Aus der
Klinik für Allgemein-, Viszeral- und Kinderchirurgie
der
Heinrich-Heine-Universität Düsseldorf
Direktor: Univ.-Professor Dr. med. Wolfram Trudo Knoefel

Amplifikation und Expression von HER2
beim
Adenokarzinom des Ösophagus

Dissertation
zur Erlangung eines Grades
des Doktors
der Medizin

Der Medizinischen Fakultät
der
Heinrich-Heine-Universität
Düsseldorf

Vorgelegt von
Franziska Stern
2008
Inhaltsverzeichnis

1. EINFÜHRUNG .. 6

1.1 EINLEITENDE BETRACHTUNGEN .. 6

1.2 DAS ADENOKARZINOM DES ÖSOPHAGUS ... 7
 1.2.1 Epidemiologie, Ätiologie und Pathogenese .. 7
 1.2.2 Lokalisation & Metastasierung ... 9
 1.2.3 Klinik ... 10
 1.2.4 Diagnostik ... 10
 1.2.5 Pathomorphologie .. 12
 1.2.6 Molekulare Basis .. 13
 1.2.7 Therapie ... 14
 1.2.7.1 Chirurgische Therapie ... 15
 1.2.7.2 Multimodale Therapiekonzepte... 16
 1.2.8 Prognose .. 16

1.3 HUMAN EPIDERMAL GROWTH FACTOR RECEPTOR 2 17
 1.3.1 Entdeckung und Struktur.. 17
 1.3.2 Funktion.. 19
 1.3.3 Liganden und Bindungsmechanismen ... 20
 1.3.4 Besonderheiten des HER2-Rezeptors ... 20
 1.3.5 HER2-Expression in adulten und fetalen Geweben 23
 1.3.6 Bedeutung in der Karzinogenese ... 23
 1.3.7 HER2 beim Adenokarzinom des Ösophagus 24
 1.3.8 Therapeutische Bedeutung von HER2... 25

1.4 ZIELSTELLUNG DER ARBEIT ... 25

2. PATIENTEN, MATERIALIEN UND METHODEN ... 26

2.1 PATIENTENKOLLEKTIV ... 26

2.2 MATERIALIEN ... 27
 2.2.1 Geräte und Chemikalien ... 27
 2.2.2 Gewebe ... 30

2.3 METHODEN ... 31
 2.3.1 Hämatoxylin - Eosin – Färbung (H&E Färbung) 31
 2.3.2 Immunhistochemische Färbung mit A0485 31
 2.3.2.1 Auswertung .. 32
 2.3.3 Immunhistochemische Färbung mit TAB250 33
 2.3.3.1 Auswertung .. 34
 2.3.4 Fluoreszenz-in-situ-Hybridisierung (FISH) 34
 2.3.4.1 Auswertung .. 35

2.4 STATISTISCHE AUSWERTUNG ... 35

3. ERGEBNISSE .. 37

3.1 FLUORESZENZ-IN-SITU-HYBRIDISIERUNG .. 37
 3.1.1 Durchschnittliche HER2-Signalanzahl ... 37
 3.1.2 Durchschnittliche Chromosom 17-Signalanzahl 38
 3.1.3 HER2-Genamplifikation in Bezug auf die HER2-Ratio 39
Inhaltsverzeichnis

3.1.4. HER2-Genamplifikation in Bezug auf Chromosom 17 Aneusomie . 41
3.1.5. Vergleich HER2-Genkopienzahl vs. HER2/Chromosom 17-Ratio... 43

3.2 IMMUNHISTOCHEMISCHE FÄRBUNG ... 44
3.2.1 Vergleichende Analyse von A0485 und TAB250 45

3.3 KORRELATION VON HER2-GENAMPLIKATION UND P185-ÜBEREXPRESSI.... 46
3.4 KORRELATION VON HER2-GENAMPLIKATION UND P185-ÜBEREXPRESSI... 48
MIT HISTOPATHOLOGISCHEN PARAMETERN... 48
3.4.1 HER2-Genamplifikation.. 48
3.4.2 Überexpression des Genproduktes p185...................................... 49
3.4.2.1 Polyklonaler Antikörper A0485.. 49
3.4.2.2 Monoklonaler Antikörper TAB250... 50

4. DISKUSSION .. 52
4.1 HER2-AMPLIKATION BEIM ADENOKARZINOM DES ÖSOPHAGUS.............. 52
4.2 P185-ÜBEREXPRESS UN BEIM ADENOKARZINOM DES ÖSOPHAGUS 56
4.3 KORRELATION DES HER2-STATUS MIT KLINISCH-PATHOLOGISCHEN 59
PARAMETERN... 59

5. LITERATURVERZEICHNIS .. 65
6. LEBENSLAUF .. 83
7. PUBLIKATIONSVERZEICHNIS ... 85
8. SELBSTÄNDIGKEITSERLÄRUNG .. 87
9. DANKSAGUNG ... 88
10. ZUSAMMENFASSUNG ... 90
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Avidin-Biotin-Komplex</td>
</tr>
<tr>
<td>AG</td>
<td>Arbeitsgruppe</td>
</tr>
<tr>
<td>APAAP</td>
<td>Alkalische Phosphatase-anti-Alkalische Phosphatase</td>
</tr>
<tr>
<td>APC</td>
<td>Adenomatöses-Polyposis-Coli-Gen</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäuren</td>
</tr>
<tr>
<td>BE</td>
<td>Barrettösophagus</td>
</tr>
<tr>
<td>BK</td>
<td>Brustkrebs</td>
</tr>
<tr>
<td>CA 19-9</td>
<td>Carbohydrat Antigen</td>
</tr>
<tr>
<td>CEA</td>
<td>Carcinoembryonales Antigen</td>
</tr>
<tr>
<td>CGH</td>
<td>Comparative genomische Hybridisierung</td>
</tr>
<tr>
<td>DCC</td>
<td>Deleted-in-Colon-Carcinoma-Gen</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal Growth Factor Receptor</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii</td>
</tr>
<tr>
<td>FDA</td>
<td>Federal Drug Administration</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluoreszenz-in-situ-Hybridisierung</td>
</tr>
<tr>
<td>GERD</td>
<td>Gastroösophageale Refluxerkrankung</td>
</tr>
<tr>
<td>GRB</td>
<td>Growth factor receptor-bound protein</td>
</tr>
<tr>
<td>HGD</td>
<td>High grade dysplasie</td>
</tr>
<tr>
<td>JÜR</td>
<td>Jahresüberlebensrate</td>
</tr>
<tr>
<td>LGD</td>
<td>Low grade dysplasie</td>
</tr>
<tr>
<td>LK</td>
<td>Lymphknoten</td>
</tr>
<tr>
<td>LOH</td>
<td>Loss of heterozygosity = Verlust von Allelen eines Chromosoms</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-aktivierte Proteinkinase</td>
</tr>
<tr>
<td>Mon.</td>
<td>Monate</td>
</tr>
<tr>
<td>NRG</td>
<td>Neureguline</td>
</tr>
<tr>
<td>OT</td>
<td>Objektträger</td>
</tr>
<tr>
<td>PI3-K</td>
<td>Phosphatidylinositol-3-Kinase</td>
</tr>
<tr>
<td>PLCγ</td>
<td>Phospholipase-Cγ</td>
</tr>
<tr>
<td>PTB-Domäne</td>
<td>Phosphotyrosin-Bindungsdomain</td>
</tr>
<tr>
<td>Rb</td>
<td>Retinoblastom-Gen</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>second messenger</td>
<td>Substrat innerhalb der Signalkaskade der Zelle</td>
</tr>
<tr>
<td>SH2</td>
<td>SRC-Homologieeinheit</td>
</tr>
<tr>
<td>SRC</td>
<td>Onkogen des Rous-Sarcom-Virus</td>
</tr>
</tbody>
</table>

Die Symbole physikalischer und chemischer Größen bzw. ihre Einheiten und allgemein gebrauchliche Abkürzungen der deutschen Sprache sind in diesem Verzeichnis aus Platzgründen nicht enthalten.
1. EINFÜHRUNG

1.1 Einleitende Betrachtungen

Ob HER2 auch beim Adenokarzinom des Ösophagus amplifiziert und/oder überexprimiert wird und somit als Zielstruktur für eine adjuvante Therapie mit diesem Antikörper in Frage kommt, soll in der vorliegenden Arbeit analysiert und diskutiert werden.
1. Einführung

1.2 Das Adenokarzinom des Ösophagus

1.2.1 Epidemiologie, Ätiologie und Pathogenese

Das Adenokarzinom des ösophagogastralen Überganges ist im Begriff, sich zur Zivilisationskrankheit des 21. Jahrhunderts zu entwickeln [40]. Während diese Tumorentität vor 30 Jahren noch als Rarität im pathologischen Sektionsgut galt [17], rückte sie in den letzten Jahren zunehmend in den Mittelpunkt des klinischen und wissenschaftlichen Interesses. Ursächlich dafür sind:

1. Ein kontinuierlicher Inzidenzanstieg der Adenokarzinome.
2. Ein kausaler Zusammenhang zwischen der "Volkskrankheit Sodbrennen" und der Entwicklung eines Adenokarzinoms.
3. Mittels Endoskopie und Endosonographie bieten sich im Rahmen präventiver Strategien Möglichkeiten zur Früherkennung.

1. Einführung

Bei 15-30% der Bevölkerung tritt regelmäßig eine Refluxsymptomatik auf, doch nur 5-12% dieser Betroffenen entwickeln einen Barrett-Ösophagus [63]. Die Wahrscheinlichkeit, mit der es zur malignen Entartung kommt, wird unterschiedlich beurteilt. Ein erhöhtes Entartungsrisiko galt früher nur für den "Long-Segment-Barrett-Ösophagus" (> 2-3 cm), neuere Untersuchungen zeigen dies auch für den "Short-Segment-Barrett-Ösophagus" (< 2-3 cm) [114]. Das Risiko an einem Adenokarzinom zu erkranken, liegt für Patienten mit bekanntem Barrett-Ösophagus bei 0, 5 - 1% pro Jahr und ist damit 30- bis 125-mal höher als das der Normalbevölkerung [107].

Epidemiologische Studien zeigen, dass ca. 90% der distalen Adenokarzinome bei Männern (Geschlechterverhältnis 8:1) mit weißer Hautfarbe im 5. bis 7. Lebensjahrzehnt auftreten [15].
1. Einführung

Da sich Adenokarzinome nur bei einem geringen Teil der Patienten mit Barrett-Ösophagus entwickeln, werden genetische Prädispositionen vermutet. Im Rahmen von Zwillingsforschungen wurde bei eineiigen Zwillingen eine höhere Konkordanz an Adenokarzinomen festgestellt als bei zweieiigen Zwillingen. Erstgradige Verwandte von Patienten mit Barrett-Ösophagus und Adenokarzinomen leiden zudem häufiger an einer Refluxsymptomatik [34, 45, 102].

Chronischer Säurereflux ist nur bei ca. 60% der Patienten zu finden. Bei dem übrigen Teil scheint die Exposition gegenüber Nitrosaminen, nicht-steroidalen Antiphlogistika oder Radiatio bzw. Chemotherapeutika kritisch für die Krankheitsprogression zu sein [37, 46, 47]. Protektiv scheint hingegen eine Helicobacter pylori-Infektion zu sein. Vor allem die CagA⁺-Stämme führen über eine Reduktion der Parietalzellen und durch bakterieneigenen Ammoniak zur Verminderung bzw. Neutralisierung der Magensäure [29, 77, 78].

