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Abstract

The central objects of investigation in this thesis are the thick subcategories as

well as the exact abelian extension closed subcategories of the category of quiver rep-

resentations. A full additive subcategory C of an abelian category A is called thick,

provided that C is closed under taking direct summands, kernels of epimorphisms,

cokernels of monomorphisms and extensions. The category C is called exact abelian

if it is abelian, the embedding functor preserves exact sequences, hence closed under

arbitrary kernels and cokernels.

First we consider the category of locally nilpotent representations over the path

algebra of the cyclic quiver. We show that any thick subcategory is exact abelian.

Then we give a combinatorial description of thick subcategories via non-crossing

arcs on the circle and using generating functions, we calculate their number. Fur-

thermore, we establish a bijection between thick subcategories with a projective

generator, thick subcategories without a projective generator, support-tilting and

cotilting modules. Then we study exact abelian extension closed subcategories for

Nakayama algebras, and we find a recursive formula for their number.

For a finite and acyclic quiver, we consider the category of its quiver representa-

tions. We show that any thick subcategory generated by preprojective or preinjective

representations is exact abelian. Then we specialise to Euclidian quiver case and we

verify that any thick subcategory is exact abelian. Furthermore, we extend a result

of Ingalls and Thomas and we give a complete combinatorial classification of thick

subcategories in that case.

For a hereditary algebra A, we consider the tilted algebra B = EndA(TA), where

TA is a tilting module. We establish a bijection between the exact abelian extension

and torsion closed subcategories of modA and the exact abelian extension closed

subcategories of modB.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit den dicken, sowie mit den exak-

ten abelschen und erweiterungsabgeschlossenen Unterkategorien der Kategorie der

Darstellungen eines Köchers. Eine volle additive Unterkategorie C einer abelschen

Kategorie A heißt dick, falls C abgeschlossen ist unter Bildung von direkten Sum-

manden, Kernen von Epimorphismen, Kokernen von Monomorphismen und Er-

weiterungen. Die Kategorie C heißt exakt abelsch, falls sie abelsch ist und der

Einbettungsfunktor exakte Folgen erhält, insbesondere ist C dann abgeschlossen

bezüglich Bildung von beliebigen Kernen und Kokernen.

Zunächst untersuchen wir die Kategorie der lokal nilpotenten Darstellungen über

der Wegealgebra eines zyklischen Köchers. Wir zeigen, dass eine dicke Unterkate-

gorie exakt abelsch ist. Hiernach beschreiben wir kombinatorisch die dicken Un-

terkategorien durch nicht kreuzende Bögen auf einem Kreis und mit Hilfe der erzeu-

genden Funktionen berechnen wir ihre Anzahl. Weiterhin zeigen wir Bijektionen

zwischen den dicken Unterkategorien mit projektivem Generator, den dicken Un-

terkategorien ohne projektiven Generator, Trägerkipp- und Kokippmoduln. Dann

untersuchen wir die exakten abelschen und erweiterungsabgeschlossenen Unterkate-

gorien für Nakayama Algebren und finden eine rekursive Formel für ihre Anzahl.

Danach wenden wir uns der Kategorie der Darstellungen endlicher azyklischer

Köcher zu. Wir zeigen, dass dicke Unterkategorien, die von präprojektiven oder

preinjektiven Darstellungen erzeugt werden, exakt abelsch sind. Wir untersuchen

euklidische Köcher im Speziellen und zeigen, dass dicke Unterkategorie exakt abelsch

sind. Dann ergänzen wir ein Ergebnis von Ingalls und Thomas zu einer vollständige

kombinatorische Klassifikation der dicken Unterkategorien für diesen Fall.

Für eine erbliche Algebra A betrachten wir die gekippte Algebra B = EndA(TA),

wobei TA Kippmodul ist. Wir zeigen eine Bijektion zwischen den exakten abelschen

erweiterungs- und torsionsabgeschlossenen Unterkategorien von modA und den ex-

akten abelschen erweiterungsabgeschlossenen Unterkategorien von modB.



Acknowledgements

I would like to thank my advisor Henning Krause for his support of the thesis. Also

for the patience and encouraging words in the moments of uncertainty. I express

my gratitude to Yu Ye, for his responsiveness and for his constant encouragements.

I am grateful to him for his ideas, which led to the results in Chapter 3. Special

thanks to Dirk Kussin and Hugh Thomas for being my referees; in particular I

thank Hugh Thomas for the patience to read the draft of my thesis, for corrections,

comments and recommendations he gave, which significantly improved the thesis. I

would like to thank Xiao-Wu Chen for the helpful discussions concerning Chapter 4.

Thanks to Marcel Wiedemann for proofreading parts of this thesis, as well as for his
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Chapter 1

Introduction

In investigations of the structure and properties of algebras (resp. their modules), it

is often essential to have a concrete realisation of a given algebra (resp. their mod-

ules). In general, the aim of the representation theory of algebras is to develop tools

for such realisations. Due to work of Gabriel [Gab1], each finite dimensional algebra

over an algebraically closed field k corresponds to a graphical structure, called a

quiver, and conversely, each quiver, more precisely its associated path algebra, corre-

sponds to an associative k-algebra, which has an identity and it is finite dimensional

under some conditions. In fact, using the quiver associated to an algebra A, it

is possible to visualise a finitely generated A-module as a quiver representation, a

family of finite dimensional k-vector spaces, connected by linear maps.

In the thesis, we deal mostly with finite dimensional hereditary algebras. An

algebra is hereditary, if any submodule of a projective module (=a module with

basis vectors) is projective. In fact, any such algebra is realised by the path algebra

of a finite and acyclic quiver. The working environment for us is the module category

of a finite dimensional (hereditary) algebra, that is the category of finite dimensional

vector spaces with scalars from the algebra.

Quiver-theoretical techniques provide a convenient way to visualise finite dimen-

sional algebras. However, actually to compute the indecomposable modules and

the homomorphisms between them, we need other tools. For a finite dimensional

algebra A, there is a special quiver, called the Auslander-Reiten quiver of modA,

that combinatorially encodes the building blocks of modA, namely the indecom-

posable modules and the irreducible morphisms. It can be considered as a first

approximation of the module category of a finite dimensional algebra.

The central objects of our study are thick and exact abelian extension closed

subcategories of a module category of an algebra (or equivalently the category of its

quiver representations).

A full additive subcategory C of an abelian category A is called thick, provided

1



Chapter 1. Introduction 2

that C is closed under taking direct summands, kernels of epimorphisms, cokernels

of monomorphisms and extensions. C is called exact abelian if it is abelian, the

embedding functor preserves exact sequences, hence closed under arbitrary kernels

and cokernels. From the definition it follows that an exact abelian subcategory is

thick if and only if it is closed under taking extensions, and a thick subcategory is

exact abelian if and only if it is closed under taking arbitrary kernels. The latter is

true since if C is thick, and X, Y are objects in C,

X
�

"D
DD

DD
DD

D
f // Y �

#H
HHHHHHHH

Ker f
-



<<yyyyyyyy
Im f

.

�

==zzzzzzzz
Coker f

then Ker f ∈ C ⇔ Im f ∈ C ⇔ Coker f ∈ C.

The study of exact abelian extension closed subcategories was highlighted by

recent work of Colin Ingalls and Hugh Thomas. They establish a large class of bi-

jections involving them, which give a relation to important objects of representation

theory of finite dimensional algebras, as well as a relation to recently developing

cluster algebras and cluster categories.

Theorem 1.0.1 [IT] Let Q be a finite acyclic quiver. There are bijections between

the following objects:

• clusters in the acyclic cluster algebra with initial seed Q;

• isomorphism classes of basic cluster-tilting objects in the cluster category;

• isomorphism classes of basic support-tilting objects in mod kQ;

• torsion classes in mod kQ with a projective generator;

• exact abelian extension closed subcategories in mod kQ with a projective gen-

erator.

Further, a connection with derived categories was found by Kristian Brüning in

his thesis.

Theorem 1.0.2 [Br1] There is a bijection between thick subcategories inDb(mod kQ)

and exact abelian extension closed subcategories in mod kQ.

In this thesis, the study of exact abelian extension closed subcategories of a

hereditary abelian category is continued. I shall give a brief account of my work by

outlining the obtained results.
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The core work of the thesis is contained in chapters 2, 3 and 4. Each chapter

begins with a short introduction. In order to be self-contained, all the facts needed

(with appropriate references) are also exposed within the chapter.

In chapter 2, we consider the path algebra k∆̃n of the cyclic quiver,

∆̃n : 1 // 2 // 3 // . . . // n.kk

and two (full, additive) subcategories of category of their representations, namely

T̃n the category of locally nilpotent representations and Tn the category of nilpotent

representations. We comment that the category Tn plays an important rôle in the

representation theory of algebras of infinite representation type, since it describes

(connected) components of the Auslander-Reiten quiver of their module categories.

In proposition 2.2.10, we observe that every thick subcategory in Tn is exact

abelian. After that, in proposition 2.2.13 we give a combinatorial classification of

thick subcategories via establishing a bijection with the non-crossing arcs on the

circle. Further, in proposition 2.4.2 using generating functions we calculate their

number.

The main result in the chapter is a bijection involving thick subcategories.

Theorem 1.0.3 There is a bijective correspondence between:

• isomorphism classes of support-tilting objects in Tn;

• thick subcategories in Tn with a projective generator;

• thick subcategories in Tn without a projective generator;

• isomorphism classes of cotilting objects in T̃n.

At the end, we classify exact abelian extension closed subcategories for a class of

algebras, called Nakayama algebras, which are quotients of the path algebra of the

cyclic quiver. In proposition 2.6.13, we give a recursive formula for their number.

We comment that the found formula is a generalisation of the recursive formula for

the Catalan numbers.

The results in Chapter 3 are joint work with Yu Ye. For a finite and acyclic

quiver Q, we consider its path algebra kQ. We step on a result of Crawley-Boevey

[CB1, Lemma 5], which says that any thick subcategory of mod kQ generated by an

exceptional sequence (a special sequence of indecomposable kQ-modules) is exact

abelian. In proposition 3.1.10, we construct for a thick subcategory C ⊆ mod kQ

generated by preprojective modules, an exceptional sequence that generates C. After

that we specialise to the module category of kQ, where Q is an Euclidian quiver.

We introduce reduction techniques, some of which work in a more general context
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(see proposition 3.2.12), which enable us to prove that any thick subcategory in

mod kQ is exact abelian (theorem 3.2.14). Further, by a result of Colin Ingalls and

Hugh Thomas [IT, Theorem 1.1], there is a bijection between non-crossing partitions

associated to Q and exact abelian extension closed subcategories with a projective

generator in mod kQ. As one observes, there are exact abelian extension closed

subcategories without a projective generator (for instance the tubes in the regular

component of the Auslander-Reiten quiver of mod kQ). So we use results from the

second chapter and combining with the above cited theorem, we give a complete

classification.

Theorem 1.0.4 Let k be an algebraically closed field, Q an Euclidian quiver and C

a connected exact abelian extension closed subcategory of mod kQ.

(i) [IT] If C has a projective generator, then C corresponds to a non-crossing

partition of type Q.

(ii) If C has no projective generator, then C corresponds to a configuration of

non-crossing arcs covering the circle.

At the end of the chapter, we present a very elegant proof, due to Dieter Vossieck,

that every thick subcategory of a hereditary abelian category is exact abelian.

In chapter 4 we deal with tilted algebras, an important class of algebras which

have been extensively studied in [Bo] and [HaR]. For a finite dimensional hereditary

algebra A, there is the concept of a tilting module TA, which can be thought of as

being close to the Morita progenerator. If we consider the k-algebra B = EndA(TA),

then the categories modA and modB are reasonably close to each other. The

algebra B = EndA(TA) is called tilted algebra. The benefit of tilted algebras is that

when the representation theory of an algebra A is difficult to study directly, it may

be convenient to replace A with the simpler algebra B = EndA(TA), and then to

reduce the problem on modA to a problem on modB.

The main result in the chapter is a classification of exact abelian extension closed

categories for tilted algebras.

Theorem 1.0.5 Let A be a finite dimensional hereditary k-algebra, TA a basic tilt-

ing module and B = EndA(TA). Then there is a bijection between the exact abelian

extension and torsion closed subcategories of modA and the exact abelian extension

closed subcategories of modB.

The thesis end with an Appendix, where some basic facts, relevant to all chapters,

are collected.



Chapter 2

Thick subcategories for cyclic

quivers

This chapter is dedicated to study thick subcategories for the category of locally

nilpotent cyclic quiver representations. We establish a bijection involving thick

subcategories, cotilting and support-tilting objects of that category. Further, we

present a combinatorial classification of thick subcategories as well as we calculate

their number. At the end, we investigate the exact abelian extension closed cate-

gories for algebras which are quotients of the path algebra of the cyclic quiver.

2.1 Cyclic quivers

In the whole chapter k is an algebraically closed field. We begin with very general

framework and consider categories which are k-linear, small abelian, Hom-finite,

hereditary and satisfy Serre duality. Following [Ln], we recall shortly all these con-

cepts and then specialise to particular examples of such categories, which are target

of our investigations.

Let T be an abelian k-linear category. Recall that k-linearity of T means that

the morphism groups are k-vector spaces, and that composition

Hom(Y, Z) × Hom(X, Y ) → Hom(X,Z), (g, f) 7→ gf,

is k-bilinear for all objects X, Y and Z from T .

We recall the notion of an abelian category. By definition, a sequence 0 →

A
u
→ B

v
→ C → 0 is called short exact if for each object X of T the induced se-

quence 0 → Hom(X,A)
Hom(X,u)
−→ Hom(X,B)

Hom(X,v)
−→ Hom(X,C) is exact and dually

for each object Y of T the sequence 0 → Hom(C, Y )
Hom(v,Y )
−→ Hom(B, Y )

Hom(u,Y )
−→

Hom(A, Y ) is exact. For T to be abelian, one requires two things:

5



2.1. Cyclic quivers 6

(1) For every morphism A
f
→ B there exist two short exact sequences 0 → K

α
→

A
β
→ C → 0 and 0 → C

γ
→ B

δ
→ D → 0 such that f is obtained from the

commutative diagram below:

0

��@
@@

@@
@@

@ 0

C

>>~~~~~~~~

γ

��@
@@

@@
@@

A

β
??~~~~~~~ f

// B
δ

  @
@@

@@
@@

K

α
>>~~~~~~~

D

  @
@@

@@
@@

0

??��������
0.

(2) T has finite direct sums, which implies the uniqueness of the additive struc-

ture.

We impose on T some finiteness assumptions: T is a small category, that is,

the objects of T form a set, and T is Hom-finite, that is, all morphism spaces

HomT (X, Y ) are finite dimensional over k.

The properties of T so far imply that T is a Krull-Schmidt category.

Proposition 2.1.1 Each abelian Hom-finite k-category is a Krull-Schmidt cate-

gory, that is,

(i) each indecomposable object from T has a local endomorphism ring, and

(ii) each object from T is a finite direct sum of indecomposable objects.

We assume that the category T is hereditary, that is, the extensions ExtnT (X, Y )

vanish in degrees n ≥ 2 for all objects X, Y from T , see also A.2. Later we shall use

that exact abelian subcategory of a hereditary category is again hereditary.

We continue with strengthening the heredity condition, namely, we assume the

existence of an equivalence τ : T → T and of natural isomorphism

Ext1
T (X, Y )

∼
→ DHomT (Y, τX)

for all objects X, Y from T . The consequences of a Serre duality are of major

importance:

Proposition 2.1.2 Assume that T is an abelian k-category which is Hom-finite

and satisfies Serre duality. Then the following holds:
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(i) T is an Ext-finite hereditary category without non-zero projectives or injec-

tives.

(ii) T has almost split sequences with τ acting as the Auslander-Reiten

translation. That is, for each indecomposable object X there is an almost-

split sequence 0 → τX → E → X → 0.

We assume that T is a length category, that is, each object of T has finite length.

An object U of an abelian category is called uniserial if the subobjects of U are

linearly ordered by inclusion and form a finite chain

0 = U0 ⊆ U1 ⊆ · · · ⊆ Uℓ−1 ⊆ Uℓ = U.

If all indecomposables in an abelian length category U are uniserial, we call U

uniserial category.

The following theorem, due to Gabriel, unifies all notions used up-to-now.

Theorem 2.1.3 [Gab2, Proposition 8.3] Let T be a Hom-finite hereditary length

category with Serre duality. Then T is uniserial. Moreover, for the indecomposable

objects ind T of T , we have ind-T =
⊔

λ∈I Tλ, where the Auslander-Reiten quiver of

Tλ is of the form ZA∞/(τn), where n ∈ N0.

Therefore the Auslander-Reiten quiver of T decomposes into stable tubes, where for

convenience ZA∞ is also viewed as a tube of an infinite period.

Now, we introduce the main example of our investigation in this chapter, namely

the categories that satisfy all the conditions of the Gabriel’s theorem. Before that,

we refer the reader to A.1 for recalling basic facts about quivers and their represen-

tations. We consider the path algebra k∆̃n of the cyclic quiver:

∆̃n : 1 // 2 // 3 // . . . // n.kk

Let R = R∆̃n
be the two-sided ideal generated by all arrows of ∆̃n. A k∆̃n-module

M is R-nilpotent (nilpotent for short) if for each m ∈ M there exist ℓ ≥ 0 such

that Rℓ.m = 0. If ℓ = ℓ(m) depends on m, we say that M is locally R-nilpotent

(locally nilpotent for short). We denote by nrep(k∆̃n) the category of nilpotent and

by NRep(k∆̃n) the category of locally nilpotent modules over k∆̃n. If we consider

the category of finite dimensional locally nilpotent modules over k∆̃n, we notice

that it is the same as nrep(k∆̃n). The argument is the following: Trivially, every

nilpotent module is locally nilpotent. Now, if ℓ(M) < ∞, then for any ℓ > ℓ(M),

Rℓ annihilates M .

Remark 2.1.4 If we consider the subquiver

∆n : 1 // 2 // . . . // n,
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of ∆̃n, then we have a fully-faithful embedding mod k∆n →֒ mod k∆̃n. The quiver

∆n is the directed An Dynkin quiver. The construction of the Auslander-Reiten

quiver of mod k∆n is well-known, see A.3 for more details.

Example 2.1.5 The Auslander-Reiten quiver of mod k∆3.

r r r

r

r

r

T1 T2 T3

T1[2] T2[2]

T1[3]

�
��
�
��

@
@R�
��

@
@R
@
@R

We comment that the category of nilpotent modules plays an important rôle in

the representation theory of algebras of infinite representation type, since it describes

(connected) components of the Auslander-Reiten quiver of their module categories.

For convenience, from now onwards, we denote with Tn the category of nilpotent

modules and with T̃n the category of locally-nilpotent modules over k∆̃n. The

following proposition collects all the properties of Tn so far.

Proposition 2.1.6 Tn is Hom-finite hereditary length uniserial category with Serre

duality.

The number of isoclasses of simple objects of an abelian category A is called the

rank of A and we denote it by rk(A). In Tn we have n simple modules, and we de-

note them with T1, T2, . . . , Tn. Since Tn is an uniserial category, any indecomposable

object is uniquely determined by its socle and length. We set Ti[ℓ] to be the inde-

composable module with socle Ti and length ℓ. Recall that the simple composition

factors of a module X is called the support of X and it is denoted by supp(X).

The construction of the Auslander-Reiten quiver of Tn is well-known, see [R2,

Chapter 4.6]. As mentioned in the Gabriel’s theorem, it is of the form ZA∞/(τn).
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Figure 2.1: AR-quiver of T3
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We consider another category related to k∆̃n, namely the category of locally

finite modules over the completion algebra k[[∆̃n]] of k[∆̃n] = k∆̃n. First, recall

that k[[∆̃n]] = lim
←
k[∆̃n]/R

i, where R is the same as before. A module is locally

finite if it is a filtered colimit of finite length modules. For more details, we refer to

the paper of [BKr, Section 2]. Now, we point out the following result.

Theorem 2.1.7 [CY, Main Theorem] The category of locally finite modules over

k[[∆̃n]] is equivalent to NRep(k∆̃n).

In [BKr], the classification of indecomposable objects in the category of locally

finite modules over k[[∆̃n]] and hence in NRep(k∆̃n) is made and we shall use it later.

We refer the reader to the paper [RV], where complete classification of categories

sharing the same properties as Tn is made.

2.2 Orthogonal sequences and thick subcategories

From now onwards, Tn will be a tube of rank n. We begin with recalling the following

lemma.

Lemma 2.2.1 [Happel-Ringel] Let H be a hereditary abelian category. Assume that

X, Y ∈ H are indecomposable objects and Ext1
H(Y,X) = 0. Then any non-zero

morphism f : X → Y is either monomorphism or epimorphism.

The proof can be found in [AS, Chapter VIII.2, Lemma 2.5]. Now, we make the

following observation.

Lemma 2.2.2 Let ζ : 0 → X → Y → Z → 0 be a non-split short exact sequence

with X,Z indecomposables in Tn. Then Y has at most two indecomposable sum-

mands.

Proof : Let Y = Y1

⊕

· · ·
⊕

Yn, n ≥ 3 be the decomposition of Y into indecom-

posable modules. Since Z is uniserial and g : Y → Z is an epimorphism, then at

least one of gi’s (gi : Yi → Z, i = 1, . . . , n) is an epimorphism, say g1. Consider the

following diagram:

Y1 g1

%%LLLLLL

X

f1 99rrrrrr

f̃ %%KKKKKK Z,

Ỹ
−g̃

99ssssss

where Ỹ = Y2 ⊕ · · · ⊕ Yn. The sequence ζ is short exact hence the square above

is both push-out and pull-back. By the property of the pull-back, we have that f̃

is an epimorphism and Ker g1
∼= Ker f̃ . But Ker g1 is indecomposable, then so is

X/Ker f̃ ∼= Ỹ and hence n ≦ 2. 2
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Remark 2.2.3 Let ζ be as above. Then we have two cases for Y :

(1) Y is indecomposable. Then Soc(Y ) = Soc(X), Top(Y ) = Top(Z) and surely

ℓ(Y ) = ℓ(X) + ℓ(Z).

