren und Lernen ist erstens eine substanzielle Variation zwischen den Klassen in den den Individualprädiktoren 'Vortest-Leistung' bzw. 'Geschlecht' zugehörigen Steigungsparametern (slopes; in diesem Fall die Koeffizienten β_{1j} und β_{3j} in Gleichung 4.1). Diese Steigungsparameter können als Zusammenhang der Vortest-Leistung bzw. des Geschlechts mit der (um die je anderen Individualprädiktoren adjustierten) Nachtest-Leistung interpretiert werden. Zu prüfen ist also erstens, ob eine signifikante Variation in diesen Zusammenhängen zwischen den Klassen besteht.11 Ist dies der Fall, kann in einem zweiten Schritt geprüft werden, ob die erfassten Vorstellungen der Lehrkräfte zum Lehren und Lernen einen Beitrag zur Aufklärung dieser zwischen den Klassen liegenden Varianz in den Steigungsparametern liefern. In Tabelle 19 sind Ergebnisse zur ersten Frage nach der klassenspezifischen Variation der Steigungsparameter dargestellt.

Tabelle 19

Befunde aus Mehrebenenanalysen: Varianz (Var.) in den Steigungsparametern (Gamma-Koeffizienten) auf Individual-Ebene

<table>
<thead>
<tr>
<th>Prädiktoren</th>
<th>M1_mot</th>
<th>M2_anw</th>
<th>M3_eig</th>
<th>M4_dis</th>
<th>M5_con</th>
<th>M6_sch</th>
<th>M7_lai</th>
<th>M8_pra</th>
<th>M9_tra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>-.05</td>
<td>.00</td>
<td>.00</td>
<td>.05</td>
<td>-.04</td>
<td>.00</td>
<td>.05</td>
<td>.00</td>
<td>.05</td>
</tr>
<tr>
<td>Geschlecht (männl.)</td>
<td>.13</td>
<td>.18*</td>
<td>.18*</td>
<td>.14</td>
<td>.18*</td>
<td>.13</td>
<td>.18*</td>
<td>.13</td>
<td>.18*</td>
</tr>
<tr>
<td>ICU-Wert Vortest</td>
<td>.61***</td>
<td>.03</td>
<td>.61***</td>
<td>.03</td>
<td>.61***</td>
<td>.03</td>
<td>.61***</td>
<td>.03</td>
<td>.61***</td>
</tr>
</tbody>
</table>

Prädiktoren auf Klassenebene wie in den zuvor berichteten Modellen (Tabellen 16, 17 und 18)

† $p<.10$; * $p<.05$; ** $p<.01$; ***$p<.001$

Da die klassenspezifischen Zusammenhänge zwischen Vor- und Nachtest-Leistung nicht signifikant variieren, ist bereits die erste o.g. Voraussetzung für das Vorliegen differenzieller Effekte der Lehrervorstellungen auf die Lernfortschritte der Schüler in Abhängigkeit deren vorunterrichtlichen Verständnisses von 'Schwimmen und Sinken' nicht gegeben.

Hinsichtlich des Geschlechts der Schüler zeigen die in Tabelle 19 wiedergegeben Befunde jedoch, anders als bei der Vortest-Leistung, durchgängig eine signifikante Variation der Steigungsparameter zwischen den Klassen. Hier wurde daher weitergehend geprüft, ob die erfassten Vorstellungen der Lehrkräfte zum Lehren und Lernen einen Beitrag zur Erklärung dieser klassenspezifischen Varianz in den Zusammenhängen zwischen Geschlecht und dem adjustierten nachunterrichtlichen Verständnis von 'Schwimmen und Sinken' leisten können. Dazu wurde der dem Geschlecht zugehörige Steigungsparameter (β_{1j}) selbst als abhängige Variable modelliert, die durch die erfassten Lehrervorstellungen vorhergesagt wird (s. Kapitel 4.7.1). Die entsprechende Erweiterung des Modells auf Klassenebene lautet: $\beta_{1j} = \gamma_{10} + \gamma_{11} \times \text{VLL}_j + u_{1j}$. Ein differenzieller Effekt der Lehrervorstellungen auf die Lernfortschritte in Abhängigkeit des Geschlechts der Schüler würde sich in einem signifikant von Null verschiedenen γ_{11}-Koeffizienten ausdrücken.
Die in Tabelle 20 wiedergegebenen Koeffizienten zeigen jedoch, dass dies nicht der Fall ist. Auch hinsichtlich des Geschlechts der Schüler scheinen also keine differenziellen Effekte der erfassten Vorstellungen der Lehrkräfte zum Lehren und Lernen auf die Fortschritte der Schüler im integrierten konzeptuellen Verständnis von 'Schwimmen und Sinken' vorzuliegen.

5.2.3 Zusammenfassung der Ergebnisse zu Zusammenhängen der erfassten Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften mit Fortschritten der Schüler im integrierten konzeptuellen Verständnis von 'Schwimmen und Sinken'

Im nächsten Schritt wurde daher geprüft, und dies ist die zentrale Frage der vorliegenden Arbeit, ob und inwieweit Zusammenhänge der erfassten fachspezifischen Vorstellungen der Lehrkräfte zum Lehren und Lernen mit Fortschritten der Schüler im integrierten konzeptuellen Verständnis von 'Schwimmen und Sinken' bestehen. Es zeigte sich, dass insbesondere die als 'Conceptual Change' und 'Schülerschreibungen' bezeichneten Vorstellungen der Lehrkräfte zum Lehren und Lernen in einem engen positiven Zusammenhang mit den Lernfortschritten der Schüler stehen. Diese Vorstellungen klären beträchtliche 24% ('Conceptual Change') bzw. 29% ('Schülerschreibungen') der zwischen den Klassen liegenden Varianz in den adjustierten Lernfortschritten der Schüler auf. Auch der Grad, in dem Lehr-
kräfte die Vorstellung vertreten, dass Schüler motiviert sein müssen, um Naturphänomene verstehen zu können, ist mit den Lernzuwächsen der Schüler assoziiert (′Motiviertes Lernen′). Die Aufklärung der zwischen den Klassen liegenden Varianz beträgt hier jedoch ′nur′ 4%. Wie erwartet zeigte sich des Wei- teren, dass die Lehrervorstellungen ′Laisser-faire′, ′Praktizismus′ und ′Transmission′ negativ mit den Fortschritten der Schüler im integrierten Verständnis von ′Schwimmen und Sinken′ zusammenhängen. Insbesondere der Grad, in dem Lehrkräfte die Vorstellung vertreten, dass praktisches Handeln im Unterricht eine hinreichende Bedingung für konzeptuelles Verständnis der Schüler darstellt (′Praktizismus′), klärt einen beachtlichen Teil (11%) der Zwischen-Klassen-Varianz in den Lernzuwäch- sen der Schüler auf. Aber auch die Vorstellungen ′Transmission′ und ′Laisser-faire′ erklären immerhin noch 7% bzw. 4% dieser Varianz. Anders als erwartet wurde kein Zusammenhang der als ′Anwendungsbezogenes Lernen′ und ′Diskussion von Schüler-Vorstellungen′ bezeichneten Vorstellungen der Lehrkräfte zum Lehren und Lernen mit den Lernfortschritten der Schüler gefunden. Das Ausmaß, in dem Lehrkräfte die Vorstellung vertreten, dass Schüler im naturwissenschaftlichen Grundschulunter- richt eigene Deutungen zu Naturphänomenen entwickeln sollten (′Entwicklung eigener Deutungen′), wurde vorab als indifferent bzgl. der Lernfortschritte von Schülern beurteilt. Bei dieser Vorstellung der Lehrkräfte zeigt sich kein Zusammenhang mit Fortschritten der Schüler im integrierten konzeptuellen Verständnis von ′Schwimmen und Sinken′.