1.2.2 Lokalisation & Metastasierung

Häufigster Sitz der Adenokarzinome ist der ösophago-gastrale Übergang. Entsprechend der topographisch-anatomischen Klassifikation von Siewert [109] werden alle Tumoren, die sich innerhalb von 5 cm ober- bzw. unterhalb der anatomisch definierten Kardiagrenze befinden, folgendermaßen typisiert:

Typ I : Adenokarzinom des distalen Ösophagus mit kranialer Infiltration des ösophago-gastralen Überganges

Typ II : Adenokarzinom im Bereich des ösophago-gastralen Überganges

Typ III : Adenokarzinom des proximalen Magens mit kaudaler Infiltration des ösophago-gastralen Überganges

Das karzinomatöse Wachstum erfolgt innerhalb der Ösophaguskasten vorwiegender in Längsrichtung. Das longitudinal, dichte Lymphknotensystem führt zur frühzeitigen Disseminierung und Metastasierung in die Lymphknotenstationen paraösophageal, entlang der kleinen und großen Kurvatur, im Bereich des Truncus coeliacus, der Arteria hepatica, der Arteria lienalis und des Milzhilus [83]. Häufig treten zudem Lymphknotenmetastasen auf, die nicht
1. Einführung

1.2.3 Klinik

1.2.4 Diagnostik

Initial werden eine Röntgenkontrastmitteluntersuchung und eine Ösophago-Gastro-Duodenoskopie mit Entnahme von Probeexzisionen durchgeführt. Mittels Endosonographie können die Tiefe der Tumorinvasion und die Ausdehnung der Lymphknotenmetastasierung bestimmt werden. Somit kann bei ca. 80% der Patienten der Tumorstatus präzise bestimmt werden [129]. Fernmetastasen können sonographisch, radiologisch und computertomographisch nachgewiesen werden [9].

Die Klassifikation des Ösophaguskarzinoms wird nach dem TNM-System der Union Internationale Contre le Cancer (UICC) vorgenommen [127].
1. Einführung

TNM-Klassifikation des Ösophaguskarzinoms

T - Primärtumor

- **T** – Primärtumor kann nicht beurteilt werden
- **T0** – Kein Anhalt für Primärtumor
- **Tis** – Carcinoma in situ
- **T1** – Tumor infiltriert die Lamina propria oder Submukosa
- **T2** – Tumor infiltriert die Tunica muscularis propria
- **T3** – Tumor infiltriert die Adventitia
- **T4** – Tumor infiltriert benachbarte Strukturen

N - Regionäre Lymphknoten

- **N** – Regionäre Lymphknoten können nicht beurteilt werden
- **N0** – Keine regionären Lymphknotenmetastasen
- **N1** – Regionäre Lymphknotenmetastasen

M - Fernmetastasen

- **M** – Fernmetastasen können nicht beurteilt werden
- **M0** – Keine Fernmetastasen
- **M1** – Fernmetastasen

För Tumoren des oberen/unten thorakalen Ösophagus

- **M1a** – Metastasen in zervikalen/zöliakalen Lymphknoten
- **M1b** – Andere Fernmetastasen

För Tumoren des mittleren thorakalen Ösophagus

- **M1a** – Nicht anwendbar
- **M1b** – Nichtregionäre Lymphknoten oder andere Fernmetastasen

G - Histopathologisches Grading

- **G** – Differenzierungsgrad kann nicht bestimmt werden
- **G1** – Gut differenziert
- **G2** – Mässig differenziert
- **G3** – Schlecht differenziert

R- Klassifikation

- **R** – Vorhandensein eines Residualtumors kann nicht beurteilt werden
- **R0** – Kein Residualtumor
- **R1** – Mikroskopischer Residualtumor
- **R2** – Makroskopischer Residualtumor
1. Einführung

Stadiengruppierung der UICC

<table>
<thead>
<tr>
<th>Stadium</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stadium 0</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stadium I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stadium IIA</td>
<td>T2, T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stadium IIB</td>
<td>T1, T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>Stadium III</td>
<td>T3</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>Jedes N</td>
<td>M0</td>
</tr>
<tr>
<td>Stadium IV</td>
<td>Jedes T</td>
<td>Jedes N</td>
<td>M1</td>
</tr>
<tr>
<td>Stadium IVA</td>
<td>Jedes T</td>
<td>Jedes N</td>
<td>M1a</td>
</tr>
<tr>
<td>Stadium IVB</td>
<td>Jedes T</td>
<td>Jedes N</td>
<td>M1b</td>
</tr>
</tbody>
</table>

1.2.5 Pathomorphologie

Im pathohistologischen Krankengut betragen die Adenokarzinome ca. 50% aller ösophagealen Tumore [17]. Bei 90% der Präparate wird in der Umgebung des Tumors eine Barrett-Mukosa gefunden. Unklar ist, ob in den übrigen 10% eine andere Ätiologie verantwortlich ist oder ob es sich um ein Nachweisproblem handelt, da fortgeschrittene Tumoren die Barrett-Mukosa "überwachsen" können [115]. Es wurden drei Barrett-Ösophagus-Subtypen beschrieben, aber nur der spezialisierte intestinalen Typ ist eindeutig mit maligner Transformation assoziiert [94, 121].

1. Einführung

Die Herkunft des Barrett-Epithels und die Identität der karzinomatösen Zellen sind nicht vollständig geklärt. Das Karzinom könnte ein Resultat multipler, unabhängiger, oligoklonaler Läsionen ("Feldkanzerization") sein. Andererseits existiert die Theorie der "klonalen Expansion", d.h. das Karzinom entsteht durch die Progression eines einzelnen Klons und präsentiert sich multifokal [39, 63]. Da durch molekulargenetische Analysen hohe Übereinstimmungen zwischen den Aberrationen prämaligner Läsionen und assoziierten Karzinomen festgestellt wurden, ist die These der klonalen Expansion wahrscheinlicher [39, 133].

1.2.6 Molekulare Basis

Die Progression von der Metaplasie über die Dysplasie zum Adenokarzinom (Metaplasie-Dysplasie-Karzinom-Sequenz [18]) ist mit einer Vielzahl genetischer Ereignisse assoziiert. Die Progression vollzieht sich nicht via uniformen linearen "molekularen pathway", sondern über multiple Wege mit "molekularen Schlüssereignissen". Am häufigsten sind Induktion von Aneuploidie, Verlust bzw. Mutationen der Tumorsuppressorgene p53 und p16, Überexpression von Cyclin D1, vermehrte Transkription von c-myc und Akkumulation der Zellen in der G2-Phase [13, 64, 98]. Verschiedene Tumorsuppressorgen-Loci, wie z.B. APC (5q), Rb (13q) und das DCC-Gen (18q) zeigen einen Verlust der Heterozygotie (LOH). DNA-Gewinne wurden vor allem bei 8q, 20q, 2p, 7p, 10q, 6p, 15q und 17q detektiert [133]. Chromosomale Verluste wurden vorwiegend am Y-Chromosom, an 4q, 5q, 9q, 18q, 7q und 14q beobachtet [12, 39, 82, 84, 133]. Bei 5-15% der ösophagealen Adenokarzinome tritt eine ubiquitäre Mikrosatelliteninstabilität auf [20, 63].

Im Verlauf der Progression wird nicht nur eine Zunahme, sondern auch eine Veränderung des Musters der genetischen Aberrationen beobachtet [13, 133]. Dies bedeutet, dass in dysplastischen Zellen genetische Veränderungen nachgewiesen werden, die im invasiven Karzinom nicht mehr präsent sind ("Phänomen der genetischen Divergenz") [63, 131]. Im Verlauf der klonalen Evolution entwickeln sich somit divergierende Klone, welche für die intratumorale Heterogenität des Barrettkarzinoms verantwortlich sind [133].
1. Einführung

1.2.7 Therapie

Hinsichtlich der verschiedenen Intentionen unterscheidet man:

A) Kurative Therapie

Die chirurgische R0-Resektion ist die bevorzugte Methode zur Beseitigung des lokalen Tumorgeschehens [10, 87]. Kombinationen nicht-chirurgischer Therapien (Radiatio, Cisplatin + 5-Fluoruracil) führten bei 25% der Patienten zu ähnlichen Überlebensraten wie beim operativen Modus [46].

B) Palliative Therapie

1. Einführung

Remissionen bei 35 - 55% der Patienten beobachtet. Die Remissionsdauer war auf wenige Monate limitiert [46].

1.2.7.1 Chirurgische Therapie

A) Einfache Ösophagektomie

B) Ösophagektomie mit regionaler Lymphadenektomie

C) Radikale En-bloc-Resektion

Bei dieser Methode werden via rechtsthorakalen Zugang folgende Strukturen reseziert: Ösophagus mit umgebendem Gewebe (Lymphknoten, V. azygos, Ductus thoracicus, Pleura, Perikard, Interkostalgefäße), Kardia und Milz. Bei Durchführung einer 2-Feld-Lymphadenektomie werden zudem abdominelle Lymphknoten im Bereich des Truncus coeliacus, der Milzgefäßä und des
1. Einführung

Ligamentum hepato-duodenale entfernt. Bei Tumoren oberhalb der Trachealbifurkation wird die mediastinale und abdominelle Lymphknoten-Dissektion durch eine zervikale Lymphknoten-Entfernung komplettiert (3-Feld-Lymphadenektomie) \[83\].

1.2.7.2 Multimodale Therapiekonzepte

Im Rahmen der interdisziplinären Zusammenarbeit werden verschiedene therapeutische Verfahren kombiniert. In einer aktuellen Studie wurden 34 klinische Studien, in denen additive Therapien evaluiert wurden, untersucht. Die Wirksamkeit diverser Radiochemotherapien vor bzw. nach kurativen und palliativen Resektionen in der Behandlung des Ösophaguskarzinoms konnten nicht hinreichend belegt werden \[46, 80\].

1.2.8 Prognose

Das Ösophaguskarzinom ist der neunthäufigste Krebs weltweit und zählt für Männer zu den zehn häufigsten malignombedingten Todesursachen \[122\]. Da es keine adäquaten Screening-Programme zur Früherkennung gibt und der Tumor erst in fortgeschrittenen Stadien eine klinische Symptomatik verursacht, ist eine Therapie in kurativer Intention häufig nicht mehr möglich. Bei über 50% der Patienten hat der Tumor bereits metastasiert oder wächst lokal infiltrierend. Somit kann eine R0-Resektion nicht mehr durchgeführt werden kann \[46\]. Innerhalb von 5 Jahren versterben ca. 70% der Patienten aufgrund eines metastatischen Rezidivs \[46\]. Interessanterweise treten auch bei R0-resezierten Patienten postoperativ Rezidive auf. Ursächlich sind vor allem eine
1. Einführung

frühe lymphogene Metastasierung und eine zum Diagnosezeitpunkt schwer erfassbare okkulte Fernmetastasierung [70, 93].
Nach chirurgischer Intervention ist die 5-Jahresüberlebensrate stadienabhängig und beträgt im
- Stadium I - 50 - 80%
- Stadium IIA - 30 - 40%
- Stadium IIB - 10 - 30%
- Stadium III - 10 - 15% [46].

Ohne therapeutische Intervention ist die Überlebenszeit nach Diagnosestellung auf 6 - 12 Monate limitiert.

1.3 Human Epidermal Growth Factor Receptor 2

1.3.1 Entdeckung und Struktur

Das Signalnetzwerk der Human Epidermal Growth Factor Receptor (HER) hat sich parallel zur Evolution komplexer Lebensformen entwickelt. Vorläufer dieser Rezeptoren wurden bereits in wirbellosen Organismen, wie Caenorhabditis elegans und Drosophila melanogaster nachgewiesen [125]. Die HER-Familie der Säugetiere besteht aus vier eng verwandten, homologen Wachstumsfaktorrezeptoren, welche an der Zellmembran lokalisiert sind und folgendermaßen strukturiert sind:
- Extrazelluläre Ligandenbindungsstelle, welche aus 4 Domänen (I/L1, II/CR1, III/L2, IV/CR2) besteht. Die hohe Diversität zwischen den HER-Familienmitgliedern ermöglicht die spezifische Erkennung verschiedener Liganden. Die Spezifität wird durch Kreuzreaktivität der Liganden erweitert (632 Aminosäuren).
- Transmembranen, lipophiles Segment (22 Aminosäuren)
- Intrazelluläre Domäne mit katalytischer Tyrosinkinaseaktivität. Sie weist eine starke Ähnlichkeit zwischen den HER-Rezeptoren auf, während die flankierenden Sequenzen unterschiedlich sind. Dadurch werden vielfältige Interaktionen mit Receptor-spezifischen Effektorproteinen ermöglicht (580 Aminosäuren).