(2) Y = Y1 ⊕ Y2. Then Ỹ = Y2, f̃ = f2, g̃ = g2. Since 0 = Ker f1 ∩ Ker f2

and f2 is not monomorphism (since then f2 will be an isomorphism and the

sequence will split), we have that f1 is monomorphism and using the push-out

property, so is g2. So in this case we have f1, g2 are monomorphisms and f2, g1

are epimorphisms and hence Top(X) = Top(Y2) and Soc(Y2) = Soc(Z). We

make another conclusion: Given 0 6= f : Xi → Xj, f is neither monomorphism

nor epimorphism, then the following short exact sequence is non-split:

Y1 g1

''NNNNNNN

0 // Xi

f1
77ppppppp

f2
&&NNNNNN

f //________ Xj
// 0,

Im f
g2

77pppppp

Now, we prove the following lemma.

Lemma 2.2.4 Let X be indecomposable in Tn. Then EndTn
(X) ∼= k[x]/(xt+1),

where t = ⌈ ℓ(X)−1
n

⌉.

Proof : We notice that for any 0 6= f : X → X, which is neither monomorphism

nor epimorphism, we have X
π
։ Im f

i
→֒ X with Im f = Soc(X) = Top(X), which

yields a non-split short exact sequence of the form 0 → X → Im f ⊕ Y2 → X → 0.

Now, if ℓ(X) ≤ n, then it is straightforward to see that EndTn
(X) ∼= k. Now, let

ℓ(X) > n. Since X is uniserial, there are exactly ℓ(X)− 1 indecomposable modules

with length smaller than ℓ(X), which have a socle Soc(X). Since Tn is n-periodic,

then we have t = ⌈ ℓ(X)−1
n

⌉ modules with the same top and socle as X. At last, we

notice that for s = 1, . . . , t we have πs1 = πs, where X
π1

։ Y1

π2

։ Y2

π3

։ · · ·
πt

։ Yt,

which yields immediately EndTn
(X) ∼= k[x]/(xt+1). 2

An object X in an abelian category A is called a point if EndA(X) is a division

ring. Two objects X, Y in A are orthogonal if HomA(X, Y ) = HomA(Y,X) =

0. For example any two simple objects in A are orthogonal. A sequence E =

(X1, . . . , Xk) is called an orthogonal sequence if any pair (Xi, Xj) for i 6= j is

orthogonal.

We comment that if X is a point in Tn with ℓ(X) < n, then X does not have self-

extensions, and hence by [Br1, Lemma 6.3.4], add(X) is an exact abelian extension

closed subcategory of Tn.

Corollary 2.2.5 In Tn the points are all indecomposable modules with length less

or equal n.
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Let E be a set of pairwise orthogonal points in A. If A is an object of A, then

an E-filtration of A is given by a sequence of subobjects

0 = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ An = A,

with Ai/Ai−1 ∈ E for 1 ≤ i ≤ n. We denote by U(E) the full subcategory of A

consisting of all objects of A with an E-filtration. The next theorem, due to Ringel,

explains why orthogonal sequences are important.

Theorem 2.2.6 [R1, Theorem 2] Let E be a set of pairwise orthogonal points in

A. Then U(E) is an exact abelian subcategory which is closed under extensions, and

the set E is the set of all simple objects in U(E).

For any subset S ∈ Tn, we define Thick(S) to be the smallest thick subcategory

of Tn containing S, and call it the thick subcategory generated by S.

We associate to every thick subcategory C in Tn a sequence of indecomposable

modules, called reduced sequence as follows: For every simple module Ti, i =

1, . . . , n of Tn we take an indecomposable module Xi ∈ C such that Soc(Xi) = Ti

and Xi has minimal length or Xi = 0 if such module does not exist.

Proposition 2.2.7 Let E = (X1, . . . , Xk) be a reduced sequence in Tn. Then E is

orthogonal and each Xi is a point.

Proof : Let Xi, Xj ∈ E (i 6= j) and f : Xi → Xj be a non-zero morphism. By

construction of E, f can not be a monomorphism. Also, it can not be epimor-

phism, since Soc(Ker f) = Soc(Xi) and Ker f has smaller length. Now, f is neither

monomorphism nor epimorphism and by lemma 2.2.1 we have a non-split exact se-

quence: 0 → Xi → Y → Xj → 0 with Y ∈ C, since C is closed under extensions.

By the remark 2.2.3, we have Y = Y1

⊕

Y2 and Y2 →֒ Xj, which contradicts the

minimal choice of Z and hence f = 0. Now, assume that EndTn
(Xi) is not isomor-

phic to k. Then by proposition 2.2.4 we have that ℓ(Xi) > n and hence we have

a non-split short exact sequence 0 → Xi → Y → Xi → 0, with Y = Y1 ⊕ Im f .

Clearly, Im f ∈ C and ℓ(Im f) < ℓ(Xi), which shows that for all Xi ∈ E we have

ℓ(Xi) ≤ n and hence EndTn
(Xi) ∼= k. 2

Proposition 2.2.8 In Tn there is a bijection between orthogonal sequences and thick

subcategories.

Proof : Let C be an arbitrary thick subcategory and E = (E1, . . . , Ek) be its

associate reduced sequence. By proposition 2.2.7, we have that E is orthogonal.

Obviously, Thick(E) ⊆ C has reduced sequence E. We claim that Thick(E) = C.

To verify this, takeX ∈ C with minimal length such thatX /∈ Thick(E) and consider

0 // Soc(X) // X // X/ Soc(X) // 0.
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Then Soc(X) ∈ Thick(E) and ℓ(X/ Soc(X)) < ℓ(X) implies X/ Soc(X) ∈ Thick(E).

Since Thick(E) is closed under extensions, then X must be in Thick(E). Thus, we

justified that any thick subcategory is uniquely determined by its reduced sequence.

Now, we take an arbitrary orthogonal sequence E ′ = (E ′1, . . . , E
′
k) and consider

Thick(E ′). We claim that the reduced sequence of Thick(E ′) is E ′. By definition,

we have HomTn
(E ′i, E

′
j) = 0 for i 6= j. If we have non-zero extensions among E ′i’s, say

0 → E ′i → E
′′

ij → E ′j → 0, and 0 → E ′j → E
′′

jk → E ′k → 0, then Thick(E
′′

ij , E
′′

jk) =

Thick(E ′i, E
′
j, E

′
k), since Top(E

′′

ij) = Top(E ′j), Soc(E ′j) = Soc(E
′′

jk), and hence E ′j
would appear in the middle term of the extension E

′′

ij by E
′′

jk. We conclude that it is

not possible to obtain an indecomposable module with length smaller than ℓ(E ′i) for

i = 1, . . . , k in Thick(E ′1, . . . , E
′
k). Hence E ′ is the reduced sequence of Thick(E ′).2

Corollary 2.2.9 The number of thick subcategories in Tn is finite.

Proof : As noticed in proposition 2.2.7, there is no module with length greater than

n which belongs to a reduced sequence, since this module has a self-extension and

the middle term has a direct summand with smaller length. Since there are finite

number of points in Tn, there are finitely many reduced sequences as well as thick

subcategories. 2

Recall that an abelian category C is connected, if any decomposition C =

C1

∐

C2 into abelian categories implies C1 = 0 or C2 = 0.

Theorem 2.2.10 Any thick subcategory of Tn is exact abelian. More precisely, for

any connected thick subcategory C of Tn, C is either equivalent to mod k∆s or to a

tube of rank s, where s ≤ n.

Proof : Take a thick subcategory C ⊆ Tn and its reduced sequence E. We show

that Thick(E) = U(E). Then using the result of Ringel, U(E) is exact abelian

and hense so is C = Thick(E). Obviously, Thick(E) ⊆ U(E). Now, since U(E) is

uniserial, for the indecomposable object M ∈ U(E) we take its composition series in

U(E): M ⊇ M1 ⊇ M2 ⊇ . . . ⊇ Mt−1 ⊇ Mt = 0. Consider the short exact sequence

0 → Mt−1 → Mt−2 → Mt−2/Mt−1 → 0. We have that Mt−1 and Mt−2/Mt−1

are simples, hence are in Thick(E) and since the latter is closed under extensions,

we have that Mt−2 ∈ Thick(E). Using the same argument along the composition

series of M , we conclude that M ∈ Thick(E). Hence U(E) = Thick(E). For

the last part of the theorem: Note that since C is hereditary, there exists a finite

and connected quiver Q, such that C ∼= mod kQ. Moreover C is uniserial, hence

by [AS, Chapter V.3, Theorem 3.2], C ∼= mod k∆s or C ∼= Ts, for some s ≤ n. 2

Example 2.2.11 The indecomposable modules of Thick(Ti[n]) are Ti[kn] (k ∈ N).

In fact, Thick(Ti[n]) ∼= T1.
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As we have shown, any thick subcategory C of Tn is exact abelian and therefore, it

is uniquely determined by its simple objects. The simple modules of C are among

the points of T , which have length at most n. Hence they lie in the n× n “square”:

a part of the Auslander-Reiten quiver containing the points of Tn.
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Figure 2.2: The points in T3

Now, we visualise thick subcategories in Tn in the following way. We place

1, 2, . . . , n on the circle, which represents the simples of Tn. Since each point is

uniquely determined by its socle and its top, we associate to a point in Tn an arc

from the circle with start-point its socle and end-point its top; the direction is

clockwise. For a point X, set the length of the arc(X) to be ℓ(X) and simply denote

the arc(X) by the ordered couple (s, ℓ), where Soc(X) = s and ℓ(X) = ℓ. The simple

objects Tk are represented by the singleton (k). We call two arcs non-crossing, if

they do not intersect.

1
2

3

4
5

6

1
2

3

4
5

6

(1)(25)(34) (35)(62)

Figure 2.3: Non-crossing arcs on the circle

We say that the arcs arc(Xi)(i ∈ I) cover the circle, if each simple module Ti

belongs to the union of supp(Xi).

Now, we interpret the morphisms between modules in Tn in terms of arcs. Let

X1, X2 be points, f : X1 → X2 be a morphism between them and arc(X1), arc(X2)

be their associated arcs.

(1) If f is a monomorphism, then X1 and X2 have the same socle and hence

arc(X1) and arc(X2) have the same start-point. If f is an epimorphism, then X1

and X2 have the same top and hence arc(X1) and arc(X2) have the same end-point.

(2) If f is neither monomorphism nor epimorphism, then Top(X1) = Top(Im f),

Soc(Im f) = Soc(X2) and hence the arcs intersect. Note that by Happel-Ringel’s

lemma we have Ext1
Tn

(X2, X1) 6= 0.
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(3) From (1) and (2) we conclude, that if f : X1 → X2 is a non-zero morphism,

then the corresponding arcs intersect. We notice that if arc(X1), arc(X2) intersect,

then HomTn
(X1, X2) 6= 0 or(and) HomTn

(X2, X1) 6= 0. The latter is true, since the

two arcs intersect in a point Z (algebraic meaning) with Top(X1) = Top(Z) and

Soc(X2) = Soc(Z) (or vice versa), and hence we have 0 6= f : X1 ։ Z →֒ X2 (or

vice versa). We conclude that HomTn
(X1, X2) = HomTn

(X2, X1) = 0 if and only if

the arcs representing these modules are non-crossing.

Example 2.2.12 In T4 we consider the modules X1 = T1[3] and X2 = T2[3]. Then

arc(X1), arc(X2) intersect, and hence there is a non-zero morphism between T1[3]

and T2[3], namely T1[3] ։ T2[2] →֒ T2[3].

2

3

4

1

Arc(X )2

Arc(X )1

T1 T2 T3 T4

T [3]1 T [3]2

T [2]2

(4) Later we shall use that if Ext1
Tn

(X1, X2) = Ext1
Tn

(X2, X1) = 0, then either one

of the arc contains the other or there is at least one point between arc(X1), arc(X2)

and at least one point between arc(X2), arc(X1).

Now, having in mind proposition 2.2.8, we get immediately the following propo-

sition.

Proposition 2.2.13 There is a bijection between non-crossing arcs on the circle

with n points and thick subcategories in Tn.

Example 2.2.14 In T3 we consider the thick subcategory C1 = Thick(T1[3], T2).

Note that T1[3] and T2 are simples in C. Then arc(T1[3]) = (1, 3) and arc(T2) = (2).

1

23

(13)(2)

T1 T2

1

23

(31)(2)

T3

T [3]1

T1 T3

T1 T2 T3T1 T3

T [2]3

Figure 2.4: Non-crossing arcs and thick subcategories
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Now, consider C2 = Thick(T3[2], T2). It is easy to see that the simple objects in C

are T2 and T3[2]. Moreover, arc(T3[2]) = (3, 1). Note that different arc orientations,

represent different points.

2.3 Cotilting, support-tilting modules and thick

subcategories

Let A be an abelian category. We say that A has a finite generator, if there is

an object P ∈ A with ℓ(P ) < ∞ such that for each indecomposable object X ∈ A

there exist an integer d ≥ 0 and an epimorphism P d → X. If the category A has a

finite generator P , we shall write A = Gen(P ).

We say that A is bounded, if each indecomposable object X ∈ A has a bounded

length, that is, there is k ∈ N such that ℓ(X) < k. For instance, in Tn any thick

subcategory equivalent to mod k∆s, for s ≤ n is bounded. If in A there are inde-

composable objects with arbitrary lengths, then we say that A is unbounded. For

example, Ts is unbounded thick for any natural number s.

Recall that the simple composition factors of a module is called the support of

the module. For instance, supp(Ti[k]) = {Ti, Ti+1, . . . , Ti+k−1}, where the indices are

taken modulo n and we identify T0 with Tn. The next lemma elucidates the above

notions.

Lemma 2.3.1 Let C be a thick subcategory of Tn.

(i) If the simple objects Xi of C have pairwise disjoint supports, then C is bounded

if and only if
∑k

i=1 ℓ(Xi) < n.

(ii) C is bounded if and only if supp(C) ⊂ {T1, . . . , Tn}.

Proof : (i) Since Xi’s have pairwise disjoint supports, then it is equivalent to say

that arc(Xi), i = 1, . . . , k do not intersect on the circle, and therefore the sum

of the lengths of all these arcs is at most n. Now, suppose that the sum of the

length is n, or equivalently that all arcs cover the circle. Then we have a non-

split short exact sequence 0 → X1 → Y1 → X2 → 0 with Y1 indecomposable,

HomTn
(Y1, Xi) = HomTn

(Xi, Y1) = 0 for i = 3, . . . , k, ℓ(Y1) = ℓ(X1) + ℓ(X2) and

Y1 belongs to C, since the latter is closed under extensions. Then the sequence

(Y1, X3, . . . , Xk) is orthogonal. We apply the same argument for Y1 and X3 and

following that procedure, at the end we obtain an indecomposable object Yk with

Soc(Yk) = Soc(X1) and ℓ(Yk) =
∑k

i=1 ℓ(Xi) = n, which belongs to C. We conclude

that C is not bounded. Now if C is unbounded, then there is an indecomposable
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module X with length ≥ n, and hence the sum of the lengths of the simples, that

appear in the composition series of X (which are among Xi’s) is ≥ n.

(ii) Consider the thick subcategory C′ of C generated by simples X ′i of C with

supp(X ′i) ∩ supp(X ′j) = ∅ for i 6= j. By construction, C′ is obtained from C by

removing a finite number of its bounded thick subcategories. Hence C′ is bounded

if and only if C is bounded. Moreover, supp(C) = supp(C′). Now, C′ satisfies

the conditions of (i), hence C′ is bounded if and only if
∑k

i=1 ℓ(X
′
i) < n, which is

equivalent to say that supp(C′) ⊂ {T1, . . . , Tn}. The claim follows. 2

From the proposition follows that C is unbounded if and only if supp(C) =

{T1, . . . , Tn}. Then, having in mind proposition 2.2.13, we immediately get the

following corollary.

Corollary 2.3.2 There is a bijection between unbounded thick subcategories in Tn

and non-crossing arcs on the circle with n points that covers the circle.

For a thick subcategory C of Tn we define a new category, namely C⊥ = {X ∈

Tn | HomTn
(C, X) = Ext1

Tn
(C, X) = 0} and call it right perpendicular of C.

Similarly one defines ⊥C = {X ∈ T | HomTn
(X, C) = Ext1

Tn
(X, C) = 0} and call

it left perpendicular of C. We refer the reader to [GLn] and [Sc] for detailed

exposition of perpendicular categories.

The following proposition is from [GLn, Proposition 1.1].

Proposition 2.3.3 Let I be a system of objects in an abelian category A. Then the

category I⊥ right perpendicular to I is closed under the formation of kernels and

extensions. If additionally, proj. dim I ≤ 1, then I⊥ is an exact subcategory of A;

i.e., I⊥ is abelian and the inclusion I⊥ → A is exact.

Definition 2.3.4 Let A be a finite dimensional k-algebra. A finitely presented

module T ∈ modA is a partial-tilting module if

(T1) the projective dimension of T is at most 1;

(T2) Ext1
A(T, T ) = 0.

If additionally,

(T1) there is an exact sequence 0 → A→ T0 → T1 → 0 with each Ti ∈ add(T ),

then T is called a tilting module.

A tilting module is called basic if each indecomposable direct summand occurs

exactly once in a direct sum decomposition.

In [AS, Chapter VI.4, Corollary 4.4], an alternative characterisation of a tilting

module is given.
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Proposition 2.3.5 Let A be a finite dimensional hereditary algebra. A finitely

presented module T ∈ modA is a tilting module if

(T1) Ext1
A(T, T ) = 0, and

(T2) the number of pairwise non-isomorphic indecomposable summands of T equals

the number of pairwise non-isomorphic simple modules.

A partial tilting Amodule C is called support-tilting, if it is tilting as anA/ ann(C)

module. For instance, any simple A module is support-tilting. The following propo-

sition clarifies the notion of a support-tilting module:

Proposition 2.3.6 [IT, Proposition 2.5] Suppose that C is a support-tilting A-

module. Then the number of distinct indecomposable direct summands of C is the

number of distinct simples in its support.

For the support-tilting modules in Tn, we have the following:

Lemma 2.3.7 Let C be a support-tilting module. Then supp(C) ⊂ (T1, . . . , Tn).

Proof : Suppose that supp(C) = (T1, . . . , Tn). Then C has n indecomposable

direct summands with no extensions between them. But then each indecompos-

able summand of C has length less then n and hence there is at least two in-

decomposable summands of C, say Ci, Cj with different socle and top, such that

supp(Ci) ∩ supp(Cj) 6= ∅. The latter implies that there is an extension between

them, see lemma 2.2.2, which is not possible. Hence supp(C) ⊂ (T1, . . . , Tn). 2

Example 2.3.8 In mod k∆3 consider the module C = C1 ⊕ C2. The minimal

s q q

s

q

q

C1

C2�
�
�

��
@
@
@@@

subquiver on which C is supported is k∆2 and C is tilting as a k∆2-module. Hence

C is a support-tilting module.

We continue with pointing out a relation between support-tilting modules and exact

abelian extension closed categories. Let Q be a finite acyclic quiver and kQ be its

associated path algebra and mod kQ is the category of finite dimensional modules

over kQ. The following two theorems are from [IT, Section 2.2, 2.3]. We indicate

that there the term wide subcategories refers to exact abelian extension closed

subcategories in our notations.

Recall that a torsion class is a full subcategory of an abelian category A, which

is closed under direct summands, quotients and extensions. We say that an object

P in A is Ext-projective if Ext1
A(P,X) = 0 for any X ∈ A.
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Theorem 2.3.9 In mod kQ there is a bijection between torsion classes with a finite

generator and basic support-tilting modules.

The bijection is realised as follows:

• Let C be a support-tilting object. Then Gen(C) is a torsion class having a

finite generator.

• Let C be a torsion class with a finite generator and let C be the direct sum of

its indecomposable Ext-projectives. Then C is support-tilting.

Example 2.3.10 We consider again mod k∆3. The module C = C1⊕C2 is support-

tilting and Gen(C) = U(C1, C2/C1) is exact abelian extension closed. Conversely,

the Ext-projectives of U(C1, C2/C1) are C1 and C2.

s q q

s

q

q

C1

C2�
�
�

��
@
@
@@@ s s q

s

q

q

C1

C2

C2/C1

�
�
�

��
@
@
@@@

Proposition 2.3.11 In mod kQ there is a bijection between torsion classes with a

finite generator and exact abelian extension closed categories with a finite generator.

The bijection is given as follows:

• Let C be a torsion class. Then α(C) = {X ∈ C | for all (g : Y → X) ∈

C,Ker g ∈ C} is exact abelian extension closed.

• If C is exact abelian extension closed, then Gen(C) is a torsion class.

Example 2.3.12 We consider again mod k∆3. Then C = add(C1 ⊕C2) is a torsion

class and α(C) = add(C1) is exact abelian extension closed. Conversely, Gen(C1) =

C.
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We make a connection between support-tilting modules and bounded thick sub-

categories in Tn. We comment that the results discussed so far are not directly appli-

cable to Tn, since the settings are different (the quiver is assumed to be acyclic). Let

T be an arbitrary support-tilting module in Tn. Then by proposition 2.3.7, supp(T )

is a proper subset of {T1, . . . , Tn}, say supp(T ) = {T1, . . . , Tk}, for some k < n.

Then Thick(T1, . . . , Tk) ∼= mod k∆k, and since mod k∆k has a projective generator,

then any support-tilting Tn-module is inside some bounded thick subcategory. In

that sense, the following theorem is true.
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Theorem 2.3.13 In Tn there is a bijection between basic support-tilting modules

and bounded thick subcategories.