Hier zeigte sich wie bei den Befunden zum integrierten Verständnis, dass der Grad, in dem Lehr- kräfte die Vorstellung vertreten, dass Grundschulkinder bereits mit z.T. fest verwurzelten Vorstellung- en zu Naturphänomenen in den Unterricht kommen (Skala ′Schüler-Vorstellungen′) und dass naturwis- senschaftliches Lehren und Lernen als Veränderung solcher Schüler-Vorstellungen zu verstehen ist (Ska- la ′Conceptual Change′), signifikant mit dem Abbau von Fehlvorstellungen wie auch mit dem Erwerb (vor-)physikalischer Konzepte zum ′Schwimmen und Sinken′ assoziiert ist. Die Erklärung der zwischen den Klassen liegenden Varianz durch diese fachspezifischen Vorstellungen der Lehrkräfte zum Lehren und Lernen ist sowohl bezüglich des Abbaus von Fehlvorstellungen (′Conceptual Change′ 20%; ′Schüler-Vorstellungen′ 15%) wie auch hinsichtlich des Erwerbs vorwissenschaftlicher Konzepte (′Conceptual Change′ 19%; ′Schüler-Vorstellungen′ 26%) beträchtlich. In engem Zusammenhang mit dem Abbau von Fehlvorstellungen wie auch dem Erwerb (vor-)physikalischer Konzepte steht die als ′Praktizismus′ be- zeichnete Vorstellung. Je stärker Lehrkräfte die Vorstellung vertreten, dass praktisches Tun wie das Durchführen von Versuchen im naturwissenschaftlichen Unterricht eine hinreichende Bedingung für
konzeptuelles Verständnis seitens der Schüler darstellt, desto geringer der Abbau von Fehlvorstellungen und desto geringer auch die Zunahme in der Nutzung wissenschaftsnaher Konzepte zum 'Schwimmen und Sinken'. Die Aufklärung der zwischen Klassen liegenden Varianz durch diese Vorstellung zum Lehren und Lernen beträgt hinsichtlich des Abbaus von Fehlvorstellungen 9%, bzgl. des Erwerbs (vor-)physikalischer Konzepte 15%. Geringer, aber dennoch substanzial ist die Varianzaufklärung durch die Vorstellung 'Motiviertes Lernen' (4% bzgl. des Rückgangs der Nutzung von Fehlvorstellungen und 3% hinsichtlich des Erwerbs wissenschaftsnaher Erklärungen).

Als irrelevant für Fortschritte der Schüler im integrierten Verständnis wie auch für den Abbau von Fehlvorstellungen und den Erwerb (vor-)physikalischer Konzepte haben sich also nur die Vorstellungen 'Anwendungsbezogenes Lernen' und 'Entwicklung eigener Ideen' herausgestellt. Bei der Vorstellung, der zufolge ein diskursiver Austausch der Erklärungsansätze der Schüler im naturwissenschaftlichen Unterricht der Grundschule angeregt werden sollte ('Diskussion von Schüler- und Lehrervorstellungen'), zeigte sich speziell nur ein Zusammenhang mit dem Rückgang der Nutzung von Fehlvorstellungen zum 'Schwimmen und Sinken'.

6 Diskussion und Ausblick

Im Folgenden werden die Befunde zu Zusammenhängen der Lehrervorstellungen mit den Lernfortschritten der Schüler und auch zu den Analysen des entwickelten Instruments zunächst zusammenfassend aufeinander bezogen und vor dem Hintergrund anderer Forschungsergebnisse bewertet. Anschließend werden Beschränkungen der vorliegenden Studie diskutiert und es wird gesondert auf die Frage der Fachspezifität der erfassten Lehrervorstellungen zum Lehren und Lernen und auf die Frage von zwischen Lehrervorstellungen und Lernfortschritten der Schüler vermittlenden Unterrichtsprozessen eingegangen. Es folgt eine Diskussion möglicher Konsequenzen aus den Befunden für die Aus- und Fortbildung von Grundschullehrkräften. Schließlich werden offene Forschungsfragen diskutiert, die sich aus der Anlage und den Befunden der vorliegenden Studie ergeben.
6.1 Zusammenfassende Betrachtung und Diskussion der Ergebnisse

Die im Ergebnisteil beschriebenen Befunde der Mehrebenenanalysen bestätigen die erste Hypothese in weiten Teilen. Es zeigte sich: Je größer das Ausmaß, mit dem Grundschullehrkräfte
- Motivation als eine notwendige Voraussetzung für verstehendes naturwissenschaftliches Lernen der Schüler ansehen ('Motiviertes Lernen'),
- naturwissenschaftliches Lehren und Lernen als mitunter schwierige und langwierige Veränderung bereits vorhandener Vorstellungen der Schüler sehen ('Conceptual Change'),
- betonen, dass Grundschulkinder bereits Z.T. fest verwurzelte Vorstellungen zu Naturphänomenen und naturwissenschaftlichen Begriffen haben ('Schülervorstellungen'),

Des Weiteren zeigte sich, dass die zweite o.g. Hypothese vollständig bestätigt werden kann. Je stärker Grundschullehrkräfte eine Vorstellung vertreten, der zufolge
- Schüler im naturwissenschaftlichen Grundschulunterricht am besten aus Erklärungen der Lehrkraft lernen und Schüler das Wissen eher passiv-rezipierend aufnehmen ('Transmission'),
- praktische Aktivitäten ('hands-on-activities') wie das Durchführen von Versuchen eine hinreichende Bedingung für das Erreichen konzeptuellen Verständnisses seitens der Schüler darstellen ('Praktizismus'),
- Schüler im naturwissenschaftlichen Grundschulunterricht weitgehend selbstständig arbeiten bzw.
lernen sollten, ohne dass prozessbezogene Hilfestellungen und Strukturierungsmaßnahmen durch die Lehrkraft notwendig wären ("Laisser-faire"),

krogenetischer Ansatz' der Studie). Es wäre eine zu prüfende Annahme, dass in einer längerfristigen Perspektive aufgrund sich kumulierender Lernfortschritte der Schüler (s. Kapitel 2.1.5) die Zusammenhänge von Lehrervorstellungen, die auf das Lehren und Lernen in einem Fach oder Lernbereich bezogen sind, mit Lernzuwächsen der Schüler noch stärker ausgeprägt sind.