<table>
<thead>
<tr>
<th></th>
<th>HER2</th>
<th>EGFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genlokus</td>
<td>Chr.17q12-21</td>
<td>Chr.7p11-p13</td>
</tr>
<tr>
<td>mRNA</td>
<td>4, 8 kb</td>
<td>5, 8 kb und 10, 5 kb</td>
</tr>
<tr>
<td>Protein</td>
<td>185 kDa</td>
<td>170 kDa</td>
</tr>
</tbody>
</table>

Hybridisierungen humaner cDNA mit EGFR-Sequenzen führte zu weiteren Mitgliedern dieser Transmembranreceptorfamilie, die konsekutiv HER3 und HER4
1. Einführung

genannt wurden [72, 96]. Ungeachtet ihrer Gesamtstrukturähnlichkeit besitzen die vier Rezeptoren unterschiedliche Autophosphorylierungsstellen, Substratspezifitäten und Kinaseaktivitäten.

1.3.2 Funktion

Die HER-Rezeptoren sind Bestandteile eines komplexen Netzwerkes, in dem nach Bindung extrazellulärer Liganden verschiedene intrazelluläre Signalwege aktiviert werden, welche die Expression und Funktion von Zellzyklusregulatoren modulieren.

Die HER-Rezeptoren liegen in monomerer Form vor, so dass die assoziierte Tyrosinkinase inaktiv ist. Bei Ligandenbindung können stabile Homo- und Heterodimere mit insgesamt zehn verschiedenen Kombinationsmöglichkeiten gebildet werden, wobei heterodimere Formationen energetisch günstiger als homodimere sind [88]. Die Rezeptordimerisierung ist Voraussetzung für die Aktivierung rezeptor-assoziiertes intrazellulärer Tyrosinkinasen. Durch Autophosphorylierung der Kinasen können diese mit verschiedenen Molekülen reagieren, die entweder direkt als "second messenger" oder als Adapterproteine für nachgeschaltete "second messenger" agieren [59, 72, 100, 101].

1. Einführung

1.3.3 Liganden und Bindungsmechanismen

Die HER-Rezeptoren interagieren mit einer großen Anzahl Wachstumsfaktoren, die anhand ihrer Bindungsspezifitäten in drei Klassen eingeteilt werden [60]:

1. **Gruppe:** Epidermal Growth Factor (EGF), Transforming Growth Factor-α (TGF-α) und Amphiregulin binden spezifisch an HER1
2. **Gruppe:** Heparin-bindender EGF-like Growth Factor (HB-EGF), Betacellulin (BTC) und Epiregulin binden an HER1 und HER4
3. **Gruppe:** Neureguline (NRGs) binden an HER3 und HER4

Durch proteolytische Prozesse kann die extrazelluläre Domäne abgespalten und im Serum nachgewiesen werden. Der intrazelluläre Rezeptoranteil bleibt an der Zellmembran und kann die anderen Rezeptoren weiter aktivieren [42].

1.3.4 Besonderheiten des HER2-Rezeptors

HER2 unterscheidet sich in seiner extrazellulären Rezeptorkonfiguration wesentlich von den anderen Rezeptoren. Die Domänen-II-IV-Interaktion, die das Domänenarrangement in nicht-aktivierten Rezeptoren einschränkt, fehlt bei HER2. Stattdessen ist die Dimerisationsschleife in Domäne II offen [28, 52]. Ursächlich ist der Austausch von zwei wichtigen Aminosäuren in der Domäne IV-Kontaktrregion (Glycin 563 und Histidin 565 sind ersetzt durch Prolin und Phenylalanin) [27]. Zusätzlich ist die Ausrichtung des Domänenpaares I/II
1. Einführung

relativ zu dem Domänenpaar III/IV verändert [28]. Diese konstitutive "offene" Struktur des HER2 bietet eine Erklärung für verschiedene Eigenschaften:

C) **Die Überexpression von HER2 in Zellkulturzellen führt zur HER2-Aktivierung und zu einem transformierten Phänotyp** [42, 120]. Da es keine auto-inhibierte Konformation gibt, existiert keine Barriere vor einer Autoaktivierung. Dies ist zum Teil mitverantwortlich für das transformierende Potential bei Überexpression [28].

Die Fähigkeit von HER2 die Signalgebung in Liganden-unabhängiger Weise zu verstärken, wird im Folgenden anhand des Liganden Neuregulin-1 (NRG-1) erklärt [125]:
NRG-1 ist ein bivalentes Molekül, welches zwei Bindungsstellen für HER-Rezeptoren besitzt: eine hochaffine, sehr spezifische, N-terminale Seite und eine niedrigaffine, wenig spezifische, C-terminale Seite. Die hochaffine Seite

In allen Einzelheiten ist die supportive Funktion von HER2 noch nicht geklärt. Beim HER2/HER3-Komplex vervollständigt HER2 den Kinase-defizienten HER3 durch Bereitstellung einer aktiven Tyrosinkinase und Verstärkung der Ligandenbindung an HER3 [126]. Erfolgt die Induktion des HER2/HER3-Komplexes durch Neureguline, so resultiert die höchste Signalaktivität unter allen Rezeptorkombinationen [95, 100]. Diese Formation wird häufig in Adenokarzinomen verschiedener Gewebe nachgewiesen [26]. Obwohl HER1 und HER4 intakte Kinasen besitzen, führt auch bei ihnen die Assoziation mit HER2 zu mitogener Überlegenheit [6, 135].

Aus folgenden Gründen ist die Erzeugung von Proliferationssignalen durch HER2-Heterodimere wesentlich potenter als durch andere Kombinationen:

1. HER2-Heterodimere sind sehr stabil. Dies beruht auf der relativ langsamen Ligandendissoziation vom Rezeptor, die zur Konversion von einer niedrigaffinen zu einer hochaffinen Wachstumsfaktorbindungsstelle führt [7]

2. HER2-Heterodimere sind mit einer breiten Spezifität für verschiedene Liganden ausgestattet. Sie binden EGF-ähnliche Liganden im mikromolaren Bereich, während die Bindungsaffinität der Liganden an ihren primären Rezeptor im nanomolaren Bereich liegt [125].

3. Signale, die durch HER2-Heterodimere generiert werden, führen zu einem verstärkten proliferativen Ansprechen auf Liganden [131].

4. Die Internalisierungsrate des HER2-Rezeptorkomplexes ist etwa eine Größenordnung geringer als jene vom EGFR [14, 95].

5. Die Entfernung der Rezeptoren von der Zelloberfläche (Downregulation) ist eine Schlüsseldeterminante der Signalldauer. In Abhängigkeit von

1.3.5 HER2-Expression in adulten und fetalen Geweben

1.3.6 Bedeutung in der Karzinogenese
Die HER2-Aktivierung ist mit einer Reihe zellulärer Effekte, beispielsweise Proliferation, Invasion, Metastasierung, Angiogenese, Adhäsion, Resistenz gegenüber Chemo- und Hormontherapien sowie Inhibierung von Apoptose verknüpft [128]. Folglich sind HER2-amplifizierte/-überexprimierende Tumorzellen durch einen aggressiveren Phänotyp charakterisiert [69]. Anhand der ENU-exponierten Ratten konnte das experimentelle Modell der HER2-induzierten Karzinogenese sehr detailliert charakterisiert werden. Weitere Effekte der
1. Einführung

1.3.7 HER2 beim Adenokarzinom des Ösophagus

1. Einführung

umgekehrte Phänomen berichtet, nämlich dass die HER2-Überexpression mit einer längeren Überlebenszeit einherging [43].

1.3.8 Therapeutische Bedeutung von HER2
Seit Mitte der 80-er Jahre wird das HER2-Onkogenprodukt p185 als Zielmolekül therapeutischer Interventionen erforscht. Trastuzumab (Herceptin®) ist die humanisierte Form des murinen monoklonalen Antikörpers 4D5, der die übermäßige Rezeptorexpression herunterreguliert und einen Arrest der Zellen in der G1-Phase des Zellzyklus bewirkt. Dieser Antikörper wurde 1998 von der FDA zur Therapie des metastasierten Mammakarzinoms in den USA zugelassen (als Monosubstanz für die second-line Behandlung und in Kombination mit Taxol® zur first-line Therapie) und wird mittlerweile auch in Deutschland erfolgreich als immunologische Therapieoption eingesetzt.

1.4 Zielstellung der Arbeit

Das Adenokarzinom des Ösophagus ist ein aggressiver, prognostisch ungünstiger, maligner Tumor, für dessen Behandlung keine effektiven adjuvanten Therapiekonzepte existieren. Das HER2-Gen wird als therapeutische Zielstruktur beim Mammakarzinom bereits mit Erfolg genutzt. Um nun eine gegen HER2 gerichtete molekulare Therapie (“targeted therapy”) als adjuvante Therapieoption auch bei ösophagealen Adenokarzinomen diskutieren zu können, war vor allem die Frage wichtig, ob das HER2-Gen beim Adenokarzinom des Ösophagus amplifiziert ist und ob das Genprodukt p185 überexprimiert wird. Hierfür sollten im Rahmen dieser Promotionsarbeit folgende Untersuchungen durchgeführt werden:

I. Nachweis der Amplifikation des HER2-Gens
II. Nachweis der Überexpression des HER2-Proteins p185
III. Korrelation zwischen HER2-Genamplifikation und p185-Überexpression
IV. Korrelation der HER2-Genamplifikation und p185-Überexpression mit histopathologischen Parametern
2. PATIENTEN, MATERIALIEN UND METHODEN

2.1 Patientenkollektiv

Tabelle 2.1: Verteilung des Patientenkollektivs gemäß TNM-Klassifikation.