We enlarge the settings and consider the category of locally nilpotent modules

over k∆̃n. The classification of indecomposable objects of category of locally finite

modules over k[[∆̃n]] and hence in T̃n is known, since these categories are equivalent,

see [CY, Main Theorem]. Following [BKr, Section 2] we recall it shortly. For each

simple object Ti and each ℓ ∈ N we have a chain of monomorphisms:

Ti = Ti[1] →֒ Ti[2] →֒ · · ·

and denote by Ti[∞] the Prüfer module defined to be lim
→
Ti[ℓ]. Note that each

Prüfer module is indecomposable injective and EndT̃n
(Ti[∞]) ∼= k[[t]].

Lemma 2.3.14 [BKr, Lemma 2.1] Every non-zero object in T̃n has an indecom-

posable direct factor, and every indecomposable object is of the form Ti[ℓ] for some

simple Ti and some ℓ ∈ N ∪ {∞}.

The lemma tells us that ind T̃n = ind Tn ∪ {Prüfer modules}. This allows us

to visualise the Prüfer modules via “extending” the part of the Auslander-Reiten
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Figure 2.5: The points in T̃3

quiver, containing the points in Tn(see figure 2.2) with n extra vertices. In that way,

we represent the points in T̃n.

Remark 2.3.15 After knowing the indecomposables in T̃n, it is not difficult to

show that in T̃n, Thick(Ti[∞]) = Thick(Ti[n]). To see this, we notice that for k ∈ N,

we have 0 → Ti[kn] → Ti[∞]
πk

i→ Ti[∞] → 0 and since there are no extensions

between Prüfer modules, any indecomposable object in Thick(Ti[∞]) is of the form

Ti[kn] for some k ∈ N ∪ {∞}. Now, having in mind that lim
→
Ti[k] = lim

→
Ti[kn], the

equality above holds. We conclude that simple objects of any thick subcategory in

T̃n are among the points of Tn and hence for any thick subcategory C̃ of T̃n, we have:

ind C̃ = ind C ∪ {all Ti[∞] | Ti[n] ∈ C}, where C = C̃ ∩ Tn.

Next, we recall the definition of a cotilting object for any abelian category A. To

this end, we fix an object T in A. We let Prod(T ) denote the category of all direct
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summands in any product of copies of T . The object T is called cotilting object if

the following holds:

(1) the injective dimension of T is at most 1;

(2) Ext1
A(T, T ) = 0;

(3) there is an exact sequence 0 → T1 → T0 → Q → 0 with each Ti in Prod(T )

for some injective cogenerator Q.

In this paper, we shall use an alternative characterisation of a cotilting module,

see [BKr, Lemma 1.2], which resembles the one we have for a tilting module.

Proposition 2.3.16 Let T be an object in T̃n without self-extensions.

(1) T decomposes uniquely into a coproduct of indecomposable objects having local

endomorphism rings.

(2) T is a cotilting object if and only if the number of pairwise non-isomorphic

indecomposable direct summands of T equals n.

Now, we recall the following lemma.

Lemma 2.3.17 [GLn, Lemma 1.2] Let I and T be systems of objects of an abelian

category A. Then:

(i) I ⊂ T ⇒ T ⊥ ⊂ I⊥.

(ii) I ⊂⊥ (I⊥).

(iii) I⊥ = (⊥(I⊥))⊥.

For an indecomposable module X ∈ Tn, set

compl(X) := {Ti[∞] | Ext1
Tn

(Ti[∞], X) = 0}.

We shall use that every morphism between Prüfer objects is an epimorphism, and

that there are no morphisms from Prüfer modules to modules in Tn.

Lemma 2.3.18 Let X, Y be indecomposables with no self-extensions in Tn. Then:

(i) #{Ti[n] ⊆ X⊥} = n− ℓ(X).

(ii) supp(X) ⊆ supp(Y ) ⇔ {Ti[n] | Ti[n] ∈ Y ⊥} ⊆ {Ti[n] | Ti[n] ∈ X⊥}.

(iii) #{Ti[∞] | Ext1
Tn

(Ti[∞], X) 6= 0} = #{compl(X)} = ℓ(X).
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(iv) supp(X) ⊆ supp(Y ) ⇔ compl(Y ) ⊆ compl(X).

(v) supp(X) ∩ supp(Y ) = ∅ ⇔ compl(X) ∩ compl(Y ) = ∅.

Proof : After relabeling the simples, we may assume that X = T1[ℓ]. Note that

both X, Y have lengths < n.

(i) Suppose 0 6= f : Ti[n] → X for some i ∈ {1, . . . , n}. Since ℓ(X) < ℓ(Ti[n]) =

n, then f is not a monomorphism. It is immediate to check that if f is an epi-

morphism, then Ext1
Tn

(X, Ti[r]) = 0 and HomTn
(X, Ti[n]) = 0, hence Ti[n] ∈ X⊥,

where i = ℓ(X) + 1. If f is neither monomorphism nor epimorphism, then we

have Ext1
Tn

(X, Ti[n]) 6= 0 hence Ti[n] is not in X⊥. Therefore if Ti[n] ∈ X⊥ for

some i ∈ {1, . . . , n}, then either HomTn
(Ti[n], X) = 0 or Top(Ti[n]) = Top(X),

which is the same to say that arc(Ti[n]) and arc(X) are either non-crossing or

have the same end-point. Hence the number of Ti[n], which are in X⊥ equals

n − ℓ(X). Later we shall use that the indices of all Ti[n] ⊆ X⊥ are from the

set i ∈ I = {ℓ(X) + 1, ℓ(X) + 2, . . . , n− 1, n}, and we shall visualise this set as an

arc on the circle with consequent integral points.

(ii) Now, since ℓ(X) ≤ ℓ(Y ), then due to (i), the indices i for which {Ti[n] ⊆ X⊥}

are from the set I = {ℓ(X)+1, ℓ(X)+2, . . . , n−1, n}, which obviously contains the

set I ′ = {ℓ(Y ) + 1, ℓ(Y ) + 2, . . . , n − 1, n}. Since I ′ is the index set of all i’s such

that {Ti[n] ⊆ Y ⊥}, the proof follows.

(iii) Let 0 6= f : T1[ℓ] → Ti[∞]. If f is a mono, then Ext1
Tn

(Tℓ+1[∞], X) 6= 0 since

0 → T1[ℓ] → T1[∞] → Tℓ+1[∞] → 0 is a non-split exact sequence. Now, exactly as

in remark 2.2.2 (ii), any proper epimorphism f : T1[ℓ] ։ Tk[ℓ + 1 − k], k = 2, . . . , ℓ

yields a non-split short exact sequence

0 → T1[ℓ] → T1[∞] ⊕ Tk[ℓ+ 1 − k] → Tk[∞] → 0,

and hence a Prüfer module Tk[∞] with Ext1
Tn

(Tk[∞], X) 6= 0. It is straightforward

to check that the other Prüfer modules do not have extensions with X. Therefore

#{Ti[∞] | Ext1
Tn

(Ti[∞], X) 6= 0} = #{Y ∈ Tn | Top(Y ) = Top(X)} + 1 =

(ℓ(X) − 1) + 1 = ℓ(X).

(iv) From (iii) we have that compl(X) = {T2[∞], T3[∞], . . . , Tℓ[∞], Tℓ+1[∞]}

and hence compl(X) = {Tℓ+2[∞], Tℓ+3[∞], . . . , Tn[∞], T1[∞]}. Since supp(X) =

{T1, T2, . . . , Tℓ}, we notice that the indices of Prüfer modules in compl(X) are shifted

by one (modulo n) the indices of simples in supp(X). Then supp(X) ⊆ supp(Y ) ⇔

compl(X) ⊆ compl(Y ) ⇔ compl(Y ) ⊆ compl(X).

(v) Follows immediately from (iv). 2

Now, we are able to prove the following theorem.

Theorem 2.3.19 In T̃n there is a bijection between cotilting modules and support-

tilting modules.
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Proof : Recall that a module X∗ is cotilting if and only if it has n indecomposable

summands and has no self-extensions. Note that every cotilting module has at

least one direct summand which is Prüfer module, since otherwise, we would have

that T ∗ is support-tilting with supp(X∗) = (T1, . . . , Tn), which is impossible, see

lemma 2.3.7.

Let X = ⊕t
i=1Xi be a support-tilting module having t < n indecomposable

summands. First we show that X can be completed by Prüfer modules in a unique

way to a cotilting module. The statement will follow at once if we show that there

are exactly n−t Prüfer modules in compl(X). The quiver, on which X is supported,

is a disjoint union of k quivers (1 ≤ k < n) of type ∆si
(i = 1, . . . , k) and since

X is support-tilting, we have
∑k

i=1 si = t. Then Thick(X) is a disjoint union of

categories of type Ci = mod k∆si
. Take X∗ = ⊕k

i=1X
∗
i to be a submodule of X such

that each X∗i is indecomposable and supp(X∗i ) = supp(Ci). Then by construction of

X∗ we have supp(X) = supp(X∗) and supp(X∗i ) ∩ supp(X∗j ) = ∅ (i 6= j). Now, for

appropriate i and j, we have supp(Xj) ⊆ supp(X∗i ) and having in mind property

(iv), we get compl(X) = ∩tj=1 compl(Xj) = ∩ki=1 compl(X∗i ) = compl(X∗). Now,

taking into account that compl(X∗j ) ∩ compl(X∗i ) = ∅, we have #{compl(X)} =

#{compl(X∗)} = n−#{compl(X∗)} = n−
∑k

i=1 #{compl(X∗i )} = n−
∑k

i=1 ℓ(X
∗
i )

= n−
∑k

i=1 si = n− t.

Let Y ∗ = Y1⊕· · ·⊕Yk⊕Yk+1⊕· · ·⊕Yn be a cotilting module and Y = Y1⊕· · ·⊕Yk

be a submodule of Y such that Y1, . . . , Yk are in Tn and Yk+1, . . . , Yn are Prüfer

modules. We show that Y is support-tilting. First we have that Y has no self-

extensions. Then it is sufficient to show that the number of simple modules of

supp(Y ) is k. Now, since Y has k summands, we have #{supp(Y )} ≥ k. But

if #{supp(Y )} > k, then n − k = #{compl(Y )} = n − #{compl(Y )} = n −

#{supp(Y )} < n − k, which is impossible. Hence #{supp(Y )} = k and Y is a

support-tilting module. 2

Example 2.3.20 Consider the support-tilting module X = T1 ⊕ T1[2] in T3 from

example 2.3.10. Then supp(X) = {T1, T2}, Thick(T1, T2) ∼= mod k∆2 = C1. Now,

take X∗ = T1[2]. Then supp(X∗) = supp(C1), #{compl(X∗)} = 3−ℓ(X∗) = 3−2 =

1 and compl(T1[2]) = {T1[∞]}. Hence the module T1 ⊕ T1[2] ⊕ T1[∞] is cotilting.
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We return to thick subcategories in Tn. The following proposition relates bounded

and unbounded thick categories.
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Proposition 2.3.21 Let C be a thick subcategory in Tn. If C is bounded (resp.

unbounded), then C⊥ is unbounded (resp. bounded).

Proof : Let C be bounded. First we assume that for the set of simples {X1, X2, . . . , Xk}

of C we have supp(Xi) ∩ supp(Xj) = 0 for i 6= j. We show that there is a module

X ∈ C⊥ with ℓ(X) ≥ n, which implies that C⊥ is unbounded. By lemma 2.3.18(i),

we have that for each Xi with ℓ(Xi) = ki < n there are n − ki modules of length

n in X⊥i . From the same lemma we have that, if, say arc(X1) = (1, ℓ), then the

consequent integral points on the circle (ℓ+1, . . . , n), which could be interpreted as

an arc, represent the indecomposable modules with length n, which are in X⊥1 . We

call such an arc an integral-arc and for a module Xi, we denote it by AXi
.

Now, disjoint supports of the simples implies that
∑k

i=1 ℓ(Xi) < n, hence any

two integral-arcs intersect and cover the circle, since ℓ(AXi
) + ℓ(AXj

) = n− ℓ(Xi) +

n− ℓ(Xi) > n. Moreover, it is not possible that one integral-arc to be contained in

other, say AXj
⊂ AXi

, since this would imply that supp(Xi) ⊂ supp(Xj), which is

impossible. Then all such integral-arcs have a non-zero intersection and therefore,

there is an indecomposable module of length n which is in C⊥.

Now, if the supports of the simples of C are not disjoint, then we form a thick

subcategory C∗ ⊆ C as in lemma 2.3.1(ii) with supp(C∗) = supp(C) and with the

property that the simples of C∗ have disjoint supports. Then from the discussions

above follows that there is a module of length n which is in (C∗)⊥. Now, if Xi is

a simple module of C, which is not in C∗, then by the construction of C∗ there is a

simple module X∗i of C∗ such that supp(Xi) ⊆ supp(X∗i ). Using lemma 2.3.18(ii),

any indecomposable module with length n, which is in (X∗i )
⊥, is in (Xi)

⊥. The last

argument implies that the intersection C∗ ∩ C contains an indecomposable module

with length n.

Let C be an unbounded thick. Take a module X ∈ C with ℓ(X) ≥ n. Since there

is no module Y in Tn with ℓ(Y ) ≥ n such that Ext1
Tn

(X, Y ) = 0, then C⊥ has no

indecomposable modules of length greater then n and thus, it is bounded. 2

Remark 2.3.22 In the same way, one can show that forming the left perpendicular

category transforms bounded to unbounded thick subcategories and vice versa.

For a thick subcategory C ∈ Tn define τkC (k ∈ Z) to be the full subcategory of Tn

whose indecomposable objects are the τk-shifts of the indecomposables of C. Also,

set C⊥
0

:= C and define inductively C⊥
k

= (C⊥
k−1

)⊥ if k > 0 and C⊥
k

= ⊥(C⊥
k+1

) if

k < 0.

Before we prove the next proposition, we restate [CB1, Lemma 5].

Lemma 2.3.23 Let Q be a finite and an acyclic quiver with n vertices and let C be

an exact abelian extension closed subcategory of mod kQ. Then rk(C) + rk(C⊥) = n.
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Proposition 2.3.24 Let C ⊆ Tn be a thick subcategory. Then:

(i) rk(C⊥) + rk(C) = n.

(ii) ⊥(C⊥) = (⊥C)⊥ = C.

(iii) C⊥ = ⊥τC.

(iv) C⊥
k

= C for some k ∈ N.

Proof : (i) By proposition 2.3.21, we have that either C or C⊥ is bounded, so we

may assume that C is bounded. Without loss of generality we also may assume that

C ⊆ k∆n−1. Denote by C⊥∆n−1
= C⊥ ∩mod k∆n−1. By previous lemma, we have that

rk(C⊥∆n−1
) + rk(C) = rk(mod∆n−1) = n − 1. Let X be an indecomposable module

with Soc(X) = Tn and ℓ(X) = n. Then since mod k∆n−1 ⊂ supp(X), we have

X ∈ C⊥. We claim that C⊥ = Thick(C⊥∆n−1
, X). The inclusion ”⊇” is obvious. Let

S = Thick(S1, . . . , Sk) be the set of simples of C⊥. We show that S is contained in

Thick(C⊥∆n−1
, X). Suppose Soc(Ei) = Soc(X) for some i. ThenX/Ei belongs to both

C⊥ and mod k∆n−1 and hence to C⊥∆n−1
. But then Si must be in Thick(C⊥∆n−1

, X).

If Soc(Si) ∈ {T1, . . . , Tn−1} but Si /∈ mod k∆n−1, then supp(X) ∩ supp(Si) 6= 0 and

hence Ext1
Tn

(Si, X) 6= 0. Then one of the middle term is a submodule of Si and in

the same time must be in C⊥∆n−1
, which contradicts the assumption that Si is simple.

Hence C⊥ = Thick(C⊥∆n−1
, X), which means that C⊥ = Thick(S ′, X), where S ′ is

the set of simples of C⊥∆n−1
. Now, having in mind that add(X) ∼= T1, then we have

rk(C) + rk(C⊥) = rk(C)+ rk(C⊥∆n−1
) + rk(add(X)) = rk(C) + (n− 1)− rk(C) + 1 = n.

(ii) By lemma 2.3.17, we have that C ⊂ ⊥(C⊥). But since rk(⊥(C⊥)) = n− (n−

rk(C)) = rk(C), we have C = ⊥(C⊥).

(iii) Using the Auslander-Reiten formula, for X indecomposable in C⊥ we have

0 = Ext1
Tn

(C, X) = DExt1
Tn

(C, X) = HomTn
(X, τC) and 0 = HomTn

(C, X) =

HomTn
(τC, τX) = D Ext1

Tn
(X, τC) = Ext1

Tn
(X, τC).

(iv) Since for every simple module Si of C we have τnSi = ((S⊥i )⊥)n = S⊥
2n

i = Si,

then applying perpendicular category 2n times to C, we return to C. 2

Now, we establish a link between unbounded and bounded thick subcategories.

Theorem 2.3.25 In Tn forming the right perpendicular (resp. left perpendicular)

category induces a bijection between bounded and unbounded thick subcategories.

Proof : For an arbitrary bounded (unbounded) thick subcategory C of Tn, we

have that C⊥ is unbounded (bounded). Then using lemma 2.3.24(ii), we have that
⊥(C⊥) = (⊥C)⊥ = C, which yields the bijection. 2

Remark 2.3.26 The last theorem gives us an argument, that in Tn, as well as in

mod kQ for Q Dynkin quiver, there is k ∈ Z such that C⊥
k

= C. In fact, for any
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hereditary category C, we have ⊥(C⊥) = (⊥C)⊥ = C. Therefore, in both cases right

perpendicular is a bijection. Now, having in mind that the number of exact abelian

extension closed categories in Tn and in mod kQ is finite, the claim follows.

Example 2.3.27 The example illustrates lemma 2.3.24(iv) for n = 3. The thicken

points represent the simples of the respective thick subcategory. Note that rk(C) +

rk(C⊥) = 3. We comment that in general, the period does not equals n.
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For completeness, we collect all the bijections established so far.

Theorem 2.3.28 Let Tn be the category of nilpotent modules and T̃n be the category

of locally nilpotent modules over the path algebra k∆̃n. Then there are bijections

between:

(1) support-tilting objects in Tn;

(2) bounded thick subcategories in Tn;

(3) unbounded thick subcategories in Tn;

(4) cotilting objects in T̃n.

Proof : Let X = ⊕k
i=1Xi be a support-tilting object. Schematically the bijections

are described as follows:

X

α(Gen(X))

))

∩k
i=1

compl(Xi)

��

C

|⊥

��

Ext -proj. in Gen(C)

ii

X∗

⊕X∗
i ,ℓ(X

∗
i )<n

FF

C⊥

⊥|

FF

Theorem 2.3.13 justifies the bijection between (1) and (2).
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(1) ⇒ (2). The category Gen(X) is a torsion class. Then α(Gen(X)) = {Y ∈

Gen(X) | for all (g : Z → Y ) ∈ Gen(X),Ker g ∈ Gen(X)} is exact abelian exten-

sion closed with a finite generator, that is, a bounded thick subcategory in Tn.

(2) ⇒ (1). Given a bounded thick subcategory C ⊂ Tn, then Gen(C) is a torsion

class and the direct sum of Ext-projectives in that torsion class is a support-tilting

module.

Theorem 2.3.25 establishes bijection between (2) and (3).

(2) ⇔ (3). Let C be a bounded thick subcategory. Then C⊥( respectively ⊥C) is

unbounded thick and using the perpendicular on the other side, we return to C.

Theorem 2.3.19 yields the bijection between (1) and (4).

(1) ⇒ (4). We complete the support-tilting module X to a cotilting module X∗

in a unique way just by taking the intersection of all compl(Xi).

(4) ⇒ (1). Let X∗ = ⊕n
i=1X

∗
i be a cotilting module. Then the direct sum of all

X∗i such that ℓ(X∗i ) < n is a support-tilting module. 2

Example 2.3.29 In T3 consider the support-tilting module X = T2[2] ⊕ T3. Then

X∗ = T2[2]⊕ T3 ⊕ T2[∞] is a cotilting module in T̃3, C = α(Gen(X)) = Thick(T2[2])

is bounded thick and C⊥ = Thick(T1[3], T2) is unbounded thick.

1 32

1 32

1 32

1 32

(13)(2)

(23)

Figure 2.6: Bijections in T̃3

At the end of the chapter, we list the rest of bijections in T̃3.

2.4 Number of thick subcategories

By a result of Colin Ingalls and Hugh Thomas [IT, Section 3.3], there is a bijection

between exact abelian extension closed subcategories with a projective generator in

mod kQ and non-crossing partitions of type Q, where Q is a Dynkin or an Euclidean

quiver. The number of non-crossing partitions of type Q, where Q is Dynkin quiver

is well known. We shall use that when Q = ∆n their number is Cn+1, where
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Cn = 1
n+1

(

2n
n

)

is the nth Catalan number, although in the section 2.6, we give

another proof.

Let C be a thick subcategory in Tn and E = (S1, . . . , Sk) be the set of its simple

modules. For a simple module T1 of Tn, define

roof(C) =







Si ∈ E , T1 ∈ supp(Si) and ℓ(Si) maximal

0 , T1 /∈ supp(Si) for any Si ∈ E

ht(C) = ℓ(roof(C)).

Lemma 2.4.1 Let X be an indecomposable module in Tn with ℓ(X) = ℓ, 1 < ℓ ≤ n

and T1 ∈ supp(X).

(i) #{C | roof(C) = X} = Cℓ−1.Cn−ℓ+1;

(ii)#{C | ht(C) = ℓ} = ℓ.Cℓ−1.Cn−ℓ+1.