Keine Zusammenhänge mit Lernzuwächsen der Schüler fanden sich bei der bei Grundschullehr-

kräften verbreiteten Vorstellung, der zufolge Schüler im naturwissenschaftlichen Grundschulunterricht eigene Deutungen zu Naturphänomenen und zu naturwissenschaftlichen Fragestellungen entwickeln
sollten (‘Entwicklung eigener Deutungen’). Diese Lehrervorstellung war bereits theoretisch als indiffer- rent mit Blick auf Fortschritte der Schüler im konzeptuellen naturwissenschaftlichen Verständnis beur- teilt worden, da nicht klar erscheint, wie diese Vorstellung zum Abbau von Fehlvorstellungen wie auch zum Aufbau (vor-)wissenschaftlicher Konzepte bei den Schülern beitragen kann. Bei dieser Vorstellung wie auch bei der als 'Diskussion von Schülvorstellungen' bezeichneten Vorstellung zeigten sich in den MTMM-Analysen jedoch auch Probleme der Konstruktvalidität der entwickelten Skalen (s. auch das folgende Teilkapitel). Die Frage nach Zusammenhängen dieser Vorstellungen zum Lehren und Lernen mit Lernfortschritten der Schüler muss also weiterhin als offen angesehen werden. Voraussetzung für die Klärung dieser Frage wäre die Entwicklung eines valideren Instruments zur Erfassung dieser Vor- stellungen.

eher dafür, dass die erfassten Vorstellungen der Lehrkräfte die Lernfortschritte der Schüler unabhängig
der Vorwissens (und auch Geschlechts) begünstigen oder beschränken.

Bewertet man die Befunde dieser Arbeit insgesamt im Zusammenhang mit den Befunden der o.g.
Studien und der in Kapitel 2.3.3.5 referierten Studien zu Zusammenhängen von Vorstellungen der
Lehrkräfte mit deren unterrichtlicher Praxis, so deuten die Ergebnisse an, dass fachspezifische Vorstel-
lungen von erfahrenen Lehrkräften zum Lehren und Lernen eine wichtige Rolle für das unterrichtliche
Geschehen und auch für Lernfortschritte der Schüler spielen. Die Befunde unterstreichen damit auch
die Feststellungen „Teachers matter“ (Resnick, 2004) oder „Teachers make a difference“ (Hattie, 2003),
die vor dem Hintergrund neuerer Studien zur Bedeutsamkeit von Merkmalen der Lehrerpersönlichkeit
und der Unterrichtsgestaltung getroffen wurden.

Mit der Fokussierung auf das konzeptuelle naturwissenschaftliche Verständnis von Schülern wurde
ein wichtiges Zielkriterium naturwissenschaftlichen Unterrichts ausgewählt, das zudem seit einigen Jah-
ren intensiv diskutiert wird, da internationale Schulleistungsstudien auf Defizite deutscher Schüler in
diesem Bereich aufmerksam gemacht haben (Baumert & Lehmans, 1997; Rost et al., 2004). Die Befun-
de dieser Arbeit können unter der Voraussetzung einer Replikation durch weitere Studien einen An-
satzpunkt zur Förderung dieses als defizitär betrachteten Zielbereichs bedeuten. Da mit den Vorstellun-
gen zum Lehren und Lernen Merkmale der Lehrerpersönlichkeit untersucht wurden, scheinen sich di-
rekte Möglichkeiten der Intervention zu bieten. Darauf wird in Abschnitt 6.5 im Zusammenhang mit
der Aus- und Fortbildung von Lehrkräften noch eingegangen.

6.2 Beschränkungen der Studie

Repräsentativität und Größe der Stichprobe

Um die Repräsentativität der Lehrerstichprobe, die dieser Untersuchung zugrunde liegt, einschätzen zu
cönnen, wurde diese Stichprobe mit einer für nordrhein-westfälische Grundschullehrkräfte weitgehend
repräsentativen Stichprobe verglichen. Dabei zeigten sich in allgemeinen soziodemografischen Daten
wie dem Alter, der Berufserfahrung in Dienstjahren sowie dem Anteil männlicher Lehrkräfte höchstens
als 'klein' zu bewertende Abweichungen der Untersuchungsstichprobe von dem 'NRW-Sample'. Mittler-
re bis große Abweichungen wurden jedoch in motivationalen und selbstbezogenen Voraussetzungen
der Lehrkräfte für das Unterrichten physikbezogener Themen des Sachunterrichts gefunden. Auch bei
Vorstellungen der Lehrkräfte zum Lehren und Lernen von Naturwissenschaften, den zentralen unab-
hängigen Variablen dieser Untersuchung, zeigten sich teilweise mittlere bis große Abweichungen der
Untersuchungsstichprobe von der repräsentativen Stichprobe.

Diese Abweichungen sind sehr wahrscheinlich auf die Fortbildungen zurückzuführen, an denen die
Lehrkräfte der Untersuchungsstichprobe im Rahmen des BiQua-Projekts teilgenommen hatten. Mit
Ausnahme der als 'Diskussion von Schülervorstellungen' und 'Transmission' bezeichneten Vorstellun-
gen, bei denen sich im Rahmen der BiQua-Studie keine signifikanten Effekte der Fortbildungsinterven-
tion zeigten, finden sich genau in den Variablen Abweichungen von der repräsentativen Stichprobe, in
denen sich Effekte der Fortbildungsvariation (tutoriell angeleitete Fortbildungen vs. nicht tutoriell unterstuerte Fortbildung) zeigten (vgl. Möller, Hardy, Jonen, Kleickmann, Blumberg, 2006; Kleickmann, Möller & Jonen, 2006).

Validitätsprobleme bei der Erfassung der Lehrervorstellungen

Bei den Monotrait-Heteromethod-Analysen, für die teilstrukturierte Interviews mit den Lehrkräften herangezogen wurden, zeigten sich zwar bei den Skalen 'Conceptual Change', 'Schülervorstellungen', 'Praktizismus' und mit Einschränkungen auch bei der Skala 'Motiviertes Lernen' recht zufriedenstellende Korrelationen, bei den übrigen fünf Skalen scheint jedoch eine Überarbeitung mit dem Ziel der Verbesserung der konvergenten Validität sinnvoll. Wünschenswert scheint auch eine weitergehende Analyse und differenziertere Operationalisierung der Konstrukte, die Vorstellungen von (Grundschul-)Lehrkräften zum Lehren und Lernen von Naturwissenschaften zugrunde liegen. Vermutlich läßt sich so die Konstruktvalidität der entwickelten Skalen weiter verbessern. Die Entwicklung ei-
ner Skala zur direkten Erfassung des ursprünglich intendierten Konstrukts 'Angeleitetes Lernen' bzw. 'Scaffolding von Lernprozessen' ist im Rahmen der Testkonstruktion in dieser Arbeit nicht gelungen. Die Skala 'Laisser-faire', die aus den Items, die zur Erfassung des ursprünglich interessierenden Konstrukts entwickelt wurden, hervorging, erfasst nur in Ansätzen das Gegenteil des beabsichtigten Konstrukts. Die Entwicklung einer solchen Skala, die das Konstrukt 'Angeleitetes Lernen' direkt erfasst, wäre also ein weiteres Ziel für künftige Forschung.