<table>
<thead>
<tr>
<th>Primärtumor</th>
<th>Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT1</td>
<td>12 (17%)</td>
</tr>
<tr>
<td>pT2</td>
<td>29 (40%)</td>
</tr>
<tr>
<td>pT3</td>
<td>29 (40%)</td>
</tr>
<tr>
<td>pT4</td>
<td>2 (3%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lymphknotenstatus</th>
<th>Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>pN0</td>
<td>17 (24%)</td>
</tr>
<tr>
<td>pN1</td>
<td>55 (76%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fernmetastasierung</th>
<th>Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>68 (94%)</td>
</tr>
<tr>
<td>M1</td>
<td>4 (6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differenzierungsgrad</th>
<th>Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>27 (37%)</td>
</tr>
<tr>
<td>G3</td>
<td>45 (63%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resektionsstatus</th>
<th>Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>68 (94%)</td>
</tr>
<tr>
<td>R1</td>
<td>4 (6%)</td>
</tr>
</tbody>
</table>
2. Patienten, Materialien und Methoden

2.2 Materialien

2.2.1 Geräte und Chemikalien

Materialien zur Herstellung der Schnitte

<table>
<thead>
<tr>
<th>Materialien der Herstellung der Schnitte</th>
<th>Firma</th>
<th>Katalognummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peel-A-Way® S-22 (Disposable Embedding Molds)</td>
<td>Polysciences</td>
<td>18646A</td>
</tr>
<tr>
<td>Tissue-Tek® O.C.T. Compound</td>
<td>Sakura</td>
<td>4583</td>
</tr>
<tr>
<td>Objekträger Super Frost® Plus</td>
<td>Menzel</td>
<td>041300</td>
</tr>
<tr>
<td>Mikrotom zur Herstellung von Gefrierschnitten</td>
<td>Microm</td>
<td>HM 505 E</td>
</tr>
<tr>
<td>Mikrotom zur Herstellung von Paraffinschnitten</td>
<td>Microm</td>
<td>HM 335 E</td>
</tr>
</tbody>
</table>

Reagenzien für Hämalaun-Eosin-Färbung

<table>
<thead>
<tr>
<th>Reagenzien für Hämalaun-Eosin-Färbung</th>
<th>Firma</th>
<th>Katalognummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotihistol</td>
<td>Roth</td>
<td>6640.1</td>
</tr>
<tr>
<td>Aceton</td>
<td>Biesterfeld</td>
<td></td>
</tr>
<tr>
<td>Hämatoxylin nach Mayer</td>
<td>Sigma</td>
<td>MHS-32</td>
</tr>
<tr>
<td>Eosin G</td>
<td>Merck</td>
<td>1.15935.</td>
</tr>
<tr>
<td>Aquatex®</td>
<td>Merck</td>
<td>1.08562.</td>
</tr>
<tr>
<td>Entellan®</td>
<td>Merck</td>
<td>1.07961.</td>
</tr>
<tr>
<td>Deckgläser (18 x 18 mm)</td>
<td>Marienfeld</td>
<td></td>
</tr>
</tbody>
</table>

Reagenzien für Immunhistochemische Färbungen

<table>
<thead>
<tr>
<th>Reagenzien für Immunhistochemische Färbungen</th>
<th>Firma</th>
<th>Katalognummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hercep-Test™</td>
<td>DAKO</td>
<td>K 5204</td>
</tr>
<tr>
<td>Monoclonal Mouse-anti-HER2 (c-erbB-2)</td>
<td>Zymed</td>
<td>08-1203</td>
</tr>
<tr>
<td>DAKO EnVision™+System, HRP (DAB)</td>
<td>DAKO</td>
<td>K 4006</td>
</tr>
<tr>
<td>Aqua ad injectabilia</td>
<td>Baxter</td>
<td>1227915</td>
</tr>
<tr>
<td>PAP-Pen</td>
<td>DAKO</td>
<td>S 2002</td>
</tr>
<tr>
<td>Na2HPO4</td>
<td>Merck</td>
<td>1.06587.</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>Merck</td>
<td>1.04875.</td>
</tr>
</tbody>
</table>
2. Patienten, Materialien und Methoden

NaCl Baker 0278
NaOH 1M Merck 1.09137.

Reagenzien für Fluoreszenz-in-situ-Hybridisierung
PathVysion™ HER2 DNA Probe Kit Vysis 30-161060
Methanol z. A. Merck 1.06009.
Formaldehyd 37% (stabilisiert mit 10% Methanol) Merck 1.04000.
HCl c(HCl)=1 mol/l (1N) Merck 1.09057.
Pepsin (Porcine stomach mucosa, 2,030 units) Sigma P-7012
PBS Dulbeco’s w/o Ca+Mg, w/o Sodium Bicarbonate Gibco 14190-094
Ethanol absolut z.A. Merck 1.00983.
MgCl2 Merck 1.05835.
Formamid deionisiert (für Molekularbiologie) Sigma F-9037
Fixogum Marabu
DAPI (4, 6-Diamidino-2-phenylindol) Vysis 30-161060
NP 40 (im PathVysion™ HER2 DNA Probe Kit) Vysis 30-161060

Zusammensetzung der Waschpuffer
PBS 428 ml KH2PO4
1072 ml Na2HPO4
90 g NaCl
16 ml 1M NaOH
pH 7,4

20 x SSC (Natriumchlorid und Natriumcitrat) 66 g 20xSSC
200 ml aqua dest.
250 ml 20 x SSC, pH 5,3

2 x SSC 100 ml 20 x SSC, pH 5,3
900 ml aqua dest.
1000 ml 2 x SSC, pH 7,4
2. Patienten, Materialien und Methoden

<table>
<thead>
<tr>
<th>Lösungen für Fluoreszenz-in-Situ-Hybridisierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol/2%Formaldehyd-Lösung</td>
</tr>
<tr>
<td>Methanol</td>
</tr>
<tr>
<td>94 ml</td>
</tr>
<tr>
<td>6 ml 37% Formaldehyd</td>
</tr>
<tr>
<td>37% Formaldehyd</td>
</tr>
<tr>
<td>6 ml</td>
</tr>
</tbody>
</table>

| 500 ml 50mM MgCl₂/PBS |
| 5,083 g MgCl₂ |
| 500 ml PBS |

| RNase-Stocklösung |
| 10 mg RNase A |
| 100 ml 2 x SSC |

| Pepsinstocklösung |
| 1 g Pepsin |
| 10 ml Aqua dest. |

| Formamidlösung pH 7,0 - 8,0 |
| 49 ml Formamid |
| 7 ml 20 x SSC |
| 14 ml Aqua dest. |

DNA - Sonden

Für den Nachweis der HER2-Genamplifikation wurde ein kommerzielles Testsystem (PathVysion™HER2 DNA Sonden-Kit) der Fa. Vysis verwendet:

- Die LSI HER2/neu DNA-Sonde ist eine 190 kb mit SpectrumOrange direktmarkierte Fluoreszenz-DNA-Sonde (low copy number E.coli Vector) für den Genlocus HER2/neu (17q11.2-q12).
- Die CEP 17 DNA-Sonde ist eine mit 5,4 kb SpectrumGreen direktmarkierte Fluoreszenz-DNA-Sonde (E.coli Plasmid) für alpha-
2. Patienten, Materialien und Methoden

Satelliten-DNA im Zentromerbereich von Chromosom 17 (17p11.1-q11.1).

Antikörper
Polyklonaler Kaninchen-anti-Human-HER2-Protein-Antikörper A0485 (Fa.Dako, HercepTest™)
- Gebrauchsfertiger affinitätsisolerter Antikörper, gelöst in 50 mM Tris/HCl, 0,1 M NaCl, 15 mM NaN3, pH 7,2

Negatives Kontroll-Reagenz (Fa. Dako, HercepTest™)
- Immunoglobulinfraktion aus Kaninchen-Normalserum in einer äquivalenten Proteinkonzentration analog HER2-Primärantikörper gelöst in 50 mM Tris/HCl, 0,1 M NaCl, 15 mM NaN3, pH 7,2

Monoklonaler Mouse-anti-HER2 TAB250 (Fa. Zymed)
- Immunogen: NIH 3T3 Zellen wurden mit c-erbB-2 transfiziert
- Klon: TAB250
- Isotyp: Mouse IgG1-kappa
- Totalproteinkonz.: 17g/L, Mouse Ig-Konz.: 0,25 mg/L

Der Antikörper ist gebrauchsfertig (enthält PBS, 1% BSA und 0,1% Natriumazid) und vorverdünnt (second gen predilute antibody).

2.2.2 Gewebe
Intraoperativ wurden die Operationspräparate, welche Tumor, Lymphknoten und gesunde Mukosa (im Folgenden als "Normalgewebe" bezeichnet) enthielten, entnommen und mittels eines kleinen Plastikgefässes (peel-away) und einem entsprechenden Einbettmedium (Tissue-Tek) in flüssigem Stickstoff schockgefroren. Anschließend erfolgte die Lagerung bei –80°C. Mit Hilfe eines Gefriermikrotoms wurden Serienschnitte mit einer Dicke von 4-5 µm angefertigt, auf Objektträger (OT) aufgezogen und im Gefrierschrank bei –20°C gelagert.
2. Patienten, Materialien und Methoden

2.3 Methoden

2.3.1 Hämatoxylin - Eosin – Färbung (H&E Färbung)
Um das intraoperativ entnommene Tumormaterial zu beurteilen, wurde von allen Tumoren eine Übersichtsfärbung angefertigt, die von zwei Personen unabhängig voneinander begutachtet wurde.
Für die Übersichtsfärbung werden die OT 2 min in Aceton fixiert und nach einer kurzen Spülung in Aqua dest. für 5 min in Hämalaunlösung gestellt. Anschließend kommen die Schnitte für 10 min unter fließendes Leitungswasser (Blaufärbung aufgrund des alkalischen pH-Wertes). Nach der dreiminütigen Inkubation in 0,1% Eosin werden die Präparate in Aqua dest gewaschen und mit Aquatex eingedeckt.

2.3.2 Immunhistochemische Färbung mit A0485
Die kryokonservierten Gewebeschnitte werden 20 min bei Raumtemperatur getrocknet, dann 2 min in Aceton fixiert und anschließend in Tris-Puffer gewaschen. Jeder Inkubationsschritt wird durch zwei Spülgänge mit jeweils 10-minütiger Inkubation im Waschpuffer beendet. Alle Inkubationsschritte finden bei Raumtemperatur in der feuchten Kammer statt.
Als erstes erfolgt die fünfmütige Blockade der endogenen Peroxidaseaktivität mittels 3% Wasserstoffperoxid. Anschließend wird der Antikörper aufpipettiert. Pro Patient werden zwei Gewebeschnitte gefärbt - auf einen OT wird A0485, auf den anderen wird das Negativ-Kontroll-Reagenz pipettiert und 30 min inkubiert. Zur Validierung und Kontrolle der Färbung wird ein Kit-interner
2. Patienten, Materialien und Methoden

Kontroll-Objekträger mitgeführt, der drei Zelllinien mit paraffineingebetteten, humanen Brustkrebszellen (ATCC) enthält. Die Vorbereitung dieses OT verläuft initial anders, da eine Entparaffinierung, Dehydratisierung (2 x 5 min. Xylol, 2 x 3 min 95% Alkohol, 2 x 3 min. 70% Alkohol, 30 sec. Aqua dest.) und ein spezielles Pretreatment vorangehen müssen, um das Gewebe adäquat auf die Reaktion mit dem Antikörper vorzubereiten (Demaskierung des Epitops). Dazu werden die Schnitte 40 min in einer Küvette mit Epitop-Retrieval-Lösung in einem Wasserbad mit einer Temperatur von 95 – 99°C erhitzt. Anschließend wird der Objekträger in die Färbevorschrift integriert.

Nach dem Primärantikörper wird das Visualization Reagent (HRP- konjugiertes, goat-anti-rabbit-Polymer) für 30 min aufpipettiert. Es handelt sich um ein Dextranpolymer, welches mit Ziege-anti-Kaninchen-Immunglobulinen sowie Meerrettichperoxidase konjugiert ist. Im Anschluß werden 100 µl der Substrat-Chromogenlösung (DAB) aufpipettiert. Nach 10 min wird die Reaktion durch einen Spülgang in destilliertem Wasser beendet, anschließend erfolgt die Kernfärbung und die Eindeckung der Präparate.

2.3.2.1 Auswertung

2. Patienten, Materialien und Methoden

Tabelle 2.1 Dako HercepTest™-Score zur Bewertung der immunhistochemischen Färbung zum Nachweis des HER2-Proteins.

<table>
<thead>
<tr>
<th>Färbenmuster</th>
<th>Score</th>
<th>Beurteilung der HER2-Proteinüberexpression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Färbung zu sehen bzw. weniger als 10% der Tumorzellen zeigen eine</td>
<td>0</td>
<td>Negativ</td>
</tr>
<tr>
<td>membranständige Anfärbung.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eine schwache oder kaum sichtbare Membranfärbung ist in mehr als 10% der</td>
<td>1 +</td>
<td>Negativ</td>
</tr>
<tr>
<td>Tumorzellen zu sehen. Die Zellen zeigen eine nur unvollständige Membran-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>färbung.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eine schwache bis moderate komplette Membranfärbung wird in mehr als 10%</td>
<td>2 +</td>
<td>Schwach / Moderat Positiv</td>
</tr>
<tr>
<td>der Tumorzellen festgestellt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eine starke, die komplette Membran umfassende Färbung wird in mehr als 10%</td>
<td>3 +</td>
<td>Stark Positiv</td>
</tr>
<tr>
<td>der Tumorzellen beobachtet.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.3 Immunhistochemische Färbung mit TAB250
Diese Färbung verläuft nach dem gleichen Schema wie der HercepTest™.
2. Patienten, Materialien und Methoden

Alle Inkubationen erfolgen in der feuchten Kammer bei Raumtemperatur. Nach jedem Inkubationsschritt werden drei Waschgänge im PBS-Puffer zu jeweils 5 min durchgeführt.