Proof : (i) Let C be a thick subcategory with roof(C) = X. Without loss of

generality we may assume that Soc(X) = T1. Then supp(X) = {T1, . . . , Tℓ} and

Thick(T1, . . . , Tℓ) ∼= mod k∆ℓ, if ℓ < n or Thick(T1, . . . , Tℓ) ∼= Tn, if ℓ = n. Now,

since X is a simple module in C, then HomTn
(X, Y ) = HomTn

(Y,X) = 0, where Y is

another simple in C. Hence supp(Y ) j {T2, . . . , Tℓ−1} or supp(Y ) j {Tℓ+1, . . . , Tn}.

Denote by C1 = k∆ℓ−2 and C2 = k∆n−ℓ the thick subcategories generated by

{T2, . . . , Tℓ−1} and {Tℓ+1, . . . , Tn}. It is immediate to see that there are neither

homomorphism nor extensions between these two categories. Then any thick sub-

category C with roof(C) = X must be of the form C = Thick(X, C∗), where C∗ is

thick in C1 ⊕ C2, see the figure below. But since C1 and C2 are disjoint, then the

number of thick subcategories in C1 ⊕ C2 is exactly Cℓ−1.Cn−ℓ+1.

r r r r r r r r r
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r
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r

. . . . . .
C1 C2

n− 1 n 1

Figure 2.7: Thick subcategories with roof(C) = X

(ii) The length of X stays invariant under the τ translate hence all thick subcat-

egories Ci ∈ Tn with ht(Ci) = ℓ(X) are shifts of C, that is, Ck = τk(C) for appropriate

k. Since roof(Ck) = τk(X), then T1 ∈ supp(τk(X)) if and only if k = 1, . . . , ℓ(X).

Hence by (i) #{C | ht(C) = ℓ} = ℓ.#{C | roof(C) = X} = ℓ.Cℓ−1.Cn−ℓ+1. 2

Proposition 2.4.2 The number of thick subcategories in Tn is
(

2n
n

)

.

Proof : Let C be a thick subcategory. Since ht(C) varies from 0 to n, by previous

lemma we have: #{C ∈ Tn} =
∑n

i=0 #{C | ht(C) = i} = Cn +
∑n

i=1 i.Ci−1.Cn−i+1 =
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Cn − Tn.C0 +
∑n+1

i=1 Ti−1.Cn−i+1 = Cn − Tn +An, where Tn = (n+ 1)Cn =
(

2n
n

)

and

An =
∑n

k=0 Tk.Cn−k. Here we used that {C ∈ Tn | ht(C) = 0} = {C ∈ Tn | supp(C) =

(T2, . . . , Tn)} = {C ∈ Tn | C ∈ Thick(T2, . . . , Tn)} and since Thick(T2, . . . , Tn) ∼=

mod k∆n−1, we have #{C ∈ Tn | ht(C) = 0} = Cn.

Now, consider the following power series:

c(x) = C0 + C1x+ C2x
2 + · · ·+ Cnx

n + · · · =
∑∞

i=0Cix
i, Ci = 1

i+1

(

2i
i

)

,

t(x) = T0 + T1x+ T2x
2 + · · · + Tnx

n + · · · =
∑∞

i=0 Tix
i, Ti =

(

2i
i

)

.

From the Cauchy product of c(x) and t(x) follows that a(x) = c(x)t(x) has

An(n = 0, 1, 2, . . . ) as coefficients, that is,

a(x) = A0 + A1x+ A2x
2 + · · · + Anx

n + · · · =
∑∞

i=0Aix
i.

It is a classical result that the power series expansions of 1−
√

1−4x
2x

and 1√
1−4x

are

exactly c(x) and t(x).Then

a(x) = c(x)t(x) = 1
2x

( 1√
1−4x

− 1) = 1
2x

(T1x + T2x
2 + · · · ) = T1

2
+ T2

2
x + · · · +

Tn+1

2
xn + · · · =

∑∞
i=0Aix

i and comparing the coefficients, we have An = Tn+1

2
.

Hence #{C ∈ Tn} = Cn − Tn + Tn+1

2
= Tn =

(

2n
n

)

. 2

Corollary 2.4.3 The number of cotilting modules in T̃n, support-tilting modules,

bounded and unbounded thick subcategories in Tn is
(

2n−1
n

)

.

Proof : By theorem 2.3.28, we have a bijection between bounded, unbounded thick

subcategories and support-tilting modules in Tn and cotilting modules in T̃n, hence

their number is equal. Now previous proposition tells us that the number of all thick

subcategories is
(

2n
n

)

and since the number of bounded thick equals the number of

unbounded thick, their number is half of the number of all thick subcategories, that

is, 1
2

(

2n
n

)

= 1
2

(2n)!
n!n!

= 1
2

(2n−1)!2n
n!(n−1)!n

=
(

2n−1
n

)

. 2

Remark 2.4.4 In fact, the number of cotilting objects in T̃n is already known,

see [BKr, Theorem D].

The following result, first shown by Gabriel, is folklore in the tilting theory. We

present another proof by pointing out a connection between certain exact abelian

extension closed subcategories and basic tilting modules in mod k∆n.

Proposition 2.4.5 The number of tilting modules in mod k∆n is Cn.

Proof : First we comment that in mod k∆n any thick subcategory is exact abelian.

Let S1, . . . , Sn be the simple and P1, . . . , Pn be the indecomposable projective k∆n-

modules. Now, in mod k∆n there is an indecomposable projective-injective module

and we denote it by Pn. We shall use again that the number of thick subcategories in

mod k∆n is Cn+1. First we show that the number of thick subcategories that contain

Pn is Cn. Let C be a thick subcategory with Pn ∈ C. Then Pn ⊆ C ⇔ C⊥ ⊆ P⊥n and

since C⊥ is thick, then the number of thick subcategories of P⊥n is the same as the
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number of thick subcategories that contain Pn. But since P⊥n = U(S1, . . . , Sn−1) =

mod k∆n−1, the claim follows.

Now, we show that there is a bijection between thick subcategories that con-

tain Pn and tilting modules in mod k∆n and the proof shall follow. From theo-

rem [IT, Theorem 1.1], in mod k∆n we have a bijection between thick subcategories

and support-tilting modules. Now, let C be a thick subcategory containing Pn. Then

since supp(Pn) = {S1, . . . , Sn}, the corresponding support-tilting module is tilting.

Conversely, let T be a tilting module. Then we have the following exact sequence:

0 → AA → T ′A → T ′′A → 0 with T ′, T ′′ ∈ add(T ) and A = k∆n. Since Pn is also

injective, it follows that it is a direct summand of T ′ and hence of T . Now, Gen(T )

is a torsion class and the corresponding thick subcategory α(Gen(T )) (see proposi-

tion 2.3.11) contains Pn, since any morphism f : X → Pn with X indecomposable

in Gen(T ) is a monomorphism, hence Ker f = 0 ∈ Gen(T ). The proof follows. 2

2.5 Lattice of thick subcategories

As we observed, the set of thick subcategories in Tn is finite. We consider the poset

(L,≤) formed by subsets of the set of thick subcategories in Tn. In fact, it is not

difficult to see that (L,≤) is a lattice: We notice that intersection of any two thick

subcategories C1, C2 is again thick, so we have naturally defined meet in L, namely

C1 ∧C2 := C1 ∩C2. The join of any two thick subcategories is defined to be the meet

of all thick subcategories that contains both of them.
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Figure 2.8: The lattice of thick subcategories in T3

Proposition 2.5.1 The set of thick subcategories in Tn forms a lattice. Moreover τ

induces a lattice isomorphism and forming the right perpendicular category induces

a lattice anti-isomorphism.
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Proof : The first statement follows from the discussions above. For the rest: As we

noticed, τ relabels the simples within Tn, hence it yields a lattice isomorphism. If we

apply right perpendicular on the set of thick subcategories, then it yields a bijection,

see theorem 2.3.25. To show that it is a lattice anti-isomorphism, we check that

meets and joints in (L,≤) are sent to joints and meets in (L⊥,≤). By lemma 2.3.17,

we have that right perpendicular is order reversing, that is, C1 ≤ C2 ⇒ C⊥2 ≤ C⊥1 . If

C1 = X1 ∨ X2 · · · ∨ Xk, where Xi’s are the simples of C1, then we claim that C⊥1 =

X⊥1 ∧X
⊥
2 · · ·∧X⊥k . FirstXi ≤ C1 implies C⊥1 ≤ X⊥i and hence C⊥1 ≤ X⊥1 ∧X

⊥
2 · · ·∧X⊥k .

If Y ≤ X⊥1 ∧ X⊥2 · · · ∧ X⊥k is an arbitrary module, then Y ≤ X⊥i for every i and

applying left perpendicular we get Xi ≤
⊥Y . Then C1 = X1 ∨ X2 · · · ∨ Xk ≤ ⊥Y

and therefore, Y ≤ C⊥1 . Since Y was arbitrary, then we get X⊥1 ∧X⊥2 · · · ∧X⊥k ≤ C⊥1
and the claim follows. We derive that C = C1 ∨ C2 ⇒ C⊥ = C⊥1 ∧ C⊥2 . In the same

way, one shows that for the meet we have C = C1 ∧ C2 ⇒ C⊥ = C⊥1 ∨ C⊥2 . The proof

follows. 2

2.6 Nakayama algebras

In this section, we consider certain algebras, which are quotients of k∆n and k∆̃n.

We naturally generalise the methods used in the previous sections in order to classify

the exact abelian extension closed subcategories for these algebras.

Definition 2.6.1 An algebra A is said to be left serial (resp. right serial) if

every indecomposable projective left (resp. right) A-module is uniserial. It is called

Nakayama algebra if it is both right and left serial.

We point out that Nakayama algebras are well studied. We recall certain facts for

Nakayama algebras, but we refer to [AS, Chapter V] for complete reference to the

subject.

Definition 2.6.2 An algebra A is called basic, if eiA 6= ejA for all i 6= j, where

{e1, . . . , en} is its complete set of primitive orthogonal idempotents. We say that an

algebra A is connected, if A is not a direct product of two algebras.

Theorem 2.6.3 A basic and connected algebra A is a Nakayama algebra if and only

if its ordinary quiver QA is one of the following quivers:

(a) ∆n : 1 // 2 // 3 // . . . // n ;

(b) ∆̃n : 1 // 2 // 3 // . . . // nkk .

The quotients of Nakayama algebras are again Nakayama.



2.6. Nakayama algebras 31

Proposition 2.6.4 Let A be an algebra, and J be a proper ideal of A. If A is

Nakayama algebra, then A/J is also Nakayama algebra.

Example 2.6.5 The algebra k∆h
n = k∆n/I

h (h ≥ 1), where I is the two-sided ideal

generated by all arrows of ∆n is a Nakayama algebra.

It is not difficult to construct the Auslander-Reiten quiver for the module category

over Nakayama algebras. The technique is explained in [AS, Chapter V.4]. We give

an example.

Example 2.6.6 The AR-quiver of mod k∆3
6

S1[3]

��

S2[3]

��

S3[3]

��

S4[3]

��
S1[2]

;;xxxxxxxx
oo

��

S2[2]

;;xxxxxxxx

��

oo S3[2]

;;xxxxxxxx

��

oo S4[2]

;;xxxxxxxx

��

oo S5[2]

��
S1

==zzzzzzzz
oo S2

;;wwwwwwwww
oo S3

;;wwwwwwwww
oo S4

;;wwwwwwwww
oo S5

;;wwwwwwwww
oo S6

We consider the exact abelian extension closed subcategories in mod k∆h
n. Since

mod k∆h
n ⊆ mod k∆n and k∆n is representation finite, then k∆h

n is also represen-

tation finite and hence there are finite number of exact abelian extension closed

categories in mod k∆h
n. We denote by ∆h

n
their number.

Let A be a Nakayama algebra with simple objects S1, . . . , Sn, where n = rk(modA).

Any exact abelian extension closed category C in modA is uniquely determined by

its simple objects S∗i , that is, C = U(S∗1 , . . . , S
∗
k) for k ≤ n. Since C ⊆ modA ⊆

mod k∆n ⊂ nrep(k∆̃n) and the embedding functor is exact, we deduce that in

modA there is a bijection between orthogonal sequences and exact abelian exten-

sion closed categories, as we established for nrep(k∆̃n), see theorem 2.2.8. As we

did in the previous section, in order to count the number of exact abelian extension

closed subcategories, we count the number of orthogonal sequences in modA. For

a simple module S1 of modA, define

roof(C) =







S∗i , S1 ∈ supp(S∗i ) and ℓ(S∗i ) maximal

0 , S1 /∈ supp(S∗i ) for any simple S∗i ∈ E

ht(C) = ℓ(roof(C)).

Proposition 2.6.7 Consider the algebra k∆h
n. Then

∆h

n
= ∆h

n−1
+

h−1
∑

i=0

Ci.∆
h

n−i−1
, (2.1)

where Ci = 1
i+1

(

2i
i

)

is the ith Catalan number.
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Proof : Let X be an indecomposable module with ℓ(X) = ℓ ≥ 2 and S1 ∈

supp(X). We show that

#{C | roof(C) = X} = #{C | ht(C) = ℓ} = ∆ℓ−2.∆
h

n−ℓ. (2.2)

For the first equality: By definition X is simple in C and therefore there is no other,

simple module Y ∈ C that contains T1 in its support since this yields Soc(X) =

Soc(Y ) and hence a monomorphism between X and Y , which is impossible. For the

second equality, since the simples are orthogonal, from the AR-quiver of mod k∆h
n

we notice that all indecomposable objects Y in mod k∆h
n such that Homk∆h

n
(X, Y ) =

Homk∆h
n
(Y,X) = 0 are contained in two regions (see the figure below):

• the triangle-shaped region - the part of the AR-quiver that contains all inde-

composable objects with support from the set {T2, . . . , Tℓ−1};

• the trapezium-shaped region - the part of the AR-quiver that contains all

indecomposable objects with support from the set {Tℓ+1, . . . , Tn}.
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1 2 ℓ− 1 ℓ ℓ+ 1ℓ+ 2
�
�
�
�
�
��

@
@
@
@
@
@@

�
�
�
�
�

@
@
@
@
@

�
�
�
�
��

A
A
A
A
AA

r
X

r

r r

. . . . . .
∆ℓ−2 ∆h
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n− 1n

Figure 2.9: The orthogonal points of X

Then U(T2, . . . , Tℓ−1) ∼= mod k∆ℓ−2, U(Tℓ+1, . . . , Tn) ∼= mod k∆h
n−ℓ and hence

the number of orthogonal sequences in these subcategories is ∆ℓ−2 and ∆h

n−ℓ and

(2.2) follows at once. If ℓ(X) = 0 or ℓ(X) = 1, then evidently all orthogonal to X

must be in U(T2, . . . , Tn) ∼= mod∆h
n−1. Now, since #{C ∈ mod k∆h

n} =
∑h

i=0 #{C |

ht(C) = i}, we obtain the following formula:

∆h

n
= ∆h

n−1
+ ∆h

n−1
+

h
∑

i=2

∆i−2.∆
h

n−i
= ∆h

n−1
+

h−1
∑

i=0

∆i−1.∆
h

n−i−1
, (2.3)

where we set ∆i = 1 for i < 0. If h = n, then mod k∆n
n = mod k∆n and hence

∆n

n
= ∆n and recurrent formula reads:

∆n = ∆n−1 + ∆n−1 +
n−1
∑

i=1

∆i−1.∆n−i−1, (2.4)

with ∆0 = 1 and ∆1 = 2. On the other hand, it is a classical result that for n ≥ 1

the Catalan numbers are defined via the following recurrent formula:

Cn+1 =
n

∑

i=0

CiCn−i = C0.Cn + C0.Cn +
n−1
∑

i=1

CiCn−i, (2.5)



2.6. Nakayama algebras 33

where C0 = 1. Comparing with (2.4), we conclude that ∆i = Ci+1 and having in

mind (2.3), we obtain (2.1). 2

Remark 2.6.8 When h = n, we obtain that the number of exact abelian extension

closed subcategories in mod k∆n is Cn+1. Hence the formula could be interpreted

as a generalisation of the recursive formula for the Catalan numbers. For detailed

reference to Catalan numbers, we point out [RSt].

We present a table of the number of exact abelian extension closed subcategories

in mod k∆h
n. The numbers in bold are the Catalan numbers.

n\h 0 1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2 2 2

2 1 4 5 5 5 5 5 5 5

3 1 8 12 14 14 14 14 14 14

4 1 16 29 37 42 42 42 42 42

5 1 32 70 98 118 132 132 132 132

6 1 64 169 261 331 387 429 429 429

7 1 128 408 694 934 1130 1298 1430 1430

8 1 256 985 1845 2645 3317 3905 4430 4862

2.6.1 Self-injective Nakayama algebras

Definition 2.6.9 An algebra A is called self-injective, if the left module AA is an

injective A-module.

Theorem 2.6.10 Let A be a basic and connected algebra, which is not isomorphic

to k. Then A is a self-injective Nakayama algebra if and only if A ∼= k∆̃n/R
h, for

some h ≥ 2, where

∆̃n : 1 // 2 // 3 // . . . // nkk

with n ≥ 1 and R is the two-sided ideal generated by all arrows of ∆̃n.

Example 2.6.11 The construction of the AR-quiver of mod k∆̃h
n is well-known,

see [AS, Chapter V.4]. Here is an example for mod k∆̃3
6.

S5[3]

��

S6[3]

��

S1[3]

��

S2[3]

��

S3[3]

��

S4[3]

��
. . . S6[2]

;;xxxxxxxx

��

oo S1[2]

;;xxxxxxxx

��

oo S2[2]

;;xxxxxxxx

��

oo S3[2]

;;xxxxxxxx

��

oo S4[2]

;;xxxxxxxx

��

oo S5[2]

��

. . .

S6

<<zzzzzzzz
oo S1

;;wwwwwwwww
oo S2

;;wwwwwwwww
oo S3

;;wwwwwwwww
oo S4

;;wwwwwwwww
oo S5

;;wwwwwwwww
oo S6
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We classify the exact abelian extension closed categories in mod k∆̃h
n. First we

recall that in nrep(k∆̃n) the points are all indecomposable modules with length

less or equal n. Now, since mod k∆̃h
n ⊆ nrep(k∆̃n) is a full embedding, the points

in mod k∆̃h
n are all indecomposables X with ℓ(X) ≤ k = min{n, h}. Since each

exact abelian extension closed subcategory of mod k∆̃h
n is uniquely determined by

its simple objects, which are points, we conclude that all these simples must lie in

mod ∆̃k
n ⊆ mod ∆̃h

n. Having in mind these observations and theorem 2.2.8, together

with proposition 2.4.2, we have immediately:

Corollary 2.6.12 There is a bijection between exact abelian extension closed sub-

categories of mod k∆̃h
n and non-crossing arcs with length at most k = min{n, h} on a

circle with n points. Moreover, the number of exact abelian extension closed subcat-

egories of mod k∆̃h
n, where h ≥ n is equal to the number of exact abelian extension

closed subcategories in nrep(k∆̃n), which equals
(

2n
n

)

.

Denote by ∆̃h

n
the number of exact abelian extension closed categories in mod k∆̃h

n.

Proposition 2.6.13 In mod k∆̃h
n we have the following recursive formula:

∆̃h

n
= ∆h

n−1
+

h−1
∑

i=1

Ti−1.∆
h

n−i
, (2.6)

where Tn =
(

2n
n

)

is the central binomial coefficient.

Proof : Let C be an exact abelian extension closed subcategory in mod ∆̃h
n and

let X be an indecomposable with ℓ(X) = ℓ. The proof mimics the proof of propo-

sition 2.6.7. The only difference is that #{C | ht(C) = ℓ} = ℓ.#{C | roof(C) = X}.

To verify that, we notice that all exact abelian extension closed subcategories Ci

with ht(Ci) = ℓ are of the form Ci = τ i(C), i = 1, . . . , ℓ. The latter is true

21 L…
1

2

L

..
.

L-1 L+1 21 L… L-1N

1

2

L

..
.

XX

N-1

Figure 2.10: ℓ-times shifts of thick subcategories

since all indecomposable modules with the same length must lie on the same τ -

orbit and hence roof(Ci) = τ i(roof(C)) and ht(C) = ht(Ck). It is exactly ℓ-times
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since X1 ∈ supp(τ iX) for i = 1, . . . , ℓ. We conclude that #{C | ht(C) = ℓ} =

ℓ.Cℓ−1.∆
h

n−i
= Tℓ.∆

h

n−i
. 2

Here is a table of the number of exact abelian extension closed subcategories in

mod k∆̃h
n. The numbers in bold are the central binomial coefficients.

n\h 0 1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2 2 2

2 1 4 6 6 6 6 6 6 6

3 1 8 14 20 20 20 20 20 20

4 1 16 34 50 70 70 70 70 70

5 1 32 82 132 182 252 252 252 252

6 1 64 198 354 504 672 924 924 924

7 1 128 478 940 1430 1920 2508 3842 3432

8 1 256 1154 2498 4078 5646 7326 9438 12870

Remark 2.6.14 In fact, using similar arguments as in the last proposition, one

gets the following recursive formula:

Proposition 2.6.15 Consider the algebra k∆̃h
n. Then

∆̃h

n
= ∆̃h

n−1
+

h−1
∑

i=1

Ci−1.∆̃
h

n−i
, (2.7)

where Cn is the nth Catalan number.

If we compare (2.6) and (2.7), we notice that the last formula is more coherent

in a sense that it involves terms from the same type.
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We illustrate the bijections established in theorem 2.3.28. The thicken points (•)

represent the indecomposable direct summands of the cotilting and support-tilting

modules and the simples of the thick subcategories. For simplicity, we do not set

labels of the indecomposable modules, but we refer to figure 2.5.