Eigenschaften des Tests zum konzeptuellen Verständnis von 'Schwimmen und Sinken'

Einschränkungen aufgrund der korrelativen Anlage der Studie

Aussagen über die Wirkungen von Lehrervorstellungen auf das im Unterricht erreichte Verständnis der Schüler sind in korrelativen Studien durch nicht berücksichtigte, aber mit Blick auf die untersuchten Wirkungen bedeutsame Dritt-variablen beschränkt. In Kapitel 4.7.2 wurden die Variablen beschrieben, die in die Analysen der vorliegenden Studie aufgenommen wurden. Im Folgenden werden Variablen diskutiert, die als mögliche unberücksichtigte, aber relevante Dritt-variablen in Frage kommen könnten.

Bei individuellen Merkmalen der Schüler zeigen sich insbesondere bei querschnittlichen Designs allgemeine kognitive Fähigkeiten und auch Merkmale des sozialen Hintergrundes der Schüler als relevante Bedingungen der Lernleistungen (vgl. Helmke & Weinert, 1997; Scheerens & Bosker, 1997; Hat-tie, 2003; Ehmke, Hohensee, Heidemeier & Prenzel, 2004; Lipowsky, 2006). Beide Variablen wurden in der vorliegenden Untersuchung nicht berücksichtigt. Die Effektstärken allgemeiner kognitiver Fähigkeiten und sozialer Hintergrundvariablen verringern sich aber, wenn die Leistungsmaße über Messwieder-

12 Die Begrifflichkeiten wurden in Anlehnung an die Terminologie der Regressionsanalyse und auch aus sprachlichen Gründen gewählt (vgl. auch Bortz & Döring, 2002, S. 518 f.).
holungen längsschnittlich erhoben werden, wie das auch in dieser Studie der Fall ist. Über die Kontrolle des vorunterrichtlichen Verständnisses von 'Schwimmen und Sinken' werden allgemeine kognitive Fähigkeiten wie auch eine 'Bevor- oder Benachteiligung' hinsichtlich sozialer Hintergrundvariablen zu einem gewissen Grad mit erfasst und kontrolliert. Dennoch wäre eine Berücksichtigung dieser Variablen natürlich wünschenswert gewesen, um deren Relevanz für die zentralen Befunde dieser Arbeit besser einschätzen zu können.

Müssen Schüler die Aufgaben des Tests, mit dem die Leistungen erfasst werden, selbstständig lesen, spielt auch die Lesekompetenz der Schüler eine bedeutsame Rolle (vgl. z.B. Kunter et al., 2006). Da in dieser Untersuchung die Tests zum Verständnis von 'Schwimmen und Sinken' vollständig durch die Lehrkräfte instruiert und vorgelesen wurden, dürfte diese Variable jedoch nur eine untergeordnete Rolle spielen.

Da sich die 29 Experimentalgruppen-Lehrkräfte und die 17 Kontrollgruppen-Lehrkräfte, die an der vorliegenden Untersuchung teilgenommen haben, hinsichtlich einiger der erfassten Vorstellungen zum Lehren und Lernen unterscheiden\(^\text{13}\), könnte eine Konfundierung mit Fortbildungseffekten auf das fachspezifische und/oder fachspezifisch-pädagogische Wissen der Lehrkräfte vorliegen. Aus diesem Grund wurde in zusätzlichen HLM-Analysen geprüft, ob die gefundenen Zusammenhänge zwischen Vorstel-

\(^\text{13}\) Effektgrößen (d) bei den erfassten Vorstellungen zum Lehren und Lernen: 'Motiviertes Lernen' (.50); 'Anwendungsbezogenes Lernen' (.01); 'Entwicklung eigener Deutungen' (.30); 'Diskussion von Schülervorstellungen' (.14); 'Conceptual Change' (.69); 'Schülerspezifische Vorstellungen' (1.05); 'Laisser-faire' (.43); 'Praktizismus' (.45); 'Transmission' (.38); Cohen (vgl. 1992) schlägt vor, Effektgrößen mit einem Betrag bis .20 als 'klein', bis .50 als 'mittel' und ab .80 als 'groß' zu bezeichnen.

Nicht-lineare Zusammenhänge zwischen Lehrervorstellungen und Zielkriterien seitens der Schüler

Die zentralen Befunde dieser Arbeit basieren auf Ergebnissen, die mit hierarchisch-linearen Modellen ermittelt wurden. Es wurden also lediglich lineare Zusammenhänge, d.h. 'je-dreif'-Beziehungen ('je größer, desto größer'; 'je größer, desto kleiner' usw.) von Lehrervorstellungen zum Lehren und Lernen mit Lernzuwächsen der Schüler betrachtet. Wie bereits angedeutet wurde, sind jedoch bei speziellen Lehrervorstellungen, die im Übrigen auch bei bestimmten Unterrichtsprozess-Merkmalen, nicht-lineare Zusammenhänge mit Lernfortschritten der Schüler denkbar. Dies wäre bspw. der Fall, wenn eine 'Optimum-Beziehung' zwischen Prädiktor und Kriterium bestehen würde. Es könnte sein, dass Lehrkräfte mit einer mittleren Ausprägung einer Vorstellung zum Lehren und Lernen bessere Lernergebnisse erreichen als Lehrkräfte, die sehr hohe oder sehr niedrige Ausprägungen aufweisen. Dies würde in einem (umgekehrt) u-förmigen Zusammenhang zum Ausdruck kommen. Eine solche Beziehung könnte ggf. bei der als 'Anwendungsbezogenes Lernen' bezeichneten Vorstellung zum Lehren und Lernen zugrunde liegen, für die keine linearen Zusammenhänge mit Lernfortschritten gefunden wurden. Alternativ zu der in Kapitel 3 formulierten Hypothese wäre denkbar, dass Lehrkräfte, die diese Vorstellung besonders stark vertreten, Schüler durch eine zu starke Situierung und damit verbundene zu hohe Komplexi-

6.3 Fachspezifität von Lehrervorstellungen zum Lehren und Lernen

Es könnte also sein, dass einige der in der vorliegenden Arbeit erfassten Lehrervorstellungen nicht nur auf das Lehren und Lernen in Naturwissenschaften bezogen sind, sondern eher auf das schulische Lehren und Lernen generalisierte Vorstellungen darstellen, die von den Lehrkräften auch auf das natur-

6.4 Vermittelnde Unterrichtsprozesse

6.5 Konsequenzen für die Lehrerbildung

Aus den zentralen Befunden dieser Arbeit lassen sich – unter der Voraussetzung, dass sie in weiteren Studien insbesondere auch bei nicht spezifisch fortgebildeten Lehrkräften repliziert werden – zunächst Folgerungen für die Fortbildung bereits praktizierender und erfahrener Grundschullehrkräfte formulieren. Die Befunde werfen die Frage auf, wie es gelingen kann, Grundschullehrkräfte darin zu unterstützt-

Zusammen mit den Befunden der vorliegenden Arbeit geben die Ergebnisse des skizzierten BiQua-Projekts Hinweise darauf, wie es gelingen kann, Aspekte des professionellen Wissens von Lehrkräften zu modifizieren, die im Zusammenhang mit dem Lernerfolg von Schüler zu stehen scheinen.