2.3.3.1 Auswertung
Die Beurteilung der Schnitte erfolgte analog dem HercepTest™-Score (Tabelle 2.2).

2.3.4 Fluoreszenz-in-situ-Hybridisierung (FISH)
Mit Hilfe der FISH können Aberrationen der DNA visualisiert werden. Hierbei werden nach einer speziellen Gewebevorbereitung spezifische Fluoreszenz-markierte Sonden appliziert.

Zunächst werden die kryokonservierten Gewebeschnitte 20 min bei Raumtemperatur getrocknet. Anschließend erfolgt die Fixierung für 10 min in –20°C kalter Methanol/ 2%Formaldehyd-Lösung. Die Objektträger werden 3 mal für je 5 min in 2 x SSC gestellt. Zur Eliminierung störender RNA werden 100 µl RNase-Lösung aufpipettiert, dann erfolgt die Inkubation für 1h in der feuchten Kammer im 37°C-Wasserbad. Anschließend wird der Proteinandau durchgeführt, der zur Permeabilisierung der Zellen führt und störende Proteine entfernt. Dazu werden 50 µl Pepsin in eine 37°C temperierte Küvette mit 100 ml 0,01 M HCl gegeben. Da die Tumorproben sehr heterogen sind, ist es nötig, individuelle Proteinandauzeiten zu ermitteln. Durchschnittlich genügen 7 min (Inkubationszeit 6-10 min) im 37°C-Wasserbad. Sofortiges Überführen der Objektträger in PBS beendet die Pepsinwirkung, anschließend verbleiben die Schnitte für 2 x 5 min in der Küvette mit PBS.

Zur Stabilisierung der DNA wird eine Nachbehandlung in 500 ml 50mM MgCl2/PBS für 5 min durchgeführt. Zur Fixierung des angedauten Zustandes werden 200 µl PFA aufpipettiert und 5 min bei RT inkubiert. Waschen in PBS beendet die Nachfixation. Anschließend werden die Objektträger in aufsteigender Alkoholreihenfolge (70% - 85% - 100%) bei 4°C für je 1 min deydriert und dann luftgetrocknet. Die Denaturierung der DNA erfolgt für 5 min in einer Formamidlösung im 78°C-Wasserbad. Die Denaturierungstemperatur in der Küvette beträgt 72°C. Mit einer 4°C-kalten aufsteigenden Alkoholreihe (70%
2. Patienten, Materialien und Methoden

- 85% - 100%) wird die Formamidlösung von den Schnitten entfernt. Erst werden die Objektträger für 2-5 min auf einer 45-50°C warmen Wärmeplatte getrocknet, dann werden ca. 10 µl der Sondenmischung auf das Gewebe aufpipettiert und mit einem Deckglas abgedichtet. Die Objektträger inkubieren in einer feuchten Kammer im 37°C-Wasserbad für 12-24 h. Am nächsten Tag werden die OT erst im Waschpuffer 2xSSC/0,3% NP-40 bei Raumtemperatur gespült, anschließend für 2 min in eine 72°C-warme Waschpufferlösung gestellt und dann im Dunkeln getrocknet. Die anschließende Applikation von DAPI dient der Darstellung der Zellkerne. Da die Fluorophore unter Lichteinfluss schnell ausbleichen, werden die Präparate bei –20°C in lichtgeschützten Kästen aufbewahrt.

2.3.4.1 Auswertung

2.4 Statistische Auswertung
Für die statistischen Analysen wurde das SPSS 11.0 Softwaresystem für Windows, sowie Microsoft Excel 2000 verwendet. Als deskriptive Statistiken wurden Mittelwert, Median, Standardabweichung, sowie der kleinste und größte Wert ermittelt. Bei Angaben in Prozent wurde die dritte Stelle hinter dem Komma ggf. auf- oder abgerundet. Ein p-Wert < 0,05 wurde als statistisch signifikant interpretiert. P-Werte zwischen 0,05 und 0,1 wurden als Tendenz bewertet. Die Mittelwerte wurden immer mit der Standardabweichung
Um Unterschiede zwischen Tumor und gesundem Gewebe bei der HER2 bzw. Chromosom 17-Signalanzahl auf ihre statistische Signifikanz zu überprüfen, wurde der Mann-Whitney-Test als Rangsummentest zum Vergleich zweier unabhängiger Gruppen mit nicht-parametrischer Datenverteilung verwendet. Dieser Test wurde ebenfalls angewendet, um die Chromosom 17-Signalanzahl zwischen Tumoren mit und ohne p185 Überexpression zu vergleichen.

Um zu überprüfen, ob die mit A0485 und TAB250 analysierte p185 Expression miteinander korreliert, wurde der Spearman-Rho Korrelationskoeffizient im Spearman Rangsummentest berechnet.

Der Fisher-Exakt-Test wurde verwendet, um zu überprüfen, ob sich zwei Gruppen in Bezug auf eine Eigenschaft signifikant unterscheiden. Dieser Test kam bei allen Korrelationen zwischen HER2 bzw. p185 Status und den histopathologischen Parametern zum Einsatz. Für die Vierfeldertafeln wurden die Gruppen dichotomisiert – lokal begrenzte (pT1-2) vs. lokal fortgeschrittene (pT3-4) Tumoren, sowie gut differenzierte (G1/G2) vs. schlecht differenzierte (G3) Tumoren. Die p185 Expression wurde ebenfalls dichotomisiert und in Tumoren mit p185 Überexpression (“2+“ und “3+“) und solche ohne p185 Überexpression (“0“ und “1+“) eingruppiert.
3. ERGEBNISSE

3.1 Fluoreszenz-in-situ-Hybridisierung

3.1.1 Durchschnittliche HER2-Signalanzahl

Die durchschnittliche HER2-Signalanzahl der Tumore ergibt sich aus dem Quotienten der gezählten HER2-Signale und der Anzahl der gezählten Zellkerne des Tumors. Die durchschnittliche HER2-Signalanzahl betrug bei den 72 untersuchten Tumoren im Mittel 4,19 ± 2,47 mit einem Median von 3,55 (min. 1,7 - max. 17,0). Somit war die HER2-Signalanzahl der Tumore signifikant höher als die der 10 ausgewerteten Normalgewebe, welche im Mittel 1,5 ± 0,156 (min. 1,2 - max. 1,7) betrug (Mann-Whitney-Test, p<0,001) (Abbildung 3.1).

Abbildung 3.1: Durchschnittliche HER2-Signalanzahl in analysiertem Tumorgewebe und gesunder Mukosa (Normalgewebe)
3. Ergebnisse

3.1.2 Durchschnittliche Chromosom 17-Signalanzahl
Das Adenokarzinom des Ösophagus gehört zu den chromosomal instabilen Tumoren. Es war folglich anzunehmen, dass Aneusomien von Chromosom 17 - dem Chromosom auf dem das HER2-Gen lokalisiert ist - häufig auftreten. Um nun eine echte HER2-Genamplifikation von einer erhöhten HER2-Genkopienzahl durch Chromosom 17-Aneusomie abzugrenzen, wurde parallel zur HER2-Sonde (roter Fluoreszenzfarbstoff) eine alpha-Satellitensonde für Chromosom 17 (grüner Fluoreszenzfarbstoff) als interne Kontrolle hybridisiert.

Abbildung 3.2: Durchschnittliche Chromosom 17-Signalanzahl in den analysierten Tumorgewebern und Normalgeweben

Betrachtet man bei den analysierten Tumoren nur die durchschnittliche Chromosom 17-Signalanzahl (Abbildung 3.2), die analog zur mittleren durchschnittlichen HER-Signalanzahl ermittelt wurde, konnte ein mittlerer chromosomaler Index von $2,71 \pm 0,57$ mit einem Median von 2,60 (min. 1,8 - max. 4,7) festgestellt werden. Die durchschnittliche mittlere Chromosom 17-Signalanzahl im Tumorgewebe war gegenüber der des gesunden Gewebes
3. Ergebnisse

(n=10), welche $1,5 \pm 0,14$ (min. 1,3 – max. 1,8) betrug, signifikant erhöht (Mann-Whitney-Test, $p<0,001$).

3.1.3 HER2-Genamplifikation in Bezug auf die HER2-Ratio

Entsprechend den Herstellerangaben (PathVysion™, Fa. Vysis) liegt eine Genamplifikation vor, wenn der Quotient aus HER2-Signalen pro Zellkern und Chromosom 17-Signalen pro Zellkern > 2,0 beträgt. Die Berechnung des Quotienten ermöglicht die Differenzierung einer Genamplifikation des HER2-Lokus gegenüber vermehrten HER2-Signalen durch Chromosom 17-Polysomie. Mit dieser Auswertungsmethode betrug die HER2-Amplifikationsrate in den analysierten Adenokarzinomen 18% (13/72). Bei 82% (59/72) der Tumorproben wurde keine HER2-Genamplifikation nachgewiesen. Das Signalmuster der HER2-Sonden war bei den ösophagealen Adenokarzinomen durch eine starke Heterogenität charakterisiert. In einigen Zellkernen lagen singuläre Signale vor (Abbildung 3.3.A), in anderen Tumorzellen wurden Signalcluster, die aus 10 - 20 konfluierenden Einzelsignalen bestehen, beobachtet (Abbildung 3.3 B).

3. Ergebnisse

Zudem lagen auch bei Tumoren mit hoher Amplifikationsrate einzelne Tumorzellareale vor, in denen keine HER2-Genamplifikation nachgewiesen wurde. Interessanterweise wurden bei 20% (14/59) der nicht als HER2-amplifiziert gewerteten Tumore ebenfalls HER2-Signalcluster beobachtet.

Bezogen auf die durchschnittliche HER2-Genkopienanzahl pro Tumorzelle - ohne Berücksichtigung des Chromosom 17-Status - kann die HER2-Amplifikation in eine geringe ("low-level") und eine starke ("high-level") Amplifikation unterteilt werden (Abbildung 3.3, 3.4):

1) Eine "low-level"-HER2-Amplifikation - durchschnittlich sind 4 - 9 HER2-Signale/Nukleus präsent - trat bei 69% (9/13) der HER2-amplifizierten Tumoren auf (Abbildung 3.3 A, 3.4 A).

2) Eine "high-level"-HER2-Amplifikation - durchschnittlich sind ≥ 10 HER2-Signale pro Nukleus präsent - trat bei 31% (4/13) der amplifizierten Tumoren auf (Abbildung 3.3 B, 3.4 B).

In keinem der 10 untersuchten ösophagealen gesunden Gewebe (Normalgewebe) fand sich eine HER2-Genamplifikation.
3. Ergebnisse

3.1.4. HER2-Genamplifikation in Bezug auf Chromosom 17 Aneusomie

In einem nächsten Schritt wollten wir analysieren, ob ein Zusammenhang zwischen dem Auftreten von HER2-Amplifikationen und der Aneuploidie existiert. Als Anhaltspunkt für die Aneuploidie haben wir die Aneusomie des Chromosoms 17 gewählt. Die Untersuchung ergab, dass die HER2-Amplifikation unabhängig von der durchschnittlichen Chromosom 17 Signalan-
3. Ergebnisse

Die mittlere durchschnittliche Chromosom 17-Signalanzahl beträgt 2,712 ± 0,579 für Tumoren mit HER2-Amplifikation (n=13) und 2,708 ± 0,533 für Tumoren ohne HER2-Amplifikation (n=59). Der Rangsummentest zeigte keine signifikanten Unterschiede zwischen den beiden Gruppen (p=0,73, Mann-Whitney Test). Die Unabhängigkeit wird in Abbildung 3.5 visuell dargestellt. Die mittlere HER2-Signalanzahl pro Zelle wurde in Beziehung zur mittleren Chromosom 17-Signalanzahl pro Zelle gesetzt, die HER2-amplifizierten Tumoren wurden schwarz markiert (Abbildung 3.5).