Cotilting Support-tilting Bounded Unbounded

modules modules thick thick
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Chapter 3

Thick subcategories for hereditary

algebras

For a finite and acyclic quiver Q, we consider its path algebra kQ. We step on a

result of Crawley-Boevey [CB1, Lemma 5], which says that any thick subcategory of

mod kQ generated by an exceptional sequence is exact abelian. We construct for a

thick subcategory C ⊆ mod kQ generated by preprojective modules, an exceptional

sequence that generates C.

Next, we specialise to the module category of kQ, where Q is an Euclidian quiver.

Its path algebra is an example of representation-infinite hereditary algebra, for which

the classification of indecomposable modules is well-known. We introduce reduction

techniques, some of which work in a more general settings, which enable us to prove

that any thick subcategory in mod kQ is exact abelian.

By a result of Colin Ingalls and Hugh Thomas [IT, Theorem 1.1], there is a

bijective correspondence between non-crossing partitions associated to Q (Q is an

Euclidian quiver) and exact abelian extension closed subcategories with a projective

generator in mod kQ. As one observes, there are exact abelian extension closed

subcategories without a projective generator (for instance the tubes in the regular

component of the Auslander-Reiten quiver of mod kQ). So we use results from the

second chapter, and combining with the above cited theorem, we give a complete

combinatorial classification of thick subcategories in mod kQ.

The results in this chapter are joint work with Yu Ye.

3.1 Thick subcategories generated by preprojec-

tive modules

From now on, we assume thatQ is a finite and acyclic quiver and k an is algebraically

closed field. We begin with recalling some facts for the structure of the Auslander-

37
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Reiten quiver of mod kQ. As a reference, we point out [AS, Chapter VIII.2].

Definition 3.1.1 Let A be an arbitrary (not necessarily hereditary) k-algebra, and

Γ(modA) the Auslander-Reiten quiver of A.

(a) A connected component P of Γ(modA) is called preprojective if P is acyclic

and, for any indecomposable module M in P, there exist t ≥ 0 and a ∈ (QA)0

such that M ∼= τ−tP (a). An indecomposable A-module is called preprojec-

tive if it belongs to a preprojective component of Γ(modA), and an arbitrary

A-module is called preprojective if it is a direct sum of indecomposable pre-

projective A-modules.

(b) A connected component Q of Γ(modA) is called preinjective if Q is acyclic

and, for any indecomposable module M in Q, there exist s ≥ 0 and b ∈ (QA)0

such that M ∼= τ sI(b). An indecomposable A-module is called preinjective if

it belongs to a preinjective component of Γ(modA), and an arbitrary A-module

is called preinjective if it is a direct sum of indecomposable preinjective A-

modules.

Proposition 3.1.2 Let Q be a finite, connected, and acyclic quiver, and let A =

kQ. The quiver Γ(modA) contains a preprojective P(A) and preinjective Q(A)

component.

Now we look at the structure of the preprojective (preinjective) component of

Γ(modA). Let M,N be two indecomposable A-modules. A path in modA from M

to N of length t is a sequence:

M = M0
f1
→ M1

f2
→M2 · · ·

ft
→Mt = N

where all the Mi are indecomposable, and all fi are non-zero nonisomorphisms. In

this case, M is called a predecessor of N in modA. Dually, one has a definition

of a successor. We have the following proposition.

Proposition 3.1.3 [AS, Chapter VIII.2, Proposition 2.1] Let A be arbitrary (not

necessarily hereditary) algebra.

(a) Let P be a preprojective component of the quiver Γ(modA) and M be an inde-

composable module in P. Then the number of predecessors of M in P is finite

and any indecomposable A-module L such that HomA(L,M) 6= 0 is a prede-

cessor of M in P. In particular, HomA(L,M) = 0 for all but finitely many

indecomposable A-modules L.
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(b) Let Q be a preinjective component of the quiver Γ(modA) and N be an inde-

composable module in Q. Then the number of successors of N in Q is finite and

any indecomposable A-module L such that HomA(N,L) 6= 0 is a successor of N

in Q. In particular, HomA(N,L) = 0 for all but finitely many indecomposable

A-modules L.

A path from an indecomposable A-module to itself, is a sequence on non-zero noni-

somorphisms between indecomposables of the form

M = M0
f1
→ M1

f2
→M2 · · ·

ft
→Mt = M,

is called a cycle in modA. Then the previous proposition says that, in case of

modules lying in preprojective or preinjective components, these module-theoretical

notions can be expressed graphically.

Proposition 3.1.4 [AS, Chapter VIII.2, Corollary 2.6] Let A be an arbitrary (not

necessarily hereditary) k-algebra.

(a) Let P be preprojective component of Γ(modA) and M be an indecomposable

module in P. Then

(i) any predecessor L of M in modA is preprojective and there is a path in P

from L to M , and

(ii) M lies on no cycle in modA.

(b) Let Q be preinjective component of Γ(modA) and N be an indecomposable mod-

ule in Q. Then

(i) any successor N of L in modA is preinjective and there is a path in Q

from N to L, and

(ii) N lies on no cycle in modA.

A kQ-module X is called exceptional, provided that X is indecomposable and

Ext1
kQ(X,X) = 0. Examples of exceptional modules are the simple modules. The

following lemma gives more examples.

Lemma 3.1.5 [AS, Chapter VIII.2, Lemma 2.7] Let A be an arbitrary (not nec-

essarily hereditary) k-algebra and M be an indecomposable preprojective, or prein-

jective, A-module. Then EndAM ∼= k and Ext1
A(M,M) = 0.

Let E = (X1, . . . , Xr) be a sequence of kQ-modules. Then E is exceptional se-

quence of length r, if all Xi are exceptional and HomkQ(Xj, Xi) = 0 for 1 ≤ i <

j ≤ r and Ext1
kQ(Xj, Xi) = 0 for 1 ≤ i ≤ j ≤ r. If r equals the number of
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vertices of Q, then E is called complete. Recall that E is called orthogonal, if

HomkQ(Xi, Xj) = 0 for any i 6= j. We refer the reader to papers of [R3] and [CB1],

where exceptional sequences are studied in great details.

We notice that since Q has no oriented cycles, we can relabel the vertices of Q

such that (Sn, Sn−1, . . . , S1) forms an exceptional sequence. In that case, it is imme-

diate to check that the sequence (P1, P2, . . . , Pn) of projectives is also exceptional.

So, from now on, we assume that we label the vertices of Q in such a way, that the

above sequences are exceptional.

As before, we denote by Thick(S) the smallest thick subcategory containing S,

where S is an arbitrary set of kQ-modules. We shall frequently use the following

lemma.

Lemma 3.1.6 [CB1, Lemma 5]) Let E be an exceptional sequence of length r in

mod kQ. Then Thick(E) is equivalent to the category of representations of a quiver

Q(E) with r vertices and no oriented cycles. The functor mod kQ(E) →֒ mod kQ is

exact and induces isomorphism on both Hom and Ext. Moreover, any exceptional

sequences in mod kQ can be enlarged to a complete sequence.

In other words Thick(E), for E exceptional, is an exact abelian extension closed

subcategory of mod kQ.

After recalling these facts, we start with our investigation. Let {S1, . . . , Sn}

be the complete set of simple kQ-modules, and {P1, . . . , Pn} and {I1, . . . , In} the

corresponding indecomposable projective and injective modules.

We consider the preprojective component P = {τmPi, m ≤ 0, 1 ≤ i ≤ n} of the

Auslander-Reiten quiver of mod kQ. The structure of P (see theorem 3.1.3) allows

us to introduce a total order on P as follows: τmP i ≺ τnP j if m > n or m = n and

i < j. Obviously, HomkQ(X1, X2) = 0 for any X1 ≻ X2 in P. For any X1, X2 ∈ P,

the distance d(X1, X2) between X1 and X2 is defined to be the supremum of the

lengths of paths starting in X1 and terminating atX2 in the Auslander-Reiten quiver

of kQ, and 0 when no such a path exists.

Example 3.1.7 We consider a part of the preprojective component of Γ(mod kQ).

P2
// τ−kP2 g1

))RRRRRR
//

P1

99ssssss

%%KKKKKK
// Pk // τ−kP1

f1 66mmmmmm

fn
((QQQQQQ
// τ−kPk // τ−k−1P1

//

Pn // τ−kPn
gn

55llllll
//

Now, d(τ−kP1, τ
−kPi) = 1, d(τ−kP1, τ

−k−1P1) = 2 and d(τ−k−tPi, τ
−kP1) = 0 for

k, t ∈ N and i = 2, . . . , n.

The following facts are easily derived from the definition.
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Lemma 3.1.8 Let Q be a quiver and X, Y ∈ P.

(i) If X ≻ Y , then d(X, Y )=0.

(ii) If HomkQ(X, Y ) 6= 0 and X 6= Y , then d(X, Y ) ≥ 1; if Ext1
kQ(Y,X) 6= 0,

then d(X, Y ) ≥ 2.

(iii) For any given X ∈ P and d > 0, there exist only finitely many Y ∈ P, such

that 0 < d(X, Y ) ≤ d or 0 < d(Y,X) ≤ d.

By induction on distance, we get the following useful lemma.

Lemma 3.1.9 Let S ⊆ P be a set of kQ-modules and Z ∈ P. Then there exists

a set S∗ ⊆ P, such that Thick(S∗, Z) = Thick(S, Z), Ext1
kQ(Z,X) = 0 for any

X ∈ S∗, and HomkQ(X,Z) 6= 0 for any X ∈ S∗ \ S.

Proof : Set d(S;Z) = sup({d(X,Z) | X ∈ S,Ext1
kQ(Z,X) 6= 0}) if Ext1

kQ(Z,X) 6= 0

for some X ∈ S, and 0 otherwise. We use induction on d(S;Z). By lemma 3.1.8,

d(S;Z) = 0 or d(S;Z) ≥ 2. If d(S;Z) = 0, then Ext1
kQ(Z,X) = 0 for all X ∈ S and

hence we may take S∗ = S. So, we may assume that d(S;Z) > 0.

For any X ∈ S such that Ext1
kQ(Z,X) 6= 0, we fix a non-split short exact

sequence 0 → X → ⊕l
i=1X

⊕ni

i → Z → 0, where Xi’s are indecomposable and

pairwise non-isomorphic. Set SX;Z = {X1, . . . , Xl}. By construction, we have

Thick(X,Z) = Thick(SX;Z , Z) and d(SX;Z ;Z) ≤ d(X;Z) − 1. The last equality

holds since d(X,Z) ≥ d(X, Y ) + d(Y, Z) for any X, Y and Z ∈ P, provided that

d(X,Z) 6= 0, d(X, Y ) 6= 0 and d(Y, Z) 6= 0.

Now, we take

S ′ = {X ∈ S | Ext1
kQ(Z,X) = 0} ∪

⋃

X∈S,Ext1kQ(Z,X)6=0

SX;Z .

We showed that d(S ′;Z) < d(S;Z) and Thick(S ′, Z) = Thick(S, Z). Clearly,

HomkQ(X,Z) 6= 0 for any X ∈ S ′ \ S. Now, repeat the argument for S ′, and

after finite steps we get S∗ ⊂ P with the desired properties. 2

Proposition 3.1.10 Let S ⊂ P be a set of kQ-modules. Then there exists an

exceptional sequence E, such that Thick(S) = Thick(E). As a consequence, any

thick subcategory generated by preprojective modules is exact abelian.

Proof : We use induction on the total order on P. First we assume that S is a finite

set. We construct the required exceptional sequence E in the following way.

We take a maximal element Z1 in S. This can be done since S is a finite

set. Set S ′ = S \ {Z1}. Now, we know that HomkQ(Z1, X) = 0 for any X ∈

S ′. By lemma 3.1.9, there exists S1 ⊆ P, such that Thick(S1, Z1) = Thick(S),

Ext1
kQ(Z1, X) = 0 for any X ∈ S1, and moreover, HomkQ(Z,X) = 0 for any X ∈ S1.
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In other words, Thick(S1, Z1) = Thick(S) and Thick(S1) ⊆ Z⊥1 , where as usual

Z⊥1 = {X ∈ mod kQ | HomkQ(Z1, X) = Ext1
kQ(Z1, X) = 0}.

Set Z1 to be the last term of E and repeat the argument on S1 to get an ascending

sequence E = {. . . , Z2, Z1} in P with respect to the order we defined before, such

that Thick(E) = Thick(S) and Thick(. . . , Zn+2, Zn+1) ⊆ Zn
⊥ for any n ≥ 1. Since

for any Z ∈ P, there exist only finitely many X ∈ P with X ≺ Z, we will stop

after finite steps, which means that E is a finite sequence. By construction, E is an

exceptional sequence and Thick(E) = Thick(S).

Now, let S be an arbitrary subset of P. Since there exist only countably many

preprojective modules, we assume that S = {X1, X2, . . .}. Set Si = {X1, X2, . . . , Xi}

and Ci = Thick(Si) for any i ≥ 1. We complete the proof by showing that

Thick(S) = Ck for some k. Otherwise, assume that there exists an ascending se-

quence 1 = r1 < r2 < r3 < · · · , such that

C1 = Cr1 $ Cr2 $ Cr3 $ · · · .

We showed that each Cri = Thick(Eri), for some exceptional sequence Eri, and hence

Cri is isomorphic to the finite dimensional module category of some quiver. Now, fix

a complete sequence F1 in Cr1 . The latter can be enlarged to a complete sequence

F2 in Cr2 , and do this repetitively to get an exceptional sequence Fi for any i. We

know that each Fi is an exceptional sequence in mod kQ. Since the length of an

exceptional sequence is at most n, we know that there exists k, such that Fi = Fk

for any i ≥ k, which contradicts the assumption that Cri 6= Cri+1
for any i. 2

Remark 3.1.11 Dually, we can prove that if S ⊆ Q is a set of kQ-modules, then

there exists an exceptional sequence E ⊆ Q such that Thick(E) = Thick(S). Hence

any thick subcategory generated by preinjective modules is exact abelian.

Corollary 3.1.12 Let Q be a Dynkin quiver. Then any thick subcategory in mod kQ

is exact abelian.

Proof : Since any indecomposable module in mod kQ is preprojective, the claim

follows. 2

3.2 Thick subcategories for Euclidean quivers

As we have seen, thick hereditary categories generated by preprojective or preinjec-

tive modules are exact abelian. But in general not all modules of finite dimensional

algebras are preinjective or preprojective, as we see from the following proposition.
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Proposition 3.2.1 [AS, Chapter VIII.2, Corollary 2.10] Let A be a representation

infinite algebra. Then there exists an infinite family of pairwise non-isomorphic

indecomposable A-modules that are neither preprojective nor preinjective.

Therefore, it may happen that the exact abelian subcategories in modA are not

generated only by preprojective or preinjective modules.

Definition 3.2.2 Let A be an arbitrary (not necessarily hereditary) k-algebra. A

connected component C of Γ(modA) is called regular component, if C contains

neither projective nor injective modules. An indecomposable A-module is called

regular indecomposable, if it belongs to a regular component of Γ(modA) and

an arbitrary A-module is called regular, if it is a direct sum of indecomposable

A-modules. A non-zero regular module having no proper regular submodules is said

to be regular simple.

For any regular module X, there exists a chain

X = X0 ) X1 ) · · · ) Xℓ−1 =) Xℓ = 0

of regular submodules of X such that Xi−1/Xi is simple regular for any i with

1 ≥ i ≥ ℓ, and ℓ is called the regular length of X, which we denote by rℓ(X).

Let A be a representation-infinite hereditary algebra. We denote by R(A) the

family of all the regular components of Γ(modA) and by add(R(A)) the full sub-

category of modA whose objects are all the regular A-modules.

The following proposition tells us more about Hom-spaces between different com-

ponents in Γ(modA).

Proposition 3.2.3 [AS, Chapter VIII.2, Corollary 2.13] Let A be as before and

L,M and N be three indecomposable A-modules.

(a) If L is preprojective and M is regular, then HomA(M,L) = 0.

(b) If L is preprojective and N is preinjective, then HomA(N,L) = 0.

(c) If M is regular and N is preinjective, then HomA(N,M) = 0.

The picture visualises the shape of the Auslander-Reiten quiver of modA.

R

The proposition above is more briefly expressed by writing:
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HomA(R(A),P(A)) = 0, HomA(Q(A),P(A)) = 0, HomA(Q(A),R(A)) = 0. Us-

ing the Auslander-Reiten formula and the previous proposition, we get immediately:

Ext1
A(P(A),R(A)) = 0,Ext1

A(Q(A),R(A)) = 0,Ext1
A(P(A),Q(A)) = 0.

The behaviour of the Auslander-Reiten translate τ on the regular component is

recorded in the following proposition, see [AS, Chapter VIII.2, Corollary 2.14].

Proposition 3.2.4 Let A be representation-infinite hereditary algebra. The the

Auslander-Reiten translations τ and τ−1, induce mutually inverse equivalences of

categories

add(R(A))
τ // add(R(A))
τ−1

oo .

There are few cases of infinite-dimensional algebras in which the regular component

is well-known. Examples of such algebras are tame hereditary algebras, which

are the path algebras of the quivers, whose underling graph are Euclidian diagrams

(one point extensions of Dynkin diagrams, see A.2). We list the Euclidian quivers,

the dotted lines shows how these diagrams are obtained from the Dynkin diagrams.

•

p p p p p p p p

OOOOOOOO

Ãn : • • . . . • • (n ≥ 1)

•

<<
<<

<<
<<

•

�
�

�
�

D̃n : • • . . . • • (n ≥ 4)

•

��������
•

<<<<<<<<

•

�
�
�

•

Ẽ6 : • • • • •

•

Ẽ7 : • ___ • • • • • •

•

Ẽ8 : • • • • • • • ___ •

The index refers to the number of points minus one (thus Ãn has n+ 1 points).
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In the next theorem, we collect the basic properties of the module category over

the path algebra of Euclidian type. Before that we need the following two definitions.

Definition 3.2.5 Two components C and C′ of the Auslander-Reiten quiver of an

algebra A is said to be orthogonal if HomA(C, C′) = 0 and HomA(C′, C) = 0, that

is, HomA(C,C ′) = 0 and HomA(C ′, C) = 0, for any module C ∈ C and any module

C ′ ∈ C′.

Definition 3.2.6 Let T = {Ti}i∈Λ be a family of stable tubes and (m1, . . . , ms) a

sequence of integers with 1 ≤ m1 ≤ · · · ≤ ms. We say that T is of tubular type

(m1, . . . , ms) if T admits s tubes Ti1 , . . . , Tis of ranks m1, . . . , ms, respectively, and

the remaining tubes Ti of T , with i /∈ {i1, . . . , is}, are homogeneous, that is, of

rank 1.

Theorem 3.2.7 [SS, Chapter XII.3] Let Q be an acyclic quiver whose underlying

graph Q is Euclidean, and A = kQ be the path algebra of Q.

(a) The Auslander-Reiten quiver Γ(modA) of A consists of the following three types

of components:

• a preprojective component P(A) containing all indecomposable projective

modules,

• a preinjective component Q(A) containing all indecomposable injective mod-

ules, and

• a unique P1(k)-family

T Q = {T Q
λ }λ∈P1(k)

of pairwise orthogonal tubes, in the regular part R(A) of Γ(modA).

(b) The tubes are exact abelian extension closed subcategories of modA. Any inde-

composable regular module is uniserial.

(c) Let mQ = (m1, . . . , ms) be the tubular type of the P1(k)-family T Q. Then

• mQ = (p, q) if Q = Ãm, m ≥ 1, p = min{p′, p′′}, and q = max{p′, p′′},

where p′ and p′′ are the numbers of counterclockwise-oriented arrows in Q

and clockwise-oriented arrows in Q, respectively,

• mQ = (2, 2, m− 2), if Q = D̃m and m ≥ 4,

• mQ = (2, 3, 3), if Q = Ẽ6,

• mQ = (2, 3, 4), if Q = Ẽ7, and
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• mQ = (2, 3, 5), if Q = Ẽ8.

In other words, in Euclidean quiver case, kernels and cokernels of morphisms be-

tween regular modules are again regular and there are neither homomorphisms nor

extensions between different tubes. The number of non-homogeneous tubes is finite.

From now on, we assume thatQ is an Euclidean quiver. We adopt some notations

from the previous chapter. We let Tr be the tube of rank r in the regular component

of mod kQ. We denote by {T1, T2, . . . , Tr} the set of simples of Tr, and assume

that τ(Ti) = Ti−1 for any 1 ≤ i ≤ r, where as before indices are taken modulo

r. Since the tubes are uniserial categories, any indecomposable object in Tr is

uniquely determined by its socle and length. As in the first chapter, Ti[ℓ] denotes

the indecomposable object with socle Ti and length ℓ. Recall that the regular simple

composition factors of a regular module is called the regular support. For example,

Ti[ℓ] has support {Ti, Ti+1, . . . , Ti+ℓ−1}.

In this section, we aim to prove that any thick subcategory of mod kQ is exact

abelian. First, we restate theorem 2.2.10 and lemma 2.3.1 from the previous chapter.

Proposition 3.2.8 Let Tr be a tube of rank r in mod kQ. Then any thick subcat-

egory of Tr is exact abelian in Tr and hence in mod kQ. More precisely, for any

connected thick subcategory C of Tr,

(1) there exists a sequence {Ti1 [ℓ1], . . . , Tis [ℓs]} ⊆ Tr of indecomposable objects

with ik + ℓk = ik+1 for any k and ℓ1 + ℓ2 + · · ·+ ℓs ≤ r;

(2) C is either equivalent to mod kAs for the Dynkin quiver of directed As type, or

to a tube of rank s; moreover, C is equivalent to a tube if and only if ℓ1 + · · ·+ℓs = r.