Insbesondere die Reflexion eigener Conceptual Changes im fachspezifischen Wissen, die im Rahmen einer genetisch und verstehensorientiert angelegten fachbezogenen Ausbildung stattfinden, könnte einen fruchtbaren Ansatzpunkt für die naturwissenschaftsdidaktische Aus- und Fortbildung von Grundschullehrkräften darstellen. Auf diese Weise könnten konstruktivistisch und insbesondere Conceptual-Change-orientierte Vorstellungen (angehenden) Lehrkräften plausibler und auch für das eigene Unterrichten fruchtbare erscheinen. Neben der Veränderung und Erweiterung fachspezifischer Vorstellungen zum Lehren und Lernen scheint darüber hinaus aber auch der Erwerb von fachspezifisch-pädagogischem Wissen im Sinne der weiteren in Kapitel 2.3.1.2 beschriebenen Facetten erforderlich zu sein. Dies dürfte eine Voraussetzung dafür darstellen, dass erworbene Vorstellungen zum Lehren und Lernen auch handlungsrelevant werden können (s. Kapitel 2.3.3.4).

Bereits in den vorigen Abschnitten wurden Fragen, die für zukünftige Forschung lohnend erschienen, angedeutet. Hier sollen noch einmal einige offene Forschungsfragen und möglicherweise lohnenswerte Untersuchungsansätze zu fachspezifischen Vorstellungen von Lehrkräften zum Lehren und Lernen skizziert werden.

Die Einschränkungen der Repräsentativität der untersuchten Stichprobe von Lehrkräften werfen natürlich die Frage auf, ob die in der vorliegenden Untersuchung gefundenen Zusammenhänge von Vorstellungen zum Lehren und Lernen mit Lernfortschritten bei Schülern auch bei nicht spezifisch fachdidaktisch fortgebildeten Lehrkräften repliziert werden können. Im Rahmen eines Projekts in Kooperation mit der Forschergruppe 'Naturwissenschaftlicher Unterricht' der Universität Essen-Duisburg werden wir u.a. dieser Frage nachgehen.

mit Lernfortschritten der Schüler gefunden wurden ('Anwendungsbezogenes Lernen', 'Entwicklung eigener Deutungen'), ggf. für nicht-leistungsbezogene Zielkriterien relevant sind.

Bei den in dieser Arbeit untersuchten Vorstellungen der Lehrkräfte handelt es sich um situationsübergreifende Vorstellungen zum Lehren und Lernen in einem Unterrichtsfach (hier der naturwissenschaftliche Lernbereich der Grundschule). In Kapitel 2.3.3 wurde bereits angedeutet, dass derartige Vorstellungen vermutlich bereits eine wichtige Rolle für vorunterrichtliche Planungsprozesse bei Lehrkräften spielen. Es wäre also über die Frage nach der vermittelnden Rolle von Unterrichtsprozessen hinaus interessant, ob situationsübergreifende und recht stark verallgemeinerte Vorstellungen zum Lehren und Lernen sich nicht schon und insbesondere in der Unterrichtsplanung der Lehrkräfte niederschlagen. Dies erscheint insofern plausibel, als in der Unterrichtsplanung die generelle Anlage der Lehr-Lern-Struktur von Unterricht eine größere Rolle spielt als die vielen situativen Entscheidungen, die das interaktive Unterrichtshandeln erfordert.

7 Literaturverzeichnis

Literaturverzeichnis

logical beliefs, goals, and practices. *Science Education*, 89, 140-165.

Mayer, R. E. (2002). Understanding conceptual change: A commentary. In M. Limón & L. Mason (Eds.), *Reconsi-

Stofflett, R. T., & Stoddart, T. (1994). The ability to understand and use conceptual change pedagogy as a functi-

8 Abbildungsverzeichnis

Abb. 1. Vereinfachtes Angebots-Nutzungs-Modell zur Wirkungsweise von Unterricht .. 17

Abb. 2. Komponenten fachspezifisch-pädagogischen Wissens im Bereich Naturwissenschaften 45

Abb. 3. Zuordnung von Vorstellungen zum Lehren und Lernen zu Komponenten des professionellen Lehrerwissens und Andeutung eines Kontinuums fachspezifischer Ausprägung von Vorstellungen zum Lehren und Lernen .. 49

Abb. 4. Anlage des DFG-Projekts. Abfolge der Erhebungen vor und nach der Intervention durch Lehrerfortbildungen. Türkis markiert sind die Bereiche, die der vorliegenden Untersuchung zugrunde liegen .. 108

Abb. 5. Beispielitem zur Erfassung des konzeptuellen Verständnisses von Verdrängung 128

Abb. 6. Beispielitem zu Erklärungen des Schwimmens und Sinkens von Gegenständen 129

Abb. 7. Beispielitem zur Vorhersage des Schwimmverhaltens von Gegenständen ... 129

Abb. 8. Item mit offenem Antwortformat: Selbst gewählte Erklärungen zum Schwimmen eines Schiffes .. 130

Abb. 9. Ergebnis der Parallelanalyse: Empirisch gefundener (N = 277 Lehrkräfte) und zufällig generierter Eigenwerteverlauf (1000 simulierte Stichproben von N = 277 mit einem N(Items) = 47) ... 144

Abb. 10. Klassenmittelwerte (+/- eine Standardabweichung) der Lernzuwächse basierend auf dem ICU-Summenwert; unstandardisierte Werte ... 157

9 Tabellenverzeichnis

Tabelle 1
Studien zu Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften...63

Tabelle 2
Zusammenfassung der Befunde zu inhaltlichen Ausprägungen der Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften.................................72

Tabelle 3
Studien zu Zusammenhängen von Lehrervorstellungen zum Lehren und Lernen (LV) mit dem unterrichtlichen Handeln (UH) von Lehrkräften; LA bedeutet Lehramt..91

Tabelle 4
Studien zu Zusammenhängen von Lehrervorstellungen zum Lehren und Lernen mit Lernerfolgsmaßen seitens der Schüler...95

Tabelle 5
Unterschiede zwischen der untersuchten Stichprobe von 46 Lehrkräften und einer für Grundschullehrkräfte in NRW weitgehend repräsentativen Stichprobe (N = 277) in Effektgrößeneinheiten sowie Mittelwerte und Standardabweichungen in der Untersuchungsstichprobe..111

Tabelle 6
Beschreibung der zu erfassenden Konstrukte: Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften...117

Tabelle 7
Faktorladungen auf der Basis einer promax-rotierten Hauptkomponenten-Analyse, fünf-faktorielle Lösung..144

Tabelle 8
Vergleich der Passung des (eindimensionalen) Partial-Credit-Modells mit der Passung der Partial-Credit-Variante des Mixed-Rasch-Modells mit zwei bis fünf Klassen anhand informationstheoretischer Maße (BIC, CAIC)..146

Tabelle 9
Zentrale Kennwerte der Items und Skalen: Anzahl der Items pro Skala, Mittelwerte und Standardabweichungen der Skalen und Items, Item-Skalenwert-Korrelationen und interne Konsistzenzen der Skalen (Cronbachs Alpha)..148

Tabelle 10
Monotrait-Heteromethod- und Heterotrait-Heteromethod-Block: Korrelationen der neun Subskalen mit Kategorien der Interview-Analyse...149

Tabelle 11
Heterotrait-Heteromethod-Matrix 2: Korrelation der Skalen 'Schülersvorstellungen' (sch) und 'Praktizismus' (pra) mit zwei zusätzlichen Interview-Kategorien..151
Tabelle 12
Heterotrait-Monomethod- und Monotrait-Monomethod-Block: Inter-Korrelationen und interne Konsistenzen der neun Subskalen ... 151