Abbildung 3.5: Durchschnittliche HER-Signalanzahl in Bezug auf die durchschnittliche Chromosom 17-Signalanzahl. Die HER2-amplifizierten Tumorproben sind dunkel markiert.
3. Ergebnisse

3.1.5. Vergleich HER2-Genkopienzahl vs. HER2/Chromosom 17-Ratio

Legt man die vom Hersteller des FISH-Assays empfohlene Berechnung der Ratio zugrunde, beträgt die HER2-Amplifikationsrate bei den analysierten ösophagealen Adenokarzinomen 18% (13/72). Würde man ausschließlich die durchschnittlichen HER2-Genkopienzahlen pro Nukleus ohne Berücksichtigung des Chromosom 17-Status werten, wären 38% (27/72) der Adenokarzinome HER2-amplifiziert (23 Tumoren der Kategorie "low level"-Amplifikation und 4 Tumoren der Kategorie "high level"-Amplifikation). In Tabelle 3.1 wird die durchschnittliche HER2-Signalanzahl der HER2/ Chromosom 17-Ratio gegenübergestellt.

Tabelle 3.1: Vergleich der durchschnittlichen HER2-Genkopienanzahl/ Nukleus vs. HER2/CEP 17-Ratio bei 72 Adenokarzinomen des Ösophagus (Die prozentualen Angaben beziehen sich auf die HER2-Ratio).

<table>
<thead>
<tr>
<th>Durchschnittliche HER2-Signalanzahl/ Tumorzellkern</th>
<th>Keine HER2-Amplifikation (Ratio < 2)</th>
<th>HER2-Amplifikation (Ratio >2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 4 HER2-Signale / Zellkern</td>
<td>45 (62,5 %)</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>≥ 4 bis 9 HER2-Signale "low-level"-Amplifikation</td>
<td>14 (19,4%)</td>
<td>9 (12,5 %)</td>
</tr>
<tr>
<td>≥ 10 HER2-Signale "high-level"-Amplifikation</td>
<td>0 (0%)</td>
<td>4 (5,5%)</td>
</tr>
</tbody>
</table>
3. Ergebnisse

<table>
<thead>
<tr>
<th>Gesamtzahl Adenokarzinome (n=72)</th>
<th>Keine HER2-Amplifikation (Ratio < 2)</th>
<th>HER2-Amplifikation (Ratio >2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>59 (82%)</td>
<td>13 (18%)</td>
</tr>
</tbody>
</table>

Wie aus Tabelle 3.1 ersichtlich ist, sind Tumoren mit ≤ 4 HER2-Signalen / Zellkern niemals HER2-amplifiziert und Tumoren ≥ 10 Signalen / Zellkern - sogenannte "high level"-amplifizierte Tumoren - immer HER2-amplifiziert. Es werden 69% (9/13) der HER2-amplifizierten Tumoren (Ratio > 2) in die Kategorie der "low level"-Amplifikation eingeordnet, während nur 31% (4/13) "high level"-amplifiziert sind. Desweiteren werden in der Kategorie "low level"-Amplifikation (23 Tumoren) 61% (14/23) nicht-amplifizierte und 39% (9/23) amplifizierte Tumoren subsumiert.

3.2 Immunhistochemische Färbung

Die immunhistochemische Färbung des HER2-Rezeptorproteins p185 erfolgte zum einen mit dem polyklonalen Antikörper A0485, der gegen die intrazelluläre Domäne des HER2-Rezeptorproteins gerichtet ist und zum anderen mit dem monoklonalen Antikörper TAB250, der die extrazelluläre Domäne des HER2-Rezeptors detektiert. Der Antikörper A0485 war als erster Antikörper für die Diagnostik und Therapieplanung zugelassen und ist daher als „Goldstandard“ zu werten. Als Interpretationsrichtlinie zur Beurteilung und Klassifikation der Färbeergebnisse wurde der "Atlas for Interpretation of HercepTest™ Staining" (DAKO-Broschüre Nr. 20210, Tabelle 2) verwendet. Dieser wurde im Kapitel 2.3.2.1, Tabelle 2.2 beschrieben. Da die Antikörper das membranständige Protein detektieren und bei beiden die Membranfärbung beurteilt wird, haben wir für beide Antikörperfärbungen die HercepTest-Klassifikation angewendet.
3. Ergebnisse

Grundsätzlich waren bei den ösophagealen Adenokarzinomen zwei Muster der Immunoreaktivität zu beobachten: eine membranständige, zirkuläre Färbung und eine zytoplasmatische, diffuse Färbung. Per definitionem (Hercep Test™) wird nur die Anfärbung der Zellmembran für die Klassifikation der immunhistochemischen Färbung gewertet (Abbildung 3.6 A, B). Hinsichtlich einer geplanten Therapie mit Herceptin™ ist ausschließlich diese Expressionsform von Bedeutung. Während die stark überexprimierten Tumoren (Gruppe "3+") ein homogenes Färbemuster zeigten, wiesen die übrigen Tumoren ein heterogenes Färbemuster auf. Es färbten sich innerhalb der Präparate einige Zellgruppen intensiver als andere an. Zum Teil lagen stark positive Areale ("3+") neben negativen Tumorarealen ("0" ; "1+").

Abbildung 3.6: Darstellung der p185-Überexpression in drei exemplarisch dokumentierten ösophagealen Adenokarzinomen:
A) Überexpression (Gruppe "3+"); B) moderate Expression (Gruppe "2+"); C) Keine Expression (Gruppe "0").

3.2.1 Vergleichende Analyse von A0485 und TAB250
In der immunhistochemischen Färbung mit dem polyklonalen Antikörper A0485 zeigten 51% (37/72) der Tumoren eine Überexpression des Proteins p185 (Färbeverhalten "2+" ; "3+"). Bei Verwendung des monoklonalen Antikörpers TAB250 wurde bei 35% (25/72) der Tumoren eine Überexpression des Membranproteins p185 nachgewiesen. In nachfolgender Tabelle 3.2 werden die Tumoren nach ihrem immunhistochemisch detektierten Expressionsgrad eingeteilt.
3. Ergebnisse

Tabelle 3.2: Verteilung des HER2-Expressionsmusters bei Färbung mit A0485 und TAB250.

<table>
<thead>
<tr>
<th>p185 Expressionsgrad</th>
<th>Antikörper A0485</th>
<th>Antikörper TAB250</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15 (21%)</td>
<td>28 (39%)</td>
</tr>
<tr>
<td>1+</td>
<td>19 (26%)</td>
<td>17 (24%)</td>
</tr>
<tr>
<td>2+</td>
<td>20 (28%)</td>
<td>9 (12%)</td>
</tr>
<tr>
<td>3+</td>
<td>18 (25%)</td>
<td>18 (25%)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>72 (100%)</td>
<td>72 (100%)</td>
</tr>
</tbody>
</table>

Werden die Resultate beider immunhistochemischer Färbungen hinsichtlich der Überexpression von p185 ("2+" ; "3+") miteinander verglichen, so zeigte sich vor allem bei den negativen ("0" ; "1+") und stark positiven ("3+") Präparaten eine hohe Konkordanz. Trotz der Abweichungen im Bereich "2+" (Tabelle 3.2) war die Korrelation zwischen den Färbergebnissen beider Antikörper mit einem Spearman-Rho Korrelationskoeffizienten von 0,626 statistisch signifikant (p<0,001, Spearman-Test).

3.3 Korrelation von HER2-Genamplifikation und p185-Überexpression

Zwischen der HER2-Genamplifikationsrate und der Überexpression des Genproduktes p185 fand sich ein hoch signifikanter Zusammenhang bei beiden Antikörpern (A0485 p=0,002; TAB250 p<0,001, Fisher-Exakt-Test). Zwölf der 13 (92%) HER2-amplifizierten Tumoren zeigten eine starke p185-Überexpression ("3+"). Bei einem der 13 (8%) HER2-amplifizierten Tumoren wurde mit beiden Antikörpern p185-Negativität auf immunhistochemischer Ebene nachgewiesen. Umgekehrt war die Überexpression von p185 bei der Mehrzahl
3. Ergebnisse

der Tumoren jedoch nicht mit einer HER2-Genamplifikation assoziiert. Eine Überexpression des Rezeptorproteins p185 wurde bei 42% (25/59) [A0485] bzw. 22% (13/59) [TAB250] der nicht HER2-amplifizierten Tumoren nachgewiesen (Tabellen 3.3, 3.4).

Tabelle 3.3: HER2-Amplifikation und p185-Überexpression [A0485].

<table>
<thead>
<tr>
<th></th>
<th>Keine HER2-Amplifikation</th>
<th>Amplifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine p185-Expression ("0" - "1+")</td>
<td>34 (58%)</td>
<td>1 (8%)</td>
</tr>
<tr>
<td>p185-Überexpression ("2+" - "3+")</td>
<td>25 (42%)</td>
<td>12 (92%)</td>
</tr>
</tbody>
</table>

Tabelle 3.4: HER2-Amplifikation und p185-Überexpression [TAB250].

<table>
<thead>
<tr>
<th></th>
<th>Keine Amplifikation</th>
<th>Amplifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine p185-Expression ("0" - "1+")</td>
<td>46 (78%)</td>
<td>1 (8%)</td>
</tr>
<tr>
<td>p185-Überexpression ("2+" - "3+")</td>
<td>13 (22%)</td>
<td>12 (92%)</td>
</tr>
</tbody>
</table>

Anzahl Tumore (n=72)
3. Ergebnisse

Da es trotz signifikanter Korrelation von Genamplifikation und p185-Überexpression einige Tumoren gab, die auch ohne Amplifikation eine Überexpression aufwiesen (Tabellen 3.3, 3.4), stellte sich die Frage, ob auch eine Gendosiserhöhung durch Polysomie des Chromosoms 17 für eine p185-Überexpression ursächlich sein könnte. Wir haben daher in einem Rangsummentest die durchschnittliche Chromosom 17-Signalanzahl von Tumoren mit p185 Überexpression ("2+"; "3+") mit Tumoren ohne p185 Expression ("0"; "1+") verglichen. Hierbei zeigte sich bezüglich der Anzahl von Chromosom 17 kein signifikanter Unterschied zwischen beiden Gruppen (A0485 p=0,545, TAB250 p=0,852, Mann-Whitney-Test).

3.4 Korrelation von HER2-Genamplifikation und p185-Überexpression mit histopathologischen Parametern

3.4.1 HER2-Genamplifikation

Es war keine signifikante Korrelation zwischen der HER2-Genamplifikation und der Tumorgröße bzw. der Lymphknotenmetastasierung festzustellen. Es zeigte sich jedoch ein Trend hinsichtlich einer Assoziation zwischen HER2-Amplifikation und einer besseren Differenzierung des Primärtumors (p=0,069, Fisher-Exakt-Test) (Tabelle 3.5).

Tabelle 3.5: Korrelation von HER2-Genamplifikation mit histopathologischen Parametern.