Before proving the next proposition, we recall the following fact. Let R be an

indecomposable module in mod kQ and let Tr ⊆ R be the unique tube of rank r

that contains R. If rℓ(R) < r, then R is exceptional.

Proposition 3.2.9 Let S ⊆ P be an arbitrary set and E = (X1, . . . , Xk) ⊆ Tr an

exceptional sequence with pairwise disjoint regular supports. Then there exists an

exceptional sequence E ′ ⊆ P ∪ Tr such that Thick(S,E) = Thick(E ′).

Proof : Since Xi’s have pairwise disjoint regular supports, we see that E is orthog-

onal, that is, HomkQ(Xi, Xj) = 0 for any 1 ≤ i 6= j ≤ k. To prove the proposition,

we use the induction on the sum of the lengths of Xi’s.

If Ext1
kQ(Xi, P ) = 0 for any P ∈ S and Xi ∈ E, then by applying proposi-

tion 3.1.10, we have an exceptional sequence F ⊆ P such that Thick(F ) = Thick(S).

Since S ⊆ E⊥, then Thick(S) ⊆ E⊥, and hence E ′ = (F,E) forms an exceptional

sequence and Thick(E ′) = Thick(S,E).
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Now, assume that there exists some P ∈ S and Xi ∈ E such that Ext1
kQ(Xi, P ) 6=

0. Taking a non-split short exact sequence 0 → P → P1 ⊕ R → Xi → 0 with P1

preprojective and R regular (the middle term can be written in this way since it

has no preinjective direct summands). Notice that Ker(R → Xi) ⊆ P and since

Ker(R→ Xi) is again regular, it follows that Ker(R → Xi) = 0. Moreover since the

sequence is non-split, R is a proper submodule of Xi.

We set S1 to be the union of S and the indecomposable direct summands of P1

and E1 = (X1, . . . , Xi−1, R,Xi+1, . . . , Xk) if R 6= 0, or to be the union of S and the

indecomposable direct summands of P1 and E1 = (X1, . . . , Xi−1, Xi+1, . . . , Xk) if

R = 0. It follows that Thick(S,E) = Thick(S1, E1), and again E1 is an orthogonal

sequence with pairwise disjoint regular supports. In both cases the total sum of

lengths of elements of E1 is strictly less than the one of E, since in case R 6= 0,

by construction R is a proper submodule of Xi. Repeat the argument, we get to

the case such that S ⊆ E⊥ after finite step, and the conclusion follows. Now, by

the inductional hypothesis, there is an exceptional sequence E ′ ⊆ P ∪ Tr, such that

Thick(E ′) = Thick(S,E) = Thick(S1, E1). The proof follows. 2

As a consequence, we get the following corollary.

Corollary 3.2.10 Let P ∈ P and R ∈ R such that Ext1
kQ(R,P ) 6= 0. Then there

exists an exceptional sequence E such that Thick(P,R) = Thick(E).

Proof : Let Tr be the unique tube with rank r, which contains R. Assume that

the simple objects T1, T2, . . . , Tr of Tr are ordered in such a way that τTi = Ti−1.

Without loss of generality, we assume that R = T1[ℓ] for some ℓ.

There are three cases.

Case 1. If 1 < ℓ < r, then R is an exceptional module, and hence there exists

an exceptional sequence E such that Thick(P,R) = Thick(E) by proposition 3.2.9.

Case 2. ℓ = mr, for m ≥ 1. Then Thick(T1[mr]) = Thick(T1[r]). Without

loss of generality, we may assume that ℓ = r. By assumption, Ext1
kQ(R,P ) 6= 0

and we may take a non-split short exact sequence 0 → P → P1 ⊕ R1 → R → 0.

With the same argument as in the proof of proposition 3.2.9, we can show that

Thick(P,R) = Thick(P, P1, R1) with R1 a proper regular submodule of R. Now, R1

has no self extensions and again using proposition 3.2.9 there exists an exceptional

sequence E such that Thick(E) = Thick(P, P1, R1) = Thick(P,R).

Case 3. ℓ = rm + s, for some 1 ≤ s < r. Then Thick(T1[rm + s]) =

Thick(T1[s], Ts+1[r−s]). Since T1[ℓ] has a filtration with factors T1[s] and Ts+1[r−s]

and Ext1
kQ(T1[ℓ], P ) 6= 0, we have Ext1

kQ(T1[s], P ) 6= 0 or Ext1
kQ(Ts+1[r − s], P ) 6= 0.

First, assume that Ext1
kQ(T1[s], P ) 6= 0. We take a non-split short exact sequence

0 → P → P1⊕R1 → T1[s] → 0. By the same argument as before, we get that R1 is a

proper regular submodule of T1[s], and hence {R1, Ts+1[r− s]} forms an exceptional
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sequence. Now, by applying proposition 3.2.9, we get that there exists an exceptional

sequence E such that Thick(E) = Thick(P, P1, R1) = Thick(P,R).

The same argument works for the case that Ext1
kQ(Ts+1[r − s], P ) 6= 0, which

completes the proof. 2

As in the previous chapter, we shall frequently use the Happel-Ringel’s lemma,

so we recall it here.

Lemma 3.2.11 (Happel-Ringel) Let H be a hereditary abelian category. Assume

that X, Y are indecomposable objects in H and Ext1
H(Y,X) = 0. Then any non-zero

morphism f : X → Y is either monomorphism or epimorphism.

In Chapter 1 we discussed, that any thick subcategory C of an abelian category

A is exact abelian if and only if C is closed under kernels (or equivalently closed

under images, or closed under cokernels). In the next proposition we prove that any

thick subcategory in mod kQ, where Q is an Euclidian quiver is closed under kernels,

and hence it is exact abelian. As we shall see in theorem 3.3.1, this statement holds

true for any abelian hereditary category. But the proof, we shall present, is explicit

and we shall use it in the next chapter to prove the main theorem there. We also

refer the reader to A.4, where basic homological facts, which are frequently used in

the proof, are collected.

Proposition 3.2.12 Let Q be an Euclidian quiver, X and Y kQ-modules and

f : X → Y a non-zero morphism between them. Then Ker f ∈ Thick(X, Y ).

Proof : We use induction on d = dim(X) + dim(Y ), where the dimension is over k.

Clearly, the assertion holds in case either X or Y is simple. Now, assume that the

assertion is true for any morphism f : X ′ → Y ′ with dim(X ′) + dim(Y ′) < d.

First, we assume that X is decomposable and write X = X1 ⊕X2 with X1 and

X2 non-zero. Then we have the following commutative diagram:

0 // X1

(1,0)
//

f1

��

X1 ⊕X2

(0
1)

//

f=(f1
f2
)

��

X2
//

��

0

0 // Y
Id // Y // 0 // 0.

Applying the snake lemma, we get the exact sequence

0 → Ker f1 → Ker f → X2 → Coker f1 → Coker f → 0.

From dim(X1) < dim(X) follows by induction that Coker f1 ∈ Thick(X1, Y ) ⊆

Thick(X, Y ). Now, since Coker f = Coker(X2 → Coker f1) and dim(X2) < dim(X),

dim(Coker f1) ≤ dimY , we get Coker f ∈ Thick(X2,Coker f1) ⊆ Thick(X, Y ), and

hence Ker f ∈ Thick(X, Y ).
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The dual version of the above argument shows that if Y is decomposable, then

Ker f ∈ Thick(X, Y ).

Now, we may assume that both X and Y are indecomposable. If X and Y

are preprojective (preinjective), then by proposition 3.1.10 (remark 3.1.11) we have

Ker f ∈ Thick(X, Y ). If X and Y are regular, then by proposition 3.2.8 we have

Ker f ∈ Thick(X, Y ). Having in mind proposition 3.2.3, the only cases left are:

Case 1. X = P ∈ P and Y = R ∈ R.

Case 2. X = R ∈ R and Y = Q ∈ Q.

Case 3. X = P ∈ P and Y = Q ∈ Q.

We proceed with a case-by-case analysis.

Case 1. P ∈ P, R ∈ R and 0 6= f : P → R.

If Ext1
kQ(R,P ) = 0, then by Happel-Ringel’s lemma, f is either injective or

surjective, so in both cases Ker f ∈ Thick(R,P ).

Now, we assume that Ext1
kQ(R,P ) 6= 0. Applying corollary 3.2.10, we show that

Thick(P,R) is exact abelian, and hence Ker f ∈ Thick(R,P ).

Case 2. Dual to Case 1.

Case 3. P ∈ P, Q ∈ Q and 0 6= f : P → Q.

Again by Happel-Ringel’s lemma, we may assume that Ext1
kQ(Q,P ) 6= 0, so let

η be a non-split short exact sequence η : 0 → P → M → Q → 0. There are two

possibilities: (i) M is indecomposable or (ii) M is decomposable, and we deal with

these cases separately.

(i) M is indecomposable.

By proposition 3.1.10 and remark 3.1.11, if M is either preprojective or prein-

jective, then Thick(P,Q) is exact abelian and therefore Ker f ∈ Thick(P,Q).

Now, assume that M is regular. If M has no self-extensions, we can apply

proposition 3.2.9 to get that Thick(P,Q) = Thick(P,M) is exact abelian, and

hence Ker f ∈ Thick(P,Q). If M has self-extensions, by applying the functor

HomkQ(M,−) on 0 → P →M → Q→ 0, we get an exact sequence Ext1
kQ(M,P ) →

Ext1
kQ(M,M) → 0, which forces that Ext1

kQ(M,P ) 6= 0. By corollary 3.2.10, we

have that Thick(P,M) is exact abelian and hence Ker f ∈ Thick(P,Q).

(ii) M is decomposable.

SupposeM = M1⊕M2 for someM1,M2 6= 0. The proof that Ker f ∈ Thick(P,Q)

is divided into 3 steps.

Step 1. Let 0 → P
(g1

g2
)

→ M1 ⊕ M2
(h1,h2)
→ Q → 0 be a non-split short exact

sequence. If one of Ker g1,Ker g2,Coker h1,Coker h2 is non-zero and contained in

Thick(P,Q), then so is Ker f .
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First, assume that 0 6= Ker g1 ∈ Thick(P,Q). We have the following commuta-

tive diagram:

0 // Ker g1
i //

f◦i
��

P
π //

f

��

U //

��

0

0 // Q Id // Q // 0 // 0.

By the snake lemma, we get a long exact sequence

0 → Ker(f ◦ i) → Ker f → U → Coker(f ◦ i) → Coker f → 0.

Since Q is indecomposable, we claim that Ker g1 is a proper submodule of P .

Otherwise, if Ker g1 = P , then Imh1
∼= M1 and Imh2 ∩ Imh1 = 0, and hence Q ∼=

Imh1⊕Im h2. Since Q is indecomposable, we have that Imh2 = 0, M1
∼= Q, P ∼= M2

and the short exact sequence splits. This leads to a contradiction. Hence we have

dim(Ker g1) < dim(P ) and by induction hypothesis on the dimensions, Ker(f ◦ i) ∈

Thick(Ker g1, Q) ⊆ Thick(P,Q) and Coker(f ◦ i) ∈ Thick(P,Q). Moreover Ker g1 6=

0 implies that dim(U) < dim(P ), together with the facts that dim(Coker(f ◦ i)) ≤

dim(Q) and Coker f = Coker(U → Coker(f ◦ i)), it follows from that Coker f ∈

Thick(U,Coker(f ◦ i)) ⊆ Thick(P,Q).

A dual version works in case that 0 6= Coker h1 ∈ Thick(P,Q) by using the

commutative diagram

0 // 0 //

��

P
Id //

f

��

P //

π◦f
��

0

0 // V
i // Q π // Coker h1

// 0

and the snake lemma. The other cases are treated the same.

Step 2. Let 0 → P
(g1,g2)
−→ M1 ⊕M2

(h1
h2

)
→ Q → 0 be a non-split short exact se-

quence. If min{dimM1, dimM2} < max{dimP, dimQ}, then Ker f ∈ Thick(P,Q).

First assume that dimM1 < dimP . By the induction hypothesis on the dimen-

sion, follows that Ker h1 ∈ Thick(M1, Q) ⊆ Thick(P,Q). Therefore, if Coker h1 6= 0,

then Ker f ∈ Thick(P,Q) by Step 1. Now, assume that Coker h1 = 0.

By the property of push-out and pull-back, we know that Ker g1 = 0 if and only

if Ker h2 = 0 and Coker g1 = 0 if and only if Coker h1 = 0. Now, Coker h1 = 0

implies that Coker g2 = 0 and hence Ker g2 ∈ Thick(P,M2) ⊆ Thick(P,Q). By Step

1, to show that Ker f ⊆ Thick(P,Q), it suffices to show that Ker g2 6= 0. In fact,

if Ker g2 = 0, then g2 is an isomorphism and hence the short exact sequence splits,

which gives a contradiction and the assertion follows.

A dual version of the above argument works for the case dimM1 < dimQ.

Step 3. Let 0 → P
(g1,g2)
−→ M1⊕M2

(h1
h2

)
→ Q→ 0 be a non-split short exact sequence

with dim(P ) = dim(M1) = dim(M2) = dim(Q). We claim that Ker f ∈ Thick(P,Q).
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Applying Step 2 we may assume that M1 and M2 are both indecomposable.

If both M1 and M2 are preinjective, then Thick(P,Q) = Thick(M1,M2, Q) and

hence is exact abelian by remark 3.1.11, which implies that Ker f ∈ Thick(P,Q).

Otherwise if one of them, sayM1, is preprojective or regular, then by Case 1, we know

that Ker g1 ∈ Thick(P,Q). We claim that Ker g1 6= 0. Otherwise the assumption

dim(P ) = dim(M1) implies that g1 is an isomorphism and hence the short exact

sequence splits. It follows that Ker f ∈ Thick(P,Q) by Step 1.

So far, we have shown that if M is not indecomposable, we are either in the

situation of Step 2 or Step 3, and in both cases Ker f ∈ Thick(P,Q).

Now, we have shown that Ker f ∈ Thick(X, Y ) holds for any f : X → Y with

dim(X) + dim(Y ) = d, which finishes the proof. 2

As we already discussed, any thick category closed under arbitrary kernels is

exact abelian. The previous proposition gives us immediately the following result.

Corollary 3.2.13 Let C be a thick subcategory in mod kQ. Then C is exact abelian.

Let us summarize the results obtained so far.

Theorem 3.2.14 Let k be an algebraically closed filed, Q a finite quiver and kQ its

path algebra.

(i) Let S be a set of kQ-modules with S ⊆ P or S ⊆ Q, where P and Q denote

the preprojective and preinjective component of mod kQ respectively. Then Thick(S)

is exact abelian.

(ii) If Q is either Dynkin or Euclidean quiver, then any thick subcategory of

mod kQ is exact abelian.

3.2.1 Classification of thick subcategories

A result by Ingalls and Thomas says that for an Euclidean quiver Q, there exists a

one-to-one correspondence between the non-crossing partitions associated to Q and

the “finitely generated wide subcategories” [IT, Theorem 1.1] of mod kQ. Note that

the “wide subcategories” refer to the exact abelian extension closed subcategories

in our sense, and “finitely generated” means that the subcategory has a projective

generator. As we shall prove, any thick subcategory of kQ has either a projective

generator, or consists of regular modules.

Theorem 3.2.15 Let k be an algebraically closed field and Q an Euclidean quiver.

Let C be a thick subcategory of mod kQ. Then at least one of the following holds:

(i) There exists an exceptional sequence E, such that C = Thick(E).

(ii) Any object in C is regular.
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Proof : In the previous section, we showed that any thick subcategory of mod kQ

is exact abelian. In particular, C is exact abelian, and we can consider its simple

objects. Let SP be a complete set of simples in C, which are preprojective in mod kQ.

By using the order we defined on P, we know that SP forms an exceptional sequence.

We denote by SR and SQ the set of simples which are regular and preinjective

respectively.

We claim that if SP∪SQ 6= ∅, then we can make SQ∪SR∪SP into an exceptional

sequence.

Without loss of generality, we may assume that SP 6= ∅ and P = τ−lPj ∈ SP ,

where Pj is a projective module and l ≥ 0. First we show that in this case, SR is

finite. Note that in Euclidean case, dimk(HomkQ(Pj, R)) − dimk(Ext1
kQ(Pj , R)) > 0

for any module R which appears in some homogeneous tube, see [CB2, Lemma 7.2],

since the dimension vector of any such regular module is a multiple of δ, the min-

imal imaginary root associated to Q. But Ext1
kQ(Pj , R) = 0, so we conclude that

HomkQ(Pj, R) 6= 0. Since SP and SR are both sets of simples in the category C, then

there are no non-zero morphisms between different elements in these sets. Hence

the elements of SR are from the non-homogeneous tubes. From theorem 3.2.7, we

know that there are finitely many non-homogeneous tubes in Euclidean quiver case,

and since the number of elements in SR from one tube is not greater than the rank

of the tube, we conclude that SR is finite.

Next, assume that E = {X1, X2, . . . , Xt} = SR ∩ Tr for some non-homogeneous

tube Tr of rank r. We show that E forms an exceptional sequence after some

reordering. Let {T1, T2, . . . , Tr} be the complete set of regular simple modules in Tr,

and again assume that τTi = Ti−1. The indices are taken modulo r and we identify

T0 = Tr.

Since the dimension vector of T = ⊕r
i=1Ti equals δ, see [CB2, Lemma 9.3],

again by [CB2, Lemma 7.2], we have that HomkQ(Pj, T ) 6= 0. Therefore there

exists some Ti such that HomkQ(Pj , Ti) 6= 0. Moreover, for any object X in Tr

which has Ti as a composition factor, HomkQ(Pj, X) 6= 0. This is equivalent to say

that HomkQ(τ−lPj , X) 6= 0 for any object in Tr which has Ti+l as a composition

factor. Since P and all Xi’s are simples in C, we have HomkQ(P,Xi) = 0 for any

1 ≤ i ≤ t, which forces that the regular support of {X1, X2, . . . , Xt} to be contained

in {T1, . . . , Tr} \ {Ti+l−1}. Now, it is not difficult to show that E is an exceptional

sequence, since the subcategory Thick({T1, . . . , Tr} \ {Ti+l−1}) is equivalent to the

module category of the quiver of directed Ar−1 type.

Since for each non-homogeneous tube Tr, we showed that SR ∩ Tr forms an

exceptional sequence, it follows that SR forms an exceptional sequence since there

exists no extensions between different tubes. Combined with the fact Ext1
kQ(P,Q) =

Ext1
kQ(P,R) = Ext1

kQ(R,Q) = 0, we have that SQ ∪ SR ∪ SP forms an exceptional
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sequence.

Now, we assume that both SP and SQ are empty, and in this case, any objects

X in C has a filtration with factors in SR and hence X is regular. We are done. 2

Remark 3.2.16 (1) Notice that there are thick subcategories of mod kQ, which

consist of regular modules and are generated by exceptional sequences. All these

subcategories are given by direct sums of bounded thick subcategories of non-

homogeneous tubes, which we classified in the previous chapter.

(2) The thick subcategories generated by exceptional sequences coincide with

the so called “finitely generated wide subcategories”, as defined in [IT]. In fact, a

thick subcategory generated by an exceptional sequence is isomorphic to the module

category of some quiver, and hence has a projective generator. Conversely, if a thick

subcategory C is not generated by any exceptional sequence, then by the last theorem

and proposition 3.2.8, C has a tube as a direct summand, and clearly a tube has no

finite projective generator. We comment that all these categories refer to unbounded

thick subcategories, which we classified in the previous chapter.

Now, having in mind these remarks, the result of Colin Ingalls and Hugh Thomas

[IT, Theorem 1.1] and theorem 2.2.13, we also obtain the combinatorial classification

of thick subcategories in mod kQ.

Corollary 3.2.17 Let k be an algebraically closed field, Q an Euclidian quiver and

C a connected thick subcategory in mod kQ.

(i) If C has a projective generator, then C corresponds to a non-crossing partition

of type Q.

(ii) If C has no projective generator, then C corresponds to a configuration of non-

crossing arcs covering the circle.

3.3 Thick subcategories are exact abelian

We finish this chapter with pointing out a very elegant proof due to Dieter Vossieck,

that any thick subcategory C of an abelian hereditary category H is exact abelian.

Theorem 3.3.1 Let H be a hereditary abelian category and C ⊆ H be a thick sub-

category. Then C is exact abelian.

Proof : Let X, Y be arbitrary objects in C and f be a non-zero morphism:

X
�

"D
DD

DD
DD

D
f

// Y �

$H
HHHHHHHH

Ker f
-



<<yyyyyyyy
Im f

.

�

i

==zzzzzzzz
Coker f.
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Consider the following short exact sequences:

ψ : 0 → Ker f → X
π
։ Im f → 0

ξ : 0 → Im f
i
→֒ Y → Coker f → 0.

Now, apply the functor HomH(Coker f,−) to ψ. Since H is hereditary, then the

long exact sequence terminates at Ext2-terms:

· · · → Ext1
H(Coker f,X)

Ext1
H

(Coker f,π)
−→ Ext1

H(Coker f, Im f) → 0.

We get that Ext1
H(Coker f, π) is surjective, and hence there is η ∈ Ext1

H(Coker f,X)

such that Ext1
H(Coker f, π)(η) = ξ:

η :

Ext1
H

(Coker f,π)
��

0 // X
�

�

//
_

π

�

E //

��

Coker f //

id
��

0

ξ : 0 // Im f �

� i // Y // Coker f // 0

But then Y is the push-out of Im f
π
և X →֒ E (see A.4) and therefore the sequence

0 → X → Im f ⊕ E → Y → 0 is short exact, see [AS, A.5., Proposition 5.2].