Tabelle 13
Schwierigkeit der Items im Vor- und Nachtest sowie mit 100 multiplizierte Ratewahrscheinlichkeiten der Items ... 153

Tabelle 14
Interne Konsistenzen (Cronbachs Alpha) der drei Summernwerte ICU, PHY und FV 154

Tabelle 15
Korrelationen der drei Summenwerte ICU, PHY und FV ... 154

Tabelle 16
Befunde (Gamma-Koeffizienten) aus Mehrebenenanalysen zur Vorhersage des von den Schülern im Nachtest erreichten Verständnisses von 'Schwimmen und Sinken' (ICU-Wert) ... 160

Tabelle 17
Befunde (Gamma-Koeffizienten) aus Mehrebenenanalysen zur Vorhersage der Nutzung von Fehlvorstellungen zum 'Schwimmen und Sinken' durch die Schüler im Nachtest (FV-Wert) ... 163

Tabelle 18
Befunde (Gamma-Koeffizienten) aus Mehrebenenanalysen zur Vorhersage der Nutzung (vor-)physikalischer Konzepte zum 'Schwimmen und Sinken' durch die Schüler im Nachtest (PHY-Wert) ... 164

Tabelle 19
Befunde aus Mehrebenenanalysen: Varianz (Var.) in den Steigungsparametern (Gamma-Koeffizienten) auf Individual-Ebene ... 166

Tabelle 20
Befunde aus Mehrebenenanalysen zur Vorhersage der Steigungsparameter (β_1) der Vortest-Leistung durch die erfassten Vorstellungen von Lehrkräften zum Lehren und Lernen von Naturwissenschaften ... 168
10 Anhang

10.1 Interviewleitfaden

Nachfolgend ist der Interviewleitfaden wiedergegeben, mit dessen Hilfe Grundschullehrkräfte zu ihren Vorstellungen zum Lehren und Lernen von Naturwissenschaften befragt wurden.

1. Welche Haupt-Zielsetzungen sehen Sie für den naturwissenschaftlichen Sachunterricht? Können Sie dies an Ihrer Unterrichtsplanung verdeutlichen?

2. Gibt es Lehrstrategien/Lehrmethoden/Unterrichtsprinzipien, die nach Ihrer Ansicht besonders effektiv sind, um Kinder beim Lernen von Naturwissenschaften zu unterstützen? Nachfragen: Gibt es sonst noch Prinzipien, die Ihnen effektiv erscheinen?

3. Wie sehen Sie Ihre Rolle als Lehrkraft im naturwissenschaftlichen Sachunterricht? [Falls Antwort 'Moderator', dies erläutern lassen.]

4. Welchen Stellenwert haben Experimente bzw. Versuche in Ihrem Sachunterricht?

5. Zu welchem Zweck setzen Sie Experimente im SU ein?

6. Ich denke, dass Sie nicht alle möglichen Experimente durchführen, sondern eine Auswahl treffen. Nach welchen Kriterien wählen Sie die Experimente aus?

7. Zu welchem Zweck setzen Sie Unterrichtsgespräche im naturwissenschaftlichen Sachunterricht ein?

8. Wie sehen Sie Ihre Funktion oder auch Rolle in Unterrichtsgesprächen?

9. Haben Sie besondere Strategien oder Leitgedanken, die Sie als Lehrerin in Unterrichtsgesprächen im naturwissenschaftlichen Sachunterricht verfolgen?

10. Welche Bedeutung hat Ihrer Ansicht nach das Vorwissen der Kinder für das Lernen der Kinder? Mit Vorwissen meine ich das, was die Kinder an Erfahrungen und Vorstellungen mit in den Unterricht bringen.

11. Spielt dies eine Rolle in Ihrer Unterrichtsplanung und -durchführung?

12. Stellen Sie sich vor: In einem Unterrichtsgespräch merken Sie, dass ein oder mehrere Kinder eine ganz falsche Vorstellung oder eine ganz falsche Erklärung haben. Wie würden Sie damit umgehen?

14 Die Lehrkräfte waren gebeten worden, eine schriftliche Unterrichtsplanung zu der Unterrichtsreihe 'Schwimmen und Sinken' anzufertigen.
13. Wie schätzen Sie die Bedeutung des sozialen, gemeinsamen Lernens der Kinder im naturwissenschaftlichen Bereich des Sachunterrichts ein?

14. Halten Sie den Austausch der Kinder untereinander bei naturwissenschaftlichen Themen auch für sinnvoll, wenn Sie merken, dass einige Kinder sachlich falsche Vorstellungen oder Erklärungen haben?

15. Welche Bedeutung hat Ihrer Ansicht nach das selbstgesteuerte Lernen? [ergänzend:] Welche Bedeutung hat Selbststeuerung für das Lernen der Kinder?

16. In Bezug auf das Lernen der Kinder wird ja viel über Motivation und Interesse im Sachunterricht gesprochen. Finden Sie das übertrieben?