<table>
<thead>
<tr>
<th>Histopathologische Parameter</th>
<th>Nicht-HER2 amplifizierte Tumoren</th>
<th>HER2-amplifizierte Tumoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumorstadium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT1 - pT2</td>
<td>32 (78%)</td>
<td>9 (22%)</td>
</tr>
<tr>
<td>pT3 - pT4</td>
<td>27 (87%)</td>
<td>4 (13%)</td>
</tr>
</tbody>
</table>
3. Ergebnisse

3.4.2 Überexpression des Genproduktes p185

3.4.2.1 Polyklonaler Antikörper A0485
Bei der Berechnung der Beziehung zwischen p185-Überexpression und Primärtumorgröße konnte keine statistisch signifikante Korrelation erhoben werden. In Analogie zur Amplifikation zeigte sich auch hier eine Assoziation zwischen Überexpression und einer besseren Differenzierung des Primärtumors (p=0,03; Fisher Exakt-Test). Es fand sich ebenfalls eine signifikante Assoziation zwischen p185-Überexpression und dem Lymphknotenstatus, da sich in der Gruppe ohne Lymphknotenmetastasen deutlich weniger nicht überexprimierte Fälle befanden (p=0,028; Fisher Exakt-Test) (Tabelle 3.6).

<table>
<thead>
<tr>
<th>Histopathologische Parameter</th>
<th>Nicht-HER2 amplifizierte Tumoren</th>
<th>HER2-amplifizierte Tumoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphknotenmetastasierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pN0</td>
<td>13 (22%)</td>
<td>4 (31%)</td>
</tr>
<tr>
<td>pN1</td>
<td>46 (78%)</td>
<td>9 (69%)</td>
</tr>
<tr>
<td>Differenzierungsgrad des Tumors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>19 (32%)</td>
<td>8 (62%)</td>
</tr>
<tr>
<td>G3</td>
<td>40 (68%)</td>
<td>5 (38%)</td>
</tr>
</tbody>
</table>
3. Ergebnisse

<table>
<thead>
<tr>
<th>Histopathologische Parameter</th>
<th>Nicht-p185 überexprimierte Tumoren</th>
<th>p 185-überexprimierte Tumoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumorstadium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT1 - pT2</td>
<td>17 (50%)</td>
<td>24 (63%)</td>
</tr>
<tr>
<td>pT3 - pT4</td>
<td>17 (50%)</td>
<td>14 (37%)</td>
</tr>
<tr>
<td>Lymphknotenmetastasierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pN0</td>
<td>4 (12%)</td>
<td>13 (34%)</td>
</tr>
<tr>
<td>pN1</td>
<td>30 (88%)</td>
<td>25 (66%)</td>
</tr>
<tr>
<td>Differenzierungsgrad des Tumors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>8 (24%)</td>
<td>19 (50%)</td>
</tr>
<tr>
<td>G3</td>
<td>26 (76%)</td>
<td>19 (50%)</td>
</tr>
</tbody>
</table>

3.4.2.2 Monoklonaler Antikörper TAB250
Ergebnisse

Tabelle 3.7: Korrelation p185-Überexpression [IHC mit TAB250] mit histopathologischen Parametern.

<table>
<thead>
<tr>
<th>Histopathologische Parameter</th>
<th>Nicht-p185 überexprimierte Tumoren</th>
<th>p185-überexprimierte Tumoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumorstadium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT1 - pT2</td>
<td>24 (53%)</td>
<td>17 (63%)</td>
</tr>
<tr>
<td>pT3 - pT4</td>
<td>21 (47%)</td>
<td>10 (37%)</td>
</tr>
<tr>
<td>Lymphknotenmetastasierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pN0</td>
<td>10 (22%)</td>
<td>7 (26%)</td>
</tr>
<tr>
<td>pN1</td>
<td>35 (78%)</td>
<td>20 (74%)</td>
</tr>
<tr>
<td>Differenzierungsgrad des Tumors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>13 (29%)</td>
<td>14 (52%)</td>
</tr>
<tr>
<td>G3</td>
<td>32 (71%)</td>
<td>13 (48%)</td>
</tr>
</tbody>
</table>
4. Diskussion

4. DISKUSSION

4.1 HER2-Amplifikation beim Adenokarzinom des Ösophagus

Bei Studienbeginn war die Datenlage bezüglich der Häufigkeit der HER2-Amplifikation beim Adenokarzinom des Ösophagus unzureichend. In der Zwischenzeit haben sich einige Studiengruppen mit der Prävalenz der HER2-Amplifikation beim ösophagealen Adenokarzinom beschäftigt [5, 19, 134]. Eine Übersicht der Studienergebnisse im Vergleich zur vorliegenden Arbeit ist in Tabelle 4.1 dargestellt.

<table>
<thead>
<tr>
<th>Autoren</th>
<th>Anzahl analysierter Tumoren</th>
<th>Materialien & Methoden</th>
<th>Anzahl gezählter Zellkerne</th>
<th>HER2-Amplifikationsgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al Kasspoole [5]</td>
<td>13</td>
<td>Gefriergewebe Southern Blot</td>
<td>Komplettes Tumorareal</td>
<td>15%</td>
</tr>
<tr>
<td>Brien [19]</td>
<td>63</td>
<td>Paraffingewebe Dig-HER2- Sonde, FISH</td>
<td>40 Tumorzellen</td>
<td>19%</td>
</tr>
<tr>
<td>Walch [134]</td>
<td>23</td>
<td>Paraffingewebe Zwei-Farben-FISH</td>
<td>Komplettes Tumorareal</td>
<td>35%</td>
</tr>
<tr>
<td>Vorliegende Studie</td>
<td>72</td>
<td>Gefriergewebe Zwei-Farben-FISH</td>
<td>60 Tumorzellen</td>
<td>18%</td>
</tr>
</tbody>
</table>
4. Diskussion

Die verschiedenen Resultate sind zum einen vor dem Hintergrund methodologischer Unterschiede bei den verwendeten Nachweismethoden, zum anderen aufgrund unterschiedlicher Ansätze bei der Auswertung und Interpretation der Hybridisierungsergebnisse zu diskutieren.

4. Diskussion

4. Diskussion

4.2 p185-Überexpression beim Adenokarzinom des Ösophagus

Wenn der genetische Defekt (d.h. die Amplifikation) zur verstärkten Expression des Wachstumsfaktorrezeptors führt, kann dies ein Ansatzpunkt für eine Therapie mit einem gegen HER2 gerichteten Antikörper darstellen.

Tabelle 4.2: p185-Überexpression beim Adenokarzinom des Ösophagus.

<table>
<thead>
<tr>
<th>Autoren</th>
<th>Anzahl Tumoren</th>
<th>Gewebe- fixation</th>
<th>Antikörper (Verdünnung/Konzentration)</th>
<th>p185- Überexpression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim [68]</td>
<td>10</td>
<td>Paraffin</td>
<td>GF-10 (1:100)</td>
<td>10%</td>
</tr>
<tr>
<td>Flejou [48]</td>
<td>66</td>
<td>Paraffin</td>
<td>A0485 (1:200)</td>
<td>11%</td>
</tr>
<tr>
<td>Nakamura [89]</td>
<td>80</td>
<td>Paraffin</td>
<td>NCL-CB-11 (1:20)</td>
<td>19%</td>
</tr>
<tr>
<td>Hardwick [55]</td>
<td>31</td>
<td>Paraffin</td>
<td>NCL-CB-11 (1:40)</td>
<td>26%</td>
</tr>
<tr>
<td>Hardwick [56]</td>
<td>127</td>
<td>Paraffin</td>
<td>NCL-CB-11 (1:40)</td>
<td>23%</td>
</tr>
<tr>
<td>Duhaylongsod [43]</td>
<td>42</td>
<td>Paraffin</td>
<td>p-AB-2 (1µg/ml), TAB (2, 5µg/ml)</td>
<td>43%</td>
</tr>
<tr>
<td>Walch [134]</td>
<td>35</td>
<td>Paraffin</td>
<td>A0485 (1:400)</td>
<td>57%</td>
</tr>
<tr>
<td>Al Kasspooles [5]</td>
<td>13</td>
<td>Frischgewebe</td>
<td>9G6 (3µg/ml)</td>
<td>60%</td>
</tr>
<tr>
<td>Friess [49]</td>
<td>39</td>
<td>Paraffin</td>
<td>Keine Angabe</td>
<td>64%</td>
</tr>
<tr>
<td>Jankowski [62]</td>
<td>15</td>
<td>Frischgewebe</td>
<td>NCL-CB-11, TA 1 (keine Angabe)</td>
<td>73%</td>
</tr>
</tbody>
</table>

In unserer Studie zeigten die Tumoren ein heterogenes Immunoreaktivitäts muster mit zirkulären, membranständigen und diffusen, zytoplasmatischen Färbungen. Im Hinblick auf eine mögliche Therapie mit dem therapeutischen Antikörper Trastuzumab (Herceptin®) ist ausschließlich die membranäre Expression von p185 von Bedeutung. Hinsichtlich der Bedeutung der diffusen zytoplasmatischen p185-Expression existieren zwei Hypothesen:

1) Da die Proteinsynthese in den Ribosomen stattfindet, detektiert der Antikörper zytoplasmatische Vorläufer des endgültigen Produktes [61].

2) Die zytoplasmatische Färbung repräsentiert extrazelluläre Domänenfragmente, die durch das native HER2-Protein sezerniert werden [62].

Da der zytoplasmatischen HER2-Expression keine prognostische Bedeutung beigemessen wird [32, 62] und diese auch keine Zielstruktur für eine Antikörpertherapie repräsentiert, wurde sie in der vorliegenden Arbeit nicht weiter untersucht.

Da dieses Phänomen der erhöhten Proteinüberexpression ohne assoziierte Genamplifikation auch in unserer Studie aufgetreten ist, bieten sich mehrere Erklärungsansätze an:

1. Die Sensitivität des immunhistochemischen Nachweises von p185 ist wesentlich höher als die Spezifität.

In einer Studie konnte nachgewiesen werden, dass eine Aneusomie des Chromosoms 17 zu moderat erhöhten Konzentrationen an HER2-mRNA und zu
4. Diskussion

4.3 Korrelation des HER2-Status mit klinisch-pathologischen Parametern

Bei der Korrelation der Genamplifikation / Überexpression [A0485] wurde ein Trend zugunsten einer besseren Tumordifferenzierung bei HER2-positiven
4. Diskussion

Insgesamt wurden in den bislang publizierten Studien bezüglich der HER2-Amplifikation bei ösophagealen Adenokarzinomen keine signifikanten Korrelationen zu klinisch-pathologischen Parametern beobachtet [5, 43, 48, 49, 56].

4.4 Die Bedeutung von HER2 bei der Progression ösophagealer Adenokarzinome

Um die mögliche Rolle von HER2 bei der systemischen Progression ösophagealer Adenokarzinome zu definieren, war die Anzahl der unserer Studie zur Verfügung stehenden Tumorpräparate zu gering. Bei einem Teil der Adenokarzinome lässt sich die maligne Tumorentwicklung auf eine morphologisch definierte Vorstufe - die Barrett-Mukosa - zurückführen.

Um die HER2-Amplifikation bzw. p185-Expression in den zeitlichen Ablauf der Progression einzuordnen, d.h. zu determinieren, ob es sich um ein frühes oder spätes Ereignis in der Tumorentwicklung handelt, wurde die p185-Expression in gesunder Ösophagusmukosa, Barrett-Mukosa und im Adenokarzinom analysiert [5, 62]. Da ein quantitativer Anstieg der HER2-Expression von der Barrett-Mukosa zum Adenokarzinom nachgewiesen werden konnte, wurde angenommen, dass die erhöhte HER2-Proteinexpression als diagnostischer Malignitätsmarker verwendet werden kann [62]. Da bereits bei 60% der frühen Vorstufen p185-überexprimirierende Tumorzellen nachgewiesen werden konnten, wurde zudem vermutet, dass es sich bei der Überexpression von p185 um ein häufiges und frühes Ereignis der Tumorprogression handelt [5]. Interessanterweise konnten die immunhistochemischen Ergebnisse dieser Studie nicht auf die Genebene projiziert werden. Der Anteil HER2-amplifizierter Zellen betrug bei der Barrett-Mukosa 0%, bei den Adenokarzinomen 15,4% [5].
4. Diskussion

In einer anderen Studie wurde der HER2-Status auf Gen-, mRNA- und Proteinebene analysiert [134]. In Tabelle 4.3 sind die Ergebnisse der Studie dargestellt.