Now, since C is closed under extensions and direct summands, we have that Im f

is in C. As we already discussed, if C is closed under arbitrary images, then it is

automatically closed under arbitrary kernels and cokernels. The proof follows. 2



Chapter 4

Exact abelian extension closed

subcategories for tilted algebras

Tilting theory is one of the main tools in the representation theory of finite dimen-

sional algebras. The main idea of the tilting theory is that when the representation

theory of an algebra A is difficult to study directly, it may be convenient to replace

A with another simpler algebra B and to reduce the problem on A to a problem on

B. It is possible to construct a module TA, called a tilting module, which can be

thought of as being close to the Morita progenerator such that, if B = EndA(TA),

then the categories modA and modB are reasonably close to each other and there

is a natural way to pass from one category to the other.

In this chapter we study exact abelian extension closed categories for tilted al-

gebras. We show that there is a bijection between the exact abelian extension and

torsion closed subcategories of modA, where A is a hereditary algebra and the exact

abelian extension closed subcategories of the module category of its tilted algebra

B = EndA(TA).

4.1 Torsion pairs, tilting modules and tilted alge-

bras

In this section, we collect same facts from tilting theory, which we shall use later.

The reference for all facts is [AS, Chapter VI].

Definition 4.1.1 A pair (T ,F) of full subcategories of modA is called a torsion

pair if the following conditions are satisfied:

(a) HomA(M,N) = 0 for all M ∈ T , N ∈ F .

(b) HomA(M,−)|F = 0 implies M ∈ T .

55
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(c) HomA(−, N)|T = 0 implies N ∈ F .

Definition 4.1.2 A subfunctor t of the identity functor in modA is called an idem-

potent radical if, for every module MA, t(tM) = tM and t(M/tM) = 0.

We recall that a subfunctor of the identity functor on modA is a functor t : modA→

modA that assigns to each module M a submodule tM ⊆ M such that each ho-

momorphism M → N restricts to a homomorphism tM → tN . The following

proposition gives us characterisation of torsion and torsion-free classes.

Proposition 4.1.3 (a) Let T be a full subcategory of modA. The following condi-

tions are equivalent:

(i) T is a torsion class of some torsion pair (T ,F) in modA.

(ii) T is closed under images, direct sums, and extensions.

(iii) There exists an idempotent radical t such that T = {M | tM = M}.

(b) Let F be a full subcategory of modA. The following conditions are equivalent:

(i) F is a torsion-free class of some torsion pair (T ,F) in modA.

(ii) F is closed under submodules, direct products, and extensions.

(iii) There exists an idempotent radical t such that F = {N | tN = 0}.

The idempotent radical t attached to a given torsion pair is called the torsion

radical. It follows from the definition that for any module MA, we have tM ∈ T

and M/tM ∈ F . The uniqueness follows from the next proposition, which also says

that any module can be written in a unique way as the extension of a torsion-free

module by a torsion module.

Proposition 4.1.4 Let (T ,F) be a torsion pair in modA and M be an A-module.

There exists a short exact sequence

0 → tM →M → M/tM → 0

with tM ∈ T and M/tM ∈ F . This sequence is unique in a sense that, if 0 →

M ′ → M → M ′′ → 0 is exact with M ′ ∈ T and M ′′ ∈ F , then the two sequences

are isomorphic.

The short exact sequence 0 → tM → M → M/tM → 0 is called the canonical

sequence for M .

Corollary 4.1.5 Every simple module is either torsion or torsion-free.
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A torsion pair (T ,F) such that each indecomposable A-module lies either in T

or in F is called splitting. Splitting torsion pairs are characterised as follows.

Proposition 4.1.6 Let (T ,F) be a torsion pair in modA. The following conditions

are equivalent:

(a) (T ,F) is splitting.

(b) For each A-module M , the canonical sequence for M splits.

Next, we recall the definition of a tilting module.

Definition 4.1.7 Let A be an algebra. An A-module T is called a partial tilting

module if the following two conditions are satisfied:

(T1) the projective dimension of T is at most 1.

(T2) Ext1
A(T, T ) = 0.

A partial tilting module T is called a tilting module, if it also satisfies the

following additional condition:

(T3) There exists a short exact sequence 0 → AA → T ′A → T ′′A → 0 with T ′, T ′′ in

add(T ).

A tilting module is called basic, if each indecomposable direct summand occurs

exactly once in its direct sum decomposition.

Let T be an arbitrary A-module. We define Gen(T ) to be the class of all modules

M in modA generated by T , that is, the modules M such that there exists an integer

d ≥ 0 and an epimorphism T d → M of A-modules. Dually, we define Cogen(T ) to

be the class of all modules N in modA cogenerated by T , that is, the modules N

such that there exist an integer d ≥ 0 and a monomorphism N → T d of A-modules.

Proposition 4.1.8 Let TA be a partial tilting module. The following are equivalent:

(a) TA is a tilting module.

(b) Gen(T ) = T (T ) = {MA | Ext1
A(T,M) = 0} is a torsion class in modA with

corresponding torsion-free class Cogen(τT ) = F(T ) = {MA | HomA(T,M) =

0}.

For a given tilting module, we introduce a new class of algebras.

Definition 4.1.9 Let A be a finite dimensional, hereditary k-algebra and TA be a

tilting module. The k-algebra EndA(TA) is called a tilted algebra.
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The following proposition tells us what is the effect of any tilting module TA on

modB.

Proposition 4.1.10 Let A be an algebra. Any tilting A-module TA induces a tor-

sion pair X (TA),Y(TA) in the category modB, where B = EndA(TA) and

X (TA) = {XB | HomB(X,DT ) = 0} = {XB | X ⊗B T = 0},

Y(TA) = {YB | Ext1
B(Y,DT ) = 0} = {YB | TorB1 (Y, T ) = 0}.

The next theorem, known as Brenner-Butler theorem or a tilting theorem, is a

milestone in the tilting theory.

Theorem 4.1.11 (Brenner-Butler) Let A be an algebra, TA be a tilting module, B =

EndA(TA), and (T (TA),F(TA)), X (TA),Y(TA) be induced torsion pairs in modA

and modB, respectively. Then TA has the following properties:

(a) BT is a tilting module, and the canonical k-algebra homomorphism A→ End(BT )op

defined by a a 7→ (t 7→ ta) is an isomorphism.

(b) The functors HomA(T,−) and −⊗BT induce quasi-inverse equivalences between

T (TA) and Y(TA).

(c) The functors Ext1
A(T,−) and TorB1 (−, T ) induce quasi-inverse equivalences be-

tween F(TA) and X (TA).

The following proposition asserts that the composition of any two of the four

functors HomA(T,−), Ext1
A(T,−), − ⊗B T and TorB1 (−, T ), which are not quasi-

inverse to each other, vanishes.

Proposition 4.1.12 (a) Let M be an arbitrary A-module. Then

(i) TorB1 (HomA(T,M), T ) = 0.

(ii) Ext1
A(T,M) ⊗B T = 0.

(iii) The canonical sequence of M in (T (TA),F(TA)) is

0 → HomA(T,M) ⊗B T →M → TorB1 (Ext1
A(T,M), T ) → 0.

(b) Let X be an arbitrary B-module. Then

(i) HomA(T,TorB1 (X, T )) = 0.

(ii) Ext1
A(T,X ⊗B T ) = 0.
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(iii) The canonical sequence of X in (X (TA),Y(TA)) is

0 → Ext1
A(T,TorB1 (X, T )) → X → HomA(T,X ⊗B T ) → 0.

We introduce two types of tilting modules.

Definition 4.1.13 Let A be an algebra, TA be a tilting module, and B = EndA(TA).

Then

(a) TA is said to be separating if the induced torsion pair (T (TA),F(TA)) in modA

is splitting, and

(b) TA is said to be splitting if the induced torsion pair (X (TA),Y(TA)) in modB

is splitting.

The next proposition tells us when a tilting module is separating or splitting.

Proposition 4.1.14 Let A be an algebra, TA be a tilting A-module, and B =

EndA(TA)

(a) TA is separating if and only if pdX = 1 for every XB ∈ X (TA).

(b) TA is splitting if and only if idN = 1 for every NA ∈ F(TA).

We have immediately the following corollary.

Corollary 4.1.15 If A is hereditary, then every tilting module TA is splitting. If

additionally B is hereditary, then TA is separating.

We finish this section with a very useful proposition that gives us a relation between

Ext-spaces of modA and modB.

Proposition 4.1.16 Let A be an algebra, TA be a tilting module, and B = EndA(TA).

If M ∈ T (TA) and N ∈ F(TA), then, for any j ≥ 1, there is an isomorphism

ExtjA(M,N) ∼= Extj−1
B (HomA(T,M),Ext1

A(T,N)).

In particular if A is hereditary, we have

Ext1
A(M,N) ∼= HomB(HomA(T,M),Ext1

A(T,N)).
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4.2 Exact abelian extension closed subcategories

for tilted algebras

As we already discussed in the previous chapters, an exact abelian subcategory is

thick if and only if it is closed under extensions and also a thick subcategory is exact

abelian if and only if it is closed under arbitrary kernels.

In this section, we shall use another characterisation of these two types of cate-

gories. The first proposition is from [Hov], but for completeness we write the proof

here. We always assume that the subcategories we are considering are full additive

and closed under direct summands.

Proposition 4.2.1 A full additive subcategory C of an abelian category A is exact

abelian extension closed if and only if for every exact sequence

M1 → M2 →M3 →M4 →M5

the object M3 is in C if the objects M1,M2,M4,M5 are in C.

Proof : Let C ⊂ A be exact abelian subcategory and

M1 → M2 →M3 →M4 →M5

be exact in A. If M1 = M5 = 0 and M2 and M4 are in C, then M3 is in C since

C is exact abelian. Therefore C is closed under extensions. If M1 = M2 = 0 and

M4 = M5 = 0, then C is closed under kernels and cokernels.

Conversely, let C ⊂ A be closed under extensions, kernels and cokernels and let

M1 → M2 →M3 →M4 →M5

be exact with M1,M2,M4,M5 ∈ C. Then C = Coker(M1 → M2) and K =

Ker(M4 →M5) are in C. We obtain the following diagram:

M1
//M2

//

  B
BB

BB
BB

B
M3

//

!!B
BB

BB
BB

B
M4

//M5

C

>>||||||||

!!C
CC

CC
CC

C K

==||||||||

!!C
CC

CC
CC

C

0

=={{{{{{{{
0

=={{{{{{{{
0

Therefore M3 is an extension of C and K and hence it is in C. 2

Immediately from the definition of a thick category, we get the following propo-

sition.
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Proposition 4.2.2 A full additive subcategory C of an abelian category A is thick

if and only if for every short exact sequence

0 → M1 →M2 →M3 → 0

in A, if any two of its (non-zero) terms are in C, then the third one is also in C.

From now on, we assume that A is a finite dimensional hereditary k-algebra

and we denote by modA the category of finite dimensional A-modules. Let TA be

a basic tilting module, B = EndA(TA) be its tilted algebra and (T (TA),F(TA)),

X (TA),Y(TA) be the induced torsion pairs in modA and modB, respectively. Since

gl. dimA ≤ 1, by corollary 4.1.15, the torsion pair in modB is splitting. We set

F = HomA(T,−), F ′ = Ext1
A(T,−), G = −⊗B T and G′ = TorB1 (−, T ).

Definition 4.2.3 A full additive subcategory C in modA is called torsion closed

if M ∈ C implies tM ∈ C.

Note that if C is a thick (or an exact abelian) category, which is torsion closed, then

for any object M ∈ C we have M/tM ∈ C.

In this section, we show that there is a bijection between exact abelian exten-

sion and torsion closed subcategories in modA and exact abelian extension closed

subcategories in modB. In two separate lemmas, we prove each of the directions in

the bijection. We denote as before Thick(S) to be the smallest thick subcategory

that contains S, where S is a set of modules. Also if A and B are abelian categories,

C ⊆ A a full subcategory and F a functor from A to B, then set F (C) to be the full

subcategory of B consisting of objects isomorphic to F (C), for C ∈ C.

Lemma 4.2.4 Let C be an exact abelian extension and torsion closed subcategory

in modA. Then the full subcategory

M = {M ∈ modB |M = M ′ ⊕M
′′

,M ′ ∈ HomA(T, C),M
′′

∈ Ext1
A(T, C)}

in modB is exact abelian and extension closed.

Proof : We divide the proof into two steps. First, we show that M is thick, and then

we show that it is closed under arbitrary kernels. We comment that by definition,

M is closed under direct summands.

Step 1. M is thick subcategory in modB. The torsion pair in modB is splitting,

hence any indecomposable object is either torsion or torsion-free. Take an arbitrary

short exact sequence in modB:

0 → Z1 → Z2 → Z3 → 0,
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where Zi = Xi⊕Yi, Xi ∈ M∩X (TA), Yi ∈ M∩Y(TA). We show that if any two of

its terms are in M, then the third one is also in M, and then by proposition 4.2.2,

the claim shall follow. We apply the functor G = − ⊗B T to the above sequence,

and get the following exact sequence in modA:

0 → G(X1) → G(X2) → G(X3) → G′(Y1)
f
→ G′(Y2)

g
→ G′(Y3) → 0.

If, say Z1, Z2 are in M, then G(X1), G(X2), G
′(Y1), G

′(Y2) are in C and since the

latter is exact abelian extension closed, from proposition 4.2.1 we get the exact

sequence

G(X1) → G(X2) → G(X3) → G′(Y1) → G′(Y2),

and we conclude that G(X3) ∈ C. Having in mind that C is closed under kernels

and images, then Ker f and G′(Y2)/Ker f ∼= G′(Y3) are in C. We conclude that Z3

is in M. The other cases are treated in the same way. This gives an argument for

M to be thick.

Step 2. We prove that if Z1, Z2 are arbitrary objects in M and f : Z1 → Z2 a

non-zero morphism between them, then Ker f is in M. We show that we can reduce

the proof to one the following cases:

Case 1. Ker f ∈ M, where f : X1 → X2 and X1, X2 ∈ M are torsion objects.

Case 2. Ker f ∈ M, where f : Y1 → Y2 and Y1, Y2 ∈ M are torsion-free objects.

Case 3. Ker f ∈ M, where f : Y1 → X1 and Y1, X1 ∈ M are torsion-free and

torsion objects.

To see that, we use a similar argument as in proposition 3.2.12 of the previous

chapter. We use induction on d = dim(Z1) + dim(Z2), where the dimension is over

k. Clearly, the assertion holds when d = 1. Now, assume that the assertion is true

for any morphism f ′ : Z ′ → Z ′′ with dim(Z ′) + dim(Z ′′) < d, Z ′, Z ′′ ∈ M. Since

modB is splitting, we write Zi = Xi⊕Yi (i = 1, 2) with Xi ∈ X (TA) and Yi ∈ Y(TA)

non-zero and X1 ⊕ Y1
f
→ X2 ⊕ Y2, where f =

(

f11
f21

0
f22

)

(f12 = HomB(X1, Y2) = 0).

Then we have the following commutative diagram:

0 // X1
(1,0)

//

f11
��

X1 ⊕ Y1

(0

1) //

f

��

Y1
//

��

0

0 // Z2
Id // Z2

// 0 // 0.

Applying the snake lemma(see A.4), we get the exact sequence

0 → Ker f11 → Ker f → Y1 → Coker f11 → Coker f → 0.

From dim(X1) < dim(Z1), follows that Coker f11 ∈ Thick(X1, Z2) ⊆ Thick(Z1, Z2).

Since Coker f = Coker(Y1 → Coker f11), combined with dim(Y1) < dim(Z1) and
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dim(Coker f11) ≤ dim(Z2), we get Coker f ∈ Thick(Y1,Coker f11) ⊆ Thick(Z1, Z2),

and hence Ker f ∈ Thick(Z1, Z2). Since Coker f11 ∈ Thick(Z1, Z2) ⇔ Ker f11 ∈

Thick(Z1, Z2), by the inductional hypothesis we have that Ker f11 ∈ M implies

Ker f ∈ M. Having in mind that f11 : X1 → X2 is a morphism between torsion-free

modules, we land to Case 1.

Now, if happens that Z1 = Y1 is a torsion-free module, then we consider the

following diagram:

0 // 0 //

��

Y1
Id //

(f21,f22)

��

Y1
//

f22
��

0

0 // X2
(1,0)

// X2 ⊕ Y2

(0

1) // Y2
// 0

.

Then, as we did above, we apply the snake lemma, and by induction we conclude

that Coker f22 ∈ M(⇔ Ker f22 ∈ M) implies Coker f ∈ M(⇔ Ker f ∈ M). Then

we land to Case 2, since f22 : Y1 → Y2 is a morphism between torsion-free modules.

The last possible case is when Z1 = Y1 is a torsion-free module and Z2 = X1 is

a torsion module.

Case 1. Let Z1, Z2 are arbitrary torsion objects in M. For convenience, we

write Z1 = X1 and Z2 = X2. From the definition of M follows, that M∩X (TA) =

Ext1
A(T, C) = Ext1

A(T, C ∩ F(TA)). Then an arbitrary morphism 0 6= f : X1 → X2

is of the form

X1 = Ext1
A(T, C1)

f=Ext1(T,f ′)
−→ Ext1

A(T, C2) = X2,

where f ′ : C1 → C2, and C1, C2 are in C ∩ F(TA). We show that Ker f ∈ M.

Consider the following diagram in modA:

C1 �
π′

"E
EE

EE
EE

E

f ′=i′◦π′

// C2 	

$I
II

II
II

II
I

Ker f ′
-



;;xxxxxxxx
Im f ′

-



i′
<<yyyyyyyy

Coker f ′.

Since C is an abelian subcategory, we have that Ker f ′, Im f ′ and Coker f ′ are in C,

and hence Ext1
A(T,Ker f ′), Ext1

A(T, Im f ′),Ext1
A(T,Coker f ′) and HomA(T,Coker f ′)

are in M. Moreover, since C1, C2 are torsion-free objects in modA, then Ker f ′ ≤ C1

and Im f ′ ≤ C2 are also torsion-free. Now, we apply the functor F = HomA(T,−)

to the two short exact sequences above

0 → Im f ′
i′

→ C2 → Coker f ′ → 0 (modA)

0 → F (Coker f ′) → F ′(Im f ′)
F ′(i′)
→ F ′(C2) → F ′(Coker f ′) → 0 (modB)

0 → Ker f ′ → C1
π′

→ Im f ′ → 0 (modA)

0 → F ′(Ker f ′) → F ′(C1)
F ′(π′)
−→ F ′(Im f ′) → 0 (modB)

(F ′ = Ext1
A(T,−)) and transfer to modB. We obtain the following diagram:
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X1 = F ′(C1)
�

F ′(π′)

'PPPPPPPPPPPP

f=F ′(f ′)
// F ′(C2) = X2

F ′(Im f ′).

F ′(i′)
77nnnnnnnnnnnn

We comment that in general F ′(i′) is not a monomorphism. Now f = F ′(f ′) =

F ′(i′ ◦ π′) = F ′(i′) ◦ F ′(π′). We have that KerF ′(π) is in M, since F ′(π′) is an

epimorphism and M is closed under kernels of epimorphisms. From the second

short exact sequence, we get KerF ′(i′) ∼= F (Coker f ′) ∈ M, hence KerF ′(i′) is in

M. Applying lemma A.4.2 to X1

F ′(π′)
։ F ′(Im f ′)

F ′(i′)
→ X2, we get:

0 → KerF ′(π′) → Ker f → KerF ′(i′) → CokerF ′(π′) → Coker f → CokerF ′(i′) → 0.

Now, since CokerF ′(π′) = 0, and M is closed under extensions, we have that Ker f

is in M.

Case 2. Let Z1, Z2 ∈ Y(TA). The case is analogous to the first case.

Case 3. Let Z1 ∈ X (TA) and Z2 ∈ Y(TA). Write Z1 = X1 and Z2 = Y1 and

denote by F1 = G′(X1) and T1 = G(Y1). Since A is hereditary, by proposition 4.1.16

we have Ext1
A(T1, F1) ∼= HomB(Y1, X1). Let η ∈ Ext1

A(T1, F1) be the extension that

corresponds to the morphism f : Y1 → X1. We apply the functor F to η

η : 0 → F1 →M → T1 → 0 (modA)

0 → F (M) → Y1
f
→ X1 → F ′(M) → 0 (modB)

and transfer to modB. Since C is closed under extensions and F1, T1 ∈ C, then

M ∈ C and hence F (M) ∼= Ker f ∈ M. This finishes the proof in that case as well

as of the lemma. 2

The next lemma deals with the reverse direction.

Lemma 4.2.5 Let M be an exact abelian extension closed subcategory in modB.

Then the full subcategory

C = {M ∈ modA | HomA(T,M) ∈ M and Ext1
A(T,M) ∈ M}

in modA is exact abelian extension and torsion closed.

Proof : We recall that for an arbitrary module M in modA, we have HomA(T,M) =

HomA(T, tM) and Ext1
A(T,M) = Ext1

A(T,M/tM), hence we can write

C = {M ∈ modA | HomA(T, tM) ∈ M and Ext1
A(T,M/tM) ∈ M}.

First, we show that C is torsion closed. We have that M ∈ C if and only if

F (tM) ∈ M and F ′(M/tM) ∈ M. Now, t(tM) = tM and tM/t(tM) = 0, hence

F (t(tM)) = F (tM) ∈ M and F ′(tM/t(tM)) = 0, which implies that tM ∈ C.
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Next we show that C is thick. We notice that by definition C is closed under

direct summands. Now, an arbitrary short exact sequence in modA is of the form:

0 → Z1 → Z2 → Z3 → 0,

where Zi = Ti ⊕ Ri ⊕ Fi (i = 1, 2, 3), Ti ∈ T (TA), Fi ∈ F(TA) and Ri is neither

torsion nor torsion-free. We use the functor F and get the following exact sequence

in modB:

0 → F (T1) ⊕ F (tR1) → F (T2) ⊕ F (tR2) → F (T3) ⊕ F (tR3) → F ′(F1) ⊕

F ′(R1/tR1)
f∗

→ F ′(F2) ⊕ F ′(R2/tR2) → F ′(F3) ⊕ F ′(R3/tR3) → 0.