17. Auch über den Lebensweltbezug im Sachunterricht wird viel gesprochen. Wie stehen Sie dazu?

10.2 Kodierschema für die Interviewanalyse

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Kürzel</th>
<th>Beschreibung</th>
<th>Beispiel-Aussagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motiviertes Lernen</td>
<td>Mot1</td>
<td>Motivation (intrinsische oder zumindest identifiziert extrinsische Motivation) ist notwendige Voraussetzung für verständnisvolles Lernen</td>
<td>„Lernen muss Spaß machen und Freude machen, aber das durchaus auch mal anstrengend sein kann. So schon. Und dass die Kinder motiviert sein müssen. Aber ich glaube einfach, das müssen nicht immer so Riesensachen sein. Also so - was weiß ich - es gibt so Kollegen, die meinen dann, wenn sie die Hausaufgaben hinterher stempeln, dann wären die Kinder motiviert. Und solche Motivation finde ich Quatsch.“</td>
</tr>
<tr>
<td></td>
<td>Mot2</td>
<td>Naturwissenschaftliche Interessen von Grundschulkindern sollten im Unterricht aufgegriffen und gefördert werden.</td>
<td>„Häufig leite ich auch irgendwelche [...] neue Themen damit ein, dass ich die Kinder einfach mal Fragen zusammenstellen lasse oder was aufschreiben lasse, was ihnen an diesem Thema wichtig ist oder was sie glauben, was sie interessiert. Das man schon ein bisschen Interessen-bezogen arbeiten.“</td>
</tr>
<tr>
<td></td>
<td>Mot3 (−)</td>
<td>Aufgrund bestimmter „Zwänge“ wie Vorgaben durch Lehrpläne muss auch Unterricht durchgeführt werden, in dem die Kinder nicht motiviert sind (intrinsisch oder zumindest identifiziert extrinsisch).</td>
<td>„Bestimmte Sachen muss man einfach machen. Auch wenn es dann mal nicht alle interessiert.“</td>
</tr>
<tr>
<td>Anwendungsbezogenes Lernen</td>
<td>Anw1</td>
<td>Themen im nat. SU sollten von einer Fragestellung ausgehen, die einen Bezug zu Problemen oder Aspekten des alltäglichen Lebens hat. Das Gelernte sollte auf Aspekte der Lebenswelt der Kinder angewendet werden.</td>
<td>„Und die Naturphänomene, die um sie herum hält jeden Tag passieren - eh- genauer zu verstehen.“ „Also das finde ich gut, wenn der Unterricht eben an solchen Sachen aus dem Leben der Kinder auch aufgehängt wird.“</td>
</tr>
<tr>
<td>Kategorie</td>
<td>Kürzel (Unterkategorie)</td>
<td>Beschreibung</td>
<td>Beispiel-Aussagen</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Schüler sollten eigene Deutungen von Naturphänomenen entwickeln</td>
<td>Eig1</td>
<td>Kinder sollten die Möglichkeit haben, Deutungen bzw. Erklärungen für ein Naturphänomen selbst zu entwickeln/entwickeln.</td>
<td>„Ich möchte eigentlich schon entdecken lassen // von den Kindern und eh ... ja, ich denk, dass ist so das oberste Ziel, der oberste Leitgedanke, dass es entdeckt werden muss.“ „Ja im Gespräch natürlich die Kinder anzuregen, eigene Lösungsvorschläge oder Ideen zu entwickeln.“</td>
</tr>
<tr>
<td>Schüler mit Vorstellungen im Sinne von Präkonzepten</td>
<td>Sch1</td>
<td>Vorwissen im Sinne von Präkonzepten, die (vor-)physikalischen Konzepten u.U. entgegenstehen und weitere physikbezogene Lernprozesse erschweren können</td>
<td>„Die [Schüler] haben ja schon ganz oft eine Vorstellung, wie was funktioniert oder wie was zusammenhängt.“</td>
</tr>
<tr>
<td>Lehren und Lernen im Sinne von Conceptual Change</td>
<td>Con1</td>
<td>Naturwissenschaftliches Lernen als Conceptual Change und Bedingungen, die konzeptuelle Entwicklung begünstigen</td>
<td>„Und das zeigte sich ja auch bei dem Schwimmen und Sinken. Also einige kamen auch in der letzten Stunde noch damit um die Ecke, dass das noch daran läge // daran liegen konnte. Ne, es ist schon ne schwere Arbeit, die davon abzubringen.“ „Und besonders schön ist, wenn man dann, ja das also widerlegen kann.// Vielleicht erst so und dann im Experiment oder so nachweisen kann.“</td>
</tr>
<tr>
<td>Ablehnung praktizismus</td>
<td>Pra1</td>
<td>Für den Erwerb konzeptuellen naturwissenschaftlichen Verständnisses ist es nicht hinreichend, die Schüler im Sachunterricht praktisch handeln zu lassen.</td>
<td>„Und im Endeffekt, wenn sie nicht angehalten werden, darüber zu sprechen und das, das wirklich eh- das Für und Wider, das Richtig und Falsch und es ist aber doch so // immer wieder rückgreifen auf, auf Dinge, die man vorher gesagt hat. Wenn sie das nicht lernen, dann lernen sie auch aus den Experimenten eigentlich // nicht viel, ne.“</td>
</tr>
<tr>
<td>Betonung der Bedeutung von 'hands-on'-Erfahrungen</td>
<td>Pra2</td>
<td>'Hands-on'-Aktivitäten wird eine besondere Bedeutung für das naturwissenschaftliche Lernen von Grundschulkindern beigemessen.</td>
<td>„Also, dass was ich (vorhin eben) auch sagte, unbedingt das eigene Tun, Ausprobieren und Notieren, beschreiben und dann eben im größeren Klassenzusammenhang auch darzustellen.“</td>
</tr>
<tr>
<td>Notwendigkeit prozessbezogener Hilfestellungen</td>
<td>Lai1</td>
<td>Die Kinder sollten bei der Entwicklung von Deutungen zu Naturphänomenen Hilfestellungen bekommen. Gespräche über die Deutung von Naturphänomenen müssen von der Lehrkraft strukturiert werden.</td>
<td>„[...] dass ich zum Beispiel die Kinder dazu auffordere zu überlegen, ob das was miteinander zu tun hat, ob sie das sehen können.“</td>
</tr>
<tr>
<td>Transmission (tra)</td>
<td>Tra1</td>
<td>Bestimmte Inhalte, Lösungen oder Verfahrensweisen sollten den Kindern erklärt werden. Falsche Vorstellungen bzw. falsches Wissen der Kinder sollte richtig gestellt werden.</td>
<td>„Dann sollte man das ja schon richtig stellen. Es soll ja nichts Falsches stehen bleiben, ne.“</td>
</tr>
<tr>
<td></td>
<td>Tra2</td>
<td>Man sollte den Kindern keine fertigen Lösungen, Erklärungen oder Verfahren vorgeben. Falsche Ideen sollte man nicht einfach korrigieren.</td>
<td>„Leitgedanken? Ja, dass ich eigentlich nichts vorgeben möchte.“</td>
</tr>
</tbody>
</table>
10.3 Skalen zur Erfassung von Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften

In diesem Abschnitt werden die ungekürzten und nach Skalen geordnete Items zur Erfassung von Vorstellungen von Grundschullehrkräften zum Lehren und Lernen von Naturwissenschaften aufgeführt. Mit (-) gekennzeichnete Items gehen umgepolt in die Analysen ein. 'Nat. SU' steht für 'naturwissenschaftlicher Sachunterricht'. Kennwerte werden hier nicht berichtet, da diese bereits im Ergebnisteil der Arbeit dargestellt sind.

Motiviertes Lernen

<table>
<thead>
<tr>
<th>Item</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>mot6</td>
<td>Nur wenn für die Kinder die Auseinandersetzung mit einem naturwissenschaftlichen Thema wirklich bedeutsam ist, können sie erfolgreich lernen.</td>
</tr>
<tr>
<td>mot7</td>
<td>Nur wenn die Kinder bei einem naturwissenschaftlichen Thema motiviert sind, können sie verstandenes Wissen aufbauen.</td>
</tr>
<tr>
<td>mot9</td>
<td>Eine notwendige Voraussetzung jeden Wissenserwerbs ist auch im nat. SU, dass die Kinder motiviert sein müssen.</td>
</tr>
<tr>
<td>mot2</td>
<td>Kinder können Naturphänomene nur verstehen, wenn sie motiviert sind, diese zu verstehen.</td>
</tr>
</tbody>
</table>

Anwendungsbezogenes Lernen

<table>
<thead>
<tr>
<th>Item</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>anw2</td>
<td>Wenn Kinder nicht direkt an Anwendungbeispielen lernen, haben sie Probleme, das Erlernte auf den Alltag zu übertragen.</td>
</tr>
<tr>
<td>anw7</td>
<td>Themen im nat. SU sollten immer an einer Fragestellung aufgehängt werden, die einen direkten Bezug zu Problemen oder Aspekten des alltäglichen Lebens hat.</td>
</tr>
<tr>
<td>anw9</td>
<td>Nur wenn Themen im nat. SU in echte Fragestellungen aus dem Alltag eingebunden sind, können die Kinder das erworbbene Wissen auch anwenden.</td>
</tr>
<tr>
<td>anw3</td>
<td>Das Lernen sollte während der ganzen Zeit an Problemen oder Aspekten aus dem Alltag orientiert sein.</td>
</tr>
<tr>
<td>anw6</td>
<td>Echte und komplexe Problemstellungen aus dem Alltag müssen der Ausgangspunkt des nat. SU sein.</td>
</tr>
</tbody>
</table>