Tabelle 4.3: Prozentualer Anteil HER2-positiver Präparate (Nachweis von HER2-Genamplifikation, m-RNA-Überexpression, Überexpression des Genproduktes p185) und Chromosom 17-Polysomie in den verschiedenen Stadien der Tumorprogression [134].

<table>
<thead>
<tr>
<th>Histologischer Typ</th>
<th>Chromosom 17 Polysomie</th>
<th>HER2 Amplifikation</th>
<th>mRNA Überexpression</th>
<th>p185 Überexpression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metaplasie</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Lowgrade Dysplasie</td>
<td>50,0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Highgrade Dysplasie</td>
<td>38,5%</td>
<td>30,8%</td>
<td>15,4%</td>
<td>30,8%</td>
</tr>
<tr>
<td>Adenokarzinom</td>
<td>52,0%</td>
<td>35,0%</td>
<td>35,0%</td>
<td>35,0%</td>
</tr>
</tbody>
</table>

Interessant bei den Ergebnissen dieser Arbeit ist, dass die HER2-Amplifikation erst nach der frühen Polyploidisierung auftritt. Dies ist ein Hinweis darauf, dass die genomische Instabilität eine Voraussetzung für die Entstehung und Selektion von HER2-Amplifikationen im Rahmen der Tumorprogression darstellt. Auf Grund dieser Ergebnisse ist die HER2-Amplifikation eher in ein späteres Stadium der spezifischen Tumorprogression einzuordnen. Diese These wurde auch von anderen Arbeitsgruppen favorisiert [48, 55, 56]. Bemerkenswert bei dieser Arbeit [134] ist die hohe Rate an HER2-amplifizierten...
4. Diskussion

Tumoren, die von keiner der Arbeitsgruppen, welche in Tabelle 4.1 aufgeführt wurden, erhoben werden konnte.

Verantwortlich für die inkonsistenten Ergebnisse, die bezüglich der prognostischen Bedeutung der p185-Expression beim Adenokarzinom des Ösophagus beschrieben wurden, sind Unterschiede im Studiendesign, wie z.B. zu geringe Studiengröße (bei 70% der publizierten Arbeiten beträgt die Tumorprobenanzahl n < 50), keine aussagefähige Nachbeobachtungszeit oder die additive Durchführung neoadjuvanter/adjuvanter Therapien.
4. Diskussion

4.5 Schlußfolgerungen und Perspektiven

4. Diskussion

ist. Eine solche Fragestellung kann jedoch definitiv nur mit einer prospektiven klinischen Behandlungsstudie beantwortet werden, die aus Sicht der betroffenen Patienten wünschenswert wäre.
5. LITERATURVERZEICHNIS

5. Literaturverzeichnis

27. **Cho HS, Leahy DJ (2002):** Structure of the extracellular region of HER3 reveals a interdomain tether. Science 297, 1330-1333

5. Literaturverzeichnis

5. Literaturverzeichnis

47. **Fitzgerald RC, Triadafilopoulos G (1998):** Recent developments in the molecular characterization of Barrett’s esophagus. Dig dis 16: 63-80

50. **Galipeau PC, Cowan DS, Sanchez CA, Barrett MT, Emond MJ, Levine DS, Rabinovitch PS, Reid BJ (1996):** 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc Natl Acad Sci USA 93: 7081-7084

52. **Garrett TPJ (2003):** The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 11, 495-505

54. Graus-Porta D, Beerli RR, Daly JM (1997): ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16: 1647-1655

5. Literaturverzeichnis

185 in correlation to clinicopathological and prognostic factors of gastric carcinoma. J Cancer Res Oncol 118: 474-479

5. Literaturverzeichnis

75. Levkowitz G, Klapper LN, Tzahar E, Freywald A, Sela M, Yarden Y (1996): Coupling of the c-Cbl protooncogene product to ErbB-1/EGF-receptor but not no other ErbB proteins Oncogene 12: 1117-1125

5. Literaturverzeichnis

5. Literaturverzeichnis

5. Literaturverzeichnis

5. Literaturverzeichnis

112. Smith KA, Gorman PA, Stark MB, Groves RP, Stark GR (1990): Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells. Cell 63: 1219-1227

122. Todesursachenstatistik der Bundesrepublik Deutschland. Statistisches Bundesamt Wiesbaden 1997
5. Literaturverzeichnis

123. Trask BJ, Hamlin JL (1989): Early dihydrofolate reductase gene amplification events in CHO cells usually occur on the same chromosome arm as the original locus. Genes Dev. 3: 1913-1925

131. **Wada T, Qian X, Greene MI (1990):** Intermolecular association of the p185_{neu} protein and EGF receptor modulates EGF receptor function. *Cell* 61: 1339-1347

135. **Zhang K, Sun J, Liu N (1996):** Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. *J Biol Chem* 271:3884-3890
6. Lebenslauf

6. LEBENSLAUF

Persönliche Daten
Name: Franziska Stern
Geburtstag/-ort: 15.10.1974 in Halle/Saale
Familienstand: verheiratet, 2 Kinder

Schulbildung
1989 - 1993 Latina August-Hermann-Francke Sachsen-Anhalt

Ausbildung
1993 - 1995 Medizinisch-technische Laboratoriumsassistentin an der Lehranstalt der Medizinischen Hochschule Hannover

Berufliche Tätigkeit als MTLA
1996 - 2001 Chirurgisches Forschungslabor der allgemeinen und hepatobiliären Chirurgie der Universitätsklinik Eppendorf in Hamburg

Hochschulausbildung
April 1998 Beginn des Studiums der Humanmedizin an der Universitätsklinik Eppendorf in Hamburg
August 2000 Physikum
August 2001 I. Staatsexamen
März 2004 II. Staatsexamen
April 2005 III. Staatsexamen
6. Lebenslauf

Dissertation

2000-2002 Promotion in der Klinik und Poliklinik für Allgemein-, Viszeral- und Thoraxchirurgie des Universitätsklinikums Hamburg-Eppendorf unter der Betreuung von Dr. med. N.H. Stoecklein
(Direktor: Prof. Dr. med. J.R. Izbicki)

Seit 2003 Fortsetzung der Promotionsarbeit in der Klinik für Allgemein-, Viszeral- und Kinderchirurgie der Heinrich-Heine-Universität Düsseldorf unter der Betreuung von Dr. med. N.H. Stoecklein
(Direktor: Prof. Dr. med. W.T. Knoefel)

Arztliche Tätigkeit

10/2005 - 06/2008 Assistenzärztin für Innere Medizin im Altmark Klinikum Salzwedel

Ab 07/2008 Assistenzärztin für Innere Medizin im Klinikum Uelzen

Bad Bevensen, im Juni 2009
7. Publikationsverzeichnis

Teile der Daten der vorliegenden Promotionsarbeit konnten zu folgenden Publikationen beitragen:

Originalarbeiten

Buchbeiträge

Weitere Publikationen

Originalarbeiten

Abstracts
8. SELBSTÄNDIGKEITSERKLÄRUNG

Bad Bevensen, den 15. Mai 2008
9. DANKSAGUNG

Ohne die Unterstützung durch meine akademischen Lehrer, Kollegen, medizinische-technische Assistenten sowie das Verständnis und die Hilfe meiner Familie hätte ich diese Promotionsarbeit nicht in der vorliegenden Form präsentieren können. Deshalb bedanke ich mich bei allen, die zum Gelingen meiner Promotion beigetragen haben.

Ganz besonders danke ich:

Prof. Dr. Wolfram T. Knoefel für die Überlassung des Themas,

Dr. Nikolas Stoecklein für die gute Betreuung und tatkräftige Unterstützung in jeder Phase, obwohl seine perfektionistische Einstellung, die perfekte Doktorarbeit zu erschaffen, zu unzähligen arbeitsreichen Nächten und Wochenenden führte,

Prof. Stefan B. Hosch für die guten Diskussionen,

Dr. Erbersdobler und Frau Schnöger aus dem Institut für Pathologie der Universitätsklinik Eppendorf (Hamburg) für die Hilfsbereitschaft, Techniken und Methoden der In-situ-Hybridisierung zu vermitteln,

Andreas Lübke für den humorvollen und konstruktiven Gedankenaustausch nicht nur zum Thema "In-situ-Hybridisierung",

Silke Brilloff, die mit ihrer Hilfsbereitschaft, Kompetenz und Freundlichkeit einen wesentlichen Anteil am praktischen Gelingen dieser Arbeit hatte,

und vor allem meiner Familie, ganz besonders meinem Mann Stefan, der mir und dieser Arbeit zuliebe auf viele Dinge verzichtete, vor allem meinem Mann Stefan, sowie meiner Mutter Dr. Sylvia Stern, deren Liebe, Stärke und
9. Danksagung

Fürsorglichkeit die Basis meiner persönlichen und beruflichen Situation ist. Desweiteren möchte ich mich bei meinen Kindern Sophia und Laurin bedanken, die auf mich als aktiven Spielpartner oft verzichten mußten und hoffentlich nicht computer-süchtig werden, weil die Mutter dauernd vor dem PC saß!
10. ZUSAMMENFASSUNG

In der vorliegenden Studie wurde der HER2-Status bei 72 Patienten mit ösophagealen Adenokarzinomen anhand serieller Gefrierschnitte bestimmt. Mit Hilfe der Fluoreszenz-in-situ-Hybridisierung wurde eine HER2-Amplifikationsrate (HER2/CEP 17-Ratio > 2) bei 17, 8% (n=13) der Adenokarzinome nachgewiesen. Aufgrund der Kohybridisierung von HER2 und Chromosom 17 konnte bewiesen werden, dass die Resultate Lokus-spezifische Alterationen repräsentieren und nicht durch eine Polysomie des Chromosoms 17 bedingt sind. Bezogen auf die durchschnittliche HER2-Genkopienzahl lag bei 69% (9/13) der amplifizierten Tumoren eine "low-level"-HER2-Amplifikation (4-9 HER2-Signale/Nucleus) und bei 31% (4/13) eine "high-level"-HER2-Amplifikation (≥10 HER2-Signale/Nucleus) vor.

Die Expression des HER2-Proteins p185 wurde mit zwei verschiedenen Antikörpern immunhistochemisch nachgewiesen. In den Färbereihen mit dem polyclonalen Antikörper A0485, welcher die intrazelluläre HER2-Domäne detektiert, zeigten 51% (37/72) der Tumoren eine Überexpression des Proteins p185 (Färbeintensität "2+", "3+"). Bei Verwendung des monoklonalen Antikörpers TAB250, welcher gegen die extrazelluläre HER2-Domäne gerichtet ist, wurde bei 35% (25/72) der Tumoren eine Überexpression von p185 nachgewiesen. Die Korrelation zwischen Amplifikation und Überexpression war statistisch hoch signifikant (A0485 p=0,002; TAB250 p<0,001). Bei beiden Antikörpern zeigten 12/13 amplifizierten Tumoren (92%) eine starke Überexpression ("3+"). Bei Tumoren mit Chromosom 17-Polysomie ohne HER2-Amplifikation war kein Einfluß auf die p185-Expression nachzuweisen. In der vorliegenden Arbeit konnte kein prognostischer Einfluß des HER2-Status nachgewiesen werden. Insgesamt legen die Resultate jedoch nahe, dass HER2 beim ösophagealen Adenokarzinom eine geeignete Zielstruktur für eine adjuvante molekulare Therapie mit dem Antikörper Trastuzumab (Herceptin®) – der bereits effektiv in der adjuvanten Therapie bei Mammakarzinom-Patientinnen eingesetzt wird – darstellt.