By proposition 4.2.2, we have three cases to consider, but since they are treated

the same, we give the details for only one of the cases, namely assume that Z1, Z2 ∈

C. We show that Z3 ∈ C. We have that F (Ti) ⊕ F (tRi) and F ′(Fi) ⊕ F ′(Ri/tRi)

(i = 1, 2) are in M. If we consider the first five non-zero terms of the exact sequence

above, then by proposition 4.2.1, we have that F (T3) ⊕ F (tR3) ∈ M. Since M is

closed under images and cokernels, we have that Im f ∗ ∈ M, and hence F ′(F2) ⊕

F ′(R2/tR2)/ Im f ∗ ∼= F ′(F3) ⊕ F ′(R3/tR3) is also in M. Now, all of the modules

F (T3), F (R3) = F (tR3), F
′(R3) = F ′(R3/tR3) and F ′(F3) are in M, hence T3, R3,

F3 and Z3 are in C.

To finish the proof, we use theorem 3.3.1. Since C ⊆ modA, and A is a hereditary

algebra, then C is exact abelian. 2

We are now able to prove the main theorem in this chapter.

Theorem 4.2.6 Let A be a finite dimensional hereditary k-algebra, TA a basic tilt-

ing module and B = EndA(TA). Then the assignments:

C
i
7→ M = {M ∈ modB |M = M ′ ⊕M

′′

,M ′ ∈ HomA(T, C),M
′′

∈ Ext1
A(T, C)}

M
j
7→ C = {M ∈ modA | HomA(T,M) ∈ M and Ext1

A(T,M) ∈ M}

induce mutually inverse bijections between:

• exact abelian extension and torsion closed subcategories in modA, and

• exact abelian extension closed subcategories in modB.

Proof : The previous two lemmas showed that the assignments are defined properly.

We verify that (j◦i)(C) = C, for arbitrary exact abelian extension and torsion closed

subcategory C ⊆ modA and (i ◦ j)(M) = M, for arbitrary exact abelian extension

closed subcategory M ⊆ modB, and the claim shall follow.

(1) (j ◦ i)(C) = C.

”⊇” Take C ∈ C arbitrary. Then HomA(T, C) ∈ HomA(T, C) = HomA(T, C ∩

T (TA)) = M ∩ Y(TA) ⊆ M = i(C). In the same way Ext1
A(T, C) ∈ M = i(C).

Then C ∈ (j ◦ i)(C).
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”⊆” Take C ∈ (j ◦ i)(C). Then both HomA(T, C) and Ext1
A(T, C) are in i(C) =

M. Note that by construction (j ◦ i)(C) is torsion closed, hence both tC and C/tC

are in (j ◦ i)(C). We have that HomA(T, C) = HomA(T, tC) ∈ M ∩ Y(TA) =

HomA(T, C) = HomA(T, C ∩ T (TA)) and therefore by theorem 4.1.11(b) tC ∈ C ∩

T (TA). In the same way we have that C/tC ∈ C ∩ F(TA). Taking the canonical

sequence for C, and having in mind that C is extension closed, we have that C ∈ C.

(2) (i◦j)(M) = M. Since the torsion pair (X (TA),Y(TA)) in modB is splitting,

any M ∈ modB is of the form M = M1 ⊕M2, where M1 is a torsion-free module

and M2 is a torsion module.

”⊇” Take an arbitrary object M ∈ M. Then there are objects X, Y ∈ modA

such that HomA(T, tX) = M1 and Ext1
A(T, Y/tY ) = M2. But then HomA(T, tX) ∈

HomA(T, j(M)) = {HomA(T, Z) | Z ∈ modA, such that HomA(T, Z) ∈ M and

Ext1
A(T, Z) ∈ M}, since Ext1

A(T, tX) = 0, that is, M1 ∈ (i ◦ j)(M). Similarly,

Ext1
A(T, Y/tY ) ∈ Ext1

A(T, j(M)), that is, M2 ∈ (i ◦ j)(M). Hence M ∈ (i ◦ j)(M).

”⊆” Take an arbitrary object M in (i ◦ j)(M) ⊆ modB. Then M = M1 ⊕M2,

where M1 = HomA(T,X) and M2 = Ext1
A(T, Y ), for X, Y ∈ j(M) ⊆ modA. By

definition of j(M), both HomA(T,X) and Ext1
A(T, Y ) are in M, and hence M1 and

M2 are in M. 2

Before we give a corollary of the theorem, we need to recall some facts from the

theory of quiver representations.

Let Q = (Q0, Q1, s, t) be a finite, connected, and acyclic quiver and let n = |Q0|.

For every point a ∈ Q0, we define a new quiver σaQ = (Q′0, Q
′
1, s
′, t′) as follows: All

the arrows of Q having a as a source or as target are reversed, all others arrows

remain unchanged. An admissible sequence of sinks in a quiver Q is defined to

be a total ordering (a1, . . . , an) of all points in Q such that:

(i) a1 is a sink in Q, and

(ii) ai is a sink in σai−1
. . . σa1Q for every 2 ≤ i ≤ n.

We have the following proposition.

Proposition 4.2.7 [AS, Chapter VII.5, Proposition 5.2] Let Q and Q′ be two trees

having the same underlying graph. There exists a sequence i1, . . . , it of points of Q

such that σit . . . σi1Q = Q′.

Let A be a finite dimensional hereditary k-algebra, which we assume that is

not simple. There exists an algebra isomorphism A ∼= kQA, where QA is a finite,

connected, and acyclic quiver. Then there exists a sink a ∈ (QA)0 that is not a

source, so that the simple A-module S(a)A is projective and non-injective. Consider
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the following module in modA

T [a]A = τ−1S(a) ⊕ (
⊕

b6=a
P (b)).

It is not difficult to check that it is a tilting module, see [AS, Chapter VI.2.8], which

is called APR-tilting.

We may ask whether there a connection between path algebras kQA and k(σaQA),

where σa is a reflection at the sink a for the quiver QA. The following proposition

gives an answer to that question.

Proposition 4.2.8 [AS, Chapter VII.5, Proposition 5.3] Let A be a basic heredi-

tary and non-simple algebra, a be a sink in its quiver QA, and T [a] be the APR-tilting

A-module at a. Then the algebra B = End T [a]A is isomorphic to k(σaQA).

Now, we prove the following proposition.

Proposition 4.2.9 Let Q be a finite acyclic quiver, a be a sink and σaQ be the

reflected at a quiver Q. Then there is a bijection between exact abelian extension

closed subcategories in mod kQ and mod k(σaQ).

Proof : By theorem 4.2.6, we have a bijection between exact abelian extension and

torsion closed subcategories in mod kQ and exact abelian extension closed subcate-

gories in mod k(σaQ). But since k(σaQ) is hereditary, then the APR-tilting module

is separating. Then the torsion pair (T (TA), F(TA)) in mod kQ splits and hence

every exact abelian extension closed subcategory in mod kQ is also torsion closed.2

Corollary 4.2.10 Let Q and Q′ be a finite acyclic quivers, having the same under-

lying graph but with different orientations. Then there is a bijection between exact

abelian extension closed subcategories in mod kQ and mod kQ′.

Proof : By proposition 4.2.7, we have that there exists a sequence i1, . . . , it of

points of Q such that σit . . . σi1Q = Q′. Set σi0Q = Q. By proposition 4.2.9,

we have that for k = 0, . . . , t − 1, there is a bijection between exact abelian ex-

tension closed subcategories of mod k(σik . . . σi0Q) and mod k(σik+1
. . . σi0Q). Since

mod k(σit . . . σi1Q) = mod kQ′, the proof follows. 2

Remark 4.2.11 We point out that Kristian Brüning showed the same result, see

[Br2, Corollary 5.6]. There he established a bijection between thick subcategories of

bounded derived category Db(A) and exact abelian extension closed subcategories in

A, where A is a hereditary abelian category. Then using the fact that Db(mod kQ) ∼=

Db(mod kQ′), see [Ha, Proposition 4.5], the claim follows.



Appendix A

Basic and auxiliary results

A.1 Quivers and their representations

The reference for this section is [AS, Chapter II.1, Chapter III.1].

A quiver Q = (Q0, Q1, s, t) is a quadruple consisting of two sets: Q0 (whose

elements are called vertices) and Q1 (whose elements are called arrows), and two

maps s, t : Q1 → Q0 which associate to each arrow α ∈ Q1 its source s(α) ∈ Q0 and

its target t(α) ∈ Q0 respectively.

We denote a quiver Q = (Q0, Q1, s, t) simply by Q. A subquiver of a quiver

Q = (Q0, Q1, s, t) is a quiver Q′ = (Q′0, Q
′
1, s
′, t′) such that Q′0 ⊆ Q0, Q

′
1 ⊆ Q1 and

the restrictions sQ′
1
, tQ′

1
of s, t to Q′1 are respectively equal to s′, t′. Such a subquiver

is called full if Q′1 equals the set of all those arrows in Q1 whose source and target

both belong to Q′0.

Example A.1.1 The quiver

∆n : 1 // 2 // 3 // . . . // n

is a subquiver of the quiver

∆̃n : 1 // 2 // 3 // . . . // nkk ,

and a full subquiver of the quiver

∆n+1 : 1 // 2 // . . . // n // n+ 1 .

A quiver Q is said to be finite if Q0 and Q1 are finite sets. The quiver Q is said

to be connected if its underlying graph is connected.

Let Q = (Q0, Q1, s, t) be a quiver and a, b ∈ Q0. A path of length ℓ ≥ 1 with

source a and target b is a sequence

(a|α1, α2, . . . , αℓ|b),

68
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where αk ∈ Q1 for all 1 ≤ k ≤ ℓ, and we have s(α1) = a, t(αk) = s(αk+1) for each

1 ≤ k ≤ ℓ, and finally t(αℓ) = b. To each point a ∈ Q a path of length ℓ = 0 is

called the trivial path at a and it is denoted by ǫa. Thus, the paths of lengths 0

and 1 are in bijective correspondence with the elements of Q0 and Q1, respectively.

A path of length ℓ ≥ 1 is called cycle whenever its source and target coincide. A

quiver is called acyclic if it contains no cycles.

Let Q be a quiver. The path algebra kQ of Q is the k-algebra whose underlying

k-vector space has as its basis the set of all paths (a|α1, α2, . . . , αℓ|b) of length

ℓ ≥ 0 in Q and such that the product of two basis vectors (a|α1, α2, . . . , αℓ|b) and

(c|β1, β2, . . . , βk|d) of kQ is defined by

(a|α1, α2, . . . , αℓ|b)(c|β1, β2, . . . , βk|d) = δbc(a|α1, α2, . . . , αℓ, β1, β2, . . . , βk|d),

where δbc is the Kronecker delta:

δbc =







0 if t(αℓ) 6= s(β1)

1 if t(αℓ) = s(β1).

In other words, the product of two paths α1, α2, . . . , αℓ and β1, β2, . . . , βk is equal

to zero if t(αℓ) 6= s(β1) and is equal to the composed path α1, α2, . . . , αℓβ1, β2, . . . , βk

if t(αℓ) = s(β1). The product of basis elements is then extended to arbitrary elements

of kQ by distributivity.

Lemma A.1.2 Let Q be a quiver and kQ be its path algebra. Then

(a) kQ is an associative algebra;

(b) kQ has an identity element if and only if Q0 is finite;

(c) kQ is finite dimensional if and only if Q is a finite and acyclic.

We point out that for a given path algebra kQ, there is a direct sum decompo-

sition

kQ = kQ0 ⊕ kQ1 ⊕ kQ2 ⊕ · · · ⊕ kQℓ . . .

of the k-vector space kQ, where, for each ℓ ≥ 0, kQℓ is the subspace of kQ generated

by the set Qℓ of all paths of length ℓ. It is easy to see that (kQn) � (kQm) ⊆ kQn+m

for all n,m ≥ 0, which shows that kQ is a graded algebra.

Definition A.1.3 Let Q be a finite and connected quiver. The two-sided ideal of

the path algebra kQ generated (as an ideal) by the arrows of Q is called the arrow

ideal of kQ and is denoted by RQ.
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Note that there is a direct sum decomposition

RQ = kQ1 ⊕ kQ2 ⊕ · · · ⊕ kQℓ ⊕ · · ·

of the k-vector space RQ, where kQℓ is the subspace of kQ generated by the set

Qℓ of all paths of length ℓ. In particular, the underlying k-vector space of RQ is

generated by all paths in Q of length ℓ ≥ 1. This implies that, for each ℓ ≥ 1,

Rℓ
Q =

⊕

m≥ℓ
kQm

and therefore Rℓ
Q is the ideal of kQ generated, as a k-vector space, by the set of all

paths of length ≥ ℓ.

Definition A.1.4 Let Q be a finite quiver. A representation M of Q is defined

by the following data:

(1) To each point a in Q0 is associated a k-vector space Ma;

(2) To each arrow α : a→ b in Q1 is associated a k-linear map φα : Ma →Mb.

Such a representation is denoted asM = (Ma, φa)a∈Q0,α∈Q1
, or simplyM = (Ma, φα).

It is called finite dimensional if each vector space Ma is finite dimensional.

Let M = (Ma, φα) and M ′ = (M ′a, φ
′
α) be two representations of Q. A rep-

resentation morphism f : M → M ′ is a family f = (fa)a∈Q0
of k-linear maps

(fa : Ma → M ′a)a∈Q0
that are compatible with the structure maps φα that is, for

each arrow α : a → b, we have φ′afa = fbφα or equivalently, the following square is

commutative:

Ma

φα //

fa

��

Mb

fb

��
M ′a

φ′α //M ′b

Let f : M → M ′ and g : M ′ → M ′′ be two morphisms of representations of Q,

where f = (fa)a∈Q0
and g = (ga)a∈Q0

. Their composition is defined to be the family

gf = (gafa)a∈Q0
. Then gf is easily seen to be a morphism from M to M ′′. We have

defined a category Repk(Q) of k-linear representations of Q. We denote by repk(Q)

the full subcategory of rep(Q) consisting of the finite dimensional representations.

Lemma A.1.5 Let Q be a finite quiver. Then Repk(Q) and repk(Q) are abelian

k-categories.
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A.2 Hereditary algebras

In the whole thesis, we considered hereditary algebras and their module categories.

Here we recall what a hereditary algebra is, and we point out the connection with

the quiver representations. The reference is [AS, Chapter VIII]. In this section k is

an algebraically closed field.

Definition A.2.1 Let A be a finite dimensional k-algebra. The following assertions

are equivalent:

• A is hereditary;

• Submodules of projective modules are projective;

• The global dimension of A is at most one;

• ExtiA(M,N) = 0 for all A-modules M and N and for all i ≥ 2.

Example A.2.2 If Q is a finite, connected, and acyclic quiver, then the algebra

A = kQ is hereditary.

The next theorem relates modules and representations.

Theorem A.2.3 Let A be a basic and connected finite dimensional hereditary k-

algebra. There exists a finite and acyclic quiver QA such that

ModA
∼=

−→ Repk(Q)

is k-linear equivalence of categories, that restricts to an equivalence of categories

modA
∼=

−→ repk(Q).

Definition A.2.4 A finite dimensional k-algebra A is said to be representation-

finite (or an algebra of finite representation type) if the number of the iso-

morphism classes of indecomposable finite dimensional right A-modules is finite. A

k-algebra A is called representation-infinite (or an algebra of infinite repre-

sentation type) if A is not representation-finite.

By a result of Gabriel, representation-finite hereditary algebras are classified.

Theorem A.2.5 (Gabriel) Let Q be a finite, connected, and acyclic quiver; k be

an algebraically closed field; and A = kQ be the path k-algebra of Q. The algebra

A is representation finite if and only if the underlying graph Q of Q is one of the

Dynkin diagrams An, Dn, with n ≥ 4, E6, E7, and E8.
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An : • • • . . . • • (n ≥ 1)

•

==
==

==
==

Dn : • • • . . . • (n ≥ 4)

•

��������

•

E6 : • • • • •
•

E7 : • • • • • •
•

E8 : • • • • • • •

A.3 The Auslander-Reiten quiver

In this section, we turn to the structure theory of the module category. Fix a finite

dimensional hereditary k-algebra A. There is a special quiver, called Auslander-

Reiten quiver, that combinatorially encodes the building blocks of modA, namely

the indecomposable modules and the irreducible morphisms.

First, we recall he following fundamental theorem, that reduces the study of

modules to indecomposable modules.

Theorem A.3.1 (Krull-Schmidt) Let A be a finite dimensional k-algebra. For

a finitely generated A-module M there are indecomposable A-modules M1, . . . ,Mn

such that M ∼= ⊕n
i=1Mi. Furthermore, the modules M1, . . . ,Mn are unique up to

permutation.

Definition A.3.2 Let A be a finite dimensional k-algebra. A morphism of A-

modules f : M → N is an irreducible morphism, if

(i) f is neither a section nor a retraction, and

(ii) if f = f1 ◦ f2, then either f1 is a retraction or f2 is a section.

Denote by Irr(M,N) the k-vector space of irreducible morphisms from M to N .

As for objects the study of morphisms is reduced to the study of irreducible ones.
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Theorem A.3.3 Let A be a finite dimensional k-algebra of a finite representation

type. Every morphism between finitely presented indecomposable A-modules that is

not invertible is a finite sum of finite compositions of irreducible maps.

Definition A.3.4 The Auslander-Reiten quiver (AR-quiver) Γ(A) of the algebra

A has as vertices the isomorphism classes of indecomposable modules. The arrows

from [M ] to [N ] correspond bijectively to a k-basis of the vector space of irreducible

maps Irr(M,N). The quiver Γ(A) is locally finite in the sense that every vertex

has only finitely many neighbors. The Auslander-Reiten quiver is equipped with an

extra structure: the translate. It is a bijective map

τ : Γ(A) \ Proj(A) → Γ(A) \ Inj(A),

where Proj(A) and Inj(A) denote the sets of isomorphism classes of indecomposable

projective and injective modules, respectively.

The following notion is central for the structure of the AR-quiver.

Definition A.3.5 A short exact sequence

0 → L →M → N → 0

is called almost split or an Auslander-Reiten sequence (AR-sequence), if L

and N are indecomposable and the maps L→M and M → N are irreducible. The

following theorem describes the relation between an indecomposable module N and

its translate τN .

Theorem A.3.6 Let A be a finite dimensional algebra over an algebraically closed

field k. For every indecomposable non-projective A-module N there is an AR-

sequence

0 → τN →
n

⊕

i=1

Mni

i → N → 0

in which ni ≥ 0 and the modules Mi are pairwise non-isomorphic indecomposable.

Furthermore, ni = dimk Irr(Mi, N) = dimk Irr(τN,Mi).

We finish this section with the following important formula that expresses the

translate homologically.

Theorem A.3.7 (Auslander-Reiten formulas) Let A be a hereditary algebra,

and M,N be A-modules. There exist functorial isomorphisms

τM ∼= DExt1
A(M,A) and τ−1M ∼= Ext1

A(DM,A).

Moreover,

Ext1
A(M,N) ∼= DHomA(N, τM) and Ext1

A(M,N) ∼= DHomA(τ−1N,M).
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We comment that these formulas are valid in a larger context. We refer to [Kr] for

a very elegant proof of these formulas.

A.4 Two homological facts

In the last section, we recall two standard facts from the homological algebra. In

this section R is an associative ring.

Lemma A.4.1 (Snake Lemma) Consider a commutative diagram of R-modules

of the form

A //

f

��

B //

g

��

C //

h
��

0

0 // A′ // B′ // C ′.

If the rows are exact, there is an exact sequence

Ker f → Ker g → Ker h→ Coker f → Coker g → Coker h.

Moreover, if A→ B is a monomorphism, then so is Ker f → Ker g, and if B′ → C ′

is an epimorphism, then so is Coker g → Coker h.

The proof can be found in [Wb, Chapter 1].

Corollary A.4.2 If we have maps A
ψ
→ B

φ
→ C of R-modules, then there is an

exact sequence

0 → Kerψ → Kerφψ → Kerφ→ Cokerψ → Coker φψ → Coker φ→ 0.

Proof : Applying the snake lemma to the following commutative diagram

0 //

��

A
Id //

ψ

��

A //

φψ

��

0

0 // Kerφ // B
φ

// Imφ,

we get 0 → Kerψ → Kerφψ → Kerφ → Cokerψ → Imφ/ Imφψ → 0, since B →

Imφ is an epimorphism. Then using the third isomorphism theorem for the modules

Imφψ ≤ Imφ ≤ C, we obtain 0 → Imφ/ Imφψ → C/ Imφψ → C/ Imφ → 0, and

gluing with the above sequence, the claim follows. 2

Proposition A.4.3 [ARS, Chapter 1, Proposition 2.6] Let

A
f

//

f ′

��

B

g

��
B′

g′
// C

be a commutative diagram of morphisms between R-modules.



A.4. Two homological facts 75

(a) The following are equivalent

(i) The diagram is a push-out diagram;

(ii) The induced sequence A
( f

−f ′)
→ B

∐

B′
(g,g′)
→ C → 0 is exact;

(iii) In the induced exact commutative diagram

A
f

//

f ′

��

B //

g

��

Coker f //

h
��

0

B′
g′ // C // Coker g′ // 0

h is an isomorphism.

(b) The following are equivalent

(i) The diagram is a pull-back diagram;

(ii) The induced sequence 0 → A
( f

−f ′)
→ B

∐

B′
(g,g′)
→ C is exact;

(iii) In the induced exact commutative diagram

0 // Ker f //

h
��

A
f //

f ′

��

B

g

��
0 // Ker g′ // B′

g′
// C

h is an isomorphism.
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