Entwicklung eigener Deutungen

<table>
<thead>
<tr>
<th>Item</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>eig14</td>
<td>Es kommt darauf an, dass die Schüler selbst Erklärungen für ein Naturphänomen suchen, auch wenn diese nicht sachlich korrekt sind.</td>
</tr>
<tr>
<td>eig13</td>
<td>Der Lehrer sollte den Kindern viel Zeit einräumen, eigene Deutungen für ein Naturphänomen zu suchen, auch wenn diese fachlich nicht richtig sind.</td>
</tr>
<tr>
<td>eig4</td>
<td>Wenn Kinder im nat. SU ihre eigenen Formulierungen verwenden dürfen, können sie Naturphänomene besser verstehen.</td>
</tr>
<tr>
<td>eig10</td>
<td>Lehrer sollten Schülern, die Probleme mit der Deutung eines Phänomens haben, Zeit für ihre eigenen Deutungsversuche lassen.</td>
</tr>
<tr>
<td>eig11</td>
<td>Man sollte den Schülern ermöglichen, sich erst ihre eigenen Deutungen zu suchen, bevor der Lehrer Hilfen gibt.</td>
</tr>
<tr>
<td>eig12</td>
<td>Das Lernen wird ineffizient, wenn die Kinder im nat. SU eigene Deutungen für Naturphänomene suchen sollen und dabei falsche Vorstellungen entstehen.</td>
</tr>
<tr>
<td>eig6</td>
<td>Schüler lernen Naturwissenschaften am besten, indem sie selbst Wege zur Lösung von Problemen suchen.</td>
</tr>
<tr>
<td>eig8</td>
<td>Wenn die Schüler im nat. SU eigene Ideen entwickeln, wird das Lernen fachlich angemessener Vorstellungen erschwert.</td>
</tr>
</tbody>
</table>

Diskussion von Schülervorstellungen

<table>
<thead>
<tr>
<th>Item</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>dis5</td>
<td>Die Themen im nat. SU sind für Diskussionen unter den Kindern eher ungeeignet.</td>
</tr>
<tr>
<td>dis10</td>
<td>Die Kinder einer Klasse sollten auch dann angeregt werden, ihre Vorstellungen untereinander zu diskutieren, wenn man als Lehrer feststellt, dass einige Kinder falsche Vorstellungen zu einem Naturphänomen haben.</td>
</tr>
</tbody>
</table>
Die Themen im nat. SU sind für Diskussionen unter den Kindern eher ungeeignet.

Im nat. SU sollten die Kinder aufgefordert werden, ihre Deutungen zu einem Phänomen gegenüber Mitschülern zu vertreten.

Damit Schüler Naturphänomene verstehen, ist es entscheidend, dass sie ihre eigenen Lösungsideen untereinander diskutieren.

Schülervorstellungen

Grundschulkinder können zu naturwissenschaftlichen Phänomenen bereits hartnäckige Vorstellungen haben, die den Lernprozess erschweren.

Schüler lassen im nat. SU so schnell nicht ab von den Vorstellungen, die sie mit in den Unterricht bringen.

Grundschulkinder kommen mit teilweise tief in Alltagserfahrungen verankerten Vorstellungen zu Naturphänomenen in den Unterricht hinein.

Conceptual Change

Wenn Kinder naturwissenschaftliche Inhalte lernen, stehen oft alte Vorstellungen in ständiger Konkurrenz mit neu erworbenen Vorstellungen.

Naturwiss. Lernen bedeutet oft, dass sich neue Vorstellungen bei den Kindern erst auf lange Sicht gegen alte Erklärungsmuster durchsetzen.

Lernen im nat. SU bedeutet oft ein inneres Ringen (Hinundher) zwischen alten und neuen Vorstellungen über ein Phänomen.

Um das Lernen der Kinder herauszufordern, sollte der Lehrer sie mit Beobachtungen oder Phänomenen konfrontieren, die den Erwartungen des Kindes widersprechen.

Wenn Kinder mit ihren aktuellen Erklärungsansätzen zu einem Naturphänomen zufrieden sind, wird das Lernen neuer, sachlich angemessener Vorstellungen erschwert.

Wenn Kinder mit ihren aktuellen Erklärungsansätzen zu einem Naturphänomen zufrieden sind, wird das Lernen neuer, sachlich angemessener Vorstellungen erschwert.

Praktizismus

Das Durchführen von Versuchen im nat. SU stellt eigentlich schon sicher, dass die Kinder Naturphänomene verstehen.

Wenn Kinder im nat. SU Versuche durchführen, Dinge herstellen und viel ausprobieren können, ist eigentlich schon sichergestellt, dass sie die naturwissenschaftlichen Inhalte der Grundschule lernen.

Für das Lernen naturwissenschaftlicher Inhalte der Grundschule reicht es keineswegs, die Kinder praktisch handeln zu lassen.

Das Handeln der Kinder im nat. SU ist so entscheidend, dass andere Prinzipien der Unterrichtsgestaltung zweitrangig sind.

Für den Sachunterricht in der Grundschule gilt: Spaß beim Handeln ist ein Garant für Lernen.

Laisser-faire

Ohne Eingreifen und Lenken des Lehrers lernen Kinder im nat. SU am besten.

Gespräche über die Deutung von Naturphänomenen sind nur sinnvoll, wenn sich der Lehrer dort ganz heraushält.

Für mich gilt die Maxime: Kinder sollen im nat. SU Experimente grundsätzlich ohne Hilfe des Lehrers selbständig entwickeln.

Der Lehrer soll die Kinder im nat. SU bei der Suche nach einem Lösungsweg ganz eigenständig vorgehen lassen und sich dabei vollkommen zurückhalten.

Wenn der Lehrer die Kinder anspruchsvolle naturwiss. Themen ganz selbständig bearbeiten lässt, können die Kinder diese Themen nicht verstehen.

10.4 Skalen zur Erfassung des physikbezogenen Selbstkonzepts und Sachinteresses von Lehrkräften

Physikbezogenes Fähigkeitsselfkonzept

Ich bin gut in Physik.
Es fällt mir leicht, neue Inhalte im Fach Physik zu verstehen.
(-) Physik ist viel zu schwierig für mich.
(-) Mir fehlen einfach die Grundlagen, um mich mit physikalisch Themen auseinander zu setzen.

\[M = 1.94 \quad SD = .59 \quad M (r_{it}) = .70 \quad \alpha = .85 \]

Physikbezogenes Sachinteresse

Mich mit physikalischen Inhalten zu beschäftigen, macht mir großen Spaß.
Für die Beschäftigung mit physikalischen Dingen bin ich auch bereit, meine Freizeit zu verwenden.
(-) Physikalische Inhalte sind schrecklich langweilig.
(-) Mich mit Physik zu beschäftigen ist das Schrecklichste, was es gibt.

\[M = 2.81 \quad SD = .55 \quad M (r_{it}) = .59 \quad \alpha = .78 \]